code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def english_cleaners(text): '''Pipeline for English text, including abbreviation expansion.''' text = convert_to_ascii(text) text = lowercase(text) text = expand_abbreviations(text) phonemes = phonemize(text, language='en-us', backend='espeak', strip=True) phonemes = collapse_whitespace(phonemes) return phonemes
Pipeline for English text, including abbreviation expansion.
english_cleaners
python
jaywalnut310/vits
text/cleaners.py
https://github.com/jaywalnut310/vits/blob/master/text/cleaners.py
MIT
def english_cleaners2(text): '''Pipeline for English text, including abbreviation expansion. + punctuation + stress''' text = convert_to_ascii(text) text = lowercase(text) text = expand_abbreviations(text) phonemes = phonemize(text, language='en-us', backend='espeak', strip=True, preserve_punctuation=True, with_stress=True) phonemes = collapse_whitespace(phonemes) return phonemes
Pipeline for English text, including abbreviation expansion. + punctuation + stress
english_cleaners2
python
jaywalnut310/vits
text/cleaners.py
https://github.com/jaywalnut310/vits/blob/master/text/cleaners.py
MIT
def text_to_sequence(text, cleaner_names): '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. Args: text: string to convert to a sequence cleaner_names: names of the cleaner functions to run the text through Returns: List of integers corresponding to the symbols in the text ''' sequence = [] clean_text = _clean_text(text, cleaner_names) for symbol in clean_text: symbol_id = _symbol_to_id[symbol] sequence += [symbol_id] return sequence
Converts a string of text to a sequence of IDs corresponding to the symbols in the text. Args: text: string to convert to a sequence cleaner_names: names of the cleaner functions to run the text through Returns: List of integers corresponding to the symbols in the text
text_to_sequence
python
jaywalnut310/vits
text/__init__.py
https://github.com/jaywalnut310/vits/blob/master/text/__init__.py
MIT
def cleaned_text_to_sequence(cleaned_text): '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. Args: text: string to convert to a sequence Returns: List of integers corresponding to the symbols in the text ''' sequence = [_symbol_to_id[symbol] for symbol in cleaned_text] return sequence
Converts a string of text to a sequence of IDs corresponding to the symbols in the text. Args: text: string to convert to a sequence Returns: List of integers corresponding to the symbols in the text
cleaned_text_to_sequence
python
jaywalnut310/vits
text/__init__.py
https://github.com/jaywalnut310/vits/blob/master/text/__init__.py
MIT
def sequence_to_text(sequence): '''Converts a sequence of IDs back to a string''' result = '' for symbol_id in sequence: s = _id_to_symbol[symbol_id] result += s return result
Converts a sequence of IDs back to a string
sequence_to_text
python
jaywalnut310/vits
text/__init__.py
https://github.com/jaywalnut310/vits/blob/master/text/__init__.py
MIT
def __init__(self, features, activation, bn): """Init. Args: features (int): number of features """ super().__init__() self.bn = bn self.groups=1 self.conv1 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups ) self.conv2 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups ) if self.bn==True: self.bn1 = nn.BatchNorm2d(features) self.bn2 = nn.BatchNorm2d(features) self.activation = activation self.skip_add = nn.quantized.FloatFunctional()
Init. Args: features (int): number of features
__init__
python
LiheYoung/Depth-Anything
depth_anything/blocks.py
https://github.com/LiheYoung/Depth-Anything/blob/master/depth_anything/blocks.py
Apache-2.0
def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.activation(x) out = self.conv1(out) if self.bn==True: out = self.bn1(out) out = self.activation(out) out = self.conv2(out) if self.bn==True: out = self.bn2(out) if self.groups > 1: out = self.conv_merge(out) return self.skip_add.add(out, x)
Forward pass. Args: x (tensor): input Returns: tensor: output
forward
python
LiheYoung/Depth-Anything
depth_anything/blocks.py
https://github.com/LiheYoung/Depth-Anything/blob/master/depth_anything/blocks.py
Apache-2.0
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None): """Init. Args: features (int): number of features """ super(FeatureFusionBlock, self).__init__() self.deconv = deconv self.align_corners = align_corners self.groups=1 self.expand = expand out_features = features if self.expand==True: out_features = features//2 self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) self.resConfUnit1 = ResidualConvUnit(features, activation, bn) self.resConfUnit2 = ResidualConvUnit(features, activation, bn) self.skip_add = nn.quantized.FloatFunctional() self.size=size
Init. Args: features (int): number of features
__init__
python
LiheYoung/Depth-Anything
depth_anything/blocks.py
https://github.com/LiheYoung/Depth-Anything/blob/master/depth_anything/blocks.py
Apache-2.0
def forward(self, *xs, size=None): """Forward pass. Returns: tensor: output """ output = xs[0] if len(xs) == 2: res = self.resConfUnit1(xs[1]) output = self.skip_add.add(output, res) output = self.resConfUnit2(output) if (size is None) and (self.size is None): modifier = {"scale_factor": 2} elif size is None: modifier = {"size": self.size} else: modifier = {"size": size} output = nn.functional.interpolate( output, **modifier, mode="bilinear", align_corners=self.align_corners ) output = self.out_conv(output) return output
Forward pass. Returns: tensor: output
forward
python
LiheYoung/Depth-Anything
depth_anything/blocks.py
https://github.com/LiheYoung/Depth-Anything/blob/master/depth_anything/blocks.py
Apache-2.0
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA): """Rezise the sample to ensure the given size. Keeps aspect ratio. Args: sample (dict): sample size (tuple): image size Returns: tuple: new size """ shape = list(sample["disparity"].shape) if shape[0] >= size[0] and shape[1] >= size[1]: return sample scale = [0, 0] scale[0] = size[0] / shape[0] scale[1] = size[1] / shape[1] scale = max(scale) shape[0] = math.ceil(scale * shape[0]) shape[1] = math.ceil(scale * shape[1]) # resize sample["image"] = cv2.resize( sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method ) sample["disparity"] = cv2.resize( sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST ) sample["mask"] = cv2.resize( sample["mask"].astype(np.float32), tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST, ) sample["mask"] = sample["mask"].astype(bool) return tuple(shape)
Rezise the sample to ensure the given size. Keeps aspect ratio. Args: sample (dict): sample size (tuple): image size Returns: tuple: new size
apply_min_size
python
LiheYoung/Depth-Anything
depth_anything/util/transform.py
https://github.com/LiheYoung/Depth-Anything/blob/master/depth_anything/util/transform.py
Apache-2.0
def __init__( self, width, height, resize_target=True, keep_aspect_ratio=False, ensure_multiple_of=1, resize_method="lower_bound", image_interpolation_method=cv2.INTER_AREA, ): """Init. Args: width (int): desired output width height (int): desired output height resize_target (bool, optional): True: Resize the full sample (image, mask, target). False: Resize image only. Defaults to True. keep_aspect_ratio (bool, optional): True: Keep the aspect ratio of the input sample. Output sample might not have the given width and height, and resize behaviour depends on the parameter 'resize_method'. Defaults to False. ensure_multiple_of (int, optional): Output width and height is constrained to be multiple of this parameter. Defaults to 1. resize_method (str, optional): "lower_bound": Output will be at least as large as the given size. "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) "minimal": Scale as least as possible. (Output size might be smaller than given size.) Defaults to "lower_bound". """ self.__width = width self.__height = height self.__resize_target = resize_target self.__keep_aspect_ratio = keep_aspect_ratio self.__multiple_of = ensure_multiple_of self.__resize_method = resize_method self.__image_interpolation_method = image_interpolation_method
Init. Args: width (int): desired output width height (int): desired output height resize_target (bool, optional): True: Resize the full sample (image, mask, target). False: Resize image only. Defaults to True. keep_aspect_ratio (bool, optional): True: Keep the aspect ratio of the input sample. Output sample might not have the given width and height, and resize behaviour depends on the parameter 'resize_method'. Defaults to False. ensure_multiple_of (int, optional): Output width and height is constrained to be multiple of this parameter. Defaults to 1. resize_method (str, optional): "lower_bound": Output will be at least as large as the given size. "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) "minimal": Scale as least as possible. (Output size might be smaller than given size.) Defaults to "lower_bound".
__init__
python
LiheYoung/Depth-Anything
depth_anything/util/transform.py
https://github.com/LiheYoung/Depth-Anything/blob/master/depth_anything/util/transform.py
Apache-2.0
def fix_random_seed(seed: int): """ Fix random seed for reproducibility Args: seed (int): random seed """ import random import numpy import torch random.seed(seed) numpy.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False
Fix random seed for reproducibility Args: seed (int): random seed
fix_random_seed
python
LiheYoung/Depth-Anything
metric_depth/train_mix.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/train_mix.py
Apache-2.0
def infer(model, images, **kwargs): """Inference with flip augmentation""" # images.shape = N, C, H, W def get_depth_from_prediction(pred): if isinstance(pred, torch.Tensor): pred = pred # pass elif isinstance(pred, (list, tuple)): pred = pred[-1] elif isinstance(pred, dict): pred = pred['metric_depth'] if 'metric_depth' in pred else pred['out'] else: raise NotImplementedError(f"Unknown output type {type(pred)}") return pred pred1 = model(images, **kwargs) pred1 = get_depth_from_prediction(pred1) pred2 = model(torch.flip(images, [3]), **kwargs) pred2 = get_depth_from_prediction(pred2) pred2 = torch.flip(pred2, [3]) mean_pred = 0.5 * (pred1 + pred2) return mean_pred
Inference with flip augmentation
infer
python
LiheYoung/Depth-Anything
metric_depth/evaluate.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/evaluate.py
Apache-2.0
def build_model(config) -> DepthModel: """Builds a model from a config. The model is specified by the model name and version in the config. The model is then constructed using the build_from_config function of the model interface. This function should be used to construct models for training and evaluation. Args: config (dict): Config dict. Config is constructed in utils/config.py. Each model has its own config file(s) saved in its root model folder. Returns: torch.nn.Module: Model corresponding to name and version as specified in config """ module_name = f"zoedepth.models.{config.model}" try: module = import_module(module_name) except ModuleNotFoundError as e: # print the original error message print(e) raise ValueError( f"Model {config.model} not found. Refer above error for details.") from e try: get_version = getattr(module, "get_version") except AttributeError as e: raise ValueError( f"Model {config.model} has no get_version function.") from e return get_version(config.version_name).build_from_config(config)
Builds a model from a config. The model is specified by the model name and version in the config. The model is then constructed using the build_from_config function of the model interface. This function should be used to construct models for training and evaluation. Args: config (dict): Config dict. Config is constructed in utils/config.py. Each model has its own config file(s) saved in its root model folder. Returns: torch.nn.Module: Model corresponding to name and version as specified in config
build_model
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/builder.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/builder.py
Apache-2.0
def _infer(self, x: torch.Tensor): """ Inference interface for the model Args: x (torch.Tensor): input tensor of shape (b, c, h, w) Returns: torch.Tensor: output tensor of shape (b, 1, h, w) """ return self(x)['metric_depth']
Inference interface for the model Args: x (torch.Tensor): input tensor of shape (b, c, h, w) Returns: torch.Tensor: output tensor of shape (b, 1, h, w)
_infer
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/depth_model.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/depth_model.py
Apache-2.0
def _infer_with_pad_aug(self, x: torch.Tensor, pad_input: bool=True, fh: float=3, fw: float=3, upsampling_mode: str='bicubic', padding_mode="reflect", **kwargs) -> torch.Tensor: """ Inference interface for the model with padding augmentation Padding augmentation fixes the boundary artifacts in the output depth map. Boundary artifacts are sometimes caused by the fact that the model is trained on NYU raw dataset which has a black or white border around the image. This augmentation pads the input image and crops the prediction back to the original size / view. Note: This augmentation is not required for the models trained with 'avoid_boundary'=True. Args: x (torch.Tensor): input tensor of shape (b, c, h, w) pad_input (bool, optional): whether to pad the input or not. Defaults to True. fh (float, optional): height padding factor. The padding is calculated as sqrt(h/2) * fh. Defaults to 3. fw (float, optional): width padding factor. The padding is calculated as sqrt(w/2) * fw. Defaults to 3. upsampling_mode (str, optional): upsampling mode. Defaults to 'bicubic'. padding_mode (str, optional): padding mode. Defaults to "reflect". Returns: torch.Tensor: output tensor of shape (b, 1, h, w) """ # assert x is nchw and c = 3 assert x.dim() == 4, "x must be 4 dimensional, got {}".format(x.dim()) assert x.shape[1] == 3, "x must have 3 channels, got {}".format(x.shape[1]) if pad_input: assert fh > 0 or fw > 0, "atlease one of fh and fw must be greater than 0" pad_h = int(np.sqrt(x.shape[2]/2) * fh) pad_w = int(np.sqrt(x.shape[3]/2) * fw) padding = [pad_w, pad_w] if pad_h > 0: padding += [pad_h, pad_h] x = F.pad(x, padding, mode=padding_mode, **kwargs) out = self._infer(x) if out.shape[-2:] != x.shape[-2:]: out = F.interpolate(out, size=(x.shape[2], x.shape[3]), mode=upsampling_mode, align_corners=False) if pad_input: # crop to the original size, handling the case where pad_h and pad_w is 0 if pad_h > 0: out = out[:, :, pad_h:-pad_h,:] if pad_w > 0: out = out[:, :, :, pad_w:-pad_w] return out
Inference interface for the model with padding augmentation Padding augmentation fixes the boundary artifacts in the output depth map. Boundary artifacts are sometimes caused by the fact that the model is trained on NYU raw dataset which has a black or white border around the image. This augmentation pads the input image and crops the prediction back to the original size / view. Note: This augmentation is not required for the models trained with 'avoid_boundary'=True. Args: x (torch.Tensor): input tensor of shape (b, c, h, w) pad_input (bool, optional): whether to pad the input or not. Defaults to True. fh (float, optional): height padding factor. The padding is calculated as sqrt(h/2) * fh. Defaults to 3. fw (float, optional): width padding factor. The padding is calculated as sqrt(w/2) * fw. Defaults to 3. upsampling_mode (str, optional): upsampling mode. Defaults to 'bicubic'. padding_mode (str, optional): padding mode. Defaults to "reflect". Returns: torch.Tensor: output tensor of shape (b, 1, h, w)
_infer_with_pad_aug
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/depth_model.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/depth_model.py
Apache-2.0
def infer_with_flip_aug(self, x, pad_input: bool=True, **kwargs) -> torch.Tensor: """ Inference interface for the model with horizontal flip augmentation Horizontal flip augmentation improves the accuracy of the model by averaging the output of the model with and without horizontal flip. Args: x (torch.Tensor): input tensor of shape (b, c, h, w) pad_input (bool, optional): whether to use padding augmentation. Defaults to True. Returns: torch.Tensor: output tensor of shape (b, 1, h, w) """ # infer with horizontal flip and average out = self._infer_with_pad_aug(x, pad_input=pad_input, **kwargs) out_flip = self._infer_with_pad_aug(torch.flip(x, dims=[3]), pad_input=pad_input, **kwargs) out = (out + torch.flip(out_flip, dims=[3])) / 2 return out
Inference interface for the model with horizontal flip augmentation Horizontal flip augmentation improves the accuracy of the model by averaging the output of the model with and without horizontal flip. Args: x (torch.Tensor): input tensor of shape (b, c, h, w) pad_input (bool, optional): whether to use padding augmentation. Defaults to True. Returns: torch.Tensor: output tensor of shape (b, 1, h, w)
infer_with_flip_aug
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/depth_model.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/depth_model.py
Apache-2.0
def infer(self, x, pad_input: bool=True, with_flip_aug: bool=True, **kwargs) -> torch.Tensor: """ Inference interface for the model Args: x (torch.Tensor): input tensor of shape (b, c, h, w) pad_input (bool, optional): whether to use padding augmentation. Defaults to True. with_flip_aug (bool, optional): whether to use horizontal flip augmentation. Defaults to True. Returns: torch.Tensor: output tensor of shape (b, 1, h, w) """ if with_flip_aug: return self.infer_with_flip_aug(x, pad_input=pad_input, **kwargs) else: return self._infer_with_pad_aug(x, pad_input=pad_input, **kwargs)
Inference interface for the model Args: x (torch.Tensor): input tensor of shape (b, c, h, w) pad_input (bool, optional): whether to use padding augmentation. Defaults to True. with_flip_aug (bool, optional): whether to use horizontal flip augmentation. Defaults to True. Returns: torch.Tensor: output tensor of shape (b, 1, h, w)
infer
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/depth_model.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/depth_model.py
Apache-2.0
def infer_pil(self, pil_img, pad_input: bool=True, with_flip_aug: bool=True, output_type: str="numpy", **kwargs) -> Union[np.ndarray, PIL.Image.Image, torch.Tensor]: """ Inference interface for the model for PIL image Args: pil_img (PIL.Image.Image): input PIL image pad_input (bool, optional): whether to use padding augmentation. Defaults to True. with_flip_aug (bool, optional): whether to use horizontal flip augmentation. Defaults to True. output_type (str, optional): output type. Supported values are 'numpy', 'pil' and 'tensor'. Defaults to "numpy". """ x = transforms.ToTensor()(pil_img).unsqueeze(0).to(self.device) out_tensor = self.infer(x, pad_input=pad_input, with_flip_aug=with_flip_aug, **kwargs) if output_type == "numpy": return out_tensor.squeeze().cpu().numpy() elif output_type == "pil": # uint16 is required for depth pil image out_16bit_numpy = (out_tensor.squeeze().cpu().numpy()*256).astype(np.uint16) return Image.fromarray(out_16bit_numpy) elif output_type == "tensor": return out_tensor.squeeze().cpu() else: raise ValueError(f"output_type {output_type} not supported. Supported values are 'numpy', 'pil' and 'tensor'")
Inference interface for the model for PIL image Args: pil_img (PIL.Image.Image): input PIL image pad_input (bool, optional): whether to use padding augmentation. Defaults to True. with_flip_aug (bool, optional): whether to use horizontal flip augmentation. Defaults to True. output_type (str, optional): output type. Supported values are 'numpy', 'pil' and 'tensor'. Defaults to "numpy".
infer_pil
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/depth_model.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/depth_model.py
Apache-2.0
def load_state_dict(model, state_dict): """Load state_dict into model, handling DataParallel and DistributedDataParallel. Also checks for "model" key in state_dict. DataParallel prefixes state_dict keys with 'module.' when saving. If the model is not a DataParallel model but the state_dict is, then prefixes are removed. If the model is a DataParallel model but the state_dict is not, then prefixes are added. """ state_dict = state_dict.get('model', state_dict) # if model is a DataParallel model, then state_dict keys are prefixed with 'module.' do_prefix = isinstance( model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)) state = {} for k, v in state_dict.items(): if k.startswith('module.') and not do_prefix: k = k[7:] if not k.startswith('module.') and do_prefix: k = 'module.' + k state[k] = v model.load_state_dict(state) print("Loaded successfully") return model
Load state_dict into model, handling DataParallel and DistributedDataParallel. Also checks for "model" key in state_dict. DataParallel prefixes state_dict keys with 'module.' when saving. If the model is not a DataParallel model but the state_dict is, then prefixes are removed. If the model is a DataParallel model but the state_dict is not, then prefixes are added.
load_state_dict
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/model_io.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/model_io.py
Apache-2.0
def load_state_from_resource(model, resource: str): """Loads weights to the model from a given resource. A resource can be of following types: 1. URL. Prefixed with "url::" e.g. url::http(s)://url.resource.com/ckpt.pt 2. Local path. Prefixed with "local::" e.g. local::/path/to/ckpt.pt Args: model (torch.nn.Module): Model resource (str): resource string Returns: torch.nn.Module: Model with loaded weights """ print(f"Using pretrained resource {resource}") if resource.startswith('url::'): url = resource.split('url::')[1] return load_state_dict_from_url(model, url, progress=True) elif resource.startswith('local::'): path = resource.split('local::')[1] return load_wts(model, path) else: raise ValueError("Invalid resource type, only url:: and local:: are supported")
Loads weights to the model from a given resource. A resource can be of following types: 1. URL. Prefixed with "url::" e.g. url::http(s)://url.resource.com/ckpt.pt 2. Local path. Prefixed with "local::" e.g. local::/path/to/ckpt.pt Args: model (torch.nn.Module): Model resource (str): resource string Returns: torch.nn.Module: Model with loaded weights
load_state_from_resource
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/model_io.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/model_io.py
Apache-2.0
def __init__(self, core, n_bins=64, bin_centers_type="softplus", bin_embedding_dim=128, min_depth=1e-3, max_depth=10, n_attractors=[16, 8, 4, 1], attractor_alpha=300, attractor_gamma=2, attractor_kind='sum', attractor_type='exp', min_temp=5, max_temp=50, train_midas=True, midas_lr_factor=10, encoder_lr_factor=10, pos_enc_lr_factor=10, inverse_midas=False, **kwargs): """ZoeDepth model. This is the version of ZoeDepth that has a single metric head Args: core (models.base_models.midas.MidasCore): The base midas model that is used for extraction of "relative" features n_bins (int, optional): Number of bin centers. Defaults to 64. bin_centers_type (str, optional): "normed" or "softplus". Activation type used for bin centers. For "normed" bin centers, linear normalization trick is applied. This results in bounded bin centers. For "softplus", softplus activation is used and thus are unbounded. Defaults to "softplus". bin_embedding_dim (int, optional): bin embedding dimension. Defaults to 128. min_depth (float, optional): Lower bound for normed bin centers. Defaults to 1e-3. max_depth (float, optional): Upper bound for normed bin centers. Defaults to 10. n_attractors (List[int], optional): Number of bin attractors at decoder layers. Defaults to [16, 8, 4, 1]. attractor_alpha (int, optional): Proportional attractor strength. Refer to models.layers.attractor for more details. Defaults to 300. attractor_gamma (int, optional): Exponential attractor strength. Refer to models.layers.attractor for more details. Defaults to 2. attractor_kind (str, optional): Attraction aggregation "sum" or "mean". Defaults to 'sum'. attractor_type (str, optional): Type of attractor to use; "inv" (Inverse attractor) or "exp" (Exponential attractor). Defaults to 'exp'. min_temp (int, optional): Lower bound for temperature of output probability distribution. Defaults to 5. max_temp (int, optional): Upper bound for temperature of output probability distribution. Defaults to 50. train_midas (bool, optional): Whether to train "core", the base midas model. Defaults to True. midas_lr_factor (int, optional): Learning rate reduction factor for base midas model except its encoder and positional encodings. Defaults to 10. encoder_lr_factor (int, optional): Learning rate reduction factor for the encoder in midas model. Defaults to 10. pos_enc_lr_factor (int, optional): Learning rate reduction factor for positional encodings in the base midas model. Defaults to 10. """ super().__init__() self.core = core self.max_depth = max_depth self.min_depth = min_depth self.min_temp = min_temp self.bin_centers_type = bin_centers_type self.midas_lr_factor = midas_lr_factor self.encoder_lr_factor = encoder_lr_factor self.pos_enc_lr_factor = pos_enc_lr_factor self.train_midas = train_midas self.inverse_midas = inverse_midas if self.encoder_lr_factor <= 0: self.core.freeze_encoder( freeze_rel_pos=self.pos_enc_lr_factor <= 0) N_MIDAS_OUT = 32 btlnck_features = self.core.output_channels[0] num_out_features = self.core.output_channels[1:] # print('core output channels:', self.core.output_channels) self.conv2 = nn.Conv2d(btlnck_features, btlnck_features, kernel_size=1, stride=1, padding=0) # btlnck conv if bin_centers_type == "normed": SeedBinRegressorLayer = SeedBinRegressor Attractor = AttractorLayer elif bin_centers_type == "softplus": SeedBinRegressorLayer = SeedBinRegressorUnnormed Attractor = AttractorLayerUnnormed elif bin_centers_type == "hybrid1": SeedBinRegressorLayer = SeedBinRegressor Attractor = AttractorLayerUnnormed elif bin_centers_type == "hybrid2": SeedBinRegressorLayer = SeedBinRegressorUnnormed Attractor = AttractorLayer else: raise ValueError( "bin_centers_type should be one of 'normed', 'softplus', 'hybrid1', 'hybrid2'") self.seed_bin_regressor = SeedBinRegressorLayer( btlnck_features, n_bins=n_bins, min_depth=min_depth, max_depth=max_depth) self.seed_projector = Projector(btlnck_features, bin_embedding_dim) self.projectors = nn.ModuleList([ Projector(num_out, bin_embedding_dim) for num_out in num_out_features ]) self.attractors = nn.ModuleList([ Attractor(bin_embedding_dim, n_bins, n_attractors=n_attractors[i], min_depth=min_depth, max_depth=max_depth, alpha=attractor_alpha, gamma=attractor_gamma, kind=attractor_kind, attractor_type=attractor_type) for i in range(len(num_out_features)) ]) last_in = N_MIDAS_OUT + 1 # +1 for relative depth # use log binomial instead of softmax self.conditional_log_binomial = ConditionalLogBinomial( last_in, bin_embedding_dim, n_classes=n_bins, min_temp=min_temp, max_temp=max_temp)
ZoeDepth model. This is the version of ZoeDepth that has a single metric head Args: core (models.base_models.midas.MidasCore): The base midas model that is used for extraction of "relative" features n_bins (int, optional): Number of bin centers. Defaults to 64. bin_centers_type (str, optional): "normed" or "softplus". Activation type used for bin centers. For "normed" bin centers, linear normalization trick is applied. This results in bounded bin centers. For "softplus", softplus activation is used and thus are unbounded. Defaults to "softplus". bin_embedding_dim (int, optional): bin embedding dimension. Defaults to 128. min_depth (float, optional): Lower bound for normed bin centers. Defaults to 1e-3. max_depth (float, optional): Upper bound for normed bin centers. Defaults to 10. n_attractors (List[int], optional): Number of bin attractors at decoder layers. Defaults to [16, 8, 4, 1]. attractor_alpha (int, optional): Proportional attractor strength. Refer to models.layers.attractor for more details. Defaults to 300. attractor_gamma (int, optional): Exponential attractor strength. Refer to models.layers.attractor for more details. Defaults to 2. attractor_kind (str, optional): Attraction aggregation "sum" or "mean". Defaults to 'sum'. attractor_type (str, optional): Type of attractor to use; "inv" (Inverse attractor) or "exp" (Exponential attractor). Defaults to 'exp'. min_temp (int, optional): Lower bound for temperature of output probability distribution. Defaults to 5. max_temp (int, optional): Upper bound for temperature of output probability distribution. Defaults to 50. train_midas (bool, optional): Whether to train "core", the base midas model. Defaults to True. midas_lr_factor (int, optional): Learning rate reduction factor for base midas model except its encoder and positional encodings. Defaults to 10. encoder_lr_factor (int, optional): Learning rate reduction factor for the encoder in midas model. Defaults to 10. pos_enc_lr_factor (int, optional): Learning rate reduction factor for positional encodings in the base midas model. Defaults to 10.
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/zoedepth/zoedepth_v1.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/zoedepth/zoedepth_v1.py
Apache-2.0
def forward(self, x, return_final_centers=False, denorm=False, return_probs=False, **kwargs): """ Args: x (torch.Tensor): Input image tensor of shape (B, C, H, W) return_final_centers (bool, optional): Whether to return the final bin centers. Defaults to False. denorm (bool, optional): Whether to denormalize the input image. This reverses ImageNet normalization as midas normalization is different. Defaults to False. return_probs (bool, optional): Whether to return the output probability distribution. Defaults to False. Returns: dict: Dictionary containing the following keys: - rel_depth (torch.Tensor): Relative depth map of shape (B, H, W) - metric_depth (torch.Tensor): Metric depth map of shape (B, 1, H, W) - bin_centers (torch.Tensor): Bin centers of shape (B, n_bins). Present only if return_final_centers is True - probs (torch.Tensor): Output probability distribution of shape (B, n_bins, H, W). Present only if return_probs is True """ # print('input shape', x.shape) b, c, h, w = x.shape # print("input shape:", x.shape) self.orig_input_width = w self.orig_input_height = h rel_depth, out = self.core(x, denorm=denorm, return_rel_depth=True) # print("output shapes", rel_depth.shape, out.shape) # print('rel_depth shape:', rel_depth.shape) # print('out type:', type(out)) # for k in range(len(out)): # print(k, out[k].shape) outconv_activation = out[0] btlnck = out[1] x_blocks = out[2:] x_d0 = self.conv2(btlnck) x = x_d0 _, seed_b_centers = self.seed_bin_regressor(x) if self.bin_centers_type == 'normed' or self.bin_centers_type == 'hybrid2': b_prev = (seed_b_centers - self.min_depth) / \ (self.max_depth - self.min_depth) else: b_prev = seed_b_centers prev_b_embedding = self.seed_projector(x) # unroll this loop for better performance for projector, attractor, x in zip(self.projectors, self.attractors, x_blocks): b_embedding = projector(x) b, b_centers = attractor( b_embedding, b_prev, prev_b_embedding, interpolate=True) b_prev = b.clone() prev_b_embedding = b_embedding.clone() last = outconv_activation if self.inverse_midas: # invert depth followed by normalization rel_depth = 1.0 / (rel_depth + 1e-6) rel_depth = (rel_depth - rel_depth.min()) / \ (rel_depth.max() - rel_depth.min()) # concat rel depth with last. First interpolate rel depth to last size rel_cond = rel_depth.unsqueeze(1) rel_cond = nn.functional.interpolate( rel_cond, size=last.shape[2:], mode='bilinear', align_corners=True) last = torch.cat([last, rel_cond], dim=1) b_embedding = nn.functional.interpolate( b_embedding, last.shape[-2:], mode='bilinear', align_corners=True) x = self.conditional_log_binomial(last, b_embedding) # Now depth value is Sum px * cx , where cx are bin_centers from the last bin tensor # print(x.shape, b_centers.shape) b_centers = nn.functional.interpolate( b_centers, x.shape[-2:], mode='bilinear', align_corners=True) out = torch.sum(x * b_centers, dim=1, keepdim=True) # Structure output dict output = dict(metric_depth=out) if return_final_centers or return_probs: output['bin_centers'] = b_centers if return_probs: output['probs'] = x return output
Args: x (torch.Tensor): Input image tensor of shape (B, C, H, W) return_final_centers (bool, optional): Whether to return the final bin centers. Defaults to False. denorm (bool, optional): Whether to denormalize the input image. This reverses ImageNet normalization as midas normalization is different. Defaults to False. return_probs (bool, optional): Whether to return the output probability distribution. Defaults to False. Returns: dict: Dictionary containing the following keys: - rel_depth (torch.Tensor): Relative depth map of shape (B, H, W) - metric_depth (torch.Tensor): Metric depth map of shape (B, 1, H, W) - bin_centers (torch.Tensor): Bin centers of shape (B, n_bins). Present only if return_final_centers is True - probs (torch.Tensor): Output probability distribution of shape (B, n_bins, H, W). Present only if return_probs is True
forward
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/zoedepth/zoedepth_v1.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/zoedepth/zoedepth_v1.py
Apache-2.0
def get_lr_params(self, lr): """ Learning rate configuration for different layers of the model Args: lr (float) : Base learning rate Returns: list : list of parameters to optimize and their learning rates, in the format required by torch optimizers. """ param_conf = [] if self.train_midas: if self.encoder_lr_factor > 0: param_conf.append({'params': self.core.get_enc_params_except_rel_pos( ), 'lr': lr / self.encoder_lr_factor}) if self.pos_enc_lr_factor > 0: param_conf.append( {'params': self.core.get_rel_pos_params(), 'lr': lr / self.pos_enc_lr_factor}) # midas_params = self.core.core.scratch.parameters() midas_params = self.core.core.depth_head.parameters() midas_lr_factor = self.midas_lr_factor param_conf.append( {'params': midas_params, 'lr': lr / midas_lr_factor}) remaining_modules = [] for name, child in self.named_children(): if name != 'core': remaining_modules.append(child) remaining_params = itertools.chain( *[child.parameters() for child in remaining_modules]) param_conf.append({'params': remaining_params, 'lr': lr}) return param_conf
Learning rate configuration for different layers of the model Args: lr (float) : Base learning rate Returns: list : list of parameters to optimize and their learning rates, in the format required by torch optimizers.
get_lr_params
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/zoedepth/zoedepth_v1.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/zoedepth/zoedepth_v1.py
Apache-2.0
def __init__(self, in_channels, patch_size=10, embedding_dim=128, num_heads=4, use_class_token=False): """ViT-like transformer block Args: in_channels (int): Input channels patch_size (int, optional): patch size. Defaults to 10. embedding_dim (int, optional): Embedding dimension in transformer model. Defaults to 128. num_heads (int, optional): number of attention heads. Defaults to 4. use_class_token (bool, optional): Whether to use extra token at the start for global accumulation (called as "class token"). Defaults to False. """ super(PatchTransformerEncoder, self).__init__() self.use_class_token = use_class_token encoder_layers = nn.TransformerEncoderLayer( embedding_dim, num_heads, dim_feedforward=1024) self.transformer_encoder = nn.TransformerEncoder( encoder_layers, num_layers=4) # takes shape S,N,E self.embedding_convPxP = nn.Conv2d(in_channels, embedding_dim, kernel_size=patch_size, stride=patch_size, padding=0)
ViT-like transformer block Args: in_channels (int): Input channels patch_size (int, optional): patch size. Defaults to 10. embedding_dim (int, optional): Embedding dimension in transformer model. Defaults to 128. num_heads (int, optional): number of attention heads. Defaults to 4. use_class_token (bool, optional): Whether to use extra token at the start for global accumulation (called as "class token"). Defaults to False.
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/patch_transformer.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/patch_transformer.py
Apache-2.0
def positional_encoding_1d(self, sequence_length, batch_size, embedding_dim, device='cpu'): """Generate positional encodings Args: sequence_length (int): Sequence length embedding_dim (int): Embedding dimension Returns: torch.Tensor SBE: Positional encodings """ position = torch.arange( 0, sequence_length, dtype=torch.float32, device=device).unsqueeze(1) index = torch.arange( 0, embedding_dim, 2, dtype=torch.float32, device=device).unsqueeze(0) div_term = torch.exp(index * (-torch.log(torch.tensor(10000.0, device=device)) / embedding_dim)) pos_encoding = position * div_term pos_encoding = torch.cat([torch.sin(pos_encoding), torch.cos(pos_encoding)], dim=1) pos_encoding = pos_encoding.unsqueeze(1).repeat(1, batch_size, 1) return pos_encoding
Generate positional encodings Args: sequence_length (int): Sequence length embedding_dim (int): Embedding dimension Returns: torch.Tensor SBE: Positional encodings
positional_encoding_1d
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/patch_transformer.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/patch_transformer.py
Apache-2.0
def forward(self, x): """Forward pass Args: x (torch.Tensor - NCHW): Input feature tensor Returns: torch.Tensor - SNE: Transformer output embeddings. S - sequence length (=HW/patch_size^2), N - batch size, E - embedding dim """ embeddings = self.embedding_convPxP(x).flatten( 2) # .shape = n,c,s = n, embedding_dim, s if self.use_class_token: # extra special token at start ? embeddings = nn.functional.pad(embeddings, (1, 0)) # change to S,N,E format required by transformer embeddings = embeddings.permute(2, 0, 1) S, N, E = embeddings.shape embeddings = embeddings + self.positional_encoding_1d(S, N, E, device=embeddings.device) x = self.transformer_encoder(embeddings) # .shape = S, N, E return x
Forward pass Args: x (torch.Tensor - NCHW): Input feature tensor Returns: torch.Tensor - SNE: Transformer output embeddings. S - sequence length (=HW/patch_size^2), N - batch size, E - embedding dim
forward
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/patch_transformer.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/patch_transformer.py
Apache-2.0
def log_binom(n, k, eps=1e-7): """ log(nCk) using stirling approximation """ n = n + eps k = k + eps return n * torch.log(n) - k * torch.log(k) - (n-k) * torch.log(n-k+eps)
log(nCk) using stirling approximation
log_binom
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/dist_layers.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/dist_layers.py
Apache-2.0
def __init__(self, n_classes=256, act=torch.softmax): """Compute log binomial distribution for n_classes Args: n_classes (int, optional): number of output classes. Defaults to 256. """ super().__init__() self.K = n_classes self.act = act self.register_buffer('k_idx', torch.arange( 0, n_classes).view(1, -1, 1, 1)) self.register_buffer('K_minus_1', torch.Tensor( [self.K-1]).view(1, -1, 1, 1))
Compute log binomial distribution for n_classes Args: n_classes (int, optional): number of output classes. Defaults to 256.
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/dist_layers.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/dist_layers.py
Apache-2.0
def forward(self, x, t=1., eps=1e-4): """Compute log binomial distribution for x Args: x (torch.Tensor - NCHW): probabilities t (float, torch.Tensor - NCHW, optional): Temperature of distribution. Defaults to 1.. eps (float, optional): Small number for numerical stability. Defaults to 1e-4. Returns: torch.Tensor -NCHW: log binomial distribution logbinomial(p;t) """ if x.ndim == 3: x = x.unsqueeze(1) # make it nchw one_minus_x = torch.clamp(1 - x, eps, 1) x = torch.clamp(x, eps, 1) y = log_binom(self.K_minus_1, self.k_idx) + self.k_idx * \ torch.log(x) + (self.K - 1 - self.k_idx) * torch.log(one_minus_x) return self.act(y/t, dim=1)
Compute log binomial distribution for x Args: x (torch.Tensor - NCHW): probabilities t (float, torch.Tensor - NCHW, optional): Temperature of distribution. Defaults to 1.. eps (float, optional): Small number for numerical stability. Defaults to 1e-4. Returns: torch.Tensor -NCHW: log binomial distribution logbinomial(p;t)
forward
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/dist_layers.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/dist_layers.py
Apache-2.0
def __init__(self, in_features, condition_dim, n_classes=256, bottleneck_factor=2, p_eps=1e-4, max_temp=50, min_temp=1e-7, act=torch.softmax): """Conditional Log Binomial distribution Args: in_features (int): number of input channels in main feature condition_dim (int): number of input channels in condition feature n_classes (int, optional): Number of classes. Defaults to 256. bottleneck_factor (int, optional): Hidden dim factor. Defaults to 2. p_eps (float, optional): small eps value. Defaults to 1e-4. max_temp (float, optional): Maximum temperature of output distribution. Defaults to 50. min_temp (float, optional): Minimum temperature of output distribution. Defaults to 1e-7. """ super().__init__() self.p_eps = p_eps self.max_temp = max_temp self.min_temp = min_temp self.log_binomial_transform = LogBinomial(n_classes, act=act) bottleneck = (in_features + condition_dim) // bottleneck_factor self.mlp = nn.Sequential( nn.Conv2d(in_features + condition_dim, bottleneck, kernel_size=1, stride=1, padding=0), nn.GELU(), # 2 for p linear norm, 2 for t linear norm nn.Conv2d(bottleneck, 2+2, kernel_size=1, stride=1, padding=0), nn.Softplus() )
Conditional Log Binomial distribution Args: in_features (int): number of input channels in main feature condition_dim (int): number of input channels in condition feature n_classes (int, optional): Number of classes. Defaults to 256. bottleneck_factor (int, optional): Hidden dim factor. Defaults to 2. p_eps (float, optional): small eps value. Defaults to 1e-4. max_temp (float, optional): Maximum temperature of output distribution. Defaults to 50. min_temp (float, optional): Minimum temperature of output distribution. Defaults to 1e-7.
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/dist_layers.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/dist_layers.py
Apache-2.0
def forward(self, x, cond): """Forward pass Args: x (torch.Tensor - NCHW): Main feature cond (torch.Tensor - NCHW): condition feature Returns: torch.Tensor: Output log binomial distribution """ pt = self.mlp(torch.concat((x, cond), dim=1)) p, t = pt[:, :2, ...], pt[:, 2:, ...] p = p + self.p_eps p = p[:, 0, ...] / (p[:, 0, ...] + p[:, 1, ...]) t = t + self.p_eps t = t[:, 0, ...] / (t[:, 0, ...] + t[:, 1, ...]) t = t.unsqueeze(1) t = (self.max_temp - self.min_temp) * t + self.min_temp return self.log_binomial_transform(p, t)
Forward pass Args: x (torch.Tensor - NCHW): Main feature cond (torch.Tensor - NCHW): condition feature Returns: torch.Tensor: Output log binomial distribution
forward
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/dist_layers.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/dist_layers.py
Apache-2.0
def exp_attractor(dx, alpha: float = 300, gamma: int = 2): """Exponential attractor: dc = exp(-alpha*|dx|^gamma) * dx , where dx = a - c, a = attractor point, c = bin center, dc = shift in bin centermmary for exp_attractor Args: dx (torch.Tensor): The difference tensor dx = Ai - Cj, where Ai is the attractor point and Cj is the bin center. alpha (float, optional): Proportional Attractor strength. Determines the absolute strength. Lower alpha = greater attraction. Defaults to 300. gamma (int, optional): Exponential Attractor strength. Determines the "region of influence" and indirectly number of bin centers affected. Lower gamma = farther reach. Defaults to 2. Returns: torch.Tensor : Delta shifts - dc; New bin centers = Old bin centers + dc """ return torch.exp(-alpha*(torch.abs(dx)**gamma)) * (dx)
Exponential attractor: dc = exp(-alpha*|dx|^gamma) * dx , where dx = a - c, a = attractor point, c = bin center, dc = shift in bin centermmary for exp_attractor Args: dx (torch.Tensor): The difference tensor dx = Ai - Cj, where Ai is the attractor point and Cj is the bin center. alpha (float, optional): Proportional Attractor strength. Determines the absolute strength. Lower alpha = greater attraction. Defaults to 300. gamma (int, optional): Exponential Attractor strength. Determines the "region of influence" and indirectly number of bin centers affected. Lower gamma = farther reach. Defaults to 2. Returns: torch.Tensor : Delta shifts - dc; New bin centers = Old bin centers + dc
exp_attractor
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/attractor.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/attractor.py
Apache-2.0
def inv_attractor(dx, alpha: float = 300, gamma: int = 2): """Inverse attractor: dc = dx / (1 + alpha*dx^gamma), where dx = a - c, a = attractor point, c = bin center, dc = shift in bin center This is the default one according to the accompanying paper. Args: dx (torch.Tensor): The difference tensor dx = Ai - Cj, where Ai is the attractor point and Cj is the bin center. alpha (float, optional): Proportional Attractor strength. Determines the absolute strength. Lower alpha = greater attraction. Defaults to 300. gamma (int, optional): Exponential Attractor strength. Determines the "region of influence" and indirectly number of bin centers affected. Lower gamma = farther reach. Defaults to 2. Returns: torch.Tensor: Delta shifts - dc; New bin centers = Old bin centers + dc """ return dx.div(1+alpha*dx.pow(gamma))
Inverse attractor: dc = dx / (1 + alpha*dx^gamma), where dx = a - c, a = attractor point, c = bin center, dc = shift in bin center This is the default one according to the accompanying paper. Args: dx (torch.Tensor): The difference tensor dx = Ai - Cj, where Ai is the attractor point and Cj is the bin center. alpha (float, optional): Proportional Attractor strength. Determines the absolute strength. Lower alpha = greater attraction. Defaults to 300. gamma (int, optional): Exponential Attractor strength. Determines the "region of influence" and indirectly number of bin centers affected. Lower gamma = farther reach. Defaults to 2. Returns: torch.Tensor: Delta shifts - dc; New bin centers = Old bin centers + dc
inv_attractor
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/attractor.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/attractor.py
Apache-2.0
def __init__(self, in_features, n_bins, n_attractors=16, mlp_dim=128, min_depth=1e-3, max_depth=10, alpha=300, gamma=2, kind='sum', attractor_type='exp', memory_efficient=False): """ Attractor layer for bin centers. Bin centers are bounded on the interval (min_depth, max_depth) """ super().__init__() self.n_attractors = n_attractors self.n_bins = n_bins self.min_depth = min_depth self.max_depth = max_depth self.alpha = alpha self.gamma = gamma self.kind = kind self.attractor_type = attractor_type self.memory_efficient = memory_efficient self._net = nn.Sequential( nn.Conv2d(in_features, mlp_dim, 1, 1, 0), nn.ReLU(inplace=True), nn.Conv2d(mlp_dim, n_attractors*2, 1, 1, 0), # x2 for linear norm nn.ReLU(inplace=True) )
Attractor layer for bin centers. Bin centers are bounded on the interval (min_depth, max_depth)
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/attractor.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/attractor.py
Apache-2.0
def forward(self, x, b_prev, prev_b_embedding=None, interpolate=True, is_for_query=False): """ Args: x (torch.Tensor) : feature block; shape - n, c, h, w b_prev (torch.Tensor) : previous bin centers normed; shape - n, prev_nbins, h, w Returns: tuple(torch.Tensor,torch.Tensor) : new bin centers normed and scaled; shape - n, nbins, h, w """ if prev_b_embedding is not None: if interpolate: prev_b_embedding = nn.functional.interpolate( prev_b_embedding, x.shape[-2:], mode='bilinear', align_corners=True) x = x + prev_b_embedding A = self._net(x) eps = 1e-3 A = A + eps n, c, h, w = A.shape A = A.view(n, self.n_attractors, 2, h, w) A_normed = A / A.sum(dim=2, keepdim=True) # n, a, 2, h, w A_normed = A[:, :, 0, ...] # n, na, h, w b_prev = nn.functional.interpolate( b_prev, (h, w), mode='bilinear', align_corners=True) b_centers = b_prev if self.attractor_type == 'exp': dist = exp_attractor else: dist = inv_attractor if not self.memory_efficient: func = {'mean': torch.mean, 'sum': torch.sum}[self.kind] # .shape N, nbins, h, w delta_c = func(dist(A_normed.unsqueeze( 2) - b_centers.unsqueeze(1)), dim=1) else: delta_c = torch.zeros_like(b_centers, device=b_centers.device) for i in range(self.n_attractors): # .shape N, nbins, h, w delta_c += dist(A_normed[:, i, ...].unsqueeze(1) - b_centers) if self.kind == 'mean': delta_c = delta_c / self.n_attractors b_new_centers = b_centers + delta_c B_centers = (self.max_depth - self.min_depth) * \ b_new_centers + self.min_depth B_centers, _ = torch.sort(B_centers, dim=1) B_centers = torch.clip(B_centers, self.min_depth, self.max_depth) return b_new_centers, B_centers
Args: x (torch.Tensor) : feature block; shape - n, c, h, w b_prev (torch.Tensor) : previous bin centers normed; shape - n, prev_nbins, h, w Returns: tuple(torch.Tensor,torch.Tensor) : new bin centers normed and scaled; shape - n, nbins, h, w
forward
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/attractor.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/attractor.py
Apache-2.0
def __init__(self, in_features, n_bins, n_attractors=16, mlp_dim=128, min_depth=1e-3, max_depth=10, alpha=300, gamma=2, kind='sum', attractor_type='exp', memory_efficient=False): """ Attractor layer for bin centers. Bin centers are unbounded """ super().__init__() self.n_attractors = n_attractors self.n_bins = n_bins self.min_depth = min_depth self.max_depth = max_depth self.alpha = alpha self.gamma = gamma self.kind = kind self.attractor_type = attractor_type self.memory_efficient = memory_efficient self._net = nn.Sequential( nn.Conv2d(in_features, mlp_dim, 1, 1, 0), nn.ReLU(inplace=True), nn.Conv2d(mlp_dim, n_attractors, 1, 1, 0), nn.Softplus() )
Attractor layer for bin centers. Bin centers are unbounded
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/attractor.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/attractor.py
Apache-2.0
def forward(self, x, b_prev, prev_b_embedding=None, interpolate=True, is_for_query=False): """ Args: x (torch.Tensor) : feature block; shape - n, c, h, w b_prev (torch.Tensor) : previous bin centers normed; shape - n, prev_nbins, h, w Returns: tuple(torch.Tensor,torch.Tensor) : new bin centers unbounded; shape - n, nbins, h, w. Two outputs just to keep the API consistent with the normed version """ if prev_b_embedding is not None: if interpolate: prev_b_embedding = nn.functional.interpolate( prev_b_embedding, x.shape[-2:], mode='bilinear', align_corners=True) x = x + prev_b_embedding A = self._net(x) n, c, h, w = A.shape b_prev = nn.functional.interpolate( b_prev, (h, w), mode='bilinear', align_corners=True) b_centers = b_prev if self.attractor_type == 'exp': dist = exp_attractor else: dist = inv_attractor if not self.memory_efficient: func = {'mean': torch.mean, 'sum': torch.sum}[self.kind] # .shape N, nbins, h, w delta_c = func( dist(A.unsqueeze(2) - b_centers.unsqueeze(1)), dim=1) else: delta_c = torch.zeros_like(b_centers, device=b_centers.device) for i in range(self.n_attractors): delta_c += dist(A[:, i, ...].unsqueeze(1) - b_centers) # .shape N, nbins, h, w if self.kind == 'mean': delta_c = delta_c / self.n_attractors b_new_centers = b_centers + delta_c B_centers = b_new_centers return b_new_centers, B_centers
Args: x (torch.Tensor) : feature block; shape - n, c, h, w b_prev (torch.Tensor) : previous bin centers normed; shape - n, prev_nbins, h, w Returns: tuple(torch.Tensor,torch.Tensor) : new bin centers unbounded; shape - n, nbins, h, w. Two outputs just to keep the API consistent with the normed version
forward
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/attractor.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/attractor.py
Apache-2.0
def __init__(self, in_features, n_bins=16, mlp_dim=256, min_depth=1e-3, max_depth=10): """Bin center regressor network. Bin centers are bounded on (min_depth, max_depth) interval. Args: in_features (int): input channels n_bins (int, optional): Number of bin centers. Defaults to 16. mlp_dim (int, optional): Hidden dimension. Defaults to 256. min_depth (float, optional): Min depth value. Defaults to 1e-3. max_depth (float, optional): Max depth value. Defaults to 10. """ super().__init__() self.version = "1_1" self.min_depth = min_depth self.max_depth = max_depth self._net = nn.Sequential( nn.Conv2d(in_features, mlp_dim, 1, 1, 0), nn.ReLU(inplace=True), nn.Conv2d(mlp_dim, n_bins, 1, 1, 0), nn.ReLU(inplace=True) )
Bin center regressor network. Bin centers are bounded on (min_depth, max_depth) interval. Args: in_features (int): input channels n_bins (int, optional): Number of bin centers. Defaults to 16. mlp_dim (int, optional): Hidden dimension. Defaults to 256. min_depth (float, optional): Min depth value. Defaults to 1e-3. max_depth (float, optional): Max depth value. Defaults to 10.
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/localbins_layers.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/localbins_layers.py
Apache-2.0
def forward(self, x): """ Returns tensor of bin_width vectors (centers). One vector b for every pixel """ B = self._net(x) eps = 1e-3 B = B + eps B_widths_normed = B / B.sum(dim=1, keepdim=True) B_widths = (self.max_depth - self.min_depth) * \ B_widths_normed # .shape NCHW # pad has the form (left, right, top, bottom, front, back) B_widths = nn.functional.pad( B_widths, (0, 0, 0, 0, 1, 0), mode='constant', value=self.min_depth) B_edges = torch.cumsum(B_widths, dim=1) # .shape NCHW B_centers = 0.5 * (B_edges[:, :-1, ...] + B_edges[:, 1:, ...]) return B_widths_normed, B_centers
Returns tensor of bin_width vectors (centers). One vector b for every pixel
forward
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/localbins_layers.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/localbins_layers.py
Apache-2.0
def __init__(self, in_features, n_bins=16, mlp_dim=256, min_depth=1e-3, max_depth=10): """Bin center regressor network. Bin centers are unbounded Args: in_features (int): input channels n_bins (int, optional): Number of bin centers. Defaults to 16. mlp_dim (int, optional): Hidden dimension. Defaults to 256. min_depth (float, optional): Not used. (for compatibility with SeedBinRegressor) max_depth (float, optional): Not used. (for compatibility with SeedBinRegressor) """ super().__init__() self.version = "1_1" self._net = nn.Sequential( nn.Conv2d(in_features, mlp_dim, 1, 1, 0), nn.ReLU(inplace=True), nn.Conv2d(mlp_dim, n_bins, 1, 1, 0), nn.Softplus() )
Bin center regressor network. Bin centers are unbounded Args: in_features (int): input channels n_bins (int, optional): Number of bin centers. Defaults to 16. mlp_dim (int, optional): Hidden dimension. Defaults to 256. min_depth (float, optional): Not used. (for compatibility with SeedBinRegressor) max_depth (float, optional): Not used. (for compatibility with SeedBinRegressor)
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/localbins_layers.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/localbins_layers.py
Apache-2.0
def forward(self, x): """ Returns tensor of bin_width vectors (centers). One vector b for every pixel """ B_centers = self._net(x) return B_centers, B_centers
Returns tensor of bin_width vectors (centers). One vector b for every pixel
forward
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/localbins_layers.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/localbins_layers.py
Apache-2.0
def __init__(self, in_features, out_features, mlp_dim=128): """Projector MLP Args: in_features (int): input channels out_features (int): output channels mlp_dim (int, optional): hidden dimension. Defaults to 128. """ super().__init__() self._net = nn.Sequential( nn.Conv2d(in_features, mlp_dim, 1, 1, 0), nn.ReLU(inplace=True), nn.Conv2d(mlp_dim, out_features, 1, 1, 0), )
Projector MLP Args: in_features (int): input channels out_features (int): output channels mlp_dim (int, optional): hidden dimension. Defaults to 128.
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/localbins_layers.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/localbins_layers.py
Apache-2.0
def forward(self, x, b_prev, prev_b_embedding=None, interpolate=True, is_for_query=False): """ x : feature block; shape - n, c, h, w b_prev : previous bin widths normed; shape - n, prev_nbins, h, w """ if prev_b_embedding is not None: if interpolate: prev_b_embedding = nn.functional.interpolate(prev_b_embedding, x.shape[-2:], mode='bilinear', align_corners=True) x = x + prev_b_embedding S = self._net(x) eps = 1e-3 S = S + eps n, c, h, w = S.shape S = S.view(n, self.prev_nbins, self.split_factor, h, w) S_normed = S / S.sum(dim=2, keepdim=True) # fractional splits b_prev = nn.functional.interpolate(b_prev, (h,w), mode='bilinear', align_corners=True) b_prev = b_prev / b_prev.sum(dim=1, keepdim=True) # renormalize for gurantees # print(b_prev.shape, S_normed.shape) # if is_for_query:(1).expand(-1, b_prev.size(0)//n, -1, -1, -1, -1).flatten(0,1) # TODO ? can replace all this with a single torch.repeat? b = b_prev.unsqueeze(2) * S_normed b = b.flatten(1,2) # .shape n, prev_nbins * split_factor, h, w # calculate bin centers for loss calculation B_widths = (self.max_depth - self.min_depth) * b # .shape N, nprev * splitfactor, H, W # pad has the form (left, right, top, bottom, front, back) B_widths = nn.functional.pad(B_widths, (0,0,0,0,1,0), mode='constant', value=self.min_depth) B_edges = torch.cumsum(B_widths, dim=1) # .shape NCHW B_centers = 0.5 * (B_edges[:, :-1, ...] + B_edges[:,1:,...]) return b, B_centers
x : feature block; shape - n, c, h, w b_prev : previous bin widths normed; shape - n, prev_nbins, h, w
forward
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/layers/localbins_layers.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/layers/localbins_layers.py
Apache-2.0
def denormalize(x): """Reverses the imagenet normalization applied to the input. Args: x (torch.Tensor - shape(N,3,H,W)): input tensor Returns: torch.Tensor - shape(N,3,H,W): Denormalized input """ mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(x.device) std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(x.device) return x * std + mean
Reverses the imagenet normalization applied to the input. Args: x (torch.Tensor - shape(N,3,H,W)): input tensor Returns: torch.Tensor - shape(N,3,H,W): Denormalized input
denormalize
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/base_models/midas.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/base_models/midas.py
Apache-2.0
def __init__( self, width, height, resize_target=True, keep_aspect_ratio=False, ensure_multiple_of=1, resize_method="lower_bound", ): """Init. Args: width (int): desired output width height (int): desired output height resize_target (bool, optional): True: Resize the full sample (image, mask, target). False: Resize image only. Defaults to True. keep_aspect_ratio (bool, optional): True: Keep the aspect ratio of the input sample. Output sample might not have the given width and height, and resize behaviour depends on the parameter 'resize_method'. Defaults to False. ensure_multiple_of (int, optional): Output width and height is constrained to be multiple of this parameter. Defaults to 1. resize_method (str, optional): "lower_bound": Output will be at least as large as the given size. "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) "minimal": Scale as least as possible. (Output size might be smaller than given size.) Defaults to "lower_bound". """ print("Params passed to Resize transform:") print("\twidth: ", width) print("\theight: ", height) print("\tresize_target: ", resize_target) print("\tkeep_aspect_ratio: ", keep_aspect_ratio) print("\tensure_multiple_of: ", ensure_multiple_of) print("\tresize_method: ", resize_method) self.__width = width self.__height = height self.__keep_aspect_ratio = keep_aspect_ratio self.__multiple_of = ensure_multiple_of self.__resize_method = resize_method
Init. Args: width (int): desired output width height (int): desired output height resize_target (bool, optional): True: Resize the full sample (image, mask, target). False: Resize image only. Defaults to True. keep_aspect_ratio (bool, optional): True: Keep the aspect ratio of the input sample. Output sample might not have the given width and height, and resize behaviour depends on the parameter 'resize_method'. Defaults to False. ensure_multiple_of (int, optional): Output width and height is constrained to be multiple of this parameter. Defaults to 1. resize_method (str, optional): "lower_bound": Output will be at least as large as the given size. "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) "minimal": Scale as least as possible. (Output size might be smaller than given size.) Defaults to "lower_bound".
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/base_models/midas.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/base_models/midas.py
Apache-2.0
def denormalize(x): """Reverses the imagenet normalization applied to the input. Args: x (torch.Tensor - shape(N,3,H,W)): input tensor Returns: torch.Tensor - shape(N,3,H,W): Denormalized input """ mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(x.device) std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(x.device) return x * std + mean
Reverses the imagenet normalization applied to the input. Args: x (torch.Tensor - shape(N,3,H,W)): input tensor Returns: torch.Tensor - shape(N,3,H,W): Denormalized input
denormalize
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/base_models/depth_anything.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/base_models/depth_anything.py
Apache-2.0
def __init__( self, width, height, resize_target=True, keep_aspect_ratio=False, ensure_multiple_of=1, resize_method="lower_bound", ): """Init. Args: width (int): desired output width height (int): desired output height resize_target (bool, optional): True: Resize the full sample (image, mask, target). False: Resize image only. Defaults to True. keep_aspect_ratio (bool, optional): True: Keep the aspect ratio of the input sample. Output sample might not have the given width and height, and resize behaviour depends on the parameter 'resize_method'. Defaults to False. ensure_multiple_of (int, optional): Output width and height is constrained to be multiple of this parameter. Defaults to 1. resize_method (str, optional): "lower_bound": Output will be at least as large as the given size. "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) "minimal": Scale as least as possible. (Output size might be smaller than given size.) Defaults to "lower_bound". """ print("Params passed to Resize transform:") print("\twidth: ", width) print("\theight: ", height) print("\tresize_target: ", resize_target) print("\tkeep_aspect_ratio: ", keep_aspect_ratio) print("\tensure_multiple_of: ", ensure_multiple_of) print("\tresize_method: ", resize_method) self.__width = width self.__height = height self.__keep_aspect_ratio = keep_aspect_ratio self.__multiple_of = ensure_multiple_of self.__resize_method = resize_method
Init. Args: width (int): desired output width height (int): desired output height resize_target (bool, optional): True: Resize the full sample (image, mask, target). False: Resize image only. Defaults to True. keep_aspect_ratio (bool, optional): True: Keep the aspect ratio of the input sample. Output sample might not have the given width and height, and resize behaviour depends on the parameter 'resize_method'. Defaults to False. ensure_multiple_of (int, optional): Output width and height is constrained to be multiple of this parameter. Defaults to 1. resize_method (str, optional): "lower_bound": Output will be at least as large as the given size. "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) "minimal": Scale as least as possible. (Output size might be smaller than given size.) Defaults to "lower_bound".
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/base_models/depth_anything.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/base_models/depth_anything.py
Apache-2.0
def __init__(self, features, activation, bn): """Init. Args: features (int): number of features """ super().__init__() self.bn = bn self.groups=1 self.conv1 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups ) self.conv2 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups ) if self.bn==True: self.bn1 = nn.BatchNorm2d(features) self.bn2 = nn.BatchNorm2d(features) self.activation = activation self.skip_add = nn.quantized.FloatFunctional()
Init. Args: features (int): number of features
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/base_models/dpt_dinov2/blocks.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/base_models/dpt_dinov2/blocks.py
Apache-2.0
def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.activation(x) out = self.conv1(out) if self.bn==True: out = self.bn1(out) out = self.activation(out) out = self.conv2(out) if self.bn==True: out = self.bn2(out) if self.groups > 1: out = self.conv_merge(out) return self.skip_add.add(out, x)
Forward pass. Args: x (tensor): input Returns: tensor: output
forward
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/base_models/dpt_dinov2/blocks.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/base_models/dpt_dinov2/blocks.py
Apache-2.0
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None): """Init. Args: features (int): number of features """ super(FeatureFusionBlock, self).__init__() self.deconv = deconv self.align_corners = align_corners self.groups=1 self.expand = expand out_features = features if self.expand==True: out_features = features//2 self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) self.resConfUnit1 = ResidualConvUnit(features, activation, bn) self.resConfUnit2 = ResidualConvUnit(features, activation, bn) self.skip_add = nn.quantized.FloatFunctional() self.size=size
Init. Args: features (int): number of features
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/base_models/dpt_dinov2/blocks.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/base_models/dpt_dinov2/blocks.py
Apache-2.0
def forward(self, *xs, size=None): """Forward pass. Returns: tensor: output """ output = xs[0] if len(xs) == 2: res = self.resConfUnit1(xs[1]) output = self.skip_add.add(output, res) output = self.resConfUnit2(output) if (size is None) and (self.size is None): modifier = {"scale_factor": 2} elif size is None: modifier = {"size": self.size} else: modifier = {"size": size} output = nn.functional.interpolate( output, **modifier, mode="bilinear", align_corners=self.align_corners ) output = self.out_conv(output) return output
Forward pass. Returns: tensor: output
forward
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/base_models/dpt_dinov2/blocks.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/base_models/dpt_dinov2/blocks.py
Apache-2.0
def __init__(self, core, bin_conf, bin_centers_type="softplus", bin_embedding_dim=128, n_attractors=[16, 8, 4, 1], attractor_alpha=300, attractor_gamma=2, attractor_kind='sum', attractor_type='exp', min_temp=5, max_temp=50, memory_efficient=False, train_midas=True, is_midas_pretrained=True, midas_lr_factor=1, encoder_lr_factor=10, pos_enc_lr_factor=10, inverse_midas=False, **kwargs): """ZoeDepthNK model. This is the version of ZoeDepth that has two metric heads and uses a learned router to route to experts. Args: core (models.base_models.midas.MidasCore): The base midas model that is used for extraction of "relative" features bin_conf (List[dict]): A list of dictionaries that contain the bin configuration for each metric head. Each dictionary should contain the following keys: "name" (str, typically same as the dataset name), "n_bins" (int), "min_depth" (float), "max_depth" (float) The length of this list determines the number of metric heads. bin_centers_type (str, optional): "normed" or "softplus". Activation type used for bin centers. For "normed" bin centers, linear normalization trick is applied. This results in bounded bin centers. For "softplus", softplus activation is used and thus are unbounded. Defaults to "normed". bin_embedding_dim (int, optional): bin embedding dimension. Defaults to 128. n_attractors (List[int], optional): Number of bin attractors at decoder layers. Defaults to [16, 8, 4, 1]. attractor_alpha (int, optional): Proportional attractor strength. Refer to models.layers.attractor for more details. Defaults to 300. attractor_gamma (int, optional): Exponential attractor strength. Refer to models.layers.attractor for more details. Defaults to 2. attractor_kind (str, optional): Attraction aggregation "sum" or "mean". Defaults to 'sum'. attractor_type (str, optional): Type of attractor to use; "inv" (Inverse attractor) or "exp" (Exponential attractor). Defaults to 'exp'. min_temp (int, optional): Lower bound for temperature of output probability distribution. Defaults to 5. max_temp (int, optional): Upper bound for temperature of output probability distribution. Defaults to 50. memory_efficient (bool, optional): Whether to use memory efficient version of attractor layers. Memory efficient version is slower but is recommended incase of multiple metric heads in order save GPU memory. Defaults to False. train_midas (bool, optional): Whether to train "core", the base midas model. Defaults to True. is_midas_pretrained (bool, optional): Is "core" pretrained? Defaults to True. midas_lr_factor (int, optional): Learning rate reduction factor for base midas model except its encoder and positional encodings. Defaults to 10. encoder_lr_factor (int, optional): Learning rate reduction factor for the encoder in midas model. Defaults to 10. pos_enc_lr_factor (int, optional): Learning rate reduction factor for positional encodings in the base midas model. Defaults to 10. """ super().__init__() self.core = core self.bin_conf = bin_conf self.min_temp = min_temp self.max_temp = max_temp self.memory_efficient = memory_efficient self.train_midas = train_midas self.is_midas_pretrained = is_midas_pretrained self.midas_lr_factor = midas_lr_factor self.encoder_lr_factor = encoder_lr_factor self.pos_enc_lr_factor = pos_enc_lr_factor self.inverse_midas = inverse_midas N_MIDAS_OUT = 32 btlnck_features = self.core.output_channels[0] num_out_features = self.core.output_channels[1:] # self.scales = [16, 8, 4, 2] # spatial scale factors self.conv2 = nn.Conv2d( btlnck_features, btlnck_features, kernel_size=1, stride=1, padding=0) # Transformer classifier on the bottleneck self.patch_transformer = PatchTransformerEncoder( btlnck_features, 1, 128, use_class_token=True) self.mlp_classifier = nn.Sequential( nn.Linear(128, 128), nn.ReLU(), nn.Linear(128, 2) ) if bin_centers_type == "normed": SeedBinRegressorLayer = SeedBinRegressor Attractor = AttractorLayer elif bin_centers_type == "softplus": SeedBinRegressorLayer = SeedBinRegressorUnnormed Attractor = AttractorLayerUnnormed elif bin_centers_type == "hybrid1": SeedBinRegressorLayer = SeedBinRegressor Attractor = AttractorLayerUnnormed elif bin_centers_type == "hybrid2": SeedBinRegressorLayer = SeedBinRegressorUnnormed Attractor = AttractorLayer else: raise ValueError( "bin_centers_type should be one of 'normed', 'softplus', 'hybrid1', 'hybrid2'") self.bin_centers_type = bin_centers_type # We have bins for each bin conf. # Create a map (ModuleDict) of 'name' -> seed_bin_regressor self.seed_bin_regressors = nn.ModuleDict( {conf['name']: SeedBinRegressorLayer(btlnck_features, conf["n_bins"], mlp_dim=bin_embedding_dim//2, min_depth=conf["min_depth"], max_depth=conf["max_depth"]) for conf in bin_conf} ) self.seed_projector = Projector( btlnck_features, bin_embedding_dim, mlp_dim=bin_embedding_dim//2) self.projectors = nn.ModuleList([ Projector(num_out, bin_embedding_dim, mlp_dim=bin_embedding_dim//2) for num_out in num_out_features ]) # Create a map (ModuleDict) of 'name' -> attractors (ModuleList) self.attractors = nn.ModuleDict( {conf['name']: nn.ModuleList([ Attractor(bin_embedding_dim, n_attractors[i], mlp_dim=bin_embedding_dim, alpha=attractor_alpha, gamma=attractor_gamma, kind=attractor_kind, attractor_type=attractor_type, memory_efficient=memory_efficient, min_depth=conf["min_depth"], max_depth=conf["max_depth"]) for i in range(len(n_attractors)) ]) for conf in bin_conf} ) last_in = N_MIDAS_OUT # conditional log binomial for each bin conf self.conditional_log_binomial = nn.ModuleDict( {conf['name']: ConditionalLogBinomial(last_in, bin_embedding_dim, conf['n_bins'], bottleneck_factor=4, min_temp=self.min_temp, max_temp=self.max_temp) for conf in bin_conf} )
ZoeDepthNK model. This is the version of ZoeDepth that has two metric heads and uses a learned router to route to experts. Args: core (models.base_models.midas.MidasCore): The base midas model that is used for extraction of "relative" features bin_conf (List[dict]): A list of dictionaries that contain the bin configuration for each metric head. Each dictionary should contain the following keys: "name" (str, typically same as the dataset name), "n_bins" (int), "min_depth" (float), "max_depth" (float) The length of this list determines the number of metric heads. bin_centers_type (str, optional): "normed" or "softplus". Activation type used for bin centers. For "normed" bin centers, linear normalization trick is applied. This results in bounded bin centers. For "softplus", softplus activation is used and thus are unbounded. Defaults to "normed". bin_embedding_dim (int, optional): bin embedding dimension. Defaults to 128. n_attractors (List[int], optional): Number of bin attractors at decoder layers. Defaults to [16, 8, 4, 1]. attractor_alpha (int, optional): Proportional attractor strength. Refer to models.layers.attractor for more details. Defaults to 300. attractor_gamma (int, optional): Exponential attractor strength. Refer to models.layers.attractor for more details. Defaults to 2. attractor_kind (str, optional): Attraction aggregation "sum" or "mean". Defaults to 'sum'. attractor_type (str, optional): Type of attractor to use; "inv" (Inverse attractor) or "exp" (Exponential attractor). Defaults to 'exp'. min_temp (int, optional): Lower bound for temperature of output probability distribution. Defaults to 5. max_temp (int, optional): Upper bound for temperature of output probability distribution. Defaults to 50. memory_efficient (bool, optional): Whether to use memory efficient version of attractor layers. Memory efficient version is slower but is recommended incase of multiple metric heads in order save GPU memory. Defaults to False. train_midas (bool, optional): Whether to train "core", the base midas model. Defaults to True. is_midas_pretrained (bool, optional): Is "core" pretrained? Defaults to True. midas_lr_factor (int, optional): Learning rate reduction factor for base midas model except its encoder and positional encodings. Defaults to 10. encoder_lr_factor (int, optional): Learning rate reduction factor for the encoder in midas model. Defaults to 10. pos_enc_lr_factor (int, optional): Learning rate reduction factor for positional encodings in the base midas model. Defaults to 10.
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/zoedepth_nk/zoedepth_nk_v1.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/zoedepth_nk/zoedepth_nk_v1.py
Apache-2.0
def forward(self, x, return_final_centers=False, denorm=False, return_probs=False, **kwargs): """ Args: x (torch.Tensor): Input image tensor of shape (B, C, H, W). Assumes all images are from the same domain. return_final_centers (bool, optional): Whether to return the final centers of the attractors. Defaults to False. denorm (bool, optional): Whether to denormalize the input image. Defaults to False. return_probs (bool, optional): Whether to return the probabilities of the bins. Defaults to False. Returns: dict: Dictionary of outputs with keys: - "rel_depth": Relative depth map of shape (B, 1, H, W) - "metric_depth": Metric depth map of shape (B, 1, H, W) - "domain_logits": Domain logits of shape (B, 2) - "bin_centers": Bin centers of shape (B, N, H, W). Present only if return_final_centers is True - "probs": Bin probabilities of shape (B, N, H, W). Present only if return_probs is True """ b, c, h, w = x.shape self.orig_input_width = w self.orig_input_height = h rel_depth, out = self.core(x, denorm=denorm, return_rel_depth=True) outconv_activation = out[0] btlnck = out[1] x_blocks = out[2:] x_d0 = self.conv2(btlnck) x = x_d0 # Predict which path to take embedding = self.patch_transformer(x)[0] # N, E domain_logits = self.mlp_classifier(embedding) # N, 2 domain_vote = torch.softmax(domain_logits.sum( dim=0, keepdim=True), dim=-1) # 1, 2 # Get the path bin_conf_name = ["nyu", "kitti"][torch.argmax( domain_vote, dim=-1).squeeze().item()] try: conf = [c for c in self.bin_conf if c.name == bin_conf_name][0] except IndexError: raise ValueError( f"bin_conf_name {bin_conf_name} not found in bin_confs") min_depth = conf['min_depth'] max_depth = conf['max_depth'] seed_bin_regressor = self.seed_bin_regressors[bin_conf_name] _, seed_b_centers = seed_bin_regressor(x) if self.bin_centers_type == 'normed' or self.bin_centers_type == 'hybrid2': b_prev = (seed_b_centers - min_depth)/(max_depth - min_depth) else: b_prev = seed_b_centers prev_b_embedding = self.seed_projector(x) attractors = self.attractors[bin_conf_name] for projector, attractor, x in zip(self.projectors, attractors, x_blocks): b_embedding = projector(x) b, b_centers = attractor( b_embedding, b_prev, prev_b_embedding, interpolate=True) b_prev = b prev_b_embedding = b_embedding last = outconv_activation b_centers = nn.functional.interpolate( b_centers, last.shape[-2:], mode='bilinear', align_corners=True) b_embedding = nn.functional.interpolate( b_embedding, last.shape[-2:], mode='bilinear', align_corners=True) clb = self.conditional_log_binomial[bin_conf_name] x = clb(last, b_embedding) # Now depth value is Sum px * cx , where cx are bin_centers from the last bin tensor # print(x.shape, b_centers.shape) # b_centers = nn.functional.interpolate(b_centers, x.shape[-2:], mode='bilinear', align_corners=True) out = torch.sum(x * b_centers, dim=1, keepdim=True) output = dict(domain_logits=domain_logits, metric_depth=out) if return_final_centers or return_probs: output['bin_centers'] = b_centers if return_probs: output['probs'] = x return output
Args: x (torch.Tensor): Input image tensor of shape (B, C, H, W). Assumes all images are from the same domain. return_final_centers (bool, optional): Whether to return the final centers of the attractors. Defaults to False. denorm (bool, optional): Whether to denormalize the input image. Defaults to False. return_probs (bool, optional): Whether to return the probabilities of the bins. Defaults to False. Returns: dict: Dictionary of outputs with keys: - "rel_depth": Relative depth map of shape (B, 1, H, W) - "metric_depth": Metric depth map of shape (B, 1, H, W) - "domain_logits": Domain logits of shape (B, 2) - "bin_centers": Bin centers of shape (B, N, H, W). Present only if return_final_centers is True - "probs": Bin probabilities of shape (B, N, H, W). Present only if return_probs is True
forward
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/zoedepth_nk/zoedepth_nk_v1.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/zoedepth_nk/zoedepth_nk_v1.py
Apache-2.0
def get_lr_params(self, lr): """ Learning rate configuration for different layers of the model Args: lr (float) : Base learning rate Returns: list : list of parameters to optimize and their learning rates, in the format required by torch optimizers. """ param_conf = [] if self.train_midas: def get_rel_pos_params(): for name, p in self.core.core.pretrained.named_parameters(): # if "relative_position" in name: if "pos_embed" in name: yield p def get_enc_params_except_rel_pos(): for name, p in self.core.core.pretrained.named_parameters(): # if "relative_position" not in name: if "pos_embed" not in name: yield p encoder_params = get_enc_params_except_rel_pos() rel_pos_params = get_rel_pos_params() # midas_params = self.core.core.scratch.parameters() midas_params = self.core.core.depth_head.parameters() midas_lr_factor = self.midas_lr_factor if self.is_midas_pretrained else 1.0 param_conf.extend([ {'params': encoder_params, 'lr': lr / self.encoder_lr_factor}, {'params': rel_pos_params, 'lr': lr / self.pos_enc_lr_factor}, {'params': midas_params, 'lr': lr / midas_lr_factor} ]) remaining_modules = [] for name, child in self.named_children(): if name != 'core': remaining_modules.append(child) remaining_params = itertools.chain( *[child.parameters() for child in remaining_modules]) param_conf.append({'params': remaining_params, 'lr': lr}) return param_conf
Learning rate configuration for different layers of the model Args: lr (float) : Base learning rate Returns: list : list of parameters to optimize and their learning rates, in the format required by torch optimizers.
get_lr_params
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/zoedepth_nk/zoedepth_nk_v1.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/zoedepth_nk/zoedepth_nk_v1.py
Apache-2.0
def get_conf_parameters(self, conf_name): """ Returns parameters of all the ModuleDicts children that are exclusively used for the given bin configuration """ params = [] for name, child in self.named_children(): if isinstance(child, nn.ModuleDict): for bin_conf_name, module in child.items(): if bin_conf_name == conf_name: params += list(module.parameters()) return params
Returns parameters of all the ModuleDicts children that are exclusively used for the given bin configuration
get_conf_parameters
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/zoedepth_nk/zoedepth_nk_v1.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/zoedepth_nk/zoedepth_nk_v1.py
Apache-2.0
def freeze_conf(self, conf_name): """ Freezes all the parameters of all the ModuleDicts children that are exclusively used for the given bin configuration """ for p in self.get_conf_parameters(conf_name): p.requires_grad = False
Freezes all the parameters of all the ModuleDicts children that are exclusively used for the given bin configuration
freeze_conf
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/zoedepth_nk/zoedepth_nk_v1.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/zoedepth_nk/zoedepth_nk_v1.py
Apache-2.0
def unfreeze_conf(self, conf_name): """ Unfreezes all the parameters of all the ModuleDicts children that are exclusively used for the given bin configuration """ for p in self.get_conf_parameters(conf_name): p.requires_grad = True
Unfreezes all the parameters of all the ModuleDicts children that are exclusively used for the given bin configuration
unfreeze_conf
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/zoedepth_nk/zoedepth_nk_v1.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/zoedepth_nk/zoedepth_nk_v1.py
Apache-2.0
def freeze_all_confs(self): """ Freezes all the parameters of all the ModuleDicts children """ for name, child in self.named_children(): if isinstance(child, nn.ModuleDict): for bin_conf_name, module in child.items(): for p in module.parameters(): p.requires_grad = False
Freezes all the parameters of all the ModuleDicts children
freeze_all_confs
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/models/zoedepth_nk/zoedepth_nk_v1.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/models/zoedepth_nk/zoedepth_nk_v1.py
Apache-2.0
def get_trainer(config): """Builds and returns a trainer based on the config. Args: config (dict): the config dict (typically constructed using utils.config.get_config) config.trainer (str): the name of the trainer to use. The module named "{config.trainer}_trainer" must exist in trainers root module Raises: ValueError: If the specified trainer does not exist under trainers/ folder Returns: Trainer (inherited from zoedepth.trainers.BaseTrainer): The Trainer object """ assert "trainer" in config and config.trainer is not None and config.trainer != '', "Trainer not specified. Config: {0}".format( config) try: Trainer = getattr(import_module( f"zoedepth.trainers.{config.trainer}_trainer"), 'Trainer') except ModuleNotFoundError as e: raise ValueError(f"Trainer {config.trainer}_trainer not found.") from e return Trainer
Builds and returns a trainer based on the config. Args: config (dict): the config dict (typically constructed using utils.config.get_config) config.trainer (str): the name of the trainer to use. The module named "{config.trainer}_trainer" must exist in trainers root module Raises: ValueError: If the specified trainer does not exist under trainers/ folder Returns: Trainer (inherited from zoedepth.trainers.BaseTrainer): The Trainer object
get_trainer
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/trainers/builder.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/trainers/builder.py
Apache-2.0
def __call__(self, prob, gt): """ :param prob: ordinal regression probability, N x 2*Ord Num x H x W, torch.Tensor :param gt: depth ground truth, NXHxW, torch.Tensor :return: loss: loss value, torch.float """ # N, C, H, W = prob.shape valid_mask = gt > 0. ord_label, mask = self._create_ord_label(gt) # print("prob shape: {}, ord label shape: {}".format(prob.shape, ord_label.shape)) entropy = -prob * ord_label loss = torch.sum(entropy, dim=1)[valid_mask.squeeze(1)] return loss.mean()
:param prob: ordinal regression probability, N x 2*Ord Num x H x W, torch.Tensor :param gt: depth ground truth, NXHxW, torch.Tensor :return: loss: loss value, torch.float
__call__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/trainers/loss.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/trainers/loss.py
Apache-2.0
def _dequantize_depth(self, depth): """ Inverse of quantization depth : NCHW -> N1HW """
Inverse of quantization depth : NCHW -> N1HW
_dequantize_depth
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/trainers/loss.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/trainers/loss.py
Apache-2.0
def train_on_batch(self, batch, train_step): """ Expects a batch of images and depth as input batch["image"].shape : batch_size, c, h, w batch["depth"].shape : batch_size, 1, h, w Assumes all images in a batch are from the same dataset """ images, depths_gt = batch['image'].to( self.device), batch['depth'].to(self.device) # batch['dataset'] is a tensor strings all valued either 'nyu' or 'kitti'. labels nyu -> 0, kitti -> 1 dataset = batch['dataset'][0] # Convert to 0s or 1s domain_labels = torch.Tensor([dataset == 'kitti' for _ in range( images.size(0))]).to(torch.long).to(self.device) # m = self.model.module if self.config.multigpu else self.model b, c, h, w = images.size() mask = batch["mask"].to(self.device).to(torch.bool) losses = {} with amp.autocast(enabled=self.config.use_amp): output = self.model(images) pred_depths = output['metric_depth'] domain_logits = output['domain_logits'] l_si, pred = self.silog_loss( pred_depths, depths_gt, mask=mask, interpolate=True, return_interpolated=True) loss = self.config.w_si * l_si losses[self.silog_loss.name] = l_si if self.config.w_grad > 0: l_grad = self.grad_loss(pred, depths_gt, mask=mask) loss = loss + self.config.w_grad * l_grad losses[self.grad_loss.name] = l_grad else: l_grad = torch.Tensor([0]) if self.config.w_domain > 0: l_domain = self.domain_classifier_loss( domain_logits, domain_labels) loss = loss + self.config.w_domain * l_domain losses["DomainLoss"] = l_domain else: l_domain = torch.Tensor([0.]) self.scaler.scale(loss).backward() if self.config.clip_grad > 0: self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_( self.model.parameters(), self.config.clip_grad) self.scaler.step(self.optimizer) if self.should_log and self.step > 1 and (self.step % int(self.config.log_images_every * self.iters_per_epoch)) == 0: depths_gt[torch.logical_not(mask)] = -99 self.log_images(rgb={"Input": images[0, ...]}, depth={"GT": depths_gt[0], "PredictedMono": pred[0]}, prefix="Train", min_depth=DATASETS_CONFIG[dataset]['min_depth'], max_depth=DATASETS_CONFIG[dataset]['max_depth']) self.scaler.update() self.optimizer.zero_grad(set_to_none=True) return losses
Expects a batch of images and depth as input batch["image"].shape : batch_size, c, h, w batch["depth"].shape : batch_size, 1, h, w Assumes all images in a batch are from the same dataset
train_on_batch
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/trainers/zoedepth_nk_trainer.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/trainers/zoedepth_nk_trainer.py
Apache-2.0
def train_on_batch(self, batch, train_step): """ Expects a batch of images and depth as input batch["image"].shape : batch_size, c, h, w batch["depth"].shape : batch_size, 1, h, w """ images, depths_gt = batch['image'].to( self.device), batch['depth'].to(self.device) dataset = batch['dataset'][0] b, c, h, w = images.size() mask = batch["mask"].to(self.device).to(torch.bool) losses = {} with amp.autocast(enabled=self.config.use_amp): output = self.model(images) pred_depths = output['metric_depth'] l_si, pred = self.silog_loss( pred_depths, depths_gt, mask=mask, interpolate=True, return_interpolated=True) loss = self.config.w_si * l_si losses[self.silog_loss.name] = l_si if self.config.w_grad > 0: l_grad = self.grad_loss(pred, depths_gt, mask=mask) loss = loss + self.config.w_grad * l_grad losses[self.grad_loss.name] = l_grad else: l_grad = torch.Tensor([0]) self.scaler.scale(loss).backward() if self.config.clip_grad > 0: self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_( self.model.parameters(), self.config.clip_grad) self.scaler.step(self.optimizer) if self.should_log and (self.step % int(self.config.log_images_every * self.iters_per_epoch)) == 0: # -99 is treated as invalid depth in the log_images function and is colored grey. depths_gt[torch.logical_not(mask)] = -99 self.log_images(rgb={"Input": images[0, ...]}, depth={"GT": depths_gt[0], "PredictedMono": pred[0]}, prefix="Train", min_depth=DATASETS_CONFIG[dataset]['min_depth'], max_depth=DATASETS_CONFIG[dataset]['max_depth']) if self.config.get("log_rel", False): self.log_images( scalar_field={"RelPred": output["relative_depth"][0]}, prefix="TrainRel") self.scaler.update() self.optimizer.zero_grad() return losses
Expects a batch of images and depth as input batch["image"].shape : batch_size, c, h, w batch["depth"].shape : batch_size, 1, h, w
train_on_batch
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/trainers/zoedepth_trainer.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/trainers/zoedepth_trainer.py
Apache-2.0
def __init__(self, config, model, train_loader, test_loader=None, device=None): """ Base Trainer class for training a model.""" self.config = config self.metric_criterion = "abs_rel" if device is None: device = torch.device( 'cuda') if torch.cuda.is_available() else torch.device('cpu') self.device = device self.model = model self.train_loader = train_loader self.test_loader = test_loader self.optimizer = self.init_optimizer() self.scheduler = self.init_scheduler()
Base Trainer class for training a model.
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/trainers/base_trainer.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/trainers/base_trainer.py
Apache-2.0
def __init__(self, config, mode, device='cpu', transform=None, **kwargs): """ Data loader for depth datasets Args: config (dict): Config dictionary. Refer to utils/config.py mode (str): "train" or "online_eval" device (str, optional): Device to load the data on. Defaults to 'cpu'. transform (torchvision.transforms, optional): Transform to apply to the data. Defaults to None. """ self.config = config if config.dataset == 'ibims': self.data = get_ibims_loader(config, batch_size=1, num_workers=1) return if config.dataset == 'sunrgbd': self.data = get_sunrgbd_loader( data_dir_root=config.sunrgbd_root, batch_size=1, num_workers=1) return if config.dataset == 'diml_indoor': self.data = get_diml_indoor_loader( data_dir_root=config.diml_indoor_root, batch_size=1, num_workers=1) return if config.dataset == 'diml_outdoor': self.data = get_diml_outdoor_loader( data_dir_root=config.diml_outdoor_root, batch_size=1, num_workers=1) return if "diode" in config.dataset: self.data = get_diode_loader( config[config.dataset+"_root"], batch_size=1, num_workers=1) return if config.dataset == 'hypersim_test': self.data = get_hypersim_loader( config.hypersim_test_root, batch_size=1, num_workers=1) return if config.dataset == 'vkitti': self.data = get_vkitti_loader( config.vkitti_root, batch_size=1, num_workers=1) return if config.dataset == 'vkitti2': self.data = get_vkitti2_loader( config.vkitti2_root, batch_size=1, num_workers=1) return if config.dataset == 'ddad': self.data = get_ddad_loader(config.ddad_root, resize_shape=( 352, 1216), batch_size=1, num_workers=1) return img_size = self.config.get("img_size", None) img_size = img_size if self.config.get( "do_input_resize", False) else None if transform is None: transform = preprocessing_transforms(mode, size=img_size) if mode == 'train': Dataset = DataLoadPreprocess self.training_samples = Dataset( config, mode, transform=transform, device=device) if config.distributed: self.train_sampler = torch.utils.data.distributed.DistributedSampler( self.training_samples) else: self.train_sampler = None self.data = DataLoader(self.training_samples, batch_size=config.batch_size, shuffle=(self.train_sampler is None), num_workers=config.workers, pin_memory=True, persistent_workers=True, # prefetch_factor=2, sampler=self.train_sampler) elif mode == 'online_eval': self.testing_samples = DataLoadPreprocess( config, mode, transform=transform) if config.distributed: # redundant. here only for readability and to be more explicit # Give whole test set to all processes (and report evaluation only on one) regardless self.eval_sampler = None else: self.eval_sampler = None self.data = DataLoader(self.testing_samples, 1, shuffle=kwargs.get("shuffle_test", False), num_workers=1, pin_memory=False, sampler=self.eval_sampler) elif mode == 'test': self.testing_samples = DataLoadPreprocess( config, mode, transform=transform) self.data = DataLoader(self.testing_samples, 1, shuffle=False, num_workers=1) else: print( 'mode should be one of \'train, test, online_eval\'. Got {}'.format(mode))
Data loader for depth datasets Args: config (dict): Config dictionary. Refer to utils/config.py mode (str): "train" or "online_eval" device (str, optional): Device to load the data on. Defaults to 'cpu'. transform (torchvision.transforms, optional): Transform to apply to the data. Defaults to None.
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/data/data_mono.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/data/data_mono.py
Apache-2.0
def repetitive_roundrobin(*iterables): """ cycles through iterables but sample wise first yield first sample from first iterable then first sample from second iterable and so on then second sample from first iterable then second sample from second iterable and so on If one iterable is shorter than the others, it is repeated until all iterables are exhausted repetitive_roundrobin('ABC', 'D', 'EF') --> A D E B D F C D E """ # Repetitive roundrobin iterables_ = [iter(it) for it in iterables] exhausted = [False] * len(iterables) while not all(exhausted): for i, it in enumerate(iterables_): try: yield next(it) except StopIteration: exhausted[i] = True iterables_[i] = itertools.cycle(iterables[i]) # First elements may get repeated if one iterable is shorter than the others yield next(iterables_[i])
cycles through iterables but sample wise first yield first sample from first iterable then first sample from second iterable and so on then second sample from first iterable then second sample from second iterable and so on If one iterable is shorter than the others, it is repeated until all iterables are exhausted repetitive_roundrobin('ABC', 'D', 'EF') --> A D E B D F C D E
repetitive_roundrobin
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/data/data_mono.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/data/data_mono.py
Apache-2.0
def __init__(self, probability=0.5): """Init. Args: probability (float, optional): Flip probability. Defaults to 0.5. """ self.__probability = probability
Init. Args: probability (float, optional): Flip probability. Defaults to 0.5.
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/data/transforms.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/data/transforms.py
Apache-2.0
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA): """Rezise the sample to ensure the given size. Keeps aspect ratio. Args: sample (dict): sample size (tuple): image size Returns: tuple: new size """ shape = list(sample["disparity"].shape) if shape[0] >= size[0] and shape[1] >= size[1]: return sample scale = [0, 0] scale[0] = size[0] / shape[0] scale[1] = size[1] / shape[1] scale = max(scale) shape[0] = math.ceil(scale * shape[0]) shape[1] = math.ceil(scale * shape[1]) # resize sample["image"] = cv2.resize( sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method ) sample["disparity"] = cv2.resize( sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST ) sample["mask"] = cv2.resize( sample["mask"].astype(np.float32), tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST, ) sample["mask"] = sample["mask"].astype(bool) return tuple(shape)
Rezise the sample to ensure the given size. Keeps aspect ratio. Args: sample (dict): sample size (tuple): image size Returns: tuple: new size
apply_min_size
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/data/transforms.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/data/transforms.py
Apache-2.0
def __init__( self, width, height, resize_if_needed=False, image_interpolation_method=cv2.INTER_AREA, ): """Init. Args: width (int): output width height (int): output height resize_if_needed (bool, optional): If True, sample might be upsampled to ensure that a crop of size (width, height) is possbile. Defaults to False. """ self.__size = (height, width) self.__resize_if_needed = resize_if_needed self.__image_interpolation_method = image_interpolation_method
Init. Args: width (int): output width height (int): output height resize_if_needed (bool, optional): If True, sample might be upsampled to ensure that a crop of size (width, height) is possbile. Defaults to False.
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/data/transforms.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/data/transforms.py
Apache-2.0
def __init__( self, width, height, resize_target=True, keep_aspect_ratio=False, ensure_multiple_of=1, resize_method="lower_bound", image_interpolation_method=cv2.INTER_AREA, letter_box=False, ): """Init. Args: width (int): desired output width height (int): desired output height resize_target (bool, optional): True: Resize the full sample (image, mask, target). False: Resize image only. Defaults to True. keep_aspect_ratio (bool, optional): True: Keep the aspect ratio of the input sample. Output sample might not have the given width and height, and resize behaviour depends on the parameter 'resize_method'. Defaults to False. ensure_multiple_of (int, optional): Output width and height is constrained to be multiple of this parameter. Defaults to 1. resize_method (str, optional): "lower_bound": Output will be at least as large as the given size. "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) "minimal": Scale as least as possible. (Output size might be smaller than given size.) Defaults to "lower_bound". """ self.__width = width self.__height = height self.__resize_target = resize_target self.__keep_aspect_ratio = keep_aspect_ratio self.__multiple_of = ensure_multiple_of self.__resize_method = resize_method self.__image_interpolation_method = image_interpolation_method self.__letter_box = letter_box
Init. Args: width (int): desired output width height (int): desired output height resize_target (bool, optional): True: Resize the full sample (image, mask, target). False: Resize image only. Defaults to True. keep_aspect_ratio (bool, optional): True: Keep the aspect ratio of the input sample. Output sample might not have the given width and height, and resize behaviour depends on the parameter 'resize_method'. Defaults to False. ensure_multiple_of (int, optional): Output width and height is constrained to be multiple of this parameter. Defaults to 1. resize_method (str, optional): "lower_bound": Output will be at least as large as the given size. "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) "minimal": Scale as least as possible. (Output size might be smaller than given size.) Defaults to "lower_bound".
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/data/transforms.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/data/transforms.py
Apache-2.0
def __init__(self, max_val=1.0, use_mask=True): """Init. Args: max_val (float, optional): Max output value. Defaults to 1.0. use_mask (bool, optional): Only operate on valid pixels (mask == True). Defaults to True. """ self.__max_val = max_val self.__use_mask = use_mask
Init. Args: max_val (float, optional): Max output value. Defaults to 1.0. use_mask (bool, optional): Only operate on valid pixels (mask == True). Defaults to True.
__init__
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/data/transforms.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/data/transforms.py
Apache-2.0
def get_white_border(rgb_image, value=255, **kwargs) -> CropParams: """Crops the white border of the RGB. Args: rgb: RGB image, shape (H, W, 3). Returns: Crop parameters. """ if value == 255: # assert range of values in rgb image is [0, 255] assert np.max(rgb_image) <= 255 and np.min(rgb_image) >= 0, "RGB image values are not in range [0, 255]." assert rgb_image.max() > 1, "RGB image values are not in range [0, 255]." elif value == 1: # assert range of values in rgb image is [0, 1] assert np.max(rgb_image) <= 1 and np.min(rgb_image) >= 0, "RGB image values are not in range [0, 1]." return get_border_params(rgb_image, value=value, **kwargs)
Crops the white border of the RGB. Args: rgb: RGB image, shape (H, W, 3). Returns: Crop parameters.
get_white_border
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/data/preprocess.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/data/preprocess.py
Apache-2.0
def get_black_border(rgb_image, **kwargs) -> CropParams: """Crops the black border of the RGB. Args: rgb: RGB image, shape (H, W, 3). Returns: Crop parameters. """ return get_border_params(rgb_image, value=0, **kwargs)
Crops the black border of the RGB. Args: rgb: RGB image, shape (H, W, 3). Returns: Crop parameters.
get_black_border
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/data/preprocess.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/data/preprocess.py
Apache-2.0
def crop_image(image: np.ndarray, crop_params: CropParams) -> np.ndarray: """Crops the image according to the crop parameters. Args: image: RGB or depth image, shape (H, W, 3) or (H, W). crop_params: Crop parameters. Returns: Cropped image. """ return image[crop_params.top:crop_params.bottom, crop_params.left:crop_params.right]
Crops the image according to the crop parameters. Args: image: RGB or depth image, shape (H, W, 3) or (H, W). crop_params: Crop parameters. Returns: Cropped image.
crop_image
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/data/preprocess.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/data/preprocess.py
Apache-2.0
def crop_images(*images: np.ndarray, crop_params: CropParams) -> Tuple[np.ndarray]: """Crops the images according to the crop parameters. Args: images: RGB or depth images, shape (H, W, 3) or (H, W). crop_params: Crop parameters. Returns: Cropped images. """ return tuple(crop_image(image, crop_params) for image in images)
Crops the images according to the crop parameters. Args: images: RGB or depth images, shape (H, W, 3) or (H, W). crop_params: Crop parameters. Returns: Cropped images.
crop_images
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/data/preprocess.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/data/preprocess.py
Apache-2.0
def crop_black_or_white_border(rgb_image, *other_images: np.ndarray, tolerance=0.1, cut_off=20, level_diff_threshold=5) -> Tuple[np.ndarray]: """Crops the white and black border of the RGB and depth images. Args: rgb: RGB image, shape (H, W, 3). This image is used to determine the border. other_images: The other images to crop according to the border of the RGB image. Returns: Cropped RGB and other images. """ # crop black border crop_params = get_black_border(rgb_image, tolerance=tolerance, cut_off=cut_off, level_diff_threshold=level_diff_threshold) cropped_images = crop_images(rgb_image, *other_images, crop_params=crop_params) # crop white border crop_params = get_white_border(cropped_images[0], tolerance=tolerance, cut_off=cut_off, level_diff_threshold=level_diff_threshold) cropped_images = crop_images(*cropped_images, crop_params=crop_params) return cropped_images
Crops the white and black border of the RGB and depth images. Args: rgb: RGB image, shape (H, W, 3). This image is used to determine the border. other_images: The other images to crop according to the border of the RGB image. Returns: Cropped RGB and other images.
crop_black_or_white_border
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/data/preprocess.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/data/preprocess.py
Apache-2.0
def split_combined_args(kwargs): """Splits the arguments that are combined with '__' into multiple arguments. Combined arguments should have equal number of keys and values. Keys are separated by '__' and Values are separated with ';'. For example, '__n_bins__lr=256;0.001' Args: kwargs (dict): key-value pairs of arguments where key-value is optionally combined according to the above format. Returns: dict: Parsed dict with the combined arguments split into individual key-value pairs. """ new_kwargs = dict(kwargs) for key, value in kwargs.items(): if key.startswith("__"): keys = key.split("__")[1:] values = value.split(";") assert len(keys) == len( values), f"Combined arguments should have equal number of keys and values. Keys are separated by '__' and Values are separated with ';'. For example, '__n_bins__lr=256;0.001. Given (keys,values) is ({keys}, {values})" for k, v in zip(keys, values): new_kwargs[k] = v return new_kwargs
Splits the arguments that are combined with '__' into multiple arguments. Combined arguments should have equal number of keys and values. Keys are separated by '__' and Values are separated with ';'. For example, '__n_bins__lr=256;0.001' Args: kwargs (dict): key-value pairs of arguments where key-value is optionally combined according to the above format. Returns: dict: Parsed dict with the combined arguments split into individual key-value pairs.
split_combined_args
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/utils/config.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/utils/config.py
Apache-2.0
def parse_list(config, key, dtype=int): """Parse a list of values for the key if the value is a string. The values are separated by a comma. Modifies the config in place. """ if key in config: if isinstance(config[key], str): config[key] = list(map(dtype, config[key].split(','))) assert isinstance(config[key], list) and all([isinstance(e, dtype) for e in config[key]] ), f"{key} should be a list of values dtype {dtype}. Given {config[key]} of type {type(config[key])} with values of type {[type(e) for e in config[key]]}."
Parse a list of values for the key if the value is a string. The values are separated by a comma. Modifies the config in place.
parse_list
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/utils/config.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/utils/config.py
Apache-2.0
def get_model_config(model_name, model_version=None): """Find and parse the .json config file for the model. Args: model_name (str): name of the model. The config file should be named config_{model_name}[_{model_version}].json under the models/{model_name} directory. model_version (str, optional): Specific config version. If specified config_{model_name}_{model_version}.json is searched for and used. Otherwise config_{model_name}.json is used. Defaults to None. Returns: easydict: the config dictionary for the model. """ config_fname = f"config_{model_name}_{model_version}.json" if model_version is not None else f"config_{model_name}.json" config_file = os.path.join(ROOT, "models", model_name, config_fname) if not os.path.exists(config_file): return None with open(config_file, "r") as f: config = edict(json.load(f)) # handle dictionary inheritance # only training config is supported for inheritance if "inherit" in config.train and config.train.inherit is not None: inherit_config = get_model_config(config.train["inherit"]).train for key, value in inherit_config.items(): if key not in config.train: config.train[key] = value return edict(config)
Find and parse the .json config file for the model. Args: model_name (str): name of the model. The config file should be named config_{model_name}[_{model_version}].json under the models/{model_name} directory. model_version (str, optional): Specific config version. If specified config_{model_name}_{model_version}.json is searched for and used. Otherwise config_{model_name}.json is used. Defaults to None. Returns: easydict: the config dictionary for the model.
get_model_config
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/utils/config.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/utils/config.py
Apache-2.0
def get_config(model_name, mode='train', dataset=None, **overwrite_kwargs): """Main entry point to get the config for the model. Args: model_name (str): name of the desired model. mode (str, optional): "train" or "infer". Defaults to 'train'. dataset (str, optional): If specified, the corresponding dataset configuration is loaded as well. Defaults to None. Keyword Args: key-value pairs of arguments to overwrite the default config. The order of precedence for overwriting the config is (Higher precedence first): # 1. overwrite_kwargs # 2. "config_version": Config file version if specified in overwrite_kwargs. The corresponding config loaded is config_{model_name}_{config_version}.json # 3. "version_name": Default Model version specific config specified in overwrite_kwargs. The corresponding config loaded is config_{model_name}_{version_name}.json # 4. common_config: Default config for all models specified in COMMON_CONFIG Returns: easydict: The config dictionary for the model. """ check_choices("Model", model_name, ["zoedepth", "zoedepth_nk"]) check_choices("Mode", mode, ["train", "infer", "eval"]) if mode == "train": check_choices("Dataset", dataset, ["nyu", "kitti", "mix", None]) config = flatten({**COMMON_CONFIG, **COMMON_TRAINING_CONFIG}) config = update_model_config(config, mode, model_name) # update with model version specific config version_name = overwrite_kwargs.get("version_name", config["version_name"]) config = update_model_config(config, mode, model_name, version_name) # update with config version if specified config_version = overwrite_kwargs.get("config_version", None) if config_version is not None: print("Overwriting config with config_version", config_version) config = update_model_config(config, mode, model_name, config_version) # update with overwrite_kwargs # Combined args are useful for hyperparameter search overwrite_kwargs = split_combined_args(overwrite_kwargs) config = {**config, **overwrite_kwargs} # Casting to bool # TODO: Not necessary. Remove and test for key in KEYS_TYPE_BOOL: if key in config: config[key] = bool(config[key]) # Model specific post processing of config parse_list(config, "n_attractors") # adjust n_bins for each bin configuration if bin_conf is given and n_bins is passed in overwrite_kwargs if 'bin_conf' in config and 'n_bins' in overwrite_kwargs: bin_conf = config['bin_conf'] # list of dicts n_bins = overwrite_kwargs['n_bins'] new_bin_conf = [] for conf in bin_conf: conf['n_bins'] = n_bins new_bin_conf.append(conf) config['bin_conf'] = new_bin_conf if mode == "train": orig_dataset = dataset if dataset == "mix": dataset = 'nyu' # Use nyu as default for mix. Dataset config is changed accordingly while loading the dataloader if dataset is not None: config['project'] = f"MonoDepth3-{orig_dataset}" # Set project for wandb if dataset is not None: config['dataset'] = dataset config = {**DATASETS_CONFIG[dataset], **config} config['model'] = model_name typed_config = {k: infer_type(v) for k, v in config.items()} # add hostname to config config['hostname'] = platform.node() return edict(typed_config)
Main entry point to get the config for the model. Args: model_name (str): name of the desired model. mode (str, optional): "train" or "infer". Defaults to 'train'. dataset (str, optional): If specified, the corresponding dataset configuration is loaded as well. Defaults to None. Keyword Args: key-value pairs of arguments to overwrite the default config. The order of precedence for overwriting the config is (Higher precedence first): # 1. overwrite_kwargs # 2. "config_version": Config file version if specified in overwrite_kwargs. The corresponding config loaded is config_{model_name}_{config_version}.json # 3. "version_name": Default Model version specific config specified in overwrite_kwargs. The corresponding config loaded is config_{model_name}_{version_name}.json # 4. common_config: Default config for all models specified in COMMON_CONFIG Returns: easydict: The config dictionary for the model.
get_config
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/utils/config.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/utils/config.py
Apache-2.0
def get_intrinsics(H,W): """ Intrinsics for a pinhole camera model. Assume fov of 55 degrees and central principal point. """ f = 0.5 * W / np.tan(0.5 * 55 * np.pi / 180.0) cx = 0.5 * W cy = 0.5 * H return np.array([[f, 0, cx], [0, f, cy], [0, 0, 1]])
Intrinsics for a pinhole camera model. Assume fov of 55 degrees and central principal point.
get_intrinsics
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/utils/geometry.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/utils/geometry.py
Apache-2.0
def create_triangles(h, w, mask=None): """ Reference: https://github.com/google-research/google-research/blob/e96197de06613f1b027d20328e06d69829fa5a89/infinite_nature/render_utils.py#L68 Creates mesh triangle indices from a given pixel grid size. This function is not and need not be differentiable as triangle indices are fixed. Args: h: (int) denoting the height of the image. w: (int) denoting the width of the image. Returns: triangles: 2D numpy array of indices (int) with shape (2(W-1)(H-1) x 3) """ x, y = np.meshgrid(range(w - 1), range(h - 1)) tl = y * w + x tr = y * w + x + 1 bl = (y + 1) * w + x br = (y + 1) * w + x + 1 triangles = np.array([tl, bl, tr, br, tr, bl]) triangles = np.transpose(triangles, (1, 2, 0)).reshape( ((w - 1) * (h - 1) * 2, 3)) if mask is not None: mask = mask.reshape(-1) triangles = triangles[mask[triangles].all(1)] return triangles
Reference: https://github.com/google-research/google-research/blob/e96197de06613f1b027d20328e06d69829fa5a89/infinite_nature/render_utils.py#L68 Creates mesh triangle indices from a given pixel grid size. This function is not and need not be differentiable as triangle indices are fixed. Args: h: (int) denoting the height of the image. w: (int) denoting the width of the image. Returns: triangles: 2D numpy array of indices (int) with shape (2(W-1)(H-1) x 3)
create_triangles
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/utils/geometry.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/utils/geometry.py
Apache-2.0
def denormalize(x): """Reverses the imagenet normalization applied to the input. Args: x (torch.Tensor - shape(N,3,H,W)): input tensor Returns: torch.Tensor - shape(N,3,H,W): Denormalized input """ mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(x.device) std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(x.device) return x * std + mean
Reverses the imagenet normalization applied to the input. Args: x (torch.Tensor - shape(N,3,H,W)): input tensor Returns: torch.Tensor - shape(N,3,H,W): Denormalized input
denormalize
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/utils/misc.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/utils/misc.py
Apache-2.0
def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None): """Converts a depth map to a color image. Args: value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None. vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None. cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'. invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99. invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None. background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255). gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False. value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None. Returns: numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4) """ if isinstance(value, torch.Tensor): value = value.detach().cpu().numpy() value = value.squeeze() if invalid_mask is None: invalid_mask = value == invalid_val mask = np.logical_not(invalid_mask) # normalize vmin = np.percentile(value[mask],2) if vmin is None else vmin vmax = np.percentile(value[mask],85) if vmax is None else vmax if vmin != vmax: value = (value - vmin) / (vmax - vmin) # vmin..vmax else: # Avoid 0-division value = value * 0. # squeeze last dim if it exists # grey out the invalid values value[invalid_mask] = np.nan cmapper = matplotlib.cm.get_cmap(cmap) if value_transform: value = value_transform(value) # value = value / value.max() value = cmapper(value, bytes=True) # (nxmx4) # img = value[:, :, :] img = value[...] img[invalid_mask] = background_color # return img.transpose((2, 0, 1)) if gamma_corrected: # gamma correction img = img / 255 img = np.power(img, 2.2) img = img * 255 img = img.astype(np.uint8) return img
Converts a depth map to a color image. Args: value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None. vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None. cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'. invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99. invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None. background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255). gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False. value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None. Returns: numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4)
colorize
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/utils/misc.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/utils/misc.py
Apache-2.0
def compute_errors(gt, pred): """Compute metrics for 'pred' compared to 'gt' Args: gt (numpy.ndarray): Ground truth values pred (numpy.ndarray): Predicted values gt.shape should be equal to pred.shape Returns: dict: Dictionary containing the following metrics: 'a1': Delta1 accuracy: Fraction of pixels that are within a scale factor of 1.25 'a2': Delta2 accuracy: Fraction of pixels that are within a scale factor of 1.25^2 'a3': Delta3 accuracy: Fraction of pixels that are within a scale factor of 1.25^3 'abs_rel': Absolute relative error 'rmse': Root mean squared error 'log_10': Absolute log10 error 'sq_rel': Squared relative error 'rmse_log': Root mean squared error on the log scale 'silog': Scale invariant log error """ thresh = np.maximum((gt / pred), (pred / gt)) a1 = (thresh < 1.25).mean() a2 = (thresh < 1.25 ** 2).mean() a3 = (thresh < 1.25 ** 3).mean() abs_rel = np.mean(np.abs(gt - pred) / gt) sq_rel = np.mean(((gt - pred) ** 2) / gt) rmse = (gt - pred) ** 2 rmse = np.sqrt(rmse.mean()) rmse_log = (np.log(gt) - np.log(pred)) ** 2 rmse_log = np.sqrt(rmse_log.mean()) err = np.log(pred) - np.log(gt) silog = np.sqrt(np.mean(err ** 2) - np.mean(err) ** 2) * 100 log_10 = (np.abs(np.log10(gt) - np.log10(pred))).mean() return dict(a1=a1, a2=a2, a3=a3, abs_rel=abs_rel, rmse=rmse, log_10=log_10, rmse_log=rmse_log, silog=silog, sq_rel=sq_rel)
Compute metrics for 'pred' compared to 'gt' Args: gt (numpy.ndarray): Ground truth values pred (numpy.ndarray): Predicted values gt.shape should be equal to pred.shape Returns: dict: Dictionary containing the following metrics: 'a1': Delta1 accuracy: Fraction of pixels that are within a scale factor of 1.25 'a2': Delta2 accuracy: Fraction of pixels that are within a scale factor of 1.25^2 'a3': Delta3 accuracy: Fraction of pixels that are within a scale factor of 1.25^3 'abs_rel': Absolute relative error 'rmse': Root mean squared error 'log_10': Absolute log10 error 'sq_rel': Squared relative error 'rmse_log': Root mean squared error on the log scale 'silog': Scale invariant log error
compute_errors
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/utils/misc.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/utils/misc.py
Apache-2.0
def compute_metrics(gt, pred, interpolate=True, garg_crop=False, eigen_crop=True, dataset='nyu', min_depth_eval=0.1, max_depth_eval=10, **kwargs): """Compute metrics of predicted depth maps. Applies cropping and masking as necessary or specified via arguments. Refer to compute_errors for more details on metrics. """ if 'config' in kwargs: config = kwargs['config'] garg_crop = config.garg_crop eigen_crop = config.eigen_crop min_depth_eval = config.min_depth_eval max_depth_eval = config.max_depth_eval if gt.shape[-2:] != pred.shape[-2:] and interpolate: pred = nn.functional.interpolate( pred, gt.shape[-2:], mode='bilinear', align_corners=True) pred = pred.squeeze().cpu().numpy() pred[pred < min_depth_eval] = min_depth_eval pred[pred > max_depth_eval] = max_depth_eval pred[np.isinf(pred)] = max_depth_eval pred[np.isnan(pred)] = min_depth_eval gt_depth = gt.squeeze().cpu().numpy() valid_mask = np.logical_and( gt_depth > min_depth_eval, gt_depth < max_depth_eval) if garg_crop or eigen_crop: gt_height, gt_width = gt_depth.shape eval_mask = np.zeros(valid_mask.shape) if garg_crop: eval_mask[int(0.40810811 * gt_height):int(0.99189189 * gt_height), int(0.03594771 * gt_width):int(0.96405229 * gt_width)] = 1 elif eigen_crop: # print("-"*10, " EIGEN CROP ", "-"*10) if dataset == 'kitti': eval_mask[int(0.3324324 * gt_height):int(0.91351351 * gt_height), int(0.0359477 * gt_width):int(0.96405229 * gt_width)] = 1 else: # assert gt_depth.shape == (480, 640), "Error: Eigen crop is currently only valid for (480, 640) images" eval_mask[45:471, 41:601] = 1 else: eval_mask = np.ones(valid_mask.shape) valid_mask = np.logical_and(valid_mask, eval_mask) return compute_errors(gt_depth[valid_mask], pred[valid_mask])
Compute metrics of predicted depth maps. Applies cropping and masking as necessary or specified via arguments. Refer to compute_errors for more details on metrics.
compute_metrics
python
LiheYoung/Depth-Anything
metric_depth/zoedepth/utils/misc.py
https://github.com/LiheYoung/Depth-Anything/blob/master/metric_depth/zoedepth/utils/misc.py
Apache-2.0
def dinov2_vits14(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs): """ DINOv2 ViT-S/14 model (optionally) pretrained on the LVD-142M dataset. """ return _make_dinov2_model(arch_name="vit_small", pretrained=pretrained, weights=weights, **kwargs)
DINOv2 ViT-S/14 model (optionally) pretrained on the LVD-142M dataset.
dinov2_vits14
python
LiheYoung/Depth-Anything
torchhub/facebookresearch_dinov2_main/hubconf.py
https://github.com/LiheYoung/Depth-Anything/blob/master/torchhub/facebookresearch_dinov2_main/hubconf.py
Apache-2.0
def dinov2_vitb14(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs): """ DINOv2 ViT-B/14 model (optionally) pretrained on the LVD-142M dataset. """ return _make_dinov2_model(arch_name="vit_base", pretrained=pretrained, weights=weights, **kwargs)
DINOv2 ViT-B/14 model (optionally) pretrained on the LVD-142M dataset.
dinov2_vitb14
python
LiheYoung/Depth-Anything
torchhub/facebookresearch_dinov2_main/hubconf.py
https://github.com/LiheYoung/Depth-Anything/blob/master/torchhub/facebookresearch_dinov2_main/hubconf.py
Apache-2.0
def dinov2_vitl14(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs): """ DINOv2 ViT-L/14 model (optionally) pretrained on the LVD-142M dataset. """ return _make_dinov2_model(arch_name="vit_large", pretrained=pretrained, weights=weights, **kwargs)
DINOv2 ViT-L/14 model (optionally) pretrained on the LVD-142M dataset.
dinov2_vitl14
python
LiheYoung/Depth-Anything
torchhub/facebookresearch_dinov2_main/hubconf.py
https://github.com/LiheYoung/Depth-Anything/blob/master/torchhub/facebookresearch_dinov2_main/hubconf.py
Apache-2.0
def dinov2_vitg14(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs): """ DINOv2 ViT-g/14 model (optionally) pretrained on the LVD-142M dataset. """ return _make_dinov2_model( arch_name="vit_giant2", ffn_layer="swiglufused", weights=weights, pretrained=pretrained, **kwargs, )
DINOv2 ViT-g/14 model (optionally) pretrained on the LVD-142M dataset.
dinov2_vitg14
python
LiheYoung/Depth-Anything
torchhub/facebookresearch_dinov2_main/hubconf.py
https://github.com/LiheYoung/Depth-Anything/blob/master/torchhub/facebookresearch_dinov2_main/hubconf.py
Apache-2.0
def dinov2_vits14_reg(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs): """ DINOv2 ViT-S/14 model with registers (optionally) pretrained on the LVD-142M dataset. """ return _make_dinov2_model( arch_name="vit_small", pretrained=pretrained, weights=weights, num_register_tokens=4, interpolate_antialias=True, interpolate_offset=0.0, **kwargs, )
DINOv2 ViT-S/14 model with registers (optionally) pretrained on the LVD-142M dataset.
dinov2_vits14_reg
python
LiheYoung/Depth-Anything
torchhub/facebookresearch_dinov2_main/hubconf.py
https://github.com/LiheYoung/Depth-Anything/blob/master/torchhub/facebookresearch_dinov2_main/hubconf.py
Apache-2.0
def dinov2_vitb14_reg(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs): """ DINOv2 ViT-B/14 model with registers (optionally) pretrained on the LVD-142M dataset. """ return _make_dinov2_model( arch_name="vit_base", pretrained=pretrained, weights=weights, num_register_tokens=4, interpolate_antialias=True, interpolate_offset=0.0, **kwargs, )
DINOv2 ViT-B/14 model with registers (optionally) pretrained on the LVD-142M dataset.
dinov2_vitb14_reg
python
LiheYoung/Depth-Anything
torchhub/facebookresearch_dinov2_main/hubconf.py
https://github.com/LiheYoung/Depth-Anything/blob/master/torchhub/facebookresearch_dinov2_main/hubconf.py
Apache-2.0
def dinov2_vitl14_reg(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs): """ DINOv2 ViT-L/14 model with registers (optionally) pretrained on the LVD-142M dataset. """ return _make_dinov2_model( arch_name="vit_large", pretrained=pretrained, weights=weights, num_register_tokens=4, interpolate_antialias=True, interpolate_offset=0.0, **kwargs, )
DINOv2 ViT-L/14 model with registers (optionally) pretrained on the LVD-142M dataset.
dinov2_vitl14_reg
python
LiheYoung/Depth-Anything
torchhub/facebookresearch_dinov2_main/hubconf.py
https://github.com/LiheYoung/Depth-Anything/blob/master/torchhub/facebookresearch_dinov2_main/hubconf.py
Apache-2.0
def dinov2_vitg14_reg(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs): """ DINOv2 ViT-g/14 model with registers (optionally) pretrained on the LVD-142M dataset. """ return _make_dinov2_model( arch_name="vit_giant2", ffn_layer="swiglufused", weights=weights, pretrained=pretrained, num_register_tokens=4, interpolate_antialias=True, interpolate_offset=0.0, **kwargs, )
DINOv2 ViT-g/14 model with registers (optionally) pretrained on the LVD-142M dataset.
dinov2_vitg14_reg
python
LiheYoung/Depth-Anything
torchhub/facebookresearch_dinov2_main/hubconf.py
https://github.com/LiheYoung/Depth-Anything/blob/master/torchhub/facebookresearch_dinov2_main/hubconf.py
Apache-2.0
def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True, ffn_bias=True, proj_bias=True, drop_path_rate=0.0, drop_path_uniform=False, init_values=None, # for layerscale: None or 0 => no layerscale embed_layer=PatchEmbed, act_layer=nn.GELU, block_fn=Block, ffn_layer="mlp", block_chunks=1, num_register_tokens=0, interpolate_antialias=False, interpolate_offset=0.1, ): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True proj_bias (bool): enable bias for proj in attn if True ffn_bias (bool): enable bias for ffn if True drop_path_rate (float): stochastic depth rate drop_path_uniform (bool): apply uniform drop rate across blocks weight_init (str): weight init scheme init_values (float): layer-scale init values embed_layer (nn.Module): patch embedding layer act_layer (nn.Module): MLP activation layer block_fn (nn.Module): transformer block class ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity" block_chunks: (int) split block sequence into block_chunks units for FSDP wrap num_register_tokens: (int) number of extra cls tokens (so-called "registers") interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings """ super().__init__() norm_layer = partial(nn.LayerNorm, eps=1e-6) self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_tokens = 1 self.n_blocks = depth self.num_heads = num_heads self.patch_size = patch_size self.num_register_tokens = num_register_tokens self.interpolate_antialias = interpolate_antialias self.interpolate_offset = interpolate_offset self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) assert num_register_tokens >= 0 self.register_tokens = ( nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None ) if drop_path_uniform is True: dpr = [drop_path_rate] * depth else: dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule if ffn_layer == "mlp": logger.info("using MLP layer as FFN") ffn_layer = Mlp elif ffn_layer == "swiglufused" or ffn_layer == "swiglu": logger.info("using SwiGLU layer as FFN") ffn_layer = SwiGLUFFNFused elif ffn_layer == "identity": logger.info("using Identity layer as FFN") def f(*args, **kwargs): return nn.Identity() ffn_layer = f else: raise NotImplementedError blocks_list = [ block_fn( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_bias=proj_bias, ffn_bias=ffn_bias, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, ffn_layer=ffn_layer, init_values=init_values, ) for i in range(depth) ] if block_chunks > 0: self.chunked_blocks = True chunked_blocks = [] chunksize = depth // block_chunks for i in range(0, depth, chunksize): # this is to keep the block index consistent if we chunk the block list chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize]) self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks]) else: self.chunked_blocks = False self.blocks = nn.ModuleList(blocks_list) self.norm = norm_layer(embed_dim) self.head = nn.Identity() self.mask_token = nn.Parameter(torch.zeros(1, embed_dim)) self.init_weights()
Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True proj_bias (bool): enable bias for proj in attn if True ffn_bias (bool): enable bias for ffn if True drop_path_rate (float): stochastic depth rate drop_path_uniform (bool): apply uniform drop rate across blocks weight_init (str): weight init scheme init_values (float): layer-scale init values embed_layer (nn.Module): patch embedding layer act_layer (nn.Module): MLP activation layer block_fn (nn.Module): transformer block class ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity" block_chunks: (int) split block sequence into block_chunks units for FSDP wrap num_register_tokens: (int) number of extra cls tokens (so-called "registers") interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
__init__
python
LiheYoung/Depth-Anything
torchhub/facebookresearch_dinov2_main/vision_transformer.py
https://github.com/LiheYoung/Depth-Anything/blob/master/torchhub/facebookresearch_dinov2_main/vision_transformer.py
Apache-2.0
def init_weights_vit_timm(module: nn.Module, name: str = ""): """ViT weight initialization, original timm impl (for reproducibility)""" if isinstance(module, nn.Linear): trunc_normal_(module.weight, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias)
ViT weight initialization, original timm impl (for reproducibility)
init_weights_vit_timm
python
LiheYoung/Depth-Anything
torchhub/facebookresearch_dinov2_main/vision_transformer.py
https://github.com/LiheYoung/Depth-Anything/blob/master/torchhub/facebookresearch_dinov2_main/vision_transformer.py
Apache-2.0
def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs): """ Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64 """ model = DinoVisionTransformer( patch_size=patch_size, embed_dim=1536, depth=40, num_heads=24, mlp_ratio=4, block_fn=partial(Block, attn_class=MemEffAttention), num_register_tokens=num_register_tokens, **kwargs, ) return model
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
vit_giant2
python
LiheYoung/Depth-Anything
torchhub/facebookresearch_dinov2_main/vision_transformer.py
https://github.com/LiheYoung/Depth-Anything/blob/master/torchhub/facebookresearch_dinov2_main/vision_transformer.py
Apache-2.0
def forward(self, features_rank): """ Compute the results on all values of `self.nb_knn` neighbors from the full `self.max_k` """ assert all(k <= self.max_k for k in self.nb_knn) topk_sims, neighbors_labels = self.compute_neighbors(features_rank) batch_size = neighbors_labels.shape[0] topk_sims_transform = softmax(topk_sims / self.T, 1) matmul = torch.mul( one_hot(neighbors_labels, num_classes=self.num_classes), topk_sims_transform.view(batch_size, -1, 1), ) probas_for_k = {k: torch.sum(matmul[:, :k, :], 1) for k in self.nb_knn} return probas_for_k
Compute the results on all values of `self.nb_knn` neighbors from the full `self.max_k`
forward
python
LiheYoung/Depth-Anything
torchhub/facebookresearch_dinov2_main/dinov2/eval/knn.py
https://github.com/LiheYoung/Depth-Anything/blob/master/torchhub/facebookresearch_dinov2_main/dinov2/eval/knn.py
Apache-2.0
def eval_log_regression( *, model, train_dataset, val_dataset, finetune_dataset, metric_type, batch_size, num_workers, finetune_on_val=False, train_dtype=torch.float64, train_features_device=_CPU_DEVICE, max_train_iters=DEFAULT_MAX_ITER, ): """ Implements the "standard" process for log regression evaluation: The value of C is chosen by training on train_dataset and evaluating on finetune_dataset. Then, the final model is trained on a concatenation of train_dataset and finetune_dataset, and is evaluated on val_dataset. If there is no finetune_dataset, the value of C is the one that yields the best results on a random 10% subset of the train dataset """ start = time.time() train_features, train_labels = extract_features( model, train_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE) ) val_features, val_labels = extract_features( model, val_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE) ) val_data_loader = torch.utils.data.DataLoader( TensorDataset(val_features, val_labels), batch_size=batch_size, drop_last=False, num_workers=0, persistent_workers=False, ) if finetune_dataset is None and finetune_on_val: logger.info("Choosing hyperparameters on the val dataset") finetune_features, finetune_labels = val_features, val_labels elif finetune_dataset is None and not finetune_on_val: logger.info("Choosing hyperparameters on 10% of the train dataset") torch.manual_seed(0) indices = torch.randperm(len(train_features), device=train_features.device) finetune_index = indices[: len(train_features) // 10] train_index = indices[len(train_features) // 10 :] finetune_features, finetune_labels = train_features[finetune_index], train_labels[finetune_index] train_features, train_labels = train_features[train_index], train_labels[train_index] else: logger.info("Choosing hyperparameters on the finetune dataset") finetune_features, finetune_labels = extract_features( model, finetune_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE) ) # release the model - free GPU memory del model gc.collect() torch.cuda.empty_cache() finetune_data_loader = torch.utils.data.DataLoader( TensorDataset(finetune_features, finetune_labels), batch_size=batch_size, drop_last=False, ) if len(train_labels.shape) > 1: num_classes = train_labels.shape[1] else: num_classes = train_labels.max() + 1 logger.info("Using cuML for logistic regression") best_stats, best_C = sweep_C_values( train_features=train_features, train_labels=train_labels, test_data_loader=finetune_data_loader, metric_type=metric_type, num_classes=num_classes, train_dtype=train_dtype, train_features_device=train_features_device, max_train_iters=max_train_iters, ) if not finetune_on_val: logger.info("Best parameter found, concatenating features") train_features = torch.cat((train_features, finetune_features)) train_labels = torch.cat((train_labels, finetune_labels)) logger.info("Training final model") logreg_metric = build_metric(metric_type, num_classes=num_classes) evals = train_and_evaluate( C=best_C, max_iter=max_train_iters, train_features=train_features, train_labels=train_labels, logreg_metric=logreg_metric.clone(), test_data_loader=val_data_loader, eval_device=torch.cuda.current_device(), train_dtype=train_dtype, train_features_device=train_features_device, ) best_stats = evals[1]["metrics"] best_stats["best_C"] = best_C logger.info(f"Log regression evaluation done in {int(time.time() - start)}s") return best_stats
Implements the "standard" process for log regression evaluation: The value of C is chosen by training on train_dataset and evaluating on finetune_dataset. Then, the final model is trained on a concatenation of train_dataset and finetune_dataset, and is evaluated on val_dataset. If there is no finetune_dataset, the value of C is the one that yields the best results on a random 10% subset of the train dataset
eval_log_regression
python
LiheYoung/Depth-Anything
torchhub/facebookresearch_dinov2_main/dinov2/eval/log_regression.py
https://github.com/LiheYoung/Depth-Anything/blob/master/torchhub/facebookresearch_dinov2_main/dinov2/eval/log_regression.py
Apache-2.0