code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def _inflate_bn_params(bn3d: nn.Module, state_dict_2d: OrderedDict,
module_name_2d: str,
inflated_param_names: List[str]) -> None:
"""Inflate a norm module from 2d to 3d.
Args:
bn3d (nn.Module): The destination bn3d module.
state_dict_2d (OrderedDict): The state dict of pretrained 2d model.
module_name_2d (str): The name of corresponding bn module in the
2d model.
inflated_param_names (list[str]): List of parameters that have been
inflated.
"""
for param_name, param in bn3d.named_parameters():
param_2d_name = f'{module_name_2d}.{param_name}'
param_2d = state_dict_2d[param_2d_name]
if param.data.shape != param_2d.shape:
warnings.warn(f'The parameter of {module_name_2d} is not'
'loaded due to incompatible shapes. ')
return
param.data.copy_(param_2d)
inflated_param_names.append(param_2d_name)
for param_name, param in bn3d.named_buffers():
param_2d_name = f'{module_name_2d}.{param_name}'
# some buffers like num_batches_tracked may not exist in old
# checkpoints
if param_2d_name in state_dict_2d:
param_2d = state_dict_2d[param_2d_name]
param.data.copy_(param_2d)
inflated_param_names.append(param_2d_name) | Inflate a norm module from 2d to 3d.
Args:
bn3d (nn.Module): The destination bn3d module.
state_dict_2d (OrderedDict): The state dict of pretrained 2d model.
module_name_2d (str): The name of corresponding bn module in the
2d model.
inflated_param_names (list[str]): List of parameters that have been
inflated. | _inflate_bn_params | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def _inflate_weights(self, logger: MMLogger) -> None:
"""Inflate the resnet2d parameters to resnet3d.
The differences between resnet3d and resnet2d mainly lie in an extra
axis of conv kernel. To utilize the pretrained parameters in 2d model,
the weight of conv2d models should be inflated to fit in the shapes of
the 3d counterpart.
Args:
logger (MMLogger): The logger used to print
debugging information.
"""
state_dict_r2d = _load_checkpoint(self.pretrained, map_location='cpu')
if 'state_dict' in state_dict_r2d:
state_dict_r2d = state_dict_r2d['state_dict']
inflated_param_names = []
for name, module in self.named_modules():
if isinstance(module, ConvModule):
# we use a ConvModule to wrap conv+bn+relu layers, thus the
# name mapping is needed
if 'downsample' in name:
# layer{X}.{Y}.downsample.conv->layer{X}.{Y}.downsample.0
original_conv_name = name + '.0'
# layer{X}.{Y}.downsample.bn->layer{X}.{Y}.downsample.1
original_bn_name = name + '.1'
else:
# layer{X}.{Y}.conv{n}.conv->layer{X}.{Y}.conv{n}
original_conv_name = name
# layer{X}.{Y}.conv{n}.bn->layer{X}.{Y}.bn{n}
original_bn_name = name.replace('conv', 'bn')
if original_conv_name + '.weight' not in state_dict_r2d:
logger.warning(f'Module not exist in the state_dict_r2d'
f': {original_conv_name}')
else:
shape_2d = state_dict_r2d[original_conv_name +
'.weight'].shape
shape_3d = module.conv.weight.data.shape
if shape_2d != shape_3d[:2] + shape_3d[3:]:
logger.warning(f'Weight shape mismatch for '
f': {original_conv_name} : '
f'3d weight shape: {shape_3d}; '
f'2d weight shape: {shape_2d}. ')
else:
self._inflate_conv_params(module.conv, state_dict_r2d,
original_conv_name,
inflated_param_names)
if original_bn_name + '.weight' not in state_dict_r2d:
logger.warning(f'Module not exist in the state_dict_r2d'
f': {original_bn_name}')
else:
self._inflate_bn_params(module.bn, state_dict_r2d,
original_bn_name,
inflated_param_names)
# check if any parameters in the 2d checkpoint are not loaded
remaining_names = set(
state_dict_r2d.keys()) - set(inflated_param_names)
if remaining_names:
logger.info(f'These parameters in the 2d checkpoint are not loaded'
f': {remaining_names}') | Inflate the resnet2d parameters to resnet3d.
The differences between resnet3d and resnet2d mainly lie in an extra
axis of conv kernel. To utilize the pretrained parameters in 2d model,
the weight of conv2d models should be inflated to fit in the shapes of
the 3d counterpart.
Args:
logger (MMLogger): The logger used to print
debugging information. | _inflate_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def inflate_weights(self, logger: MMLogger) -> None:
"""Inflate weights."""
self._inflate_weights(self, logger) | Inflate weights. | inflate_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def _make_stem_layer(self) -> None:
"""Construct the stem layers consists of a conv+norm+act module and a
pooling layer."""
self.conv1 = ConvModule(
self.in_channels,
self.base_channels,
kernel_size=self.conv1_kernel,
stride=(self.conv1_stride_t, self.conv1_stride_s,
self.conv1_stride_s),
padding=tuple([(k - 1) // 2 for k in _triple(self.conv1_kernel)]),
bias=False,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.maxpool = nn.MaxPool3d(
kernel_size=(1, 3, 3),
stride=(self.pool1_stride_t, self.pool1_stride_s,
self.pool1_stride_s),
padding=(0, 1, 1))
self.pool2 = nn.MaxPool3d(kernel_size=(2, 1, 1), stride=(2, 1, 1)) | Construct the stem layers consists of a conv+norm+act module and a
pooling layer. | _make_stem_layer | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def _freeze_stages(self) -> None:
"""Prevent all the parameters from being optimized before
``self.frozen_stages``."""
if self.frozen_stages >= 0:
self.conv1.eval()
for param in self.conv1.parameters():
param.requires_grad = False
for i in range(1, self.frozen_stages + 1):
m = getattr(self, f'layer{i}')
m.eval()
for param in m.parameters():
param.requires_grad = False | Prevent all the parameters from being optimized before
``self.frozen_stages``. | _freeze_stages | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def _init_weights(self, pretrained: Optional[str] = None) -> None:
"""Initiate the parameters either from existing checkpoint or from
scratch.
Args:
pretrained (str | None): The path of the pretrained weight. Will
override the original `pretrained` if set. The arg is added to
be compatible with mmdet. Defaults to None.
"""
if pretrained:
self.pretrained = pretrained
if isinstance(self.pretrained, str):
logger = MMLogger.get_current_instance()
logger.info(f'load model from: {self.pretrained}')
if self.pretrained2d:
# Inflate 2D model into 3D model.
self.inflate_weights(logger)
else:
# Directly load 3D model.
load_checkpoint(
self, self.pretrained, strict=False, logger=logger)
elif self.pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv3d):
kaiming_init(m)
elif isinstance(m, _BatchNorm):
constant_init(m, 1)
if self.zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck3d):
constant_init(m.conv3.bn, 0)
elif isinstance(m, BasicBlock3d):
constant_init(m.conv2.bn, 0)
else:
raise TypeError('pretrained must be a str or None') | Initiate the parameters either from existing checkpoint or from
scratch.
Args:
pretrained (str | None): The path of the pretrained weight. Will
override the original `pretrained` if set. The arg is added to
be compatible with mmdet. Defaults to None. | _init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def init_weights(self, pretrained: Optional[str] = None) -> None:
"""Initialize weights."""
self._init_weights(self, pretrained) | Initialize weights. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def forward(self, x: torch.Tensor) \
-> Union[torch.Tensor, Tuple[torch.Tensor]]:
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor or tuple[torch.Tensor]: The feature of the input
samples extracted by the backbone.
"""
x = self.conv1(x)
if self.with_pool1:
x = self.maxpool(x)
outs = []
for i, layer_name in enumerate(self.res_layers):
res_layer = getattr(self, layer_name)
x = res_layer(x)
if i == 0 and self.with_pool2:
x = self.pool2(x)
if i in self.out_indices:
outs.append(x)
if len(outs) == 1:
return outs[0]
return tuple(outs) | Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor or tuple[torch.Tensor]: The feature of the input
samples extracted by the backbone. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def train(self, mode: bool = True) -> None:
"""Set the optimization status when training."""
super().train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval() | Set the optimization status when training. | train | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def inflate_weights(self, logger: MMLogger) -> None:
"""Inflate weights."""
self._inflate_weights(self, logger) | Inflate weights. | inflate_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def _freeze_stages(self) -> None:
"""Prevent all the parameters from being optimized before
``self.frozen_stages``."""
if self.all_frozen:
layer = getattr(self, self.layer_name)
layer.eval()
for param in layer.parameters():
param.requires_grad = False | Prevent all the parameters from being optimized before
``self.frozen_stages``. | _freeze_stages | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def init_weights(self, pretrained: Optional[str] = None) -> None:
"""Initialize weights."""
self._init_weights(self, pretrained) | Initialize weights. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The feature of the input
samples extracted by the residual layer.
"""
res_layer = getattr(self, self.layer_name)
out = res_layer(x)
return out | Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The feature of the input
samples extracted by the residual layer. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def train(self, mode: bool = True) -> None:
"""Set the optimization status when training."""
super().train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval() | Set the optimization status when training. | train | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def forward(self, x):
"""Defines the computation performed at every call."""
x = self.block(x)
n, c, h, w = x.size()
x = x.view(n // self.num_segments, self.num_segments, c, h,
w).transpose(1, 2).contiguous()
x = self.non_local_block(x)
x = x.transpose(1, 2).contiguous().view(n, c, h, w)
return x | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_tsm.py | Apache-2.0 |
def forward(self, x):
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module.
"""
x = self.shift(x, self.num_segments, shift_div=self.shift_div)
return self.net(x) | Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_tsm.py | Apache-2.0 |
def shift(x, num_segments, shift_div=3):
"""Perform temporal shift operation on the feature.
Args:
x (torch.Tensor): The input feature to be shifted.
num_segments (int): Number of frame segments.
shift_div (int): Number of divisions for shift. Default: 3.
Returns:
torch.Tensor: The shifted feature.
"""
# [N, C, H, W]
n, c, h, w = x.size()
# [N // num_segments, num_segments, C, H*W]
# can't use 5 dimensional array on PPL2D backend for caffe
x = x.view(-1, num_segments, c, h * w)
# get shift fold
fold = c // shift_div
# split c channel into three parts:
# left_split, mid_split, right_split
left_split = x[:, :, :fold, :]
mid_split = x[:, :, fold:2 * fold, :]
right_split = x[:, :, 2 * fold:, :]
# can't use torch.zeros(*A.shape) or torch.zeros_like(A)
# because array on caffe inference must be got by computing
# shift left on num_segments channel in `left_split`
zeros = left_split - left_split
blank = zeros[:, :1, :, :]
left_split = left_split[:, 1:, :, :]
left_split = torch.cat((left_split, blank), 1)
# shift right on num_segments channel in `mid_split`
zeros = mid_split - mid_split
blank = zeros[:, :1, :, :]
mid_split = mid_split[:, :-1, :, :]
mid_split = torch.cat((blank, mid_split), 1)
# right_split: no shift
# concatenate
out = torch.cat((left_split, mid_split, right_split), 2)
# [N, C, H, W]
# restore the original dimension
return out.view(n, c, h, w) | Perform temporal shift operation on the feature.
Args:
x (torch.Tensor): The input feature to be shifted.
num_segments (int): Number of frame segments.
shift_div (int): Number of divisions for shift. Default: 3.
Returns:
torch.Tensor: The shifted feature. | shift | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_tsm.py | Apache-2.0 |
def init_structure(self):
"""Initialize structure for tsm."""
if self.is_shift:
self.make_temporal_shift()
if len(self.non_local_cfg) != 0:
self.make_non_local()
if self.temporal_pool:
self.make_temporal_pool() | Initialize structure for tsm. | init_structure | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_tsm.py | Apache-2.0 |
def make_block_temporal(stage, num_segments):
"""Make temporal shift on some blocks.
Args:
stage (nn.Module): Model layers to be shifted.
num_segments (int): Number of frame segments.
Returns:
nn.Module: The shifted blocks.
"""
blocks = list(stage.children())
for i, b in enumerate(blocks):
blocks[i] = TemporalShift(
b, num_segments=num_segments, shift_div=self.shift_div)
return nn.Sequential(*blocks) | Make temporal shift on some blocks.
Args:
stage (nn.Module): Model layers to be shifted.
num_segments (int): Number of frame segments.
Returns:
nn.Module: The shifted blocks. | make_temporal_shift.make_block_temporal | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_tsm.py | Apache-2.0 |
def make_block_temporal(stage, num_segments):
"""Make temporal shift on some blocks.
Args:
stage (nn.Module): Model layers to be shifted.
num_segments (int): Number of frame segments.
Returns:
nn.Module: The shifted blocks.
"""
blocks = list(stage.children())
for i, b in enumerate(blocks):
if i % n_round == 0:
blocks[i].conv1.conv = TemporalShift(
b.conv1.conv,
num_segments=num_segments,
shift_div=self.shift_div)
return nn.Sequential(*blocks) | Make temporal shift on some blocks.
Args:
stage (nn.Module): Model layers to be shifted.
num_segments (int): Number of frame segments.
Returns:
nn.Module: The shifted blocks. | make_temporal_shift.make_block_temporal | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_tsm.py | Apache-2.0 |
def make_temporal_shift(self):
"""Make temporal shift for some layers."""
if self.temporal_pool:
num_segment_list = [
self.num_segments, self.num_segments // 2,
self.num_segments // 2, self.num_segments // 2
]
else:
num_segment_list = [self.num_segments] * 4
if num_segment_list[-1] <= 0:
raise ValueError('num_segment_list[-1] must be positive')
if self.shift_place == 'block':
def make_block_temporal(stage, num_segments):
"""Make temporal shift on some blocks.
Args:
stage (nn.Module): Model layers to be shifted.
num_segments (int): Number of frame segments.
Returns:
nn.Module: The shifted blocks.
"""
blocks = list(stage.children())
for i, b in enumerate(blocks):
blocks[i] = TemporalShift(
b, num_segments=num_segments, shift_div=self.shift_div)
return nn.Sequential(*blocks)
self.layer1 = make_block_temporal(self.layer1, num_segment_list[0])
self.layer2 = make_block_temporal(self.layer2, num_segment_list[1])
self.layer3 = make_block_temporal(self.layer3, num_segment_list[2])
self.layer4 = make_block_temporal(self.layer4, num_segment_list[3])
elif 'blockres' in self.shift_place:
n_round = 1
if len(list(self.layer3.children())) >= 23:
n_round = 2
def make_block_temporal(stage, num_segments):
"""Make temporal shift on some blocks.
Args:
stage (nn.Module): Model layers to be shifted.
num_segments (int): Number of frame segments.
Returns:
nn.Module: The shifted blocks.
"""
blocks = list(stage.children())
for i, b in enumerate(blocks):
if i % n_round == 0:
blocks[i].conv1.conv = TemporalShift(
b.conv1.conv,
num_segments=num_segments,
shift_div=self.shift_div)
return nn.Sequential(*blocks)
self.layer1 = make_block_temporal(self.layer1, num_segment_list[0])
self.layer2 = make_block_temporal(self.layer2, num_segment_list[1])
self.layer3 = make_block_temporal(self.layer3, num_segment_list[2])
self.layer4 = make_block_temporal(self.layer4, num_segment_list[3])
else:
raise NotImplementedError | Make temporal shift for some layers. | make_temporal_shift | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_tsm.py | Apache-2.0 |
def forward(self, x):
"""Defines the computation performed at every call."""
# [N, C, H, W]
n, c, h, w = x.size()
# [N // num_segments, C, num_segments, H, W]
x = x.view(n // self.num_segments, self.num_segments, c, h,
w).transpose(1, 2)
# [N // num_segmnets, C, num_segments // 2, H, W]
x = self.max_pool3d(x)
# [N // 2, C, H, W]
x = x.transpose(1, 2).contiguous().view(n // 2, c, h, w)
return self.net(x) | Defines the computation performed at every call. | make_temporal_pool.forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_tsm.py | Apache-2.0 |
def make_temporal_pool(self):
"""Make temporal pooling between layer1 and layer2, using a 3D max
pooling layer."""
class TemporalPool(nn.Module):
"""Temporal pool module.
Wrap layer2 in ResNet50 with a 3D max pooling layer.
Args:
net (nn.Module): Module to make temporal pool.
num_segments (int): Number of frame segments.
"""
def __init__(self, net, num_segments):
super().__init__()
self.net = net
self.num_segments = num_segments
self.max_pool3d = nn.MaxPool3d(
kernel_size=(3, 1, 1), stride=(2, 1, 1), padding=(1, 0, 0))
def forward(self, x):
"""Defines the computation performed at every call."""
# [N, C, H, W]
n, c, h, w = x.size()
# [N // num_segments, C, num_segments, H, W]
x = x.view(n // self.num_segments, self.num_segments, c, h,
w).transpose(1, 2)
# [N // num_segmnets, C, num_segments // 2, H, W]
x = self.max_pool3d(x)
# [N // 2, C, H, W]
x = x.transpose(1, 2).contiguous().view(n // 2, c, h, w)
return self.net(x)
self.layer2 = TemporalPool(self.layer2, self.num_segments) | Make temporal pooling between layer1 and layer2, using a 3D max
pooling layer. | make_temporal_pool | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_tsm.py | Apache-2.0 |
def make_non_local(self):
"""Wrap resnet layer into non local wrapper."""
# This part is for ResNet50
for i in range(self.num_stages):
non_local_stage = self.non_local_stages[i]
if sum(non_local_stage) == 0:
continue
layer_name = f'layer{i + 1}'
res_layer = getattr(self, layer_name)
for idx, non_local in enumerate(non_local_stage):
if non_local:
res_layer[idx] = NL3DWrapper(res_layer[idx],
self.num_segments,
self.non_local_cfg) | Wrap resnet layer into non local wrapper. | make_non_local | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_tsm.py | Apache-2.0 |
def load_original_weights(self, logger):
"""Load weights from original checkpoint, which required converting
keys."""
state_dict_torchvision = _load_checkpoint(
self.pretrained, map_location='cpu')
if 'state_dict' in state_dict_torchvision:
state_dict_torchvision = state_dict_torchvision['state_dict']
wrapped_layers_map = dict()
for name, module in self.named_modules():
# convert torchvision keys
ori_name = name
for wrap_prefix in self._get_wrap_prefix():
if wrap_prefix in ori_name:
ori_name = ori_name.replace(wrap_prefix, '')
wrapped_layers_map[ori_name] = name
if isinstance(module, ConvModule):
if 'downsample' in ori_name:
# layer{X}.{Y}.downsample.conv->layer{X}.{Y}.downsample.0
tv_conv_name = ori_name + '.0'
# layer{X}.{Y}.downsample.bn->layer{X}.{Y}.downsample.1
tv_bn_name = ori_name + '.1'
else:
# layer{X}.{Y}.conv{n}.conv->layer{X}.{Y}.conv{n}
tv_conv_name = ori_name
# layer{X}.{Y}.conv{n}.bn->layer{X}.{Y}.bn{n}
tv_bn_name = ori_name.replace('conv', 'bn')
for conv_param in ['.weight', '.bias']:
if tv_conv_name + conv_param in state_dict_torchvision:
state_dict_torchvision[ori_name+'.conv'+conv_param] = \
state_dict_torchvision.pop(tv_conv_name+conv_param)
for bn_param in [
'.weight', '.bias', '.running_mean', '.running_var'
]:
if tv_bn_name + bn_param in state_dict_torchvision:
state_dict_torchvision[ori_name+'.bn'+bn_param] = \
state_dict_torchvision.pop(tv_bn_name+bn_param)
# convert wrapped keys
for param_name in list(state_dict_torchvision.keys()):
layer_name = '.'.join(param_name.split('.')[:-1])
if layer_name in wrapped_layers_map:
wrapped_name = param_name.replace(
layer_name, wrapped_layers_map[layer_name])
print(f'wrapped_name {wrapped_name}')
state_dict_torchvision[
wrapped_name] = state_dict_torchvision.pop(param_name)
msg = self.load_state_dict(state_dict_torchvision, strict=False)
logger.info(msg) | Load weights from original checkpoint, which required converting
keys. | load_original_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_tsm.py | Apache-2.0 |
def init_weights(self):
"""Initiate the parameters either from existing checkpoint or from
scratch."""
if self.pretrained2d:
logger = MMLogger.get_current_instance()
self.load_original_weights(logger)
else:
if self.pretrained:
self.init_cfg = dict(
type='Pretrained', checkpoint=self.pretrained)
super().init_weights() | Initiate the parameters either from existing checkpoint or from
scratch. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_tsm.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
if self.downsample_position == 'before':
x = self.pool(x)
x = self.conv(x)
else:
x = self.conv(x)
x = self.pool(x)
return x | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/necks/tpn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/necks/tpn.py | Apache-2.0 |
def forward(self, x: Tuple[torch.Tensor]) -> torch.Tensor:
"""Defines the computation performed at every call."""
out = [self.downsamples[i](feature) for i, feature in enumerate(x)]
out = torch.cat(out, 1)
out = self.fusion_conv(out)
return out | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/necks/tpn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/necks/tpn.py | Apache-2.0 |
def forward(self, x: Tuple[torch.Tensor]) -> list:
"""Defines the computation performed at every call."""
out = []
for i, _ in enumerate(x):
if isinstance(self.spatial_modulation[i], nn.ModuleList):
out_ = x[i]
for op in self.spatial_modulation[i]:
out_ = op(out_)
out.append(out_)
else:
out.append(self.spatial_modulation[i](x[i]))
return out | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/necks/tpn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/necks/tpn.py | Apache-2.0 |
def init_weights(self) -> None:
"""Initiate the parameters from scratch."""
for m in self.modules():
if isinstance(m, nn.Linear):
normal_init(m, std=0.01)
if isinstance(m, nn.Conv3d):
xavier_init(m, distribution='uniform')
if isinstance(m, nn.BatchNorm3d):
constant_init(m, 1) | Initiate the parameters from scratch. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/necks/tpn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/necks/tpn.py | Apache-2.0 |
def loss(self, x: torch.Tensor,
data_samples: Optional[SampleList]) -> dict:
"""Calculate auxiliary loss."""
x = self(x)
labels = [x.gt_label for x in data_samples]
labels = torch.stack(labels).to(x.device)
labels = labels.squeeze()
if labels.shape == torch.Size([]):
labels = labels.unsqueeze(0)
losses = dict()
losses['loss_aux'] = self.loss_weight * self.loss_cls(x, labels)
return losses | Calculate auxiliary loss. | loss | python | open-mmlab/mmaction2 | mmaction/models/necks/tpn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/necks/tpn.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Auxiliary head forward function."""
x = self.conv(x)
x = self.avg_pool(x).squeeze(-1).squeeze(-1).squeeze(-1)
x = self.dropout(x)
x = self.fc(x)
return x | Auxiliary head forward function. | forward | python | open-mmlab/mmaction2 | mmaction/models/necks/tpn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/necks/tpn.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
x = self.conv(x)
x = self.pool(x)
return x | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/necks/tpn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/necks/tpn.py | Apache-2.0 |
def init_weights(self) -> None:
"""Default init_weights for conv(msra) and norm in ConvModule."""
for m in self.modules():
if isinstance(m, nn.Conv3d):
xavier_init(m, distribution='uniform')
if isinstance(m, nn.BatchNorm3d):
constant_init(m, 1)
if self.aux_head is not None:
self.aux_head.init_weights() | Default init_weights for conv(msra) and norm in ConvModule. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/necks/tpn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/necks/tpn.py | Apache-2.0 |
def forward(self,
x: Tuple[torch.Tensor],
data_samples: Optional[SampleList] = None) -> tuple:
"""Defines the computation performed at every call."""
loss_aux = dict()
# Calculate auxiliary loss if `self.aux_head`
# and `data_samples` are not None.
if self.aux_head is not None and data_samples is not None:
loss_aux = self.aux_head.loss(x[-2], data_samples)
# Spatial Modulation
spatial_modulation_outs = self.spatial_modulation(x)
# Temporal Modulation
temporal_modulation_outs = []
for i, temporal_modulation in enumerate(self.temporal_modulation_ops):
temporal_modulation_outs.append(
temporal_modulation(spatial_modulation_outs[i]))
outs = [out.clone() for out in temporal_modulation_outs]
if len(self.upsample_ops) != 0:
for i in range(self.num_tpn_stages - 1, 0, -1):
outs[i - 1] = outs[i - 1] + self.upsample_ops[i - 1](outs[i])
# Get top-down outs
top_down_outs = self.level_fusion_1(outs)
# Build bottom-up flow using downsample operation
if self.flow_type == 'parallel':
outs = [out.clone() for out in temporal_modulation_outs]
if len(self.downsample_ops) != 0:
for i in range(self.num_tpn_stages - 1):
outs[i + 1] = outs[i + 1] + self.downsample_ops[i](outs[i])
# Get bottom-up outs
botton_up_outs = self.level_fusion_2(outs)
# fuse two pyramid outs
outs = self.pyramid_fusion(
torch.cat([top_down_outs, botton_up_outs], 1))
return outs, loss_aux | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/necks/tpn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/necks/tpn.py | Apache-2.0 |
def forward(ctx, pred, labels, is_positive, ohem_ratio, group_size):
"""Calculate OHEM hinge loss.
Args:
pred (torch.Tensor): Predicted completeness score.
labels (torch.Tensor): Groundtruth class label.
is_positive (int): Set to 1 when proposals are positive and
set to -1 when proposals are incomplete.
ohem_ratio (float): Ratio of hard examples.
group_size (int): Number of proposals sampled per video.
Returns:
torch.Tensor: Returned class-wise hinge loss.
"""
num_samples = pred.size(0)
if num_samples != len(labels):
raise ValueError(f'Number of samples should be equal to that '
f'of labels, but got {num_samples} samples and '
f'{len(labels)} labels.')
losses = torch.zeros(num_samples, device=pred.device)
slopes = torch.zeros(num_samples, device=pred.device)
for i in range(num_samples):
losses[i] = max(0, 1 - is_positive * pred[i, labels[i] - 1])
slopes[i] = -is_positive if losses[i] != 0 else 0
losses = losses.view(-1, group_size).contiguous()
sorted_losses, indices = torch.sort(losses, dim=1, descending=True)
keep_length = int(group_size * ohem_ratio)
loss = torch.zeros(1, device=pred.device)
for i in range(losses.size(0)):
loss += sorted_losses[i, :keep_length].sum()
ctx.loss_index = indices[:, :keep_length]
ctx.labels = labels
ctx.slopes = slopes
ctx.shape = pred.size()
ctx.group_size = group_size
ctx.num_groups = losses.size(0)
return loss | Calculate OHEM hinge loss.
Args:
pred (torch.Tensor): Predicted completeness score.
labels (torch.Tensor): Groundtruth class label.
is_positive (int): Set to 1 when proposals are positive and
set to -1 when proposals are incomplete.
ohem_ratio (float): Ratio of hard examples.
group_size (int): Number of proposals sampled per video.
Returns:
torch.Tensor: Returned class-wise hinge loss. | forward | python | open-mmlab/mmaction2 | mmaction/models/losses/ohem_hinge_loss.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/ohem_hinge_loss.py | Apache-2.0 |
def backward(ctx, grad_output):
"""Defines a formula for differentiating the operation with backward
mode automatic differentiation."""
labels = ctx.labels
slopes = ctx.slopes
grad_in = torch.zeros(ctx.shape, device=ctx.slopes.device)
for group in range(ctx.num_groups):
for idx in ctx.loss_index[group]:
loc = idx + group * ctx.group_size
grad_in[loc, labels[loc] - 1] = (
slopes[loc] * grad_output.data[0])
return torch.autograd.Variable(grad_in), None, None, None, None | Defines a formula for differentiating the operation with backward
mode automatic differentiation. | backward | python | open-mmlab/mmaction2 | mmaction/models/losses/ohem_hinge_loss.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/ohem_hinge_loss.py | Apache-2.0 |
def _forward(self, cls_score, label, **kwargs):
"""Forward function.
Args:
cls_score (torch.Tensor): The class score.
label (torch.Tensor): The ground truth label.
kwargs: Any keyword argument to be used to calculate nll loss.
Returns:
torch.Tensor: The returned nll loss.
"""
loss_cls = F.nll_loss(cls_score, label, **kwargs)
return loss_cls | Forward function.
Args:
cls_score (torch.Tensor): The class score.
label (torch.Tensor): The ground truth label.
kwargs: Any keyword argument to be used to calculate nll loss.
Returns:
torch.Tensor: The returned nll loss. | _forward | python | open-mmlab/mmaction2 | mmaction/models/losses/nll_loss.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/nll_loss.py | Apache-2.0 |
def tem_loss(pred_start, pred_end, gt_start, gt_end):
"""Calculate Temporal Evaluation Module Loss.
This function calculate the binary_logistic_regression_loss for start
and end respectively and returns the sum of their losses.
Args:
pred_start (torch.Tensor): Predicted start score by BMN model.
pred_end (torch.Tensor): Predicted end score by BMN model.
gt_start (torch.Tensor): Groundtruth confidence score for start.
gt_end (torch.Tensor): Groundtruth confidence score for end.
Returns:
torch.Tensor: Returned binary logistic loss.
"""
loss_start = binary_logistic_regression_loss(pred_start, gt_start)
loss_end = binary_logistic_regression_loss(pred_end, gt_end)
loss = loss_start + loss_end
return loss | Calculate Temporal Evaluation Module Loss.
This function calculate the binary_logistic_regression_loss for start
and end respectively and returns the sum of their losses.
Args:
pred_start (torch.Tensor): Predicted start score by BMN model.
pred_end (torch.Tensor): Predicted end score by BMN model.
gt_start (torch.Tensor): Groundtruth confidence score for start.
gt_end (torch.Tensor): Groundtruth confidence score for end.
Returns:
torch.Tensor: Returned binary logistic loss. | tem_loss | python | open-mmlab/mmaction2 | mmaction/models/losses/bmn_loss.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/bmn_loss.py | Apache-2.0 |
def pem_reg_loss(pred_score,
gt_iou_map,
mask,
high_temporal_iou_threshold=0.7,
low_temporal_iou_threshold=0.3):
"""Calculate Proposal Evaluation Module Regression Loss.
Args:
pred_score (torch.Tensor): Predicted temporal_iou score by BMN.
gt_iou_map (torch.Tensor): Groundtruth temporal_iou score.
mask (torch.Tensor): Boundary-Matching mask.
high_temporal_iou_threshold (float): Higher threshold of
temporal_iou. Default: 0.7.
low_temporal_iou_threshold (float): Higher threshold of
temporal_iou. Default: 0.3.
Returns:
torch.Tensor: Proposal evaluation regression loss.
"""
u_hmask = (gt_iou_map > high_temporal_iou_threshold).float()
u_mmask = ((gt_iou_map <= high_temporal_iou_threshold) &
(gt_iou_map > low_temporal_iou_threshold)).float()
u_lmask = ((gt_iou_map <= low_temporal_iou_threshold) &
(gt_iou_map > 0.)).float()
u_lmask = u_lmask * mask
num_h = torch.sum(u_hmask)
num_m = torch.sum(u_mmask)
num_l = torch.sum(u_lmask)
r_m = num_h / num_m
u_smmask = torch.rand_like(gt_iou_map)
u_smmask = u_mmask * u_smmask
u_smmask = (u_smmask > (1. - r_m)).float()
r_l = num_h / num_l
u_slmask = torch.rand_like(gt_iou_map)
u_slmask = u_lmask * u_slmask
u_slmask = (u_slmask > (1. - r_l)).float()
weights = u_hmask + u_smmask + u_slmask
loss = F.mse_loss(pred_score * weights, gt_iou_map * weights)
loss = 0.5 * torch.sum(
loss * torch.ones_like(weights)) / torch.sum(weights)
return loss | Calculate Proposal Evaluation Module Regression Loss.
Args:
pred_score (torch.Tensor): Predicted temporal_iou score by BMN.
gt_iou_map (torch.Tensor): Groundtruth temporal_iou score.
mask (torch.Tensor): Boundary-Matching mask.
high_temporal_iou_threshold (float): Higher threshold of
temporal_iou. Default: 0.7.
low_temporal_iou_threshold (float): Higher threshold of
temporal_iou. Default: 0.3.
Returns:
torch.Tensor: Proposal evaluation regression loss. | pem_reg_loss | python | open-mmlab/mmaction2 | mmaction/models/losses/bmn_loss.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/bmn_loss.py | Apache-2.0 |
def forward(self,
pred_bm,
pred_start,
pred_end,
gt_iou_map,
gt_start,
gt_end,
bm_mask,
weight_tem=1.0,
weight_pem_reg=10.0,
weight_pem_cls=1.0):
"""Calculate Boundary Matching Network Loss.
Args:
pred_bm (torch.Tensor): Predicted confidence score for boundary
matching map.
pred_start (torch.Tensor): Predicted confidence score for start.
pred_end (torch.Tensor): Predicted confidence score for end.
gt_iou_map (torch.Tensor): Groundtruth score for boundary matching
map.
gt_start (torch.Tensor): Groundtruth temporal_iou score for start.
gt_end (torch.Tensor): Groundtruth temporal_iou score for end.
bm_mask (torch.Tensor): Boundary-Matching mask.
weight_tem (float): Weight for tem loss. Default: 1.0.
weight_pem_reg (float): Weight for pem regression loss.
Default: 10.0.
weight_pem_cls (float): Weight for pem classification loss.
Default: 1.0.
Returns:
tuple([torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
(loss, tem_loss, pem_reg_loss, pem_cls_loss). Loss is the bmn
loss, tem_loss is the temporal evaluation loss, pem_reg_loss is
the proposal evaluation regression loss, pem_cls_loss is the
proposal evaluation classification loss.
"""
pred_bm_reg = pred_bm[:, 0].contiguous()
pred_bm_cls = pred_bm[:, 1].contiguous()
gt_iou_map = gt_iou_map * bm_mask
pem_reg_loss = self.pem_reg_loss(pred_bm_reg, gt_iou_map, bm_mask)
pem_cls_loss = self.pem_cls_loss(pred_bm_cls, gt_iou_map, bm_mask)
tem_loss = self.tem_loss(pred_start, pred_end, gt_start, gt_end)
loss = (
weight_tem * tem_loss + weight_pem_reg * pem_reg_loss +
weight_pem_cls * pem_cls_loss)
return loss, tem_loss, pem_reg_loss, pem_cls_loss | Calculate Boundary Matching Network Loss.
Args:
pred_bm (torch.Tensor): Predicted confidence score for boundary
matching map.
pred_start (torch.Tensor): Predicted confidence score for start.
pred_end (torch.Tensor): Predicted confidence score for end.
gt_iou_map (torch.Tensor): Groundtruth score for boundary matching
map.
gt_start (torch.Tensor): Groundtruth temporal_iou score for start.
gt_end (torch.Tensor): Groundtruth temporal_iou score for end.
bm_mask (torch.Tensor): Boundary-Matching mask.
weight_tem (float): Weight for tem loss. Default: 1.0.
weight_pem_reg (float): Weight for pem regression loss.
Default: 10.0.
weight_pem_cls (float): Weight for pem classification loss.
Default: 1.0.
Returns:
tuple([torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
(loss, tem_loss, pem_reg_loss, pem_cls_loss). Loss is the bmn
loss, tem_loss is the temporal evaluation loss, pem_reg_loss is
the proposal evaluation regression loss, pem_cls_loss is the
proposal evaluation classification loss. | forward | python | open-mmlab/mmaction2 | mmaction/models/losses/bmn_loss.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/bmn_loss.py | Apache-2.0 |
def _forward(self, *args, **kwargs):
"""Forward function."""
pass | Forward function. | _forward | python | open-mmlab/mmaction2 | mmaction/models/losses/base.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/base.py | Apache-2.0 |
def forward(self, *args, **kwargs):
"""Defines the computation performed at every call.
Args:
*args: The positional arguments for the corresponding
loss.
**kwargs: The keyword arguments for the corresponding
loss.
Returns:
torch.Tensor: The calculated loss.
"""
ret = self._forward(*args, **kwargs)
if isinstance(ret, dict):
for k in ret:
if 'loss' in k:
ret[k] *= self.loss_weight
else:
ret *= self.loss_weight
return ret | Defines the computation performed at every call.
Args:
*args: The positional arguments for the corresponding
loss.
**kwargs: The keyword arguments for the corresponding
loss.
Returns:
torch.Tensor: The calculated loss. | forward | python | open-mmlab/mmaction2 | mmaction/models/losses/base.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/base.py | Apache-2.0 |
def activity_loss(activity_score, labels, activity_indexer):
"""Activity Loss.
It will calculate activity loss given activity_score and label.
Args:
activity_score (torch.Tensor): Predicted activity score.
labels (torch.Tensor): Groundtruth class label.
activity_indexer (torch.Tensor): Index slices of proposals.
Returns:
torch.Tensor: Returned cross entropy loss.
"""
pred = activity_score[activity_indexer, :]
gt = labels[activity_indexer]
return F.cross_entropy(pred, gt) | Activity Loss.
It will calculate activity loss given activity_score and label.
Args:
activity_score (torch.Tensor): Predicted activity score.
labels (torch.Tensor): Groundtruth class label.
activity_indexer (torch.Tensor): Index slices of proposals.
Returns:
torch.Tensor: Returned cross entropy loss. | activity_loss | python | open-mmlab/mmaction2 | mmaction/models/losses/ssn_loss.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/ssn_loss.py | Apache-2.0 |
def completeness_loss(completeness_score,
labels,
completeness_indexer,
positive_per_video,
incomplete_per_video,
ohem_ratio=0.17):
"""Completeness Loss.
It will calculate completeness loss given completeness_score and label.
Args:
completeness_score (torch.Tensor): Predicted completeness score.
labels (torch.Tensor): Groundtruth class label.
completeness_indexer (torch.Tensor): Index slices of positive and
incomplete proposals.
positive_per_video (int): Number of positive proposals sampled
per video.
incomplete_per_video (int): Number of incomplete proposals sampled
pre video.
ohem_ratio (float): Ratio of online hard example mining.
Default: 0.17.
Returns:
torch.Tensor: Returned class-wise completeness loss.
"""
pred = completeness_score[completeness_indexer, :]
gt = labels[completeness_indexer]
pred_dim = pred.size(1)
pred = pred.view(-1, positive_per_video + incomplete_per_video,
pred_dim)
gt = gt.view(-1, positive_per_video + incomplete_per_video)
# yapf:disable
positive_pred = pred[:, :positive_per_video, :].contiguous().view(-1, pred_dim) # noqa:E501
incomplete_pred = pred[:, positive_per_video:, :].contiguous().view(-1, pred_dim) # noqa:E501
# yapf:enable
positive_loss = OHEMHingeLoss.apply(
positive_pred, gt[:, :positive_per_video].contiguous().view(-1), 1,
1.0, positive_per_video)
incomplete_loss = OHEMHingeLoss.apply(
incomplete_pred, gt[:, positive_per_video:].contiguous().view(-1),
-1, ohem_ratio, incomplete_per_video)
num_positives = positive_pred.size(0)
num_incompletes = int(incomplete_pred.size(0) * ohem_ratio)
return ((positive_loss + incomplete_loss) /
float(num_positives + num_incompletes)) | Completeness Loss.
It will calculate completeness loss given completeness_score and label.
Args:
completeness_score (torch.Tensor): Predicted completeness score.
labels (torch.Tensor): Groundtruth class label.
completeness_indexer (torch.Tensor): Index slices of positive and
incomplete proposals.
positive_per_video (int): Number of positive proposals sampled
per video.
incomplete_per_video (int): Number of incomplete proposals sampled
pre video.
ohem_ratio (float): Ratio of online hard example mining.
Default: 0.17.
Returns:
torch.Tensor: Returned class-wise completeness loss. | completeness_loss | python | open-mmlab/mmaction2 | mmaction/models/losses/ssn_loss.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/ssn_loss.py | Apache-2.0 |
def classwise_regression_loss(bbox_pred, labels, bbox_targets,
regression_indexer):
"""Classwise Regression Loss.
It will calculate classwise_regression loss given
class_reg_pred and targets.
Args:
bbox_pred (torch.Tensor): Predicted interval center and span
of positive proposals.
labels (torch.Tensor): Groundtruth class label.
bbox_targets (torch.Tensor): Groundtruth center and span
of positive proposals.
regression_indexer (torch.Tensor): Index slices of
positive proposals.
Returns:
torch.Tensor: Returned class-wise regression loss.
"""
pred = bbox_pred[regression_indexer, :, :]
gt = labels[regression_indexer]
reg_target = bbox_targets[regression_indexer, :]
class_idx = gt.data - 1
classwise_pred = pred[:, class_idx, :]
classwise_reg_pred = torch.cat(
(torch.diag(classwise_pred[:, :, 0]).view(
-1, 1), torch.diag(classwise_pred[:, :, 1]).view(-1, 1)),
dim=1)
loss = F.smooth_l1_loss(
classwise_reg_pred.view(-1), reg_target.view(-1)) * 2
return loss | Classwise Regression Loss.
It will calculate classwise_regression loss given
class_reg_pred and targets.
Args:
bbox_pred (torch.Tensor): Predicted interval center and span
of positive proposals.
labels (torch.Tensor): Groundtruth class label.
bbox_targets (torch.Tensor): Groundtruth center and span
of positive proposals.
regression_indexer (torch.Tensor): Index slices of
positive proposals.
Returns:
torch.Tensor: Returned class-wise regression loss. | classwise_regression_loss | python | open-mmlab/mmaction2 | mmaction/models/losses/ssn_loss.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/ssn_loss.py | Apache-2.0 |
def forward(self, activity_score, completeness_score, bbox_pred,
proposal_type, labels, bbox_targets, train_cfg):
"""Calculate Boundary Matching Network Loss.
Args:
activity_score (torch.Tensor): Predicted activity score.
completeness_score (torch.Tensor): Predicted completeness score.
bbox_pred (torch.Tensor): Predicted interval center and span
of positive proposals.
proposal_type (torch.Tensor): Type index slices of proposals.
labels (torch.Tensor): Groundtruth class label.
bbox_targets (torch.Tensor): Groundtruth center and span
of positive proposals.
train_cfg (dict): Config for training.
Returns:
dict([torch.Tensor, torch.Tensor, torch.Tensor]):
(loss_activity, loss_completeness, loss_reg).
Loss_activity is the activity loss, loss_completeness is
the class-wise completeness loss,
loss_reg is the class-wise regression loss.
"""
self.sampler = train_cfg.ssn.sampler
self.loss_weight = train_cfg.ssn.loss_weight
losses = dict()
proposal_type = proposal_type.view(-1)
labels = labels.view(-1)
activity_indexer = ((proposal_type == 0) +
(proposal_type == 2)).nonzero().squeeze(1)
completeness_indexer = ((proposal_type == 0) +
(proposal_type == 1)).nonzero().squeeze(1)
total_ratio = (
self.sampler.positive_ratio + self.sampler.background_ratio +
self.sampler.incomplete_ratio)
positive_per_video = int(self.sampler.num_per_video *
(self.sampler.positive_ratio / total_ratio))
background_per_video = int(
self.sampler.num_per_video *
(self.sampler.background_ratio / total_ratio))
incomplete_per_video = (
self.sampler.num_per_video - positive_per_video -
background_per_video)
losses['loss_activity'] = self.activity_loss(activity_score, labels,
activity_indexer)
losses['loss_completeness'] = self.completeness_loss(
completeness_score,
labels,
completeness_indexer,
positive_per_video,
incomplete_per_video,
ohem_ratio=positive_per_video / incomplete_per_video)
losses['loss_completeness'] *= self.loss_weight.comp_loss_weight
if bbox_pred is not None:
regression_indexer = (proposal_type == 0).nonzero().squeeze(1)
bbox_targets = bbox_targets.view(-1, 2)
losses['loss_reg'] = self.classwise_regression_loss(
bbox_pred, labels, bbox_targets, regression_indexer)
losses['loss_reg'] *= self.loss_weight.reg_loss_weight
return losses | Calculate Boundary Matching Network Loss.
Args:
activity_score (torch.Tensor): Predicted activity score.
completeness_score (torch.Tensor): Predicted completeness score.
bbox_pred (torch.Tensor): Predicted interval center and span
of positive proposals.
proposal_type (torch.Tensor): Type index slices of proposals.
labels (torch.Tensor): Groundtruth class label.
bbox_targets (torch.Tensor): Groundtruth center and span
of positive proposals.
train_cfg (dict): Config for training.
Returns:
dict([torch.Tensor, torch.Tensor, torch.Tensor]):
(loss_activity, loss_completeness, loss_reg).
Loss_activity is the activity loss, loss_completeness is
the class-wise completeness loss,
loss_reg is the class-wise regression loss. | forward | python | open-mmlab/mmaction2 | mmaction/models/losses/ssn_loss.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/ssn_loss.py | Apache-2.0 |
def _forward(self, cls_score, label, mask, category_mask):
"""Forward function.
Args:
cls_score (torch.Tensor): The class score.
label (torch.Tensor): The ground truth label.
mask (torch.Tensor): The mask of tags. 0 indicates that the
category of this tag is missing in the label of the video.
category_mask (torch.Tensor): The category mask. For each sample,
it's a tensor with length `len(self.categories)`, denotes that
if the category is labeled for this video.
Returns:
torch.Tensor: The returned CrossEntropy loss.
"""
if self.loss_type == 'all':
loss_cls = F.binary_cross_entropy_with_logits(
cls_score, label, reduction='none')
if self.with_mask:
w_loss_cls = mask * loss_cls
w_loss_cls = torch.sum(w_loss_cls, dim=1)
if self.reduction == 'mean':
w_loss_cls = w_loss_cls / torch.sum(mask, dim=1)
w_loss_cls = torch.mean(w_loss_cls)
return dict(loss_cls=w_loss_cls)
if self.reduction == 'sum':
loss_cls = torch.sum(loss_cls, dim=-1)
return dict(loss_cls=torch.mean(loss_cls))
if self.loss_type == 'individual':
losses = {}
loss_weights = {}
for name, num, start_idx in zip(self.categories,
self.category_nums,
self.category_startidx):
category_score = cls_score[:, start_idx:start_idx + num]
category_label = label[:, start_idx:start_idx + num]
category_loss = F.binary_cross_entropy_with_logits(
category_score, category_label, reduction='none')
if self.reduction == 'mean':
category_loss = torch.mean(category_loss, dim=1)
elif self.reduction == 'sum':
category_loss = torch.sum(category_loss, dim=1)
idx = self.categories.index(name)
if self.with_mask:
category_mask_i = category_mask[:, idx].reshape(-1)
# there should be at least one sample which contains tags
# in this category
if torch.sum(category_mask_i) < 0.5:
losses[f'{name}_LOSS'] = torch.tensor(
.0, device=get_device())
loss_weights[f'{name}_LOSS'] = .0
continue
category_loss = torch.sum(category_loss * category_mask_i)
category_loss = category_loss / torch.sum(category_mask_i)
else:
category_loss = torch.mean(category_loss)
# We name the loss of each category as 'LOSS', since we only
# want to monitor them, not backward them. We will also provide
# the loss used for backward in the losses dictionary
losses[f'{name}_LOSS'] = category_loss
loss_weights[f'{name}_LOSS'] = self.category_loss_weights[idx]
loss_weight_sum = sum(loss_weights.values())
loss_weights = {
k: v / loss_weight_sum
for k, v in loss_weights.items()
}
loss_cls = sum([losses[k] * loss_weights[k] for k in losses])
losses['loss_cls'] = loss_cls
# We also trace the loss weights
losses.update({
k + '_weight': torch.tensor(v).to(losses[k].device)
for k, v in loss_weights.items()
})
# Note that the loss weights are just for reference.
return losses
else:
raise ValueError("loss_type should be 'all' or 'individual', "
f'but got {self.loss_type}') | Forward function.
Args:
cls_score (torch.Tensor): The class score.
label (torch.Tensor): The ground truth label.
mask (torch.Tensor): The mask of tags. 0 indicates that the
category of this tag is missing in the label of the video.
category_mask (torch.Tensor): The category mask. For each sample,
it's a tensor with length `len(self.categories)`, denotes that
if the category is labeled for this video.
Returns:
torch.Tensor: The returned CrossEntropy loss. | _forward | python | open-mmlab/mmaction2 | mmaction/models/losses/hvu_loss.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/hvu_loss.py | Apache-2.0 |
def _forward(self, cls_score: torch.Tensor, label: torch.Tensor,
**kwargs) -> torch.Tensor:
"""Forward function.
Args:
cls_score (torch.Tensor): The class score.
label (torch.Tensor): The ground truth label.
kwargs: Any keyword argument to be used to calculate
CrossEntropy loss.
Returns:
torch.Tensor: The returned CrossEntropy loss.
"""
if cls_score.size() == label.size():
# calculate loss for soft label
assert cls_score.dim() == 2, 'Only support 2-dim soft label'
assert len(kwargs) == 0, \
('For now, no extra args are supported for soft label, '
f'but get {kwargs}')
lsm = F.log_softmax(cls_score, 1)
if self.class_weight is not None:
self.class_weight = self.class_weight.to(cls_score.device)
lsm = lsm * self.class_weight.unsqueeze(0)
loss_cls = -(label * lsm).sum(1)
# default reduction 'mean'
if self.class_weight is not None:
# Use weighted average as pytorch CrossEntropyLoss does.
# For more information, please visit https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html # noqa
loss_cls = loss_cls.sum() / torch.sum(
self.class_weight.unsqueeze(0) * label)
else:
loss_cls = loss_cls.mean()
else:
# calculate loss for hard label
if self.class_weight is not None:
assert 'weight' not in kwargs, \
"The key 'weight' already exists."
kwargs['weight'] = self.class_weight.to(cls_score.device)
loss_cls = F.cross_entropy(cls_score, label, **kwargs)
return loss_cls | Forward function.
Args:
cls_score (torch.Tensor): The class score.
label (torch.Tensor): The ground truth label.
kwargs: Any keyword argument to be used to calculate
CrossEntropy loss.
Returns:
torch.Tensor: The returned CrossEntropy loss. | _forward | python | open-mmlab/mmaction2 | mmaction/models/losses/cross_entropy_loss.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/cross_entropy_loss.py | Apache-2.0 |
def _forward(self, cls_score: torch.Tensor, label: torch.Tensor,
**kwargs) -> torch.Tensor:
"""Forward function.
Args:
cls_score (torch.Tensor): The class score.
label (torch.Tensor): The ground truth label.
kwargs: Any keyword argument to be used to calculate
bce loss with logits.
Returns:
torch.Tensor: The returned bce loss with logits.
"""
if self.class_weight is not None:
assert 'weight' not in kwargs, "The key 'weight' already exists."
kwargs['weight'] = self.class_weight.to(cls_score.device)
loss_cls = F.binary_cross_entropy_with_logits(cls_score, label,
**kwargs)
return loss_cls | Forward function.
Args:
cls_score (torch.Tensor): The class score.
label (torch.Tensor): The ground truth label.
kwargs: Any keyword argument to be used to calculate
bce loss with logits.
Returns:
torch.Tensor: The returned bce loss with logits. | _forward | python | open-mmlab/mmaction2 | mmaction/models/losses/cross_entropy_loss.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/cross_entropy_loss.py | Apache-2.0 |
def _forward(self, cls_score: torch.Tensor, label: torch.Tensor,
**kwargs) -> torch.Tensor:
"""Forward function.
Args:
cls_score (torch.Tensor): The class score.
label (torch.Tensor): The ground truth label.
kwargs: Any keyword argument to be used to calculate
bce loss with logits.
Returns:
torch.Tensor: The returned bce loss with logits.
"""
weights = torch.tensor(self.weights).float().to(cls_score.device)
label_one_hot = F.one_hot(label, self.num_classes).float()
weights = weights.unsqueeze(0)
weights = weights.repeat(label_one_hot.shape[0], 1) * label_one_hot
weights = weights.sum(1)
weights = weights.unsqueeze(1)
weights = weights.repeat(1, self.num_classes)
BCELoss = F.binary_cross_entropy_with_logits(
input=cls_score, target=label_one_hot, reduction='none')
modulator = 1.0
if self.gamma:
modulator = torch.exp(-self.gamma * label_one_hot * cls_score -
self.gamma *
torch.log(1 + torch.exp(-1.0 * cls_score)))
loss = modulator * BCELoss
weighted_loss = weights * loss
focal_loss = torch.sum(weighted_loss)
focal_loss /= torch.sum(label_one_hot)
return focal_loss | Forward function.
Args:
cls_score (torch.Tensor): The class score.
label (torch.Tensor): The ground truth label.
kwargs: Any keyword argument to be used to calculate
bce loss with logits.
Returns:
torch.Tensor: The returned bce loss with logits. | _forward | python | open-mmlab/mmaction2 | mmaction/models/losses/cross_entropy_loss.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/cross_entropy_loss.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
n, c, t, v = x.shape
res = self.down(x) if self.with_res else 0
A_switch = {None: self.A, 'init': self.A}
if hasattr(self, 'PA'):
A_switch.update({
'offset': self.A + self.PA,
'importance': self.A * self.PA
})
A = A_switch[self.adaptive]
if self.conv_pos == 'pre':
x = self.conv(x)
x = x.view(n, self.num_subsets, -1, t, v)
x = torch.einsum('nkctv,kvw->nctw', (x, A)).contiguous()
elif self.conv_pos == 'post':
x = torch.einsum('nctv,kvw->nkctw', (x, A)).contiguous()
x = x.view(n, -1, t, v)
x = self.conv(x)
return self.act(self.bn(x) + res) | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/utils/gcn_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/gcn_utils.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
N, C, T, V = x.size()
y = None
if self.adaptive:
for i in range(self.num_subset):
A1 = self.conv_a[i](x).permute(0, 3, 1, 2).contiguous().view(
N, V, self.inter_c * T)
A2 = self.conv_b[i](x).view(N, self.inter_c * T, V)
A1 = self.tan(torch.matmul(A1, A2) / A1.size(-1)) # N V V
A1 = self.A[i] + A1 * self.alpha
A2 = x.view(N, C * T, V)
z = self.conv_d[i](torch.matmul(A2, A1).view(N, C, T, V))
y = z + y if y is not None else z
else:
for i in range(self.num_subset):
A1 = self.A[i]
A2 = x.view(N, C * T, V)
z = self.conv_d[i](torch.matmul(A2, A1).view(N, C, T, V))
y = z + y if y is not None else z
y = self.relu(self.bn(y) + self.down(x))
if self.attention:
# spatial attention first
se = y.mean(-2) # N C V
se1 = self.sigmoid(self.conv_sa(se)) # N 1 V
y = y * se1.unsqueeze(-2) + y
# then temporal attention
se = y.mean(-1) # N C T
se1 = self.sigmoid(self.conv_ta(se)) # N 1 T
y = y * se1.unsqueeze(-1) + y
# then spatial temporal attention ??
se = y.mean(-1).mean(-1) # N C
se1 = self.relu(self.fc1c(se))
se2 = self.sigmoid(self.fc2c(se1)) # N C
y = y * se2.unsqueeze(-1).unsqueeze(-1) + y
# A little bit weird
return y | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/utils/gcn_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/gcn_utils.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
return self.drop(self.bn(self.conv(x))) | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/utils/gcn_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/gcn_utils.py | Apache-2.0 |
def inner_forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
N, C, T, V = x.shape
branch_outs = []
for tempconv in self.branches:
out = tempconv(x)
branch_outs.append(out)
feat = torch.cat(branch_outs, dim=1)
feat = self.transform(feat)
return feat | Defines the computation performed at every call. | inner_forward | python | open-mmlab/mmaction2 | mmaction/models/utils/gcn_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/gcn_utils.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
out = self.inner_forward(x)
out = self.bn(out)
return self.drop(out) | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/utils/gcn_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/gcn_utils.py | Apache-2.0 |
def k_adjacency(A: Union[torch.Tensor, np.ndarray],
k: int,
with_self: bool = False,
self_factor: float = 1) -> np.ndarray:
"""Construct k-adjacency matrix.
Args:
A (torch.Tensor or np.ndarray): The adjacency matrix.
k (int): The number of hops.
with_self (bool): Whether to add self-loops to the
k-adjacency matrix. The self-loops is critical
for learning the relationships between the current
joint and its k-hop neighbors. Defaults to False.
self_factor (float): The scale factor to the added
identity matrix. Defaults to 1.
Returns:
np.ndarray: The k-adjacency matrix.
"""
# A is a 2D square array
if isinstance(A, torch.Tensor):
A = A.data.cpu().numpy()
assert isinstance(A, np.ndarray)
Iden = np.eye(len(A), dtype=A.dtype)
if k == 0:
return Iden
Ak = np.minimum(np.linalg.matrix_power(A + Iden, k), 1) - np.minimum(
np.linalg.matrix_power(A + Iden, k - 1), 1)
if with_self:
Ak += (self_factor * Iden)
return Ak | Construct k-adjacency matrix.
Args:
A (torch.Tensor or np.ndarray): The adjacency matrix.
k (int): The number of hops.
with_self (bool): Whether to add self-loops to the
k-adjacency matrix. The self-loops is critical
for learning the relationships between the current
joint and its k-hop neighbors. Defaults to False.
self_factor (float): The scale factor to the added
identity matrix. Defaults to 1.
Returns:
np.ndarray: The k-adjacency matrix. | k_adjacency | python | open-mmlab/mmaction2 | mmaction/models/utils/graph.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/graph.py | Apache-2.0 |
def edge2mat(edges: List[Tuple[int, int]], num_node: int) -> np.ndarray:
"""Get adjacency matrix from edges.
Args:
edges (list[tuple[int, int]]): The edges of the graph.
num_node (int): The number of nodes of the graph.
Returns:
np.ndarray: The adjacency matrix.
"""
A = np.zeros((num_node, num_node))
for i, j in edges:
A[j, i] = 1
return A | Get adjacency matrix from edges.
Args:
edges (list[tuple[int, int]]): The edges of the graph.
num_node (int): The number of nodes of the graph.
Returns:
np.ndarray: The adjacency matrix. | edge2mat | python | open-mmlab/mmaction2 | mmaction/models/utils/graph.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/graph.py | Apache-2.0 |
def normalize_digraph(A: np.ndarray, dim: int = 0) -> np.ndarray:
"""Normalize the digraph according to the given dimension.
Args:
A (np.ndarray): The adjacency matrix.
dim (int): The dimension to perform normalization.
Defaults to 0.
Returns:
np.ndarray: The normalized adjacency matrix.
"""
# A is a 2D square array
Dl = np.sum(A, dim)
h, w = A.shape
Dn = np.zeros((w, w))
for i in range(w):
if Dl[i] > 0:
Dn[i, i] = Dl[i]**(-1)
AD = np.dot(A, Dn)
return AD | Normalize the digraph according to the given dimension.
Args:
A (np.ndarray): The adjacency matrix.
dim (int): The dimension to perform normalization.
Defaults to 0.
Returns:
np.ndarray: The normalized adjacency matrix. | normalize_digraph | python | open-mmlab/mmaction2 | mmaction/models/utils/graph.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/graph.py | Apache-2.0 |
def get_hop_distance(num_node: int,
edges: List[Tuple[int, int]],
max_hop: int = 1) -> np.ndarray:
"""Get n-hop distance matrix by edges.
Args:
num_node (int): The number of nodes of the graph.
edges (list[tuple[int, int]]): The edges of the graph.
max_hop (int): The maximal distance between two connected nodes.
Defaults to 1.
Returns:
np.ndarray: The n-hop distance matrix.
"""
A = np.eye(num_node)
for i, j in edges:
A[i, j] = 1
A[j, i] = 1
# compute hop steps
hop_dis = np.zeros((num_node, num_node)) + np.inf
transfer_mat = [np.linalg.matrix_power(A, d) for d in range(max_hop + 1)]
arrive_mat = (np.stack(transfer_mat) > 0)
for d in range(max_hop, -1, -1):
hop_dis[arrive_mat[d]] = d
return hop_dis | Get n-hop distance matrix by edges.
Args:
num_node (int): The number of nodes of the graph.
edges (list[tuple[int, int]]): The edges of the graph.
max_hop (int): The maximal distance between two connected nodes.
Defaults to 1.
Returns:
np.ndarray: The n-hop distance matrix. | get_hop_distance | python | open-mmlab/mmaction2 | mmaction/models/utils/graph.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/graph.py | Apache-2.0 |
def set_layout(self, layout: str) -> None:
"""Initialize the layout of candidates."""
if layout == 'openpose':
self.num_node = 18
self.inward = [(4, 3), (3, 2), (7, 6), (6, 5), (13, 12), (12, 11),
(10, 9), (9, 8), (11, 5), (8, 2), (5, 1), (2, 1),
(0, 1), (15, 0), (14, 0), (17, 15), (16, 14)]
self.center = 1
elif layout == 'nturgb+d':
self.num_node = 25
neighbor_base = [(1, 2), (2, 21), (3, 21), (4, 3), (5, 21), (6, 5),
(7, 6), (8, 7), (9, 21), (10, 9), (11, 10),
(12, 11), (13, 1), (14, 13), (15, 14), (16, 15),
(17, 1), (18, 17), (19, 18), (20, 19), (22, 8),
(23, 8), (24, 12), (25, 12)]
self.inward = [(i - 1, j - 1) for (i, j) in neighbor_base]
self.center = 21 - 1
elif layout == 'coco':
self.num_node = 17
self.inward = [(15, 13), (13, 11), (16, 14), (14, 12), (11, 5),
(12, 6), (9, 7), (7, 5), (10, 8), (8, 6), (5, 0),
(6, 0), (1, 0), (3, 1), (2, 0), (4, 2)]
self.center = 0
elif isinstance(layout, dict):
self.num_node = layout['num_node']
self.inward = layout['inward']
self.center = layout['center']
else:
raise ValueError(f'Do Not Exist This Layout: {layout}')
self.self_link = [(i, i) for i in range(self.num_node)]
self.outward = [(j, i) for (i, j) in self.inward]
self.neighbor = self.inward + self.outward | Initialize the layout of candidates. | set_layout | python | open-mmlab/mmaction2 | mmaction/models/utils/graph.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/graph.py | Apache-2.0 |
def stgcn_spatial(self) -> np.ndarray:
"""ST-GCN spatial mode."""
adj = np.zeros((self.num_node, self.num_node))
adj[self.hop_dis <= self.max_hop] = 1
normalize_adj = normalize_digraph(adj)
hop_dis = self.hop_dis
center = self.center
A = []
for hop in range(self.max_hop + 1):
a_close = np.zeros((self.num_node, self.num_node))
a_further = np.zeros((self.num_node, self.num_node))
for i in range(self.num_node):
for j in range(self.num_node):
if hop_dis[j, i] == hop:
if hop_dis[j, center] >= hop_dis[i, center]:
a_close[j, i] = normalize_adj[j, i]
else:
a_further[j, i] = normalize_adj[j, i]
A.append(a_close)
if hop > 0:
A.append(a_further)
return np.stack(A) | ST-GCN spatial mode. | stgcn_spatial | python | open-mmlab/mmaction2 | mmaction/models/utils/graph.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/graph.py | Apache-2.0 |
def spatial(self) -> np.ndarray:
"""Standard spatial mode."""
Iden = edge2mat(self.self_link, self.num_node)
In = normalize_digraph(edge2mat(self.inward, self.num_node))
Out = normalize_digraph(edge2mat(self.outward, self.num_node))
A = np.stack((Iden, In, Out))
return A | Standard spatial mode. | spatial | python | open-mmlab/mmaction2 | mmaction/models/utils/graph.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/graph.py | Apache-2.0 |
def binary_adj(self) -> np.ndarray:
"""Construct an adjacency matrix for an undirected graph."""
A = edge2mat(self.neighbor, self.num_node)
return A[None] | Construct an adjacency matrix for an undirected graph. | binary_adj | python | open-mmlab/mmaction2 | mmaction/models/utils/graph.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/graph.py | Apache-2.0 |
def get_pad_shape(self, input_shape):
"""Calculate the padding size of input.
Args:
input_shape (:obj:`torch.Size`): arrange as (H, W).
Returns:
Tuple[int]: The padding size along the
original H and W directions
"""
input_t, input_h, input_w = input_shape
kernel_d, kernel_h, kernel_w = self.kernel_size
stride_d, stride_h, stride_w = self.stride
output_d = math.ceil(input_t / stride_d)
output_h = math.ceil(input_h / stride_h)
output_w = math.ceil(input_w / stride_w)
pad_d = max((output_d - 1) * stride_d +
(kernel_d - 1) * self.dilation[0] + 1 - input_t, 0)
pad_h = max((output_h - 1) * stride_h +
(kernel_h - 1) * self.dilation[1] + 1 - input_h, 0)
pad_w = max((output_w - 1) * stride_w +
(kernel_w - 1) * self.dilation[2] + 1 - input_w, 0)
return pad_d, pad_h, pad_w | Calculate the padding size of input.
Args:
input_shape (:obj:`torch.Size`): arrange as (H, W).
Returns:
Tuple[int]: The padding size along the
original H and W directions | get_pad_shape | python | open-mmlab/mmaction2 | mmaction/models/utils/embed.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/embed.py | Apache-2.0 |
def forward(self, x):
"""Add padding to `x`
Args:
x (Tensor): Input tensor has shape (B, C, H, W).
Returns:
Tensor: The tensor with adaptive padding
"""
pad_d, pad_h, pad_w = self.get_pad_shape(x.size()[-2:])
if pad_d > 0 or pad_h > 0 or pad_w > 0:
if self.padding == 'corner':
x = F.pad(x, [0, pad_w, 0, pad_h, 0, pad_d])
elif self.padding == 'same':
x = F.pad(x, [
pad_w // 2,
pad_w - pad_w // 2,
pad_h // 2,
pad_h - pad_h // 2,
pad_d // 2,
pad_d - pad_d // 2,
])
return x | Add padding to `x`
Args:
x (Tensor): Input tensor has shape (B, C, H, W).
Returns:
Tensor: The tensor with adaptive padding | forward | python | open-mmlab/mmaction2 | mmaction/models/utils/embed.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/embed.py | Apache-2.0 |
def forward(self, x):
"""
Args:
x (Tensor): Has shape (B, C, T, H, W). In most case, C is 3.
Returns:
tuple: Contains merged results and its spatial shape.
- x (Tensor): Has shape (B, out_t * out_h * out_w, embed_dims)
- out_size (tuple[int]): Spatial shape of x, arrange as
(out_t, out_h, out_w).
"""
if self.adaptive_padding:
x = self.adaptive_padding(x)
x = self.projection(x)
out_size = (x.shape[2], x.shape[3], x.shape[4])
x = x.flatten(2).transpose(1, 2)
if self.norm is not None:
x = self.norm(x)
return x, out_size | Args:
x (Tensor): Has shape (B, C, T, H, W). In most case, C is 3.
Returns:
tuple: Contains merged results and its spatial shape.
- x (Tensor): Has shape (B, out_t * out_h * out_w, embed_dims)
- out_size (tuple[int]): Spatial shape of x, arrange as
(out_t, out_h, out_w). | forward | python | open-mmlab/mmaction2 | mmaction/models/utils/embed.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/embed.py | Apache-2.0 |
def do_blending(self, imgs: torch.Tensor, label: torch.Tensor,
**kwargs) -> Tuple:
"""Blending images process."""
raise NotImplementedError | Blending images process. | do_blending | python | open-mmlab/mmaction2 | mmaction/models/utils/blending_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/blending_utils.py | Apache-2.0 |
def __call__(self, imgs: torch.Tensor, batch_data_samples: SampleList,
**kwargs) -> Tuple:
"""Blending data in a mini-batch.
Images are float tensors with the shape of (B, N, C, H, W) for 2D
recognizers or (B, N, C, T, H, W) for 3D recognizers.
Besides, labels are converted from hard labels to soft labels.
Hard labels are integer tensors with the shape of (B, ) and all of the
elements are in the range [0, num_classes - 1].
Soft labels (probability distribution over classes) are float tensors
with the shape of (B, num_classes) and all of the elements are in
the range [0, 1].
Args:
imgs (torch.Tensor): Model input images, float tensor with the
shape of (B, N, C, H, W) or (B, N, C, T, H, W).
batch_data_samples (List[:obj:`ActionDataSample`]): The batch
data samples. It usually includes information such
as `gt_label`.
Returns:
mixed_imgs (torch.Tensor): Blending images, float tensor with the
same shape of the input imgs.
batch_data_samples (List[:obj:`ActionDataSample`]): The modified
batch data samples. ``gt_label`` in each data sample are
converted from a hard label to a blended soft label, float
tensor with the shape of (num_classes, ) and all elements are
in range [0, 1].
"""
label = [x.gt_label for x in batch_data_samples]
# single-label classification
if label[0].size(0) == 1:
label = torch.tensor(label, dtype=torch.long).to(imgs.device)
one_hot_label = F.one_hot(label, num_classes=self.num_classes)
# multi-label classification
else:
one_hot_label = torch.stack(label)
mixed_imgs, mixed_label = self.do_blending(imgs, one_hot_label,
**kwargs)
for label_item, sample in zip(mixed_label, batch_data_samples):
sample.set_gt_label(label_item)
return mixed_imgs, batch_data_samples | Blending data in a mini-batch.
Images are float tensors with the shape of (B, N, C, H, W) for 2D
recognizers or (B, N, C, T, H, W) for 3D recognizers.
Besides, labels are converted from hard labels to soft labels.
Hard labels are integer tensors with the shape of (B, ) and all of the
elements are in the range [0, num_classes - 1].
Soft labels (probability distribution over classes) are float tensors
with the shape of (B, num_classes) and all of the elements are in
the range [0, 1].
Args:
imgs (torch.Tensor): Model input images, float tensor with the
shape of (B, N, C, H, W) or (B, N, C, T, H, W).
batch_data_samples (List[:obj:`ActionDataSample`]): The batch
data samples. It usually includes information such
as `gt_label`.
Returns:
mixed_imgs (torch.Tensor): Blending images, float tensor with the
same shape of the input imgs.
batch_data_samples (List[:obj:`ActionDataSample`]): The modified
batch data samples. ``gt_label`` in each data sample are
converted from a hard label to a blended soft label, float
tensor with the shape of (num_classes, ) and all elements are
in range [0, 1]. | __call__ | python | open-mmlab/mmaction2 | mmaction/models/utils/blending_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/blending_utils.py | Apache-2.0 |
def do_blending(self, imgs: torch.Tensor, label: torch.Tensor,
**kwargs) -> Tuple:
"""Blending images with mixup.
Args:
imgs (torch.Tensor): Model input images, float tensor with the
shape of (B, N, C, H, W) or (B, N, C, T, H, W).
label (torch.Tensor): One hot labels, integer tensor with the shape
of (B, num_classes).
Returns:
tuple: A tuple of blended images and labels.
"""
assert len(kwargs) == 0, f'unexpected kwargs for mixup {kwargs}'
lam = self.beta.sample()
batch_size = imgs.size(0)
rand_index = torch.randperm(batch_size)
mixed_imgs = lam * imgs + (1 - lam) * imgs[rand_index, :]
mixed_label = lam * label + (1 - lam) * label[rand_index, :]
return mixed_imgs, mixed_label | Blending images with mixup.
Args:
imgs (torch.Tensor): Model input images, float tensor with the
shape of (B, N, C, H, W) or (B, N, C, T, H, W).
label (torch.Tensor): One hot labels, integer tensor with the shape
of (B, num_classes).
Returns:
tuple: A tuple of blended images and labels. | do_blending | python | open-mmlab/mmaction2 | mmaction/models/utils/blending_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/blending_utils.py | Apache-2.0 |
def rand_bbox(img_size: torch.Size, lam: torch.Tensor) -> Tuple:
"""Generate a random boudning box."""
w = img_size[-1]
h = img_size[-2]
cut_rat = torch.sqrt(1. - lam)
cut_w = torch.tensor(int(w * cut_rat))
cut_h = torch.tensor(int(h * cut_rat))
# uniform
cx = torch.randint(w, (1, ))[0]
cy = torch.randint(h, (1, ))[0]
bbx1 = torch.clamp(cx - floor_div(cut_w, 2), 0, w)
bby1 = torch.clamp(cy - floor_div(cut_h, 2), 0, h)
bbx2 = torch.clamp(cx + floor_div(cut_w, 2), 0, w)
bby2 = torch.clamp(cy + floor_div(cut_h, 2), 0, h)
return bbx1, bby1, bbx2, bby2 | Generate a random boudning box. | rand_bbox | python | open-mmlab/mmaction2 | mmaction/models/utils/blending_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/blending_utils.py | Apache-2.0 |
def do_blending(self, imgs: torch.Tensor, label: torch.Tensor,
**kwargs) -> Tuple:
"""Blending images with cutmix.
Args:
imgs (torch.Tensor): Model input images, float tensor with the
shape of (B, N, C, H, W) or (B, N, C, T, H, W).
label (torch.Tensor): One hot labels, integer tensor with the shape
of (B, num_classes).
Returns:
tuple: A tuple of blended images and labels.
"""
assert len(kwargs) == 0, f'unexpected kwargs for cutmix {kwargs}'
batch_size = imgs.size(0)
rand_index = torch.randperm(batch_size)
lam = self.beta.sample()
bbx1, bby1, bbx2, bby2 = self.rand_bbox(imgs.size(), lam)
imgs[:, ..., bby1:bby2, bbx1:bbx2] = imgs[rand_index, ..., bby1:bby2,
bbx1:bbx2]
lam = 1 - (1.0 * (bbx2 - bbx1) * (bby2 - bby1) /
(imgs.size()[-1] * imgs.size()[-2]))
label = lam * label + (1 - lam) * label[rand_index, :]
return imgs, label | Blending images with cutmix.
Args:
imgs (torch.Tensor): Model input images, float tensor with the
shape of (B, N, C, H, W) or (B, N, C, T, H, W).
label (torch.Tensor): One hot labels, integer tensor with the shape
of (B, num_classes).
Returns:
tuple: A tuple of blended images and labels. | do_blending | python | open-mmlab/mmaction2 | mmaction/models/utils/blending_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/blending_utils.py | Apache-2.0 |
def do_blending(self, imgs: torch.Tensor, label: torch.Tensor,
**kwargs) -> Tuple:
"""Randomly apply batch augmentations to the batch inputs and batch
data samples."""
aug_index = np.random.choice(len(self.augments), p=self.probs)
aug = self.augments[aug_index]
if aug is not None:
return aug.do_blending(imgs, label, **kwargs)
else:
return imgs, label | Randomly apply batch augmentations to the batch inputs and batch
data samples. | do_blending | python | open-mmlab/mmaction2 | mmaction/models/utils/blending_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/blending_utils.py | Apache-2.0 |
def loss(self, x: Union[Tensor,
Tuple[Tensor]], rpn_results_list: InstanceList,
data_samples: SampleList, **kwargs) -> dict:
"""Perform forward propagation and loss calculation of the detection
roi on the features of the upstream network.
Args:
x (Tensor or Tuple[Tensor]): The image features extracted by
the upstream network.
rpn_results_list (List[:obj:`InstanceData`]): List of region
proposals.
data_samples (List[:obj:`ActionDataSample`]): The batch
data samples.
Returns:
Dict[str, Tensor]: A dictionary of loss components.
"""
assert len(rpn_results_list) == len(data_samples)
batch_gt_instances = []
for data_sample in data_samples:
batch_gt_instances.append(data_sample.gt_instances)
# assign gts and sample proposals
num_imgs = len(data_samples)
sampling_results = []
for i in range(num_imgs):
# rename rpn_results.bboxes to rpn_results.priors
rpn_results = rpn_results_list[i]
rpn_results.priors = rpn_results.pop('bboxes')
assign_result = self.bbox_assigner.assign(rpn_results,
batch_gt_instances[i],
None)
sampling_result = self.bbox_sampler.sample(assign_result,
rpn_results,
batch_gt_instances[i])
sampling_results.append(sampling_result)
# LFB needs meta_info: 'img_key'
batch_img_metas = [
data_samples.metainfo for data_samples in data_samples
]
losses = dict()
# bbox head forward and loss
bbox_results = self.bbox_loss(x, sampling_results, batch_img_metas)
losses.update(bbox_results['loss_bbox'])
return losses | Perform forward propagation and loss calculation of the detection
roi on the features of the upstream network.
Args:
x (Tensor or Tuple[Tensor]): The image features extracted by
the upstream network.
rpn_results_list (List[:obj:`InstanceData`]): List of region
proposals.
data_samples (List[:obj:`ActionDataSample`]): The batch
data samples.
Returns:
Dict[str, Tensor]: A dictionary of loss components. | loss | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/roi_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/roi_head.py | Apache-2.0 |
def _bbox_forward(self, x: Union[Tensor, Tuple[Tensor]], rois: Tensor,
batch_img_metas: List[dict], **kwargs) -> dict:
"""Box head forward function used in both training and testing.
Args:
x (Tensor or Tuple[Tensor]): The image features extracted by
the upstream network.
rois (Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
batch_img_metas (List[dict]): List of image information.
Returns:
dict[str, Tensor]: Usually returns a dictionary with keys:
- `cls_score` (Tensor): Classification scores.
- `bbox_pred` (Tensor): Box energies / deltas.
- `bbox_feats` (Tensor): Extract bbox RoI features.
"""
bbox_feats, global_feat = self.bbox_roi_extractor(x, rois)
if self.with_shared_head:
bbox_feats = self.shared_head(
bbox_feats,
feat=global_feat,
rois=rois,
img_metas=batch_img_metas)
cls_score = self.bbox_head(bbox_feats)
bbox_results = dict(cls_score=cls_score, bbox_feats=bbox_feats)
return bbox_results | Box head forward function used in both training and testing.
Args:
x (Tensor or Tuple[Tensor]): The image features extracted by
the upstream network.
rois (Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
batch_img_metas (List[dict]): List of image information.
Returns:
dict[str, Tensor]: Usually returns a dictionary with keys:
- `cls_score` (Tensor): Classification scores.
- `bbox_pred` (Tensor): Box energies / deltas.
- `bbox_feats` (Tensor): Extract bbox RoI features. | _bbox_forward | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/roi_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/roi_head.py | Apache-2.0 |
def bbox_loss(self, x: Union[Tensor, Tuple[Tensor]],
sampling_results: List[SamplingResult],
batch_img_metas: List[dict], **kwargs) -> dict:
"""Perform forward propagation and loss calculation of the bbox head on
the features of the upstream network.
Args:
x (Tensor or Tuple[Tensor]): The image features extracted by
the upstream network.
sampling_results (List[SamplingResult]): Sampling results.
batch_img_metas (List[dict]): List of image information.
Returns:
dict[str, Tensor]: Usually returns a dictionary with keys:
- `cls_score` (Tensor): Classification scores.
- `bbox_pred` (Tensor): Box energies / deltas.
- `bbox_feats` (Tensor): Extract bbox RoI features.
- `loss_bbox` (dict): A dictionary of bbox loss components.
"""
rois = bbox2roi([res.priors for res in sampling_results])
bbox_results = self._bbox_forward(x, rois, batch_img_metas)
bbox_loss_and_target = self.bbox_head.loss_and_target(
cls_score=bbox_results['cls_score'],
rois=rois,
sampling_results=sampling_results,
rcnn_train_cfg=self.train_cfg)
bbox_results.update(loss_bbox=bbox_loss_and_target['loss_bbox'])
return bbox_results | Perform forward propagation and loss calculation of the bbox head on
the features of the upstream network.
Args:
x (Tensor or Tuple[Tensor]): The image features extracted by
the upstream network.
sampling_results (List[SamplingResult]): Sampling results.
batch_img_metas (List[dict]): List of image information.
Returns:
dict[str, Tensor]: Usually returns a dictionary with keys:
- `cls_score` (Tensor): Classification scores.
- `bbox_pred` (Tensor): Box energies / deltas.
- `bbox_feats` (Tensor): Extract bbox RoI features.
- `loss_bbox` (dict): A dictionary of bbox loss components. | bbox_loss | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/roi_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/roi_head.py | Apache-2.0 |
def predict(self, x: Union[Tensor,
Tuple[Tensor]], rpn_results_list: InstanceList,
data_samples: SampleList, **kwargs) -> InstanceList:
"""Perform forward propagation of the roi head and predict detection
results on the features of the upstream network.
Args:
x (Tensor or Tuple[Tensor]): The image features extracted by
the upstream network.
rpn_results_list (List[:obj:`InstanceData`]): list of region
proposals.
data_samples (List[:obj:`ActionDataSample`]): The batch
data samples.
Returns:
List[obj:`InstanceData`]: Detection results of each image.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
"""
assert self.with_bbox, 'Bbox head must be implemented.'
batch_img_metas = [
data_samples.metainfo for data_samples in data_samples
]
if isinstance(x, tuple):
x_shape = x[0].shape
else:
x_shape = x.shape
assert x_shape[0] == 1, 'only accept 1 sample at test mode'
assert x_shape[0] == len(batch_img_metas) == len(rpn_results_list)
results_list = self.predict_bbox(
x, batch_img_metas, rpn_results_list, rcnn_test_cfg=self.test_cfg)
return results_list | Perform forward propagation of the roi head and predict detection
results on the features of the upstream network.
Args:
x (Tensor or Tuple[Tensor]): The image features extracted by
the upstream network.
rpn_results_list (List[:obj:`InstanceData`]): list of region
proposals.
data_samples (List[:obj:`ActionDataSample`]): The batch
data samples.
Returns:
List[obj:`InstanceData`]: Detection results of each image.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ). | predict | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/roi_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/roi_head.py | Apache-2.0 |
def predict_bbox(self, x: Tuple[Tensor], batch_img_metas: List[dict],
rpn_results_list: InstanceList,
rcnn_test_cfg: ConfigType) -> InstanceList:
"""Perform forward propagation of the bbox head and predict detection
results on the features of the upstream network.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
batch_img_metas (list[dict]): List of image information.
rpn_results_list (list[:obj:`InstanceData`]): List of region
proposals.
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN.
Returns:
list[:obj:`InstanceData`]: Detection results of each image
after the post process. Each item usually contains following
keys:
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
"""
proposals = [res.bboxes for res in rpn_results_list]
rois = bbox2roi(proposals)
bbox_results = self._bbox_forward(x, rois, batch_img_metas)
# split batch bbox prediction back to each image
cls_scores = bbox_results['cls_score']
num_proposals_per_img = tuple(len(p) for p in proposals)
rois = rois.split(num_proposals_per_img, 0)
cls_scores = cls_scores.split(num_proposals_per_img, 0)
result_list = self.bbox_head.predict_by_feat(
rois=rois,
cls_scores=cls_scores,
batch_img_metas=batch_img_metas,
rcnn_test_cfg=rcnn_test_cfg)
return result_list | Perform forward propagation of the bbox head and predict detection
results on the features of the upstream network.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
batch_img_metas (list[dict]): List of image information.
rpn_results_list (list[:obj:`InstanceData`]): List of region
proposals.
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN.
Returns:
list[:obj:`InstanceData`]: Detection results of each image
after the post process. Each item usually contains following
keys:
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ). | predict_bbox | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/roi_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/roi_head.py | Apache-2.0 |
def init_weights(self, **kwargs):
"""Weight Initialization for ACRNHead."""
for m in self.modules():
if isinstance(m, nn.Conv3d):
kaiming_init(m)
elif isinstance(m, _BatchNorm):
constant_init(m, 1) | Weight Initialization for ACRNHead. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/shared_heads/acrn_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/acrn_head.py | Apache-2.0 |
def forward(self, x, feat, rois, **kwargs):
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The extracted RoI feature.
feat (torch.Tensor): The context feature.
rois (torch.Tensor): The regions of interest.
Returns:
torch.Tensor: The RoI features that have interacted with context
feature.
"""
# We use max pooling by default
x = self.max_pool(x)
h, w = feat.shape[-2:]
x_tile = x.repeat(1, 1, 1, h, w)
roi_inds = rois[:, 0].type(torch.long)
roi_gfeat = feat[roi_inds]
new_feat = torch.cat([x_tile, roi_gfeat], dim=1)
new_feat = self.conv1(new_feat)
new_feat = self.conv2(new_feat)
for conv in self.convs:
new_feat = conv(new_feat)
return new_feat | Defines the computation performed at every call.
Args:
x (torch.Tensor): The extracted RoI feature.
feat (torch.Tensor): The context feature.
rois (torch.Tensor): The regions of interest.
Returns:
torch.Tensor: The RoI features that have interacted with context
feature. | forward | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/shared_heads/acrn_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/acrn_head.py | Apache-2.0 |
def init_weights(self, pretrained=None):
"""Initiate the parameters either from existing checkpoint or from
scratch."""
if isinstance(pretrained, str):
logger = MMLogger.get_current_instance()
logger.info(f'load model from: {pretrained}')
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv3d):
kaiming_init(m)
elif isinstance(m, _BatchNorm):
constant_init(m, 1)
if self.zero_init_out_conv:
constant_init(self.out_conv, 0, bias=0)
else:
raise TypeError('pretrained must be a str or None') | Initiate the parameters either from existing checkpoint or from
scratch. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/shared_heads/fbo_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/fbo_head.py | Apache-2.0 |
def forward(self, st_feat, lt_feat):
"""Defines the computation performed at every call."""
n, c = st_feat.size(0), self.latent_channels
num_st_feat, num_lt_feat = self.num_st_feat, self.num_lt_feat
theta = self.st_feat_conv(st_feat)
theta = theta.view(n, c, num_st_feat)
phi = self.lt_feat_conv(lt_feat)
phi = phi.view(n, c, num_lt_feat)
g = self.global_conv(lt_feat)
g = g.view(n, c, num_lt_feat)
# (n, num_st_feat, c), (n, c, num_lt_feat)
# -> (n, num_st_feat, num_lt_feat)
theta_phi = torch.matmul(theta.permute(0, 2, 1), phi)
if self.use_scale:
theta_phi /= c**0.5
p = theta_phi.softmax(dim=-1)
# (n, c, num_lt_feat), (n, num_lt_feat, num_st_feat)
# -> (n, c, num_st_feat, 1, 1)
out = torch.matmul(g, p.permute(0, 2, 1)).view(n, c, num_st_feat, 1, 1)
# If need to activate it before out_conv, use relu here, otherwise
# use relu outside the non local layer.
if self.pre_activate:
if self.pre_activate_with_ln:
out = self.ln(out)
out = self.relu(out)
out = self.out_conv(out)
if not self.pre_activate:
out = self.ln(out)
if self.dropout_ratio > 0:
out = self.dropout(out)
return out | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/shared_heads/fbo_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/fbo_head.py | Apache-2.0 |
def init_weights(self, pretrained=None):
"""Initiate the parameters either from existing checkpoint or from
scratch."""
if isinstance(pretrained, str):
logger = MMLogger.get_current_instance()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
kaiming_init(self.st_feat_conv)
kaiming_init(self.lt_feat_conv)
for layer_name in self.non_local_layers:
non_local_layer = getattr(self, layer_name)
non_local_layer.init_weights(pretrained=pretrained)
else:
raise TypeError('pretrained must be a str or None') | Initiate the parameters either from existing checkpoint or from
scratch. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/shared_heads/fbo_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/fbo_head.py | Apache-2.0 |
def forward(self, st_feat, lt_feat):
"""Defines the computation performed at every call."""
# prepare st_feat
st_feat = self.st_feat_conv(st_feat)
if self.st_feat_dropout_ratio > 0:
st_feat = self.st_feat_dropout(st_feat)
# prepare lt_feat
lt_feat = self.lt_feat_conv(lt_feat)
if self.lt_feat_dropout_ratio > 0:
lt_feat = self.lt_feat_dropout(lt_feat)
# fuse short-term and long-term features in NonLocal Layer
for layer_name in self.non_local_layers:
identity = st_feat
non_local_layer = getattr(self, layer_name)
nl_out = non_local_layer(st_feat, lt_feat)
nl_out = identity + nl_out
if not self.pre_activate:
nl_out = self.relu(nl_out)
st_feat = nl_out
return nl_out | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/shared_heads/fbo_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/fbo_head.py | Apache-2.0 |
def init_weights(self, pretrained=None):
"""FBOMax has no parameters to be initialized."""
pass | FBOMax has no parameters to be initialized. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/shared_heads/fbo_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/fbo_head.py | Apache-2.0 |
def forward(self, st_feat, lt_feat):
"""Defines the computation performed at every call."""
out = self.max_pool(lt_feat)
return out | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/shared_heads/fbo_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/fbo_head.py | Apache-2.0 |
def init_weights(self, pretrained=None):
"""Initialize the weights in the module.
Args:
pretrained (str, optional): Path to pre-trained weights.
Default: None.
"""
self.fbo.init_weights(pretrained=pretrained) | Initialize the weights in the module.
Args:
pretrained (str, optional): Path to pre-trained weights.
Default: None. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/shared_heads/fbo_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/fbo_head.py | Apache-2.0 |
def sample_lfb(self, rois, img_metas):
"""Sample long-term features for each ROI feature."""
inds = rois[:, 0].type(torch.int64)
lt_feat_list = []
for ind in inds:
lt_feat_list.append(self.lfb[img_metas[ind]['img_key']])
lt_feat = torch.stack(lt_feat_list, dim=0)
# [N, lfb_channels, window_size * max_num_feat_per_step]
lt_feat = lt_feat.permute(0, 2, 1).contiguous()
return lt_feat.unsqueeze(-1).unsqueeze(-1) | Sample long-term features for each ROI feature. | sample_lfb | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/shared_heads/fbo_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/fbo_head.py | Apache-2.0 |
def forward(self, x, rois, img_metas, **kwargs):
"""Defines the computation performed at every call."""
# [N, C, 1, 1, 1]
st_feat = self.temporal_pool(x)
st_feat = self.spatial_pool(st_feat)
identity = st_feat
# [N, C, window_size * num_feat_per_step, 1, 1]
lt_feat = self.sample_lfb(rois, img_metas).to(st_feat.device)
fbo_feat = self.fbo(st_feat, lt_feat)
out = torch.cat([identity, fbo_feat], dim=1)
return out | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/shared_heads/fbo_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/fbo_head.py | Apache-2.0 |
def __getitem__(self, img_key):
"""Sample long term features like `lfb['0f39OWEqJ24,0902']` where `lfb`
is a instance of class LFB."""
video_id, timestamp = img_key.split(',')
return self.sample_long_term_features(video_id, int(timestamp)) | Sample long term features like `lfb['0f39OWEqJ24,0902']` where `lfb`
is a instance of class LFB. | __getitem__ | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/shared_heads/lfb.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/lfb.py | Apache-2.0 |
def __len__(self):
"""The number of videos whose ROI features are stored in LFB."""
return len(self.lfb) | The number of videos whose ROI features are stored in LFB. | __len__ | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/shared_heads/lfb.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/lfb.py | Apache-2.0 |
def init_weights(self, pretrained=None):
"""LFBInferHead has no parameters to be initialized."""
pass | LFBInferHead has no parameters to be initialized. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/shared_heads/lfb_infer_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/lfb_infer_head.py | Apache-2.0 |
def forward(self, x, rois, img_metas, **kwargs):
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The extracted RoI feature.
rois (torch.Tensor): The regions of interest.
img_metas (List[dict]): The meta information of the data.
Returns:
torch.Tensor: The RoI features that have interacted with context
"""
# [N, C, 1, 1, 1]
features = self.temporal_pool(x)
features = self.spatial_pool(features)
if self.use_half_precision:
features = features.half()
inds = rois[:, 0].type(torch.int64)
for ind in inds:
self.all_metadata.append(img_metas[ind]['img_key'])
self.all_features += list(features)
# Return the input directly and doesn't affect the input.
return x | Defines the computation performed at every call.
Args:
x (torch.Tensor): The extracted RoI feature.
rois (torch.Tensor): The regions of interest.
img_metas (List[dict]): The meta information of the data.
Returns:
torch.Tensor: The RoI features that have interacted with context | forward | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/shared_heads/lfb_infer_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/lfb_infer_head.py | Apache-2.0 |
def forward(self, feat: Union[Tensor, Tuple[Tensor]],
rois: Tensor) -> tuple:
"""Forward function for extract roi features.
Args:
feat (Tensor or Tuple[Tensor]): The image features extracted by
the upstream network. The shape of feat is N, C, T, H, W.
rois (Tensor): Input RoIs, shape (k, 5).
Returns:
tuple: A tuple of roi features and global features.
- roi_feats (Tensor): Extracted bbox RoI features.
- feat (Tensor): Global features of the video clip.
"""
if not isinstance(feat, tuple):
feat = (feat, )
if len(feat) >= 2:
maxT = max([x.shape[2] for x in feat])
max_shape = (maxT, ) + feat[0].shape[3:]
# resize each feat to the largest shape (w. nearest)
feat = [F.interpolate(x, max_shape).contiguous() for x in feat]
if self.with_temporal_pool:
if self.temporal_pool_mode == 'avg':
feat = [torch.mean(x, 2, keepdim=True) for x in feat]
elif self.temporal_pool_mode == 'max':
feat = [torch.max(x, 2, keepdim=True)[0] for x in feat]
else:
raise NotImplementedError
feat = torch.cat(feat, axis=1).contiguous()
roi_feats = []
for t in range(feat.size(2)):
frame_feat = feat[:, :, t].contiguous()
roi_feat = self.roi_layer(frame_feat, rois)
if self.with_global:
global_feat = self.global_pool(frame_feat.contiguous())
inds = rois[:, 0].type(torch.int64)
global_feat = global_feat[inds]
roi_feat = torch.cat([roi_feat, global_feat], dim=1)
roi_feat = roi_feat.contiguous()
roi_feats.append(roi_feat)
roi_feats = torch.stack(roi_feats, dim=2)
return roi_feats, feat | Forward function for extract roi features.
Args:
feat (Tensor or Tuple[Tensor]): The image features extracted by
the upstream network. The shape of feat is N, C, T, H, W.
rois (Tensor): Input RoIs, shape (k, 5).
Returns:
tuple: A tuple of roi features and global features.
- roi_feats (Tensor): Extracted bbox RoI features.
- feat (Tensor): Global features of the video clip. | forward | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/roi_extractors/single_straight3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/roi_extractors/single_straight3d.py | Apache-2.0 |
def init_weights(self) -> None:
"""Initialize the classification head."""
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
nn.init.constant_(m.bias, 0) | Initialize the classification head. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/bbox_heads/bbox_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/bbox_heads/bbox_head.py | Apache-2.0 |
def forward(self, x: Tensor) -> Tensor:
"""Computes the classification logits given ROI features."""
if self.dropout_before_pool and self.dropout_ratio > 0:
x = self.dropout(x)
x = self.temporal_pool(x)
x = self.spatial_pool(x)
if not self.dropout_before_pool and self.dropout_ratio > 0:
x = self.dropout(x)
x = x.view(x.size(0), -1)
cls_score = self.fc_cls(x)
return cls_score | Computes the classification logits given ROI features. | forward | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/bbox_heads/bbox_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/bbox_heads/bbox_head.py | Apache-2.0 |
def get_recall_prec(pred_vec: Tensor, target_vec: Tensor) -> tuple:
"""Computes the Recall/Precision for both multi-label and single label
scenarios.
Note that the computation calculates the micro average.
Note, that in both cases, the concept of correct/incorrect is the same.
Args:
pred_vec (tensor[N x C]): each element is either 0 or 1
target_vec (tensor[N x C]): each element is either 0 or 1 - for
single label it is expected that only one element is on (1)
although this is not enforced.
"""
correct = pred_vec & target_vec
recall = correct.sum(1) / target_vec.sum(1).float() # Enforce Float
prec = correct.sum(1) / (pred_vec.sum(1) + 1e-6)
return recall.mean(), prec.mean() | Computes the Recall/Precision for both multi-label and single label
scenarios.
Note that the computation calculates the micro average.
Note, that in both cases, the concept of correct/incorrect is the same.
Args:
pred_vec (tensor[N x C]): each element is either 0 or 1
target_vec (tensor[N x C]): each element is either 0 or 1 - for
single label it is expected that only one element is on (1)
although this is not enforced. | get_recall_prec | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/bbox_heads/bbox_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/bbox_heads/bbox_head.py | Apache-2.0 |
def topk_to_matrix(probs: Tensor, k: int) -> Tensor:
"""Converts top-k to binary matrix."""
topk_labels = probs.topk(k, 1, True, True)[1]
topk_matrix = probs.new_full(probs.size(), 0, dtype=torch.bool)
for i in range(probs.shape[0]):
topk_matrix[i, topk_labels[i]] = 1
return topk_matrix | Converts top-k to binary matrix. | topk_to_matrix | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/bbox_heads/bbox_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/bbox_heads/bbox_head.py | Apache-2.0 |
def topk_accuracy(self,
pred: Tensor,
target: Tensor,
thr: float = 0.5) -> tuple:
"""Computes the Top-K Accuracies for both single and multi-label
scenarios."""
# Define Target vector:
target_bool = target > 0.5
# Branch on Multilabel for computing output classification
if self.multilabel:
pred = pred.sigmoid()
else:
pred = pred.softmax(dim=1)
# Compute at threshold (K=1 for single)
if self.multilabel:
pred_bool = pred > thr
else:
pred_bool = self.topk_to_matrix(pred, 1)
recall_thr, prec_thr = self.get_recall_prec(pred_bool, target_bool)
# Compute at various K
recalls_k, precs_k = [], []
for k in self.topk:
pred_bool = self.topk_to_matrix(pred, k)
recall, prec = self.get_recall_prec(pred_bool, target_bool)
recalls_k.append(recall)
precs_k.append(prec)
# Return all
return recall_thr, prec_thr, recalls_k, precs_k | Computes the Top-K Accuracies for both single and multi-label
scenarios. | topk_accuracy | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/bbox_heads/bbox_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/bbox_heads/bbox_head.py | Apache-2.0 |
def loss_and_target(self, cls_score: Tensor, rois: Tensor,
sampling_results: List[SamplingResult],
rcnn_train_cfg: ConfigDict, **kwargs) -> dict:
"""Calculate the loss based on the features extracted by the bbox head.
Args:
cls_score (Tensor): Classification prediction
results of all class, has shape
(batch_size * num_proposals_single_image, num_classes)
rois (Tensor): RoIs with the shape
(batch_size * num_proposals_single_image, 5) where the first
column indicates batch id of each RoI.
sampling_results (List[obj:SamplingResult]): Assign results of
all images in a batch after sampling.
rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.
Returns:
dict: A dictionary of loss components.
"""
cls_targets = self.get_targets(sampling_results, rcnn_train_cfg)
labels, _ = cls_targets
losses = dict()
# Only use the cls_score
if cls_score is not None:
if self.background_class:
labels = labels[:, 1:] # Get valid labels (ignore first one)
cls_score = cls_score[:, 1:]
pos_inds = torch.sum(labels, dim=-1) > 0
cls_score = cls_score[pos_inds]
labels = labels[pos_inds]
# Compute First Recall/Precisions
# This has to be done first before normalising the label-space.
recall_thr, prec_thr, recall_k, prec_k = self.topk_accuracy(
cls_score, labels, thr=0.5)
losses['recall@thr=0.5'] = recall_thr
losses['prec@thr=0.5'] = prec_thr
for i, k in enumerate(self.topk):
losses[f'recall@top{k}'] = recall_k[i]
losses[f'prec@top{k}'] = prec_k[i]
# If Single-label, need to ensure that target labels sum to 1: ie
# that they are valid probabilities.
if not self.multilabel and self.background_class:
labels = labels / labels.sum(dim=1, keepdim=True)
# Select Loss function based on single/multi-label
# NB. Both losses auto-compute sigmoid/softmax on prediction
if self.multilabel:
loss_func = F.binary_cross_entropy_with_logits
else:
loss_func = cross_entropy_loss
# Compute loss
loss = loss_func(cls_score, labels, reduction='none')
pt = torch.exp(-loss)
F_loss = self.focal_alpha * (1 - pt)**self.focal_gamma * loss
losses['loss_action_cls'] = torch.mean(F_loss)
return dict(loss_bbox=losses, bbox_targets=cls_targets) | Calculate the loss based on the features extracted by the bbox head.
Args:
cls_score (Tensor): Classification prediction
results of all class, has shape
(batch_size * num_proposals_single_image, num_classes)
rois (Tensor): RoIs with the shape
(batch_size * num_proposals_single_image, 5) where the first
column indicates batch id of each RoI.
sampling_results (List[obj:SamplingResult]): Assign results of
all images in a batch after sampling.
rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.
Returns:
dict: A dictionary of loss components. | loss_and_target | python | open-mmlab/mmaction2 | mmaction/models/roi_heads/bbox_heads/bbox_head.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/bbox_heads/bbox_head.py | Apache-2.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.