code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def visualize(self, inputs: InputsType, preds: PredType, **kwargs) -> List[np.ndarray]: """Visualize predictions. Args: inputs (List[Union[str, np.ndarray]]): Inputs for the inferencer. preds (List[Dict]): Predictions of the model. show (bool): Whether to display the image in a popup window. Defaults to False. wait_time (float): The interval of show (s). Defaults to 0. draw_pred (bool): Whether to draw predicted bounding boxes. Defaults to True. fps (int): Frames per second for saving video. Defaults to 4. out_type (str): Output format type, choose from 'img', 'gif', 'video'. Defaults to ``'img'``. target_resolution (Tuple[int], optional): Set to (desired_width desired_height) to have resized frames. If either dimension is None, the frames are resized by keeping the existing aspect ratio. Defaults to None. vid_out_dir (str): Output directory of visualization results. If left as empty, no file will be saved. Defaults to ''. """ if 'rec' in self.mode: return self.actionrecog_inferencer.visualize( inputs, preds['rec'][0], **kwargs)
Visualize predictions. Args: inputs (List[Union[str, np.ndarray]]): Inputs for the inferencer. preds (List[Dict]): Predictions of the model. show (bool): Whether to display the image in a popup window. Defaults to False. wait_time (float): The interval of show (s). Defaults to 0. draw_pred (bool): Whether to draw predicted bounding boxes. Defaults to True. fps (int): Frames per second for saving video. Defaults to 4. out_type (str): Output format type, choose from 'img', 'gif', 'video'. Defaults to ``'img'``. target_resolution (Tuple[int], optional): Set to (desired_width desired_height) to have resized frames. If either dimension is None, the frames are resized by keeping the existing aspect ratio. Defaults to None. vid_out_dir (str): Output directory of visualization results. If left as empty, no file will be saved. Defaults to ''.
visualize
python
open-mmlab/mmaction2
mmaction/apis/inferencers/mmaction2_inferencer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/apis/inferencers/mmaction2_inferencer.py
Apache-2.0
def __call__( self, inputs: InputsType, batch_size: int = 1, **kwargs, ) -> dict: """Call the inferencer. Args: inputs (InputsType): Inputs for the inferencer. It can be a path to image / image directory, or an array, or a list of these. return_datasamples (bool): Whether to return results as :obj:`BaseDataElement`. Defaults to False. batch_size (int): Batch size. Defaults to 1. **kwargs: Key words arguments passed to :meth:`preprocess`, :meth:`forward`, :meth:`visualize` and :meth:`postprocess`. Each key in kwargs should be in the corresponding set of ``preprocess_kwargs``, ``forward_kwargs``, ``visualize_kwargs`` and ``postprocess_kwargs``. Returns: dict: Inference and visualization results. """ ( preprocess_kwargs, forward_kwargs, visualize_kwargs, postprocess_kwargs, ) = self._dispatch_kwargs(**kwargs) ori_inputs = self._inputs_to_list(inputs) preds = self.forward(ori_inputs, batch_size, **forward_kwargs) visualization = self.visualize( ori_inputs, preds, **visualize_kwargs) # type: ignore # noqa: E501 results = self.postprocess(preds, visualization, **postprocess_kwargs) return results
Call the inferencer. Args: inputs (InputsType): Inputs for the inferencer. It can be a path to image / image directory, or an array, or a list of these. return_datasamples (bool): Whether to return results as :obj:`BaseDataElement`. Defaults to False. batch_size (int): Batch size. Defaults to 1. **kwargs: Key words arguments passed to :meth:`preprocess`, :meth:`forward`, :meth:`visualize` and :meth:`postprocess`. Each key in kwargs should be in the corresponding set of ``preprocess_kwargs``, ``forward_kwargs``, ``visualize_kwargs`` and ``postprocess_kwargs``. Returns: dict: Inference and visualization results.
__call__
python
open-mmlab/mmaction2
mmaction/apis/inferencers/mmaction2_inferencer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/apis/inferencers/mmaction2_inferencer.py
Apache-2.0
def _inputs_to_list(self, inputs: InputsType) -> list: """Preprocess the inputs to a list. The main difference from mmengine version is that we don't list a directory cause input could be a frame folder. Preprocess inputs to a list according to its type: - list or tuple: return inputs - str: return a list containing the string. The string could be a path to file, a url or other types of string according to the task. Args: inputs (InputsType): Inputs for the inferencer. Returns: list: List of input for the :meth:`preprocess`. """ if not isinstance(inputs, (list, tuple)): inputs = [inputs] return list(inputs)
Preprocess the inputs to a list. The main difference from mmengine version is that we don't list a directory cause input could be a frame folder. Preprocess inputs to a list according to its type: - list or tuple: return inputs - str: return a list containing the string. The string could be a path to file, a url or other types of string according to the task. Args: inputs (InputsType): Inputs for the inferencer. Returns: list: List of input for the :meth:`preprocess`.
_inputs_to_list
python
open-mmlab/mmaction2
mmaction/apis/inferencers/mmaction2_inferencer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/apis/inferencers/mmaction2_inferencer.py
Apache-2.0
def postprocess(self, preds: PredType, visualization: Optional[List[np.ndarray]] = None, print_result: bool = False, pred_out_file: str = '' ) -> Union[ResType, Tuple[ResType, np.ndarray]]: """Postprocess predictions. Args: preds (Dict): Predictions of the model. visualization (Optional[np.ndarray]): Visualized predictions. print_result (bool): Whether to print the result. Defaults to False. pred_out_file (str): Output file name to store predictions without images. Supported file formats are “json”, “yaml/yml” and “pickle/pkl”. Defaults to ''. Returns: Dict or List[Dict]: Each dict contains the inference result of each image. Possible keys are "rec_labels", "rec_scores" """ result_dict = {} pred_results = [{} for _ in range(len(next(iter(preds.values()))))] if 'rec' in self.mode: for i, rec_pred in enumerate(preds['rec']): result = dict(rec_labels=[], rec_scores=[]) for rec_pred_instance in rec_pred: rec_dict_res = self.actionrecog_inferencer.pred2dict( rec_pred_instance) result['rec_labels'].append(rec_dict_res['pred_labels']) result['rec_scores'].append(rec_dict_res['pred_scores']) pred_results[i].update(result) result_dict['predictions'] = pred_results if print_result: print(result_dict) if pred_out_file != '': mmengine.dump(result_dict, pred_out_file) result_dict['visualization'] = visualization return result_dict
Postprocess predictions. Args: preds (Dict): Predictions of the model. visualization (Optional[np.ndarray]): Visualized predictions. print_result (bool): Whether to print the result. Defaults to False. pred_out_file (str): Output file name to store predictions without images. Supported file formats are “json”, “yaml/yml” and “pickle/pkl”. Defaults to ''. Returns: Dict or List[Dict]: Each dict contains the inference result of each image. Possible keys are "rec_labels", "rec_scores"
postprocess
python
open-mmlab/mmaction2
mmaction/apis/inferencers/mmaction2_inferencer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/apis/inferencers/mmaction2_inferencer.py
Apache-2.0
def confusion_matrix(y_pred, y_real, normalize=None): """Compute confusion matrix. Args: y_pred (list[int] | np.ndarray[int]): Prediction labels. y_real (list[int] | np.ndarray[int]): Ground truth labels. normalize (str | None): Normalizes confusion matrix over the true (rows), predicted (columns) conditions or all the population. If None, confusion matrix will not be normalized. Options are "true", "pred", "all", None. Default: None. Returns: np.ndarray: Confusion matrix. """ if normalize not in ['true', 'pred', 'all', None]: raise ValueError("normalize must be one of {'true', 'pred', " "'all', None}") if isinstance(y_pred, list): y_pred = np.array(y_pred) if y_pred.dtype == np.int32: y_pred = y_pred.astype(np.int64) if not isinstance(y_pred, np.ndarray): raise TypeError( f'y_pred must be list or np.ndarray, but got {type(y_pred)}') if not y_pred.dtype == np.int64: raise TypeError( f'y_pred dtype must be np.int64, but got {y_pred.dtype}') if isinstance(y_real, list): y_real = np.array(y_real) if y_real.dtype == np.int32: y_real = y_real.astype(np.int64) if not isinstance(y_real, np.ndarray): raise TypeError( f'y_real must be list or np.ndarray, but got {type(y_real)}') if not y_real.dtype == np.int64: raise TypeError( f'y_real dtype must be np.int64, but got {y_real.dtype}') label_set = np.unique(np.concatenate((y_pred, y_real))) num_labels = len(label_set) max_label = label_set[-1] label_map = np.zeros(max_label + 1, dtype=np.int64) for i, label in enumerate(label_set): label_map[label] = i y_pred_mapped = label_map[y_pred] y_real_mapped = label_map[y_real] confusion_mat = np.bincount( num_labels * y_real_mapped + y_pred_mapped, minlength=num_labels**2).reshape(num_labels, num_labels) with np.errstate(all='ignore'): if normalize == 'true': confusion_mat = ( confusion_mat / confusion_mat.sum(axis=1, keepdims=True)) elif normalize == 'pred': confusion_mat = ( confusion_mat / confusion_mat.sum(axis=0, keepdims=True)) elif normalize == 'all': confusion_mat = (confusion_mat / confusion_mat.sum()) confusion_mat = np.nan_to_num(confusion_mat) return confusion_mat
Compute confusion matrix. Args: y_pred (list[int] | np.ndarray[int]): Prediction labels. y_real (list[int] | np.ndarray[int]): Ground truth labels. normalize (str | None): Normalizes confusion matrix over the true (rows), predicted (columns) conditions or all the population. If None, confusion matrix will not be normalized. Options are "true", "pred", "all", None. Default: None. Returns: np.ndarray: Confusion matrix.
confusion_matrix
python
open-mmlab/mmaction2
mmaction/evaluation/functional/accuracy.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/accuracy.py
Apache-2.0
def mean_class_accuracy(scores, labels): """Calculate mean class accuracy. Args: scores (list[np.ndarray]): Prediction scores for each class. labels (list[int]): Ground truth labels. Returns: np.ndarray: Mean class accuracy. """ pred = np.argmax(scores, axis=1) cf_mat = confusion_matrix(pred, labels).astype(float) cls_cnt = cf_mat.sum(axis=1) cls_hit = np.diag(cf_mat) mean_class_acc = np.mean( [hit / cnt if cnt else 0.0 for cnt, hit in zip(cls_cnt, cls_hit)]) return mean_class_acc
Calculate mean class accuracy. Args: scores (list[np.ndarray]): Prediction scores for each class. labels (list[int]): Ground truth labels. Returns: np.ndarray: Mean class accuracy.
mean_class_accuracy
python
open-mmlab/mmaction2
mmaction/evaluation/functional/accuracy.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/accuracy.py
Apache-2.0
def top_k_classes(scores, labels, k=10, mode='accurate'): """Calculate the most K accurate (inaccurate) classes. Given the prediction scores, ground truth label and top-k value, compute the top K accurate (inaccurate) classes. Args: scores (list[np.ndarray]): Prediction scores for each class. labels (list[int] | np.ndarray): Ground truth labels. k (int): Top-k values. Default: 10. mode (str): Comparison mode for Top-k. Options are 'accurate' and 'inaccurate'. Default: 'accurate'. Return: list: List of sorted (from high accuracy to low accuracy for 'accurate' mode, and from low accuracy to high accuracy for inaccurate mode) top K classes in format of (label_id, acc_ratio). """ assert mode in ['accurate', 'inaccurate'] pred = np.argmax(scores, axis=1) cf_mat = confusion_matrix(pred, labels).astype(float) cls_cnt = cf_mat.sum(axis=1) cls_hit = np.diag(cf_mat) hit_ratio = np.array( [hit / cnt if cnt else 0.0 for cnt, hit in zip(cls_cnt, cls_hit)]) if mode == 'accurate': max_index = np.argsort(hit_ratio)[-k:][::-1] max_value = hit_ratio[max_index] results = list(zip(max_index, max_value)) else: min_index = np.argsort(hit_ratio)[:k] min_value = hit_ratio[min_index] results = list(zip(min_index, min_value)) return results
Calculate the most K accurate (inaccurate) classes. Given the prediction scores, ground truth label and top-k value, compute the top K accurate (inaccurate) classes. Args: scores (list[np.ndarray]): Prediction scores for each class. labels (list[int] | np.ndarray): Ground truth labels. k (int): Top-k values. Default: 10. mode (str): Comparison mode for Top-k. Options are 'accurate' and 'inaccurate'. Default: 'accurate'. Return: list: List of sorted (from high accuracy to low accuracy for 'accurate' mode, and from low accuracy to high accuracy for inaccurate mode) top K classes in format of (label_id, acc_ratio).
top_k_classes
python
open-mmlab/mmaction2
mmaction/evaluation/functional/accuracy.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/accuracy.py
Apache-2.0
def top_k_accuracy(scores, labels, topk=(1, )): """Calculate top k accuracy score. Args: scores (list[np.ndarray]): Prediction scores for each class. labels (list[int]): Ground truth labels. topk (tuple[int]): K value for top_k_accuracy. Default: (1, ). Returns: list[float]: Top k accuracy score for each k. """ res = [] labels = np.array(labels)[:, np.newaxis] for k in topk: max_k_preds = np.argsort(scores, axis=1)[:, -k:][:, ::-1] match_array = np.logical_or.reduce(max_k_preds == labels, axis=1) topk_acc_score = match_array.sum() / match_array.shape[0] res.append(topk_acc_score) return res
Calculate top k accuracy score. Args: scores (list[np.ndarray]): Prediction scores for each class. labels (list[int]): Ground truth labels. topk (tuple[int]): K value for top_k_accuracy. Default: (1, ). Returns: list[float]: Top k accuracy score for each k.
top_k_accuracy
python
open-mmlab/mmaction2
mmaction/evaluation/functional/accuracy.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/accuracy.py
Apache-2.0
def mmit_mean_average_precision(scores, labels): """Mean average precision for multi-label recognition. Used for reporting MMIT style mAP on Multi-Moments in Times. The difference is that this method calculates average-precision for each sample and averages them among samples. Args: scores (list[np.ndarray]): Prediction scores of different classes for each sample. labels (list[np.ndarray]): Ground truth many-hot vector for each sample. Returns: np.float64: The MMIT style mean average precision. """ results = [] for score, label in zip(scores, labels): precision, recall, _ = binary_precision_recall_curve(score, label) ap = -np.sum(np.diff(recall) * np.array(precision)[:-1]) results.append(ap) return np.mean(results)
Mean average precision for multi-label recognition. Used for reporting MMIT style mAP on Multi-Moments in Times. The difference is that this method calculates average-precision for each sample and averages them among samples. Args: scores (list[np.ndarray]): Prediction scores of different classes for each sample. labels (list[np.ndarray]): Ground truth many-hot vector for each sample. Returns: np.float64: The MMIT style mean average precision.
mmit_mean_average_precision
python
open-mmlab/mmaction2
mmaction/evaluation/functional/accuracy.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/accuracy.py
Apache-2.0
def mean_average_precision(scores, labels): """Mean average precision for multi-label recognition. Args: scores (list[np.ndarray]): Prediction scores of different classes for each sample. labels (list[np.ndarray]): Ground truth many-hot vector for each sample. Returns: np.float64: The mean average precision. """ results = [] scores = np.stack(scores).T labels = np.stack(labels).T for score, label in zip(scores, labels): precision, recall, _ = binary_precision_recall_curve(score, label) ap = -np.sum(np.diff(recall) * np.array(precision)[:-1]) results.append(ap) results = [x for x in results if not np.isnan(x)] if results == []: return np.nan return np.mean(results)
Mean average precision for multi-label recognition. Args: scores (list[np.ndarray]): Prediction scores of different classes for each sample. labels (list[np.ndarray]): Ground truth many-hot vector for each sample. Returns: np.float64: The mean average precision.
mean_average_precision
python
open-mmlab/mmaction2
mmaction/evaluation/functional/accuracy.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/accuracy.py
Apache-2.0
def binary_precision_recall_curve(y_score, y_true): """Calculate the binary precision recall curve at step thresholds. Args: y_score (np.ndarray): Prediction scores for each class. Shape should be (num_classes, ). y_true (np.ndarray): Ground truth many-hot vector. Shape should be (num_classes, ). Returns: precision (np.ndarray): The precision of different thresholds. recall (np.ndarray): The recall of different thresholds. thresholds (np.ndarray): Different thresholds at which precision and recall are tested. """ assert isinstance(y_score, np.ndarray) assert isinstance(y_true, np.ndarray) assert y_score.shape == y_true.shape # make y_true a boolean vector y_true = (y_true == 1) # sort scores and corresponding truth values desc_score_indices = np.argsort(y_score, kind='mergesort')[::-1] y_score = y_score[desc_score_indices] y_true = y_true[desc_score_indices] # There may be ties in values, therefore find the `distinct_value_inds` distinct_value_inds = np.where(np.diff(y_score))[0] threshold_inds = np.r_[distinct_value_inds, y_true.size - 1] # accumulate the true positives with decreasing threshold tps = np.cumsum(y_true)[threshold_inds] fps = 1 + threshold_inds - tps thresholds = y_score[threshold_inds] precision = tps / (tps + fps) precision[np.isnan(precision)] = 0 recall = tps / tps[-1] # stop when full recall attained # and reverse the outputs so recall is decreasing last_ind = tps.searchsorted(tps[-1]) sl = slice(last_ind, None, -1) return np.r_[precision[sl], 1], np.r_[recall[sl], 0], thresholds[sl]
Calculate the binary precision recall curve at step thresholds. Args: y_score (np.ndarray): Prediction scores for each class. Shape should be (num_classes, ). y_true (np.ndarray): Ground truth many-hot vector. Shape should be (num_classes, ). Returns: precision (np.ndarray): The precision of different thresholds. recall (np.ndarray): The recall of different thresholds. thresholds (np.ndarray): Different thresholds at which precision and recall are tested.
binary_precision_recall_curve
python
open-mmlab/mmaction2
mmaction/evaluation/functional/accuracy.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/accuracy.py
Apache-2.0
def pairwise_temporal_iou(candidate_segments, target_segments, calculate_overlap_self=False): """Compute intersection over union between segments. Args: candidate_segments (np.ndarray): 1-dim/2-dim array in format ``[init, end]/[m x 2:=[init, end]]``. target_segments (np.ndarray): 2-dim array in format ``[n x 2:=[init, end]]``. calculate_overlap_self (bool): Whether to calculate overlap_self (union / candidate_length) or not. Default: False. Returns: t_iou (np.ndarray): 1-dim array [n] / 2-dim array [n x m] with IoU ratio. t_overlap_self (np.ndarray, optional): 1-dim array [n] / 2-dim array [n x m] with overlap_self, returns when calculate_overlap_self is True. """ candidate_segments_ndim = candidate_segments.ndim if target_segments.ndim != 2 or candidate_segments_ndim not in [1, 2]: raise ValueError('Dimension of arguments is incorrect') if candidate_segments_ndim == 1: candidate_segments = candidate_segments[np.newaxis, :] n, m = target_segments.shape[0], candidate_segments.shape[0] t_iou = np.empty((n, m), dtype=np.float32) if calculate_overlap_self: t_overlap_self = np.empty((n, m), dtype=np.float32) for i in range(m): candidate_segment = candidate_segments[i, :] tt1 = np.maximum(candidate_segment[0], target_segments[:, 0]) tt2 = np.minimum(candidate_segment[1], target_segments[:, 1]) # Intersection including Non-negative overlap score. segments_intersection = (tt2 - tt1).clip(0) # Segment union. segments_union = ((target_segments[:, 1] - target_segments[:, 0]) + (candidate_segment[1] - candidate_segment[0]) - segments_intersection) # Compute overlap as the ratio of the intersection # over union of two segments. t_iou[:, i] = (segments_intersection.astype(float) / segments_union) if calculate_overlap_self: candidate_length = candidate_segment[1] - candidate_segment[0] t_overlap_self[:, i] = ( segments_intersection.astype(float) / candidate_length) if candidate_segments_ndim == 1: t_iou = np.squeeze(t_iou, axis=1) if calculate_overlap_self: if candidate_segments_ndim == 1: t_overlap_self = np.squeeze(t_overlap_self, axis=1) return t_iou, t_overlap_self return t_iou
Compute intersection over union between segments. Args: candidate_segments (np.ndarray): 1-dim/2-dim array in format ``[init, end]/[m x 2:=[init, end]]``. target_segments (np.ndarray): 2-dim array in format ``[n x 2:=[init, end]]``. calculate_overlap_self (bool): Whether to calculate overlap_self (union / candidate_length) or not. Default: False. Returns: t_iou (np.ndarray): 1-dim array [n] / 2-dim array [n x m] with IoU ratio. t_overlap_self (np.ndarray, optional): 1-dim array [n] / 2-dim array [n x m] with overlap_self, returns when calculate_overlap_self is True.
pairwise_temporal_iou
python
open-mmlab/mmaction2
mmaction/evaluation/functional/accuracy.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/accuracy.py
Apache-2.0
def average_recall_at_avg_proposals(ground_truth, proposals, total_num_proposals, max_avg_proposals=None, temporal_iou_thresholds=np.linspace( 0.5, 0.95, 10)): """Computes the average recall given an average number (percentile) of proposals per video. Args: ground_truth (dict): Dict containing the ground truth instances. proposals (dict): Dict containing the proposal instances. total_num_proposals (int): Total number of proposals in the proposal dict. max_avg_proposals (int | None): Max number of proposals for one video. Default: None. temporal_iou_thresholds (np.ndarray): 1D array with temporal_iou thresholds. Default: ``np.linspace(0.5, 0.95, 10)``. Returns: tuple([np.ndarray, np.ndarray, np.ndarray, float]): (recall, average_recall, proposals_per_video, auc) In recall, ``recall[i,j]`` is recall at i-th temporal_iou threshold at the j-th average number (percentile) of average number of proposals per video. The average_recall is recall averaged over a list of temporal_iou threshold (1D array). This is equivalent to ``recall.mean(axis=0)``. The ``proposals_per_video`` is the average number of proposals per video. The auc is the area under ``AR@AN`` curve. """ total_num_videos = len(ground_truth) if not max_avg_proposals: max_avg_proposals = float(total_num_proposals) / total_num_videos ratio = (max_avg_proposals * float(total_num_videos) / total_num_proposals) # For each video, compute temporal_iou scores among the retrieved proposals score_list = [] total_num_retrieved_proposals = 0 for video_id in ground_truth: # Get proposals for this video. proposals_video_id = proposals[video_id] this_video_proposals = proposals_video_id[:, :2] # Sort proposals by score. sort_idx = proposals_video_id[:, 2].argsort()[::-1] this_video_proposals = this_video_proposals[sort_idx, :].astype( np.float32) # Get ground-truth instances associated to this video. ground_truth_video_id = ground_truth[video_id] this_video_ground_truth = ground_truth_video_id[:, :2].astype( np.float32) if this_video_proposals.shape[0] == 0: n = this_video_ground_truth.shape[0] score_list.append(np.zeros((n, 1))) continue if this_video_proposals.ndim != 2: this_video_proposals = np.expand_dims(this_video_proposals, axis=0) if this_video_ground_truth.ndim != 2: this_video_ground_truth = np.expand_dims( this_video_ground_truth, axis=0) num_retrieved_proposals = np.minimum( int(this_video_proposals.shape[0] * ratio), this_video_proposals.shape[0]) total_num_retrieved_proposals += num_retrieved_proposals this_video_proposals = this_video_proposals[: num_retrieved_proposals, :] # Compute temporal_iou scores. t_iou = pairwise_temporal_iou(this_video_proposals, this_video_ground_truth) score_list.append(t_iou) # Given that the length of the videos is really varied, we # compute the number of proposals in terms of a ratio of the total # proposals retrieved, i.e. average recall at a percentage of proposals # retrieved per video. # Computes average recall. pcn_list = np.arange(1, 101) / 100.0 * ( max_avg_proposals * float(total_num_videos) / total_num_retrieved_proposals) matches = np.empty((total_num_videos, pcn_list.shape[0])) positives = np.empty(total_num_videos) recall = np.empty((temporal_iou_thresholds.shape[0], pcn_list.shape[0])) # Iterates over each temporal_iou threshold. for ridx, temporal_iou in enumerate(temporal_iou_thresholds): # Inspect positives retrieved per video at different # number of proposals (percentage of the total retrieved). for i, score in enumerate(score_list): # Total positives per video. positives[i] = score.shape[0] # Find proposals that satisfies minimum temporal_iou threshold. true_positives_temporal_iou = score >= temporal_iou # Get number of proposals as a percentage of total retrieved. pcn_proposals = np.minimum( (score.shape[1] * pcn_list).astype(np.int32), score.shape[1]) for j, num_retrieved_proposals in enumerate(pcn_proposals): # Compute the number of matches # for each percentage of the proposals matches[i, j] = np.count_nonzero( (true_positives_temporal_iou[:, :num_retrieved_proposals] ).sum(axis=1)) # Computes recall given the set of matches per video. recall[ridx, :] = matches.sum(axis=0) / positives.sum() # Recall is averaged. avg_recall = recall.mean(axis=0) # Get the average number of proposals per video. proposals_per_video = pcn_list * ( float(total_num_retrieved_proposals) / total_num_videos) # Get AUC area_under_curve = np.trapz(avg_recall, proposals_per_video) auc = 100. * float(area_under_curve) / proposals_per_video[-1] return recall, avg_recall, proposals_per_video, auc
Computes the average recall given an average number (percentile) of proposals per video. Args: ground_truth (dict): Dict containing the ground truth instances. proposals (dict): Dict containing the proposal instances. total_num_proposals (int): Total number of proposals in the proposal dict. max_avg_proposals (int | None): Max number of proposals for one video. Default: None. temporal_iou_thresholds (np.ndarray): 1D array with temporal_iou thresholds. Default: ``np.linspace(0.5, 0.95, 10)``. Returns: tuple([np.ndarray, np.ndarray, np.ndarray, float]): (recall, average_recall, proposals_per_video, auc) In recall, ``recall[i,j]`` is recall at i-th temporal_iou threshold at the j-th average number (percentile) of average number of proposals per video. The average_recall is recall averaged over a list of temporal_iou threshold (1D array). This is equivalent to ``recall.mean(axis=0)``. The ``proposals_per_video`` is the average number of proposals per video. The auc is the area under ``AR@AN`` curve.
average_recall_at_avg_proposals
python
open-mmlab/mmaction2
mmaction/evaluation/functional/accuracy.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/accuracy.py
Apache-2.0
def get_weighted_score(score_list, coeff_list): """Get weighted score with given scores and coefficients. Given n predictions by different classifier: [score_1, score_2, ..., score_n] (score_list) and their coefficients: [coeff_1, coeff_2, ..., coeff_n] (coeff_list), return weighted score: weighted_score = score_1 * coeff_1 + score_2 * coeff_2 + ... + score_n * coeff_n Args: score_list (list[list[np.ndarray]]): List of list of scores, with shape n(number of predictions) X num_samples X num_classes coeff_list (list[float]): List of coefficients, with shape n. Returns: list[np.ndarray]: List of weighted scores. """ assert len(score_list) == len(coeff_list) num_samples = len(score_list[0]) for i in range(1, len(score_list)): assert len(score_list[i]) == num_samples scores = np.array(score_list) # (num_coeff, num_samples, num_classes) coeff = np.array(coeff_list) # (num_coeff, ) weighted_scores = list(np.dot(scores.T, coeff).T) return weighted_scores
Get weighted score with given scores and coefficients. Given n predictions by different classifier: [score_1, score_2, ..., score_n] (score_list) and their coefficients: [coeff_1, coeff_2, ..., coeff_n] (coeff_list), return weighted score: weighted_score = score_1 * coeff_1 + score_2 * coeff_2 + ... + score_n * coeff_n Args: score_list (list[list[np.ndarray]]): List of list of scores, with shape n(number of predictions) X num_samples X num_classes coeff_list (list[float]): List of coefficients, with shape n. Returns: list[np.ndarray]: List of weighted scores.
get_weighted_score
python
open-mmlab/mmaction2
mmaction/evaluation/functional/accuracy.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/accuracy.py
Apache-2.0
def softmax(x, dim=1): """Compute softmax values for each sets of scores in x.""" e_x = np.exp(x - np.max(x, axis=dim, keepdims=True)) return e_x / e_x.sum(axis=dim, keepdims=True)
Compute softmax values for each sets of scores in x.
softmax
python
open-mmlab/mmaction2
mmaction/evaluation/functional/accuracy.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/accuracy.py
Apache-2.0
def interpolated_precision_recall(precision, recall): """Interpolated AP - VOCdevkit from VOC 2011. Args: precision (np.ndarray): The precision of different thresholds. recall (np.ndarray): The recall of different thresholds. Returns: float: Average precision score. """ mprecision = np.hstack([[0], precision, [0]]) mrecall = np.hstack([[0], recall, [1]]) for i in range(len(mprecision) - 1)[::-1]: mprecision[i] = max(mprecision[i], mprecision[i + 1]) idx = np.where(mrecall[1::] != mrecall[0:-1])[0] + 1 ap = np.sum((mrecall[idx] - mrecall[idx - 1]) * mprecision[idx]) return ap
Interpolated AP - VOCdevkit from VOC 2011. Args: precision (np.ndarray): The precision of different thresholds. recall (np.ndarray): The recall of different thresholds. Returns: float: Average precision score.
interpolated_precision_recall
python
open-mmlab/mmaction2
mmaction/evaluation/functional/accuracy.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/accuracy.py
Apache-2.0
def average_precision_at_temporal_iou(ground_truth, prediction, temporal_iou_thresholds=(np.linspace( 0.5, 0.95, 10))): """Compute average precision (in detection task) between ground truth and predicted data frames. If multiple predictions match the same predicted segment, only the one with highest score is matched as true positive. This code is greatly inspired by Pascal VOC devkit. Args: ground_truth (dict): Dict containing the ground truth instances. Key: 'video_id' Value (np.ndarray): 1D array of 't-start' and 't-end'. prediction (np.ndarray): 2D array containing the information of proposal instances, including 'video_id', 'class_id', 't-start', 't-end' and 'score'. temporal_iou_thresholds (np.ndarray): 1D array with temporal_iou thresholds. Default: ``np.linspace(0.5, 0.95, 10)``. Returns: np.ndarray: 1D array of average precision score. """ ap = np.zeros(len(temporal_iou_thresholds), dtype=np.float32) if len(prediction) < 1: return ap num_gts = 0. lock_gt = dict() for key in ground_truth: lock_gt[key] = np.ones( (len(temporal_iou_thresholds), len(ground_truth[key]))) * -1 num_gts += len(ground_truth[key]) # Sort predictions by decreasing score order. prediction = np.array(prediction) scores = prediction[:, 4].astype(float) sort_idx = np.argsort(scores)[::-1] prediction = prediction[sort_idx] # Initialize true positive and false positive vectors. tp = np.zeros((len(temporal_iou_thresholds), len(prediction)), dtype=np.int32) fp = np.zeros((len(temporal_iou_thresholds), len(prediction)), dtype=np.int32) # Assigning true positive to truly grount truth instances. for idx, this_pred in enumerate(prediction): # Check if there is at least one ground truth in the video. if this_pred[0] in ground_truth: this_gt = np.array(ground_truth[this_pred[0]], dtype=float) else: fp[:, idx] = 1 continue t_iou = pairwise_temporal_iou(this_pred[2:4].astype(float), this_gt) # We would like to retrieve the predictions with highest t_iou score. t_iou_sorted_idx = t_iou.argsort()[::-1] for t_idx, t_iou_threshold in enumerate(temporal_iou_thresholds): for jdx in t_iou_sorted_idx: if t_iou[jdx] < t_iou_threshold: fp[t_idx, idx] = 1 break if lock_gt[this_pred[0]][t_idx, jdx] >= 0: continue # Assign as true positive after the filters above. tp[t_idx, idx] = 1 lock_gt[this_pred[0]][t_idx, jdx] = idx break if fp[t_idx, idx] == 0 and tp[t_idx, idx] == 0: fp[t_idx, idx] = 1 tp_cumsum = np.cumsum(tp, axis=1).astype(np.float32) fp_cumsum = np.cumsum(fp, axis=1).astype(np.float32) recall_cumsum = tp_cumsum / num_gts precision_cumsum = tp_cumsum / (tp_cumsum + fp_cumsum) for t_idx in range(len(temporal_iou_thresholds)): ap[t_idx] = interpolated_precision_recall(precision_cumsum[t_idx, :], recall_cumsum[t_idx, :]) return ap
Compute average precision (in detection task) between ground truth and predicted data frames. If multiple predictions match the same predicted segment, only the one with highest score is matched as true positive. This code is greatly inspired by Pascal VOC devkit. Args: ground_truth (dict): Dict containing the ground truth instances. Key: 'video_id' Value (np.ndarray): 1D array of 't-start' and 't-end'. prediction (np.ndarray): 2D array containing the information of proposal instances, including 'video_id', 'class_id', 't-start', 't-end' and 'score'. temporal_iou_thresholds (np.ndarray): 1D array with temporal_iou thresholds. Default: ``np.linspace(0.5, 0.95, 10)``. Returns: np.ndarray: 1D array of average precision score.
average_precision_at_temporal_iou
python
open-mmlab/mmaction2
mmaction/evaluation/functional/accuracy.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/accuracy.py
Apache-2.0
def area2d_voc(b): """Compute the areas for a set of 2D boxes.""" return (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])
Compute the areas for a set of 2D boxes.
area2d_voc
python
open-mmlab/mmaction2
mmaction/evaluation/functional/multisports_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/multisports_utils.py
Apache-2.0
def overlap2d_voc(b1, b2): """Compute the overlaps between a set of boxes b1 and one box b2.""" xmin = np.maximum(b1[:, 0], b2[:, 0]) ymin = np.maximum(b1[:, 1], b2[:, 1]) xmax = np.minimum(b1[:, 2], b2[:, 2]) ymax = np.minimum(b1[:, 3], b2[:, 3]) width = np.maximum(0, xmax - xmin) height = np.maximum(0, ymax - ymin) return width * height
Compute the overlaps between a set of boxes b1 and one box b2.
overlap2d_voc
python
open-mmlab/mmaction2
mmaction/evaluation/functional/multisports_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/multisports_utils.py
Apache-2.0
def iou2d_voc(b1, b2): """Compute the IoU between a set of boxes b1 and 1 box b2.""" if b1.ndim == 1: b1 = b1[None, :] if b2.ndim == 1: b2 = b2[None, :] assert b2.shape[0] == 1 ov = overlap2d_voc(b1, b2) return ov / (area2d_voc(b1) + area2d_voc(b2) - ov)
Compute the IoU between a set of boxes b1 and 1 box b2.
iou2d_voc
python
open-mmlab/mmaction2
mmaction/evaluation/functional/multisports_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/multisports_utils.py
Apache-2.0
def iou3d_voc(b1, b2): """Compute the IoU between two tubes with same temporal extent.""" assert b1.shape[0] == b2.shape[0] assert np.all(b1[:, 0] == b2[:, 0]) ov = overlap2d_voc(b1[:, 1:5], b2[:, 1:5]) return np.mean(ov / (area2d_voc(b1[:, 1:5]) + area2d_voc(b2[:, 1:5]) - ov))
Compute the IoU between two tubes with same temporal extent.
iou3d_voc
python
open-mmlab/mmaction2
mmaction/evaluation/functional/multisports_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/multisports_utils.py
Apache-2.0
def iou3dt_voc(b1, b2, spatialonly=False, temporalonly=False): """Compute the spatio-temporal IoU between two tubes.""" tmin = max(b1[0, 0], b2[0, 0]) tmax = min(b1[-1, 0], b2[-1, 0]) if tmax < tmin: return 0.0 temporal_inter = tmax - tmin temporal_union = max(b1[-1, 0], b2[-1, 0]) - min(b1[0, 0], b2[0, 0]) tube1 = b1[int(np.where( b1[:, 0] == tmin)[0]):int(np.where(b1[:, 0] == tmax)[0]) + 1, :] tube2 = b2[int(np.where( b2[:, 0] == tmin)[0]):int(np.where(b2[:, 0] == tmax)[0]) + 1, :] if temporalonly: return temporal_inter / temporal_union return iou3d_voc(tube1, tube2) * (1. if spatialonly else temporal_inter / temporal_union)
Compute the spatio-temporal IoU between two tubes.
iou3dt_voc
python
open-mmlab/mmaction2
mmaction/evaluation/functional/multisports_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/multisports_utils.py
Apache-2.0
def nms_tubelets(dets, overlapThresh=0.3, top_k=None): """Compute the NMS for a set of scored tubelets scored tubelets are numpy array with 4K+1 columns, last one being the score return the indices of the tubelets to keep.""" # If there are no detections, return an empty list if len(dets) == 0: return dets if top_k is None: top_k = len(dets) K = int((dets.shape[1] - 1) / 4) # Coordinates of bounding boxes x1 = [dets[:, 4 * k] for k in range(K)] y1 = [dets[:, 4 * k + 1] for k in range(K)] x2 = [dets[:, 4 * k + 2] for k in range(K)] y2 = [dets[:, 4 * k + 3] for k in range(K)] # Compute the area of the bounding boxes and sort the bounding # boxes by the bottom-right y-coordinate of the bounding box # area = (x2 - x1 + 1) * (y2 - y1 + 1) scores = dets[:, -1] area = [(x2[k] - x1[k] + 1) * (y2[k] - y1[k] + 1) for k in range(K)] order = np.argsort(scores)[::-1] weight = np.zeros_like(scores) + 1 counter = 0 while order.size > 0: i = order[0] counter += 1 # Compute overlap xx1 = [np.maximum(x1[k][i], x1[k][order[1:]]) for k in range(K)] yy1 = [np.maximum(y1[k][i], y1[k][order[1:]]) for k in range(K)] xx2 = [np.minimum(x2[k][i], x2[k][order[1:]]) for k in range(K)] yy2 = [np.minimum(y2[k][i], y2[k][order[1:]]) for k in range(K)] w = [np.maximum(0, xx2[k] - xx1[k] + 1) for k in range(K)] h = [np.maximum(0, yy2[k] - yy1[k] + 1) for k in range(K)] inter_area = [w[k] * h[k] for k in range(K)] ious = sum([ inter_area[k] / (area[k][order[1:]] + area[k][i] - inter_area[k]) for k in range(K) ]) index = np.where(ious > overlapThresh * K)[0] weight[order[index + 1]] = 1 - ious[index] index2 = np.where(ious <= overlapThresh * K)[0] order = order[index2 + 1] dets[:, -1] = dets[:, -1] * weight new_scores = dets[:, -1] new_order = np.argsort(new_scores)[::-1] dets = dets[new_order, :] return dets[:top_k, :]
Compute the NMS for a set of scored tubelets scored tubelets are numpy array with 4K+1 columns, last one being the score return the indices of the tubelets to keep.
nms_tubelets
python
open-mmlab/mmaction2
mmaction/evaluation/functional/multisports_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/multisports_utils.py
Apache-2.0
def _import_ground_truth(ground_truth_filename): """Read ground truth file and return the ground truth instances and the activity classes. Args: ground_truth_filename (str): Full path to the ground truth json file. Returns: tuple[list, dict]: (ground_truth, activity_index). ground_truth contains the ground truth instances, which is in a dict format. activity_index contains classes index. """ with open(ground_truth_filename, 'r') as f: data = json.load(f) # Checking format activity_index, class_idx = {}, 0 ground_truth = [] for video_id, video_info in data.items(): for anno in video_info['annotations']: if anno['label'] not in activity_index: activity_index[anno['label']] = class_idx class_idx += 1 # old video_anno ground_truth_item = {} ground_truth_item['video-id'] = video_id[2:] ground_truth_item['t-start'] = float(anno['segment'][0]) ground_truth_item['t-end'] = float(anno['segment'][1]) ground_truth_item['label'] = activity_index[anno['label']] ground_truth.append(ground_truth_item) return ground_truth, activity_index
Read ground truth file and return the ground truth instances and the activity classes. Args: ground_truth_filename (str): Full path to the ground truth json file. Returns: tuple[list, dict]: (ground_truth, activity_index). ground_truth contains the ground truth instances, which is in a dict format. activity_index contains classes index.
_import_ground_truth
python
open-mmlab/mmaction2
mmaction/evaluation/functional/eval_detection.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/eval_detection.py
Apache-2.0
def _import_prediction(self, prediction_filename): """Read prediction file and return the prediction instances. Args: prediction_filename (str): Full path to the prediction json file. Returns: List: List containing the prediction instances (dictionaries). """ with open(prediction_filename, 'r') as f: data = json.load(f) # Read predictions. prediction = [] for video_id, video_info in data['results'].items(): for result in video_info: prediction_item = dict() prediction_item['video-id'] = video_id prediction_item['label'] = self.activity_index[result['label']] prediction_item['t-start'] = float(result['segment'][0]) prediction_item['t-end'] = float(result['segment'][1]) prediction_item['score'] = result['score'] prediction.append(prediction_item) return prediction
Read prediction file and return the prediction instances. Args: prediction_filename (str): Full path to the prediction json file. Returns: List: List containing the prediction instances (dictionaries).
_import_prediction
python
open-mmlab/mmaction2
mmaction/evaluation/functional/eval_detection.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/eval_detection.py
Apache-2.0
def wrapper_compute_average_precision(self): """Computes average precision for each class.""" ap = np.zeros((len(self.tiou_thresholds), len(self.activity_index))) # Adaptation to query faster ground_truth_by_label = [] prediction_by_label = [] for i in range(len(self.activity_index)): ground_truth_by_label.append([]) prediction_by_label.append([]) for gt in self.ground_truth: ground_truth_by_label[gt['label']].append(gt) for pred in self.prediction: prediction_by_label[pred['label']].append(pred) for i in range(len(self.activity_index)): ap_result = compute_average_precision_detection( ground_truth_by_label[i], prediction_by_label[i], self.tiou_thresholds) ap[:, i] = ap_result return ap
Computes average precision for each class.
wrapper_compute_average_precision
python
open-mmlab/mmaction2
mmaction/evaluation/functional/eval_detection.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/eval_detection.py
Apache-2.0
def evaluate(self): """Evaluates a prediction file. For the detection task we measure the interpolated mean average precision to measure the performance of a method. """ self.ap = self.wrapper_compute_average_precision() self.mAP = self.ap.mean(axis=1) self.average_mAP = self.mAP.mean() return self.mAP, self.average_mAP
Evaluates a prediction file. For the detection task we measure the interpolated mean average precision to measure the performance of a method.
evaluate
python
open-mmlab/mmaction2
mmaction/evaluation/functional/eval_detection.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/eval_detection.py
Apache-2.0
def compute_average_precision_detection(ground_truth, prediction, tiou_thresholds=np.linspace( 0.5, 0.95, 10)): """Compute average precision (detection task) between ground truth and predictions data frames. If multiple predictions occurs for the same predicted segment, only the one with highest score is matches as true positive. This code is greatly inspired by Pascal VOC devkit. Args: ground_truth (list[dict]): List containing the ground truth instances (dictionaries). Required keys are 'video-id', 't-start' and 't-end'. prediction (list[dict]): List containing the prediction instances (dictionaries). Required keys are: 'video-id', 't-start', 't-end' and 'score'. tiou_thresholds (np.ndarray): A 1darray indicates the temporal intersection over union threshold, which is optional. Default: ``np.linspace(0.5, 0.95, 10)``. Returns: Float: ap, Average precision score. """ num_thresholds = len(tiou_thresholds) num_gts = len(ground_truth) num_preds = len(prediction) ap = np.zeros(num_thresholds) if len(prediction) == 0: return ap num_positive = float(num_gts) lock_gt = np.ones((num_thresholds, num_gts)) * -1 # Sort predictions by decreasing score order. prediction.sort(key=lambda x: -x['score']) # Initialize true positive and false positive vectors. tp = np.zeros((num_thresholds, num_preds)) fp = np.zeros((num_thresholds, num_preds)) # Adaptation to query faster ground_truth_by_videoid = {} for i, item in enumerate(ground_truth): item['index'] = i ground_truth_by_videoid.setdefault(item['video-id'], []).append(item) # Assigning true positive to truly grount truth instances. for idx, pred in enumerate(prediction): if pred['video-id'] in ground_truth_by_videoid: gts = ground_truth_by_videoid[pred['video-id']] else: fp[:, idx] = 1 continue tiou_arr = pairwise_temporal_iou( np.array([pred['t-start'], pred['t-end']]), np.array([np.array([gt['t-start'], gt['t-end']]) for gt in gts])) tiou_arr = tiou_arr.reshape(-1) # We would like to retrieve the predictions with highest tiou score. tiou_sorted_idx = tiou_arr.argsort()[::-1] for t_idx, tiou_threshold in enumerate(tiou_thresholds): for j_idx in tiou_sorted_idx: if tiou_arr[j_idx] < tiou_threshold: fp[t_idx, idx] = 1 break if lock_gt[t_idx, gts[j_idx]['index']] >= 0: continue # Assign as true positive after the filters above. tp[t_idx, idx] = 1 lock_gt[t_idx, gts[j_idx]['index']] = idx break if fp[t_idx, idx] == 0 and tp[t_idx, idx] == 0: fp[t_idx, idx] = 1 tp_cumsum = np.cumsum(tp, axis=1).astype(np.float64) fp_cumsum = np.cumsum(fp, axis=1).astype(np.float64) recall_cumsum = tp_cumsum / num_positive precision_cumsum = tp_cumsum / (tp_cumsum + fp_cumsum) for t_idx in range(len(tiou_thresholds)): ap[t_idx] = interpolated_precision_recall(precision_cumsum[t_idx, :], recall_cumsum[t_idx, :]) return ap
Compute average precision (detection task) between ground truth and predictions data frames. If multiple predictions occurs for the same predicted segment, only the one with highest score is matches as true positive. This code is greatly inspired by Pascal VOC devkit. Args: ground_truth (list[dict]): List containing the ground truth instances (dictionaries). Required keys are 'video-id', 't-start' and 't-end'. prediction (list[dict]): List containing the prediction instances (dictionaries). Required keys are: 'video-id', 't-start', 't-end' and 'score'. tiou_thresholds (np.ndarray): A 1darray indicates the temporal intersection over union threshold, which is optional. Default: ``np.linspace(0.5, 0.95, 10)``. Returns: Float: ap, Average precision score.
compute_average_precision_detection
python
open-mmlab/mmaction2
mmaction/evaluation/functional/eval_detection.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/eval_detection.py
Apache-2.0
def det2csv(results, custom_classes): """Convert detection results to csv file.""" csv_results = [] for idx in range(len(results)): video_id = results[idx]['video_id'] timestamp = results[idx]['timestamp'] result = results[idx]['outputs'] for label, _ in enumerate(result): for bbox in result[label]: bbox_ = tuple(bbox.tolist()) if custom_classes is not None: actual_label = custom_classes[label + 1] else: actual_label = label + 1 csv_results.append(( video_id, timestamp, ) + bbox_[:4] + (actual_label, ) + bbox_[4:]) return csv_results
Convert detection results to csv file.
det2csv
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_utils.py
Apache-2.0
def results2csv(results, out_file, custom_classes=None): """Convert detection results to csv file.""" csv_results = det2csv(results, custom_classes) # save space for float def to_str(item): if isinstance(item, float): return f'{item:.4f}' return str(item) with open(out_file, 'w') as f: for csv_result in csv_results: f.write(','.join(map(to_str, csv_result))) f.write('\n')
Convert detection results to csv file.
results2csv
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_utils.py
Apache-2.0
def print_time(message, start): """Print processing time.""" print('==> %g seconds to %s' % (time.time() - start, message), flush=True)
Print processing time.
print_time
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_utils.py
Apache-2.0
def make_image_key(video_id, timestamp): """Returns a unique identifier for a video id & timestamp.""" return f'{video_id},{int(timestamp):04d}'
Returns a unique identifier for a video id & timestamp.
make_image_key
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_utils.py
Apache-2.0
def read_csv(csv_file, class_whitelist=None): """Loads boxes and class labels from a CSV file in the AVA format. CSV file format described at https://research.google.com/ava/download.html. Args: csv_file: A file object. class_whitelist: If provided, boxes corresponding to (integer) class labels not in this set are skipped. Returns: boxes: A dictionary mapping each unique image key (string) to a list of boxes, given as coordinates [y1, x1, y2, x2]. labels: A dictionary mapping each unique image key (string) to a list of integer class labels, matching the corresponding box in `boxes`. scores: A dictionary mapping each unique image key (string) to a list of score values labels, matching the corresponding label in `labels`. If scores are not provided in the csv, then they will default to 1.0. """ entries = defaultdict(list) boxes = defaultdict(list) labels = defaultdict(list) scores = defaultdict(list) reader = csv.reader(csv_file) for row in reader: assert len(row) in [7, 8], 'Wrong number of columns: ' + row image_key = make_image_key(row[0], row[1]) x1, y1, x2, y2 = [float(n) for n in row[2:6]] action_id = int(row[6]) if class_whitelist and action_id not in class_whitelist: continue score = 1.0 if len(row) == 8: score = float(row[7]) entries[image_key].append((score, action_id, y1, x1, y2, x2)) for image_key in entries: # Evaluation API assumes boxes with descending scores entry = sorted(entries[image_key], key=lambda tup: -tup[0]) boxes[image_key] = [x[2:] for x in entry] labels[image_key] = [x[1] for x in entry] scores[image_key] = [x[0] for x in entry] return boxes, labels, scores
Loads boxes and class labels from a CSV file in the AVA format. CSV file format described at https://research.google.com/ava/download.html. Args: csv_file: A file object. class_whitelist: If provided, boxes corresponding to (integer) class labels not in this set are skipped. Returns: boxes: A dictionary mapping each unique image key (string) to a list of boxes, given as coordinates [y1, x1, y2, x2]. labels: A dictionary mapping each unique image key (string) to a list of integer class labels, matching the corresponding box in `boxes`. scores: A dictionary mapping each unique image key (string) to a list of score values labels, matching the corresponding label in `labels`. If scores are not provided in the csv, then they will default to 1.0.
read_csv
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_utils.py
Apache-2.0
def read_exclusions(exclusions_file): """Reads a CSV file of excluded timestamps. Args: exclusions_file: A file object containing a csv of video-id,timestamp. Returns: A set of strings containing excluded image keys, e.g. "aaaaaaaaaaa,0904", or an empty set if exclusions file is None. """ excluded = set() if exclusions_file: reader = csv.reader(exclusions_file) for row in reader: assert len(row) == 2, f'Expected only 2 columns, got: {row}' excluded.add(make_image_key(row[0], row[1])) return excluded
Reads a CSV file of excluded timestamps. Args: exclusions_file: A file object containing a csv of video-id,timestamp. Returns: A set of strings containing excluded image keys, e.g. "aaaaaaaaaaa,0904", or an empty set if exclusions file is None.
read_exclusions
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_utils.py
Apache-2.0
def read_labelmap(labelmap_file): """Reads a labelmap without the dependency on protocol buffers. Args: labelmap_file: A file object containing a label map protocol buffer. Returns: labelmap: The label map in the form used by the object_detection_evaluation module - a list of {"id": integer, "name": classname } dicts. class_ids: A set containing all of the valid class id integers. """ labelmap = [] class_ids = set() name = '' class_id = '' for line in labelmap_file: if line.startswith(' name:'): name = line.split('"')[1] elif line.startswith(' id:') or line.startswith(' label_id:'): class_id = int(line.strip().split(' ')[-1]) labelmap.append({'id': class_id, 'name': name}) class_ids.add(class_id) return labelmap, class_ids
Reads a labelmap without the dependency on protocol buffers. Args: labelmap_file: A file object containing a label map protocol buffer. Returns: labelmap: The label map in the form used by the object_detection_evaluation module - a list of {"id": integer, "name": classname } dicts. class_ids: A set containing all of the valid class id integers.
read_labelmap
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_utils.py
Apache-2.0
def ava_eval(result_file, result_type, label_file, ann_file, exclude_file, verbose=True, ignore_empty_frames=True, custom_classes=None): """Perform ava evaluation.""" assert result_type in ['mAP'] start = time.time() categories, class_whitelist = read_labelmap(open(label_file)) if custom_classes is not None: custom_classes = custom_classes[1:] assert set(custom_classes).issubset(set(class_whitelist)) class_whitelist = custom_classes categories = [cat for cat in categories if cat['id'] in custom_classes] # loading gt, do not need gt score gt_bboxes, gt_labels, _ = read_csv(open(ann_file), class_whitelist) if verbose: print_time('Reading GT results', start) if exclude_file is not None: excluded_keys = read_exclusions(open(exclude_file)) else: excluded_keys = list() start = time.time() boxes, labels, scores = read_csv(open(result_file), class_whitelist) if verbose: print_time('Reading Detection results', start) start = time.time() all_gt_labels = np.concatenate(list(gt_labels.values())) gt_count = {k: np.sum(all_gt_labels == k) for k in class_whitelist} pool = multiprocessing.Pool(32) if ignore_empty_frames: tups = [(gt_bboxes[k], gt_labels[k], boxes[k], labels[k], scores[k]) for k in gt_bboxes if k not in excluded_keys] else: tups = [(gt_bboxes.get(k, np.zeros((0, 4), dtype=np.float32)), gt_labels.get(k, []), boxes[k], labels[k], scores[k]) for k in boxes if k not in excluded_keys] rets = pool.map(tpfp_single, tups) if verbose: print_time('Calculating TP/FP', start) start = time.time() scores, tpfps = defaultdict(list), defaultdict(list) for score, tpfp in rets: for k in score: scores[k].append(score[k]) tpfps[k].append(tpfp[k]) cls_AP = [] for k in scores: scores[k] = np.concatenate(scores[k]) tpfps[k] = np.concatenate(tpfps[k]) precision, recall = metrics.compute_precision_recall( scores[k], tpfps[k], gt_count[k]) ap = metrics.compute_average_precision(precision, recall) class_name = [x['name'] for x in categories if x['id'] == k] assert len(class_name) == 1 class_name = class_name[0] cls_AP.append((k, class_name, ap)) if verbose: print_time('Run Evaluator', start) print('Per-class results: ', flush=True) for k, class_name, ap in cls_AP: print(f'Index: {k}, Action: {class_name}: AP: {ap:.4f};', flush=True) overall = np.nanmean([x[2] for x in cls_AP]) person_movement = np.nanmean([x[2] for x in cls_AP if x[0] <= 14]) object_manipulation = np.nanmean([x[2] for x in cls_AP if 14 < x[0] < 64]) person_interaction = np.nanmean([x[2] for x in cls_AP if 64 <= x[0]]) print('Overall Results: ', flush=True) print(f'Overall mAP: {overall:.4f}', flush=True) print(f'Person Movement mAP: {person_movement:.4f}', flush=True) print(f'Object Manipulation mAP: {object_manipulation:.4f}', flush=True) print(f'Person Interaction mAP: {person_interaction:.4f}', flush=True) results = {} results['overall'] = overall results['person_movement'] = person_movement results['object_manipulation'] = object_manipulation results['person_interaction'] = person_interaction if verbose: for k, class_name, ap in cls_AP: print(f'Class {class_name} AP: {ap:.4f}', flush=True) return results
Perform ava evaluation.
ava_eval
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_utils.py
Apache-2.0
def __init__(self, data): """Constructs box collection. Args: data: a numpy array of shape [N, 4] representing box coordinates Raises: ValueError: if bbox data is not a numpy array ValueError: if invalid dimensions for bbox data """ if not isinstance(data, np.ndarray): raise ValueError('data must be a numpy array.') if len(data.shape) != 2 or data.shape[1] != 4: raise ValueError('Invalid dimensions for box data.') if data.dtype != np.float32 and data.dtype != np.float64: raise ValueError( 'Invalid data type for box data: float is required.') if not self._is_valid_boxes(data): raise ValueError('Invalid box data. data must be a numpy array of ' 'N*[y_min, x_min, y_max, x_max]') self.data = {'boxes': data}
Constructs box collection. Args: data: a numpy array of shape [N, 4] representing box coordinates Raises: ValueError: if bbox data is not a numpy array ValueError: if invalid dimensions for bbox data
__init__
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_evaluation/np_box_list.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_evaluation/np_box_list.py
Apache-2.0
def num_boxes(self): """Return number of boxes held in collections.""" return self.data['boxes'].shape[0]
Return number of boxes held in collections.
num_boxes
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_evaluation/np_box_list.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_evaluation/np_box_list.py
Apache-2.0
def get_extra_fields(self): """Return all non-box fields.""" return [k for k in self.data if k != 'boxes']
Return all non-box fields.
get_extra_fields
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_evaluation/np_box_list.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_evaluation/np_box_list.py
Apache-2.0
def add_field(self, field, field_data): """Add data to a specified field. Args: field: a string parameter used to specify a related field to be accessed. field_data: a numpy array of [N, ...] representing the data associated with the field. Raises: ValueError: if the field is already exist or the dimension of the field data does not matches the number of boxes. """ if self.has_field(field): raise ValueError('Field ' + field + 'already exists') if len(field_data.shape) < 1 or field_data.shape[0] != self.num_boxes( ): raise ValueError('Invalid dimensions for field data') self.data[field] = field_data
Add data to a specified field. Args: field: a string parameter used to specify a related field to be accessed. field_data: a numpy array of [N, ...] representing the data associated with the field. Raises: ValueError: if the field is already exist or the dimension of the field data does not matches the number of boxes.
add_field
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_evaluation/np_box_list.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_evaluation/np_box_list.py
Apache-2.0
def get(self): """Convenience function for accesssing box coordinates. Returns: a numpy array of shape [N, 4] representing box corners """ return self.get_field('boxes')
Convenience function for accesssing box coordinates. Returns: a numpy array of shape [N, 4] representing box corners
get
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_evaluation/np_box_list.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_evaluation/np_box_list.py
Apache-2.0
def get_field(self, field): """Accesses data associated with the specified field in the box collection. Args: field: a string parameter used to specify a related field to be accessed. Returns: a numpy 1-d array representing data of an associated field Raises: ValueError: if invalid field """ if not self.has_field(field): raise ValueError(f'field {field} does not exist') return self.data[field]
Accesses data associated with the specified field in the box collection. Args: field: a string parameter used to specify a related field to be accessed. Returns: a numpy 1-d array representing data of an associated field Raises: ValueError: if invalid field
get_field
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_evaluation/np_box_list.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_evaluation/np_box_list.py
Apache-2.0
def get_coordinates(self): """Get corner coordinates of boxes. Returns: a list of 4 1-d numpy arrays [y_min, x_min, y_max, x_max] """ box_coordinates = self.get() y_min = box_coordinates[:, 0] x_min = box_coordinates[:, 1] y_max = box_coordinates[:, 2] x_max = box_coordinates[:, 3] return [y_min, x_min, y_max, x_max]
Get corner coordinates of boxes. Returns: a list of 4 1-d numpy arrays [y_min, x_min, y_max, x_max]
get_coordinates
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_evaluation/np_box_list.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_evaluation/np_box_list.py
Apache-2.0
def _is_valid_boxes(data): """Check whether data fulfills the format of N*[ymin, xmin, ymax, xmin]. Args: data: a numpy array of shape [N, 4] representing box coordinates Returns: a boolean indicating whether all ymax of boxes are equal or greater than ymin, and all xmax of boxes are equal or greater than xmin. """ if len(data) != 0: for v in data: if v[0] > v[2] or v[1] > v[3]: return False return True
Check whether data fulfills the format of N*[ymin, xmin, ymax, xmin]. Args: data: a numpy array of shape [N, 4] representing box coordinates Returns: a boolean indicating whether all ymax of boxes are equal or greater than ymin, and all xmax of boxes are equal or greater than xmin.
_is_valid_boxes
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_evaluation/np_box_list.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_evaluation/np_box_list.py
Apache-2.0
def area(boxes): """Computes area of boxes. Args: boxes: Numpy array with shape [N, 4] holding N boxes Returns: a numpy array with shape [N*1] representing box areas """ return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
Computes area of boxes. Args: boxes: Numpy array with shape [N, 4] holding N boxes Returns: a numpy array with shape [N*1] representing box areas
area
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_evaluation/np_box_ops.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_evaluation/np_box_ops.py
Apache-2.0
def intersection(boxes1, boxes2): """Compute pairwise intersection areas between boxes. Args: boxes1: a numpy array with shape [N, 4] holding N boxes boxes2: a numpy array with shape [M, 4] holding M boxes Returns: a numpy array with shape [N*M] representing pairwise intersection area """ [y_min1, x_min1, y_max1, x_max1] = np.split(boxes1, 4, axis=1) [y_min2, x_min2, y_max2, x_max2] = np.split(boxes2, 4, axis=1) all_pairs_min_ymax = np.minimum(y_max1, np.transpose(y_max2)) all_pairs_max_ymin = np.maximum(y_min1, np.transpose(y_min2)) intersect_heights = np.maximum( np.zeros(all_pairs_max_ymin.shape), all_pairs_min_ymax - all_pairs_max_ymin) all_pairs_min_xmax = np.minimum(x_max1, np.transpose(x_max2)) all_pairs_max_xmin = np.maximum(x_min1, np.transpose(x_min2)) intersect_widths = np.maximum( np.zeros(all_pairs_max_xmin.shape), all_pairs_min_xmax - all_pairs_max_xmin) return intersect_heights * intersect_widths
Compute pairwise intersection areas between boxes. Args: boxes1: a numpy array with shape [N, 4] holding N boxes boxes2: a numpy array with shape [M, 4] holding M boxes Returns: a numpy array with shape [N*M] representing pairwise intersection area
intersection
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_evaluation/np_box_ops.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_evaluation/np_box_ops.py
Apache-2.0
def iou(boxes1, boxes2): """Computes pairwise intersection-over-union between box collections. Args: boxes1: a numpy array with shape [N, 4] holding N boxes. boxes2: a numpy array with shape [M, 4] holding N boxes. Returns: a numpy array with shape [N, M] representing pairwise iou scores. """ intersect = intersection(boxes1, boxes2) area1 = area(boxes1) area2 = area(boxes2) union = ( np.expand_dims(area1, axis=1) + np.expand_dims(area2, axis=0) - intersect) return intersect / union
Computes pairwise intersection-over-union between box collections. Args: boxes1: a numpy array with shape [N, 4] holding N boxes. boxes2: a numpy array with shape [M, 4] holding N boxes. Returns: a numpy array with shape [N, M] representing pairwise iou scores.
iou
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_evaluation/np_box_ops.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_evaluation/np_box_ops.py
Apache-2.0
def ioa(boxes1, boxes2): """Computes pairwise intersection-over-area between box collections. Intersection-over-area (ioa) between two boxes box1 and box2 is defined as their intersection area over box2's area. Note that ioa is not symmetric, that is, IOA(box1, box2) != IOA(box2, box1). Args: boxes1: a numpy array with shape [N, 4] holding N boxes. boxes2: a numpy array with shape [M, 4] holding N boxes. Returns: a numpy array with shape [N, M] representing pairwise ioa scores. """ intersect = intersection(boxes1, boxes2) areas = np.expand_dims(area(boxes2), axis=0) return intersect / areas
Computes pairwise intersection-over-area between box collections. Intersection-over-area (ioa) between two boxes box1 and box2 is defined as their intersection area over box2's area. Note that ioa is not symmetric, that is, IOA(box1, box2) != IOA(box2, box1). Args: boxes1: a numpy array with shape [N, 4] holding N boxes. boxes2: a numpy array with shape [M, 4] holding N boxes. Returns: a numpy array with shape [N, M] representing pairwise ioa scores.
ioa
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_evaluation/np_box_ops.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_evaluation/np_box_ops.py
Apache-2.0
def compute_precision_recall(scores, labels, num_gt): """Compute precision and recall. Args: scores: A float numpy array representing detection score labels: A boolean numpy array representing true/false positive labels num_gt: Number of ground truth instances Raises: ValueError: if the input is not of the correct format Returns: precision: Fraction of positive instances over detected ones. This value is None if no ground truth labels are present. recall: Fraction of detected positive instance over all positive instances. This value is None if no ground truth labels are present. """ if (not isinstance(labels, np.ndarray) or labels.dtype != bool or len(labels.shape) != 1): raise ValueError('labels must be single dimension bool numpy array') if not isinstance(scores, np.ndarray) or len(scores.shape) != 1: raise ValueError('scores must be single dimension numpy array') if num_gt < np.sum(labels): raise ValueError( 'Number of true positives must be smaller than num_gt.') if len(scores) != len(labels): raise ValueError('scores and labels must be of the same size.') if num_gt == 0: return None, None sorted_indices = np.argsort(scores) sorted_indices = sorted_indices[::-1] labels = labels.astype(int) true_positive_labels = labels[sorted_indices] false_positive_labels = 1 - true_positive_labels cum_true_positives = np.cumsum(true_positive_labels) cum_false_positives = np.cumsum(false_positive_labels) precision = cum_true_positives.astype(float) / ( cum_true_positives + cum_false_positives) recall = cum_true_positives.astype(float) / num_gt return precision, recall
Compute precision and recall. Args: scores: A float numpy array representing detection score labels: A boolean numpy array representing true/false positive labels num_gt: Number of ground truth instances Raises: ValueError: if the input is not of the correct format Returns: precision: Fraction of positive instances over detected ones. This value is None if no ground truth labels are present. recall: Fraction of detected positive instance over all positive instances. This value is None if no ground truth labels are present.
compute_precision_recall
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_evaluation/metrics.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_evaluation/metrics.py
Apache-2.0
def compute_average_precision(precision, recall): """Compute Average Precision according to the definition in VOCdevkit. Precision is modified to ensure that it does not decrease as recall decrease. Args: precision: A float [N, 1] numpy array of precisions recall: A float [N, 1] numpy array of recalls Raises: ValueError: if the input is not of the correct format Returns: average_precison: The area under the precision recall curve. NaN if precision and recall are None. """ if precision is None: if recall is not None: raise ValueError('If precision is None, recall must also be None') return np.NAN if not isinstance(precision, np.ndarray) or not isinstance( recall, np.ndarray): raise ValueError('precision and recall must be numpy array') if precision.dtype != np.float64 or recall.dtype != np.float64: raise ValueError('input must be float numpy array.') if len(precision) != len(recall): raise ValueError('precision and recall must be of the same size.') if not precision.size: return 0.0 if np.amin(precision) < 0 or np.amax(precision) > 1: raise ValueError('Precision must be in the range of [0, 1].') if np.amin(recall) < 0 or np.amax(recall) > 1: raise ValueError('recall must be in the range of [0, 1].') if not all(recall[i] <= recall[i + 1] for i in range(len(recall) - 1)): raise ValueError('recall must be a non-decreasing array') recall = np.concatenate([[0], recall, [1]]) precision = np.concatenate([[0], precision, [0]]) # Preprocess precision to be a non-decreasing array for i in range(len(precision) - 2, -1, -1): precision[i] = np.maximum(precision[i], precision[i + 1]) indices = np.where(recall[1:] != recall[:-1])[0] + 1 average_precision = np.sum( (recall[indices] - recall[indices - 1]) * precision[indices]) return average_precision
Compute Average Precision according to the definition in VOCdevkit. Precision is modified to ensure that it does not decrease as recall decrease. Args: precision: A float [N, 1] numpy array of precisions recall: A float [N, 1] numpy array of recalls Raises: ValueError: if the input is not of the correct format Returns: average_precison: The area under the precision recall curve. NaN if precision and recall are None.
compute_average_precision
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_evaluation/metrics.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_evaluation/metrics.py
Apache-2.0
def compute_cor_loc(num_gt_imgs_per_class, num_images_correctly_detected_per_class): """Compute CorLoc according to the definition in the following paper. https://www.robots.ox.ac.uk/~vgg/rg/papers/deselaers-eccv10.pdf Returns nans if there are no ground truth images for a class. Args: num_gt_imgs_per_class: 1D array, representing number of images containing at least one object instance of a particular class num_images_correctly_detected_per_class: 1D array, representing number of images that are correctly detected at least one object instance of a particular class Returns: corloc_per_class: A float numpy array represents the corloc score of each class """ # Divide by zero expected for classes with no gt examples. with np.errstate(divide='ignore', invalid='ignore'): return np.where( num_gt_imgs_per_class == 0, np.nan, num_images_correctly_detected_per_class / num_gt_imgs_per_class)
Compute CorLoc according to the definition in the following paper. https://www.robots.ox.ac.uk/~vgg/rg/papers/deselaers-eccv10.pdf Returns nans if there are no ground truth images for a class. Args: num_gt_imgs_per_class: 1D array, representing number of images containing at least one object instance of a particular class num_images_correctly_detected_per_class: 1D array, representing number of images that are correctly detected at least one object instance of a particular class Returns: corloc_per_class: A float numpy array represents the corloc score of each class
compute_cor_loc
python
open-mmlab/mmaction2
mmaction/evaluation/functional/ava_evaluation/metrics.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/functional/ava_evaluation/metrics.py
Apache-2.0
def process(self, data_batch: Optional[Dict], data_samples: Sequence[Dict]) -> None: """Process one batch of data samples and data_samples. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (dict, optional): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model. """ data_samples = copy.deepcopy(data_samples) for data_sample in data_samples: results = dict() features = data_sample['features'] video_feature = features['video_feature'].cpu().numpy() text_feature = features['text_feature'].cpu().numpy() results['video_feature'] = video_feature results['text_feature'] = text_feature self.results.append(results)
Process one batch of data samples and data_samples. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (dict, optional): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model.
process
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/retrieval_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/retrieval_metric.py
Apache-2.0
def compute_metrics(self, results: List) -> Dict: """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ video_features = np.stack([res['video_feature'] for res in results]) text_features = np.stack([res['text_feature'] for res in results]) video_features = video_features / np.linalg.norm( video_features, axis=-1, keepdims=True) text_features = text_features / np.linalg.norm( text_features, axis=-1, keepdims=True) similarity = text_features @ video_features.T sx = np.sort(-similarity) d = np.diag(-similarity) ind = np.where((sx - d[:, None]) == 0)[1] metrics = OrderedDict() for metric in self.metric_list: if metric == 'R1': metrics['R1'] = float(np.sum(ind == 0)) * 100 / len(ind) elif metric == 'R5': metrics['R5'] = float(np.sum(ind < 5)) * 100 / len(ind) elif metric == 'R10': metrics['R10'] = float(np.sum(ind < 10)) * 100 / len(ind) elif metric == 'MdR': metrics['MdR'] = np.median(ind) + 1 elif metric == 'MnR': metrics['MnR'] = np.mean(ind) + 1 return metrics
Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
compute_metrics
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/retrieval_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/retrieval_metric.py
Apache-2.0
def process(self, data_batch, data_samples): """Process one batch of data samples. The processed results should be stored in ``self.results``, which will be used to computed the metrics when all batches have been processed. Args: data_batch: A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model. """ for sample in data_samples: gt_answer = sample.get('gt_answer') gt_answer_weight = sample.get('gt_answer_weight') if isinstance(gt_answer, str): gt_answer = [gt_answer] if gt_answer_weight is None: gt_answer_weight = [1. / (len(gt_answer))] * len(gt_answer) result = { 'pred_answer': sample.get('pred_answer'), 'gt_answer': gt_answer, 'gt_answer_weight': gt_answer_weight, } self.results.append(result)
Process one batch of data samples. The processed results should be stored in ``self.results``, which will be used to computed the metrics when all batches have been processed. Args: data_batch: A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model.
process
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/multimodal_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/multimodal_metric.py
Apache-2.0
def compute_metrics(self, results: List): """Compute the metrics from processed results. Args: results (dict): The processed results of each batch. Returns: Dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ acc = [] for result in results: pred_answer = self._process_answer(result['pred_answer']) gt_answer = [ self._process_answer(answer) for answer in result['gt_answer'] ] answer_weight = result['gt_answer_weight'] weight_sum = 0 for i, gt in enumerate(gt_answer): if gt == pred_answer: weight_sum += answer_weight[i] vqa_acc = min(1.0, weight_sum / self.full_score_weight) acc.append(vqa_acc) accuracy = sum(acc) / len(acc) * 100 metrics = {'acc': accuracy} return metrics
Compute the metrics from processed results. Args: results (dict): The processed results of each batch. Returns: Dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
compute_metrics
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/multimodal_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/multimodal_metric.py
Apache-2.0
def process(self, data_batch, data_samples) -> None: """transfer tensors in predictions to CPU.""" for sample in data_samples: question_id = sample['question_id'] pred_answer = sample['pred_answer'] result = { 'question_id': int(question_id), 'answer': pred_answer, } self.results.append(result)
transfer tensors in predictions to CPU.
process
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/multimodal_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/multimodal_metric.py
Apache-2.0
def compute_metrics(self, results: List): """Dump the result to json file.""" mmengine.dump(results, self.file_path) logger = MMLogger.get_current_instance() logger.info(f'Results has been saved to {self.file_path}.') return {}
Dump the result to json file.
compute_metrics
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/multimodal_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/multimodal_metric.py
Apache-2.0
def process(self, data_batch, data_samples): """Process one batch of data samples. The processed results should be stored in ``self.results``, which will be used to computed the metrics when all batches have been processed. Args: data_batch: A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model. """ for sample in data_samples: # gt_labels in datasample is a LabelData label = sample['gt_label'].item() result = { 'pred_label': sample.get('pred_label'), 'gt_label': label, } self.results.append(result)
Process one batch of data samples. The processed results should be stored in ``self.results``, which will be used to computed the metrics when all batches have been processed. Args: data_batch: A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model.
process
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/multimodal_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/multimodal_metric.py
Apache-2.0
def compute_metrics(self, results: List): """Compute the metrics from processed results. Args: results (dict): The processed results of each batch. Returns: Dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ preds = np.array([x['pred_label'] for x in results]) labels = np.array([x['gt_label'] for x in results]) accuracy = np.sum(preds == labels) / len(preds) * 100 metrics = {'acc': accuracy} return metrics
Compute the metrics from processed results. Args: results (dict): The processed results of each batch. Returns: Dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
compute_metrics
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/multimodal_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/multimodal_metric.py
Apache-2.0
def process(self, data_batch: Sequence[dict], data_samples: Sequence[dict]): """Process one batch of data and predictions. The processed results should be stored in ``self.results``, which will be used to computed the metrics when all batches have been processed. Args: data_batch (Sequence[dict]): A batch of data from the dataloader. predictions (Sequence[dict]): A batch of outputs from the model. """ for data_sample in data_samples: pred_score = data_sample['pred_score'].cpu() gt_label = format_label(data_sample['gt_label']) if 'gt_score' in data_sample: target = data_sample.get('gt_score').clone() else: num_classes = pred_score.size()[-1] target = F.one_hot(gt_label, num_classes) # Because the retrieval output logit vector will be much larger # compared to the normal classification, to save resources, the # evaluation results are computed each batch here and then reduce # all results at the end. result = RetrievalRecall.calculate( pred_score.unsqueeze(0), target.unsqueeze(0), topk=self.topk) self.results.append(result)
Process one batch of data and predictions. The processed results should be stored in ``self.results``, which will be used to computed the metrics when all batches have been processed. Args: data_batch (Sequence[dict]): A batch of data from the dataloader. predictions (Sequence[dict]): A batch of outputs from the model.
process
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/multimodal_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/multimodal_metric.py
Apache-2.0
def compute_metrics(self, results: List): """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: Dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ result_metrics = dict() for i, k in enumerate(self.topk): recall_at_k = sum([r[i].item() for r in results]) / len(results) result_metrics[f'Recall@{k}'] = recall_at_k return result_metrics
Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: Dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
compute_metrics
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/multimodal_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/multimodal_metric.py
Apache-2.0
def _format_pred(label, topk=None, is_indices=False): """format various label to List[indices].""" if is_indices: assert isinstance(label, Sequence), \ '`pred` must be Sequence of indices when' \ f' `pred_indices` set to True, but get {type(label)}' for i, sample_pred in enumerate(label): assert is_seq_of(sample_pred, int) or isinstance( sample_pred, (np.ndarray, torch.Tensor)), \ '`pred` should be Sequence of indices when `pred_indices`' \ f'set to True. but pred[{i}] is {sample_pred}' if topk: label[i] = sample_pred[:min(topk, len(sample_pred))] return label if isinstance(label, np.ndarray): label = torch.from_numpy(label) elif not isinstance(label, torch.Tensor): raise TypeError(f'The pred must be type of torch.tensor, ' f'np.ndarray or Sequence but get {type(label)}.') topk = topk if topk else label.size()[-1] _, indices = label.topk(topk) return indices
format various label to List[indices].
_format_pred
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/multimodal_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/multimodal_metric.py
Apache-2.0
def _format_target(label, is_indices=False): """format various label to List[indices].""" if is_indices: assert isinstance(label, Sequence), \ '`target` must be Sequence of indices when' \ f' `target_indices` set to True, but get {type(label)}' for i, sample_gt in enumerate(label): assert is_seq_of(sample_gt, int) or isinstance( sample_gt, (np.ndarray, torch.Tensor)), \ '`target` should be Sequence of indices when ' \ f'`target_indices` set to True. but target[{i}] is {sample_gt}' return label if isinstance(label, np.ndarray): label = torch.from_numpy(label) elif isinstance(label, Sequence) and not mmengine.is_str(label): label = torch.tensor(label) elif not isinstance(label, torch.Tensor): raise TypeError(f'The pred must be type of torch.tensor, ' f'np.ndarray or Sequence but get {type(label)}.') indices = [sample_gt.nonzero().squeeze(-1) for sample_gt in label] return indices
format various label to List[indices].
_format_target
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/multimodal_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/multimodal_metric.py
Apache-2.0
def process(self, data_batch: Sequence[Tuple[Any, dict]], predictions: Sequence[dict]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (Sequence[Tuple[Any, dict]]): A batch of data from the dataloader. predictions (Sequence[dict]): A batch of outputs from the model. """ for pred in predictions: self.results.append(pred) if self.metric_type == 'AR@AN': data_batch = data_batch['data_samples'] for data_sample in data_batch: video_info = data_sample.metainfo video_id = video_info['video_name'][2:] this_video_gt = [] for ann in video_info['annotations']: t_start, t_end = ann['segment'] label = ann['label'] this_video_gt.append([t_start, t_end, label]) self.ground_truth[video_id] = np.array(this_video_gt)
Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (Sequence[Tuple[Any, dict]]): A batch of data from the dataloader. predictions (Sequence[dict]): A batch of outputs from the model.
process
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/anet_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/anet_metric.py
Apache-2.0
def compute_metrics(self, results: list) -> dict: """Compute the metrics from processed results. If `metric_type` is 'TEM', only dump middle results and do not compute any metrics. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ self.dump_results(results) if self.metric_type == 'AR@AN': return self.compute_ARAN(results) return OrderedDict()
Compute the metrics from processed results. If `metric_type` is 'TEM', only dump middle results and do not compute any metrics. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
compute_metrics
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/anet_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/anet_metric.py
Apache-2.0
def compute_ARAN(self, results: list) -> dict: """AR@AN evaluation metric.""" temporal_iou_thresholds = self.metric_options.setdefault( 'AR@AN', {}).setdefault('temporal_iou_thresholds', np.linspace(0.5, 0.95, 10)) max_avg_proposals = self.metric_options.setdefault( 'AR@AN', {}).setdefault('max_avg_proposals', 100) if isinstance(temporal_iou_thresholds, list): temporal_iou_thresholds = np.array(temporal_iou_thresholds) eval_results = OrderedDict() proposal, num_proposals = self._import_proposals(results) recall, _, _, auc = average_recall_at_avg_proposals( self.ground_truth, proposal, num_proposals, max_avg_proposals=max_avg_proposals, temporal_iou_thresholds=temporal_iou_thresholds) eval_results['auc'] = auc eval_results['AR@1'] = np.mean(recall[:, 0]) eval_results['AR@5'] = np.mean(recall[:, 4]) eval_results['AR@10'] = np.mean(recall[:, 9]) eval_results['AR@100'] = np.mean(recall[:, 99]) return eval_results
AR@AN evaluation metric.
compute_ARAN
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/anet_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/anet_metric.py
Apache-2.0
def dump_results(self, results, version='VERSION 1.3'): """Save middle or final results to disk.""" if self.output_format == 'json': result_dict = self.proposals2json(results) output_dict = { 'version': version, 'results': result_dict, 'external_data': {} } mmengine.dump(output_dict, self.out) elif self.output_format == 'csv': os.makedirs(self.out, exist_ok=True) header = 'action,start,end,tmin,tmax' for result in results: video_name, outputs = result output_path = osp.join(self.out, video_name + '.csv') np.savetxt( output_path, outputs, header=header, delimiter=',', comments='') else: raise ValueError( f'The output format {self.output_format} is not supported.')
Save middle or final results to disk.
dump_results
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/anet_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/anet_metric.py
Apache-2.0
def proposals2json(results, show_progress=False): """Convert all proposals to a final dict(json) format. Args: results (list[dict]): All proposals. show_progress (bool): Whether to show the progress bar. Defaults: False. Returns: dict: The final result dict. E.g. .. code-block:: Python dict(video-1=[dict(segment=[1.1,2.0]. score=0.9), dict(segment=[50.1, 129.3], score=0.6)]) """ result_dict = {} print('Convert proposals to json format') if show_progress: prog_bar = mmcv.ProgressBar(len(results)) for result in results: video_name = result['video_name'] result_dict[video_name[2:]] = result['proposal_list'] if show_progress: prog_bar.update() return result_dict
Convert all proposals to a final dict(json) format. Args: results (list[dict]): All proposals. show_progress (bool): Whether to show the progress bar. Defaults: False. Returns: dict: The final result dict. E.g. .. code-block:: Python dict(video-1=[dict(segment=[1.1,2.0]. score=0.9), dict(segment=[50.1, 129.3], score=0.6)])
proposals2json
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/anet_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/anet_metric.py
Apache-2.0
def _import_proposals(results): """Read predictions from results.""" proposals = {} num_proposals = 0 for result in results: video_id = result['video_name'][2:] this_video_proposals = [] for proposal in result['proposal_list']: t_start, t_end = proposal['segment'] score = proposal['score'] this_video_proposals.append([t_start, t_end, score]) num_proposals += 1 proposals[video_id] = np.array(this_video_proposals) return proposals, num_proposals
Read predictions from results.
_import_proposals
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/anet_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/anet_metric.py
Apache-2.0
def process(self, data_batch: Sequence[Tuple[Any, dict]], data_samples: Sequence[dict]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (Sequence[Tuple[Any, dict]]): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model. """ for data_sample in data_samples: result = dict() pred = data_sample['pred_instances'] result['video_id'] = data_sample['video_id'] result['timestamp'] = data_sample['timestamp'] outputs = bbox2result( pred['bboxes'], pred['scores'], num_classes=self.num_classes, thr=self.action_thr) result['outputs'] = outputs self.results.append(result)
Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (Sequence[Tuple[Any, dict]]): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model.
process
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/ava_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/ava_metric.py
Apache-2.0
def compute_metrics(self, results: list) -> dict: """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ time_now = datetime.now().strftime('%Y%m%d_%H%M%S') temp_file = f'AVA_{time_now}_result.csv' results2csv(results, temp_file, self.custom_classes) eval_results = ava_eval( temp_file, self.options[0], self.label_file, self.ann_file, self.exclude_file, ignore_empty_frames=True, custom_classes=self.custom_classes) os.remove(temp_file) return eval_results
Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
compute_metrics
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/ava_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/ava_metric.py
Apache-2.0
def process(self, data_batch: Sequence[Tuple[Any, dict]], data_samples: Sequence[dict]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (Sequence[Tuple[Any, dict]]): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model. """ for pred in data_samples: video_key = pred['video_id'].split('.mp4')[0] frm_num = pred['timestamp'] bboxes = pred['pred_instances']['bboxes'].cpu().numpy() cls_scores = pred['pred_instances']['scores'].cpu().numpy() det_result = [video_key, frm_num, bboxes, cls_scores] self.results.append(det_result)
Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (Sequence[Tuple[Any, dict]]): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model.
process
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/multisports_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/multisports_metric.py
Apache-2.0
def compute_metrics(self, results: list) -> dict: """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ test_videos = self.annos['test_videos'][0] resolutions = self.annos['resolution'] detections = [] for result in results: video_key, frm_num, bboxes, cls_scores = result for bbox, cls_score in zip(bboxes, cls_scores): video_idx = test_videos.index(video_key) pred_label = np.argmax(cls_score) score = cls_score[pred_label] h, w = resolutions[video_key] bbox *= np.array([w, h, w, h]) instance_result = np.array( [video_idx, frm_num, pred_label, score, *bbox]) detections.append(instance_result) frm_detections = np.array(detections) metric_result = dict() f_map = frameAP(self.annos, frm_detections, self.metric_options['F_mAP']['thr'], self.verbose) metric_result.update({'frameAP': round(f_map, 4)}) video_tubes = link_tubes( self.annos, frm_detections, len_thre=self.metric_options['V_mAP']['tube_thr']) v_map = {} for thr in self.metric_options['V_mAP']['thr']: map = videoAP( self.annos, video_tubes, thr, print_info=self.verbose) v_map.update({f'v_map@{thr}': round(map, 4)}) metric_result.update(v_map) if self.metric_options['V_mAP'].get('all'): all_map = videoAP_all(self.annos, video_tubes) metric_result.update(all_map) return metric_result
Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
compute_metrics
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/multisports_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/multisports_metric.py
Apache-2.0
def process(self, data_batch: Sequence[Tuple[Any, dict]], predictions: Sequence[dict]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (Sequence[Tuple[Any, dict]]): A batch of data from the dataloader. predictions (Sequence[dict]): A batch of outputs from the model. """ for pred in predictions: self.results.append(pred)
Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (Sequence[Tuple[Any, dict]]): A batch of data from the dataloader. predictions (Sequence[dict]): A batch of outputs from the model.
process
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/video_grounding_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/video_grounding_metric.py
Apache-2.0
def compute_metrics(self, results: list) -> dict: """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ eval_results = dict() for topK in self.topK_list: total = len(results) correct = 0.0 for result in results: gt = result['gt'] predictions = result['predictions'][:topK] for prediction in predictions: IoU = self.calculate_IoU(gt, prediction) if IoU > self.threshold: correct += 1 break acc = correct / total eval_results[f'Recall@Top{topK}_IoU={self.threshold}'] = acc return eval_results
Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
compute_metrics
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/video_grounding_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/video_grounding_metric.py
Apache-2.0
def to_tensor(value): """Convert value to torch.Tensor.""" if isinstance(value, np.ndarray): value = torch.from_numpy(value) elif isinstance(value, Sequence) and not mmengine.is_str(value): value = torch.tensor(value) elif not isinstance(value, torch.Tensor): raise TypeError(f'{type(value)} is not an available argument.') return value
Convert value to torch.Tensor.
to_tensor
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/acc_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/acc_metric.py
Apache-2.0
def process(self, data_batch: Sequence[Tuple[Any, Dict]], data_samples: Sequence[Dict]) -> None: """Process one batch of data samples and data_samples. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (Sequence[dict]): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model. """ data_samples = copy.deepcopy(data_samples) for data_sample in data_samples: result = dict() pred = data_sample['pred_score'] label = data_sample['gt_label'] # Ad-hoc for RGBPoseConv3D if isinstance(pred, dict): for item_name, score in pred.items(): pred[item_name] = score.cpu().numpy() else: pred = pred.cpu().numpy() result['pred'] = pred if label.size(0) == 1: # single-label result['label'] = label.item() else: # multi-label result['label'] = label.cpu().numpy() self.results.append(result)
Process one batch of data samples and data_samples. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (Sequence[dict]): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model.
process
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/acc_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/acc_metric.py
Apache-2.0
def compute_metrics(self, results: List) -> Dict: """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ labels = [x['label'] for x in results] eval_results = dict() # Ad-hoc for RGBPoseConv3D if isinstance(results[0]['pred'], dict): for item_name in results[0]['pred'].keys(): preds = [x['pred'][item_name] for x in results] eval_result = self.calculate(preds, labels) eval_results.update( {f'{item_name}_{k}': v for k, v in eval_result.items()}) if len(results[0]['pred']) == 2 and \ 'rgb' in results[0]['pred'] and \ 'pose' in results[0]['pred']: rgb = [x['pred']['rgb'] for x in results] pose = [x['pred']['pose'] for x in results] preds = { '1:1': get_weighted_score([rgb, pose], [1, 1]), '2:1': get_weighted_score([rgb, pose], [2, 1]), '1:2': get_weighted_score([rgb, pose], [1, 2]) } for k in preds: eval_result = self.calculate(preds[k], labels) eval_results.update({ f'RGBPose_{k}_{key}': v for key, v in eval_result.items() }) return eval_results # Simple Acc Calculation else: preds = [x['pred'] for x in results] return self.calculate(preds, labels)
Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
compute_metrics
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/acc_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/acc_metric.py
Apache-2.0
def calculate(self, preds: List[np.ndarray], labels: List[Union[int, np.ndarray]]) -> Dict: """Compute the metrics from processed results. Args: preds (list[np.ndarray]): List of the prediction scores. labels (list[int | np.ndarray]): List of the labels. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ eval_results = OrderedDict() metric_options = copy.deepcopy(self.metric_options) for metric in self.metrics: if metric == 'top_k_accuracy': topk = metric_options.setdefault('top_k_accuracy', {}).setdefault( 'topk', (1, 5)) if not isinstance(topk, (int, tuple)): raise TypeError('topk must be int or tuple of int, ' f'but got {type(topk)}') if isinstance(topk, int): topk = (topk, ) top_k_acc = top_k_accuracy(preds, labels, topk) for k, acc in zip(topk, top_k_acc): eval_results[f'top{k}'] = acc if metric == 'mean_class_accuracy': mean1 = mean_class_accuracy(preds, labels) eval_results['mean1'] = mean1 if metric in [ 'mean_average_precision', 'mmit_mean_average_precision', ]: if metric == 'mean_average_precision': mAP = mean_average_precision(preds, labels) eval_results['mean_average_precision'] = mAP elif metric == 'mmit_mean_average_precision': mAP = mmit_mean_average_precision(preds, labels) eval_results['mmit_mean_average_precision'] = mAP return eval_results
Compute the metrics from processed results. Args: preds (list[np.ndarray]): List of the prediction scores. labels (list[int | np.ndarray]): List of the labels. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
calculate
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/acc_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/acc_metric.py
Apache-2.0
def calculate(pred, target, num_classes=None) -> dict: """Calculate the confusion matrix for single-label task. Args: pred (torch.Tensor | np.ndarray | Sequence): The prediction results. It can be labels (N, ), or scores of every class (N, C). target (torch.Tensor | np.ndarray | Sequence): The target of each prediction with shape (N, ). num_classes (Optional, int): The number of classes. If the ``pred`` is label instead of scores, this argument is required. Defaults to None. Returns: torch.Tensor: The confusion matrix. """ pred = to_tensor(pred) target_label = to_tensor(target).int() assert pred.size(0) == target_label.size(0), \ f"The size of pred ({pred.size(0)}) doesn't match "\ f'the target ({target_label.size(0)}).' assert target_label.ndim == 1 if pred.ndim == 1: assert num_classes is not None, \ 'Please specify the `num_classes` if the `pred` is labels ' \ 'intead of scores.' pred_label = pred else: num_classes = num_classes or pred.size(1) pred_label = torch.argmax(pred, dim=1).flatten() with torch.no_grad(): indices = num_classes * target_label + pred_label matrix = torch.bincount(indices, minlength=num_classes**2) matrix = matrix.reshape(num_classes, num_classes) return matrix
Calculate the confusion matrix for single-label task. Args: pred (torch.Tensor | np.ndarray | Sequence): The prediction results. It can be labels (N, ), or scores of every class (N, C). target (torch.Tensor | np.ndarray | Sequence): The target of each prediction with shape (N, ). num_classes (Optional, int): The number of classes. If the ``pred`` is label instead of scores, this argument is required. Defaults to None. Returns: torch.Tensor: The confusion matrix.
calculate
python
open-mmlab/mmaction2
mmaction/evaluation/metrics/acc_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/evaluation/metrics/acc_metric.py
Apache-2.0
def merge_args(cfg, args): """Merge CLI arguments to config.""" if args.no_validate: cfg.val_cfg = None cfg.val_dataloader = None cfg.val_evaluator = None cfg.launcher = args.launcher # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) # enable automatic-mixed-precision training if args.amp is True: optim_wrapper = cfg.optim_wrapper.get('type', 'OptimWrapper') assert optim_wrapper in ['OptimWrapper', 'AmpOptimWrapper'], \ '`--amp` is not supported custom optimizer wrapper type ' \ f'`{optim_wrapper}.' cfg.optim_wrapper.type = 'AmpOptimWrapper' cfg.optim_wrapper.setdefault('loss_scale', 'dynamic') # resume training if args.resume == 'auto': cfg.resume = True cfg.load_from = None elif args.resume is not None: cfg.resume = True cfg.load_from = args.resume # enable auto scale learning rate if args.auto_scale_lr: cfg.auto_scale_lr.enable = True # set random seeds if cfg.get('randomness', None) is None: cfg.randomness = dict( seed=args.seed, diff_rank_seed=args.diff_rank_seed, deterministic=args.deterministic) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) return cfg
Merge CLI arguments to config.
merge_args
python
open-mmlab/mmaction2
tools/train.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/train.py
Apache-2.0
def merge_args(cfg, args): """Merge CLI arguments to config.""" # -------------------- visualization -------------------- if args.show or (args.show_dir is not None): assert 'visualization' in cfg.default_hooks, \ 'VisualizationHook is not set in the `default_hooks` field of ' \ 'config. Please set `visualization=dict(type="VisualizationHook")`' cfg.default_hooks.visualization.enable = True cfg.default_hooks.visualization.show = args.show cfg.default_hooks.visualization.wait_time = args.wait_time cfg.default_hooks.visualization.out_dir = args.show_dir cfg.default_hooks.visualization.interval = args.interval # -------------------- Dump predictions -------------------- if args.dump is not None: assert args.dump.endswith(('.pkl', '.pickle')), \ 'The dump file must be a pkl file.' dump_metric = dict(type='DumpResults', out_file_path=args.dump) if isinstance(cfg.test_evaluator, (list, tuple)): cfg.test_evaluator = list(cfg.test_evaluator) cfg.test_evaluator.append(dump_metric) else: cfg.test_evaluator = [cfg.test_evaluator, dump_metric] return cfg
Merge CLI arguments to config.
merge_args
python
open-mmlab/mmaction2
tools/test.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/test.py
Apache-2.0
def plot_curve(lr_list, args, param_name, iters_per_epoch, by_epoch=True): """Plot learning rate vs iter graph.""" try: import seaborn as sns sns.set_style(args.style) except ImportError: pass wind_w, wind_h = args.window_size.split('*') wind_w, wind_h = int(wind_w), int(wind_h) plt.figure(figsize=(wind_w, wind_h)) ax: plt.Axes = plt.subplot() ax.plot(lr_list, linewidth=1) if by_epoch: ax.xaxis.tick_top() ax.set_xlabel('Iters') ax.xaxis.set_label_position('top') sec_ax = ax.secondary_xaxis( 'bottom', functions=(lambda x: x / iters_per_epoch, lambda y: y * iters_per_epoch)) sec_ax.set_xlabel('Epochs') else: plt.xlabel('Iters') plt.ylabel(param_name) if args.title is None: plt.title(f'{osp.basename(args.config)} {param_name} curve') else: plt.title(args.title)
Plot learning rate vs iter graph.
plot_curve
python
open-mmlab/mmaction2
tools/visualizations/vis_scheduler.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/visualizations/vis_scheduler.py
Apache-2.0
def build_inputs(model: nn.Module, video_path: str, use_frames: bool = False) -> Dict: """build inputs for GradCAM. Note that, building inputs for GradCAM is exactly the same as building inputs for Recognizer test stage. Codes from `inference_recognizer`. Args: model (nn.Module): Recognizer model. video_path (str): video file/url or rawframes directory. use_frames (bool): whether to use rawframes as input. Defaults to False. Returns: dict: Both GradCAM inputs and Recognizer test stage inputs, including two keys, ``inputs`` and ``data_samples``. """ if not (osp.exists(video_path) or video_path.startswith('http')): raise RuntimeError(f"'{video_path}' is missing") if osp.isfile(video_path) and use_frames: raise RuntimeError( f"'{video_path}' is a video file, not a rawframe directory") if osp.isdir(video_path) and not use_frames: raise RuntimeError( f"'{video_path}' is a rawframe directory, not a video file") cfg = model.cfg # build the data pipeline test_pipeline = cfg.test_pipeline test_pipeline = Compose(test_pipeline) # prepare data if use_frames: filename_tmpl = cfg.test_dataloader.dataset.get( 'filename_tmpl', 'img_{:05}.jpg') start_index = cfg.test_dataloader.dataset.get('start_index', 1) data = dict( frame_dir=video_path, total_frames=len(os.listdir(video_path)), label=-1, start_index=start_index, filename_tmpl=filename_tmpl, modality='RGB') else: start_index = cfg.test_dataloader.dataset.get('start_index', 0) data = dict( filename=video_path, label=-1, start_index=start_index, modality='RGB') data = test_pipeline(data) data = pseudo_collate([data]) return data
build inputs for GradCAM. Note that, building inputs for GradCAM is exactly the same as building inputs for Recognizer test stage. Codes from `inference_recognizer`. Args: model (nn.Module): Recognizer model. video_path (str): video file/url or rawframes directory. use_frames (bool): whether to use rawframes as input. Defaults to False. Returns: dict: Both GradCAM inputs and Recognizer test stage inputs, including two keys, ``inputs`` and ``data_samples``.
build_inputs
python
open-mmlab/mmaction2
tools/visualizations/vis_cam.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/visualizations/vis_cam.py
Apache-2.0
def _resize_frames(frame_list: List[np.ndarray], scale: Optional[Tuple[int]] = None, keep_ratio: bool = True, interpolation: str = 'bilinear') -> List[np.ndarray]: """Resize frames according to given scale. Codes are modified from `mmaction/datasets/transforms/processing.py`, `Resize` class. Args: frame_list (list[np.ndarray]): Frames to be resized. scale (tuple[int]): If keep_ratio is True, it serves as scaling factor or maximum size: the image will be rescaled as large as possible within the scale. Otherwise, it serves as (w, h) of output size. keep_ratio (bool): If set to True, Images will be resized without changing the aspect ratio. Otherwise, it will resize images to a given size. Defaults to True. interpolation (str): Algorithm used for interpolation: 'nearest' | 'bilinear'. Defaults to ``'bilinear'``. Returns: list[np.ndarray]: Resized frames. """ if scale is None or (scale[0] == -1 and scale[1] == -1): return frame_list scale = tuple(scale) max_long_edge = max(scale) max_short_edge = min(scale) if max_short_edge == -1: scale = (np.inf, max_long_edge) img_h, img_w, _ = frame_list[0].shape if keep_ratio: new_w, new_h = mmcv.rescale_size((img_w, img_h), scale) else: new_w, new_h = scale frame_list = [ mmcv.imresize(img, (new_w, new_h), interpolation=interpolation) for img in frame_list ] return frame_list
Resize frames according to given scale. Codes are modified from `mmaction/datasets/transforms/processing.py`, `Resize` class. Args: frame_list (list[np.ndarray]): Frames to be resized. scale (tuple[int]): If keep_ratio is True, it serves as scaling factor or maximum size: the image will be rescaled as large as possible within the scale. Otherwise, it serves as (w, h) of output size. keep_ratio (bool): If set to True, Images will be resized without changing the aspect ratio. Otherwise, it will resize images to a given size. Defaults to True. interpolation (str): Algorithm used for interpolation: 'nearest' | 'bilinear'. Defaults to ``'bilinear'``. Returns: list[np.ndarray]: Resized frames.
_resize_frames
python
open-mmlab/mmaction2
tools/visualizations/vis_cam.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/visualizations/vis_cam.py
Apache-2.0
def make_grid(videos, names, rescale_factor=None): """Concat list of pictures into a single big picture, align height here.""" vis = Visualizer() ori_shapes = [vid[0].shape[:2] for vid in videos] if rescale_factor is not None: videos = [[mmcv.imrescale(img, rescale_factor) for img in video] for video in videos] max_height = int(max(vid[0].shape[0] for vid in videos) * 1.4) min_width = min(vid[0].shape[1] for vid in videos) horizontal_gap = min_width // 10 img_scale = _get_adaptive_scale((max_height, min_width)) texts = [] text_positions = [] start_x = 0 for i, vid in enumerate(videos): for j, img in enumerate(vid): pad_height = (max_height - img.shape[0]) // 2 pad_width = horizontal_gap // 2 # make border videos[i][j] = cv2.copyMakeBorder( img, pad_height, max_height - img.shape[0] - pad_height + int(img_scale * 30 * 2), pad_width, pad_width, cv2.BORDER_CONSTANT, value=(255, 255, 255)) texts.append(f'{names[i]}\n{ori_shapes[i]}') text_positions.append( [start_x + img.shape[1] // 2 + pad_width, max_height]) start_x += img.shape[1] + horizontal_gap out_frames = [] for i in range(len(videos[0])): imgs = [vid[i] for vid in videos] display_img = np.concatenate(imgs, axis=1) vis.set_image(display_img) img_scale = _get_adaptive_scale(display_img.shape[:2]) vis.draw_texts( texts, positions=np.array(text_positions), font_sizes=img_scale * 7, colors='black', horizontal_alignments='center', font_families='monospace') out_frames.append(vis.get_image()) return out_frames
Concat list of pictures into a single big picture, align height here.
make_grid
python
open-mmlab/mmaction2
tools/visualizations/browse_dataset.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/visualizations/browse_dataset.py
Apache-2.0
def cuhk17_top1(): """Assign label for each proposal with the cuhk17 result, which is the #2 entry in http://activity-net.org/challenges/2017/evaluation.html.""" if not osp.exists('cuhk_anet17_pred.json'): os.system('wget https://download.openmmlab.com/' 'mmaction/localization/cuhk_anet17_pred.json') proposal = mmengine.load(args.proposal) results = proposal['results'] cuhk_pred = mmengine.load('cuhk_anet17_pred.json')['results'] def get_topk(preds, k): preds.sort(key=lambda x: x['score']) return preds[-k:] for k, v in results.items(): action_pred = cuhk_pred[k] top1 = get_topk(action_pred, 1) top1_label = top1[0]['label'] new_value = [] for item in v: x = dict(label=top1_label) x.update(item) new_value.append(x) results[k] = new_value proposal['results'] = results mmengine.dump(proposal, args.det_output)
Assign label for each proposal with the cuhk17 result, which is the #2 entry in http://activity-net.org/challenges/2017/evaluation.html.
cuhk17_top1
python
open-mmlab/mmaction2
tools/analysis_tools/report_map.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/analysis_tools/report_map.py
Apache-2.0
def __call__(self, results): """Select frames to verify. Select the first, last and three random frames, Required key is "total_frames", added or modified key is "frame_inds". Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ assert results['total_frames'] > 0 # first and last frames results['frame_inds'] = np.array([0, results['total_frames'] - 1]) # choose 3 random frames if results['total_frames'] > 2: results['frame_inds'] = np.concatenate([ results['frame_inds'], np.random.randint(1, results['total_frames'] - 1, 3) ]) return results
Select frames to verify. Select the first, last and three random frames, Required key is "total_frames", added or modified key is "frame_inds". Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline.
__call__
python
open-mmlab/mmaction2
tools/analysis_tools/check_videos.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/analysis_tools/check_videos.py
Apache-2.0
def resize_videos(vid_item): """Generate resized video cache. Args: vid_item (list): Video item containing video full path, video relative path. Returns: bool: Whether generate video cache successfully. """ full_path, vid_path = vid_item # Change the output video extension to .mp4 if '--to-mp4' flag is set if args.to_mp4: vid_path = vid_path.split('.') assert len(vid_path) == 2, \ f"Video path '{vid_path}' contain more than one dot" vid_path = vid_path[0] + '.mp4' out_full_path = osp.join(args.out_dir, vid_path) dir_name = osp.dirname(vid_path) out_dir = osp.join(args.out_dir, dir_name) if not osp.exists(out_dir): os.makedirs(out_dir) result = os.popen( f'ffprobe -hide_banner -loglevel error -select_streams v:0 -show_entries stream=width,height -of csv=p=0 {full_path}' # noqa:E501 ) w, h = [int(d) for d in result.readline().rstrip().split(',')] if w > h: cmd = (f'ffmpeg -hide_banner -loglevel error -i {full_path} ' f'-vf {"mpdecimate," if args.remove_dup else ""}' f'scale=-2:{args.scale} ' f'{"-vsync vfr" if args.remove_dup else ""} ' f'-c:v libx264 {"-g 16" if args.dense else ""} ' f'-an {out_full_path} -y') else: cmd = (f'ffmpeg -hide_banner -loglevel error -i {full_path} ' f'-vf {"mpdecimate," if args.remove_dup else ""}' f'scale={args.scale}:-2 ' f'{"-vsync vfr" if args.remove_dup else ""} ' f'-c:v libx264 {"-g 16" if args.dense else ""} ' f'-an {out_full_path} -y') os.popen(cmd) print(f'{vid_path} done') sys.stdout.flush() return True
Generate resized video cache. Args: vid_item (list): Video item containing video full path, video relative path. Returns: bool: Whether generate video cache successfully.
resize_videos
python
open-mmlab/mmaction2
tools/data/resize_videos.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/resize_videos.py
Apache-2.0
def count_files(directory, prefix_list): """Count file number with a given directory and prefix. Args: directory (str): Data directory to be search. prefix_list (list): List or prefix. Returns: list (int): Number list of the file with the prefix. """ lst = os.listdir(directory) cnt_list = [len(fnmatch.filter(lst, x + '*')) for x in prefix_list] return cnt_list
Count file number with a given directory and prefix. Args: directory (str): Data directory to be search. prefix_list (list): List or prefix. Returns: list (int): Number list of the file with the prefix.
parse_directory.count_files
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def parse_directory(path, rgb_prefix='img_', flow_x_prefix='flow_x_', flow_y_prefix='flow_y_', level=1): """Parse directories holding extracted frames from standard benchmarks. Args: path (str): Directory path to parse frames. rgb_prefix (str): Prefix of generated rgb frames name. default: 'img_'. flow_x_prefix (str): Prefix of generated flow x name. default: `flow_x_`. flow_y_prefix (str): Prefix of generated flow y name. default: `flow_y_`. level (int): Directory level for glob searching. Options are 1 and 2. default: 1. Returns: dict: frame info dict with video id as key and tuple(path(str), rgb_num(int), flow_x_num(int)) as value. """ print(f'parse frames under directory {path}') if level == 1: # Only search for one-level directory def locate_directory(x): return osp.basename(x) frame_dirs = glob.glob(osp.join(path, '*')) elif level == 2: # search for two-level directory def locate_directory(x): return osp.join(osp.basename(osp.dirname(x)), osp.basename(x)) frame_dirs = glob.glob(osp.join(path, '*', '*')) else: raise ValueError('level can be only 1 or 2') def count_files(directory, prefix_list): """Count file number with a given directory and prefix. Args: directory (str): Data directory to be search. prefix_list (list): List or prefix. Returns: list (int): Number list of the file with the prefix. """ lst = os.listdir(directory) cnt_list = [len(fnmatch.filter(lst, x + '*')) for x in prefix_list] return cnt_list # check RGB frame_dict = {} for i, frame_dir in enumerate(frame_dirs): total_num = count_files(frame_dir, (rgb_prefix, flow_x_prefix, flow_y_prefix)) dir_name = locate_directory(frame_dir) num_x = total_num[1] num_y = total_num[2] if num_x != num_y: raise ValueError(f'x and y direction have different number ' f'of flow images in video directory: {frame_dir}') if i % 200 == 0: print(f'{i} videos parsed') frame_dict[dir_name] = (frame_dir, total_num[0], num_x) print('frame directory analysis done') return frame_dict
Parse directories holding extracted frames from standard benchmarks. Args: path (str): Directory path to parse frames. rgb_prefix (str): Prefix of generated rgb frames name. default: 'img_'. flow_x_prefix (str): Prefix of generated flow x name. default: `flow_x_`. flow_y_prefix (str): Prefix of generated flow y name. default: `flow_y_`. level (int): Directory level for glob searching. Options are 1 and 2. default: 1. Returns: dict: frame info dict with video id as key and tuple(path(str), rgb_num(int), flow_x_num(int)) as value.
parse_directory
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def line_to_map(line): """A function to map line string to video and label. Args: line (str): A long directory path, which is a text path. Returns: tuple[str, str]: (video, label), video is the video id, label is the video label. """ items = line.strip().split() video = osp.splitext(items[0])[0] if level == 1: video = osp.basename(video) label = items[0] elif level == 2: video = osp.join( osp.basename(osp.dirname(video)), osp.basename(video)) label = class_mapping[osp.dirname(items[0])] return video, label
A function to map line string to video and label. Args: line (str): A long directory path, which is a text path. Returns: tuple[str, str]: (video, label), video is the video id, label is the video label.
parse_ucf101_splits.line_to_map
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def parse_ucf101_splits(level): """Parse UCF-101 dataset into "train", "val", "test" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of UCF-101. """ class_index_file = 'data/ucf101/annotations/classInd.txt' train_file_template = 'data/ucf101/annotations/trainlist{:02d}.txt' test_file_template = 'data/ucf101/annotations/testlist{:02d}.txt' with open(class_index_file, 'r') as fin: class_index = [x.strip().split() for x in fin] class_mapping = {x[1]: int(x[0]) - 1 for x in class_index} def line_to_map(line): """A function to map line string to video and label. Args: line (str): A long directory path, which is a text path. Returns: tuple[str, str]: (video, label), video is the video id, label is the video label. """ items = line.strip().split() video = osp.splitext(items[0])[0] if level == 1: video = osp.basename(video) label = items[0] elif level == 2: video = osp.join( osp.basename(osp.dirname(video)), osp.basename(video)) label = class_mapping[osp.dirname(items[0])] return video, label splits = [] for i in range(1, 4): with open(train_file_template.format(i), 'r') as fin: train_list = [line_to_map(x) for x in fin] with open(test_file_template.format(i), 'r') as fin: test_list = [line_to_map(x) for x in fin] splits.append((train_list, test_list)) return splits
Parse UCF-101 dataset into "train", "val", "test" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of UCF-101.
parse_ucf101_splits
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def parse_jester_splits(level): """Parse Jester into "train", "val" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of Jester dataset. """ # Read the annotations class_index_file = 'data/jester/annotations/jester-v1-labels.csv' train_file = 'data/jester/annotations/jester-v1-train.csv' val_file = 'data/jester/annotations/jester-v1-validation.csv' test_file = 'data/jester/annotations/jester-v1-test.csv' with open(class_index_file, 'r') as fin: class_index = [x.strip() for x in fin] class_mapping = {class_index[idx]: idx for idx in range(len(class_index))} def line_to_map(line, test_mode=False): items = line.strip().split(';') video = items[0] if level == 1: video = osp.basename(video) elif level == 2: video = osp.join( osp.basename(osp.dirname(video)), osp.basename(video)) if test_mode: return video label = class_mapping[items[1]] return video, label with open(train_file, 'r') as fin: train_list = [line_to_map(x) for x in fin] with open(val_file, 'r') as fin: val_list = [line_to_map(x) for x in fin] with open(test_file, 'r') as fin: test_list = [line_to_map(x, test_mode=True) for x in fin] splits = ((train_list, val_list, test_list), ) return splits
Parse Jester into "train", "val" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of Jester dataset.
parse_jester_splits
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def parse_sthv1_splits(level): """Parse Something-Something dataset V1 into "train", "val" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of Something-Something V1 dataset. """ # Read the annotations # yapf: disable class_index_file = 'data/sthv1/annotations/something-something-v1-labels.csv' # noqa # yapf: enable train_file = 'data/sthv1/annotations/something-something-v1-train.csv' val_file = 'data/sthv1/annotations/something-something-v1-validation.csv' test_file = 'data/sthv1/annotations/something-something-v1-test.csv' with open(class_index_file, 'r') as fin: class_index = [x.strip() for x in fin] class_mapping = {class_index[idx]: idx for idx in range(len(class_index))} def line_to_map(line, test_mode=False): items = line.strip().split(';') video = items[0] if level == 1: video = osp.basename(video) elif level == 2: video = osp.join( osp.basename(osp.dirname(video)), osp.basename(video)) if test_mode: return video label = class_mapping[items[1]] return video, label with open(train_file, 'r') as fin: train_list = [line_to_map(x) for x in fin] with open(val_file, 'r') as fin: val_list = [line_to_map(x) for x in fin] with open(test_file, 'r') as fin: test_list = [line_to_map(x, test_mode=True) for x in fin] splits = ((train_list, val_list, test_list), ) return splits
Parse Something-Something dataset V1 into "train", "val" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of Something-Something V1 dataset.
parse_sthv1_splits
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def parse_sthv2_splits(level): """Parse Something-Something dataset V2 into "train", "val" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of Something-Something V2 dataset. """ # Read the annotations # yapf: disable class_index_file = 'data/sthv2/annotations/something-something-v2-labels.json' # noqa # yapf: enable train_file = 'data/sthv2/annotations/something-something-v2-train.json' val_file = 'data/sthv2/annotations/something-something-v2-validation.json' test_file = 'data/sthv2/annotations/something-something-v2-test.json' with open(class_index_file, 'r') as fin: class_mapping = json.loads(fin.read()) def line_to_map(item, test_mode=False): video = item['id'] if level == 1: video = osp.basename(video) elif level == 2: video = osp.join( osp.basename(osp.dirname(video)), osp.basename(video)) if test_mode: return video template = item['template'].replace('[', '') template = template.replace(']', '') label = int(class_mapping[template]) return video, label with open(train_file, 'r') as fin: items = json.loads(fin.read()) train_list = [line_to_map(item) for item in items] with open(val_file, 'r') as fin: items = json.loads(fin.read()) val_list = [line_to_map(item) for item in items] with open(test_file, 'r') as fin: items = json.loads(fin.read()) test_list = [line_to_map(item, test_mode=True) for item in items] splits = ((train_list, val_list, test_list), ) return splits
Parse Something-Something dataset V2 into "train", "val" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of Something-Something V2 dataset.
parse_sthv2_splits
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def parse_mmit_splits(): """Parse Multi-Moments in Time dataset into "train", "val" splits. Returns: list: "train", "val", "test" splits of Multi-Moments in Time. """ # Read the annotations def line_to_map(x): video = osp.splitext(x[0])[0] labels = [int(digit) for digit in x[1:]] return video, labels csv_reader = csv.reader(open('data/mmit/annotations/trainingSet.csv')) train_list = [line_to_map(x) for x in csv_reader] csv_reader = csv.reader(open('data/mmit/annotations/validationSet.csv')) val_list = [line_to_map(x) for x in csv_reader] test_list = val_list # not test for mit splits = ((train_list, val_list, test_list), ) return splits
Parse Multi-Moments in Time dataset into "train", "val" splits. Returns: list: "train", "val", "test" splits of Multi-Moments in Time.
parse_mmit_splits
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def convert_label(s, keep_whitespaces=False): """Convert label name to a formal string. Remove redundant '"' and convert whitespace to '_'. Args: s (str): String to be converted. keep_whitespaces(bool): Whether to keep whitespace. Default: False. Returns: str: Converted string. """ if not keep_whitespaces: return s.replace('"', '').replace(' ', '_') return s.replace('"', '')
Convert label name to a formal string. Remove redundant '"' and convert whitespace to '_'. Args: s (str): String to be converted. keep_whitespaces(bool): Whether to keep whitespace. Default: False. Returns: str: Converted string.
parse_kinetics_splits.convert_label
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def line_to_map(x, test=False): """A function to map line string to video and label. Args: x (str): A single line from Kinetics csv file. test (bool): Indicate whether the line comes from test annotation file. Returns: tuple[str, str]: (video, label), video is the video id, label is the video label. """ if test: # video = f'{x[0]}_{int(x[1]):06d}_{int(x[2]):06d}' video = f'{x[1]}_{int(float(x[2])):06d}_{int(float(x[3])):06d}' label = -1 # label unknown return video, label video = f'{x[1]}_{int(float(x[2])):06d}_{int(float(x[3])):06d}' if level == 2: video = f'{convert_label(x[0])}/{video}' else: assert level == 1 label = class_mapping[convert_label(x[0])] return video, label
A function to map line string to video and label. Args: x (str): A single line from Kinetics csv file. test (bool): Indicate whether the line comes from test annotation file. Returns: tuple[str, str]: (video, label), video is the video id, label is the video label.
parse_kinetics_splits.line_to_map
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def parse_kinetics_splits(level, dataset): """Parse Kinetics dataset into "train", "val", "test" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. dataset (str): Denotes the version of Kinetics that needs to be parsed, choices are "kinetics400", "kinetics600" and "kinetics700". Returns: list: "train", "val", "test" splits of Kinetics. """ def convert_label(s, keep_whitespaces=False): """Convert label name to a formal string. Remove redundant '"' and convert whitespace to '_'. Args: s (str): String to be converted. keep_whitespaces(bool): Whether to keep whitespace. Default: False. Returns: str: Converted string. """ if not keep_whitespaces: return s.replace('"', '').replace(' ', '_') return s.replace('"', '') def line_to_map(x, test=False): """A function to map line string to video and label. Args: x (str): A single line from Kinetics csv file. test (bool): Indicate whether the line comes from test annotation file. Returns: tuple[str, str]: (video, label), video is the video id, label is the video label. """ if test: # video = f'{x[0]}_{int(x[1]):06d}_{int(x[2]):06d}' video = f'{x[1]}_{int(float(x[2])):06d}_{int(float(x[3])):06d}' label = -1 # label unknown return video, label video = f'{x[1]}_{int(float(x[2])):06d}_{int(float(x[3])):06d}' if level == 2: video = f'{convert_label(x[0])}/{video}' else: assert level == 1 label = class_mapping[convert_label(x[0])] return video, label train_file = f'data/{dataset}/annotations/kinetics_train.csv' val_file = f'data/{dataset}/annotations/kinetics_val.csv' test_file = f'data/{dataset}/annotations/kinetics_test.csv' csv_reader = csv.reader(open(train_file)) # skip the first line next(csv_reader) labels_sorted = sorted({convert_label(row[0]) for row in csv_reader}) class_mapping = {label: i for i, label in enumerate(labels_sorted)} csv_reader = csv.reader(open(train_file)) next(csv_reader) train_list = [line_to_map(x) for x in csv_reader] csv_reader = csv.reader(open(val_file)) next(csv_reader) val_list = [line_to_map(x) for x in csv_reader] csv_reader = csv.reader(open(test_file)) next(csv_reader) test_list = [line_to_map(x, test=True) for x in csv_reader] splits = ((train_list, val_list, test_list), ) return splits
Parse Kinetics dataset into "train", "val", "test" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. dataset (str): Denotes the version of Kinetics that needs to be parsed, choices are "kinetics400", "kinetics600" and "kinetics700". Returns: list: "train", "val", "test" splits of Kinetics.
parse_kinetics_splits
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0