code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def parse_mit_splits(): """Parse Moments in Time dataset into "train", "val" splits. Returns: list: "train", "val", "test" splits of Moments in Time. """ # Read the annotations class_mapping = {} with open('data/mit/annotations/moments_categories.txt') as f_cat: for line in f_cat.readlines(): cat, digit = line.rstrip().split(',') class_mapping[cat] = int(digit) def line_to_map(x): video = osp.splitext(x[0])[0] label = class_mapping[osp.dirname(x[0])] return video, label csv_reader = csv.reader(open('data/mit/annotations/trainingSet.csv')) train_list = [line_to_map(x) for x in csv_reader] csv_reader = csv.reader(open('data/mit/annotations/validationSet.csv')) val_list = [line_to_map(x) for x in csv_reader] test_list = val_list # no test for mit splits = ((train_list, val_list, test_list), ) return splits
Parse Moments in Time dataset into "train", "val" splits. Returns: list: "train", "val", "test" splits of Moments in Time.
parse_mit_splits
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def generate_class_index_file(): """This function will generate a `ClassInd.txt` for HMDB51 in a format like UCF101, where class id starts with 1.""" video_path = 'data/hmdb51/videos' annotation_dir = 'data/hmdb51/annotations' class_list = sorted(os.listdir(video_path)) class_dict = dict() if not osp.exists(class_index_file): with open(class_index_file, 'w') as f: content = [] for class_id, class_name in enumerate(class_list): # like `ClassInd.txt` in UCF-101, # the class_id begins with 1 class_dict[class_name] = class_id + 1 cur_line = ' '.join([str(class_id + 1), class_name]) content.append(cur_line) content = '\n'.join(content) f.write(content) else: print(f'{class_index_file} has been generated before.') class_dict = { class_name: class_id + 1 for class_id, class_name in enumerate(class_list) } for i in range(1, 4): train_content = [] test_content = [] for class_name in class_dict: filename = class_name + f'_test_split{i}.txt' filename_path = osp.join(annotation_dir, filename) with open(filename_path, 'r') as fin: for line in fin: video_info = line.strip().split() video_name = video_info[0] if video_info[1] == '1': target_line = ' '.join([ osp.join(class_name, video_name), str(class_dict[class_name]) ]) train_content.append(target_line) elif video_info[1] == '2': target_line = ' '.join([ osp.join(class_name, video_name), str(class_dict[class_name]) ]) test_content.append(target_line) train_content = '\n'.join(train_content) test_content = '\n'.join(test_content) with open(train_file_template.format(i), 'w') as fout: fout.write(train_content) with open(test_file_template.format(i), 'w') as fout: fout.write(test_content)
This function will generate a `ClassInd.txt` for HMDB51 in a format like UCF101, where class id starts with 1.
parse_hmdb51_split.generate_class_index_file
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def parse_hmdb51_split(level): train_file_template = 'data/hmdb51/annotations/trainlist{:02d}.txt' test_file_template = 'data/hmdb51/annotations/testlist{:02d}.txt' class_index_file = 'data/hmdb51/annotations/classInd.txt' def generate_class_index_file(): """This function will generate a `ClassInd.txt` for HMDB51 in a format like UCF101, where class id starts with 1.""" video_path = 'data/hmdb51/videos' annotation_dir = 'data/hmdb51/annotations' class_list = sorted(os.listdir(video_path)) class_dict = dict() if not osp.exists(class_index_file): with open(class_index_file, 'w') as f: content = [] for class_id, class_name in enumerate(class_list): # like `ClassInd.txt` in UCF-101, # the class_id begins with 1 class_dict[class_name] = class_id + 1 cur_line = ' '.join([str(class_id + 1), class_name]) content.append(cur_line) content = '\n'.join(content) f.write(content) else: print(f'{class_index_file} has been generated before.') class_dict = { class_name: class_id + 1 for class_id, class_name in enumerate(class_list) } for i in range(1, 4): train_content = [] test_content = [] for class_name in class_dict: filename = class_name + f'_test_split{i}.txt' filename_path = osp.join(annotation_dir, filename) with open(filename_path, 'r') as fin: for line in fin: video_info = line.strip().split() video_name = video_info[0] if video_info[1] == '1': target_line = ' '.join([ osp.join(class_name, video_name), str(class_dict[class_name]) ]) train_content.append(target_line) elif video_info[1] == '2': target_line = ' '.join([ osp.join(class_name, video_name), str(class_dict[class_name]) ]) test_content.append(target_line) train_content = '\n'.join(train_content) test_content = '\n'.join(test_content) with open(train_file_template.format(i), 'w') as fout: fout.write(train_content) with open(test_file_template.format(i), 'w') as fout: fout.write(test_content) generate_class_index_file() with open(class_index_file, 'r') as fin: class_index = [x.strip().split() for x in fin] class_mapping = {x[1]: int(x[0]) - 1 for x in class_index} def line_to_map(line): items = line.strip().split() video = osp.splitext(items[0])[0] if level == 1: video = osp.basename(video) elif level == 2: video = osp.join( osp.basename(osp.dirname(video)), osp.basename(video)) label = class_mapping[osp.dirname(items[0])] return video, label splits = [] for i in range(1, 4): with open(train_file_template.format(i), 'r') as fin: train_list = [line_to_map(x) for x in fin] with open(test_file_template.format(i), 'r') as fin: test_list = [line_to_map(x) for x in fin] splits.append((train_list, test_list)) return splits
This function will generate a `ClassInd.txt` for HMDB51 in a format like UCF101, where class id starts with 1.
parse_hmdb51_split
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def process_norm_proposal_file(norm_proposal_file, frame_dict): """Process the normalized proposal file and denormalize it. Args: norm_proposal_file (str): Name of normalized proposal file. frame_dict (dict): Information of frame folders. """ proposal_file = norm_proposal_file.replace('normalized_', '') norm_proposals = load_localize_proposal_file(norm_proposal_file) processed_proposal_list = [] for idx, norm_proposal in enumerate(norm_proposals): video_id = norm_proposal[0] frame_info = frame_dict[video_id] num_frames = frame_info[1] frame_path = osp.basename(frame_info[0]) gt = [[ int(x[0]), int(float(x[1]) * num_frames), int(float(x[2]) * num_frames) ] for x in norm_proposal[2]] proposal = [[ int(x[0]), float(x[1]), float(x[2]), int(float(x[3]) * num_frames), int(float(x[4]) * num_frames) ] for x in norm_proposal[3]] gt_dump = '\n'.join(['{} {} {}'.format(*x) for x in gt]) gt_dump += '\n' if len(gt) else '' proposal_dump = '\n'.join( ['{} {:.04f} {:.04f} {} {}'.format(*x) for x in proposal]) proposal_dump += '\n' if len(proposal) else '' processed_proposal_list.append( f'# {idx}\n{frame_path}\n{num_frames}\n1' f'\n{len(gt)}\n{gt_dump}{len(proposal)}\n{proposal_dump}') with open(proposal_file, 'w') as f: f.writelines(processed_proposal_list)
Process the normalized proposal file and denormalize it. Args: norm_proposal_file (str): Name of normalized proposal file. frame_dict (dict): Information of frame folders.
process_norm_proposal_file
python
open-mmlab/mmaction2
tools/data/denormalize_proposal_file.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/denormalize_proposal_file.py
Apache-2.0
def lines2dictlist(lines, format): """Convert lines in 'txt' format to dictionaries in 'json' format. Currently support single-label and multi-label. Example of a single-label rawframes annotation txt file: .. code-block:: txt (frame_dir num_frames label) some/directory-1 163 1 some/directory-2 122 1 some/directory-3 258 2 Example of a multi-label rawframes annotation txt file: .. code-block:: txt (frame_dir num_frames label1 label2 ...) some/directory-1 163 1 3 5 some/directory-2 122 1 2 some/directory-3 258 2 Example of a single-label videos annotation txt file: .. code-block:: txt (filename label) some/path/000.mp4 1 some/path/001.mp4 1 some/path/002.mp4 2 Example of a multi-label videos annotation txt file: .. code-block:: txt (filename label1 label2 ...) some/path/000.mp4 1 3 5 some/path/001.mp4 1 4 8 some/path/002.mp4 2 4 9 Args: lines (list): List of lines in 'txt' label format. format (str): Data format, choices are 'rawframes' and 'videos'. Returns: list[dict]: For rawframes format, each dict has keys: frame_dir, total_frames, label; for videos format, each diction has keys: filename, label. """ lines = [x.split() for x in lines] if format == 'rawframes': data = [ dict( frame_dir=line[0], total_frames=int(line[1]), label=[int(x) for x in line[2:]]) for line in lines ] elif format == 'videos': data = [ dict(filename=line[0], label=[int(x) for x in line[1:]]) for line in lines ] return data
Convert lines in 'txt' format to dictionaries in 'json' format. Currently support single-label and multi-label. Example of a single-label rawframes annotation txt file: .. code-block:: txt (frame_dir num_frames label) some/directory-1 163 1 some/directory-2 122 1 some/directory-3 258 2 Example of a multi-label rawframes annotation txt file: .. code-block:: txt (frame_dir num_frames label1 label2 ...) some/directory-1 163 1 3 5 some/directory-2 122 1 2 some/directory-3 258 2 Example of a single-label videos annotation txt file: .. code-block:: txt (filename label) some/path/000.mp4 1 some/path/001.mp4 1 some/path/002.mp4 2 Example of a multi-label videos annotation txt file: .. code-block:: txt (filename label1 label2 ...) some/path/000.mp4 1 3 5 some/path/001.mp4 1 4 8 some/path/002.mp4 2 4 9 Args: lines (list): List of lines in 'txt' label format. format (str): Data format, choices are 'rawframes' and 'videos'. Returns: list[dict]: For rawframes format, each dict has keys: frame_dir, total_frames, label; for videos format, each diction has keys: filename, label.
lines2dictlist
python
open-mmlab/mmaction2
tools/data/anno_txt2json.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/anno_txt2json.py
Apache-2.0
def load_wav(self, path): """Load an audio file into numpy array.""" return librosa.core.load(path, sr=self.sample_rate)[0]
Load an audio file into numpy array.
load_wav
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def audio_normalize(samples, desired_rms=0.1, eps=1e-4): """RMS normalize the audio data.""" rms = np.maximum(eps, np.sqrt(np.mean(samples**2))) samples = samples * (desired_rms / rms) return samples
RMS normalize the audio data.
audio_normalize
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def generate_spectrogram_magphase(self, audio, with_phase=False): """Separate a complex-valued spectrogram D into its magnitude (S) and phase (P) components, so that D = S * P. Args: audio (np.ndarray): The input audio signal. with_phase (bool): Determines whether to output the phase components. Default: False. Returns: np.ndarray: magnitude and phase component of the complex-valued spectrogram. """ spectro = librosa.core.stft( audio, hop_length=self.get_hop_size(), n_fft=self.fft_size, center=True) spectro_mag, spectro_phase = librosa.core.magphase(spectro) spectro_mag = np.expand_dims(spectro_mag, axis=0) if with_phase: spectro_phase = np.expand_dims(np.angle(spectro_phase), axis=0) return spectro_mag, spectro_phase return spectro_mag
Separate a complex-valued spectrogram D into its magnitude (S) and phase (P) components, so that D = S * P. Args: audio (np.ndarray): The input audio signal. with_phase (bool): Determines whether to output the phase components. Default: False. Returns: np.ndarray: magnitude and phase component of the complex-valued spectrogram.
generate_spectrogram_magphase
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def save_wav(self, wav, path): """Save the wav to disk.""" # 32767 = (2 ^ 15 - 1) maximum of int16 wav *= 32767 / max(0.01, np.max(np.abs(wav))) wavfile.write(path, self.sample_rate, wav.astype(np.int16))
Save the wav to disk.
save_wav
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def trim(self, quantized): """Trim the audio wavfile.""" start, end = self.start_and_end_indices(quantized, self.silence_threshold) return quantized[start:end]
Trim the audio wavfile.
trim
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def adjust_time_resolution(self, quantized, mel): """Adjust time resolution by repeating features. Args: quantized (np.ndarray): (T,) mel (np.ndarray): (N, D) Returns: tuple: Tuple of (T,) and (T, D) """ assert quantized.ndim == 1 assert mel.ndim == 2 upsample_factor = quantized.size // mel.shape[0] mel = np.repeat(mel, upsample_factor, axis=0) n_pad = quantized.size - mel.shape[0] if n_pad != 0: assert n_pad > 0 mel = np.pad( mel, [(0, n_pad), (0, 0)], mode='constant', constant_values=0) # trim start, end = self.start_and_end_indices(quantized, self.silence_threshold) return quantized[start:end], mel[start:end, :]
Adjust time resolution by repeating features. Args: quantized (np.ndarray): (T,) mel (np.ndarray): (N, D) Returns: tuple: Tuple of (T,) and (T, D)
adjust_time_resolution
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def start_and_end_indices(quantized, silence_threshold=2): """Trim the audio file when reaches the silence threshold.""" for start in range(quantized.size): if abs(quantized[start] - 127) > silence_threshold: break for end in range(quantized.size - 1, 1, -1): if abs(quantized[end] - 127) > silence_threshold: break assert abs(quantized[start] - 127) > silence_threshold assert abs(quantized[end] - 127) > silence_threshold return start, end
Trim the audio file when reaches the silence threshold.
start_and_end_indices
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def melspectrogram(self, y): """Generate the melspectrogram.""" D = self._lws_processor().stft(y).T S = self._amp_to_db(self._linear_to_mel(np.abs(D))) - self.ref_level_db if not self.allow_clipping_in_normalization: assert S.max() <= 0 and S.min() - self.min_level_db >= 0 return self._normalize(S)
Generate the melspectrogram.
melspectrogram
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def get_hop_size(self): """Calculate the hop size.""" hop_size = self.hop_size if hop_size is None: assert self.frame_shift_ms is not None hop_size = int(self.frame_shift_ms / 1000 * self.sample_rate) return hop_size
Calculate the hop size.
get_hop_size
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def _lws_processor(self): """Perform local weighted sum. Please refer to <https://pypi.org/project/lws/1.2.6/>`_. """ return lws.lws(self.fft_size, self.get_hop_size(), mode='speech')
Perform local weighted sum. Please refer to <https://pypi.org/project/lws/1.2.6/>`_.
_lws_processor
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def lws_num_frames(length, fsize, fshift): """Compute number of time frames of lws spectrogram. Please refer to <https://pypi.org/project/lws/1.2.6/>`_. """ pad = (fsize - fshift) if length % fshift == 0: M = (length + pad * 2 - fsize) // fshift + 1 else: M = (length + pad * 2 - fsize) // fshift + 2 return M
Compute number of time frames of lws spectrogram. Please refer to <https://pypi.org/project/lws/1.2.6/>`_.
lws_num_frames
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def lws_pad_lr(self, x, fsize, fshift): """Compute left and right padding lws internally uses. Please refer to <https://pypi.org/project/lws/1.2.6/>`_. """ M = self.lws_num_frames(len(x), fsize, fshift) pad = (fsize - fshift) T = len(x) + 2 * pad r = (M - 1) * fshift + fsize - T return pad, pad + r
Compute left and right padding lws internally uses. Please refer to <https://pypi.org/project/lws/1.2.6/>`_.
lws_pad_lr
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def _linear_to_mel(self, spectrogram): """Warp linear scale spectrograms to the mel scale. Please refer to <https://github.com/r9y9/deepvoice3_pytorch>`_ """ global _mel_basis _mel_basis = self._build_mel_basis() return np.dot(_mel_basis, spectrogram)
Warp linear scale spectrograms to the mel scale. Please refer to <https://github.com/r9y9/deepvoice3_pytorch>`_
_linear_to_mel
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def _build_mel_basis(self): """Build mel filters. Please refer to <https://github.com/r9y9/deepvoice3_pytorch>`_ """ assert self.fmax <= self.sample_rate // 2 return librosa.filters.mel( self.sample_rate, self.fft_size, fmin=self.fmin, fmax=self.fmax, n_mels=self.num_mels)
Build mel filters. Please refer to <https://github.com/r9y9/deepvoice3_pytorch>`_
_build_mel_basis
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def build_list(split): """Build RGB and Flow file list with a given split. Args: split (list): Split to be generate file list. Returns: tuple[list, list]: (rgb_list, flow_list), rgb_list is the generated file list for rgb, flow_list is the generated file list for flow. """ rgb_list, flow_list = list(), list() for item in split: if item[0] not in frame_info: continue if frame_info[item[0]][1] > 0: # rawframes rgb_cnt = frame_info[item[0]][1] flow_cnt = frame_info[item[0]][2] if isinstance(item[1], int): rgb_list.append(f'{item[0]} {rgb_cnt} {item[1]}\n') flow_list.append(f'{item[0]} {flow_cnt} {item[1]}\n') elif isinstance(item[1], list): # only for multi-label datasets like mmit rgb_list.append(f'{item[0]} {rgb_cnt} ' + ' '.join([str(digit) for digit in item[1]]) + '\n') rgb_list.append(f'{item[0]} {flow_cnt} ' + ' '.join([str(digit) for digit in item[1]]) + '\n') else: raise ValueError( 'frame_info should be ' + '[`video`(str), `label`(int)|`labels(list[int])`') else: # videos if isinstance(item[1], int): rgb_list.append(f'{frame_info[item[0]][0]} {item[1]}\n') flow_list.append(f'{frame_info[item[0]][0]} {item[1]}\n') elif isinstance(item[1], list): # only for multi-label datasets like mmit rgb_list.append(f'{frame_info[item[0]][0]} ' + ' '.join([str(digit) for digit in item[1]]) + '\n') flow_list.append( f'{frame_info[item[0]][0]} ' + ' '.join([str(digit) for digit in item[1]]) + '\n') else: raise ValueError( 'frame_info should be ' + '[`video`(str), `label`(int)|`labels(list[int])`') if shuffle: random.shuffle(rgb_list) random.shuffle(flow_list) return rgb_list, flow_list
Build RGB and Flow file list with a given split. Args: split (list): Split to be generate file list. Returns: tuple[list, list]: (rgb_list, flow_list), rgb_list is the generated file list for rgb, flow_list is the generated file list for flow.
build_file_list.build_list
python
open-mmlab/mmaction2
tools/data/build_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_file_list.py
Apache-2.0
def build_file_list(splits, frame_info, shuffle=False): """Build file list for a certain data split. Args: splits (tuple): Data split to generate file list. frame_info (dict): Dict mapping from frames to path. e.g., 'Skiing/v_Skiing_g18_c02': ('data/ucf101/rawframes/Skiing/v_Skiing_g18_c02', 0, 0). # noqa: E501 shuffle (bool): Whether to shuffle the file list. Returns: tuple: RGB file list for training and testing, together with Flow file list for training and testing. """ def build_list(split): """Build RGB and Flow file list with a given split. Args: split (list): Split to be generate file list. Returns: tuple[list, list]: (rgb_list, flow_list), rgb_list is the generated file list for rgb, flow_list is the generated file list for flow. """ rgb_list, flow_list = list(), list() for item in split: if item[0] not in frame_info: continue if frame_info[item[0]][1] > 0: # rawframes rgb_cnt = frame_info[item[0]][1] flow_cnt = frame_info[item[0]][2] if isinstance(item[1], int): rgb_list.append(f'{item[0]} {rgb_cnt} {item[1]}\n') flow_list.append(f'{item[0]} {flow_cnt} {item[1]}\n') elif isinstance(item[1], list): # only for multi-label datasets like mmit rgb_list.append(f'{item[0]} {rgb_cnt} ' + ' '.join([str(digit) for digit in item[1]]) + '\n') rgb_list.append(f'{item[0]} {flow_cnt} ' + ' '.join([str(digit) for digit in item[1]]) + '\n') else: raise ValueError( 'frame_info should be ' + '[`video`(str), `label`(int)|`labels(list[int])`') else: # videos if isinstance(item[1], int): rgb_list.append(f'{frame_info[item[0]][0]} {item[1]}\n') flow_list.append(f'{frame_info[item[0]][0]} {item[1]}\n') elif isinstance(item[1], list): # only for multi-label datasets like mmit rgb_list.append(f'{frame_info[item[0]][0]} ' + ' '.join([str(digit) for digit in item[1]]) + '\n') flow_list.append( f'{frame_info[item[0]][0]} ' + ' '.join([str(digit) for digit in item[1]]) + '\n') else: raise ValueError( 'frame_info should be ' + '[`video`(str), `label`(int)|`labels(list[int])`') if shuffle: random.shuffle(rgb_list) random.shuffle(flow_list) return rgb_list, flow_list train_rgb_list, train_flow_list = build_list(splits[0]) test_rgb_list, test_flow_list = build_list(splits[1]) return (train_rgb_list, test_rgb_list), (train_flow_list, test_flow_list)
Build file list for a certain data split. Args: splits (tuple): Data split to generate file list. frame_info (dict): Dict mapping from frames to path. e.g., 'Skiing/v_Skiing_g18_c02': ('data/ucf101/rawframes/Skiing/v_Skiing_g18_c02', 0, 0). # noqa: E501 shuffle (bool): Whether to shuffle the file list. Returns: tuple: RGB file list for training and testing, together with Flow file list for training and testing.
build_file_list
python
open-mmlab/mmaction2
tools/data/build_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_file_list.py
Apache-2.0
def encode_video(frame_dir_item): """Encode frames to video using ffmpeg. Args: frame_dir_item (list): Rawframe item containing raw frame directory full path, rawframe directory (short) path, rawframe directory id. Returns: bool: Whether synthesize video successfully. """ full_path, frame_dir_path, frame_dir_id = frame_dir_item out_full_path = args.out_dir img_name_tmpl = args.filename_tmpl + '.' + args.in_format img_path = osp.join(full_path, img_name_tmpl) out_vid_name = frame_dir_path + '.' + args.ext out_vid_path = osp.join(out_full_path, out_vid_name) cmd = osp.join( f"ffmpeg -start_number {args.start_idx} -r {args.fps} -i '{img_path}' " f"-vcodec {args.vcodec} '{out_vid_path}'") os.system(cmd) print(f'{frame_dir_id} {frame_dir_path} done') sys.stdout.flush() return True
Encode frames to video using ffmpeg. Args: frame_dir_item (list): Rawframe item containing raw frame directory full path, rawframe directory (short) path, rawframe directory id. Returns: bool: Whether synthesize video successfully.
encode_video
python
open-mmlab/mmaction2
tools/data/build_videos.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_videos.py
Apache-2.0
def extract_frame(vid_item): """Generate optical flow using dense flow. Args: vid_item (list): Video item containing video full path, video (short) path, video id. Returns: bool: Whether generate optical flow successfully. """ full_path, vid_path, vid_id, method, task, report_file = vid_item if '/' in vid_path: act_name = osp.basename(osp.dirname(vid_path)) out_full_path = osp.join(args.out_dir, act_name) else: out_full_path = args.out_dir run_success = -1 if task == 'rgb': if args.use_opencv: # Not like using denseflow, # Use OpenCV will not make a sub directory with the video name try: video_name = osp.splitext(osp.basename(vid_path))[0] out_full_path = osp.join(out_full_path, video_name) vr = mmcv.VideoReader(full_path) for i, vr_frame in enumerate(vr): if vr_frame is not None: w, h, _ = np.shape(vr_frame) if args.new_short == 0: if args.new_width == 0 or args.new_height == 0: # Keep original shape out_img = vr_frame else: out_img = mmcv.imresize( vr_frame, (args.new_width, args.new_height)) else: if min(h, w) == h: new_h = args.new_short new_w = int((new_h / h) * w) else: new_w = args.new_short new_h = int((new_w / w) * h) out_img = mmcv.imresize(vr_frame, (new_h, new_w)) mmcv.imwrite(out_img, f'{out_full_path}/img_{i + 1:05d}.jpg') else: warnings.warn( 'Length inconsistent!' f'Early stop with {i + 1} out of {len(vr)} frames.' ) break run_success = 0 except Exception: run_success = -1 else: if args.new_short == 0: cmd = osp.join( f"denseflow '{full_path}' -b=20 -s=0 -o='{out_full_path}'" f' -nw={args.new_width} -nh={args.new_height} -v') else: cmd = osp.join( f"denseflow '{full_path}' -b=20 -s=0 -o='{out_full_path}'" f' -ns={args.new_short} -v') run_success = os.system(cmd) elif task == 'flow': if args.input_frames: if args.new_short == 0: cmd = osp.join( f"denseflow '{full_path}' -a={method} -b=20 -s=1 -o='{out_full_path}'" # noqa: E501 f' -nw={args.new_width} --nh={args.new_height} -v --if') else: cmd = osp.join( f"denseflow '{full_path}' -a={method} -b=20 -s=1 -o='{out_full_path}'" # noqa: E501 f' -ns={args.new_short} -v --if') else: if args.new_short == 0: cmd = osp.join( f"denseflow '{full_path}' -a={method} -b=20 -s=1 -o='{out_full_path}'" # noqa: E501 f' -nw={args.new_width} --nh={args.new_height} -v') else: cmd = osp.join( f"denseflow '{full_path}' -a={method} -b=20 -s=1 -o='{out_full_path}'" # noqa: E501 f' -ns={args.new_short} -v') run_success = os.system(cmd) else: if args.new_short == 0: cmd_rgb = osp.join( f"denseflow '{full_path}' -b=20 -s=0 -o='{out_full_path}'" f' -nw={args.new_width} -nh={args.new_height} -v') cmd_flow = osp.join( f"denseflow '{full_path}' -a={method} -b=20 -s=1 -o='{out_full_path}'" # noqa: E501 f' -nw={args.new_width} -nh={args.new_height} -v') else: cmd_rgb = osp.join( f"denseflow '{full_path}' -b=20 -s=0 -o='{out_full_path}'" f' -ns={args.new_short} -v') cmd_flow = osp.join( f"denseflow '{full_path}' -a={method} -b=20 -s=1 -o='{out_full_path}'" # noqa: E501 f' -ns={args.new_short} -v') run_success_rgb = os.system(cmd_rgb) run_success_flow = os.system(cmd_flow) if run_success_flow == 0 and run_success_rgb == 0: run_success = 0 if run_success == 0: print(f'{task} {vid_id} {vid_path} {method} done') sys.stdout.flush() lock.acquire() with open(report_file, 'a') as f: line = full_path + '\n' f.write(line) lock.release() else: print(f'{task} {vid_id} {vid_path} {method} got something wrong') sys.stdout.flush() return True
Generate optical flow using dense flow. Args: vid_item (list): Video item containing video full path, video (short) path, video id. Returns: bool: Whether generate optical flow successfully.
extract_frame
python
open-mmlab/mmaction2
tools/data/build_rawframes.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_rawframes.py
Apache-2.0
def extract_audio_wav(line): """Extract the audio wave from video streams using FFMPEG.""" video_id, _ = osp.splitext(osp.basename(line)) video_dir = osp.dirname(line) video_rel_dir = osp.relpath(video_dir, args.root) dst_dir = osp.join(args.dst_root, video_rel_dir) os.popen(f'mkdir -p {dst_dir}') try: if osp.exists(f'{dst_dir}/{video_id}.wav'): return cmd = f'ffmpeg -i ./{line} -map 0:a -y {dst_dir}/{video_id}.wav' os.popen(cmd) except BaseException: with open('extract_wav_err_file.txt', 'a+') as f: f.write(f'{line}\n')
Extract the audio wave from video streams using FFMPEG.
extract_audio_wav
python
open-mmlab/mmaction2
tools/data/extract_audio.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/extract_audio.py
Apache-2.0
def pool_feature(data, num_proposals=100, num_sample_bins=3, pool_type='mean'): """Pool features with arbitrary temporal length. Args: data (list[np.ndarray] | np.ndarray): Features of an untrimmed video, with arbitrary temporal length. num_proposals (int): The temporal dim of pooled feature. Default: 100. num_sample_bins (int): How many points to sample to get the feature vector at one timestamp. Default: 3. pool_type (str): Type of pooling to pool features. Choices are ['mean', 'max']. Default: 'mean'. Returns: np.ndarray: The pooled feature with shape num_proposals x feature_dim. """ if len(data) == 1: return np.concatenate([data] * num_proposals) x_range = list(range(len(data))) f = scipy.interpolate.interp1d(x_range, data, axis=0) eps = 1e-4 start, end = eps, len(data) - 1 - eps anchor_size = (end - start) / num_proposals ptr = start feature = [] for _ in range(num_proposals): x_new = [ ptr + i / num_sample_bins * anchor_size for i in range(num_sample_bins) ] y_new = f(x_new) if pool_type == 'mean': y_new = np.mean(y_new, axis=0) elif pool_type == 'max': y_new = np.max(y_new, axis=0) else: raise NotImplementedError('Unsupported pool type') feature.append(y_new) ptr += anchor_size feature = np.stack(feature) return feature
Pool features with arbitrary temporal length. Args: data (list[np.ndarray] | np.ndarray): Features of an untrimmed video, with arbitrary temporal length. num_proposals (int): The temporal dim of pooled feature. Default: 100. num_sample_bins (int): How many points to sample to get the feature vector at one timestamp. Default: 3. pool_type (str): Type of pooling to pool features. Choices are ['mean', 'max']. Default: 'mean'. Returns: np.ndarray: The pooled feature with shape num_proposals x feature_dim.
pool_feature
python
open-mmlab/mmaction2
tools/data/activitynet/activitynet_feature_postprocessing.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/activitynet_feature_postprocessing.py
Apache-2.0
def download_clip(video_identifier, output_filename, num_attempts=5, url_base='https://www.youtube.com/watch?v='): """Download a video from youtube if exists and is not blocked. arguments: --------- video_identifier: str Unique YouTube video identifier (11 characters) output_filename: str File path where the video will be stored. """ # Defensive argument checking. assert isinstance(video_identifier, str), 'video_identifier must be string' assert isinstance(output_filename, str), 'output_filename must be string' assert len(video_identifier) == 11, 'video_identifier must have length 11' status = False if not os.path.exists(output_filename): command = [ 'youtube-dl', '--quiet', '--no-warnings', '--no-check-certificate', '-f', 'mp4', '-o', '"%s"' % output_filename, '"%s"' % (url_base + video_identifier) ] command = ' '.join(command) print(command) attempts = 0 while True: try: subprocess.check_output( command, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError: attempts += 1 if attempts == num_attempts: return status, 'Fail' else: break # Check if the video was successfully saved. status = os.path.exists(output_filename) return status, 'Downloaded'
Download a video from youtube if exists and is not blocked. arguments: --------- video_identifier: str Unique YouTube video identifier (11 characters) output_filename: str File path where the video will be stored.
download_clip
python
open-mmlab/mmaction2
tools/data/activitynet/download.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/download.py
Apache-2.0
def download_clip_wrapper(youtube_id, output_dir): """Wrapper for parallel processing purposes.""" # we do this to align with names in annotations output_filename = os.path.join(output_dir, 'v_' + youtube_id + '.mp4') if os.path.exists(output_filename): status = tuple(['v_' + youtube_id, True, 'Exists']) return status downloaded, log = download_clip(youtube_id, output_filename) status = tuple(['v_' + youtube_id, downloaded, log]) return status
Wrapper for parallel processing purposes.
download_clip_wrapper
python
open-mmlab/mmaction2
tools/data/activitynet/download.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/download.py
Apache-2.0
def parse_activitynet_annotations(input_csv, is_bsn_case=False): """Returns a list of YoutubeID. arguments: --------- input_csv: str Path to CSV file containing the following columns: 'video,numFrame,seconds,fps,rfps,subset,featureFrame' returns: ------- youtube_ids: list List of all YoutubeIDs in ActivityNet. """ if is_bsn_case: lines = open(input_csv).readlines() lines = lines[1:] # YoutubeIDs do not have prefix `v_` youtube_ids = [x.split(',')[0][2:] for x in lines] else: data = mmengine.load(anno_file)['database'] youtube_ids = list(data.keys()) return youtube_ids
Returns a list of YoutubeID. arguments: --------- input_csv: str Path to CSV file containing the following columns: 'video,numFrame,seconds,fps,rfps,subset,featureFrame' returns: ------- youtube_ids: list List of all YoutubeIDs in ActivityNet.
parse_activitynet_annotations
python
open-mmlab/mmaction2
tools/data/activitynet/download.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/download.py
Apache-2.0
def load_annotations(ann_file): """Load the annotation according to ann_file into video_infos.""" video_infos = [] anno_database = mmengine.load(ann_file) for video_name in anno_database: video_info = anno_database[video_name] video_info['video_name'] = video_name video_infos.append(video_info) return video_infos
Load the annotation according to ann_file into video_infos.
load_annotations
python
open-mmlab/mmaction2
tools/data/activitynet/convert_proposal_format.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/convert_proposal_format.py
Apache-2.0
def import_ground_truth(video_infos, activity_index): """Read ground truth data from video_infos.""" ground_truth = {} for video_info in video_infos: video_id = video_info['video_name'][2:] this_video_ground_truths = [] for ann in video_info['annotations']: t_start, t_end = ann['segment'] label = activity_index[ann['label']] this_video_ground_truths.append([t_start, t_end, label]) ground_truth[video_id] = np.array(this_video_ground_truths) return ground_truth
Read ground truth data from video_infos.
import_ground_truth
python
open-mmlab/mmaction2
tools/data/activitynet/convert_proposal_format.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/convert_proposal_format.py
Apache-2.0
def import_proposals(result_dict): """Read predictions from result dict.""" proposals = {} num_proposals = 0 for video_id in result_dict: result = result_dict[video_id] this_video_proposals = [] for proposal in result: t_start, t_end = proposal['segment'] score = proposal['score'] this_video_proposals.append([t_start, t_end, score]) num_proposals += 1 proposals[video_id] = np.array(this_video_proposals) return proposals, num_proposals
Read predictions from result dict.
import_proposals
python
open-mmlab/mmaction2
tools/data/activitynet/convert_proposal_format.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/convert_proposal_format.py
Apache-2.0
def dump_formatted_proposal(video_idx, video_id, num_frames, fps, gts, proposals, tiou, t_overlap_self, formatted_proposal_file): """dump the formatted proposal file, which is the input proposal file of action classifier (e.g: SSN). Args: video_idx (int): Index of video. video_id (str): ID of video. num_frames (int): Total frames of the video. fps (float): Fps of the video. gts (np.ndarray[float]): t_start, t_end and label of groundtruths. proposals (np.ndarray[float]): t_start, t_end and score of proposals. tiou (np.ndarray[float]): 2-dim array with IoU ratio. t_overlap_self (np.ndarray[float]): 2-dim array with overlap_self (union / self_len) ratio. formatted_proposal_file (open file object): Open file object of formatted_proposal_file. """ formatted_proposal_file.write( f'#{video_idx}\n{video_id}\n{num_frames}\n{fps}\n{gts.shape[0]}\n') for gt in gts: formatted_proposal_file.write(f'{int(gt[2])} {gt[0]} {gt[1]}\n') formatted_proposal_file.write(f'{proposals.shape[0]}\n') best_iou = np.amax(tiou, axis=0) best_iou_index = np.argmax(tiou, axis=0) best_overlap = np.amax(t_overlap_self, axis=0) best_overlap_index = np.argmax(t_overlap_self, axis=0) for i in range(proposals.shape[0]): index_iou = best_iou_index[i] index_overlap = best_overlap_index[i] label_iou = gts[index_iou][2] label_overlap = gts[index_overlap][2] if label_iou != label_overlap: label = label_iou if label_iou != 0 else label_overlap else: label = label_iou if best_iou[i] == 0 and best_overlap[i] == 0: formatted_proposal_file.write( f'0 0 0 {proposals[i][0]} {proposals[i][1]}\n') else: formatted_proposal_file.write( f'{int(label)} {best_iou[i]} {best_overlap[i]} ' f'{proposals[i][0]} {proposals[i][1]}\n')
dump the formatted proposal file, which is the input proposal file of action classifier (e.g: SSN). Args: video_idx (int): Index of video. video_id (str): ID of video. num_frames (int): Total frames of the video. fps (float): Fps of the video. gts (np.ndarray[float]): t_start, t_end and label of groundtruths. proposals (np.ndarray[float]): t_start, t_end and score of proposals. tiou (np.ndarray[float]): 2-dim array with IoU ratio. t_overlap_self (np.ndarray[float]): 2-dim array with overlap_self (union / self_len) ratio. formatted_proposal_file (open file object): Open file object of formatted_proposal_file.
dump_formatted_proposal
python
open-mmlab/mmaction2
tools/data/activitynet/convert_proposal_format.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/convert_proposal_format.py
Apache-2.0
def create_video_folders(dataset, output_dir, tmp_dir): """Creates a directory for each label name in the dataset.""" if 'label-name' not in dataset.columns: this_dir = os.path.join(output_dir, 'test') if not os.path.exists(this_dir): os.makedirs(this_dir) # I should return a dict but ... return this_dir if not os.path.exists(output_dir): os.makedirs(output_dir) if not os.path.exists(tmp_dir): os.makedirs(tmp_dir) label_to_dir = {} for label_name in dataset['label-name'].unique(): this_dir = os.path.join(output_dir, label_name) if not os.path.exists(this_dir): os.makedirs(this_dir) label_to_dir[label_name] = this_dir return label_to_dir
Creates a directory for each label name in the dataset.
create_video_folders
python
open-mmlab/mmaction2
tools/data/kinetics/download.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/kinetics/download.py
Apache-2.0
def construct_video_filename(row, label_to_dir, trim_format='%06d'): """Given a dataset row, this function constructs the output filename for a given video.""" basename = '%s_%s_%s.mp4' % (row['video-id'], trim_format % row['start-time'], trim_format % row['end-time']) if not isinstance(label_to_dir, dict): dirname = label_to_dir else: dirname = label_to_dir[row['label-name']] output_filename = os.path.join(dirname, basename) return output_filename
Given a dataset row, this function constructs the output filename for a given video.
construct_video_filename
python
open-mmlab/mmaction2
tools/data/kinetics/download.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/kinetics/download.py
Apache-2.0
def download_clip(video_identifier, output_filename, start_time, end_time, tmp_dir='/tmp/kinetics/.tmp_dir', num_attempts=5, url_base='https://www.youtube.com/watch?v='): """Download a video from youtube if exists and is not blocked. arguments: --------- video_identifier: str Unique YouTube video identifier (11 characters) output_filename: str File path where the video will be stored. start_time: float Indicates the beginning time in seconds from where the video will be trimmed. end_time: float Indicates the ending time in seconds of the trimmed video. """ # Defensive argument checking. assert isinstance(video_identifier, str), 'video_identifier must be string' assert isinstance(output_filename, str), 'output_filename must be string' assert len(video_identifier) == 11, 'video_identifier must have length 11' status = False # Construct command line for getting the direct video link. tmp_filename = os.path.join(tmp_dir, '%s.%%(ext)s' % uuid.uuid4()) if not os.path.exists(output_filename): if not os.path.exists(tmp_filename): command = [ 'youtube-dl', '--quiet', '--no-warnings', '--no-check-certificate', '-f', 'mp4', '-o', '"%s"' % tmp_filename, '"%s"' % (url_base + video_identifier) ] command = ' '.join(command) print(command) attempts = 0 while True: try: subprocess.check_output( command, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as err: attempts += 1 if attempts == num_attempts: return status, err.output else: break tmp_filename = glob.glob('%s*' % tmp_filename.split('.')[0])[0] # Construct command to trim the videos (ffmpeg required). command = [ 'ffmpeg', '-i', '"%s"' % tmp_filename, '-ss', str(start_time), '-t', str(end_time - start_time), '-c:v', 'libx264', '-c:a', 'copy', '-threads', '1', '-loglevel', 'panic', '"%s"' % output_filename ] command = ' '.join(command) try: subprocess.check_output( command, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as err: return status, err.output # Check if the video was successfully saved. status = os.path.exists(output_filename) os.remove(tmp_filename) return status, 'Downloaded'
Download a video from youtube if exists and is not blocked. arguments: --------- video_identifier: str Unique YouTube video identifier (11 characters) output_filename: str File path where the video will be stored. start_time: float Indicates the beginning time in seconds from where the video will be trimmed. end_time: float Indicates the ending time in seconds of the trimmed video.
download_clip
python
open-mmlab/mmaction2
tools/data/kinetics/download.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/kinetics/download.py
Apache-2.0
def download_clip_wrapper(row, label_to_dir, trim_format, tmp_dir): """Wrapper for parallel processing purposes.""" output_filename = construct_video_filename(row, label_to_dir, trim_format) clip_id = os.path.basename(output_filename).split('.mp4')[0] if os.path.exists(output_filename): status = tuple([clip_id, True, 'Exists']) return status downloaded, log = download_clip( row['video-id'], output_filename, row['start-time'], row['end-time'], tmp_dir=tmp_dir) status = tuple([clip_id, downloaded, log]) return status
Wrapper for parallel processing purposes.
download_clip_wrapper
python
open-mmlab/mmaction2
tools/data/kinetics/download.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/kinetics/download.py
Apache-2.0
def parse_kinetics_annotations(input_csv, ignore_is_cc=False): """Returns a parsed DataFrame. arguments: --------- input_csv: str Path to CSV file containing the following columns: 'YouTube Identifier,Start time,End time,Class label' returns: ------- dataset: DataFrame Pandas with the following columns: 'video-id', 'start-time', 'end-time', 'label-name' """ df = pd.read_csv(input_csv) if 'youtube_id' in df.columns: columns = OrderedDict([('youtube_id', 'video-id'), ('time_start', 'start-time'), ('time_end', 'end-time'), ('label', 'label-name')]) df.rename(columns=columns, inplace=True) if ignore_is_cc: df = df.loc[:, df.columns.tolist()[:-1]] return df
Returns a parsed DataFrame. arguments: --------- input_csv: str Path to CSV file containing the following columns: 'YouTube Identifier,Start time,End time,Class label' returns: ------- dataset: DataFrame Pandas with the following columns: 'video-id', 'start-time', 'end-time', 'label-name'
parse_kinetics_annotations
python
open-mmlab/mmaction2
tools/data/kinetics/download.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/kinetics/download.py
Apache-2.0
def construct_video_filename(item, trim_format, output_dir): """Given a dataset row, this function constructs the output filename for a given video.""" youtube_id, start_time, end_time = item start_time, end_time = int(start_time * 10), int(end_time * 10) basename = '%s_%s_%s.mp4' % (youtube_id, trim_format % start_time, trim_format % end_time) output_filename = os.path.join(output_dir, basename) return output_filename
Given a dataset row, this function constructs the output filename for a given video.
construct_video_filename
python
open-mmlab/mmaction2
tools/data/hvu/download.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hvu/download.py
Apache-2.0
def download_clip(video_identifier, output_filename, start_time, end_time, tmp_dir='/tmp/hvu/.tmp_dir', num_attempts=5, url_base='https://www.youtube.com/watch?v='): """Download a video from youtube if exists and is not blocked. arguments: --------- video_identifier: str Unique YouTube video identifier (11 characters) output_filename: str File path where the video will be stored. start_time: float Indicates the beginning time in seconds from where the video will be trimmed. end_time: float Indicates the ending time in seconds of the trimmed video. """ # Defensive argument checking. assert isinstance(video_identifier, str), 'video_identifier must be string' assert isinstance(output_filename, str), 'output_filename must be string' assert len(video_identifier) == 11, 'video_identifier must have length 11' status = False tmp_filename = os.path.join(tmp_dir, '%s.%%(ext)s' % uuid.uuid4()) if not os.path.exists(output_filename): if not os.path.exists(tmp_filename): command = [ 'youtube-dl', '--quiet', '--no-warnings', '--no-check-certificate', '-f', 'mp4', '-o', '"%s"' % tmp_filename, '"%s"' % (url_base + video_identifier) ] command = ' '.join(command) print(command) attempts = 0 while True: try: subprocess.check_output( command, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError: attempts += 1 if attempts == num_attempts: return status, 'Downloading Failed' else: break tmp_filename = glob.glob('%s*' % tmp_filename.split('.')[0])[0] # Construct command to trim the videos (ffmpeg required). command = [ 'ffmpeg', '-i', '"%s"' % tmp_filename, '-ss', str(start_time), '-t', str(end_time - start_time), '-c:v', 'libx264', '-c:a', 'copy', '-threads', '1', '-loglevel', 'panic', '"%s"' % output_filename ] command = ' '.join(command) try: subprocess.check_output( command, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError: return status, 'Trimming Failed' # Check if the video was successfully saved. status = os.path.exists(output_filename) os.remove(tmp_filename) return status, 'Downloaded'
Download a video from youtube if exists and is not blocked. arguments: --------- video_identifier: str Unique YouTube video identifier (11 characters) output_filename: str File path where the video will be stored. start_time: float Indicates the beginning time in seconds from where the video will be trimmed. end_time: float Indicates the ending time in seconds of the trimmed video.
download_clip
python
open-mmlab/mmaction2
tools/data/hvu/download.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hvu/download.py
Apache-2.0
def download_clip_wrapper(item, trim_format, tmp_dir, output_dir): """Wrapper for parallel processing purposes.""" output_filename = construct_video_filename(item, trim_format, output_dir) clip_id = os.path.basename(output_filename).split('.mp4')[0] if os.path.exists(output_filename): status = tuple([clip_id, True, 'Exists']) return status youtube_id, start_time, end_time = item downloaded, log = download_clip( youtube_id, output_filename, start_time, end_time, tmp_dir=tmp_dir) status = tuple([clip_id, downloaded, log]) return status
Wrapper for parallel processing purposes.
download_clip_wrapper
python
open-mmlab/mmaction2
tools/data/hvu/download.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hvu/download.py
Apache-2.0
def parse_hvu_annotations(input_csv): """Returns a parsed DataFrame. arguments: --------- input_csv: str Path to CSV file containing the following columns: 'Tags, youtube_id, time_start, time_end' returns: ------- dataset: List of tuples. Each tuple consists of (youtube_id, time_start, time_end). The type of time is float. """ lines = open(input_csv).readlines() lines = [x.strip().split(',')[1:] for x in lines[1:]] lines = [(x[0], float(x[1]), float(x[2])) for x in lines] return lines
Returns a parsed DataFrame. arguments: --------- input_csv: str Path to CSV file containing the following columns: 'Tags, youtube_id, time_start, time_end' returns: ------- dataset: List of tuples. Each tuple consists of (youtube_id, time_start, time_end). The type of time is float.
parse_hvu_annotations
python
open-mmlab/mmaction2
tools/data/hvu/download.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hvu/download.py
Apache-2.0
def count_files(directory, prefix_list): """Count file number with a given directory and prefix. Args: directory (str): Data directory to be search. prefix_list (list): List or prefix. Returns: list (int): Number list of the file with the prefix. """ lst = os.listdir(directory) cnt_list = [len(fnmatch.filter(lst, x + '*')) for x in prefix_list] return cnt_list
Count file number with a given directory and prefix. Args: directory (str): Data directory to be search. prefix_list (list): List or prefix. Returns: list (int): Number list of the file with the prefix.
parse_directory.count_files
python
open-mmlab/mmaction2
tools/data/hvu/generate_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hvu/generate_file_list.py
Apache-2.0
def parse_directory(path, rgb_prefix='img_', flow_x_prefix='flow_x_', flow_y_prefix='flow_y_', level=1): """Parse directories holding extracted frames from standard benchmarks. Args: path (str): Directory path to parse frames. rgb_prefix (str): Prefix of generated rgb frames name. default: 'img_'. flow_x_prefix (str): Prefix of generated flow x name. default: `flow_x_`. flow_y_prefix (str): Prefix of generated flow y name. default: `flow_y_`. level (int): Directory level for glob searching. Options are 1 and 2. default: 1. Returns: dict: frame info dict with video id as key and tuple(path(str), rgb_num(int), flow_x_num(int)) as value. """ print(f'parse frames under directory {path}') if level == 1: # Only search for one-level directory def locate_directory(x): return osp.basename(x) frame_dirs = glob.glob(osp.join(path, '*')) elif level == 2: # search for two-level directory def locate_directory(x): return osp.join(osp.basename(osp.dirname(x)), osp.basename(x)) frame_dirs = glob.glob(osp.join(path, '*', '*')) else: raise ValueError('level can be only 1 or 2') def count_files(directory, prefix_list): """Count file number with a given directory and prefix. Args: directory (str): Data directory to be search. prefix_list (list): List or prefix. Returns: list (int): Number list of the file with the prefix. """ lst = os.listdir(directory) cnt_list = [len(fnmatch.filter(lst, x + '*')) for x in prefix_list] return cnt_list # check RGB frame_dict = {} for i, frame_dir in enumerate(frame_dirs): total_num = count_files(frame_dir, (rgb_prefix, flow_x_prefix, flow_y_prefix)) dir_name = locate_directory(frame_dir) num_x = total_num[1] num_y = total_num[2] if num_x != num_y: raise ValueError(f'x and y direction have different number ' f'of flow images in video directory: {frame_dir}') if i % 200 == 0: print(f'{i} videos parsed') frame_dict[dir_name] = (frame_dir, total_num[0], num_x) print('frame directory analysis done') return frame_dict
Parse directories holding extracted frames from standard benchmarks. Args: path (str): Directory path to parse frames. rgb_prefix (str): Prefix of generated rgb frames name. default: 'img_'. flow_x_prefix (str): Prefix of generated flow x name. default: `flow_x_`. flow_y_prefix (str): Prefix of generated flow y name. default: `flow_y_`. level (int): Directory level for glob searching. Options are 1 and 2. default: 1. Returns: dict: frame info dict with video id as key and tuple(path(str), rgb_num(int), flow_x_num(int)) as value.
parse_directory
python
open-mmlab/mmaction2
tools/data/hvu/generate_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hvu/generate_file_list.py
Apache-2.0
def get_kinetics_frames(kinetics_anotation_file: str) -> dict: """Given the AVA-kinetics anotation file, return a lookup to map the video id and the the set of timestamps involved of this video id. Args: kinetics_anotation_file (str): Path to the AVA-like anotation file for the kinetics subset. Returns: dict: the dict keys are the kinetics videos' video id. The values are the set of timestamps involved. """ with open(kinetics_anotation_file) as f: anotated_frames = [i.split(',') for i in f.readlines()] anotated_frames = [i for i in anotated_frames if len(i) == 7] anotated_frames = [(i[0], int(float(i[1]))) for i in anotated_frames] frame_lookup = defaultdict(set) for video_id, timestamp in anotated_frames: frame_lookup[video_id].add(timestamp) return frame_lookup
Given the AVA-kinetics anotation file, return a lookup to map the video id and the the set of timestamps involved of this video id. Args: kinetics_anotation_file (str): Path to the AVA-like anotation file for the kinetics subset. Returns: dict: the dict keys are the kinetics videos' video id. The values are the set of timestamps involved.
get_kinetics_frames
python
open-mmlab/mmaction2
tools/data/ava_kinetics/cut_kinetics.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/ava_kinetics/cut_kinetics.py
Apache-2.0
def filter_missing_videos(kinetics_list: str, frame_lookup: dict) -> dict: """Given the kinetics700 dataset list, remove the video ids from the lookup that are missing videos or frames. Args: kinetics_list (str): Path to the kinetics700 dataset list. The content of the list should be: ``` Path_to_video1 label_1\n Path_to_video2 label_2\n ... Path_to_videon label_n\n ``` The start and end of the video must be contained in the filename. For example: ``` class602/o3lCwWyyc_s_000012_000022.mp4\n ``` frame_lookup (dict): the dict from `get_kinetics_frames`. Returns: dict: the dict keys are the kinetics videos' video id. The values are the a list of tuples: (start_of_the_video, end_of_the_video, video_path) """ video_lookup = defaultdict(set) with open(kinetics_list) as f: for line in f.readlines(): video_path = line.split(' ')[0] # remove label information video_name = video_path.split('/')[-1] # get the file name video_name = video_name.split('.')[0] # remove file extensions video_name = video_name.split('_') video_id = '_'.join(video_name[:-2]) if video_id not in frame_lookup: continue start, end = int(video_name[-2]), int(video_name[-1]) frames = frame_lookup[video_id] frames = [frame for frame in frames if start < frame < end] if len(frames) == 0: continue start, end = max(start, min(frames) - 2), min(end, max(frames) + 2) video_lookup[video_id].add((start, end, video_path)) # Some frame ids exist in multiple videos in the Kinetics dataset. # The reason is the part of one video may fall into different categories. # Remove the duplicated records for video in video_lookup: if len(video_lookup[video]) == 1: continue info_list = list(video_lookup[video]) removed_list = [] for i, info_i in enumerate(info_list): start_i, end_i, _ = info_i for j in range(i + 1, len(info_list)): start_j, end_j, _ = info_list[j] if start_i <= start_j and end_j <= end_i: removed_list.append(j) elif start_j <= start_i and end_i <= end_j: removed_list.append(i) new_list = [] for i, info in enumerate(info_list): if i not in removed_list: new_list.append(info) video_lookup[video] = set(new_list) return video_lookup
Given the kinetics700 dataset list, remove the video ids from the lookup that are missing videos or frames. Args: kinetics_list (str): Path to the kinetics700 dataset list. The content of the list should be: ``` Path_to_video1 label_1\n Path_to_video2 label_2\n ... Path_to_videon label_n\n ``` The start and end of the video must be contained in the filename. For example: ``` class602/o3lCwWyyc_s_000012_000022.mp4\n ``` frame_lookup (dict): the dict from `get_kinetics_frames`. Returns: dict: the dict keys are the kinetics videos' video id. The values are the a list of tuples: (start_of_the_video, end_of_the_video, video_path)
filter_missing_videos
python
open-mmlab/mmaction2
tools/data/ava_kinetics/cut_kinetics.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/ava_kinetics/cut_kinetics.py
Apache-2.0
def remove_failed_video(video_path: str) -> None: """Given the path to the video, delete the video if it cannot be read or if the actual length of the video is 0.75 seconds shorter than expected.""" try: v = decord.VideoReader(video_path) fps = v.get_avg_fps() num_frames = len(v) x = video_path.split('.')[0].split('_') time = int(x[-1]) - int(x[-2]) if num_frames < (time - 3 / 4) * fps: os.remove(video_path) except: # noqa: E722 os.remove(video_path) return
Given the path to the video, delete the video if it cannot be read or if the actual length of the video is 0.75 seconds shorter than expected.
remove_failed_video
python
open-mmlab/mmaction2
tools/data/ava_kinetics/cut_kinetics.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/ava_kinetics/cut_kinetics.py
Apache-2.0
def format_det_result(): """convert test results to specified format in MultiSports competition.""" test_results = load(args.test_result) annos = load(args.anno_path) test_videos = annos['test_videos'][0] resolutions = annos['resolution'] frm_dets = [] for pred in track(test_results, description='formating...'): video_key = pred['video_id'].split('.mp4')[0] frm_num = pred['timestamp'] bboxes = pred['pred_instances']['bboxes'] cls_scores = pred['pred_instances']['scores'] for bbox, cls_score in zip(bboxes, cls_scores): video_idx = test_videos.index(video_key) pred_label = np.argmax(cls_score) score = cls_score[pred_label] h, w = resolutions[video_key] bbox *= np.array([w, h, w, h]) instance_result = np.array( [video_idx, frm_num, pred_label, score, *bbox]) frm_dets.append(instance_result) frm_dets = np.array(frm_dets) video_tubes = link_tubes(annos, frm_dets, K=1) dump(frm_dets, args.frm_out_path) dump(video_tubes, args.tube_out_path)
convert test results to specified format in MultiSports competition.
format_det_result
python
open-mmlab/mmaction2
tools/data/multisports/format_det_result.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/multisports/format_det_result.py
Apache-2.0
def download(video_identifier, output_filename, num_attempts=5, url_base='https://www.youtube.com/watch?v='): """Download a video from youtube if exists and is not blocked. arguments: --------- video_identifier: str Unique YouTube video identifier (11 characters) output_filename: str File path where the video will be stored. """ # Defensive argument checking. assert isinstance(video_identifier, str), 'video_identifier must be string' assert isinstance(output_filename, str), 'output_filename must be string' assert len(video_identifier) == 11, 'video_identifier must have length 11' status = False if not os.path.exists(output_filename): command = [ 'youtube-dl', '--quiet', '--no-warnings', '--no-check-certificate', '-f', 'mp4', '-o', '"%s"' % output_filename, '"%s"' % (url_base + video_identifier) ] command = ' '.join(command) print(command) attempts = 0 while True: try: subprocess.check_output( command, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError: attempts += 1 if attempts == num_attempts: return status, 'Fail' else: break # Check if the video was successfully saved. status = os.path.exists(output_filename) return status, 'Downloaded'
Download a video from youtube if exists and is not blocked. arguments: --------- video_identifier: str Unique YouTube video identifier (11 characters) output_filename: str File path where the video will be stored.
download
python
open-mmlab/mmaction2
tools/data/gym/download.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/gym/download.py
Apache-2.0
def download_wrapper(youtube_id, output_dir): """Wrapper for parallel processing purposes.""" # we do this to align with names in annotations output_filename = os.path.join(output_dir, youtube_id + '.mp4') if os.path.exists(output_filename): status = tuple([youtube_id, True, 'Exists']) return status downloaded, log = download(youtube_id, output_filename) status = tuple([youtube_id, downloaded, log]) return status
Wrapper for parallel processing purposes.
download_wrapper
python
open-mmlab/mmaction2
tools/data/gym/download.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/gym/download.py
Apache-2.0
def _compress_images(input_output_pair, size=224): """Scale and downsample an input image to a given fps and size (shorter side size). This also removes the audio from the image. """ input_image_path, output_image_path = input_output_pair try: resize_image(input_image_path, output_image_path, size) except Exception as e: print(f'Caught Exception {e}')
Scale and downsample an input image to a given fps and size (shorter side size). This also removes the audio from the image.
_compress_images
python
open-mmlab/mmaction2
tools/data/msrvtt/compress.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/msrvtt/compress.py
Apache-2.0
def _compress_videos(input_output_pair, size=224, fps=3): """Scale and downsample an input video to a given fps and size (shorter side size). This also removes the audio from the video. """ input_file_path, output_file_path = input_output_pair try: command = [ 'ffmpeg', '-y', # (optional) overwrite output file if it exists '-i', input_file_path, '-filter:v', # no audio f"scale='if(gt(a,1),trunc(oh*a/2)*2,{size})':'if(gt(a,1),{size},trunc(ow*a/2)*2)'", # noqa: E501 '-map', '0:v', # no audio '-r', str(fps), # frames per second # '-g', str(16), output_file_path, ] subprocess.run( command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) except Exception as e: raise e
Scale and downsample an input video to a given fps and size (shorter side size). This also removes the audio from the video.
_compress_videos
python
open-mmlab/mmaction2
tools/data/msrvtt/compress.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/msrvtt/compress.py
Apache-2.0
def merge_args(cfg, args): """Merge CLI arguments to config.""" test_pipeline = cfg.test_dataloader.dataset.pipeline # -------------------- Feature Head -------------------- if not args.dump_score: backbone_type2name = dict( ResNet3dSlowFast='slowfast', MobileNetV2TSM='tsm', ResNetTSM='tsm', ) if cfg.model.type == 'RecognizerGCN': backbone_name = 'gcn' else: backbone_name = backbone_type2name.get(cfg.model.backbone.type) num_segments = None if backbone_name == 'tsm': for idx, transform in enumerate(test_pipeline): if transform.type == 'UntrimmedSampleFrames': clip_len = transform['clip_len'] continue elif transform.type == 'SampleFrames': clip_len = transform['num_clips'] num_segments = cfg.model.backbone.get('num_segments', 8) assert num_segments == clip_len, \ f'num_segments and clip length must same for TSM, but got ' \ f'num_segments {num_segments} clip_len {clip_len}' if cfg.model.test_cfg is not None: max_testing_views = cfg.model.test_cfg.get( 'max_testing_views', num_segments) assert max_testing_views % num_segments == 0, \ 'tsm needs to infer with batchsize of multiple ' \ 'of num_segments.' spatial_type = None if args.spatial_type == 'keep' else \ args.spatial_type temporal_type = None if args.temporal_type == 'keep' else \ args.temporal_type feature_head = dict( type='FeatureHead', spatial_type=spatial_type, temporal_type=temporal_type, backbone_name=backbone_name, num_segments=num_segments) cfg.model.cls_head = feature_head # ---------------------- multiple view ---------------------- if not args.multi_view: # average features among multiple views cfg.model.cls_head['average_clips'] = 'score' if cfg.model.type == 'Recognizer3D': for idx, transform in enumerate(test_pipeline): if transform.type == 'SampleFrames': test_pipeline[idx]['num_clips'] = 1 for idx, transform in enumerate(test_pipeline): if transform.type == 'SampleFrames': test_pipeline[idx]['twice_sample'] = False # if transform.type in ['ThreeCrop', 'TenCrop']: if transform.type == 'TenCrop': test_pipeline[idx].type = 'CenterCrop' # -------------------- pipeline settings -------------------- # assign video list and video root if args.video_list is not None: cfg.test_dataloader.dataset.ann_file = args.video_list if args.video_root is not None: if cfg.test_dataloader.dataset.type == 'VideoDataset': cfg.test_dataloader.dataset.data_prefix = dict( video=args.video_root) elif cfg.test_dataloader.dataset.type == 'RawframeDataset': cfg.test_dataloader.dataset.data_prefix = dict(img=args.video_root) args.video_list = cfg.test_dataloader.dataset.ann_file args.video_root = cfg.test_dataloader.dataset.data_prefix # use UntrimmedSampleFrames for long video inference if args.long_video_mode: # preserve features of multiple clips cfg.model.cls_head['average_clips'] = None cfg.test_dataloader.batch_size = 1 is_recognizer2d = (cfg.model.type == 'Recognizer2D') frame_interval = args.frame_interval for idx, transform in enumerate(test_pipeline): if transform.type == 'UntrimmedSampleFrames': clip_len = transform['clip_len'] continue # replace SampleFrame by UntrimmedSampleFrames elif transform.type in ['SampleFrames', 'UniformSample']: assert args.clip_interval is not None, \ 'please specify clip interval for long video inference' if is_recognizer2d: # clip_len of UntrimmedSampleFrames is same as # num_clips for 2D Recognizer. clip_len = transform['num_clips'] else: clip_len = transform['clip_len'] if frame_interval is None: # take frame_interval of SampleFrames as default frame_interval = transform.get('frame_interval') assert frame_interval is not None, \ 'please specify frame interval for long video ' \ 'inference when use UniformSample or 2D Recognizer' sample_cfgs = dict( type='UntrimmedSampleFrames', clip_len=clip_len, clip_interval=args.clip_interval, frame_interval=frame_interval) test_pipeline[idx] = sample_cfgs continue # flow input will stack all frames if cfg.test_dataloader.dataset.get('modality') == 'Flow': clip_len = 1 if is_recognizer2d: from mmaction.models import ActionDataPreprocessor from mmaction.registry import MODELS @MODELS.register_module() class LongVideoDataPreprocessor(ActionDataPreprocessor): """DataPreprocessor for 2D recognizer to infer on long video. Which would stack the num_clips to batch dimension, to preserve feature of each clip (no average among clips) """ def __init__(self, num_frames=8, **kwargs) -> None: super().__init__(**kwargs) self.num_frames = num_frames def preprocess(self, inputs, data_samples, training=False): batch_inputs, data_samples = super().preprocess( inputs, data_samples, training) # [N*M, T, C, H, W] nclip_batch_inputs = batch_inputs.view( (-1, self.num_frames) + batch_inputs.shape[2:]) # data_samples = data_samples * \ # nclip_batch_inputs.shape[0] return nclip_batch_inputs, data_samples preprocessor_cfg = cfg.model.data_preprocessor preprocessor_cfg.type = 'LongVideoDataPreprocessor' preprocessor_cfg['num_frames'] = clip_len # -------------------- Dump predictions -------------------- args.dump = osp.join(args.output_prefix, 'total_feats.pkl') dump_metric = dict(type='DumpResults', out_file_path=args.dump) cfg.test_evaluator = [dump_metric] cfg.work_dir = osp.join(args.output_prefix, 'work_dir') return cfg
Merge CLI arguments to config.
merge_args
python
open-mmlab/mmaction2
tools/misc/clip_feature_extraction.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/misc/clip_feature_extraction.py
Apache-2.0
def flow_to_img(raw_flow, bound=20.): """Convert flow to gray image. Args: raw_flow (np.ndarray[float]): Estimated flow with the shape (w, h). bound (float): Bound for the flow-to-image normalization. Default: 20. Returns: np.ndarray[uint8]: The result list of np.ndarray[uint8], with shape (w, h). """ flow = np.clip(raw_flow, -bound, bound) flow += bound flow *= (255 / float(2 * bound)) flow = flow.astype(np.uint8) return flow
Convert flow to gray image. Args: raw_flow (np.ndarray[float]): Estimated flow with the shape (w, h). bound (float): Bound for the flow-to-image normalization. Default: 20. Returns: np.ndarray[uint8]: The result list of np.ndarray[uint8], with shape (w, h).
flow_to_img
python
open-mmlab/mmaction2
tools/misc/flow_extraction.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/misc/flow_extraction.py
Apache-2.0
def generate_flow(frames, method='tvl1'): """Estimate flow with given frames. Args: frames (list[np.ndarray[uint8]]): List of rgb frames, with shape (w, h, 3). method (str): Use which method to generate flow. Options are 'tvl1' and 'farneback'. Default: 'tvl1'. Returns: list[np.ndarray[float]]: The result list of np.ndarray[float], with shape (w, h, 2). """ assert method in ['tvl1', 'farneback'] gray_frames = [cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) for frame in frames] if method == 'tvl1': tvl1 = cv2.optflow.DualTVL1OpticalFlow_create() def op(x, y): return tvl1.calc(x, y, None) elif method == 'farneback': def op(x, y): return cv2.calcOpticalFlowFarneback(x, y, None, 0.5, 3, 15, 3, 5, 1.2, 0) gray_st = gray_frames[:-1] gray_ed = gray_frames[1:] flow = [op(x, y) for x, y in zip(gray_st, gray_ed)] return flow
Estimate flow with given frames. Args: frames (list[np.ndarray[uint8]]): List of rgb frames, with shape (w, h, 3). method (str): Use which method to generate flow. Options are 'tvl1' and 'farneback'. Default: 'tvl1'. Returns: list[np.ndarray[float]]: The result list of np.ndarray[float], with shape (w, h, 2).
generate_flow
python
open-mmlab/mmaction2
tools/misc/flow_extraction.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/misc/flow_extraction.py
Apache-2.0
def extract_dense_flow(path, dest, bound=20., save_rgb=False, start_idx=0, rgb_tmpl='img_{:05d}.jpg', flow_tmpl='{}_{:05d}.jpg', method='tvl1'): """Extract dense flow given video or frames, save them as gray-scale images. Args: path (str): Location of the input video. dest (str): The directory to store the extracted flow images. bound (float): Bound for the flow-to-image normalization. Default: 20. save_rgb (bool): Save extracted RGB frames. Default: False. start_idx (int): The starting frame index if use frames as input, the first image is path.format(start_idx). Default: 0. rgb_tmpl (str): The template of RGB frame names, Default: 'img_{:05d}.jpg'. flow_tmpl (str): The template of Flow frame names, Default: '{}_{:05d}.jpg'. method (str): Use which method to generate flow. Options are 'tvl1' and 'farneback'. Default: 'tvl1'. """ frames = [] assert osp.exists(path) video = cv2.VideoCapture(path) flag, f = video.read() while flag: frames.append(f) flag, f = video.read() flow = generate_flow(frames, method=method) flow_x = [flow_to_img(x[:, :, 0], bound) for x in flow] flow_y = [flow_to_img(x[:, :, 1], bound) for x in flow] if not osp.exists(dest): os.system('mkdir -p ' + dest) flow_x_names = [ osp.join(dest, flow_tmpl.format('x', ind + start_idx)) for ind in range(len(flow_x)) ] flow_y_names = [ osp.join(dest, flow_tmpl.format('y', ind + start_idx)) for ind in range(len(flow_y)) ] num_frames = len(flow) for i in range(num_frames): cv2.imwrite(flow_x_names[i], flow_x[i]) cv2.imwrite(flow_y_names[i], flow_y[i]) if save_rgb: img_names = [ osp.join(dest, rgb_tmpl.format(ind + start_idx)) for ind in range(len(frames)) ] for frame, name in zip(frames, img_names): cv2.imwrite(name, frame)
Extract dense flow given video or frames, save them as gray-scale images. Args: path (str): Location of the input video. dest (str): The directory to store the extracted flow images. bound (float): Bound for the flow-to-image normalization. Default: 20. save_rgb (bool): Save extracted RGB frames. Default: False. start_idx (int): The starting frame index if use frames as input, the first image is path.format(start_idx). Default: 0. rgb_tmpl (str): The template of RGB frame names, Default: 'img_{:05d}.jpg'. flow_tmpl (str): The template of Flow frame names, Default: '{}_{:05d}.jpg'. method (str): Use which method to generate flow. Options are 'tvl1' and 'farneback'. Default: 'tvl1'.
extract_dense_flow
python
open-mmlab/mmaction2
tools/misc/flow_extraction.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/misc/flow_extraction.py
Apache-2.0
def load_video_infos(ann_file): """Load the video annotations. Args: ann_file (str): A json file path of the annotation file. Returns: list[dict]: A list containing annotations for videos. """ video_infos = [] anno_database = mmengine.load(ann_file) for video_name in anno_database: video_info = anno_database[video_name] video_info['video_name'] = video_name video_infos.append(video_info) return video_infos
Load the video annotations. Args: ann_file (str): A json file path of the annotation file. Returns: list[dict]: A list containing annotations for videos.
load_video_infos
python
open-mmlab/mmaction2
tools/misc/bsn_proposal_generation.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/misc/bsn_proposal_generation.py
Apache-2.0
def generate_proposals(ann_file, tem_results_dir, pgm_proposals_dir, pgm_proposals_thread, **kwargs): """Generate proposals using multi-process. Args: ann_file (str): A json file path of the annotation file for all videos to be processed. tem_results_dir (str): Directory to read tem results pgm_proposals_dir (str): Directory to save generated proposals. pgm_proposals_thread (int): Total number of threads. kwargs (dict): Keyword arguments for "generate_candidate_proposals". """ video_infos = load_video_infos(ann_file) num_videos = len(video_infos) num_videos_per_thread = num_videos // pgm_proposals_thread processes = [] manager = mp.Manager() result_dict = manager.dict() kwargs['result_dict'] = result_dict for tid in range(pgm_proposals_thread - 1): tmp_video_list = range(tid * num_videos_per_thread, (tid + 1) * num_videos_per_thread) p = mp.Process( target=generate_candidate_proposals, args=( tmp_video_list, video_infos, tem_results_dir, ), kwargs=kwargs) p.start() processes.append(p) tmp_video_list = range((pgm_proposals_thread - 1) * num_videos_per_thread, num_videos) p = mp.Process( target=generate_candidate_proposals, args=( tmp_video_list, video_infos, tem_results_dir, ), kwargs=kwargs) p.start() processes.append(p) for p in processes: p.join() # save results os.makedirs(pgm_proposals_dir, exist_ok=True) prog_bar = mmengine.ProgressBar(num_videos) header = 'tmin,tmax,tmin_score,tmax_score,score,match_iou,match_ioa' for video_name in result_dict: proposals = result_dict[video_name] proposal_path = osp.join(pgm_proposals_dir, video_name + '.csv') np.savetxt( proposal_path, proposals, header=header, delimiter=',', comments='') prog_bar.update()
Generate proposals using multi-process. Args: ann_file (str): A json file path of the annotation file for all videos to be processed. tem_results_dir (str): Directory to read tem results pgm_proposals_dir (str): Directory to save generated proposals. pgm_proposals_thread (int): Total number of threads. kwargs (dict): Keyword arguments for "generate_candidate_proposals".
generate_proposals
python
open-mmlab/mmaction2
tools/misc/bsn_proposal_generation.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/misc/bsn_proposal_generation.py
Apache-2.0
def generate_features(ann_file, tem_results_dir, pgm_proposals_dir, pgm_features_dir, pgm_features_thread, **kwargs): """Generate proposals features using multi-process. Args: ann_file (str): A json file path of the annotation file for all videos to be processed. tem_results_dir (str): Directory to read tem results. pgm_proposals_dir (str): Directory to read generated proposals. pgm_features_dir (str): Directory to save generated features. pgm_features_thread (int): Total number of threads. kwargs (dict): Keyword arguments for "generate_bsp_feature". """ video_infos = load_video_infos(ann_file) num_videos = len(video_infos) num_videos_per_thread = num_videos // pgm_features_thread processes = [] manager = mp.Manager() feature_return_dict = manager.dict() kwargs['result_dict'] = feature_return_dict for tid in range(pgm_features_thread - 1): tmp_video_list = range(tid * num_videos_per_thread, (tid + 1) * num_videos_per_thread) p = mp.Process( target=generate_bsp_feature, args=( tmp_video_list, video_infos, tem_results_dir, pgm_proposals_dir, ), kwargs=kwargs) p.start() processes.append(p) tmp_video_list = range((pgm_features_thread - 1) * num_videos_per_thread, num_videos) p = mp.Process( target=generate_bsp_feature, args=( tmp_video_list, video_infos, tem_results_dir, pgm_proposals_dir, ), kwargs=kwargs) p.start() processes.append(p) for p in processes: p.join() # save results os.makedirs(pgm_features_dir, exist_ok=True) prog_bar = mmengine.ProgressBar(num_videos) for video_name in feature_return_dict.keys(): bsp_feature = feature_return_dict[video_name] feature_path = osp.join(pgm_features_dir, video_name + '.npy') np.save(feature_path, bsp_feature) prog_bar.update()
Generate proposals features using multi-process. Args: ann_file (str): A json file path of the annotation file for all videos to be processed. tem_results_dir (str): Directory to read tem results. pgm_proposals_dir (str): Directory to read generated proposals. pgm_features_dir (str): Directory to save generated features. pgm_features_thread (int): Total number of threads. kwargs (dict): Keyword arguments for "generate_bsp_feature".
generate_features
python
open-mmlab/mmaction2
tools/misc/bsn_proposal_generation.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/misc/bsn_proposal_generation.py
Apache-2.0
def mmaction2torchserve( config_file: str, checkpoint_file: str, output_folder: str, model_name: str, label_file: str, model_version: str = '1.0', force: bool = False, ): """Converts MMAction2 model (config + checkpoint) to TorchServe `.mar`. Args: config_file (str): In MMAction2 config format. checkpoint_file (str): In MMAction2 checkpoint format. output_folder (str): Folder where `{model_name}.mar` will be created. The file created will be in TorchServe archive format. label_file (str): A txt file which contains the action category names. model_name (str | None): If not None, used for naming the `{model_name}.mar` file that will be created under `output_folder`. If None, `{Path(checkpoint_file).stem}` will be used. model_version (str): Model's version. force (bool): If True, if there is an existing `{model_name}.mar` file under `output_folder` it will be overwritten. """ mkdir_or_exist(output_folder) config = Config.fromfile(config_file) with TemporaryDirectory() as tmpdir: config.dump(f'{tmpdir}/config.py') shutil.copy(label_file, f'{tmpdir}/label_map.txt') args = Namespace( **{ 'model_file': f'{tmpdir}/config.py', 'serialized_file': checkpoint_file, 'handler': f'{Path(__file__).parent}/mmaction_handler.py', 'model_name': model_name or Path(checkpoint_file).stem, 'version': model_version, 'export_path': output_folder, 'force': force, 'requirements_file': None, 'extra_files': f'{tmpdir}/label_map.txt', 'runtime': 'python', 'archive_format': 'default' }) manifest = ModelExportUtils.generate_manifest_json(args) package_model(args, manifest)
Converts MMAction2 model (config + checkpoint) to TorchServe `.mar`. Args: config_file (str): In MMAction2 config format. checkpoint_file (str): In MMAction2 checkpoint format. output_folder (str): Folder where `{model_name}.mar` will be created. The file created will be in TorchServe archive format. label_file (str): A txt file which contains the action category names. model_name (str | None): If not None, used for naming the `{model_name}.mar` file that will be created under `output_folder`. If None, `{Path(checkpoint_file).stem}` will be used. model_version (str): Model's version. force (bool): If True, if there is an existing `{model_name}.mar` file under `output_folder` it will be overwritten.
mmaction2torchserve
python
open-mmlab/mmaction2
tools/deployment/mmaction2torchserve.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/deployment/mmaction2torchserve.py
Apache-2.0
def add_frames(self, idx, frames, processed_frames): """Add the clip and corresponding id. Args: idx (int): the current index of the clip. frames (list[ndarray]): list of images in "BGR" format. processed_frames (list[ndarray]): list of resize and normed images in "BGR" format. """ self.frames = frames self.processed_frames = processed_frames self.id = idx self.img_shape = processed_frames[0].shape[:2]
Add the clip and corresponding id. Args: idx (int): the current index of the clip. frames (list[ndarray]): list of images in "BGR" format. processed_frames (list[ndarray]): list of resize and normed images in "BGR" format.
add_frames
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def add_bboxes(self, display_bboxes): """Add correspondding bounding boxes.""" self.display_bboxes = display_bboxes self.stdet_bboxes = display_bboxes.clone() self.stdet_bboxes[:, ::2] = self.stdet_bboxes[:, ::2] * self.ratio[0] self.stdet_bboxes[:, 1::2] = self.stdet_bboxes[:, 1::2] * self.ratio[1]
Add correspondding bounding boxes.
add_bboxes
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def add_action_preds(self, preds): """Add the corresponding action predictions.""" self.action_preds = preds
Add the corresponding action predictions.
add_action_preds
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def get_model_inputs(self, device): """Convert preprocessed images to MMAction2 STDet model inputs.""" cur_frames = [self.processed_frames[idx] for idx in self.frames_inds] input_array = np.stack(cur_frames).transpose((3, 0, 1, 2))[np.newaxis] input_tensor = torch.from_numpy(input_array).to(device) datasample = ActionDataSample() datasample.proposals = InstanceData(bboxes=self.stdet_bboxes) datasample.set_metainfo(dict(img_shape=self.img_shape)) return dict( inputs=input_tensor, data_samples=[datasample], mode='predict')
Convert preprocessed images to MMAction2 STDet model inputs.
get_model_inputs
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def _do_detect(self, image): """Get human bboxes with shape [n, 4]. The format of bboxes is (xmin, ymin, xmax, ymax) in pixels. """
Get human bboxes with shape [n, 4]. The format of bboxes is (xmin, ymin, xmax, ymax) in pixels.
_do_detect
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def predict(self, task): """Add keyframe bboxes to task.""" # keyframe idx == (clip_len * frame_interval) // 2 keyframe = task.frames[len(task.frames) // 2] # call detector bboxes = self._do_detect(keyframe) # convert bboxes to torch.Tensor and move to target device if isinstance(bboxes, np.ndarray): bboxes = torch.from_numpy(bboxes).to(self.device) elif isinstance(bboxes, torch.Tensor) and bboxes.device != self.device: bboxes = bboxes.to(self.device) # update task task.add_bboxes(bboxes) return task
Add keyframe bboxes to task.
predict
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def _do_detect(self, image): """Get bboxes in shape [n, 4] and values in pixels.""" det_data_sample = inference_detector(self.model, image) pred_instance = det_data_sample.pred_instances.cpu().numpy() # We only keep human detection bboxs with score larger # than `det_score_thr` and category id equal to `det_cat_id`. valid_idx = np.logical_and(pred_instance.labels == self.person_classid, pred_instance.scores > self.score_thr) bboxes = pred_instance.bboxes[valid_idx] # result = result[result[:, 4] >= self.score_thr][:, :4] return bboxes
Get bboxes in shape [n, 4] and values in pixels.
_do_detect
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def predict(self, task): """Spatio-temporval Action Detection model inference.""" # No need to do inference if no one in keyframe if len(task.stdet_bboxes) == 0: return task with torch.no_grad(): result = self.model(**task.get_model_inputs(self.device)) scores = result[0].pred_instances.scores # pack results of human detector and stdet preds = [] for _ in range(task.stdet_bboxes.shape[0]): preds.append([]) for class_id in range(scores.shape[1]): if class_id not in self.label_map: continue for bbox_id in range(task.stdet_bboxes.shape[0]): if scores[bbox_id][class_id] > self.score_thr: preds[bbox_id].append((self.label_map[class_id], scores[bbox_id][class_id].item())) # update task # `preds` is `list[list[tuple]]`. The outer brackets indicate # different bboxes and the intter brackets indicate different action # results for the same bbox. tuple contains `class_name` and `score`. task.add_action_preds(preds) return task
Spatio-temporval Action Detection model inference.
predict
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def read_fn(self): """Main function for read thread. Contains three steps: 1) Read and preprocess (resize + norm) frames from source. 2) Create task by frames from previous step and buffer. 3) Put task into read queue. """ was_read = True start_time = time.time() while was_read and not self.stopped: # init task task = TaskInfo() task.clip_vis_length = self.clip_vis_length task.frames_inds = self.frames_inds task.ratio = self.ratio # read buffer frames = [] processed_frames = [] if len(self.buffer) != 0: frames = self.buffer if len(self.processed_buffer) != 0: processed_frames = self.processed_buffer # read and preprocess frames from source and update task with self.read_lock: before_read = time.time() read_frame_cnt = self.window_size - len(frames) while was_read and len(frames) < self.window_size: was_read, frame = self.cap.read() if not self.webcam: # Reading frames too fast may lead to unexpected # performance degradation. If you have enough # resource, this line could be commented. time.sleep(1 / self.output_fps) if was_read: frames.append(mmcv.imresize(frame, self.display_size)) processed_frame = mmcv.imresize( frame, self.stdet_input_size).astype(np.float32) _ = mmcv.imnormalize_(processed_frame, **self.img_norm_cfg) processed_frames.append(processed_frame) task.add_frames(self.read_id + 1, frames, processed_frames) # update buffer if was_read: self.buffer = frames[-self.buffer_size:] self.processed_buffer = processed_frames[-self.buffer_size:] # update read state with self.read_id_lock: self.read_id += 1 self.not_end = was_read self.read_queue.put((was_read, copy.deepcopy(task))) cur_time = time.time() logger.debug( f'Read thread: {1000*(cur_time - start_time):.0f} ms, ' f'{read_frame_cnt / (cur_time - before_read):.0f} fps') start_time = cur_time
Main function for read thread. Contains three steps: 1) Read and preprocess (resize + norm) frames from source. 2) Create task by frames from previous step and buffer. 3) Put task into read queue.
read_fn
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def display_fn(self): """Main function for display thread. Read data from display queue and display predictions. """ start_time = time.time() while not self.stopped: # get the state of the read thread with self.read_id_lock: read_id = self.read_id not_end = self.not_end with self.display_lock: # If video ended and we have display all frames. if not not_end and self.display_id == read_id: break # If the next task are not available, wait. if (len(self.display_queue) == 0 or self.display_queue.get(self.display_id + 1) is None): time.sleep(0.02) continue # get display data and update state self.display_id += 1 was_read, task = self.display_queue[self.display_id] del self.display_queue[self.display_id] display_id = self.display_id # do display predictions with self.output_lock: if was_read and task.id == 0: # the first task cur_display_inds = range(self.display_inds[-1] + 1) elif not was_read: # the last task cur_display_inds = range(self.display_inds[0], len(task.frames)) else: cur_display_inds = self.display_inds for frame_id in cur_display_inds: frame = task.frames[frame_id] if self.show: cv2.imshow('Demo', frame) cv2.waitKey(int(1000 / self.output_fps)) if self.video_writer: self.video_writer.write(frame) cur_time = time.time() logger.debug( f'Display thread: {1000*(cur_time - start_time):.0f} ms, ' f'read id {read_id}, display id {display_id}') start_time = cur_time
Main function for display thread. Read data from display queue and display predictions.
display_fn
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def __next__(self): """Get data from read queue. This function is part of the main thread. """ if self.read_queue.qsize() == 0: time.sleep(0.02) return not self.stopped, None was_read, task = self.read_queue.get() if not was_read: # If we reach the end of the video, there aren't enough frames # in the task.processed_frames, so no need to model inference # and draw predictions. Put task into display queue. with self.read_id_lock: read_id = self.read_id with self.display_lock: self.display_queue[read_id] = was_read, copy.deepcopy(task) # main thread doesn't need to handle this task again task = None return was_read, task
Get data from read queue. This function is part of the main thread.
__next__
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def start(self): """Start read thread and display thread.""" self.read_thread = threading.Thread( target=self.read_fn, args=(), name='VidRead-Thread', daemon=True) self.read_thread.start() self.display_thread = threading.Thread( target=self.display_fn, args=(), name='VidDisplay-Thread', daemon=True) self.display_thread.start() return self
Start read thread and display thread.
start
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def clean(self): """Close all threads and release all resources.""" self.stopped = True self.read_lock.acquire() self.cap.release() self.read_lock.release() self.output_lock.acquire() cv2.destroyAllWindows() if self.video_writer: self.video_writer.release() self.output_lock.release()
Close all threads and release all resources.
clean
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def join(self): """Waiting for the finalization of read and display thread.""" self.read_thread.join() self.display_thread.join()
Waiting for the finalization of read and display thread.
join
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def display(self, task): """Add the visualized task to the display queue. Args: task (TaskInfo object): task object that contain the necessary information for prediction visualization. """ with self.display_lock: self.display_queue[task.id] = (True, task)
Add the visualized task to the display queue. Args: task (TaskInfo object): task object that contain the necessary information for prediction visualization.
display
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def get_output_video_writer(self, path): """Return a video writer object. Args: path (str): path to the output video file. """ return cv2.VideoWriter( filename=path, fourcc=cv2.VideoWriter_fourcc(*'mp4v'), fps=float(self.output_fps), frameSize=self.display_size, isColor=True)
Return a video writer object. Args: path (str): path to the output video file.
get_output_video_writer
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def draw_predictions(self, task): """Visualize stdet predictions on raw frames.""" # read bboxes from task bboxes = task.display_bboxes.cpu().numpy() # draw predictions and update task keyframe_idx = len(task.frames) // 2 draw_range = [ keyframe_idx - task.clip_vis_length // 2, keyframe_idx + (task.clip_vis_length - 1) // 2 ] assert draw_range[0] >= 0 and draw_range[1] < len(task.frames) task.frames = self.draw_clip_range(task.frames, task.action_preds, bboxes, draw_range) return task
Visualize stdet predictions on raw frames.
draw_predictions
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def draw_clip_range(self, frames, preds, bboxes, draw_range): """Draw a range of frames with the same bboxes and predictions.""" # no predictions to be draw if bboxes is None or len(bboxes) == 0: return frames # draw frames in `draw_range` left_frames = frames[:draw_range[0]] right_frames = frames[draw_range[1] + 1:] draw_frames = frames[draw_range[0]:draw_range[1] + 1] # get labels(texts) and draw predictions draw_frames = [ self.draw_one_image(frame, bboxes, preds) for frame in draw_frames ] return list(left_frames) + draw_frames + list(right_frames)
Draw a range of frames with the same bboxes and predictions.
draw_clip_range
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def draw_one_image(self, frame, bboxes, preds): """Draw bboxes and corresponding texts on one frame."""
Draw bboxes and corresponding texts on one frame.
draw_one_image
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def abbrev(name): """Get the abbreviation of label name: 'take (an object) from (a person)' -> 'take ... from ...' """ while name.find('(') != -1: st, ed = name.find('('), name.find(')') name = name[:st] + '...' + name[ed + 1:] return name
Get the abbreviation of label name: 'take (an object) from (a person)' -> 'take ... from ...'
abbrev
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def hex2color(h): """Convert the 6-digit hex string to tuple of 3 int value (RGB)""" return (int(h[:2], 16), int(h[2:4], 16), int(h[4:], 16))
Convert the 6-digit hex string to tuple of 3 int value (RGB)
hex2color
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def draw_one_image(self, frame, bboxes, preds): """Draw predictions on one image.""" for bbox, pred in zip(bboxes, preds): # draw bbox box = bbox.astype(np.int64) st, ed = tuple(box[:2]), tuple(box[2:]) cv2.rectangle(frame, st, ed, (0, 0, 255), 2) # draw texts for k, (label, score) in enumerate(pred): if k >= self.max_labels_per_bbox: break text = f'{self.abbrev(label)}: {score:.4f}' location = (0 + st[0], 18 + k * 18 + st[1]) textsize = cv2.getTextSize(text, self.text_fontface, self.text_fontscale, self.text_thickness)[0] textwidth = textsize[0] diag0 = (location[0] + textwidth, location[1] - 14) diag1 = (location[0], location[1] + 2) cv2.rectangle(frame, diag0, diag1, self.plate[k + 1], -1) cv2.putText(frame, text, location, self.text_fontface, self.text_fontscale, self.text_fontcolor, self.text_thickness, self.text_linetype) return frame
Draw predictions on one image.
draw_one_image
python
open-mmlab/mmaction2
demo/webcam_demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/webcam_demo_spatiotemporal_det.py
Apache-2.0
def hex2color(h): """Convert the 6-digit hex string to tuple of 3 int value (RGB)""" return (int(h[:2], 16), int(h[2:4], 16), int(h[4:], 16))
Convert the 6-digit hex string to tuple of 3 int value (RGB)
hex2color
python
open-mmlab/mmaction2
demo/demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_spatiotemporal_det.py
Apache-2.0
def visualize(frames, annotations, plate=plate_blue, max_num=5): """Visualize frames with predicted annotations. Args: frames (list[np.ndarray]): Frames for visualization, note that len(frames) % len(annotations) should be 0. annotations (list[list[tuple]]): The predicted results. plate (str): The plate used for visualization. Default: plate_blue. max_num (int): Max number of labels to visualize for a person box. Default: 5. Returns: list[np.ndarray]: Visualized frames. """ assert max_num + 1 <= len(plate) plate = [x[::-1] for x in plate] frames_out = cp.deepcopy(frames) nf, na = len(frames), len(annotations) assert nf % na == 0 nfpa = len(frames) // len(annotations) anno = None h, w, _ = frames[0].shape scale_ratio = np.array([w, h, w, h]) for i in range(na): anno = annotations[i] if anno is None: continue for j in range(nfpa): ind = i * nfpa + j frame = frames_out[ind] for ann in anno: box = ann[0] label = ann[1] if not len(label): continue score = ann[2] box = (box * scale_ratio).astype(np.int64) st, ed = tuple(box[:2]), tuple(box[2:]) cv2.rectangle(frame, st, ed, plate[0], 2) for k, lb in enumerate(label): if k >= max_num: break text = abbrev(lb) text = ': '.join([text, f'{score[k]:>.2f}']) location = (0 + st[0], 18 + k * 18 + st[1]) textsize = cv2.getTextSize(text, FONTFACE, FONTSCALE, THICKNESS)[0] textwidth = textsize[0] diag0 = (location[0] + textwidth, location[1] - 14) diag1 = (location[0], location[1] + 2) cv2.rectangle(frame, diag0, diag1, plate[k + 1], -1) cv2.putText(frame, text, location, FONTFACE, FONTSCALE, FONTCOLOR, THICKNESS, LINETYPE) return frames_out
Visualize frames with predicted annotations. Args: frames (list[np.ndarray]): Frames for visualization, note that len(frames) % len(annotations) should be 0. annotations (list[list[tuple]]): The predicted results. plate (str): The plate used for visualization. Default: plate_blue. max_num (int): Max number of labels to visualize for a person box. Default: 5. Returns: list[np.ndarray]: Visualized frames.
visualize
python
open-mmlab/mmaction2
demo/demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_spatiotemporal_det.py
Apache-2.0
def load_label_map(file_path): """Load Label Map. Args: file_path (str): The file path of label map. Returns: dict: The label map (int -> label name). """ lines = open(file_path).readlines() lines = [x.strip().split(': ') for x in lines] return {int(x[0]): x[1] for x in lines}
Load Label Map. Args: file_path (str): The file path of label map. Returns: dict: The label map (int -> label name).
load_label_map
python
open-mmlab/mmaction2
demo/demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_spatiotemporal_det.py
Apache-2.0
def abbrev(name): """Get the abbreviation of label name: 'take (an object) from (a person)' -> 'take ... from ...' """ while name.find('(') != -1: st, ed = name.find('('), name.find(')') name = name[:st] + '...' + name[ed + 1:] return name
Get the abbreviation of label name: 'take (an object) from (a person)' -> 'take ... from ...'
abbrev
python
open-mmlab/mmaction2
demo/demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_spatiotemporal_det.py
Apache-2.0
def pack_result(human_detection, result, img_h, img_w): """Short summary. Args: human_detection (np.ndarray): Human detection result. result (type): The predicted label of each human proposal. img_h (int): The image height. img_w (int): The image width. Returns: tuple: Tuple of human proposal, label name and label score. """ human_detection[:, 0::2] /= img_w human_detection[:, 1::2] /= img_h results = [] if result is None: return None for prop, res in zip(human_detection, result): res.sort(key=lambda x: -x[1]) results.append( (prop.data.cpu().numpy(), [x[0] for x in res], [x[1] for x in res])) return results
Short summary. Args: human_detection (np.ndarray): Human detection result. result (type): The predicted label of each human proposal. img_h (int): The image height. img_w (int): The image width. Returns: tuple: Tuple of human proposal, label name and label score.
pack_result
python
open-mmlab/mmaction2
demo/demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_spatiotemporal_det.py
Apache-2.0
def dense_timestamps(timestamps, n): """Make it nx frames.""" old_frame_interval = (timestamps[1] - timestamps[0]) start = timestamps[0] - old_frame_interval / n * (n - 1) / 2 new_frame_inds = np.arange( len(timestamps) * n) * old_frame_interval / n + start return new_frame_inds.astype(np.int64)
Make it nx frames.
main.dense_timestamps
python
open-mmlab/mmaction2
demo/demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_spatiotemporal_det.py
Apache-2.0
def main(): args = parse_args() tmp_dir = tempfile.TemporaryDirectory() frame_paths, original_frames = frame_extract( args.video, out_dir=tmp_dir.name) num_frame = len(frame_paths) h, w, _ = original_frames[0].shape # resize frames to shortside new_w, new_h = mmcv.rescale_size((w, h), (args.short_side, np.Inf)) frames = [mmcv.imresize(img, (new_w, new_h)) for img in original_frames] w_ratio, h_ratio = new_w / w, new_h / h # Get clip_len, frame_interval and calculate center index of each clip config = mmengine.Config.fromfile(args.config) config.merge_from_dict(args.cfg_options) val_pipeline = config.val_pipeline sampler = [ x for x in val_pipeline if get_str_type(x['type']) == 'SampleAVAFrames' ][0] clip_len, frame_interval = sampler['clip_len'], sampler['frame_interval'] window_size = clip_len * frame_interval assert clip_len % 2 == 0, 'We would like to have an even clip_len' # Note that it's 1 based here timestamps = np.arange(window_size // 2, num_frame + 1 - window_size // 2, args.predict_stepsize) # Load label_map label_map = load_label_map(args.label_map) try: if config['data']['train']['custom_classes'] is not None: label_map = { id + 1: label_map[cls] for id, cls in enumerate(config['data']['train'] ['custom_classes']) } except KeyError: pass # Get Human detection results center_frames = [frame_paths[ind - 1] for ind in timestamps] human_detections, _ = detection_inference(args.det_config, args.det_checkpoint, center_frames, args.det_score_thr, args.det_cat_id, args.device) torch.cuda.empty_cache() for i in range(len(human_detections)): det = human_detections[i] det[:, 0:4:2] *= w_ratio det[:, 1:4:2] *= h_ratio human_detections[i] = torch.from_numpy(det[:, :4]).to(args.device) # Build STDET model try: # In our spatiotemporal detection demo, different actions should have # the same number of bboxes. config['model']['test_cfg']['rcnn'] = dict(action_thr=0) except KeyError: pass config.model.backbone.pretrained = None model = MODELS.build(config.model) load_checkpoint(model, args.checkpoint, map_location='cpu') model.to(args.device) model.eval() predictions = [] img_norm_cfg = dict( mean=np.array(config.model.data_preprocessor.mean), std=np.array(config.model.data_preprocessor.std), to_rgb=False) print('Performing SpatioTemporal Action Detection for each clip') assert len(timestamps) == len(human_detections) prog_bar = mmengine.ProgressBar(len(timestamps)) for timestamp, proposal in zip(timestamps, human_detections): if proposal.shape[0] == 0: predictions.append(None) continue start_frame = timestamp - (clip_len // 2 - 1) * frame_interval frame_inds = start_frame + np.arange(0, window_size, frame_interval) frame_inds = list(frame_inds - 1) imgs = [frames[ind].astype(np.float32) for ind in frame_inds] _ = [mmcv.imnormalize_(img, **img_norm_cfg) for img in imgs] # THWC -> CTHW -> 1CTHW input_array = np.stack(imgs).transpose((3, 0, 1, 2))[np.newaxis] input_tensor = torch.from_numpy(input_array).to(args.device) datasample = ActionDataSample() datasample.proposals = InstanceData(bboxes=proposal) datasample.set_metainfo(dict(img_shape=(new_h, new_w))) with torch.no_grad(): result = model(input_tensor, [datasample], mode='predict') scores = result[0].pred_instances.scores prediction = [] # N proposals for i in range(proposal.shape[0]): prediction.append([]) # Perform action score thr for i in range(scores.shape[1]): if i not in label_map: continue for j in range(proposal.shape[0]): if scores[j, i] > args.action_score_thr: prediction[j].append((label_map[i], scores[j, i].item())) predictions.append(prediction) prog_bar.update() results = [] for human_detection, prediction in zip(human_detections, predictions): results.append(pack_result(human_detection, prediction, new_h, new_w)) def dense_timestamps(timestamps, n): """Make it nx frames.""" old_frame_interval = (timestamps[1] - timestamps[0]) start = timestamps[0] - old_frame_interval / n * (n - 1) / 2 new_frame_inds = np.arange( len(timestamps) * n) * old_frame_interval / n + start return new_frame_inds.astype(np.int64) dense_n = int(args.predict_stepsize / args.output_stepsize) frames = [ cv2.imread(frame_paths[i - 1]) for i in dense_timestamps(timestamps, dense_n) ] print('Performing visualization') vis_frames = visualize(frames, results) vid = mpy.ImageSequenceClip([x[:, :, ::-1] for x in vis_frames], fps=args.output_fps) vid.write_videofile(args.out_filename) tmp_dir.cleanup()
Make it nx frames.
main
python
open-mmlab/mmaction2
demo/demo_spatiotemporal_det.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_spatiotemporal_det.py
Apache-2.0
def get_output( video_path: str, out_filename: str, data_sample: str, labels: list, fps: int = 30, font_scale: Optional[str] = None, font_color: str = 'white', target_resolution: Optional[Tuple[int]] = None, ) -> None: """Get demo output using ``moviepy``. This function will generate video file or gif file from raw video or frames, by using ``moviepy``. For more information of some parameters, you can refer to: https://github.com/Zulko/moviepy. Args: video_path (str): The video file path. out_filename (str): Output filename for the generated file. datasample (str): Predicted label of the generated file. labels (list): Label list of current dataset. fps (int): Number of picture frames to read per second. Defaults to 30. font_scale (float): Font scale of the text. Defaults to None. font_color (str): Font color of the text. Defaults to ``white``. target_resolution (Tuple[int], optional): Set to (desired_width desired_height) to have resized frames. If either dimension is None, the frames are resized by keeping the existing aspect ratio. Defaults to None. """ if video_path.startswith(('http://', 'https://')): raise NotImplementedError # init visualizer out_type = 'gif' if osp.splitext(out_filename)[1] == '.gif' else 'video' visualizer = ActionVisualizer() visualizer.dataset_meta = dict(classes=labels) text_cfg = {'colors': font_color} if font_scale is not None: text_cfg.update({'font_sizes': font_scale}) visualizer.add_datasample( out_filename, video_path, data_sample, draw_pred=True, draw_gt=False, text_cfg=text_cfg, fps=fps, out_type=out_type, out_path=osp.join('demo', out_filename), target_resolution=target_resolution)
Get demo output using ``moviepy``. This function will generate video file or gif file from raw video or frames, by using ``moviepy``. For more information of some parameters, you can refer to: https://github.com/Zulko/moviepy. Args: video_path (str): The video file path. out_filename (str): Output filename for the generated file. datasample (str): Predicted label of the generated file. labels (list): Label list of current dataset. fps (int): Number of picture frames to read per second. Defaults to 30. font_scale (float): Font scale of the text. Defaults to None. font_color (str): Font color of the text. Defaults to ``white``. target_resolution (Tuple[int], optional): Set to (desired_width desired_height) to have resized frames. If either dimension is None, the frames are resized by keeping the existing aspect ratio. Defaults to None.
get_output
python
open-mmlab/mmaction2
demo/demo.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo.py
Apache-2.0
def hex2color(h): """Convert the 6-digit hex string to tuple of 3 int value (RGB)""" return (int(h[:2], 16), int(h[2:4], 16), int(h[4:], 16))
Convert the 6-digit hex string to tuple of 3 int value (RGB)
hex2color
python
open-mmlab/mmaction2
demo/demo_spatiotemporal_det_onnx.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_spatiotemporal_det_onnx.py
Apache-2.0
def visualize(frames, annotations, plate=plate_blue, max_num=5): """Visualize frames with predicted annotations. Args: frames (list[np.ndarray]): Frames for visualization, note that len(frames) % len(annotations) should be 0. annotations (list[list[tuple]]): The predicted results. plate (str): The plate used for visualization. Default: plate_blue. max_num (int): Max number of labels to visualize for a person box. Default: 5. Returns: list[np.ndarray]: Visualized frames. """ assert max_num + 1 <= len(plate) plate = [x[::-1] for x in plate] frames_out = cp.deepcopy(frames) nf, na = len(frames), len(annotations) assert nf % na == 0 nfpa = len(frames) // len(annotations) anno = None h, w, _ = frames[0].shape scale_ratio = np.array([w, h, w, h]) for i in range(na): anno = annotations[i] if anno is None: continue for j in range(nfpa): ind = i * nfpa + j frame = frames_out[ind] for ann in anno: box = ann[0] label = ann[1] if not len(label): continue score = ann[2] box = (box * scale_ratio).astype(np.int64) st, ed = tuple(box[:2]), tuple(box[2:]) cv2.rectangle(frame, st, ed, plate[0], 2) for k, lb in enumerate(label): if k >= max_num: break text = abbrev(lb) text = ': '.join([text, str(score[k])]) location = (0 + st[0], 18 + k * 18 + st[1]) textsize = cv2.getTextSize(text, FONTFACE, FONTSCALE, THICKNESS)[0] textwidth = textsize[0] diag0 = (location[0] + textwidth, location[1] - 14) diag1 = (location[0], location[1] + 2) cv2.rectangle(frame, diag0, diag1, plate[k + 1], -1) cv2.putText(frame, text, location, FONTFACE, FONTSCALE, FONTCOLOR, THICKNESS, LINETYPE) return frames_out
Visualize frames with predicted annotations. Args: frames (list[np.ndarray]): Frames for visualization, note that len(frames) % len(annotations) should be 0. annotations (list[list[tuple]]): The predicted results. plate (str): The plate used for visualization. Default: plate_blue. max_num (int): Max number of labels to visualize for a person box. Default: 5. Returns: list[np.ndarray]: Visualized frames.
visualize
python
open-mmlab/mmaction2
demo/demo_spatiotemporal_det_onnx.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_spatiotemporal_det_onnx.py
Apache-2.0
def load_label_map(file_path): """Load Label Map. Args: file_path (str): The file path of label map. Returns: dict: The label map (int -> label name). """ lines = open(file_path).readlines() lines = [x.strip().split(': ') for x in lines] return {int(x[0]): x[1] for x in lines}
Load Label Map. Args: file_path (str): The file path of label map. Returns: dict: The label map (int -> label name).
load_label_map
python
open-mmlab/mmaction2
demo/demo_spatiotemporal_det_onnx.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_spatiotemporal_det_onnx.py
Apache-2.0
def abbrev(name): """Get the abbreviation of label name: 'take (an object) from (a person)' -> 'take ... from ...' """ while name.find('(') != -1: st, ed = name.find('('), name.find(')') name = name[:st] + '...' + name[ed + 1:] return name
Get the abbreviation of label name: 'take (an object) from (a person)' -> 'take ... from ...'
abbrev
python
open-mmlab/mmaction2
demo/demo_spatiotemporal_det_onnx.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_spatiotemporal_det_onnx.py
Apache-2.0
def pack_result(human_detection, result, img_h, img_w): """Short summary. Args: human_detection (np.ndarray): Human detection result. result (type): The predicted label of each human proposal. img_h (int): The image height. img_w (int): The image width. Returns: tuple: Tuple of human proposal, label name and label score. """ human_detection[:, 0::2] /= img_w human_detection[:, 1::2] /= img_h results = [] if result is None: return None for prop, res in zip(human_detection, result): res.sort(key=lambda x: -x[1]) results.append( (prop.data.cpu().numpy(), [x[0] for x in res], [x[1] for x in res])) return results
Short summary. Args: human_detection (np.ndarray): Human detection result. result (type): The predicted label of each human proposal. img_h (int): The image height. img_w (int): The image width. Returns: tuple: Tuple of human proposal, label name and label score.
pack_result
python
open-mmlab/mmaction2
demo/demo_spatiotemporal_det_onnx.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_spatiotemporal_det_onnx.py
Apache-2.0
def dense_timestamps(timestamps, n): """Make it nx frames.""" old_frame_interval = (timestamps[1] - timestamps[0]) start = timestamps[0] - old_frame_interval / n * (n - 1) / 2 new_frame_inds = np.arange( len(timestamps) * n) * old_frame_interval / n + start return new_frame_inds.astype(np.int64)
Make it nx frames.
main.dense_timestamps
python
open-mmlab/mmaction2
demo/demo_spatiotemporal_det_onnx.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_spatiotemporal_det_onnx.py
Apache-2.0
def main(): args = parse_args() tmp_dir = tempfile.TemporaryDirectory() frame_paths, original_frames = frame_extract( args.video, out_dir=tmp_dir.name) num_frame = len(frame_paths) h, w, _ = original_frames[0].shape # resize frames to shortside new_w, new_h = mmcv.rescale_size((w, h), (args.short_side, np.Inf)) frames = [mmcv.imresize(img, (new_w, new_h)) for img in original_frames] w_ratio, h_ratio = new_w / w, new_h / h # Get clip_len, frame_interval and calculate center index of each clip config = mmengine.Config.fromfile(args.config) config.merge_from_dict(args.cfg_options) val_pipeline = config.val_pipeline sampler = [ x for x in val_pipeline if get_str_type(x['type']) == 'SampleAVAFrames' ][0] clip_len, frame_interval = sampler['clip_len'], sampler['frame_interval'] window_size = clip_len * frame_interval assert clip_len % 2 == 0, 'We would like to have an even clip_len' # Note that it's 1 based here timestamps = np.arange(window_size // 2, num_frame + 1 - window_size // 2, args.predict_stepsize) # Load label_map label_map = load_label_map(args.label_map) try: if config['data']['train']['custom_classes'] is not None: label_map = { id + 1: label_map[cls] for id, cls in enumerate(config['data']['train'] ['custom_classes']) } except KeyError: pass # Get Human detection results center_frames = [frame_paths[ind - 1] for ind in timestamps] human_detections, _ = detection_inference(args.det_config, args.det_checkpoint, center_frames, args.det_score_thr, args.det_cat_id, args.device) torch.cuda.empty_cache() for i in range(len(human_detections)): det = human_detections[i] det[:, 0:4:2] *= w_ratio det[:, 1:4:2] *= h_ratio human_detections[i] = torch.from_numpy(det[:, :4]).to(args.device) # Build STDET model session = onnxruntime.InferenceSession(args.onnx_file) predictions = [] img_norm_cfg = dict( mean=np.array(config.model.data_preprocessor.mean), std=np.array(config.model.data_preprocessor.std), to_rgb=False) print('Performing SpatioTemporal Action Detection for each clip') assert len(timestamps) == len(human_detections) prog_bar = mmengine.ProgressBar(len(timestamps)) for timestamp, proposal in zip(timestamps, human_detections): if proposal.shape[0] == 0: predictions.append(None) continue start_frame = timestamp - (clip_len // 2 - 1) * frame_interval frame_inds = start_frame + np.arange(0, window_size, frame_interval) frame_inds = list(frame_inds - 1) imgs = [frames[ind].astype(np.float32) for ind in frame_inds] _ = [mmcv.imnormalize_(img, **img_norm_cfg) for img in imgs] # THWC -> CTHW -> 1CTHW input_array = np.stack(imgs).transpose((3, 0, 1, 2))[np.newaxis] rois = bbox2roi([proposal]) input_feed = { 'input_tensor': input_array, 'rois': rois.cpu().data.numpy() } outputs = session.run(['cls_score'], input_feed=input_feed) logits = outputs[0] scores = 1 / (1 + np.exp(-logits)) prediction = [] # N proposals for i in range(proposal.shape[0]): prediction.append([]) # Perform action score thr for i in range(scores.shape[1]): if i not in label_map: continue for j in range(proposal.shape[0]): if scores[j, i] > args.action_score_thr: prediction[j].append((label_map[i], scores[j, i].item())) predictions.append(prediction) prog_bar.update() results = [] for human_detection, prediction in zip(human_detections, predictions): results.append(pack_result(human_detection, prediction, new_h, new_w)) def dense_timestamps(timestamps, n): """Make it nx frames.""" old_frame_interval = (timestamps[1] - timestamps[0]) start = timestamps[0] - old_frame_interval / n * (n - 1) / 2 new_frame_inds = np.arange( len(timestamps) * n) * old_frame_interval / n + start return new_frame_inds.astype(np.int64) dense_n = int(args.predict_stepsize / args.output_stepsize) frames = [ cv2.imread(frame_paths[i - 1]) for i in dense_timestamps(timestamps, dense_n) ] print('Performing visualization') vis_frames = visualize(frames, results) vid = mpy.ImageSequenceClip([x[:, :, ::-1] for x in vis_frames], fps=args.output_fps) vid.write_videofile(args.out_filename) tmp_dir.cleanup()
Make it nx frames.
main
python
open-mmlab/mmaction2
demo/demo_spatiotemporal_det_onnx.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_spatiotemporal_det_onnx.py
Apache-2.0
def hex2color(h): """Convert the 6-digit hex string to tuple of 3 int value (RGB)""" return (int(h[:2], 16), int(h[2:4], 16), int(h[4:], 16))
Convert the 6-digit hex string to tuple of 3 int value (RGB)
hex2color
python
open-mmlab/mmaction2
demo/demo_video_structuralize.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_video_structuralize.py
Apache-2.0
def visualize(args, frames, annotations, pose_data_samples, action_result, plate=PLATEBLUE, max_num=5): """Visualize frames with predicted annotations. Args: frames (list[np.ndarray]): Frames for visualization, note that len(frames) % len(annotations) should be 0. annotations (list[list[tuple]]): The predicted spatio-temporal detection results. pose_data_samples (list[list[PoseDataSample]): The pose results. action_result (str): The predicted action recognition results. pose_model (nn.Module): The constructed pose model. plate (str): The plate used for visualization. Default: PLATEBLUE. max_num (int): Max number of labels to visualize for a person box. Default: 5. Returns: list[np.ndarray]: Visualized frames. """ assert max_num + 1 <= len(plate) frames_ = cp.deepcopy(frames) frames_ = [mmcv.imconvert(f, 'bgr', 'rgb') for f in frames_] nf, na = len(frames), len(annotations) assert nf % na == 0 nfpa = len(frames) // len(annotations) anno = None h, w, _ = frames[0].shape scale_ratio = np.array([w, h, w, h]) # add pose results if pose_data_samples: pose_config = mmengine.Config.fromfile(args.pose_config) visualizer = VISUALIZERS.build(pose_config.visualizer) visualizer.set_dataset_meta(pose_data_samples[0].dataset_meta) for i, (d, f) in enumerate(zip(pose_data_samples, frames_)): visualizer.add_datasample( 'result', f, data_sample=d, draw_gt=False, draw_heatmap=False, draw_bbox=True, show=False, wait_time=0, out_file=None, kpt_thr=0.3) frames_[i] = visualizer.get_image() cv2.putText(frames_[i], action_result, (10, 30), FONTFACE, FONTSCALE, FONTCOLOR, THICKNESS, LINETYPE) for i in range(na): anno = annotations[i] if anno is None: continue for j in range(nfpa): ind = i * nfpa + j frame = frames_[ind] # add action result for whole video cv2.putText(frame, action_result, (10, 30), FONTFACE, FONTSCALE, FONTCOLOR, THICKNESS, LINETYPE) # add spatio-temporal action detection results for ann in anno: box = ann[0] label = ann[1] if not len(label): continue score = ann[2] box = (box * scale_ratio).astype(np.int64) st, ed = tuple(box[:2]), tuple(box[2:]) if not pose_data_samples: cv2.rectangle(frame, st, ed, plate[0], 2) for k, lb in enumerate(label): if k >= max_num: break text = abbrev(lb) text = ': '.join([text, f'{score[k]:.3f}']) location = (0 + st[0], 18 + k * 18 + st[1]) textsize = cv2.getTextSize(text, FONTFACE, FONTSCALE, THICKNESS)[0] textwidth = textsize[0] diag0 = (location[0] + textwidth, location[1] - 14) diag1 = (location[0], location[1] + 2) cv2.rectangle(frame, diag0, diag1, plate[k + 1], -1) cv2.putText(frame, text, location, FONTFACE, FONTSCALE, FONTCOLOR, THICKNESS, LINETYPE) return frames_
Visualize frames with predicted annotations. Args: frames (list[np.ndarray]): Frames for visualization, note that len(frames) % len(annotations) should be 0. annotations (list[list[tuple]]): The predicted spatio-temporal detection results. pose_data_samples (list[list[PoseDataSample]): The pose results. action_result (str): The predicted action recognition results. pose_model (nn.Module): The constructed pose model. plate (str): The plate used for visualization. Default: PLATEBLUE. max_num (int): Max number of labels to visualize for a person box. Default: 5. Returns: list[np.ndarray]: Visualized frames.
visualize
python
open-mmlab/mmaction2
demo/demo_video_structuralize.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_video_structuralize.py
Apache-2.0
def load_label_map(file_path): """Load Label Map. Args: file_path (str): The file path of label map. Returns: dict: The label map (int -> label name). """ lines = open(file_path).readlines() lines = [x.strip().split(': ') for x in lines] return {int(x[0]): x[1] for x in lines}
Load Label Map. Args: file_path (str): The file path of label map. Returns: dict: The label map (int -> label name).
load_label_map
python
open-mmlab/mmaction2
demo/demo_video_structuralize.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_video_structuralize.py
Apache-2.0
def abbrev(name): """Get the abbreviation of label name: 'take (an object) from (a person)' -> 'take ... from ...' """ while name.find('(') != -1: st, ed = name.find('('), name.find(')') name = name[:st] + '...' + name[ed + 1:] return name
Get the abbreviation of label name: 'take (an object) from (a person)' -> 'take ... from ...'
abbrev
python
open-mmlab/mmaction2
demo/demo_video_structuralize.py
https://github.com/open-mmlab/mmaction2/blob/master/demo/demo_video_structuralize.py
Apache-2.0