code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def partition(self, tensor): """Partition tensor into blocks.""" assert tensor.shape == self._shape tensors = [tensor] for i, indices in self._splits: tensors_local = [] for t in tensors: tensors_local.extend(jnp.split(t, indices_or_sections=indices, axis=i)) tensors = tensors_local return tensors
Partition tensor into blocks.
partition
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def merge_partitions(self, partitions): """Merge partitions back to original shape.""" for i, indices in reversed(self._splits): n = len(indices) + 1 partial_merged_tensors = [] ind = 0 while ind < len(partitions): partial_merged_tensors.append( jnp.concatenate(partitions[ind : ind + n], axis=i) ) ind += n partitions = partial_merged_tensors assert len(partitions) == 1 return partitions[0]
Merge partitions back to original shape.
merge_partitions
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def gram_weighted_update(old_stats, g, axis, w1, w2, precision=None): """Updated statistics via weighted average with new Gram matrix. Returns w₁ R + w₂ Gᵀ G where R is `old_stats` and G is the matrix whose columns are the flattened slices of the tensor `g` along the given `axis`. (So, `old_stats` and the returned matrix have dimensions n x n where n = `g.shape[axis]`). Args: old_stats: Old statistics. g: Gradient tensor. axis: Axis along which to slice `g`. w1: Scalar weight for old statistics. w2: Scalar weight for new Gram matrix. precision: Optional precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) Returns: Weighted average of old and new statistics. """ axes = [i for i in range(g.ndim) if i != axis] gram_matrix = jnp.tensordot(g, g, axes=(axes, axes), precision=precision) return w1 * old_stats + w2 * gram_matrix
Updated statistics via weighted average with new Gram matrix. Returns w₁ R + w₂ Gᵀ G where R is `old_stats` and G is the matrix whose columns are the flattened slices of the tensor `g` along the given `axis`. (So, `old_stats` and the returned matrix have dimensions n x n where n = `g.shape[axis]`). Args: old_stats: Old statistics. g: Gradient tensor. axis: Axis along which to slice `g`. w1: Scalar weight for old statistics. w2: Scalar weight for new Gram matrix. precision: Optional precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) Returns: Weighted average of old and new statistics.
gram_weighted_update
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def __init__( self, param, block_size, merge_small_dims_block_size, best_effort_shape_interpretation, preconditioner_type=PreconditionerType.ALL, ): """Initializes the preconditioner. Args: param: parameter to precondition. block_size: Block size used to split param. merge_small_dims_block_size: Block size for merging dims. best_effort_shape_interpretation: Whether to collapse/merge dims together. preconditioner_type: Type of preconditioner to use. """ self._original_shape = param.shape self._transformed_shape = param.shape if best_effort_shape_interpretation: self._transformed_shape = merge_small_dims( self._original_shape, merge_small_dims_block_size ) reshaped_param = jnp.reshape(param, self._transformed_shape) self._partitioner = BlockPartitioner(reshaped_param, block_size) self._preconditioner_type = preconditioner_type
Initializes the preconditioner. Args: param: parameter to precondition. block_size: Block size used to split param. merge_small_dims_block_size: Block size for merging dims. best_effort_shape_interpretation: Whether to collapse/merge dims together. preconditioner_type: Type of preconditioner to use.
__init__
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def updated_statistics_from_grad( self, stats, grad, w1, w2, to_float=None, from_float=None, precision=None, ): """Update statistics from gradients. Args: stats: Old statistics or its Cholesky factor if `cholesky` is True. grad: Gradient to compute statistics from. w1: Weight for old statistics. w2: Weight for new statistics. to_float: Optional function for converting stats to floating point. from_float: Optional function for converting from floating point. precision: Optional precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) Returns: A list of updated gradient statistics for each partition. """ to_float = to_float if to_float is not None else (lambda x: x) from_float = from_float if from_float is not None else (lambda x: x) update = functools.partial(gram_weighted_update, precision=precision) reshaped_grad = jnp.reshape(grad, self._transformed_shape) partitioned_grads = self._partitioner.partition(reshaped_grad) new_stats = [] index = 0 for g in partitioned_grads: should_preconditioned_dims = self.should_precondition_dims() num_preconditioners = sum(should_preconditioned_dims) for axis in range(num_preconditioners): new_stat = update(to_float(stats[index]), g, axis, w1, w2) new_stats.append(from_float(new_stat)) index += 1 return new_stats
Update statistics from gradients. Args: stats: Old statistics or its Cholesky factor if `cholesky` is True. grad: Gradient to compute statistics from. w1: Weight for old statistics. w2: Weight for new statistics. to_float: Optional function for converting stats to floating point. from_float: Optional function for converting from floating point. precision: Optional precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) Returns: A list of updated gradient statistics for each partition.
updated_statistics_from_grad
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def should_precondition_dims(self): """A vector containing indicator indicating if the dim is preconditioned.""" split_sizes = self._partitioner.split_sizes() rank = len(split_sizes) if self._preconditioner_type == PreconditionerType.ALL or rank <= 1: return [True] * rank else: return [True] * (rank - 1) + [False]
A vector containing indicator indicating if the dim is preconditioned.
should_precondition_dims
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def shapes_for_preconditioners(self): """Returns shape from statistics.""" split_sizes = self._partitioner.split_sizes() rank = len(split_sizes) # We ignore preconditioner types if rank == 1 preconditioner_shapes = [] for t in itertools.product(*split_sizes): if self._preconditioner_type == PreconditionerType.ALL or rank <= 1: preconditioner_shapes.extend([[d, d] for d in t]) else: preconditioner_shapes.extend([[d, d] for d in t[:-1]]) return preconditioner_shapes
Returns shape from statistics.
shapes_for_preconditioners
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def exponent_for_preconditioner(self): """Returns exponent to use for inverse-pth root M^{-1/p}.""" should_preconditioned_dims = self.should_precondition_dims() num_preconditioners = sum(should_preconditioned_dims) return 2 * num_preconditioners
Returns exponent to use for inverse-pth root M^{-1/p}.
exponent_for_preconditioner
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def preconditioned_grad(self, grad, preconditioners): """Precondition the gradient. Args: grad: A gradient tensor to precondition. preconditioners: A list of preconditioners to apply. Returns: A preconditioned gradient. """ reshaped_grad = jnp.reshape(grad, self._transformed_shape) partitioned_grads = self._partitioner.partition(reshaped_grad) preconditioned_partitioned_grads = [] for i, g in enumerate(partitioned_grads): should_preconditioned_dims = self.should_precondition_dims() num_preconditioners = sum(should_preconditioned_dims) preconditioners_for_grad = preconditioners[ i * num_preconditioners : (i + 1) * num_preconditioners ] precond_g = g rank = len(g.shape) for j, precondition in enumerate(should_preconditioned_dims): if precondition: precond_g = jnp.tensordot( precond_g, preconditioners_for_grad[j], axes=[[0], [0]] ) else: precond_g = jnp.transpose(precond_g, axes=(*range(1, rank), 0)) preconditioned_partitioned_grads.append(precond_g) merged_grad = self._partitioner.merge_partitions( preconditioned_partitioned_grads ) return jnp.reshape(merged_grad, self._original_shape)
Precondition the gradient. Args: grad: A gradient tensor to precondition. preconditioners: A list of preconditioners to apply. Returns: A preconditioned gradient.
preconditioned_grad
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def _convert_to_parameter_stats(global_stats, local_stat, convert_statistics=True): """Creates parameter stats from sharded stats.""" index_start = int(local_stat.index_start) index_end = int(len(local_stat.sizes)) + index_start statistics = global_stats.statistics[index_start:index_end, :, :] preconditioners = global_stats.preconditioners[index_start:index_end, :, :] new_statistics = [] new_preconditioners = [] for i, size in enumerate(local_stat.sizes): new_statistics.append(statistics[i][:size, :size]) new_preconditioners.append(preconditioners[i][:size, :size]) if not convert_statistics: new_statistics = None return ParameterStats( local_stat.diagonal_statistics, new_statistics, new_preconditioners, local_stat.diagonal_momentum, local_stat.momentum, local_stat.training_metrics, )
Creates parameter stats from sharded stats.
_convert_to_parameter_stats
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def _convert_from_parameter_stats(parameter_stats, local_stats): """Creates sharded stats from paramter stats.""" return LocalShardedParameterStats( parameter_stats.diagonal_statistics, parameter_stats.diagonal_momentum, parameter_stats.momentum, parameter_stats.training_metrics, local_stats.index_start, local_stats.sizes, )
Creates sharded stats from paramter stats.
_convert_from_parameter_stats
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def _add_error_into_local_stats(local_stats, errors, inverse_failure_threshold): """Adds errors back into local statistics.""" new_local_stats = [] for local_stat in local_stats: if local_stat.sizes: index_start = int(local_stat.index_start) index_end = int(len(local_stat.sizes)) + index_start per_stat_error = errors[index_start:index_end] else: per_stat_error = jnp.array(0, jnp.float32) if local_stat.sizes: per_stat_error = jnp.where( jnp.logical_and( per_stat_error > 0.0, per_stat_error != inverse_failure_threshold ), per_stat_error, local_stat.training_metrics.inverse_pth_root_errors, ) new_local_stats.append( LocalShardedParameterStats( local_stat.diagonal_statistics, local_stat.diagonal_momentum, local_stat.momentum, TrainingMetrics(per_stat_error), local_stat.index_start, local_stat.sizes, ) ) return new_local_stats
Adds errors back into local statistics.
_add_error_into_local_stats
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def batch(x, num_devices): """Batch `x` so that so that leading axis is num_devices.""" n = len(x) b = int(n / num_devices) return jnp.stack([jnp.stack(x[idx : idx + b]) for idx in range(0, n, b)])
Batch `x` so that so that leading axis is num_devices.
batch
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def unbatch(batched_values): """Unbatch values across leading axis and return a list of elements.""" b1, b2 = batched_values.shape[0], batched_values.shape[1] results = [] for v_array in jnp.split(batched_values, indices_or_sections=b1, axis=0): v_array = jnp.squeeze(v_array) # b2 = batches (number of preconditioner computation) per core. if b2 > 1: for v in jnp.split(v_array, indices_or_sections=b2, axis=0): results.append(jnp.squeeze(v)) else: results.append(v_array) return results
Unbatch values across leading axis and return a list of elements.
unbatch
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def _graft_type_has_diagonal_statistics(): """Returns True if using diagonal firt order method for grafting.""" return graft_type != GraftingType.SGD and graft_type != GraftingType.SQRT_N
Returns True if using diagonal firt order method for grafting.
distributed_shampoo._graft_type_has_diagonal_statistics
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def preconditioner_from_params(param): """Returns a Preconditioner object for given param.""" return Preconditioner( param, block_size, merge_small_dims_block_size, best_effort_shape_interpretation, precondtioner_type, )
Returns a Preconditioner object for given param.
distributed_shampoo.preconditioner_from_params
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def sharded_init_fn(params): """Returns optimizer state (for PJIT mode). Args: params: the parameters that should be updated. """ params_flat, treedef = jax.tree_flatten(params) # Find max size to pad to. max_size = 0 for param in params_flat: preconditioner = preconditioner_from_params(param) if not _skip_preconditioning(param): shapes = preconditioner.shapes_for_preconditioners() sizes = [s[0] for s in shapes] max_size = max(max(sizes), max_size) padded_statistics = [] padded_preconditioners = [] local_stats_flat = [] exponents = [] for param in params_flat: preconditioner = preconditioner_from_params(param) shapes = preconditioner.shapes_for_preconditioners() sizes = [] statistics = [] preconditioners = [] index_start = len(padded_statistics) if not _skip_preconditioning(param): sizes = [s[0] for s in shapes] shapes = preconditioner.shapes_for_preconditioners() statistics = [ matrix_epsilon * jnp.eye(max_size, dtype=jnp.float32) for s in shapes ] preconditioners = [jnp.eye(max_size, dtype=jnp.float32) for s in shapes] padded_statistics.extend(statistics) padded_preconditioners.extend(preconditioners) exponent = ( preconditioner.exponent_for_preconditioner() if exponent_override == 0 else exponent_override ) exponents.extend([exponent] * len(shapes)) diagonal_statistics = _quantize_diagonal_statistics(jnp.zeros_like(param)) diagonal_momentum = _quantize_momentum(jnp.zeros_like(param)) momentum = _quantize_momentum(jnp.zeros_like(param)) local_stats_flat.append( LocalShardedParameterStats( diagonal_statistics, diagonal_momentum, momentum, init_training_metrics(len(sizes)), index_start, sizes, ) ) local_stats = jax.tree_unflatten(treedef, local_stats_flat) to_pad = -len(padded_statistics) % num_devices_for_pjit if max_size == 0: to_pad = num_devices_for_pjit max_size = block_size stat_dtype = jnp.float32 else: stat_dtype = padded_statistics[0].dtype # Pad the statistics and preconditioner matrices to be a multiple of # num devices. # TODO(rohananil): Relax to only the size of the mesh axis where the dim # is split on. padded_statistics.extend( [jnp.eye(max_size, dtype=stat_dtype) for _ in range(to_pad)] ) padded_preconditioners.extend( [jnp.eye(max_size, dtype=stat_dtype) for _ in range(to_pad)] ) exponents.extend([1 for _ in range(to_pad)]) global_stats = GlobalShardedParameterStats( jnp.stack(padded_statistics), jnp.stack(padded_preconditioners), jnp.stack(exponents), ) return ShampooState( count=jnp.zeros([], jnp.int32), stats=ShardedShampooStats(global_stats, local_stats), )
Returns optimizer state (for PJIT mode). Args: params: the parameters that should be updated.
distributed_shampoo.sharded_init_fn
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def _remove_leading_sharding_annotation(pspec): """Mapping from N-d to (N-1)-d, used for quantization, factoring etc.""" # None and PSpec(None) are valid PSpecs. if pspec and len(pspec) > 1: return pjit.PartitionSpec(*pspec[1:]) else: return []
Mapping from N-d to (N-1)-d, used for quantization, factoring etc.
distributed_shampoo._remove_leading_sharding_annotation
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def sharded_init_partition_spec_fn( params, params_partition_spec, partition_spec_for_statistics ): """Returns a parallel state tree with PartitionSpec associated with state. Args: params: A pytree with params. params_partition_spec: A pytree with PartitionSpec for params. partition_spec_for_statistics: PartitionSpec for the statistics. """ # Parallel lists of spec, and params. param_pspec_flat, _ = jax.tree_flatten( params_partition_spec, is_leaf=lambda x: x is None ) params_flat, treedef = jax.tree_flatten(params) assert param_pspec_flat assert params_flat # Step is replicated across cores. # None means cores. local_stats_flat = [] num_statistics = 0 for param, param_pspec in zip(params_flat, param_pspec_flat): param_clone = jnp.zeros(param.shape, dtype=param.dtype) preconditioner = preconditioner_from_params(param_clone) shapes = preconditioner.shapes_for_preconditioners() sizes = [] index_start = num_statistics if not _skip_preconditioning(param): sizes = [s[0] for s in shapes] shapes = preconditioner.shapes_for_preconditioners() num_statistics += len(shapes) qdtype = quantized_dtype_for_momentum_buffers(param) m1_pspec = param_pspec m2_pspec = param_pspec m1_scale_pspec = [] m2_scale_pspec = [] if qdtype != jnp.float32: m1_scale_pspec = _remove_leading_sharding_annotation(m1_pspec) m2_scale_pspec = _remove_leading_sharding_annotation(m2_pspec) local_stats_flat.append( LocalShardedParameterStats( QuantizedValue( param_pspec, [], [], jnp.float32, False, list(param.shape) ), QuantizedValue( m1_pspec, [], m1_scale_pspec, qdtype, False, list(param.shape) ), QuantizedValue( m2_pspec, [], m2_scale_pspec, qdtype, False, list(param.shape) ), init_training_metrics_pspec(), index_start, sizes, ) ) local_stats = jax.tree_unflatten(treedef, local_stats_flat) global_stats = GlobalShardedParameterStats( partition_spec_for_statistics, partition_spec_for_statistics, pjit.PartitionSpec(), ) count_pspec = pjit.PartitionSpec() return ShampooState( count=count_pspec, stats=ShardedShampooStats(global_stats, local_stats) )
Returns a parallel state tree with PartitionSpec associated with state. Args: params: A pytree with params. params_partition_spec: A pytree with PartitionSpec for params. partition_spec_for_statistics: PartitionSpec for the statistics.
distributed_shampoo.sharded_init_partition_spec_fn
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def sharded_init_shape_and_dtype_fn(params): """Returns a parallel state tree with shape, dtype associated with state. Args: params: A pytree with params. """ # Parallel lists of spec, and params. params_flat, treedef = jax.tree_flatten(params) assert params_flat # Step is replicated across cores. # None means cores. local_stats_flat = [] num_statistics = 0 for param in params_flat: param_clone = jnp.zeros(param.shape, dtype=param.dtype) preconditioner = preconditioner_from_params(param_clone) shapes = preconditioner.shapes_for_preconditioners() sizes = [] index_start = num_statistics if not _skip_preconditioning(param): sizes = [s[0] for s in shapes] shapes = preconditioner.shapes_for_preconditioners() num_statistics += len(shapes) qdtype = quantized_dtype_for_momentum_buffers(param) m1_shape_and_dtype = [list(param.shape), param.dtype] m2_shape_and_dtype = [list(param.shape), param.dtype] m1_scale_shape_and_dtype = [] m2_scale_shape_and_dtype = [] if qdtype != jnp.float32: m1_scale_shape_and_dtype = [list(param.shape)[1:], qdtype] m2_scale_shape_and_dtype = [list(param.shape)[1:], qdtype] diagonal_statistics_shape_and_dtype = [list(param.shape), param.dtype] local_stats_flat.append( LocalShardedParameterStats( QuantizedValue( diagonal_statistics_shape_and_dtype, [], [], jnp.float32, False, list(param.shape), ), QuantizedValue( m1_shape_and_dtype, [], m1_scale_shape_and_dtype, qdtype, False, list(param.shape), ), QuantizedValue( m2_shape_and_dtype, [], m2_scale_shape_and_dtype, qdtype, False, list(param.shape), ), init_training_metrics_shapes(len(sizes)), index_start, sizes, ) ) local_stats = jax.tree_unflatten(treedef, local_stats_flat) max_statistics_size = _max_statistics_size_from_params(params_flat) to_pad = -num_statistics % num_devices_for_pjit num_statistics += to_pad if num_statistics == 0: num_statistics = num_devices_for_pjit max_statistics_size = block_size statistics_shape = [num_statistics, max_statistics_size, max_statistics_size] global_stats = GlobalShardedParameterStats( [statistics_shape, jnp.float32], [statistics_shape, jnp.float32], [[num_statistics], jnp.int32], ) return ShampooState( count=[[], jnp.float32], stats=ShardedShampooStats(global_stats, local_stats), )
Returns a parallel state tree with shape, dtype associated with state. Args: params: A pytree with params.
distributed_shampoo.sharded_init_shape_and_dtype_fn
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def sharded_update_fn(grads, state, params): """Transform the input gradient and update all statistics in sharded mode. Args: grads: the gradient tensors for the parameters. state: a named tuple containing the state of the optimizer params: the parameters that should be updated. Returns: A tuple containing the new parameters and the new optimizer state. """ params_flat, treedef = jax.tree_flatten(params) grads_flat = treedef.flatten_up_to(grads) global_stats = state.stats.global_stats local_stats_flat = treedef.flatten_up_to(state.stats.local_stats) stats_flat = [ _convert_to_parameter_stats(global_stats, local_stat) for local_stat in local_stats_flat ] new_stats_flat = jax.tree_map( lambda g, s, p: _compute_stats(g, s, p, state.count), grads_flat, stats_flat, params_flat, ) outputs = jax.tree_map( lambda g, s, p: _transform_grad(g, s, p, state.count), grads_flat, new_stats_flat, params_flat, ) updates_flat, new_stats_flat = list(zip(*outputs)) if outputs else ((), ()) updates = jax.tree_unflatten(treedef, updates_flat) # Create new local_stats new_local_stats_flat = [ _convert_from_parameter_stats(new_stat, local_stat) for new_stat, local_stat in zip(new_stats_flat, local_stats_flat) ] max_size = global_stats.statistics.shape[1] new_padded_statistics = [] for stat in new_stats_flat: new_padded_statistics.extend( [pad_square_matrix(stat, max_size) for stat in stat.statistics] ) # Create global stats # TODO(rohananil): Preconditioner is not updated every step, so cost of # stack/pad can be obviated away. # Pad the statistics and preconditioner matrices to be a multiple of # num devices. # TODO(rohananil): Relax to only the size of the mesh axis where the dim # is split on. to_pad = -len(new_padded_statistics) % num_devices_for_pjit if not new_padded_statistics: to_pad = num_devices_for_pjit stat_dtype = jnp.float32 else: stat_dtype = new_padded_statistics[0].dtype new_padded_statistics.extend( [jnp.eye(max_size, dtype=stat_dtype) for _ in range(to_pad)] ) new_stacked_padded_statistics = jnp.stack(new_padded_statistics) new_stacked_padded_statistics = pjit.with_sharding_constraint( new_stacked_padded_statistics, statistics_partition_spec ) def _internal_inverse_pth_root_all(): preconditioners, errors = _matrix_inverse_pth_root_pjit( new_stacked_padded_statistics, global_stats.exponents, statistics_partition_spec, ) return preconditioners, errors if preconditioning_compute_steps == 1: new_preconditioners, errors = _internal_inverse_pth_root_all() else: # Passing statistics instead of preconditioners as they are similarly # shaped tensors. Note statistics will be ignored as we are passing in # a large init value for error. preconditioners_init = new_stacked_padded_statistics n = new_stacked_padded_statistics.shape[0] errors_init = jnp.ones([n], jnp.float32) * inverse_failure_threshold init_state = [preconditioners_init, errors_init] perform_step = state.count % preconditioning_compute_steps == 0 new_preconditioners, errors = efficient_cond( perform_step, _internal_inverse_pth_root_all, init_state ) new_local_stats_flat = _add_error_into_local_stats( new_local_stats_flat, errors, inverse_failure_threshold ) new_local_stats = jax.tree_unflatten(treedef, new_local_stats_flat) errors = errors.reshape((-1, 1, 1)) predicate = jnp.logical_or( jnp.isnan(errors), errors >= inverse_failure_threshold ).astype(new_preconditioners.dtype) # TODO(rohananil): Check for numerical instabilities. new_conditional_preconditioners = ( predicate * global_stats.preconditioners + (1.0 - predicate) * new_preconditioners ) new_global_stats = GlobalShardedParameterStats( new_stacked_padded_statistics, new_conditional_preconditioners, global_stats.exponents, ) new_shampoo_state = ShampooState( count=state.count + 1, stats=ShardedShampooStats(new_global_stats, new_local_stats), ) return updates, new_shampoo_state
Transform the input gradient and update all statistics in sharded mode. Args: grads: the gradient tensors for the parameters. state: a named tuple containing the state of the optimizer params: the parameters that should be updated. Returns: A tuple containing the new parameters and the new optimizer state.
distributed_shampoo.sharded_update_fn
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def init_fn(params): """Initialise the optimiser's state.""" def _init(param): preconditioner = preconditioner_from_params(param) statistics = [] preconditioners = [] if not _skip_preconditioning(param): shapes = preconditioner.shapes_for_preconditioners() statistics = [ matrix_epsilon * jnp.eye(s[0], dtype=jnp.float32) for s in shapes ] preconditioners = [jnp.eye(s[0], dtype=jnp.float32) for s in shapes] diagonal_statistics = [] if _graft_type_has_diagonal_statistics(): diagonal_statistics = jnp.zeros_like(param) diagonal_momentum = _quantize_momentum(jnp.zeros_like(param)) momentum = _quantize_momentum(jnp.zeros_like(param)) return ParameterStats( _quantize_diagonal_statistics(diagonal_statistics), _maybe_quantize_statistics(statistics), _maybe_quantize_preconditioners(preconditioners), diagonal_momentum, momentum, init_training_metrics(len(statistics)), ) return ShampooState( count=jnp.zeros([], jnp.int32), stats=jax.tree_map(_init, params) )
Initialise the optimiser's state.
distributed_shampoo.init_fn
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def _compute_stats(grad, state, param, step): """Compute per-parameter statistics.""" preconditioner = preconditioner_from_params(param) new_statistics = [[]] * len(state.statistics) w1 = beta2 w2 = beta2 if beta2 == 1.0 else (1.0 - beta2) if not _skip_preconditioning(param): def compute_updated_statistics(): return preconditioner.updated_statistics_from_grad( state.statistics, grad, w1=w1, w2=w2, to_float=_to_float, from_float=lambda x: _maybe_quantize_statistics([x])[0], precision=tensordot_precision, ) if statistics_compute_steps > 1: perform_step = step % statistics_compute_steps == 0 init_state = state.statistics new_statistics = list( efficient_cond(perform_step, compute_updated_statistics, init_state) ) else: new_statistics = compute_updated_statistics() return ParameterStats( state.diagonal_statistics, new_statistics, state.preconditioners, state.diagonal_momentum, state.momentum, state.training_metrics, )
Compute per-parameter statistics.
distributed_shampoo._compute_stats
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def _pmap_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ): """Computes preconditioners for given statistics in states in PMAP mode. Args: states: A list of optimizer states. step: Current step number statistics: A list of statistics for all variables (for every dim) num_statistics_per_state: Number of statistis per state to reconstruct output states. original_shapes: A list of shapes of the statistics. exponents: Exponent power to use for inverse-pth roots. max_size: Maximum dim of the statistics to pad. prev_preconditioners: Previously available preconditioner. Returns: New optimizer states after computing the preconditioner. """ if batch_axis_name: num_devices = lax.psum(1, batch_axis_name) else: num_devices = 1 num_statistics = len(statistics) # Pad statistics and exponents to next multiple of num_devices. packed_statistics = [pad_square_matrix(stat, max_size) for stat in statistics] to_pad = -num_statistics % num_devices packed_statistics.extend( [jnp.eye(max_size, dtype=packed_statistics[0].dtype) for _ in range(to_pad)] ) exponents.extend([1 for _ in range(to_pad)]) if not packed_statistics: return states all_statistics = batch(packed_statistics, num_devices) all_exponents = batch(exponents, num_devices) def _internal_inverse_pth_root_all(): if batch_axis_name: current_replica = lax.axis_index(batch_axis_name) preconditioners, errors = _matrix_inverse_pth_root_vmap( all_statistics[current_replica], all_exponents[current_replica] ) preconditioners = jax.lax.all_gather(preconditioners, batch_axis_name) errors = jax.lax.all_gather(errors, batch_axis_name) preconditioners_flat = unbatch(preconditioners) errors_flat = unbatch(errors) else: preconditioners, errors = _matrix_inverse_pth_root_vmap( all_statistics[0], all_exponents[0] ) preconditioners_flat = unbatch(jnp.stack([preconditioners])) errors_flat = unbatch(jnp.stack([errors])) return preconditioners_flat, errors_flat if preconditioning_compute_steps == 1: preconditioners_flat, errors_flat = _internal_inverse_pth_root_all() else: # Passing statistics instead of preconditioners as they are similarly # shaped tensors. Note statistics will be ignored as we are passing in # a large init value for error. preconditioners_init = packed_statistics errors_init = [inverse_failure_threshold] * len(packed_statistics) init_state = [preconditioners_init, errors_init] perform_step = step % preconditioning_compute_steps == 0 preconditioners_flat, errors_flat = efficient_cond( perform_step, _internal_inverse_pth_root_all, init_state ) def _skip(error): condition = jnp.logical_or( jnp.isnan(error), error >= inverse_failure_threshold ) return condition.astype(error.dtype) def _select_preconditioner(error, new_p, old_p): return lax.cond( _skip(error), lambda _: old_p, lambda _: new_p, operand=None ) new_preconditioners_flat = [] new_errors_flat = [] for p, shape, prev_p, error in zip( preconditioners_flat, original_shapes, prev_preconditioners, errors_flat ): new_preconditioners_flat.append( _select_preconditioner(error, p[: shape[0], : shape[1]], prev_p) ) new_errors_flat.append(error) assert len(states) == len(num_statistics_per_state) assert len(new_preconditioners_flat) == num_statistics assert len(new_errors_flat) == num_statistics # Add back empty preconditioners so we that we can set the optimizer state. preconditioners_for_states = [] idx = 0 errors_for_states = [] for num_statistics, state in zip(num_statistics_per_state, states): if num_statistics == 0: preconditioners_for_states.append([]) errors_for_states.append(jnp.array(0, jnp.float32)) else: preconditioners_for_state = new_preconditioners_flat[ idx : idx + num_statistics ] assert len(state.statistics) == len(preconditioners_for_state) preconditioners_for_states.append(preconditioners_for_state) errors_for_state = jnp.stack( new_errors_flat[idx : idx + num_statistics] ) assert len(state.statistics) == len(errors_for_state) errors_for_states.append(errors_for_state) idx += num_statistics new_states = [] for state, new_preconditioners, new_errors in zip( states, preconditioners_for_states, errors_for_states ): if state.statistics: new_errors = jnp.where( jnp.logical_and( new_errors > 0.0, new_errors != inverse_failure_threshold ), new_errors, state.training_metrics.inverse_pth_root_errors, ) new_training_metrics = TrainingMetrics(new_errors) new_states.append( ParameterStats( state.diagonal_statistics, state.statistics, new_preconditioners, state.diagonal_momentum, state.momentum, new_training_metrics, ) ) return new_states
Computes preconditioners for given statistics in states in PMAP mode. Args: states: A list of optimizer states. step: Current step number statistics: A list of statistics for all variables (for every dim) num_statistics_per_state: Number of statistis per state to reconstruct output states. original_shapes: A list of shapes of the statistics. exponents: Exponent power to use for inverse-pth roots. max_size: Maximum dim of the statistics to pad. prev_preconditioners: Previously available preconditioner. Returns: New optimizer states after computing the preconditioner.
distributed_shampoo._pmap_compute_preconditioners
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def _pmap_quantized_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ): """Computes preconditioners for given statistics in states in PMAP mode. For quantization, each statistic is represented by three values: quantized matrix, diagonal, and bucket sizes, we run inverse pth-roots without ever recreating the original matrix in f32. Args: states: A list of optimizer states. step: Current step number statistics: A list of statistics for all variables (for every dim) num_statistics_per_state: Number of statistis per state to reconstruct output states. original_shapes: A list of shapes of the statistics. exponents: Exponent power to use for inverse-pth roots. max_size: Maximum dim of the statistics to pad. prev_preconditioners: Previously available preconditioner. Returns: New optimizer states after computing the preconditioner. """ num_devices = lax.psum(1, batch_axis_name) num_statistics = len(statistics) quantized_dtype = quantized_dtype_for_second_moment_statistics_buffers() # Complexity here is around: shapes needing be statically shaped, # our custom quantization type requires a different type of packing. # Parallel tensors: # quantized [dxd] # diagonals [d] f32 # bucket_sizes [d] f32 packed_quantized_statistics = [ pad_square_matrix(stat.quantized, max_size) for stat in statistics ] packed_quantized_diagonals = [ pad_vector(stat.diagonal, max_size) for stat in statistics ] packed_quantized_bucket_sizes = [ pad_vector(stat.bucket_size, max_size) for stat in statistics ] to_pad = -num_statistics % num_devices padded_eye = jnp.eye(max_size, dtype=jnp.float32) quantized_eye = QuantizedValue.from_float_value( padded_eye, quantized_dtype, True ) packed_quantized_statistics.extend( [quantized_eye.quantized for _ in range(to_pad)] ) packed_quantized_diagonals.extend( [quantized_eye.diagonal for _ in range(to_pad)] ) packed_quantized_bucket_sizes.extend( [quantized_eye.bucket_size for _ in range(to_pad)] ) exponents.extend([1 for _ in range(to_pad)]) if not packed_quantized_statistics: return states all_quantized_statistics = batch(packed_quantized_statistics, num_devices) all_quantized_diagonals = batch(packed_quantized_diagonals, num_devices) all_quantized_bucket_sizes = batch(packed_quantized_bucket_sizes, num_devices) all_exponents = batch(exponents, num_devices) def _internal_inverse_pth_root_all(): current_replica = lax.axis_index(batch_axis_name) ( quantized_preconditioners, quantized_diagonals, quantized_bucket_sizes, errors, ) = _quantized_matrix_inverse_pth_root_vmap( all_quantized_statistics[current_replica], all_quantized_diagonals[current_replica], all_quantized_bucket_sizes[current_replica], all_exponents[current_replica], ) quantized_preconditioners = jax.lax.all_gather( quantized_preconditioners, batch_axis_name ) quantized_diagonals = jax.lax.all_gather( quantized_diagonals, batch_axis_name ) quantized_bucket_sizes = jax.lax.all_gather( quantized_bucket_sizes, batch_axis_name ) errors = jax.lax.all_gather(errors, batch_axis_name) quantized_preconditioners_flat = unbatch(quantized_preconditioners) quantized_diagonals_flat = unbatch(quantized_diagonals) quantized_bucket_sizes_flat = unbatch(quantized_bucket_sizes) errors_flat = unbatch(errors) return ( quantized_preconditioners_flat, quantized_diagonals_flat, quantized_bucket_sizes_flat, errors_flat, ) if preconditioning_compute_steps == 1: ( quantized_preconditioners_flat, quantized_diagonals_flat, quantized_bucket_sizes_flat, errors_flat, ) = _internal_inverse_pth_root_all() else: # Passing statistics instead of preconditioners as they are similarly # shaped tensors. Note statistics will be ignored as we are passing in # a large init value for error. quantized_preconditioners_init = packed_quantized_statistics quantized_diagonals_init = packed_quantized_diagonals quantized_bucket_sizes_init = packed_quantized_bucket_sizes errors_init = [inverse_failure_threshold] * len( quantized_preconditioners_init ) init_state = [ quantized_preconditioners_init, quantized_diagonals_init, quantized_bucket_sizes_init, errors_init, ] perform_step = step % preconditioning_compute_steps == 0 ( quantized_preconditioners_flat, quantized_diagonals_flat, quantized_bucket_sizes_flat, errors_flat, ) = efficient_cond(perform_step, _internal_inverse_pth_root_all, init_state) def _skip(error): condition = jnp.logical_or( jnp.isnan(error), error >= inverse_failure_threshold ) return condition.astype(error.dtype) def _select_preconditioner(error, new_p, old_p): return lax.cond( _skip(error), lambda _: old_p, lambda _: new_p, operand=None ) new_quantized_preconditioners_flat = [] new_quantized_diagonals_flat = [] new_quantized_bucket_sizes_flat = [] new_errors_flat = [] for p, d, b, shape, prev_p, error in zip( quantized_preconditioners_flat, quantized_diagonals_flat, quantized_bucket_sizes_flat, original_shapes, prev_preconditioners, errors_flat, ): new_quantized_preconditioners_flat.append( _select_preconditioner( error, p[: shape[0], : shape[1]], prev_p.quantized ) ) new_quantized_diagonals_flat.append( _select_preconditioner(error, d[: shape[0]], prev_p.diagonal) ) new_quantized_bucket_sizes_flat.append( _select_preconditioner(error, b[: shape[0]], prev_p.bucket_size) ) new_errors_flat.append(error) assert len(states) == len(num_statistics_per_state) assert len(new_quantized_preconditioners_flat) == num_statistics assert len(new_quantized_diagonals_flat) == num_statistics assert len(new_quantized_bucket_sizes_flat) == num_statistics # Add back empty preconditioners so we that we can set the optimizer state. preconditioners_for_states = [] errors_for_states = [] idx = 0 for num_statistics, state in zip(num_statistics_per_state, states): if num_statistics == 0: preconditioners_for_states.append([]) errors_for_states.append(jnp.array(0, jnp.float32)) else: quantized_preconditioners_for_state = ( new_quantized_preconditioners_flat[idx : idx + num_statistics] ) quantized_diagonals_for_state = new_quantized_diagonals_flat[ idx : idx + num_statistics ] quantized_bucket_sizes_for_state = new_quantized_bucket_sizes_flat[ idx : idx + num_statistics ] errors_for_state = jnp.stack( new_errors_flat[idx : idx + num_statistics] ) assert len(state.statistics) == len(quantized_preconditioners_for_state) assert len(state.statistics) == len(quantized_diagonals_for_state) assert len(state.statistics) == len(quantized_bucket_sizes_for_state) assert len(state.statistics) == len(errors_for_state) quantized_preconditioners = [] for qv, qd, qb in zip( quantized_preconditioners_for_state, quantized_diagonals_for_state, quantized_bucket_sizes_for_state, ): quantized_preconditioners.append( QuantizedValue(qv, qd, qb, qv.dtype, True, list(qv.shape)) ) preconditioners_for_states.append(quantized_preconditioners) errors_for_states.append(errors_for_state) idx += num_statistics new_states = [] for state, new_preconditioners, new_errors in zip( states, preconditioners_for_states, errors_for_states ): if state.statistics: new_errors = jnp.where( jnp.logical_and( new_errors > 0.0, new_errors != inverse_failure_threshold ), new_errors, state.training_metrics.inverse_pth_root_errors, ) new_training_metrics = TrainingMetrics(new_errors) new_states.append( ParameterStats( state.diagonal_statistics, state.statistics, new_preconditioners, state.diagonal_momentum, state.momentum, new_training_metrics, ) ) return new_states
Computes preconditioners for given statistics in states in PMAP mode. For quantization, each statistic is represented by three values: quantized matrix, diagonal, and bucket sizes, we run inverse pth-roots without ever recreating the original matrix in f32. Args: states: A list of optimizer states. step: Current step number statistics: A list of statistics for all variables (for every dim) num_statistics_per_state: Number of statistis per state to reconstruct output states. original_shapes: A list of shapes of the statistics. exponents: Exponent power to use for inverse-pth roots. max_size: Maximum dim of the statistics to pad. prev_preconditioners: Previously available preconditioner. Returns: New optimizer states after computing the preconditioner.
distributed_shampoo._pmap_quantized_compute_preconditioners
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def _pjit_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ): """Computes preconditioners for given statistics in states in PJIT mode. Args: states: A list of optimizer states. step: Current step number statistics: A list of statistics for all variables (for every dim) num_statistics_per_state: Number of statistis per state to reconstruct output states. original_shapes: A list of shapes of the statistics. exponents: Exponent power to use for inverse-pth roots. max_size: Maximum dim of the statistics to pad. prev_preconditioners: Previously available preconditioner. Returns: New optimizer states after computing the preconditioner. """ num_statistics = len(statistics) to_pad = -num_statistics % num_devices_for_pjit padded_statistics = [pad_square_matrix(stat, max_size) for stat in statistics] padded_statistics.extend( [jnp.eye(max_size, dtype=padded_statistics[0].dtype) for _ in range(to_pad)] ) exponents.extend([1 for _ in range(to_pad)]) all_statistics = jnp.stack(padded_statistics) all_exponents = jnp.stack(exponents) def _internal_inverse_pth_root_all(): preconditioners, errors = _matrix_inverse_pth_root_pjit( all_statistics, all_exponents ) b1 = preconditioners.shape[0] def split(batched_values): return [ jnp.squeeze(v) for v in jnp.split(batched_values, indices_or_sections=b1, axis=0) ] return split(preconditioners), split(errors) if preconditioning_compute_steps == 1: preconditioners_flat, errors_flat = _internal_inverse_pth_root_all() else: # Passing statistics instead of preconditioners as they are similarly # shaped tensors. Note statistics will be ignored as we are passing in # a large init value for error. preconditioners_init = padded_statistics errors_init = [inverse_failure_threshold] * len(padded_statistics) init_state = [preconditioners_init, errors_init] perform_step = step % preconditioning_compute_steps == 0 preconditioners_flat, errors_flat = efficient_cond( perform_step, _internal_inverse_pth_root_all, init_state ) def _skip(error): condition = jnp.logical_or( jnp.isnan(error), error >= inverse_failure_threshold ) return condition.astype(error.dtype) def _select_preconditioner(error, new_p, old_p): return lax.cond( _skip(error), lambda _: old_p, lambda _: new_p, operand=None ) new_preconditioners_flat = [] new_errors_flat = [] for p, shape, prev_p, error in zip( preconditioners_flat, original_shapes, prev_preconditioners, errors_flat ): new_preconditioners_flat.append( _select_preconditioner(error, p[: shape[0], : shape[1]], prev_p) ) new_errors_flat.append(error) assert len(states) == len(num_statistics_per_state) assert len(new_preconditioners_flat) == num_statistics # Add back empty preconditioners so we that we can set the optimizer state. preconditioners_for_states = [] errors_for_states = [] idx = 0 for num_statistics, state in zip(num_statistics_per_state, states): if num_statistics == 0: preconditioners_for_states.append([]) errors_for_states.append(jnp.array(0, jnp.float32)) else: preconditioners_for_state = new_preconditioners_flat[ idx : idx + num_statistics ] assert len(state.statistics) == len(preconditioners_for_state) preconditioners_for_states.append(preconditioners_for_state) errors_for_state = jnp.stack( new_errors_flat[idx : idx + num_statistics] ) assert len(state.statistics) == len(errors_for_state) errors_for_states.append(errors_for_state) idx += num_statistics new_states = [] for state, new_preconditioners, new_errors in zip( states, preconditioners_for_states, errors_for_states ): if state.statistics: new_errors = jnp.where( jnp.logical_and( new_errors > 0.0, new_errors != inverse_failure_threshold ), new_errors, state.training_metrics.inverse_pth_root_errors, ) new_training_metrics = TrainingMetrics(new_errors) new_states.append( ParameterStats( state.diagonal_statistics, state.statistics, new_preconditioners, state.diagonal_momentum, state.momentum, new_training_metrics, ) ) return new_states
Computes preconditioners for given statistics in states in PJIT mode. Args: states: A list of optimizer states. step: Current step number statistics: A list of statistics for all variables (for every dim) num_statistics_per_state: Number of statistis per state to reconstruct output states. original_shapes: A list of shapes of the statistics. exponents: Exponent power to use for inverse-pth roots. max_size: Maximum dim of the statistics to pad. prev_preconditioners: Previously available preconditioner. Returns: New optimizer states after computing the preconditioner.
distributed_shampoo._pjit_compute_preconditioners
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def _compute_preconditioners(states, params, step): """Computes preconditioners for given statistics in states. Args: states: A list of optimizer states. params: A list of params. step: Current step number Returns: New optimizer states after computing the preconditioner. """ statistics = [] num_statistics_per_state = [] original_shapes = [] exponents = [] max_size = 0 prev_preconditioners = [] for state, param in zip(states, params): num_statistics = len(state.statistics) num_statistics_per_state.append(num_statistics) original_shapes_for_state = [] if num_statistics > 0: preconditioner = preconditioner_from_params(param) for statistic in state.statistics: exponents.append( preconditioner.exponent_for_preconditioner() if exponent_override == 0 else exponent_override ) original_shapes_for_state.append(statistic.shape) max_size = max(max_size, statistic.shape[0]) statistics.extend(state.statistics) prev_preconditioners.extend(state.preconditioners) original_shapes.extend(original_shapes_for_state) if not shard_optimizer_states: # Quantization is only enabled if batch_axis_name is not set. quantized_dtype = quantized_dtype_for_second_moment_statistics_buffers() if quantized_dtype == jnp.float32: return _pmap_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ) else: return _pmap_quantized_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ) else: return _pjit_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, )
Computes preconditioners for given statistics in states. Args: states: A list of optimizer states. params: A list of params. step: Current step number Returns: New optimizer states after computing the preconditioner.
distributed_shampoo._compute_preconditioners
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def _transform_grad(grad, state, param, step): """Transform per-parameter gradients.""" preconditioner = preconditioner_from_params(param) sgd_update = grad new_diagonal_statistics = state.diagonal_statistics.to_float() if ( graft_type == GraftingType.ADAGRAD or graft_type == GraftingType.ADAGRAD_NORMALIZED ): scaled_grad = grad if graft_type == GraftingType.ADAGRAD_NORMALIZED: scaled_grad = grad / (jnp.linalg.norm(grad) + 1e-16) new_diagonal_statistics = state.diagonal_statistics.to_float() + jnp.square( scaled_grad ) adagrad_update = scaled_grad / ( jnp.sqrt(new_diagonal_statistics) + diagonal_epsilon ) grafting_update = adagrad_update elif ( graft_type == GraftingType.RMSPROP or graft_type == GraftingType.RMSPROP_NORMALIZED ): scaled_grad = grad if graft_type == GraftingType.RMSPROP_NORMALIZED: scaled_grad = grad / (jnp.linalg.norm(grad) + 1e-16) w1 = beta2 w2 = beta2 if beta2 == 1.0 else (1.0 - beta2) new_diagonal_statistics = ( w1 * state.diagonal_statistics.to_float() + w2 * jnp.square(scaled_grad) ) rmsprop_update = scaled_grad / ( jnp.sqrt(new_diagonal_statistics) + diagonal_epsilon ) if clip_by_scaled_gradient_norm: scaled_grad_norm = jnp.linalg.norm(rmsprop_update) / ( jnp.sqrt(float(rmsprop_update.size)) ) clipping_denom = jnp.maximum( 1.0, scaled_grad_norm / clip_by_scaled_gradient_norm ) rmsprop_update /= clipping_denom grafting_update = rmsprop_update elif graft_type == GraftingType.SGD: grafting_update = sgd_update else: grafting_update = jnp.ones_like(sgd_update) * jnp.sign(sgd_update) lr = learning_rate if callable(learning_rate): lr = learning_rate(step) preconditioner_multiplier = lr if not decoupled_learning_rate else 1.0 grafting_update = grafting_update * preconditioner_multiplier precond_grad = grad if not _skip_preconditioning(param): precond_grad = preconditioner.preconditioned_grad( precond_grad, _maybe_dequantize_preconditioners(state.preconditioners) ) else: precond_grad = grafting_update grafting_update_norm = jnp.linalg.norm(grafting_update) precond_grad_norm = jnp.linalg.norm(precond_grad) multiplier = grafting_update_norm / (precond_grad_norm + 1e-16) shampoo_update = precond_grad * multiplier shampoo_update_with_wd = shampoo_update grafting_update_with_wd = grafting_update if weight_decay != 0 and not decoupled_weight_decay: shampoo_update_with_wd = shampoo_update + weight_decay * param grafting_update_with_wd = grafting_update + weight_decay * param w = (1.0 - beta1) if moving_average_for_momentum else 1.0 shampoo_update_with_wd_momentum = ( state.momentum.to_float() * beta1 + w * shampoo_update_with_wd ) grafting_update_with_wd_momentum = ( state.diagonal_momentum.to_float() * beta1 + w * grafting_update_with_wd ) run_shampoo = (step >= start_preconditioning_step).astype( grafting_update_with_wd_momentum.dtype ) momentum_update = ( run_shampoo * shampoo_update_with_wd_momentum + (1.0 - run_shampoo) * grafting_update_with_wd_momentum ) wd_update = ( run_shampoo * shampoo_update_with_wd + (1.0 - run_shampoo) * grafting_update_with_wd ) nesterov_momentum_update = momentum_update if nesterov: nesterov_momentum_update = w * wd_update + beta1 * momentum_update if weight_decay != 0 and decoupled_weight_decay: nesterov_momentum_update = ( nesterov_momentum_update + lr * weight_decay * param ) momentum_multiplier = lr if decoupled_learning_rate else 1.0 transformed_update = -1.0 * momentum_multiplier * nesterov_momentum_update new_diagonal_momentum = grafting_update_with_wd_momentum new_momentum = shampoo_update_with_wd_momentum param_stats = ParameterStats( _quantize_diagonal_statistics(new_diagonal_statistics), state.statistics, state.preconditioners, _quantize_momentum(new_diagonal_momentum), _quantize_momentum(new_momentum), state.training_metrics, ) return transformed_update, param_stats
Transform per-parameter gradients.
distributed_shampoo._transform_grad
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def update_fn(grads, state, params): """Transform the input gradient and update all statistics. Args: grads: the gradient tensors for the parameters and any custom gradients for preconditioners. state: a named tuple containing the state of the optimizer params: the parameters that should be updated. Returns: A tuple containing the new parameters and the new optimizer state. """ params_flat, treedef = jax.tree_flatten(params) stats_flat = treedef.flatten_up_to(state.stats) grads_flat = treedef.flatten_up_to(grads) stats_grads = grads_flat new_stats_flat = jax.tree_map( lambda g, s, p: _compute_stats(g, s, p, state.count), stats_grads, stats_flat, params_flat, ) new_stats_flat = _compute_preconditioners( new_stats_flat, params_flat, state.count ) outputs = jax.tree_map( lambda g, s, p: _transform_grad(g, s, p, state.count), grads_flat, new_stats_flat, params_flat, ) updates_flat, new_stats_flat = list(zip(*outputs)) if outputs else ((), ()) updates = jax.tree_unflatten(treedef, updates_flat) new_stats = jax.tree_unflatten(treedef, new_stats_flat) new_state = ShampooState(count=state.count + 1, stats=new_stats) return updates, new_state
Transform the input gradient and update all statistics. Args: grads: the gradient tensors for the parameters and any custom gradients for preconditioners. state: a named tuple containing the state of the optimizer params: the parameters that should be updated. Returns: A tuple containing the new parameters and the new optimizer state.
distributed_shampoo.update_fn
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def distributed_shampoo( learning_rate, block_size, beta1=0.9, beta2=0.999, diagonal_epsilon=1e-10, matrix_epsilon=1e-6, weight_decay=0.0, start_preconditioning_step=5, preconditioning_compute_steps=1, statistics_compute_steps=1, best_effort_shape_interpretation=True, graft_type=GraftingType.SGD, nesterov=True, exponent_override=0, # Pass pmap 'batch axis name' in pmap mode. batch_axis_name=None, ### Only set following 3 params in pjit/spmd mode. ### WARNING: Experimental statistics_partition_spec=None, preconditioner_partition_spec=None, num_devices_for_pjit=None, shard_optimizer_states=False, ### ### Experimental memory reduction mode best_effort_memory_usage_reduction=False, ### inverse_failure_threshold=0.1, moving_average_for_momentum=False, skip_preconditioning_dim_size_gt=4096, clip_by_scaled_gradient_norm=None, precision=lax.Precision.HIGHEST, tensordot_precision=None, relative_matrix_epsilon=True, merge_small_dims_block_size=4096, lobpcg_topk_precondition=0, lobpcg_max_iter=0, precondtioner_type=PreconditionerType.ALL, skip_preconditioning_rank_lt=1, decoupled_learning_rate=True, decoupled_weight_decay=False, ): """Distributed Shampoo optimizer. Distributed Shampoo is a second-order preconditioned method (concretely, a variant of full-matrix Adagrad), that provides significant convergence and wall-clock time improvements compared to conventional first-order methods, and that has been shown to scale to large state-of-the-art deep learning models. References: Scalable Second Order Optimization for Deep Learning, Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer Preprint: https://arxiv.org/abs/2002.09018 Args: learning_rate: the step size used to update the parameters. block_size: Block size for large layers (if > 0). Preconditioning compute operation is cubic in the dimension of the tensor. Block size allows us to chunk the layers into sub-layers of maximal dimension dictated by this value. Use 128 as default (increase if you have compute budget). beta1: momentum parameter. beta2: second moment averaging parameter. diagonal_epsilon: epsilon for diagonal adagrad (only if layerwise grafting to AdaGrad is enabled). matrix_epsilon: epsilon to add to statistics before computing inverse pth root. If you are running in f32 precision for inverse pth root (recommended today) this can go upto 1e-6. If you have latest hardware with native f64 precision, set this upto 1e-12. weight_decay: Weight decay for regularization. start_preconditioning_step: When to start Shampoo update before which diagonal update is used. This is because we dont have enough information to do stable inverse. preconditioning_compute_steps: How often to compute preconditioner. Performance tuning params for controlling memory and compute requirements. Ideally set this and statistics_compute_steps params to 1. statistics_compute_steps: How often to compute statistics. best_effort_shape_interpretation: If there are some small dimensions, collapse them e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if block = 1024, [1, 2, 768, 1, 2048] --> [2, 768, 2048] graft_type: Grafting is a technique to fix the layerwise scale of Shampoo optimizer. This allows us to plugin the Shampoo optimizer into settings where SGD/AdaGrad is already well tuned. nesterov: Nesterov momentum. exponent_override: Override the exponent used in matrix inverse. batch_axis_name: labeled axis over pmap for data-parallel training the optimizer used for. statistics_partition_spec: PartitionSpec to be used in sharded mode. preconditioner_partition_spec: PartitionSpec to be used in sharded mode. num_devices_for_pjit: Number of devices to parallelize over when using pjit. shard_optimizer_states: Shard optimizer states to save memory in model parallel training. best_effort_memory_usage_reduction: Best effort memory usage reduction. - diagonal_statistics -> jnp.bfloat16 - momentum buffers (2x) -> jnp.int8 - statistics, preconditioners -> jnp.int16 + diagonals inverse_failure_threshold: numerics are hard and inverses fail sometimes; we determine that using this threshold. moving_average_for_momentum: Whether to use moving average for momentum instead of exponential moving average. skip_preconditioning_dim_size_gt: Skip if preconditioning dim size is greater than this value. clip_by_scaled_gradient_norm: Clip by scaled gradient norm (only useful when using RMSProp Grafting). precision: precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) tensordot_precision: Optional precision to use for the tensordot operation when computing statistics (e.g., G Gᵀ). Same options as `precision` above. relative_matrix_epsilon: Whether to use relative epsilon to the max eigen value when computing inverse-pth root. merge_small_dims_block_size: Used as the maximum block size to merge the shapes. lobpcg_topk_precondition: If nonzero, specifies the number of top eigenvectors to subtract out before performing LOBPCG. Note this makes relative_matrix_epsilon essentially free. lobpcg_max_iter: Number of LOBPCG iterations, if zero defaults to `lobpcg_topk_precondition`. precondtioner_type: Preconditioner type to select all, left only or right only preconditioners. skip_preconditioning_rank_lt: Skips preconditioning for parameters with rank less than this value. decoupled_learning_rate: If True, use decoupled learning rate, otherwise couple it with preconditioned gradient computation. (Default True) decoupled_weight_decay: If True, use decoupled weight decay, otherwise couple with weight decay. (Default False) Returns: a GradientTransformation. """ def _graft_type_has_diagonal_statistics(): """Returns True if using diagonal firt order method for grafting.""" return graft_type != GraftingType.SGD and graft_type != GraftingType.SQRT_N def quantized_dtype_for_momentum_buffers(var): return ( jnp.int8 if best_effort_memory_usage_reduction and len(var.shape) > 1 else jnp.float32 ) # Preconditioner and statistics are both stores as int16 in this mode. # We take out the diagonal to make quantization easier. def quantized_dtype_for_second_moment_statistics_buffers(): return ( jnp.int16 if best_effort_memory_usage_reduction and batch_axis_name else jnp.float32 ) # Preconditioner and statistics are both stores as int16 in this mode. # We take out the diagonal to make quantization easier. def quantized_dtype_for_second_moment_preconditioner_buffers(): return ( jnp.int16 if best_effort_memory_usage_reduction and batch_axis_name else jnp.float32 ) def _to_float(maybe_quantized): if isinstance(maybe_quantized, QuantizedValue): return maybe_quantized.to_float() else: return maybe_quantized def _maybe_quantize_statistics(statistics_list): return _maybe_quantize_matrices_with_dtype( statistics_list, quantized_dtype_for_second_moment_statistics_buffers() ) def _maybe_quantize_preconditioners(statistics_list): return _maybe_quantize_matrices_with_dtype( statistics_list, quantized_dtype_for_second_moment_preconditioner_buffers() ) def _maybe_quantize_matrices_with_dtype(statistics_list, quantized_dtype): if quantized_dtype != jnp.float32: return [ QuantizedValue.from_float_value( s, quantized_dtype, extract_diagonal=True ) for s in statistics_list ] else: return statistics_list def _maybe_dequantize_preconditioners(preconditioner_list): return _maybe_dequantize_matrices_with_dtype( preconditioner_list, quantized_dtype_for_second_moment_preconditioner_buffers(), ) def _maybe_dequantize_matrices_with_dtype(statistics_list, quantized_dtype): if quantized_dtype != jnp.float32: return [s.to_float() for s in statistics_list] else: return statistics_list def _quantize_diagonal_statistics(diagonal_statistics): return QuantizedValue.from_float_value(diagonal_statistics, jnp.float32) def _quantize_momentum(momentum_statistics): return QuantizedValue.from_float_value( momentum_statistics, quantized_dtype_for_momentum_buffers(momentum_statistics), ) def preconditioner_from_params(param): """Returns a Preconditioner object for given param.""" return Preconditioner( param, block_size, merge_small_dims_block_size, best_effort_shape_interpretation, precondtioner_type, ) def sharded_init_fn(params): """Returns optimizer state (for PJIT mode). Args: params: the parameters that should be updated. """ params_flat, treedef = jax.tree_flatten(params) # Find max size to pad to. max_size = 0 for param in params_flat: preconditioner = preconditioner_from_params(param) if not _skip_preconditioning(param): shapes = preconditioner.shapes_for_preconditioners() sizes = [s[0] for s in shapes] max_size = max(max(sizes), max_size) padded_statistics = [] padded_preconditioners = [] local_stats_flat = [] exponents = [] for param in params_flat: preconditioner = preconditioner_from_params(param) shapes = preconditioner.shapes_for_preconditioners() sizes = [] statistics = [] preconditioners = [] index_start = len(padded_statistics) if not _skip_preconditioning(param): sizes = [s[0] for s in shapes] shapes = preconditioner.shapes_for_preconditioners() statistics = [ matrix_epsilon * jnp.eye(max_size, dtype=jnp.float32) for s in shapes ] preconditioners = [jnp.eye(max_size, dtype=jnp.float32) for s in shapes] padded_statistics.extend(statistics) padded_preconditioners.extend(preconditioners) exponent = ( preconditioner.exponent_for_preconditioner() if exponent_override == 0 else exponent_override ) exponents.extend([exponent] * len(shapes)) diagonal_statistics = _quantize_diagonal_statistics(jnp.zeros_like(param)) diagonal_momentum = _quantize_momentum(jnp.zeros_like(param)) momentum = _quantize_momentum(jnp.zeros_like(param)) local_stats_flat.append( LocalShardedParameterStats( diagonal_statistics, diagonal_momentum, momentum, init_training_metrics(len(sizes)), index_start, sizes, ) ) local_stats = jax.tree_unflatten(treedef, local_stats_flat) to_pad = -len(padded_statistics) % num_devices_for_pjit if max_size == 0: to_pad = num_devices_for_pjit max_size = block_size stat_dtype = jnp.float32 else: stat_dtype = padded_statistics[0].dtype # Pad the statistics and preconditioner matrices to be a multiple of # num devices. # TODO(rohananil): Relax to only the size of the mesh axis where the dim # is split on. padded_statistics.extend( [jnp.eye(max_size, dtype=stat_dtype) for _ in range(to_pad)] ) padded_preconditioners.extend( [jnp.eye(max_size, dtype=stat_dtype) for _ in range(to_pad)] ) exponents.extend([1 for _ in range(to_pad)]) global_stats = GlobalShardedParameterStats( jnp.stack(padded_statistics), jnp.stack(padded_preconditioners), jnp.stack(exponents), ) return ShampooState( count=jnp.zeros([], jnp.int32), stats=ShardedShampooStats(global_stats, local_stats), ) def _max_statistics_size_from_params(params): max_size = 0 for param in params: param_clone = jnp.zeros(param.shape, dtype=param.dtype) preconditioner = preconditioner_from_params(param_clone) if not _skip_preconditioning(param): shapes = preconditioner.shapes_for_preconditioners() sizes = [s[0] for s in shapes] max_size = max(max(sizes), max_size) return max_size def _remove_leading_sharding_annotation(pspec): """Mapping from N-d to (N-1)-d, used for quantization, factoring etc.""" # None and PSpec(None) are valid PSpecs. if pspec and len(pspec) > 1: return pjit.PartitionSpec(*pspec[1:]) else: return [] def sharded_init_partition_spec_fn( params, params_partition_spec, partition_spec_for_statistics ): """Returns a parallel state tree with PartitionSpec associated with state. Args: params: A pytree with params. params_partition_spec: A pytree with PartitionSpec for params. partition_spec_for_statistics: PartitionSpec for the statistics. """ # Parallel lists of spec, and params. param_pspec_flat, _ = jax.tree_flatten( params_partition_spec, is_leaf=lambda x: x is None ) params_flat, treedef = jax.tree_flatten(params) assert param_pspec_flat assert params_flat # Step is replicated across cores. # None means cores. local_stats_flat = [] num_statistics = 0 for param, param_pspec in zip(params_flat, param_pspec_flat): param_clone = jnp.zeros(param.shape, dtype=param.dtype) preconditioner = preconditioner_from_params(param_clone) shapes = preconditioner.shapes_for_preconditioners() sizes = [] index_start = num_statistics if not _skip_preconditioning(param): sizes = [s[0] for s in shapes] shapes = preconditioner.shapes_for_preconditioners() num_statistics += len(shapes) qdtype = quantized_dtype_for_momentum_buffers(param) m1_pspec = param_pspec m2_pspec = param_pspec m1_scale_pspec = [] m2_scale_pspec = [] if qdtype != jnp.float32: m1_scale_pspec = _remove_leading_sharding_annotation(m1_pspec) m2_scale_pspec = _remove_leading_sharding_annotation(m2_pspec) local_stats_flat.append( LocalShardedParameterStats( QuantizedValue( param_pspec, [], [], jnp.float32, False, list(param.shape) ), QuantizedValue( m1_pspec, [], m1_scale_pspec, qdtype, False, list(param.shape) ), QuantizedValue( m2_pspec, [], m2_scale_pspec, qdtype, False, list(param.shape) ), init_training_metrics_pspec(), index_start, sizes, ) ) local_stats = jax.tree_unflatten(treedef, local_stats_flat) global_stats = GlobalShardedParameterStats( partition_spec_for_statistics, partition_spec_for_statistics, pjit.PartitionSpec(), ) count_pspec = pjit.PartitionSpec() return ShampooState( count=count_pspec, stats=ShardedShampooStats(global_stats, local_stats) ) def sharded_init_shape_and_dtype_fn(params): """Returns a parallel state tree with shape, dtype associated with state. Args: params: A pytree with params. """ # Parallel lists of spec, and params. params_flat, treedef = jax.tree_flatten(params) assert params_flat # Step is replicated across cores. # None means cores. local_stats_flat = [] num_statistics = 0 for param in params_flat: param_clone = jnp.zeros(param.shape, dtype=param.dtype) preconditioner = preconditioner_from_params(param_clone) shapes = preconditioner.shapes_for_preconditioners() sizes = [] index_start = num_statistics if not _skip_preconditioning(param): sizes = [s[0] for s in shapes] shapes = preconditioner.shapes_for_preconditioners() num_statistics += len(shapes) qdtype = quantized_dtype_for_momentum_buffers(param) m1_shape_and_dtype = [list(param.shape), param.dtype] m2_shape_and_dtype = [list(param.shape), param.dtype] m1_scale_shape_and_dtype = [] m2_scale_shape_and_dtype = [] if qdtype != jnp.float32: m1_scale_shape_and_dtype = [list(param.shape)[1:], qdtype] m2_scale_shape_and_dtype = [list(param.shape)[1:], qdtype] diagonal_statistics_shape_and_dtype = [list(param.shape), param.dtype] local_stats_flat.append( LocalShardedParameterStats( QuantizedValue( diagonal_statistics_shape_and_dtype, [], [], jnp.float32, False, list(param.shape), ), QuantizedValue( m1_shape_and_dtype, [], m1_scale_shape_and_dtype, qdtype, False, list(param.shape), ), QuantizedValue( m2_shape_and_dtype, [], m2_scale_shape_and_dtype, qdtype, False, list(param.shape), ), init_training_metrics_shapes(len(sizes)), index_start, sizes, ) ) local_stats = jax.tree_unflatten(treedef, local_stats_flat) max_statistics_size = _max_statistics_size_from_params(params_flat) to_pad = -num_statistics % num_devices_for_pjit num_statistics += to_pad if num_statistics == 0: num_statistics = num_devices_for_pjit max_statistics_size = block_size statistics_shape = [num_statistics, max_statistics_size, max_statistics_size] global_stats = GlobalShardedParameterStats( [statistics_shape, jnp.float32], [statistics_shape, jnp.float32], [[num_statistics], jnp.int32], ) return ShampooState( count=[[], jnp.float32], stats=ShardedShampooStats(global_stats, local_stats), ) def sharded_update_fn(grads, state, params): """Transform the input gradient and update all statistics in sharded mode. Args: grads: the gradient tensors for the parameters. state: a named tuple containing the state of the optimizer params: the parameters that should be updated. Returns: A tuple containing the new parameters and the new optimizer state. """ params_flat, treedef = jax.tree_flatten(params) grads_flat = treedef.flatten_up_to(grads) global_stats = state.stats.global_stats local_stats_flat = treedef.flatten_up_to(state.stats.local_stats) stats_flat = [ _convert_to_parameter_stats(global_stats, local_stat) for local_stat in local_stats_flat ] new_stats_flat = jax.tree_map( lambda g, s, p: _compute_stats(g, s, p, state.count), grads_flat, stats_flat, params_flat, ) outputs = jax.tree_map( lambda g, s, p: _transform_grad(g, s, p, state.count), grads_flat, new_stats_flat, params_flat, ) updates_flat, new_stats_flat = list(zip(*outputs)) if outputs else ((), ()) updates = jax.tree_unflatten(treedef, updates_flat) # Create new local_stats new_local_stats_flat = [ _convert_from_parameter_stats(new_stat, local_stat) for new_stat, local_stat in zip(new_stats_flat, local_stats_flat) ] max_size = global_stats.statistics.shape[1] new_padded_statistics = [] for stat in new_stats_flat: new_padded_statistics.extend( [pad_square_matrix(stat, max_size) for stat in stat.statistics] ) # Create global stats # TODO(rohananil): Preconditioner is not updated every step, so cost of # stack/pad can be obviated away. # Pad the statistics and preconditioner matrices to be a multiple of # num devices. # TODO(rohananil): Relax to only the size of the mesh axis where the dim # is split on. to_pad = -len(new_padded_statistics) % num_devices_for_pjit if not new_padded_statistics: to_pad = num_devices_for_pjit stat_dtype = jnp.float32 else: stat_dtype = new_padded_statistics[0].dtype new_padded_statistics.extend( [jnp.eye(max_size, dtype=stat_dtype) for _ in range(to_pad)] ) new_stacked_padded_statistics = jnp.stack(new_padded_statistics) new_stacked_padded_statistics = pjit.with_sharding_constraint( new_stacked_padded_statistics, statistics_partition_spec ) def _internal_inverse_pth_root_all(): preconditioners, errors = _matrix_inverse_pth_root_pjit( new_stacked_padded_statistics, global_stats.exponents, statistics_partition_spec, ) return preconditioners, errors if preconditioning_compute_steps == 1: new_preconditioners, errors = _internal_inverse_pth_root_all() else: # Passing statistics instead of preconditioners as they are similarly # shaped tensors. Note statistics will be ignored as we are passing in # a large init value for error. preconditioners_init = new_stacked_padded_statistics n = new_stacked_padded_statistics.shape[0] errors_init = jnp.ones([n], jnp.float32) * inverse_failure_threshold init_state = [preconditioners_init, errors_init] perform_step = state.count % preconditioning_compute_steps == 0 new_preconditioners, errors = efficient_cond( perform_step, _internal_inverse_pth_root_all, init_state ) new_local_stats_flat = _add_error_into_local_stats( new_local_stats_flat, errors, inverse_failure_threshold ) new_local_stats = jax.tree_unflatten(treedef, new_local_stats_flat) errors = errors.reshape((-1, 1, 1)) predicate = jnp.logical_or( jnp.isnan(errors), errors >= inverse_failure_threshold ).astype(new_preconditioners.dtype) # TODO(rohananil): Check for numerical instabilities. new_conditional_preconditioners = ( predicate * global_stats.preconditioners + (1.0 - predicate) * new_preconditioners ) new_global_stats = GlobalShardedParameterStats( new_stacked_padded_statistics, new_conditional_preconditioners, global_stats.exponents, ) new_shampoo_state = ShampooState( count=state.count + 1, stats=ShardedShampooStats(new_global_stats, new_local_stats), ) return updates, new_shampoo_state def init_fn(params): """Initialise the optimiser's state.""" def _init(param): preconditioner = preconditioner_from_params(param) statistics = [] preconditioners = [] if not _skip_preconditioning(param): shapes = preconditioner.shapes_for_preconditioners() statistics = [ matrix_epsilon * jnp.eye(s[0], dtype=jnp.float32) for s in shapes ] preconditioners = [jnp.eye(s[0], dtype=jnp.float32) for s in shapes] diagonal_statistics = [] if _graft_type_has_diagonal_statistics(): diagonal_statistics = jnp.zeros_like(param) diagonal_momentum = _quantize_momentum(jnp.zeros_like(param)) momentum = _quantize_momentum(jnp.zeros_like(param)) return ParameterStats( _quantize_diagonal_statistics(diagonal_statistics), _maybe_quantize_statistics(statistics), _maybe_quantize_preconditioners(preconditioners), diagonal_momentum, momentum, init_training_metrics(len(statistics)), ) return ShampooState( count=jnp.zeros([], jnp.int32), stats=jax.tree_map(_init, params) ) def _skip_preconditioning(param): return len(param.shape) < skip_preconditioning_rank_lt or any( [s > skip_preconditioning_dim_size_gt for s in param.shape] ) def _compute_stats(grad, state, param, step): """Compute per-parameter statistics.""" preconditioner = preconditioner_from_params(param) new_statistics = [[]] * len(state.statistics) w1 = beta2 w2 = beta2 if beta2 == 1.0 else (1.0 - beta2) if not _skip_preconditioning(param): def compute_updated_statistics(): return preconditioner.updated_statistics_from_grad( state.statistics, grad, w1=w1, w2=w2, to_float=_to_float, from_float=lambda x: _maybe_quantize_statistics([x])[0], precision=tensordot_precision, ) if statistics_compute_steps > 1: perform_step = step % statistics_compute_steps == 0 init_state = state.statistics new_statistics = list( efficient_cond(perform_step, compute_updated_statistics, init_state) ) else: new_statistics = compute_updated_statistics() return ParameterStats( state.diagonal_statistics, new_statistics, state.preconditioners, state.diagonal_momentum, state.momentum, state.training_metrics, ) mi_pth_root = functools.partial( matrix_inverse_pth_root, ridge_epsilon=matrix_epsilon, precision=precision, relative_matrix_epsilon=relative_matrix_epsilon, lobpcg_topk_precondition=lobpcg_topk_precondition, lobpcg_max_iter=lobpcg_max_iter, ) def _matrix_inverse_pth_root_vmap(xs, ps): return jax.vmap(mi_pth_root)(xs, ps) def _quantized_matrix_inverse_pth_root_vmap(qxs, qds, qbs, ps): def _quantized_to_float(qx, qd, qb): qv = QuantizedValue(qx, qd, qb, qx.dtype, True, list(qx.shape)) return qv.to_float() def matrix_inverse_pth_root_wrapper(qx, qd, qb, p): v = _quantized_to_float(qx, qd, qb) preconditioner, error = mi_pth_root(v, p) qp = QuantizedValue.from_float_value(preconditioner, qx.dtype, True) return qp.quantized, qp.diagonal, qp.bucket_size, error return jax.vmap(matrix_inverse_pth_root_wrapper)(qxs, qds, qbs, ps) def _matrix_inverse_pth_root_pjit(xs, ps, statistics_partition_spec=None): # Partition the concatenated statistics matrix across all cores. pspec_for_partition = preconditioner_partition_spec partitioned_xs = pjit.with_sharding_constraint(xs, pspec_for_partition) if preconditioner_partition_spec: partitioned_ps_spec = pjit.PartitionSpec(preconditioner_partition_spec[0]) else: partitioned_ps_spec = None partitioned_ps = pjit.with_sharding_constraint(ps, partitioned_ps_spec) # Run matrix inverse pth root on each shard. partitioned_preconditioners, partitioned_errors = _matrix_inverse_pth_root_vmap( partitioned_xs, partitioned_ps ) # Reshard output to have the same PSpec as input. This is required to avoid # vmap seeing the full set of statistics. partitioned_preconditioners = pjit.with_sharding_constraint( partitioned_preconditioners, pspec_for_partition ) # Recombine the outputs at each core. preconditioners = pjit.with_sharding_constraint( partitioned_preconditioners, statistics_partition_spec ) errors = pjit.with_sharding_constraint(partitioned_errors, pjit.PartitionSpec()) return preconditioners, errors def _pmap_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ): """Computes preconditioners for given statistics in states in PMAP mode. Args: states: A list of optimizer states. step: Current step number statistics: A list of statistics for all variables (for every dim) num_statistics_per_state: Number of statistis per state to reconstruct output states. original_shapes: A list of shapes of the statistics. exponents: Exponent power to use for inverse-pth roots. max_size: Maximum dim of the statistics to pad. prev_preconditioners: Previously available preconditioner. Returns: New optimizer states after computing the preconditioner. """ if batch_axis_name: num_devices = lax.psum(1, batch_axis_name) else: num_devices = 1 num_statistics = len(statistics) # Pad statistics and exponents to next multiple of num_devices. packed_statistics = [pad_square_matrix(stat, max_size) for stat in statistics] to_pad = -num_statistics % num_devices packed_statistics.extend( [jnp.eye(max_size, dtype=packed_statistics[0].dtype) for _ in range(to_pad)] ) exponents.extend([1 for _ in range(to_pad)]) if not packed_statistics: return states all_statistics = batch(packed_statistics, num_devices) all_exponents = batch(exponents, num_devices) def _internal_inverse_pth_root_all(): if batch_axis_name: current_replica = lax.axis_index(batch_axis_name) preconditioners, errors = _matrix_inverse_pth_root_vmap( all_statistics[current_replica], all_exponents[current_replica] ) preconditioners = jax.lax.all_gather(preconditioners, batch_axis_name) errors = jax.lax.all_gather(errors, batch_axis_name) preconditioners_flat = unbatch(preconditioners) errors_flat = unbatch(errors) else: preconditioners, errors = _matrix_inverse_pth_root_vmap( all_statistics[0], all_exponents[0] ) preconditioners_flat = unbatch(jnp.stack([preconditioners])) errors_flat = unbatch(jnp.stack([errors])) return preconditioners_flat, errors_flat if preconditioning_compute_steps == 1: preconditioners_flat, errors_flat = _internal_inverse_pth_root_all() else: # Passing statistics instead of preconditioners as they are similarly # shaped tensors. Note statistics will be ignored as we are passing in # a large init value for error. preconditioners_init = packed_statistics errors_init = [inverse_failure_threshold] * len(packed_statistics) init_state = [preconditioners_init, errors_init] perform_step = step % preconditioning_compute_steps == 0 preconditioners_flat, errors_flat = efficient_cond( perform_step, _internal_inverse_pth_root_all, init_state ) def _skip(error): condition = jnp.logical_or( jnp.isnan(error), error >= inverse_failure_threshold ) return condition.astype(error.dtype) def _select_preconditioner(error, new_p, old_p): return lax.cond( _skip(error), lambda _: old_p, lambda _: new_p, operand=None ) new_preconditioners_flat = [] new_errors_flat = [] for p, shape, prev_p, error in zip( preconditioners_flat, original_shapes, prev_preconditioners, errors_flat ): new_preconditioners_flat.append( _select_preconditioner(error, p[: shape[0], : shape[1]], prev_p) ) new_errors_flat.append(error) assert len(states) == len(num_statistics_per_state) assert len(new_preconditioners_flat) == num_statistics assert len(new_errors_flat) == num_statistics # Add back empty preconditioners so we that we can set the optimizer state. preconditioners_for_states = [] idx = 0 errors_for_states = [] for num_statistics, state in zip(num_statistics_per_state, states): if num_statistics == 0: preconditioners_for_states.append([]) errors_for_states.append(jnp.array(0, jnp.float32)) else: preconditioners_for_state = new_preconditioners_flat[ idx : idx + num_statistics ] assert len(state.statistics) == len(preconditioners_for_state) preconditioners_for_states.append(preconditioners_for_state) errors_for_state = jnp.stack( new_errors_flat[idx : idx + num_statistics] ) assert len(state.statistics) == len(errors_for_state) errors_for_states.append(errors_for_state) idx += num_statistics new_states = [] for state, new_preconditioners, new_errors in zip( states, preconditioners_for_states, errors_for_states ): if state.statistics: new_errors = jnp.where( jnp.logical_and( new_errors > 0.0, new_errors != inverse_failure_threshold ), new_errors, state.training_metrics.inverse_pth_root_errors, ) new_training_metrics = TrainingMetrics(new_errors) new_states.append( ParameterStats( state.diagonal_statistics, state.statistics, new_preconditioners, state.diagonal_momentum, state.momentum, new_training_metrics, ) ) return new_states def _pmap_quantized_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ): """Computes preconditioners for given statistics in states in PMAP mode. For quantization, each statistic is represented by three values: quantized matrix, diagonal, and bucket sizes, we run inverse pth-roots without ever recreating the original matrix in f32. Args: states: A list of optimizer states. step: Current step number statistics: A list of statistics for all variables (for every dim) num_statistics_per_state: Number of statistis per state to reconstruct output states. original_shapes: A list of shapes of the statistics. exponents: Exponent power to use for inverse-pth roots. max_size: Maximum dim of the statistics to pad. prev_preconditioners: Previously available preconditioner. Returns: New optimizer states after computing the preconditioner. """ num_devices = lax.psum(1, batch_axis_name) num_statistics = len(statistics) quantized_dtype = quantized_dtype_for_second_moment_statistics_buffers() # Complexity here is around: shapes needing be statically shaped, # our custom quantization type requires a different type of packing. # Parallel tensors: # quantized [dxd] # diagonals [d] f32 # bucket_sizes [d] f32 packed_quantized_statistics = [ pad_square_matrix(stat.quantized, max_size) for stat in statistics ] packed_quantized_diagonals = [ pad_vector(stat.diagonal, max_size) for stat in statistics ] packed_quantized_bucket_sizes = [ pad_vector(stat.bucket_size, max_size) for stat in statistics ] to_pad = -num_statistics % num_devices padded_eye = jnp.eye(max_size, dtype=jnp.float32) quantized_eye = QuantizedValue.from_float_value( padded_eye, quantized_dtype, True ) packed_quantized_statistics.extend( [quantized_eye.quantized for _ in range(to_pad)] ) packed_quantized_diagonals.extend( [quantized_eye.diagonal for _ in range(to_pad)] ) packed_quantized_bucket_sizes.extend( [quantized_eye.bucket_size for _ in range(to_pad)] ) exponents.extend([1 for _ in range(to_pad)]) if not packed_quantized_statistics: return states all_quantized_statistics = batch(packed_quantized_statistics, num_devices) all_quantized_diagonals = batch(packed_quantized_diagonals, num_devices) all_quantized_bucket_sizes = batch(packed_quantized_bucket_sizes, num_devices) all_exponents = batch(exponents, num_devices) def _internal_inverse_pth_root_all(): current_replica = lax.axis_index(batch_axis_name) ( quantized_preconditioners, quantized_diagonals, quantized_bucket_sizes, errors, ) = _quantized_matrix_inverse_pth_root_vmap( all_quantized_statistics[current_replica], all_quantized_diagonals[current_replica], all_quantized_bucket_sizes[current_replica], all_exponents[current_replica], ) quantized_preconditioners = jax.lax.all_gather( quantized_preconditioners, batch_axis_name ) quantized_diagonals = jax.lax.all_gather( quantized_diagonals, batch_axis_name ) quantized_bucket_sizes = jax.lax.all_gather( quantized_bucket_sizes, batch_axis_name ) errors = jax.lax.all_gather(errors, batch_axis_name) quantized_preconditioners_flat = unbatch(quantized_preconditioners) quantized_diagonals_flat = unbatch(quantized_diagonals) quantized_bucket_sizes_flat = unbatch(quantized_bucket_sizes) errors_flat = unbatch(errors) return ( quantized_preconditioners_flat, quantized_diagonals_flat, quantized_bucket_sizes_flat, errors_flat, ) if preconditioning_compute_steps == 1: ( quantized_preconditioners_flat, quantized_diagonals_flat, quantized_bucket_sizes_flat, errors_flat, ) = _internal_inverse_pth_root_all() else: # Passing statistics instead of preconditioners as they are similarly # shaped tensors. Note statistics will be ignored as we are passing in # a large init value for error. quantized_preconditioners_init = packed_quantized_statistics quantized_diagonals_init = packed_quantized_diagonals quantized_bucket_sizes_init = packed_quantized_bucket_sizes errors_init = [inverse_failure_threshold] * len( quantized_preconditioners_init ) init_state = [ quantized_preconditioners_init, quantized_diagonals_init, quantized_bucket_sizes_init, errors_init, ] perform_step = step % preconditioning_compute_steps == 0 ( quantized_preconditioners_flat, quantized_diagonals_flat, quantized_bucket_sizes_flat, errors_flat, ) = efficient_cond(perform_step, _internal_inverse_pth_root_all, init_state) def _skip(error): condition = jnp.logical_or( jnp.isnan(error), error >= inverse_failure_threshold ) return condition.astype(error.dtype) def _select_preconditioner(error, new_p, old_p): return lax.cond( _skip(error), lambda _: old_p, lambda _: new_p, operand=None ) new_quantized_preconditioners_flat = [] new_quantized_diagonals_flat = [] new_quantized_bucket_sizes_flat = [] new_errors_flat = [] for p, d, b, shape, prev_p, error in zip( quantized_preconditioners_flat, quantized_diagonals_flat, quantized_bucket_sizes_flat, original_shapes, prev_preconditioners, errors_flat, ): new_quantized_preconditioners_flat.append( _select_preconditioner( error, p[: shape[0], : shape[1]], prev_p.quantized ) ) new_quantized_diagonals_flat.append( _select_preconditioner(error, d[: shape[0]], prev_p.diagonal) ) new_quantized_bucket_sizes_flat.append( _select_preconditioner(error, b[: shape[0]], prev_p.bucket_size) ) new_errors_flat.append(error) assert len(states) == len(num_statistics_per_state) assert len(new_quantized_preconditioners_flat) == num_statistics assert len(new_quantized_diagonals_flat) == num_statistics assert len(new_quantized_bucket_sizes_flat) == num_statistics # Add back empty preconditioners so we that we can set the optimizer state. preconditioners_for_states = [] errors_for_states = [] idx = 0 for num_statistics, state in zip(num_statistics_per_state, states): if num_statistics == 0: preconditioners_for_states.append([]) errors_for_states.append(jnp.array(0, jnp.float32)) else: quantized_preconditioners_for_state = ( new_quantized_preconditioners_flat[idx : idx + num_statistics] ) quantized_diagonals_for_state = new_quantized_diagonals_flat[ idx : idx + num_statistics ] quantized_bucket_sizes_for_state = new_quantized_bucket_sizes_flat[ idx : idx + num_statistics ] errors_for_state = jnp.stack( new_errors_flat[idx : idx + num_statistics] ) assert len(state.statistics) == len(quantized_preconditioners_for_state) assert len(state.statistics) == len(quantized_diagonals_for_state) assert len(state.statistics) == len(quantized_bucket_sizes_for_state) assert len(state.statistics) == len(errors_for_state) quantized_preconditioners = [] for qv, qd, qb in zip( quantized_preconditioners_for_state, quantized_diagonals_for_state, quantized_bucket_sizes_for_state, ): quantized_preconditioners.append( QuantizedValue(qv, qd, qb, qv.dtype, True, list(qv.shape)) ) preconditioners_for_states.append(quantized_preconditioners) errors_for_states.append(errors_for_state) idx += num_statistics new_states = [] for state, new_preconditioners, new_errors in zip( states, preconditioners_for_states, errors_for_states ): if state.statistics: new_errors = jnp.where( jnp.logical_and( new_errors > 0.0, new_errors != inverse_failure_threshold ), new_errors, state.training_metrics.inverse_pth_root_errors, ) new_training_metrics = TrainingMetrics(new_errors) new_states.append( ParameterStats( state.diagonal_statistics, state.statistics, new_preconditioners, state.diagonal_momentum, state.momentum, new_training_metrics, ) ) return new_states def _pjit_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ): """Computes preconditioners for given statistics in states in PJIT mode. Args: states: A list of optimizer states. step: Current step number statistics: A list of statistics for all variables (for every dim) num_statistics_per_state: Number of statistis per state to reconstruct output states. original_shapes: A list of shapes of the statistics. exponents: Exponent power to use for inverse-pth roots. max_size: Maximum dim of the statistics to pad. prev_preconditioners: Previously available preconditioner. Returns: New optimizer states after computing the preconditioner. """ num_statistics = len(statistics) to_pad = -num_statistics % num_devices_for_pjit padded_statistics = [pad_square_matrix(stat, max_size) for stat in statistics] padded_statistics.extend( [jnp.eye(max_size, dtype=padded_statistics[0].dtype) for _ in range(to_pad)] ) exponents.extend([1 for _ in range(to_pad)]) all_statistics = jnp.stack(padded_statistics) all_exponents = jnp.stack(exponents) def _internal_inverse_pth_root_all(): preconditioners, errors = _matrix_inverse_pth_root_pjit( all_statistics, all_exponents ) b1 = preconditioners.shape[0] def split(batched_values): return [ jnp.squeeze(v) for v in jnp.split(batched_values, indices_or_sections=b1, axis=0) ] return split(preconditioners), split(errors) if preconditioning_compute_steps == 1: preconditioners_flat, errors_flat = _internal_inverse_pth_root_all() else: # Passing statistics instead of preconditioners as they are similarly # shaped tensors. Note statistics will be ignored as we are passing in # a large init value for error. preconditioners_init = padded_statistics errors_init = [inverse_failure_threshold] * len(padded_statistics) init_state = [preconditioners_init, errors_init] perform_step = step % preconditioning_compute_steps == 0 preconditioners_flat, errors_flat = efficient_cond( perform_step, _internal_inverse_pth_root_all, init_state ) def _skip(error): condition = jnp.logical_or( jnp.isnan(error), error >= inverse_failure_threshold ) return condition.astype(error.dtype) def _select_preconditioner(error, new_p, old_p): return lax.cond( _skip(error), lambda _: old_p, lambda _: new_p, operand=None ) new_preconditioners_flat = [] new_errors_flat = [] for p, shape, prev_p, error in zip( preconditioners_flat, original_shapes, prev_preconditioners, errors_flat ): new_preconditioners_flat.append( _select_preconditioner(error, p[: shape[0], : shape[1]], prev_p) ) new_errors_flat.append(error) assert len(states) == len(num_statistics_per_state) assert len(new_preconditioners_flat) == num_statistics # Add back empty preconditioners so we that we can set the optimizer state. preconditioners_for_states = [] errors_for_states = [] idx = 0 for num_statistics, state in zip(num_statistics_per_state, states): if num_statistics == 0: preconditioners_for_states.append([]) errors_for_states.append(jnp.array(0, jnp.float32)) else: preconditioners_for_state = new_preconditioners_flat[ idx : idx + num_statistics ] assert len(state.statistics) == len(preconditioners_for_state) preconditioners_for_states.append(preconditioners_for_state) errors_for_state = jnp.stack( new_errors_flat[idx : idx + num_statistics] ) assert len(state.statistics) == len(errors_for_state) errors_for_states.append(errors_for_state) idx += num_statistics new_states = [] for state, new_preconditioners, new_errors in zip( states, preconditioners_for_states, errors_for_states ): if state.statistics: new_errors = jnp.where( jnp.logical_and( new_errors > 0.0, new_errors != inverse_failure_threshold ), new_errors, state.training_metrics.inverse_pth_root_errors, ) new_training_metrics = TrainingMetrics(new_errors) new_states.append( ParameterStats( state.diagonal_statistics, state.statistics, new_preconditioners, state.diagonal_momentum, state.momentum, new_training_metrics, ) ) return new_states def _compute_preconditioners(states, params, step): """Computes preconditioners for given statistics in states. Args: states: A list of optimizer states. params: A list of params. step: Current step number Returns: New optimizer states after computing the preconditioner. """ statistics = [] num_statistics_per_state = [] original_shapes = [] exponents = [] max_size = 0 prev_preconditioners = [] for state, param in zip(states, params): num_statistics = len(state.statistics) num_statistics_per_state.append(num_statistics) original_shapes_for_state = [] if num_statistics > 0: preconditioner = preconditioner_from_params(param) for statistic in state.statistics: exponents.append( preconditioner.exponent_for_preconditioner() if exponent_override == 0 else exponent_override ) original_shapes_for_state.append(statistic.shape) max_size = max(max_size, statistic.shape[0]) statistics.extend(state.statistics) prev_preconditioners.extend(state.preconditioners) original_shapes.extend(original_shapes_for_state) if not shard_optimizer_states: # Quantization is only enabled if batch_axis_name is not set. quantized_dtype = quantized_dtype_for_second_moment_statistics_buffers() if quantized_dtype == jnp.float32: return _pmap_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ) else: return _pmap_quantized_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ) else: return _pjit_compute_preconditioners( states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners, ) def _transform_grad(grad, state, param, step): """Transform per-parameter gradients.""" preconditioner = preconditioner_from_params(param) sgd_update = grad new_diagonal_statistics = state.diagonal_statistics.to_float() if ( graft_type == GraftingType.ADAGRAD or graft_type == GraftingType.ADAGRAD_NORMALIZED ): scaled_grad = grad if graft_type == GraftingType.ADAGRAD_NORMALIZED: scaled_grad = grad / (jnp.linalg.norm(grad) + 1e-16) new_diagonal_statistics = state.diagonal_statistics.to_float() + jnp.square( scaled_grad ) adagrad_update = scaled_grad / ( jnp.sqrt(new_diagonal_statistics) + diagonal_epsilon ) grafting_update = adagrad_update elif ( graft_type == GraftingType.RMSPROP or graft_type == GraftingType.RMSPROP_NORMALIZED ): scaled_grad = grad if graft_type == GraftingType.RMSPROP_NORMALIZED: scaled_grad = grad / (jnp.linalg.norm(grad) + 1e-16) w1 = beta2 w2 = beta2 if beta2 == 1.0 else (1.0 - beta2) new_diagonal_statistics = ( w1 * state.diagonal_statistics.to_float() + w2 * jnp.square(scaled_grad) ) rmsprop_update = scaled_grad / ( jnp.sqrt(new_diagonal_statistics) + diagonal_epsilon ) if clip_by_scaled_gradient_norm: scaled_grad_norm = jnp.linalg.norm(rmsprop_update) / ( jnp.sqrt(float(rmsprop_update.size)) ) clipping_denom = jnp.maximum( 1.0, scaled_grad_norm / clip_by_scaled_gradient_norm ) rmsprop_update /= clipping_denom grafting_update = rmsprop_update elif graft_type == GraftingType.SGD: grafting_update = sgd_update else: grafting_update = jnp.ones_like(sgd_update) * jnp.sign(sgd_update) lr = learning_rate if callable(learning_rate): lr = learning_rate(step) preconditioner_multiplier = lr if not decoupled_learning_rate else 1.0 grafting_update = grafting_update * preconditioner_multiplier precond_grad = grad if not _skip_preconditioning(param): precond_grad = preconditioner.preconditioned_grad( precond_grad, _maybe_dequantize_preconditioners(state.preconditioners) ) else: precond_grad = grafting_update grafting_update_norm = jnp.linalg.norm(grafting_update) precond_grad_norm = jnp.linalg.norm(precond_grad) multiplier = grafting_update_norm / (precond_grad_norm + 1e-16) shampoo_update = precond_grad * multiplier shampoo_update_with_wd = shampoo_update grafting_update_with_wd = grafting_update if weight_decay != 0 and not decoupled_weight_decay: shampoo_update_with_wd = shampoo_update + weight_decay * param grafting_update_with_wd = grafting_update + weight_decay * param w = (1.0 - beta1) if moving_average_for_momentum else 1.0 shampoo_update_with_wd_momentum = ( state.momentum.to_float() * beta1 + w * shampoo_update_with_wd ) grafting_update_with_wd_momentum = ( state.diagonal_momentum.to_float() * beta1 + w * grafting_update_with_wd ) run_shampoo = (step >= start_preconditioning_step).astype( grafting_update_with_wd_momentum.dtype ) momentum_update = ( run_shampoo * shampoo_update_with_wd_momentum + (1.0 - run_shampoo) * grafting_update_with_wd_momentum ) wd_update = ( run_shampoo * shampoo_update_with_wd + (1.0 - run_shampoo) * grafting_update_with_wd ) nesterov_momentum_update = momentum_update if nesterov: nesterov_momentum_update = w * wd_update + beta1 * momentum_update if weight_decay != 0 and decoupled_weight_decay: nesterov_momentum_update = ( nesterov_momentum_update + lr * weight_decay * param ) momentum_multiplier = lr if decoupled_learning_rate else 1.0 transformed_update = -1.0 * momentum_multiplier * nesterov_momentum_update new_diagonal_momentum = grafting_update_with_wd_momentum new_momentum = shampoo_update_with_wd_momentum param_stats = ParameterStats( _quantize_diagonal_statistics(new_diagonal_statistics), state.statistics, state.preconditioners, _quantize_momentum(new_diagonal_momentum), _quantize_momentum(new_momentum), state.training_metrics, ) return transformed_update, param_stats def update_fn(grads, state, params): """Transform the input gradient and update all statistics. Args: grads: the gradient tensors for the parameters and any custom gradients for preconditioners. state: a named tuple containing the state of the optimizer params: the parameters that should be updated. Returns: A tuple containing the new parameters and the new optimizer state. """ params_flat, treedef = jax.tree_flatten(params) stats_flat = treedef.flatten_up_to(state.stats) grads_flat = treedef.flatten_up_to(grads) stats_grads = grads_flat new_stats_flat = jax.tree_map( lambda g, s, p: _compute_stats(g, s, p, state.count), stats_grads, stats_flat, params_flat, ) new_stats_flat = _compute_preconditioners( new_stats_flat, params_flat, state.count ) outputs = jax.tree_map( lambda g, s, p: _transform_grad(g, s, p, state.count), grads_flat, new_stats_flat, params_flat, ) updates_flat, new_stats_flat = list(zip(*outputs)) if outputs else ((), ()) updates = jax.tree_unflatten(treedef, updates_flat) new_stats = jax.tree_unflatten(treedef, new_stats_flat) new_state = ShampooState(count=state.count + 1, stats=new_stats) return updates, new_state if shard_optimizer_states: # Hijacks the init_fn signature so we can return an OptState with # appropriate init_fns. opt_init_fn = sharded_init_fn def _init_fns(unused_params): return InitFnState( init_fn=opt_init_fn, pspec_fn=sharded_init_partition_spec_fn, shape_and_dtype_fn=sharded_init_shape_and_dtype_fn, ) opt_update_fn = sharded_update_fn return optax.GradientTransformation(_init_fns, opt_update_fn) else: return optax.GradientTransformation(init_fn, update_fn)
Distributed Shampoo optimizer. Distributed Shampoo is a second-order preconditioned method (concretely, a variant of full-matrix Adagrad), that provides significant convergence and wall-clock time improvements compared to conventional first-order methods, and that has been shown to scale to large state-of-the-art deep learning models. References: Scalable Second Order Optimization for Deep Learning, Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer Preprint: https://arxiv.org/abs/2002.09018 Args: learning_rate: the step size used to update the parameters. block_size: Block size for large layers (if > 0). Preconditioning compute operation is cubic in the dimension of the tensor. Block size allows us to chunk the layers into sub-layers of maximal dimension dictated by this value. Use 128 as default (increase if you have compute budget). beta1: momentum parameter. beta2: second moment averaging parameter. diagonal_epsilon: epsilon for diagonal adagrad (only if layerwise grafting to AdaGrad is enabled). matrix_epsilon: epsilon to add to statistics before computing inverse pth root. If you are running in f32 precision for inverse pth root (recommended today) this can go upto 1e-6. If you have latest hardware with native f64 precision, set this upto 1e-12. weight_decay: Weight decay for regularization. start_preconditioning_step: When to start Shampoo update before which diagonal update is used. This is because we dont have enough information to do stable inverse. preconditioning_compute_steps: How often to compute preconditioner. Performance tuning params for controlling memory and compute requirements. Ideally set this and statistics_compute_steps params to 1. statistics_compute_steps: How often to compute statistics. best_effort_shape_interpretation: If there are some small dimensions, collapse them e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if block = 1024, [1, 2, 768, 1, 2048] --> [2, 768, 2048] graft_type: Grafting is a technique to fix the layerwise scale of Shampoo optimizer. This allows us to plugin the Shampoo optimizer into settings where SGD/AdaGrad is already well tuned. nesterov: Nesterov momentum. exponent_override: Override the exponent used in matrix inverse. batch_axis_name: labeled axis over pmap for data-parallel training the optimizer used for. statistics_partition_spec: PartitionSpec to be used in sharded mode. preconditioner_partition_spec: PartitionSpec to be used in sharded mode. num_devices_for_pjit: Number of devices to parallelize over when using pjit. shard_optimizer_states: Shard optimizer states to save memory in model parallel training. best_effort_memory_usage_reduction: Best effort memory usage reduction. - diagonal_statistics -> jnp.bfloat16 - momentum buffers (2x) -> jnp.int8 - statistics, preconditioners -> jnp.int16 + diagonals inverse_failure_threshold: numerics are hard and inverses fail sometimes; we determine that using this threshold. moving_average_for_momentum: Whether to use moving average for momentum instead of exponential moving average. skip_preconditioning_dim_size_gt: Skip if preconditioning dim size is greater than this value. clip_by_scaled_gradient_norm: Clip by scaled gradient norm (only useful when using RMSProp Grafting). precision: precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) tensordot_precision: Optional precision to use for the tensordot operation when computing statistics (e.g., G Gᵀ). Same options as `precision` above. relative_matrix_epsilon: Whether to use relative epsilon to the max eigen value when computing inverse-pth root. merge_small_dims_block_size: Used as the maximum block size to merge the shapes. lobpcg_topk_precondition: If nonzero, specifies the number of top eigenvectors to subtract out before performing LOBPCG. Note this makes relative_matrix_epsilon essentially free. lobpcg_max_iter: Number of LOBPCG iterations, if zero defaults to `lobpcg_topk_precondition`. precondtioner_type: Preconditioner type to select all, left only or right only preconditioners. skip_preconditioning_rank_lt: Skips preconditioning for parameters with rank less than this value. decoupled_learning_rate: If True, use decoupled learning rate, otherwise couple it with preconditioned gradient computation. (Default True) decoupled_weight_decay: If True, use decoupled weight decay, otherwise couple with weight decay. (Default False) Returns: a GradientTransformation.
distributed_shampoo
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/distributed_shampoo.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/distributed_shampoo.py
Apache-2.0
def quantize(cls, fvalue, quantized_dtype, extract_diagonal=False): """Returns quantized value and the bucket.""" if quantized_dtype == jnp.float32: return fvalue, [], [] elif quantized_dtype == jnp.bfloat16: return fvalue.astype(jnp.bfloat16), [], [] float_dtype = fvalue.dtype if quantized_dtype == jnp.int8: # value -128 is not used. num_buckets = jnp.array(127.0, dtype=float_dtype) elif quantized_dtype == jnp.int16: # value -32768 is not used. num_buckets = jnp.array(32767.0, dtype=float_dtype) else: raise ValueError(f"Quantized dtype {quantized_dtype} not supported.") # max value is mapped to num_buckets if extract_diagonal and fvalue.ndim != 2: raise ValueError( f"Input array {fvalue} must be 2D to work with extract_diagonal." ) diagonal_fvalue = [] if extract_diagonal: diagonal_fvalue = jnp.diag(fvalue) # Remove the diagonal entries. fvalue = fvalue - jnp.diag(diagonal_fvalue) # TODO(rohananil): Extend this by making use of information about the blocks # SM3 style which will be useful for diagonal statistics # We first decide the scale. if fvalue.ndim < 1: raise ValueError( f"Input array {fvalue} must have a strictly positive number of dimensions." ) max_abs = jnp.max(jnp.abs(fvalue), axis=0) bucket_size = max_abs / num_buckets bs_expanded = bucket_size[jnp.newaxis, Ellipsis] # To avoid divide by 0.0 bs_nonzero = jnp.where( bs_expanded > 0.0, bs_expanded, jnp.ones_like(bs_expanded) ) ratio = fvalue / bs_nonzero # We use rounding to remove bias. quantized = jnp.round(ratio) return quantized.astype(quantized_dtype), diagonal_fvalue, bucket_size
Returns quantized value and the bucket.
quantize
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/quantization_utils.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/quantization_utils.py
Apache-2.0
def to_float(self): """Returns the float value.""" if isinstance(self.quantized, list) and not self.quantized: return self.quantized if self.quantized_dtype == jnp.float32: return self.quantized if self.quantized_dtype == jnp.bfloat16: return self.quantized.astype(jnp.float32) float_dtype = self.bucket_size.dtype bucket_size = self.bucket_size[jnp.newaxis, Ellipsis] val = self.quantized.astype(float_dtype) * bucket_size if self.extract_diagonal: val += jnp.diag(self.diagonal) return val
Returns the float value.
to_float
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/quantization_utils.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/quantization_utils.py
Apache-2.0
def init_fn(params): """Initialise the optimiser's state.""" def _init(param): accumulators = [jnp.zeros([s]) for s in param.shape] momentum = _quantize_momentum(jnp.zeros_like(param)) return ParameterStats(accumulators, momentum) return SM3State( count=jnp.zeros([], jnp.int32), stats=jax.tree_map(_init, params) )
Initialise the optimiser's state.
sm3.init_fn
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/sm3.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/sm3.py
Apache-2.0
def sm3( learning_rate, beta1=0.9, beta2=0.999, diagonal_epsilon=1e-10, normalize_grads=False ): """SM3 optimizer. Memory-Efficient Adaptive Optimization, Rohan Anil, Vineet Gupta, Tomer Koren, Yoram Singer https://arxiv.org/abs/1901.11150 Args: learning_rate: the step size used to update the parameters. beta1: momentum parameter. beta2: second moment averaging parameter. diagonal_epsilon: epsilon for sm3 normalize_grads: Whether to normalize grads. Author finds it useful when grads are high variance. Returns: a GradientTransformation. """ def _quantize_momentum(momentum_statistics): return QuantizedValue.from_float_value(momentum_statistics, jnp.int8) def init_fn(params): """Initialise the optimiser's state.""" def _init(param): accumulators = [jnp.zeros([s]) for s in param.shape] momentum = _quantize_momentum(jnp.zeros_like(param)) return ParameterStats(accumulators, momentum) return SM3State( count=jnp.zeros([], jnp.int32), stats=jax.tree_map(_init, params) ) def _get_expanded_shape(shape, i): rank = len(shape) # Replaces a `shape` of [M, N, K] with 1 in all dimensions except for i. # For eg: i = 1 returns [1, N, 1]. return [1] * i + [shape[i]] + [1] * (rank - i - 1) def _moving_averages(grad, accumulators): w = (1.0 - beta2) if beta2 != 1.0 else 1.0 if grad.ndim < 2: return beta2 * accumulators[0] + w * grad**2 else: min_accumulator = functools.reduce(jnp.minimum, accumulators) return beta2 * min_accumulator + w * grad**2 def _moving_averages_momentum(grad, momentum): w = (1.0 - beta1) if beta1 != 1.0 else 1.0 return beta1 * momentum.to_float() + w * grad def _sketch_diagonal_statistics(grad, updated_diagonal_statistics): all_diagonal_statistics = [] for i in range(grad.ndim): axes = list(range(i)) + list(range(i + 1, grad.ndim)) dim_diagonal_statistics = jnp.max(updated_diagonal_statistics, axis=axes) all_diagonal_statistics.append(dim_diagonal_statistics) if grad.ndim == 1: all_diagonal_statistics[0] = updated_diagonal_statistics return all_diagonal_statistics def update_fn(updates, state, params=None): del params stats = state.stats if normalize_grads: updates = jax.tree_map(lambda g: g / (jnp.linalg.norm(g) + 1e-16), updates) # Reshape all vectors into N-d tensors to compute min over them. # [n], [m] -> [n, 1], [1, m] expanded_diagonal_statistics = jax.tree_map( lambda grad, state: [ # pylint:disable=g-long-lambda jnp.reshape( state.diagonal_statistics[i], _get_expanded_shape(grad.shape, i) ) for i in range(grad.ndim) ], updates, stats, ) # Compute new diagonal statistics new_diagonal_statistics = jax.tree_map( _moving_averages, updates, expanded_diagonal_statistics ) # Compute preconditioners (1/sqrt(s)) where s is the statistics. new_preconditioners = jax.tree_map( lambda t: 1.0 / jnp.sqrt(t + diagonal_epsilon), new_diagonal_statistics ) preconditioned_grads = jax.tree_map( lambda g, p: g * p, updates, new_preconditioners ) # Compute updated momentum (also handle quantization) updated_momentum = jax.tree_map( lambda preconditioned_grad, state: _moving_averages_momentum( # pylint:disable=g-long-lambda preconditioned_grad, state.diagonal_momentum ), preconditioned_grads, stats, ) # Update diagonal statistics. updated_diagonal_statistics = jax.tree_map( _sketch_diagonal_statistics, updates, new_diagonal_statistics ) # Update momentum. new_sm3_stats = jax.tree_map( lambda momentum, diagonal_stats: ParameterStats( # pylint:disable=g-long-lambda diagonal_stats, _quantize_momentum(momentum) ), updated_momentum, updated_diagonal_statistics, ) lr = learning_rate if callable(learning_rate): lr = learning_rate(state.count) new_updates = jax.tree_map(lambda pg: -lr * pg, updated_momentum) return new_updates, SM3State(count=state.count + 1, stats=new_sm3_stats) return optax.GradientTransformation(init_fn, update_fn)
SM3 optimizer. Memory-Efficient Adaptive Optimization, Rohan Anil, Vineet Gupta, Tomer Koren, Yoram Singer https://arxiv.org/abs/1901.11150 Args: learning_rate: the step size used to update the parameters. beta1: momentum parameter. beta2: second moment averaging parameter. diagonal_epsilon: epsilon for sm3 normalize_grads: Whether to normalize grads. Author finds it useful when grads are high variance. Returns: a GradientTransformation.
sm3
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/sm3.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/sm3.py
Apache-2.0
def product_with_transpose( mat1, mat2, axes, precision=lax.Precision.DEFAULT, ): """Returns mat1 * mat2^T for two matrices (possibly batched). The rows and columns are the last two dimensions for each matrix. Args: mat1: First matrix. mat2: Second matrix. axes: The axes over which to apply the product. precision: JAX precision to use for the multiplication. """ return jnp.tensordot(a=mat1, b=mat2, axes=axes, precision=precision)
Returns mat1 * mat2^T for two matrices (possibly batched). The rows and columns are the last two dimensions for each matrix. Args: mat1: First matrix. mat2: Second matrix. axes: The axes over which to apply the product. precision: JAX precision to use for the multiplication.
product_with_transpose
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
Apache-2.0
def sliced_transposed_product( mat, block_size, axes=(-1,), precision=lax.Precision.DEFAULT, ): """Returns the blocked slices representing a symmetric contraction. Specifically, the output is a contraction of the input mat with itself, in the specified axes. Args: mat: The matrix for which we will compute a contraction with itself. block_size: The size of row blocks to compute. axes: Axes to use for the contraction. precision: The precision to use in each computation. Raises: ValueError: Raised when the specified block size does not evenly divide the number of rows of the input mat. """ rank = len(mat.shape) def _make_axis_positive(ax): assert -rank <= ax < rank return ax + rank if ax < 0 else ax positive_axes = [_make_axis_positive(ax) for ax in axes] assert len(positive_axes) == len(axes) remaining_axes = set(range(rank)) - set(positive_axes) assert len(remaining_axes) == 1 remaining_ax = remaining_axes.pop() num_rows = mat.shape[remaining_ax] if num_rows % block_size != 0: raise ValueError( "The row dimension must be divisible by block_size. " f"Instead got row dimension={num_rows} and block_size={block_size}." ) block_rows = [] for i in range(num_rows // block_size): start_indices = [0] * rank start_indices[remaining_ax] = i * block_size slice_sizes = list(mat.shape) slice_sizes[remaining_ax] = block_size slice_sizes_full = list(mat.shape) slice_sizes_full[remaining_ax] = (i + 1) * block_size block_rows.append( product_with_transpose( lax.dynamic_slice( mat, start_indices=start_indices, slice_sizes=slice_sizes ), lax.dynamic_slice( mat, start_indices=[0] * rank, slice_sizes=slice_sizes_full ), axes=(axes, axes), precision=precision, ) ) return SlicedSymmetricMatrix(block_rows=block_rows)
Returns the blocked slices representing a symmetric contraction. Specifically, the output is a contraction of the input mat with itself, in the specified axes. Args: mat: The matrix for which we will compute a contraction with itself. block_size: The size of row blocks to compute. axes: Axes to use for the contraction. precision: The precision to use in each computation. Raises: ValueError: Raised when the specified block size does not evenly divide the number of rows of the input mat.
sliced_transposed_product
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
Apache-2.0
def sliced_transposed_product_concat( mat, block_size, axes=(-1,), precision=lax.Precision.DEFAULT, ): """Returns the concatenated slices representing mat*mat^T. Args: mat: The matrix for which we will compute mat*mat^T. It does not need to be square, and may be batched. block_size: The size of row blocks to compute. axes: Axes to use for the contraction. precision: The precision to use in each computation. Raises: ValueError: Raised when the specified block size does not evenly divide the number of rows of the input mat. """ sliced_symmetric_matrix = sliced_transposed_product( mat=mat, block_size=block_size, axes=axes, precision=precision ) return jnp.concatenate(sliced_symmetric_matrix.block_rows, axis=-1)
Returns the concatenated slices representing mat*mat^T. Args: mat: The matrix for which we will compute mat*mat^T. It does not need to be square, and may be batched. block_size: The size of row blocks to compute. axes: Axes to use for the contraction. precision: The precision to use in each computation. Raises: ValueError: Raised when the specified block size does not evenly divide the number of rows of the input mat.
sliced_transposed_product_concat
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
Apache-2.0
def materialize_matrix(symmetric_matrix): """Returns a materialized symmetric matrix. Args: symmetric_matrix: the matrix represented by lower-triangular block slices. """ block_rows = symmetric_matrix.block_rows block_size = block_rows[0].shape[-2] num_blocks = len(block_rows) # Slice the lower-triangular and diagonal blocks into blocks. blocks = [ [ block_row[Ellipsis, i * block_size : (i + 1) * block_size] for i in range(k + 1) ] for k, block_row in enumerate(block_rows) ] # Generate the (off-diagonal) upper-triangular blocks. off_diags = [[] for _ in range(num_blocks - 1)] for k, block_row in enumerate(block_rows[1:]): for i in range(k + 1): off_diags[i].append( jnp.swapaxes( a=block_row[Ellipsis, i * block_size : (i + 1) * block_size], axis1=-1, axis2=-2, ) ) return jnp.block( [row + row_t for row, row_t in zip(blocks[:-1], off_diags)] + [blocks[-1]] )
Returns a materialized symmetric matrix. Args: symmetric_matrix: the matrix represented by lower-triangular block slices.
materialize_matrix
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
Apache-2.0
def materialize_matrix_from_concat( block_rows_concat, num_blocks=None, ): """Returns a materialized symmetric matrix from concatenated slices. Args: block_rows_concat: The matrix represented as the concatenated lower-triangular blocks. num_blocks: The number of block-rows used to represent the symmetric matrix. If not specified, it is inferred from the shape of block_rows_concat. """ if num_blocks is None: num_blocks = find_num_blocks(block_rows_concat) block_size = block_rows_concat.shape[-2] block_rows = [ block_rows_concat[ Ellipsis, (k * (k + 1)) // 2 * block_size : (((k + 1) * (k + 2)) // 2 + 1) * block_size, ] for k in range(num_blocks) ] return materialize_matrix(SlicedSymmetricMatrix(block_rows=block_rows))
Returns a materialized symmetric matrix from concatenated slices. Args: block_rows_concat: The matrix represented as the concatenated lower-triangular blocks. num_blocks: The number of block-rows used to represent the symmetric matrix. If not specified, it is inferred from the shape of block_rows_concat.
materialize_matrix_from_concat
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
Apache-2.0
def update_sliced_rows( symmetric_matrix, mat, alpha, beta, axes=(-1,), ): """Implements the blocked equivalent of SYRK. Specifically, the symmetric matrix (represented using lower-triangular block rows) is updated using the sliced product of mat. Args: symmetric_matrix: The symmetric matrix to update. mat: The matrix to use for the update = mat * mat^T. The number of rows should match that of symmetric_matrix. alpha: The weight for the update. beta: The weight for the original symmetric matrix. axes: Axes to use for the contraction of the update. Returns: The updated rows of alpha * mat * mat^T + beta * symmetric_matrix. """ block_size = symmetric_matrix.block_rows[0].shape[-2] sym_prod = sliced_transposed_product(mat=mat, block_size=block_size, axes=axes) return SlicedSymmetricMatrix( block_rows=[ update * alpha + row * beta for update, row in zip(sym_prod.block_rows, symmetric_matrix.block_rows) ] )
Implements the blocked equivalent of SYRK. Specifically, the symmetric matrix (represented using lower-triangular block rows) is updated using the sliced product of mat. Args: symmetric_matrix: The symmetric matrix to update. mat: The matrix to use for the update = mat * mat^T. The number of rows should match that of symmetric_matrix. alpha: The weight for the update. beta: The weight for the original symmetric matrix. axes: Axes to use for the contraction of the update. Returns: The updated rows of alpha * mat * mat^T + beta * symmetric_matrix.
update_sliced_rows
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
Apache-2.0
def num_blocks_from_total_blocks(total_blocks): """Returns the number of blocks (i.e. block rows) from the total blocks. This is the inverse of the function x -> x*(x+1)/2. For example, the matrix M = [[A, B^T], [B, C]] may be represented using a total of 3 blocks ([A, B, C]). The number of corresponding block rows is 2. Args: total_blocks: The total blocks used to represent the matrix. """ num_blocks = np.round((np.sqrt(8 * total_blocks + 1) - 1) / 2).astype(np.int32) if (num_blocks * (num_blocks + 1)) / 2 != total_blocks: raise ValueError( f"total_blocks={total_blocks} does not correspond to " "a symmetric matrix. It must have the form total_blocks = x*(x+1)/2." ) return num_blocks
Returns the number of blocks (i.e. block rows) from the total blocks. This is the inverse of the function x -> x*(x+1)/2. For example, the matrix M = [[A, B^T], [B, C]] may be represented using a total of 3 blocks ([A, B, C]). The number of corresponding block rows is 2. Args: total_blocks: The total blocks used to represent the matrix.
num_blocks_from_total_blocks
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
Apache-2.0
def find_num_blocks(block_rows_concat): """Returns the number of (row) blocks representing the concatenated matrix. For example, an input with dimensions [256, 2560] represents 10 square blocks, which matches 4 lower-triangular block rows (1+2+3+4). So this function will return 4. Use ordinary numpy functions here so that the returned value is static. Args: block_rows_concat: The concatenated block array. Raises: ValueError: When the dimensions of the matrix do not correspond to a lower triangular block representation. """ # Compute the number of square blocks used to represent the matrix. total_blocks = block_rows_concat.shape[-1] / block_rows_concat.shape[-2] # Determine the number of block rows by inverting y = x*(x+1)/2. return num_blocks_from_total_blocks(total_blocks)
Returns the number of (row) blocks representing the concatenated matrix. For example, an input with dimensions [256, 2560] represents 10 square blocks, which matches 4 lower-triangular block rows (1+2+3+4). So this function will return 4. Use ordinary numpy functions here so that the returned value is static. Args: block_rows_concat: The concatenated block array. Raises: ValueError: When the dimensions of the matrix do not correspond to a lower triangular block representation.
find_num_blocks
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
Apache-2.0
def slice_symmetric_matrix( mat, block_size, ): """Returns sliced row blocks. Args: mat: A symmetric matrix. block_size: The size of the row slices. """ num_rows = mat.shape[-2] num_cols = mat.shape[-1] if num_rows != num_cols: raise ValueError("mat is not square.") if num_rows % block_size != 0: raise ValueError( f"block size does not evenly divide rows. num_rows={num_rows}, block_size={block_size}" ) return SlicedSymmetricMatrix( block_rows=[ mat[ Ellipsis, i * block_size : (i + 1) * block_size, 0 : (i + 1) * block_size, ] for i in range(num_rows // block_size) ] )
Returns sliced row blocks. Args: mat: A symmetric matrix. block_size: The size of the row slices.
slice_symmetric_matrix
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
Apache-2.0
def slice_symmetric_matrix_concat( mat, block_size, ): """Returns the concatenated sliced row blocks. Args: mat: A symmetric matrix. block_size: The size of the row slices. """ sliced_symmetric_matrix = slice_symmetric_matrix(mat=mat, block_size=block_size) return jnp.concatenate(sliced_symmetric_matrix.block_rows, axis=-1)
Returns the concatenated sliced row blocks. Args: mat: A symmetric matrix. block_size: The size of the row slices.
slice_symmetric_matrix_concat
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
Apache-2.0
def sliced_matrix_diag(mat): """Returns the diagonal of the symmetric matrix. Args: mat: The symmetric matrix represented in concatenated block form. """ rows, cols = mat.shape total_blocks = cols // rows num_blocks = num_blocks_from_total_blocks(total_blocks) diags = [] for i in range(num_blocks): last_index = rows * ((i + 2) * (i + 1)) // 2 first_index = last_index - rows diags.append(jnp.diag(mat[Ellipsis, first_index:last_index])) return jnp.concatenate(diags, axis=-1)
Returns the diagonal of the symmetric matrix. Args: mat: The symmetric matrix represented in concatenated block form.
sliced_matrix_diag
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
Apache-2.0
def diag_as_concat(diag, block_size): """Returns the representation of a diagonal matrix in symmetric block form. Args: diag: The 1D array for the diagonals. block_size: The size of blocks to use. Must divide the length of diag. """ assert len(diag.shape) == 1 # diag must be 1D. assert len(diag) % block_size == 0 num_diag_blocks = len(diag) // block_size blocks = [] for i in range(num_diag_blocks): blocks.append(jnp.zeros(shape=(block_size, block_size * i), dtype=diag.dtype)) blocks.append(jnp.diag(diag[i * block_size : (i + 1) * block_size])) return jnp.concatenate(blocks, axis=-1)
Returns the representation of a diagonal matrix in symmetric block form. Args: diag: The 1D array for the diagonals. block_size: The size of blocks to use. Must divide the length of diag.
diag_as_concat
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
Apache-2.0
def row_abs_maxes(mat): """Returns the max of the absolute values of the rows of the full matrix. For example the symmetric matrix M = [[1, 6], [6, 2]] is represented using mat = [1, 6, 2] with block_size = 1. In this case the function returns the aboslute row maxes of the original symmetric matrix, [6, 6]. Args: mat: The symmetric matrix represented as the concatenated blocks. """ rows, cols = mat.shape # Find col and row max for each block. col_maxes = [] row_maxes = [] for i in range(cols // rows): block = jnp.abs(mat[Ellipsis, i * rows : (i + 1) * rows]) col_maxes.append(jnp.max(block, axis=1)) row_maxes.append(jnp.max(block, axis=0)) # global row max from block maxes. num_blocks = num_blocks_from_total_blocks(cols // rows) maxes = [] for i in range(num_blocks): maxes.append( jnp.concatenate( row_maxes[(i * (i + 1) // 2) : ((i + 2) * (i + 1) // 2)] + [ col_maxes[((j + 1) * (j + 2)) // 2 - (j - i + 1)] for j in range(i + 1, num_blocks) ], axis=-1, ) ) return jnp.max(jnp.stack(maxes), axis=0)
Returns the max of the absolute values of the rows of the full matrix. For example the symmetric matrix M = [[1, 6], [6, 2]] is represented using mat = [1, 6, 2] with block_size = 1. In this case the function returns the aboslute row maxes of the original symmetric matrix, [6, 6]. Args: mat: The symmetric matrix represented as the concatenated blocks.
row_abs_maxes
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
Apache-2.0
def times_vector(mat, vec): """Returns the symmetric block-concatenated matrix multiplied by a vector. Specifically, each value in the vector is multiplied by a row of the full matrix. That is, the vector is broadcast and multiplied element-wise. Note this would be the transpose of full_mat * vec if full_mat represented the full symmetric matrix. Args: mat: The symmetric matrix represented as the concatenated blocks. vec: The vector, having the same dimension as the materialized matrix. """ rows, cols = mat.shape num_blocks = num_blocks_from_total_blocks(cols // rows) multiplied = [] for i in range(num_blocks): mat_block = mat[ Ellipsis, rows * ((i + 1) * i) // 2 : rows * ((i + 1) * (i + 2)) // 2 ] vec_block = vec[Ellipsis, rows * i : rows * (i + 1)] multiplied.append(jnp.einsum("...ij,...i->ij", mat_block, vec_block)) return jnp.concatenate(multiplied, axis=-1)
Returns the symmetric block-concatenated matrix multiplied by a vector. Specifically, each value in the vector is multiplied by a row of the full matrix. That is, the vector is broadcast and multiplied element-wise. Note this would be the transpose of full_mat * vec if full_mat represented the full symmetric matrix. Args: mat: The symmetric matrix represented as the concatenated blocks. vec: The vector, having the same dimension as the materialized matrix.
times_vector
python
borisdayma/dalle-mini
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
https://github.com/borisdayma/dalle-mini/blob/master/tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
Apache-2.0
def _dataloader_datasets_non_streaming( dataset: Dataset, rng: jax.random.PRNGKey = None, ): """ Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. Shuffle batches if rng is set. """ steps_per_epoch = len(dataset) // batch_size if rng is not None: batch_idx = jax.random.permutation(rng, len(dataset)) else: batch_idx = jnp.arange(len(dataset)) batch_idx = batch_idx[ : steps_per_epoch * batch_size ] # Skip incomplete batch. batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) for idx in batch_idx: batch = dataset[idx] batch = {k: jnp.array(v) for k, v in batch.items()} yield batch
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. Shuffle batches if rng is set.
dataloader._dataloader_datasets_non_streaming
python
borisdayma/dalle-mini
src/dalle_mini/data.py
https://github.com/borisdayma/dalle-mini/blob/master/src/dalle_mini/data.py
Apache-2.0
def dataloader(self, split, batch_size, epoch=None): def _dataloader_datasets_non_streaming( dataset: Dataset, rng: jax.random.PRNGKey = None, ): """ Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. Shuffle batches if rng is set. """ steps_per_epoch = len(dataset) // batch_size if rng is not None: batch_idx = jax.random.permutation(rng, len(dataset)) else: batch_idx = jnp.arange(len(dataset)) batch_idx = batch_idx[ : steps_per_epoch * batch_size ] # Skip incomplete batch. batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) for idx in batch_idx: batch = dataset[idx] batch = {k: jnp.array(v) for k, v in batch.items()} yield batch def _dataloader_datasets_streaming( dataset: Dataset, epoch: int, ): keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"] batch = {k: [] for k in keys} first_loop = True # stop after one loop in some cases while (self.multi_hosts and split == "train") or first_loop: # in multi-host, we run forever (no epoch) as hosts need to stop # at the same time and training data may not be split equally # For validation data we put the entire batch on each host and then # keep only the one specific to each host (could be improved but not necessary) if epoch is not None: assert split == "train" # reshuffle training data at each epoch dataset.set_epoch(epoch) epoch += 1 for item in dataset: for k in keys: batch[k].append(item[k]) if len(batch[keys[0]]) == batch_size: batch = {k: jnp.array(v) for k, v in batch.items()} yield batch batch = {k: [] for k in keys} first_loop = False if split == "train": ds = self.train_dataset elif split == "eval": ds = self.eval_dataset else: ds = self.other_eval_datasets[split] if self.streaming: return _dataloader_datasets_streaming(ds, epoch) else: if split == "train": self.rng_dataset, input_rng = jax.random.split(self.rng_dataset) return _dataloader_datasets_non_streaming(ds, input_rng)
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. Shuffle batches if rng is set.
dataloader
python
borisdayma/dalle-mini
src/dalle_mini/data.py
https://github.com/borisdayma/dalle-mini/blob/master/src/dalle_mini/data.py
Apache-2.0
def shift_tokens_right(input_ids: np.array, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = np.zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1] shifted_input_ids[:, 0] = decoder_start_token_id return shifted_input_ids
Shift input ids one token to the right.
shift_tokens_right
python
borisdayma/dalle-mini
src/dalle_mini/data.py
https://github.com/borisdayma/dalle-mini/blob/master/src/dalle_mini/data.py
Apache-2.0
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): """ Initializes from a wandb artifact or delegates loading to the superclass. """ with tempfile.TemporaryDirectory() as tmp_dir: # avoid multiple artifact copies if ":" in pretrained_model_name_or_path and not os.path.isdir( pretrained_model_name_or_path ): # wandb artifact if wandb.run is not None: artifact = wandb.run.use_artifact(pretrained_model_name_or_path) else: artifact = wandb.Api().artifact(pretrained_model_name_or_path) pretrained_model_name_or_path = artifact.download(tmp_dir) return super(PretrainedFromWandbMixin, cls).from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs )
Initializes from a wandb artifact or delegates loading to the superclass.
from_pretrained
python
borisdayma/dalle-mini
src/dalle_mini/model/utils.py
https://github.com/borisdayma/dalle-mini/blob/master/src/dalle_mini/model/utils.py
Apache-2.0
def __call__(self, s): """Uses dynamic programming to infer the location of spaces in a string without spaces.""" l = [self._split(x) for x in self._SPLIT_RE.split(s)] return " ".join([item for sublist in l for item in sublist])
Uses dynamic programming to infer the location of spaces in a string without spaces.
__call__
python
borisdayma/dalle-mini
src/dalle_mini/model/text.py
https://github.com/borisdayma/dalle-mini/blob/master/src/dalle_mini/model/text.py
Apache-2.0
def _match(qs, ks): """Return True if regexes in qs match any window of strings in tuple ks.""" # compile regexes and force complete match qts = tuple(map(lambda x: re.compile(x + "$"), qs)) for i in range(len(ks) - len(qs) + 1): matches = [x.match(y) for x, y in zip(qts, ks[i:])] if matches and all(matches): return True return False
Return True if regexes in qs match any window of strings in tuple ks.
_match
python
borisdayma/dalle-mini
src/dalle_mini/model/partitions.py
https://github.com/borisdayma/dalle-mini/blob/master/src/dalle_mini/model/partitions.py
Apache-2.0
def smelu(beta: Any = 1.0): """ Implementation of "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" https://arxiv.org/abs/2202.06499 """ @custom_jvp @jax.jit def _smelu(x: Any) -> Any: x = jnp.where(x <= -beta, 0.0, x) return jnp.where(x >= beta, x, jnp.square(x + beta) / (4 * beta)) _smelu.defjvps( lambda g, ans, x: lax.select( x == -beta, lax.full_like(g, 0), lax.select(x == beta, lax.full_like(g, 1), g), ) ) return _smelu
Implementation of "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" https://arxiv.org/abs/2202.06499
smelu
python
borisdayma/dalle-mini
src/dalle_mini/model/modeling.py
https://github.com/borisdayma/dalle-mini/blob/master/src/dalle_mini/model/modeling.py
Apache-2.0
def dot_product_attention_weights( query: Any, key: Any, bias: Optional[Any] = None, mask: Optional[Any] = None, embed_pos: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, is_encoder: bool = False, tau=None, ): """ Computes dot-product attention weights given query and key. mask is included into the bias. Adapted from flax.linen.attention.dot_product_attention_weights" """ assert query.ndim == key.ndim, "q, k must have same rank." assert query.shape[:-3] == key.shape[:-3], "q, k batch dims must match." assert query.shape[-2] == key.shape[-2], "q, k num_heads must match." assert query.shape[-1] == key.shape[-1], "q, k depths must match." # attn weight shape is (batch..., num_heads, q_length, kv_length) attn_weights = jnp.einsum("...qhd,...khd->...hqk", query, key, precision=precision) # divide by tau (used in Swin v2) if tau is not None: attn_weights = attn_weights / tau else: depth = query.shape[-1] attn_weights = attn_weights / jnp.sqrt(depth).astype(dtype) # apply attention bias: masking, dropout, proximity bias, etc. if bias is not None: attn_weights = attn_weights + bias # add relative position if embed_pos is not None: attn_weights = attn_weights + embed_pos # normalize the attention weights if not is_encoder or sinkhorn_iters == 1: # sinkhorn does not work for causal (leaks info of future tokens into past) attn_weights = jax.nn.softmax(attn_weights).astype(dtype) else: # adapted from https://github.com/lucidrains/sinkhorn-transformer for i in range(sinkhorn_iters): # when causal, some attn_weights have been set to -inf through bias if i % 2 == 0: attn_weights -= jax.nn.logsumexp(attn_weights, axis=-1, keepdims=True) else: attn_weights -= jax.nn.logsumexp(attn_weights, axis=-2, keepdims=True) if mask is not None: attn_weights = jnp.where(mask, attn_weights, -jnp.inf) attn_weights = jnp.exp(attn_weights).astype(dtype) # apply attention dropout if not deterministic and dropout_rate > 0.0: keep_prob = 1.0 - dropout_rate if broadcast_dropout: # dropout is broadcast across the batch + head dimensions dropout_shape = tuple([1] * (key.ndim - 2)) + attn_weights.shape[-2:] keep = jax.random.bernoulli(dropout_rng, keep_prob, dropout_shape) else: keep = jax.random.bernoulli(dropout_rng, keep_prob, attn_weights.shape) multiplier = keep.astype(attn_weights.dtype) / jnp.asarray( keep_prob, dtype=dtype ) attn_weights = attn_weights * multiplier return attn_weights
Computes dot-product attention weights given query and key. mask is included into the bias. Adapted from flax.linen.attention.dot_product_attention_weights"
dot_product_attention_weights
python
borisdayma/dalle-mini
src/dalle_mini/model/modeling.py
https://github.com/borisdayma/dalle-mini/blob/master/src/dalle_mini/model/modeling.py
Apache-2.0
def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length), ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to( causal_mask, (batch_size,) + causal_mask.shape[1:] ) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to( jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape ) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, -jnp.inf).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") if self.config.use_cosine_attention: # normalize q and k query_states = query_states / ( jnp.linalg.norm(query_states, axis=-1, keepdims=True) + 1e-8 ) key_states = key_states / ( jnp.linalg.norm(key_states, axis=-1, keepdims=True) + 1e-8 ) # relative position embeddings if self.config.use_swin_position_embeddings: position_ids = jnp.arange(self.q_length) embed_pos = self.rel_bias(position_ids) embed_pos = rearrange(embed_pos, "q (k h) -> 1 h q k", h=self.num_heads) else: embed_pos = None tau = self.tau if self.config.use_cosine_attention else None attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, mask=attention_mask, embed_pos=embed_pos, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, sinkhorn_iters=self.config.sinkhorn_iters, is_encoder=self.is_encoder, tau=tau, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) if self.config.use_head_scale: # per Normformer attn_output = attn_output * self.head_scale attn_output = self._merge_heads(attn_output) if self.config.ln_positions in ["subln"] and not self.is_cross_attention: attn_output = self.mid_layernorm(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights
Input shape: Batch x Time x Channel
__call__
python
borisdayma/dalle-mini
src/dalle_mini/model/modeling.py
https://github.com/borisdayma/dalle-mini/blob/master/src/dalle_mini/model/modeling.py
Apache-2.0
def generate( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, bos_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, decoder_start_token_id: Optional[int] = None, do_sample: Optional[bool] = None, prng_key: Optional[jnp.ndarray] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, temperature: Optional[float] = None, num_beams: Optional[int] = None, no_repeat_ngram_size: Optional[int] = None, min_length: Optional[int] = None, forced_bos_token_id: Optional[int] = None, forced_eos_token_id: Optional[int] = None, length_penalty: Optional[float] = None, early_stopping: Optional[bool] = None, trace: bool = True, params: Optional[Dict[str, jnp.ndarray]] = None, condition_scale: Optional[float] = 1.0, input_ids_uncond: Optional[jnp.ndarray] = None, attention_mask_uncond: Optional[jnp.ndarray] = None, **model_kwargs, ): """Edit: Allow super conditioning.""" # set init values max_length = max_length if max_length is not None else self.config.max_length bos_token_id = ( bos_token_id if bos_token_id is not None else self.config.bos_token_id ) pad_token_id = ( pad_token_id if pad_token_id is not None else self.config.pad_token_id ) eos_token_id = ( eos_token_id if eos_token_id is not None else self.config.eos_token_id ) decoder_start_token_id = ( decoder_start_token_id if decoder_start_token_id else self.config.decoder_start_token_id ) prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0) if decoder_start_token_id is None and self.config.is_encoder_decoder: raise ValueError( "`decoder_start_token_id` has to be defined for encoder-decoder generation." ) do_sample = do_sample if do_sample is not None else self.config.do_sample num_beams = num_beams if num_beams is not None else self.config.num_beams if self.config.is_encoder_decoder: # add encoder_outputs to model_kwargs if model_kwargs.get("encoder_outputs") is None: model_kwargs_input = dict(model_kwargs) model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation( input_ids, params, {"attention_mask": attention_mask, **model_kwargs_input}, ) if condition_scale != 1.0: assert ( input_ids_uncond is not None ), "`input_ids_uncond` has to be defined for super conditioning." assert ( do_sample is True ), "`do_sample` has to be True for super conditioning." assert ( num_beams == 1 ), "`num_beams` has to be 1 for super conditioning." model_kwargs_uncond = ( self._prepare_encoder_decoder_kwargs_for_generation( input_ids_uncond, params, { "attention_mask": attention_mask_uncond, **model_kwargs_input, }, ) ) else: model_kwargs_uncond = None # prepare decoder_input_ids for generation input_ids = ( jnp.ones((input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id ) if not do_sample and num_beams == 1: logits_processor = self._get_logits_processor( no_repeat_ngram_size, min_length, max_length, eos_token_id, forced_bos_token_id, forced_eos_token_id, ) return self._greedy_search( input_ids, max_length, pad_token_id, eos_token_id, logits_processor=logits_processor, trace=trace, params=params, model_kwargs=model_kwargs, ) elif do_sample and num_beams == 1: logits_warper = self._get_logits_warper( top_k=top_k, top_p=top_p, temperature=temperature ) logits_processor = self._get_logits_processor( no_repeat_ngram_size, min_length, max_length, eos_token_id, forced_bos_token_id, forced_eos_token_id, ) return self._sample( input_ids, max_length, pad_token_id, eos_token_id, prng_key, logits_warper=logits_warper, logits_processor=logits_processor, trace=trace, params=params, model_kwargs=model_kwargs, condition_scale=condition_scale, model_kwargs_uncond=model_kwargs_uncond, ) elif not do_sample and num_beams > 1: # broadcast input_ids & encoder_outputs input_ids = self._expand_to_num_beams(input_ids, num_beams=num_beams) if "encoder_outputs" in model_kwargs: model_kwargs["encoder_outputs"][ "last_hidden_state" ] = self._expand_to_num_beams( model_kwargs["encoder_outputs"]["last_hidden_state"], num_beams=num_beams, ) if "attention_mask" in model_kwargs: model_kwargs["attention_mask"] = self._expand_to_num_beams( model_kwargs["attention_mask"], num_beams=num_beams ) logits_processor = self._get_logits_processor( no_repeat_ngram_size, min_length, max_length, eos_token_id, forced_bos_token_id, forced_eos_token_id, ) return self._beam_search( input_ids, max_length, pad_token_id, eos_token_id, length_penalty=length_penalty, early_stopping=early_stopping, logits_processor=logits_processor, trace=trace, params=params, model_kwargs=model_kwargs, ) else: raise NotImplementedError("`Beam sampling is currently not implemented.")
Edit: Allow super conditioning.
generate
python
borisdayma/dalle-mini
src/dalle_mini/model/modeling.py
https://github.com/borisdayma/dalle-mini/blob/master/src/dalle_mini/model/modeling.py
Apache-2.0
def sample_search_cond_fn(state): """state termination condition fn.""" has_reached_max_length = state.cur_len == max_length all_sequence_finished = jnp.all(state.is_sent_finished) finish_generation = jnp.logical_or( has_reached_max_length, all_sequence_finished ) return ~finish_generation
state termination condition fn.
_sample.sample_search_cond_fn
python
borisdayma/dalle-mini
src/dalle_mini/model/modeling.py
https://github.com/borisdayma/dalle-mini/blob/master/src/dalle_mini/model/modeling.py
Apache-2.0
def sample_search_body_fn(state): """state update fn.""" prng_key, prng_key_next = jax.random.split(state.prng_key) model_outputs = model( state.running_token, params=params, **state.model_kwargs ) logits = model_outputs.logits[:, -1] # perform super conditioning # Source: @RiversHaveWings - https://twitter.com/RiversHaveWings/status/1478093658716966912?s=20&t=xdm-wZ61Wf7OLnE_NJHZ1w if condition_scale != 1.0: model_outputs_uncond = model( state.running_token, params=params, **state.model_kwargs_uncond ) logits_uncond = model_outputs_uncond.logits[:, -1] logits = logits_uncond + condition_scale * (logits - logits_uncond) else: model_outputs_uncond = None # apply min_length, ... logits = logits_processor(state.sequences, logits, state.cur_len) # apply top_k, top_k, temperature logits = logits_warper(logits, logits, state.cur_len) next_token = jax.random.categorical(prng_key, logits, axis=-1) next_is_sent_finished = state.is_sent_finished | ( next_token == eos_token_id ) next_token = ( next_token * ~next_is_sent_finished + pad_token_id * next_is_sent_finished ) next_token = next_token[:, None] next_sequences = lax.dynamic_update_slice( state.sequences, next_token, (0, state.cur_len) ) next_model_kwargs = self.update_inputs_for_generation( model_outputs, state.model_kwargs ) next_model_kwargs_uncond = ( self.update_inputs_for_generation( model_outputs_uncond, state.model_kwargs_uncond ) if condition_scale != 1.0 else None ) return SampleState( cur_len=state.cur_len + 1, sequences=next_sequences, running_token=next_token, is_sent_finished=next_is_sent_finished, model_kwargs=next_model_kwargs, model_kwargs_uncond=next_model_kwargs_uncond, prng_key=prng_key_next, )
state update fn.
_sample.sample_search_body_fn
python
borisdayma/dalle-mini
src/dalle_mini/model/modeling.py
https://github.com/borisdayma/dalle-mini/blob/master/src/dalle_mini/model/modeling.py
Apache-2.0
def _sample( self, input_ids: None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, prng_key: Optional[jnp.ndarray] = None, logits_processor=None, logits_warper=None, trace: bool = True, params: Optional[Dict[str, jnp.ndarray]] = None, model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, condition_scale: float = 1.0, model_kwargs_uncond: Optional[Dict[str, jnp.ndarray]] = None, ): # init values max_length = max_length if max_length is not None else self.config.max_length pad_token_id = ( pad_token_id if pad_token_id is not None else self.config.pad_token_id ) eos_token_id = ( eos_token_id if eos_token_id is not None else self.config.eos_token_id ) prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0) batch_size, cur_len = input_ids.shape eos_token_id = jnp.array(eos_token_id) pad_token_id = jnp.array(pad_token_id) cur_len = jnp.array(cur_len) # per batch-item holding current token in loop. sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32) sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0)) # per batch-item state bit indicating if sentence has finished. is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_) # For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop # and pass it the `encoder_outputs`, which are part of the `model_kwargs`. model = self.decode if self.config.is_encoder_decoder else self # initialize model specific kwargs model_kwargs = self.prepare_inputs_for_generation( input_ids, max_length, **model_kwargs ) if condition_scale != 1.0: model_kwargs_uncond = self.prepare_inputs_for_generation( input_ids, max_length, **model_kwargs_uncond ) # initialize state state = SampleState( cur_len=cur_len, sequences=sequences, running_token=input_ids, is_sent_finished=is_sent_finished, prng_key=prng_key, model_kwargs=model_kwargs, model_kwargs_uncond=model_kwargs_uncond, ) def sample_search_cond_fn(state): """state termination condition fn.""" has_reached_max_length = state.cur_len == max_length all_sequence_finished = jnp.all(state.is_sent_finished) finish_generation = jnp.logical_or( has_reached_max_length, all_sequence_finished ) return ~finish_generation def sample_search_body_fn(state): """state update fn.""" prng_key, prng_key_next = jax.random.split(state.prng_key) model_outputs = model( state.running_token, params=params, **state.model_kwargs ) logits = model_outputs.logits[:, -1] # perform super conditioning # Source: @RiversHaveWings - https://twitter.com/RiversHaveWings/status/1478093658716966912?s=20&t=xdm-wZ61Wf7OLnE_NJHZ1w if condition_scale != 1.0: model_outputs_uncond = model( state.running_token, params=params, **state.model_kwargs_uncond ) logits_uncond = model_outputs_uncond.logits[:, -1] logits = logits_uncond + condition_scale * (logits - logits_uncond) else: model_outputs_uncond = None # apply min_length, ... logits = logits_processor(state.sequences, logits, state.cur_len) # apply top_k, top_k, temperature logits = logits_warper(logits, logits, state.cur_len) next_token = jax.random.categorical(prng_key, logits, axis=-1) next_is_sent_finished = state.is_sent_finished | ( next_token == eos_token_id ) next_token = ( next_token * ~next_is_sent_finished + pad_token_id * next_is_sent_finished ) next_token = next_token[:, None] next_sequences = lax.dynamic_update_slice( state.sequences, next_token, (0, state.cur_len) ) next_model_kwargs = self.update_inputs_for_generation( model_outputs, state.model_kwargs ) next_model_kwargs_uncond = ( self.update_inputs_for_generation( model_outputs_uncond, state.model_kwargs_uncond ) if condition_scale != 1.0 else None ) return SampleState( cur_len=state.cur_len + 1, sequences=next_sequences, running_token=next_token, is_sent_finished=next_is_sent_finished, model_kwargs=next_model_kwargs, model_kwargs_uncond=next_model_kwargs_uncond, prng_key=prng_key_next, ) # The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU if input_ids.shape[1] > 1: state = sample_search_body_fn(state) if not trace: state = self._run_loop_in_debug( sample_search_cond_fn, sample_search_body_fn, state ) else: state = lax.while_loop(sample_search_cond_fn, sample_search_body_fn, state) return FlaxSampleOutput(sequences=state.sequences)
state termination condition fn.
_sample
python
borisdayma/dalle-mini
src/dalle_mini/model/modeling.py
https://github.com/borisdayma/dalle-mini/blob/master/src/dalle_mini/model/modeling.py
Apache-2.0
def so3_rft(x, b, grid): """ Real Fourier Transform :param x: [..., beta_alpha_gamma] :param b: output bandwidth signal :param grid: tuple of (beta, alpha, gamma) tuples :return: [l * m * n, ..., complex] """ # F is the Fourier matrix F = _setup_so3_ft(b, grid, device_type=x.device.type, device_index=x.device.index) # [beta_alpha_gamma, l * m * n, complex] assert x.size(-1) == F.size(0) sz = x.size() x = torch.einsum("ia,afc->fic", (x.view(-1, x.size(-1)), F.clone())) # [l * m * n, ..., complex] x = x.view(-1, *sz[:-1], 2) return x
Real Fourier Transform :param x: [..., beta_alpha_gamma] :param b: output bandwidth signal :param grid: tuple of (beta, alpha, gamma) tuples :return: [l * m * n, ..., complex]
so3_rft
python
jonkhler/s2cnn
s2cnn/so3_ft.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/so3_ft.py
MIT
def s2_near_identity_grid(max_beta=np.pi / 8, n_alpha=8, n_beta=3): ''' :return: rings around the north pole size of the kernel = n_alpha * n_beta ''' beta = np.arange(start=1, stop=n_beta + 1, dtype=np.float) * max_beta / n_beta alpha = np.linspace(start=0, stop=2 * np.pi, num=n_alpha, endpoint=False) B, A = np.meshgrid(beta, alpha, indexing='ij') B = B.flatten() A = A.flatten() grid = np.stack((B, A), axis=1) return tuple(tuple(ba) for ba in grid)
:return: rings around the north pole size of the kernel = n_alpha * n_beta
s2_near_identity_grid
python
jonkhler/s2cnn
s2cnn/s2_grid.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/s2_grid.py
MIT
def s2_equatorial_grid(max_beta=0, n_alpha=32, n_beta=1): ''' :return: rings around the equator size of the kernel = n_alpha * n_beta ''' beta = np.linspace(start=np.pi/2 - max_beta, stop=np.pi/2 + max_beta, num=n_beta, endpoint=True) alpha = np.linspace(start=0, stop=2 * np.pi, num=n_alpha, endpoint=False) B, A = np.meshgrid(beta, alpha, indexing='ij') B = B.flatten() A = A.flatten() grid = np.stack((B, A), axis=1) return tuple(tuple(ba) for ba in grid)
:return: rings around the equator size of the kernel = n_alpha * n_beta
s2_equatorial_grid
python
jonkhler/s2cnn
s2cnn/s2_grid.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/s2_grid.py
MIT
def s2_mm(x, y): ''' :param x: [l * m, batch, feature_in, complex] :param y: [l * m, feature_in, feature_out, complex] :return: [l * m * n, batch, feature_out, complex] ''' from s2cnn.utils.complex import complex_mm assert y.size(3) == 2 assert x.size(3) == 2 nbatch = x.size(1) nfeature_in = x.size(2) nfeature_out = y.size(2) assert y.size(1) == nfeature_in nspec = x.size(0) assert y.size(0) == nspec if x.is_cuda: return _cuda_S2_mm.apply(x, y) nl = round(nspec**0.5) Fz_list = [] begin = 0 for l in range(nl): L = 2 * l + 1 size = L Fx = x[begin:begin+size] # [m, batch, feature_in, complex] Fy = y[begin:begin+size] # [m, feature_in, feature_out, complex] Fx = Fx.view(L * nbatch, nfeature_in, 2) # [m * batch, feature_in, complex] Fy = Fy.transpose(0, 1) # [feature_in, m, feature_out, complex] Fy = Fy.contiguous() Fy = Fy.view(nfeature_in, L * nfeature_out, 2) # [feature_in, m * feature_out, complex] Fz = complex_mm(Fx, Fy, conj_y=True) # [m_x * batch, m_y * feature_out, complex] m_x -> m, m_y -> n Fz = Fz.view(L, nbatch, L, nfeature_out, 2) # [m, batch, n, feature_out, complex] Fz = Fz.transpose(1, 2) # [m, n, batch, feature_out, complex] Fz = Fz.contiguous() Fz = Fz.view(L * L, nbatch, nfeature_out, 2) # [m * n, batch, feature_out, complex] Fz_list.append(Fz) begin += size z = torch.cat(Fz_list, 0) # [l * m * n, batch, feature_out, complex] return z
:param x: [l * m, batch, feature_in, complex] :param y: [l * m, feature_in, feature_out, complex] :return: [l * m * n, batch, feature_out, complex]
s2_mm
python
jonkhler/s2cnn
s2cnn/s2_mm.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/s2_mm.py
MIT
def _cuda_s2_mm(x, y): ''' :param x: [l * m, batch, feature_in, complex] :param y: [l * m, feature_in, feature_out, complex] :return: [l * m * n, batch, feature_out, complex] ''' import s2cnn.utils.cuda as cuda_utils assert x.is_cuda and x.dtype == torch.float32 assert y.is_cuda and y.dtype == torch.float32 assert y.size(3) == 2 assert x.size(3) == 2 nbatch = x.size(1) nfeature_in = x.size(2) nfeature_out = y.size(2) assert y.size(1) == nfeature_in assert y.size(0) == x.size(0) nl = round(x.size(0) ** 0.5) nspec = (4 * nl ** 2 - 1) * nl // 3 assert x.size(0) == nl ** 2 assert y.size(0) == nl ** 2 device = torch.cuda.current_device() cuda_kernel = _setup_s2mm_cuda_kernel(nbatch=nbatch, nspec=nspec, nfeature_in=nfeature_in, nfeature_out=nfeature_out, device=device) stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream) output = x.new_empty((nspec, nbatch, nfeature_out, 2)) cuda_kernel(block=(cuda_utils.CUDA_NUM_THREADS, 1, 1), grid=(cuda_utils.get_blocks(nspec * nbatch * nfeature_out, 1024), 1, 1), args=[x.contiguous().data_ptr(), y.contiguous().data_ptr(), output.data_ptr()], stream=stream) # [l * m * n, batch, feature_out, complex] return output
:param x: [l * m, batch, feature_in, complex] :param y: [l * m, feature_in, feature_out, complex] :return: [l * m * n, batch, feature_out, complex]
_cuda_s2_mm
python
jonkhler/s2cnn
s2cnn/s2_mm.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/s2_mm.py
MIT
def so3_near_identity_grid(max_beta=np.pi / 8, max_gamma=2*np.pi, n_alpha=8, n_beta=3, n_gamma=None): ''' :return: rings of rotations around the identity, all points (rotations) in a ring are at the same distance from the identity size of the kernel = n_alpha * n_beta * n_gamma ''' if n_gamma is None: n_gamma = n_alpha # similar to regular representations beta = np.arange(start=1, stop=n_beta + 1, dtype=np.float) * max_beta / n_beta alpha = np.linspace(start=0, stop=2 * np.pi, num=n_alpha, endpoint=False) pre_gamma = np.linspace(start=-max_gamma, stop=max_gamma, num=n_gamma, endpoint=True) B, A, preC = np.meshgrid(beta, alpha, pre_gamma, indexing='ij') C = preC - A B = B.flatten() A = A.flatten() C = C.flatten() grid = np.stack((B, A, C), axis=1) if sum(grid[:, 0] == 0) > 1: warnings.warn("Gimbal lock: beta take value 0 in the grid") return tuple(tuple(bac) for bac in grid)
:return: rings of rotations around the identity, all points (rotations) in a ring are at the same distance from the identity size of the kernel = n_alpha * n_beta * n_gamma
so3_near_identity_grid
python
jonkhler/s2cnn
s2cnn/so3_grid.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/so3_grid.py
MIT
def so3_equatorial_grid(max_beta=0, max_gamma=np.pi / 8, n_alpha=32, n_beta=1, n_gamma=2): ''' :return: rings of rotations around the equator. size of the kernel = n_alpha * n_beta * n_gamma ''' beta = np.linspace(start=np.pi/2 - max_beta, stop=np.pi/2 + max_beta, num=n_beta, endpoint=True) alpha = np.linspace(start=0, stop=2 * np.pi, num=n_alpha, endpoint=False) gamma = np.linspace(start=-max_gamma, stop=max_gamma, num=n_gamma, endpoint=True) B, A, C = np.meshgrid(beta, alpha, gamma, indexing='ij') B = B.flatten() A = A.flatten() C = C.flatten() grid = np.stack((B, A, C), axis=1) if sum(grid[:, 0] == 0) > 1: warnings.warn("Gimbal lock: beta take value 0 in the grid") return tuple(tuple(bac) for bac in grid)
:return: rings of rotations around the equator. size of the kernel = n_alpha * n_beta * n_gamma
so3_equatorial_grid
python
jonkhler/s2cnn
s2cnn/so3_grid.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/so3_grid.py
MIT
def s2_rft(x, b, grid): """ Real Fourier Transform :param x: [..., beta_alpha] :param b: output bandwidth signal :param grid: tuple of (beta, alpha) tuples :return: [l * m, ..., complex] """ # F is the Fourier matrix F = _setup_s2_ft(b, grid, device_type=x.device.type, device_index=x.device.index) # [beta_alpha, l * m, complex] assert x.size(-1) == F.size(0) sz = x.size() x = torch.einsum("ia,afc->fic", (x.view(-1, x.size(-1)), F.clone())) # [l * m, ..., complex] x = x.view(-1, *sz[:-1], 2) return x
Real Fourier Transform :param x: [..., beta_alpha] :param b: output bandwidth signal :param grid: tuple of (beta, alpha) tuples :return: [l * m, ..., complex]
s2_rft
python
jonkhler/s2cnn
s2cnn/s2_ft.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/s2_ft.py
MIT
def so3_mm(x, y): ''' :param x: [l * m * n, batch, feature_in, complex] :param y: [l * m * n, feature_in, feature_out, complex] :return: [l * m * n, batch, feature_out, complex] ''' from s2cnn.utils.complex import complex_mm import math assert y.size(3) == 2 assert x.size(3) == 2 nbatch = x.size(1) nfeature_in = x.size(2) nfeature_out = y.size(2) assert y.size(1) == nfeature_in nspec = x.size(0) assert y.size(0) == nspec nl = math.ceil((3 / 4 * nspec) ** (1 / 3)) assert nspec == nl * (4 * nl ** 2 - 1) // 3 if x.is_cuda: return _cuda_SO3_mm.apply(x, y) Fz_list = [] begin = 0 for l in range(nl): L = 2 * l + 1 size = L ** 2 Fx = x[begin:begin + size] # [m * n, batch, feature_in, complex] Fy = y[begin:begin + size] # [m * n, feature_in, feature_out, complex] Fx = Fx.view(L, L, nbatch, nfeature_in, 2) # [m, n, batch, feature_in, complex] Fx = Fx.transpose(0, 1) # [n, m, batch, feature_in, complex] Fx = Fx.transpose(0, 2) # [batch, m, n, feature_in, complex] Fx = Fx.transpose(2, 3) # [batch, m, feature_in, n, complex] Fx = Fx.contiguous() Fx = Fx.view(nbatch * L, nfeature_in * L, 2) # [batch * m, feature_in * n, complex] Fy = Fy.view(L, L, nfeature_in, nfeature_out, 2) # [m, n, feature_in, feature_out, complex] Fy = Fy.transpose(0, 2) # [feature_in, n, m, feature_out, complex] Fy = Fy.contiguous() Fy = Fy.view(nfeature_in * L, L * nfeature_out, 2) # [feature_in * n, m * feature_out, complex] Fz = complex_mm(Fx, Fy, conj_y=True) # [batch * m_x, m_y * feature_out, complex] m_x -> m, m_y -> n Fz = Fz.view(nbatch, L * L, nfeature_out, 2) # [batch, m * n, feature_out, complex] Fz = Fz.transpose(0, 1) # [m * n, batch, feature_out, complex] Fz_list.append(Fz) begin += size z = torch.cat(Fz_list, 0) # [l * m * n, batch, feature_out, complex] return z
:param x: [l * m * n, batch, feature_in, complex] :param y: [l * m * n, feature_in, feature_out, complex] :return: [l * m * n, batch, feature_out, complex]
so3_mm
python
jonkhler/s2cnn
s2cnn/so3_mm.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/so3_mm.py
MIT
def forward(ctx, x, y): # pylint: disable=W ''' :param x: [l * m * n, batch, feature_in, complex] :param y: [l * m * n, feature_in, feature_out, complex] :return: [l * m * n, batch, feature_out, complex] ''' assert x.is_cuda and x.dtype == torch.float32 assert y.is_cuda and y.dtype == torch.float32 assert y.size(3) == 2 assert x.size(3) == 2 nbatch = x.size(1) nfeature_in = x.size(2) nfeature_out = y.size(2) assert y.size(1) == nfeature_in nspec = x.size(0) assert y.size(0) == nspec nl = round((3 / 4 * nspec) ** (1 / 3)) assert nspec == nl * (4 * nl ** 2 - 1) // 3 ctx.save_for_backward(x, y) device = torch.cuda.current_device() cuda_kernel = _setup_so3mm_cuda_kernel(nl=nl, ni=nbatch, nj=nfeature_out, nk=nfeature_in, conj_y=True, trans_y_spec=True, device=device) output = x.new_empty((nspec, nbatch, nfeature_out, 2)) cuda_kernel(x, y, output) # [l * m * n, batch, feature_out, complex] return output
:param x: [l * m * n, batch, feature_in, complex] :param y: [l * m * n, feature_in, feature_out, complex] :return: [l * m * n, batch, feature_out, complex]
forward
python
jonkhler/s2cnn
s2cnn/so3_mm.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/so3_mm.py
MIT
def _setup_so3mm_cuda_kernel(nl, ni, nj, nk, conj_x=False, conj_y=False, trans_x_spec=False, trans_x_feature=False, trans_y_spec=False, trans_y_feature=False, trans_out_feature=False, device=0): ''' return a function that computes out[l*m*n, i, j] = sum_k sum_p x[l*m*p, i, k] y[l*p*n, k, j] where out, x, y are complex valued if conj_x is set to True, x is conjugated if conj_y is set to True, y is conjugated if trans_x_spec is set to True m and p are permuted in x[...] if trans_y_spec is set to True p and n are permuted in y[...] if trans_x_feature is set to True i and k are permuted in x[...] if trans_y_feature is set to True k and j are permuted in y[...] if trans_out_feature is set to True i and j are permuted in out[...] ''' kernel = ''' #define NI {} #define NJ {} #define NK {} '''.format(ni, nj, nk) if not trans_x_spec and not trans_x_feature: kernel += '#define INDEX_X (((L0 + m * L + p) * NI + i) * NK + k)\n' if not trans_x_spec and trans_x_feature: kernel += '#define INDEX_X (((L0 + m * L + p) * NK + k) * NI + i)\n' if trans_x_spec and not trans_x_feature: kernel += '#define INDEX_X (((L0 + p * L + m) * NI + i) * NK + k)\n' if trans_x_spec and trans_x_feature: kernel += '#define INDEX_X (((L0 + p * L + m) * NK + k) * NI + i)\n' if not trans_y_spec and not trans_y_feature: kernel += '#define INDEX_Y (((L0 + p * L + n) * NK + k) * NJ + j)\n' if not trans_y_spec and trans_y_feature: kernel += '#define INDEX_Y (((L0 + p * L + n) * NJ + j) * NK + k)\n' if trans_y_spec and not trans_y_feature: kernel += '#define INDEX_Y (((L0 + n * L + p) * NK + k) * NJ + j)\n' if trans_y_spec and trans_y_feature: kernel += '#define INDEX_Y (((L0 + n * L + p) * NJ + j) * NK + k)\n' if not trans_out_feature: kernel += '#define INDEX_OUT (((L0 + m * L + n) * NI + i) * NJ + j)\n' if trans_out_feature: kernel += '#define INDEX_OUT (((L0 + m * L + n) * NJ + j) * NI + i)\n' kernel += ''' #define CONJ_X {} #define CONJ_Y {} '''.format("x_im = -x_im;" if conj_x else ";", "y_im = -y_im;" if conj_y else ";") kernel += ''' #define CEIL_DIV(x, y) (((x) + (y) - 1) / (y)) extern "C" __global__ void main_(const float* in_x, const float* in_y, float* out) { // start of thread independant code int l = blockIdx.z; int L = 2 * l + 1; int L0 = (4 * l*l - 1) * l / 3; if (blockIdx.y * 32 >= L * NI || blockIdx.x * 32 >= L * NJ) { return; } int ntile = CEIL_DIV(L * NK, 32); // end of thread independant code int mi = blockIdx.y * 32 + threadIdx.y; int m = mi / NI; int i = mi % NI; int nj = blockIdx.x * 32 + threadIdx.x; int n = nj / NJ; int j = nj % NJ; float sum_re = 0.0; float sum_im = 0.0; for (int tile = 0; tile < ntile; ++tile) { __shared__ float tileX[2][32][32]; __shared__ float tileY[2][32][32]; int pk = tile * 32 + threadIdx.x; int p = pk / NK; int k = pk % NK; int index = INDEX_X * 2; tileX[0][threadIdx.y][threadIdx.x] = m < L && p < L ? in_x[index + 0] : 0.0; tileX[1][threadIdx.y][threadIdx.x] = m < L && p < L ? in_x[index + 1] : 0.0; pk = tile * 32 + threadIdx.y; p = pk / NK; k = pk % NK; index = INDEX_Y * 2; tileY[0][threadIdx.y][threadIdx.x] = p < L && n < L ? in_y[index + 0] : 0.0; tileY[1][threadIdx.y][threadIdx.x] = p < L && n < L ? in_y[index + 1] : 0.0; __syncthreads(); for (int any = 0; any < 32; ++any) { float x_re = tileX[0][threadIdx.y][any]; float x_im = tileX[1][threadIdx.y][any]; float y_re = tileY[0][any][threadIdx.x]; float y_im = tileY[1][any][threadIdx.x]; CONJ_X CONJ_Y sum_re += x_re * y_re - x_im * y_im; sum_im += x_re * y_im + x_im * y_re; } __syncthreads(); } if (m < L && n < L) { int index = INDEX_OUT * 2; out[index + 0] = sum_re; out[index + 1] = sum_im; } } ''' import s2cnn.utils.cuda as cuda_utils kernel = cuda_utils.compile_kernel(kernel, 'so3_mm.cu', 'main_') stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream) def fun(x, y, output): assert output.is_contiguous() kernel(block=(32, 32, 1), grid=(math.ceil((2 * nl - 1) * nj / 32), math.ceil((2 * nl - 1) * ni / 32), nl), args=[x.contiguous().data_ptr(), y.contiguous().data_ptr(), output.data_ptr()], stream=stream) return fun
return a function that computes out[l*m*n, i, j] = sum_k sum_p x[l*m*p, i, k] y[l*p*n, k, j] where out, x, y are complex valued if conj_x is set to True, x is conjugated if conj_y is set to True, y is conjugated if trans_x_spec is set to True m and p are permuted in x[...] if trans_y_spec is set to True p and n are permuted in y[...] if trans_x_feature is set to True i and k are permuted in x[...] if trans_y_feature is set to True k and j are permuted in y[...] if trans_out_feature is set to True i and j are permuted in out[...]
_setup_so3mm_cuda_kernel
python
jonkhler/s2cnn
s2cnn/so3_mm.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/so3_mm.py
MIT
def as_complex(x): """ In pytorch, a complex array is represented as a real array with an extra length-2 axis at the end. This function takes a real-valued array x and adds complex axis where the real part is set to x and the imaginary part is set to 0. """ imaginary = torch.zeros_like(x) z = torch.stack((x, imaginary), dim=x.ndimension()) return z
In pytorch, a complex array is represented as a real array with an extra length-2 axis at the end. This function takes a real-valued array x and adds complex axis where the real part is set to x and the imaginary part is set to 0.
as_complex
python
jonkhler/s2cnn
s2cnn/utils/complex.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/utils/complex.py
MIT
def complex_mm(x, y, conj_x=False, conj_y=False): ''' :param x: [i, k, complex] (M, K, 2) :param y: [k, j, complex] (K, N, 2) :return: [i, j, complex] (M, N, 2) ''' xr = x[:, :, 0] xi = x[:, :, 1] yr = y[:, :, 0] yi = y[:, :, 1] if not conj_x and not conj_y: zr = torch.mm(xr, yr) - torch.mm(xi, yi) zi = torch.mm(xr, yi) + torch.mm(xi, yr) if conj_x and not conj_y: zr = torch.mm(xr, yr) + torch.mm(xi, yi) zi = torch.mm(xr, yi) - torch.mm(xi, yr) if not conj_x and conj_y: zr = torch.mm(xr, yr) + torch.mm(xi, yi) zi = torch.mm(xi, yr) - torch.mm(xr, yi) if conj_x and conj_y: zr = torch.mm(xr, yr) - torch.mm(xi, yi) zi = - torch.mm(xr, yi) - torch.mm(xi, yr) return torch.stack((zr, zi), 2)
:param x: [i, k, complex] (M, K, 2) :param y: [k, j, complex] (K, N, 2) :return: [i, j, complex] (M, N, 2)
complex_mm
python
jonkhler/s2cnn
s2cnn/utils/complex.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/utils/complex.py
MIT
def wrapper(*args): ''' The wrapper of the function ''' try: os.makedirs(dirname) except FileExistsError: pass indexfile = os.path.join(dirname, "index.pkl") try: with open(indexfile, "rb") as file: index = pickle.load(file) except FileNotFoundError: index = {} try: filename = index[args] except KeyError: index[args] = filename = "{}.pkl.gz".format(len(index)) with open(indexfile, "wb") as file: pickle.dump(index, file) filepath = os.path.join(dirname, filename) try: with gzip.open(filepath, "rb") as file: print("load {}... ".format(filename), end="") result = pickle.load(file) except FileNotFoundError: print("compute {}... ".format(filename), end="") sys.stdout.flush() result = func(*args) print("save {}... ".format(filename), end="") with gzip.open(filepath, "wb") as file: pickle.dump(result, file) print("done") return result
The wrapper of the function
cached_dirpklgz.cached_dirpklgz.decorator.wrapper
python
jonkhler/s2cnn
s2cnn/utils/decorator.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/utils/decorator.py
MIT
def decorator(func): ''' The actual decorator ''' @lru_cache(maxsize=None) @wraps(func) def wrapper(*args): ''' The wrapper of the function ''' try: os.makedirs(dirname) except FileExistsError: pass indexfile = os.path.join(dirname, "index.pkl") try: with open(indexfile, "rb") as file: index = pickle.load(file) except FileNotFoundError: index = {} try: filename = index[args] except KeyError: index[args] = filename = "{}.pkl.gz".format(len(index)) with open(indexfile, "wb") as file: pickle.dump(index, file) filepath = os.path.join(dirname, filename) try: with gzip.open(filepath, "rb") as file: print("load {}... ".format(filename), end="") result = pickle.load(file) except FileNotFoundError: print("compute {}... ".format(filename), end="") sys.stdout.flush() result = func(*args) print("save {}... ".format(filename), end="") with gzip.open(filepath, "wb") as file: pickle.dump(result, file) print("done") return result return wrapper
The actual decorator
cached_dirpklgz.decorator
python
jonkhler/s2cnn
s2cnn/utils/decorator.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/utils/decorator.py
MIT
def cached_dirpklgz(dirname): ''' Cache a function with a directory ''' def decorator(func): ''' The actual decorator ''' @lru_cache(maxsize=None) @wraps(func) def wrapper(*args): ''' The wrapper of the function ''' try: os.makedirs(dirname) except FileExistsError: pass indexfile = os.path.join(dirname, "index.pkl") try: with open(indexfile, "rb") as file: index = pickle.load(file) except FileNotFoundError: index = {} try: filename = index[args] except KeyError: index[args] = filename = "{}.pkl.gz".format(len(index)) with open(indexfile, "wb") as file: pickle.dump(index, file) filepath = os.path.join(dirname, filename) try: with gzip.open(filepath, "rb") as file: print("load {}... ".format(filename), end="") result = pickle.load(file) except FileNotFoundError: print("compute {}... ".format(filename), end="") sys.stdout.flush() result = func(*args) print("save {}... ".format(filename), end="") with gzip.open(filepath, "wb") as file: pickle.dump(result, file) print("done") return result return wrapper return decorator
Cache a function with a directory
cached_dirpklgz
python
jonkhler/s2cnn
s2cnn/utils/decorator.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/utils/decorator.py
MIT
def so3_integrate(x): """ Integrate a signal on SO(3) using the Haar measure :param x: [..., beta, alpha, gamma] (..., 2b, 2b, 2b) :return y: [...] (...) """ assert x.size(-1) == x.size(-2) assert x.size(-2) == x.size(-3) b = x.size(-1) // 2 w = _setup_so3_integrate(b, device_type=x.device.type, device_index=x.device.index) # [beta] x = torch.sum(x, dim=-1).squeeze(-1) # [..., beta, alpha] x = torch.sum(x, dim=-1).squeeze(-1) # [..., beta] sz = x.size() x = x.view(-1, 2 * b) w = w.view(2 * b, 1) x = torch.mm(x, w).squeeze(-1) x = x.view(*sz[:-1]) return x
Integrate a signal on SO(3) using the Haar measure :param x: [..., beta, alpha, gamma] (..., 2b, 2b, 2b) :return y: [...] (...)
so3_integrate
python
jonkhler/s2cnn
s2cnn/soft/so3_integrate.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/soft/so3_integrate.py
MIT
def __init__(self, nfeature_in, nfeature_out, b_in, b_out, grid): ''' :param nfeature_in: number of input fearures :param nfeature_out: number of output features :param b_in: input bandwidth (precision of the input SOFT grid) :param b_out: output bandwidth :param grid: points of the SO(3) group defining the kernel, tuple of (alpha, beta, gamma)'s ''' super(SO3Convolution, self).__init__() self.nfeature_in = nfeature_in self.nfeature_out = nfeature_out self.b_in = b_in self.b_out = b_out self.grid = grid self.kernel = Parameter(torch.empty(nfeature_in, nfeature_out, len(grid)).uniform_(-1, 1)) self.bias = Parameter(torch.zeros(1, nfeature_out, 1, 1, 1)) # When useing ADAM optimizer, the variance of each componant of the gradient # is normalized by ADAM around 1. # Then it is suited to have parameters of order one. # Therefore the scaling, needed for the proper forward propagation, is done "outside" of the parameters self.scaling = 1. / math.sqrt(len(self.grid) * self.nfeature_in * (self.b_out ** 3.) / (self.b_in ** 3.))
:param nfeature_in: number of input fearures :param nfeature_out: number of output features :param b_in: input bandwidth (precision of the input SOFT grid) :param b_out: output bandwidth :param grid: points of the SO(3) group defining the kernel, tuple of (alpha, beta, gamma)'s
__init__
python
jonkhler/s2cnn
s2cnn/soft/so3_conv.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/soft/so3_conv.py
MIT
def forward(self, x): # pylint: disable=W ''' :x: [batch, feature_in, beta, alpha, gamma] :return: [batch, feature_out, beta, alpha, gamma] ''' assert x.size(1) == self.nfeature_in assert x.size(2) == 2 * self.b_in assert x.size(3) == 2 * self.b_in assert x.size(4) == 2 * self.b_in x = SO3_fft_real.apply(x, self.b_out) # [l * m * n, batch, feature_in, complex] y = so3_rft(self.kernel * self.scaling, self.b_out, self.grid) # [l * m * n, feature_in, feature_out, complex] assert x.size(0) == y.size(0) assert x.size(2) == y.size(1) z = so3_mm(x, y) # [l * m * n, batch, feature_out, complex] assert z.size(0) == x.size(0) assert z.size(1) == x.size(1) assert z.size(2) == y.size(2) z = SO3_ifft_real.apply(z) # [batch, feature_out, beta, alpha, gamma] z = z + self.bias return z
:x: [batch, feature_in, beta, alpha, gamma] :return: [batch, feature_out, beta, alpha, gamma]
forward
python
jonkhler/s2cnn
s2cnn/soft/so3_conv.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/soft/so3_conv.py
MIT
def forward(self, x): # pylint: disable=W ''' :x: [batch, feature_in, beta, alpha, gamma] :return: [batch, feature_out, beta, alpha, gamma] ''' if self.conv is not None: return self.conv(x) else: return x
:x: [batch, feature_in, beta, alpha, gamma] :return: [batch, feature_out, beta, alpha, gamma]
forward
python
jonkhler/s2cnn
s2cnn/soft/so3_conv.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/soft/so3_conv.py
MIT
def __init__(self, nfeature_in, nfeature_out, b_in, b_out, grid): ''' :param nfeature_in: number of input fearures :param nfeature_out: number of output features :param b_in: input bandwidth (precision of the input SOFT grid) :param b_out: output bandwidth :param grid: points of the sphere defining the kernel, tuple of (alpha, beta)'s ''' super(S2Convolution, self).__init__() self.nfeature_in = nfeature_in self.nfeature_out = nfeature_out self.b_in = b_in self.b_out = b_out self.grid = grid self.kernel = Parameter(torch.empty(nfeature_in, nfeature_out, len(grid)).uniform_(-1, 1)) self.scaling = 1. / math.sqrt(len(self.grid) * self.nfeature_in * (self.b_out ** 4.) / (self.b_in ** 2.)) self.bias = Parameter(torch.zeros(1, nfeature_out, 1, 1, 1))
:param nfeature_in: number of input fearures :param nfeature_out: number of output features :param b_in: input bandwidth (precision of the input SOFT grid) :param b_out: output bandwidth :param grid: points of the sphere defining the kernel, tuple of (alpha, beta)'s
__init__
python
jonkhler/s2cnn
s2cnn/soft/s2_conv.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/soft/s2_conv.py
MIT
def forward(self, x): # pylint: disable=W ''' :x: [batch, feature_in, beta, alpha] :return: [batch, feature_out, beta, alpha, gamma] ''' assert x.size(1) == self.nfeature_in assert x.size(2) == 2 * self.b_in assert x.size(3) == 2 * self.b_in x = S2_fft_real.apply(x, self.b_out) # [l * m, batch, feature_in, complex] y = s2_rft(self.kernel * self.scaling, self.b_out, self.grid) # [l * m, feature_in, feature_out, complex] z = s2_mm(x, y) # [l * m * n, batch, feature_out, complex] z = SO3_ifft_real.apply(z) # [batch, feature_out, beta, alpha, gamma] z = z + self.bias return z
:x: [batch, feature_in, beta, alpha] :return: [batch, feature_out, beta, alpha, gamma]
forward
python
jonkhler/s2cnn
s2cnn/soft/s2_conv.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/soft/s2_conv.py
MIT
def so3_rotation(x, alpha, beta, gamma): ''' :param x: [..., beta, alpha, gamma] (..., 2b, 2b, 2b) ''' b = x.size()[-1] // 2 x_size = x.size() Us = _setup_so3_rotation(b, alpha, beta, gamma, device_type=x.device.type, device_index=x.device.index) # fourier transform x = SO3_fft_real.apply(x) # [l * m * n, ..., complex] # rotated spectrum Fz_list = [] begin = 0 for l in range(b): L = 2 * l + 1 size = L ** 2 Fx = x[begin:begin+size] Fx = Fx.view(L, -1, 2) # [m, n * batch, complex] U = Us[l].view(L, L, 2) # [m, n, complex] Fz = complex_mm(U, Fx, conj_x=True) # [m, n * batch, complex] Fz = Fz.view(size, -1, 2) # [m * n, batch, complex] Fz_list.append(Fz) begin += size Fz = torch.cat(Fz_list, 0) # [l * m * n, batch, complex] z = SO3_ifft_real.apply(Fz) z = z.contiguous() z = z.view(*x_size) return z
:param x: [..., beta, alpha, gamma] (..., 2b, 2b, 2b)
so3_rotation
python
jonkhler/s2cnn
s2cnn/soft/so3_rotation.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/soft/so3_rotation.py
MIT
def s2_fft(x, for_grad=False, b_out=None): ''' :param x: [..., beta, alpha, complex] :return: [l * m, ..., complex] ''' assert x.size(-1) == 2 b_in = x.size(-2) // 2 assert x.size(-2) == 2 * b_in assert x.size(-3) == 2 * b_in if b_out is None: b_out = b_in assert b_out <= b_in batch_size = x.size()[:-3] x = x.view(-1, 2 * b_in, 2 * b_in, 2) # [batch, beta, alpha, complex] ''' :param x: [batch, beta, alpha, complex] (nbatch, 2 * b_in, 2 * b_in, 2) :return: [l * m, batch, complex] (b_out**2, nbatch, 2) ''' nspec = b_out ** 2 nbatch = x.size(0) wigner = _setup_wigner(b_in, nl=b_out, weighted=not for_grad, device=x.device) wigner = wigner.view(2 * b_in, -1) # [beta, l * m] (2 * b_in, nspec) x = torch.view_as_real(torch.fft.fft(torch.view_as_complex(x))) # [batch, beta, m, complex] output = x.new_empty((nspec, nbatch, 2)) if x.is_cuda and x.dtype == torch.float32: import s2cnn.utils.cuda as cuda_utils cuda_kernel = _setup_s2fft_cuda_kernel(b=b_in, nspec=nspec, nbatch=nbatch, device=x.device.index) stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream) cuda_kernel(block=(1024, 1, 1), grid=(cuda_utils.get_blocks(nspec * nbatch, 1024), 1, 1), args=[x.contiguous().data_ptr(), wigner.contiguous().data_ptr(), output.data_ptr()], stream=stream) # [l * m, batch, complex] else: for l in range(b_out): s = slice(l ** 2, l ** 2 + 2 * l + 1) xx = torch.cat((x[:, :, -l:], x[:, :, :l + 1]), dim=2) if l > 0 else x[:, :, :1] output[s] = torch.einsum("bm,zbmc->mzc", (wigner[:, s], xx)) output = output.view(-1, *batch_size, 2) # [l * m, ..., complex] (nspec, ..., 2) return output
:param x: [..., beta, alpha, complex] :return: [l * m, ..., complex]
s2_fft
python
jonkhler/s2cnn
s2cnn/soft/s2_fft.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/soft/s2_fft.py
MIT
def s2_ifft(x, for_grad=False, b_out=None): ''' :param x: [l * m, ..., complex] ''' assert x.size(-1) == 2 nspec = x.size(0) b_in = round(nspec ** 0.5) assert nspec == b_in ** 2 if b_out is None: b_out = b_in assert b_out >= b_in batch_size = x.size()[1:-1] x = x.view(nspec, -1, 2) # [l * m, batch, complex] (nspec, nbatch, 2) ''' :param x: [l * m, batch, complex] (b_in**2, nbatch, 2) :return: [batch, beta, alpha, complex] (nbatch, 2 b_out, 2 * b_out, 2) ''' nbatch = x.size(1) wigner = _setup_wigner(b_out, nl=b_in, weighted=for_grad, device=x.device) wigner = wigner.view(2 * b_out, -1) # [beta, l * m] (2 * b_out, nspec) if x.is_cuda and x.dtype == torch.float32: import s2cnn.utils.cuda as cuda_utils cuda_kernel = _setup_s2ifft_cuda_kernel(b=b_out, nl=b_in, nbatch=nbatch, device=x.device.index) stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream) output = x.new_empty((nbatch, 2 * b_out, 2 * b_out, 2)) cuda_kernel(block=(1024, 1, 1), grid=(cuda_utils.get_blocks(nbatch * (2 * b_out) ** 2, 1024), 1, 1), args=[x.data_ptr(), wigner.data_ptr(), output.data_ptr()], stream=stream) # [batch, beta, m, complex] (nbatch, 2 * b_out, 2 * b_out, 2) else: output = x.new_zeros((nbatch, 2 * b_out, 2 * b_out, 2)) for l in range(b_in): s = slice(l ** 2, l ** 2 + 2 * l + 1) out = torch.einsum("mzc,bm->zbmc", (x[s], wigner[:, s])) output[:, :, :l + 1] += out[:, :, -l - 1:] if l > 0: output[:, :, -l:] += out[:, :, :l] output = torch.view_as_real(torch.fft.ifft(torch.view_as_complex(output))) * output.size(-2) # [batch, beta, alpha, complex] output = output.view(*batch_size, 2 * b_out, 2 * b_out, 2) return output
:param x: [l * m, ..., complex]
s2_ifft
python
jonkhler/s2cnn
s2cnn/soft/s2_fft.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/soft/s2_fft.py
MIT
def so3_fft(x, for_grad=False, b_out=None): ''' :param x: [..., beta, alpha, gamma, complex] :return: [l * m * n, ..., complex] ''' assert x.size(-1) == 2, x.size() b_in = x.size(-2) // 2 assert x.size(-2) == 2 * b_in assert x.size(-3) == 2 * b_in assert x.size(-4) == 2 * b_in if b_out is None: b_out = b_in batch_size = x.size()[:-4] x = x.view(-1, 2 * b_in, 2 * b_in, 2 * b_in, 2) # [batch, beta, alpha, gamma, complex] ''' :param x: [batch, beta, alpha, gamma, complex] (nbatch, 2 b_in, 2 b_in, 2 b_in, 2) :return: [l * m * n, batch, complex] (b_out (4 b_out**2 - 1) // 3, nbatch, 2) ''' nspec = b_out * (4 * b_out ** 2 - 1) // 3 nbatch = x.size(0) wigner = _setup_wigner(b_in, nl=b_out, weighted=not for_grad, device=x.device) # [beta, l * m * n] x = torch.view_as_real(torch.fft.fftn(torch.view_as_complex(x),dim=[2,3])) # [batch, beta, m, n, complex] output = x.new_empty((nspec, nbatch, 2)) if x.is_cuda and x.dtype == torch.float32: cuda_kernel = _setup_so3fft_cuda_kernel(b_in=b_in, b_out=b_out, nbatch=nbatch, real_input=False, device=x.device.index) cuda_kernel(x, wigner, output) # [l * m * n, batch, complex] else: if b_in < b_out: output.fill_(0) for l in range(b_out): s = slice(l * (4 * l ** 2 - 1) // 3, l * (4 * l ** 2 - 1) // 3 + (2 * l + 1) ** 2) l1 = min(l, b_in - 1) # if b_out > b_in, consider high frequencies as null xx = x.new_zeros((x.size(0), x.size(1), 2 * l + 1, 2 * l + 1, 2)) xx[:, :, l: l + l1 + 1, l: l + l1 + 1] = x[:, :, :l1 + 1, :l1 + 1] if l1 > 0: xx[:, :, l - l1:l, l: l + l1 + 1] = x[:, :, -l1:, :l1 + 1] xx[:, :, l: l + l1 + 1, l - l1:l] = x[:, :, :l1 + 1, -l1:] xx[:, :, l - l1:l, l - l1:l] = x[:, :, -l1:, -l1:] out = torch.einsum("bmn,zbmnc->mnzc", (wigner[:, s].view(-1, 2 * l + 1, 2 * l + 1), xx)) output[s] = out.view((2 * l + 1) ** 2, -1, 2) output = output.view(-1, *batch_size, 2) # [l * m * n, ..., complex] return output
:param x: [..., beta, alpha, gamma, complex] :return: [l * m * n, ..., complex]
so3_fft
python
jonkhler/s2cnn
s2cnn/soft/so3_fft.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/soft/so3_fft.py
MIT
def so3_rfft(x, for_grad=False, b_out=None): ''' :param x: [..., beta, alpha, gamma] :return: [l * m * n, ..., complex] ''' b_in = x.size(-1) // 2 assert x.size(-1) == 2 * b_in assert x.size(-2) == 2 * b_in assert x.size(-3) == 2 * b_in if b_out is None: b_out = b_in batch_size = x.size()[:-3] x = x.contiguous().view(-1, 2 * b_in, 2 * b_in, 2 * b_in) # [batch, beta, alpha, gamma] ''' :param x: [batch, beta, alpha, gamma] (nbatch, 2 b_in, 2 b_in, 2 b_in) :return: [l * m * n, batch, complex] (b_out (4 b_out**2 - 1) // 3, nbatch, 2) ''' nspec = b_out * (4 * b_out ** 2 - 1) // 3 nbatch = x.size(0) wigner = _setup_wigner(b_in, nl=b_out, weighted=not for_grad, device=x.device) output = x.new_empty((nspec, nbatch, 2)) if x.is_cuda and x.dtype == torch.float32: x = torch.view_as_real(torch.fft.rfftn(x, dim=[2,3])) # [batch, beta, m, n, complex] cuda_kernel = _setup_so3fft_cuda_kernel(b_in=b_in, b_out=b_out, nbatch=nbatch, real_input=True, device=x.device.index) cuda_kernel(x, wigner, output) else: x = torch.view_as_real(torch.fft.rfftn(torch.view_as_complex(torch.stack((x, torch.zeros_like(x)), dim=-1)), dim=[2,3])) if b_in < b_out: output.fill_(0) for l in range(b_out): s = slice(l * (4 * l**2 - 1) // 3, l * (4 * l**2 - 1) // 3 + (2 * l + 1) ** 2) l1 = min(l, b_in - 1) # if b_out > b_in, consider high frequencies as null xx = x.new_zeros((x.size(0), x.size(1), 2 * l + 1, 2 * l + 1, 2)) xx[:, :, l: l + l1 + 1, l: l + l1 + 1] = x[:, :, :l1 + 1, :l1 + 1] if l1 > 0: xx[:, :, l - l1:l, l: l + l1 + 1] = x[:, :, -l1:, :l1 + 1] xx[:, :, l: l + l1 + 1, l - l1:l] = x[:, :, :l1 + 1, -l1:] xx[:, :, l - l1:l, l - l1:l] = x[:, :, -l1:, -l1:] out = torch.einsum("bmn,zbmnc->mnzc", (wigner[:, s].view(-1, 2 * l + 1, 2 * l + 1), xx)) output[s] = out.view((2 * l + 1) ** 2, -1, 2) output = output.view(-1, *batch_size, 2) # [l * m * n, ..., complex] return output
:param x: [..., beta, alpha, gamma] :return: [l * m * n, ..., complex]
so3_rfft
python
jonkhler/s2cnn
s2cnn/soft/so3_fft.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/soft/so3_fft.py
MIT
def so3_ifft(x, for_grad=False, b_out=None): ''' :param x: [l * m * n, ..., complex] ''' assert x.size(-1) == 2 nspec = x.size(0) b_in = round((3 / 4 * nspec) ** (1 / 3)) assert nspec == b_in * (4 * b_in ** 2 - 1) // 3 if b_out is None: b_out = b_in batch_size = x.size()[1:-1] x = x.view(nspec, -1, 2) # [l * m * n, batch, complex] (nspec, nbatch, 2) ''' :param x: [l * m * n, batch, complex] (b_in (4 b_in**2 - 1) // 3, nbatch, 2) :return: [batch, beta, alpha, gamma, complex] (nbatch, 2 b_out, 2 b_out, 2 b_out, 2) ''' nbatch = x.size(1) wigner = _setup_wigner(b_out, nl=b_in, weighted=for_grad, device=x.device) # [beta, l * m * n] (2 * b_out, nspec) output = x.new_empty((nbatch, 2 * b_out, 2 * b_out, 2 * b_out, 2)) if x.is_cuda and x.dtype == torch.float32: cuda_kernel = _setup_so3ifft_cuda_kernel(b_in=b_in, b_out=b_out, nbatch=nbatch, real_output=False, device=x.device.index) cuda_kernel(x, wigner, output) # [batch, beta, m, n, complex] else: output.fill_(0) for l in range(min(b_in, b_out)): s = slice(l * (4 * l**2 - 1) // 3, l * (4 * l**2 - 1) // 3 + (2 * l + 1) ** 2) out = torch.einsum("mnzc,bmn->zbmnc", (x[s].view(2 * l + 1, 2 * l + 1, -1, 2), wigner[:, s].view(-1, 2 * l + 1, 2 * l + 1))) l1 = min(l, b_out - 1) # if b_out < b_in output[:, :, :l1 + 1, :l1 + 1] += out[:, :, l: l + l1 + 1, l: l + l1 + 1] if l > 0: output[:, :, -l1:, :l1 + 1] += out[:, :, l - l1: l, l: l + l1 + 1] output[:, :, :l1 + 1, -l1:] += out[:, :, l: l + l1 + 1, l - l1: l] output[:, :, -l1:, -l1:] += out[:, :, l - l1: l, l - l1: l] output = torch.view_as_real(torch.fft.ifftn(torch.view_as_complex(output), dim=[2,3])) * output.size(-2) ** 2 # [batch, beta, alpha, gamma, complex] output = output.view(*batch_size, 2 * b_out, 2 * b_out, 2 * b_out, 2) return output
:param x: [l * m * n, ..., complex]
so3_ifft
python
jonkhler/s2cnn
s2cnn/soft/so3_fft.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/soft/so3_fft.py
MIT
def so3_rifft(x, for_grad=False, b_out=None): ''' :param x: [l * m * n, ..., complex] ''' assert x.size(-1) == 2 nspec = x.size(0) b_in = round((3 / 4 * nspec) ** (1 / 3)) assert nspec == b_in * (4 * b_in ** 2 - 1) // 3 if b_out is None: b_out = b_in batch_size = x.size()[1:-1] x = x.view(nspec, -1, 2) # [l * m * n, batch, complex] (nspec, nbatch, 2) ''' :param x: [l * m * n, batch, complex] (b_in (4 b_in**2 - 1) // 3, nbatch, 2) :return: [batch, beta, alpha, gamma] (nbatch, 2 b_out, 2 b_out, 2 b_out) ''' nbatch = x.size(1) wigner = _setup_wigner(b_out, nl=b_in, weighted=for_grad, device=x.device) # [beta, l * m * n] (2 * b_out, nspec) output = x.new_empty((nbatch, 2 * b_out, 2 * b_out, 2 * b_out, 2)) if x.is_cuda and x.dtype == torch.float32: cuda_kernel = _setup_so3ifft_cuda_kernel(b_in=b_in, b_out=b_out, nbatch=nbatch, real_output=True, device=x.device.index) cuda_kernel(x, wigner, output) # [batch, beta, m, n, complex] else: # TODO can be optimized knowing that the output is real, like in _setup_so3ifft_cuda_kernel(real_output=True) output.fill_(0) for l in range(min(b_in, b_out)): s = slice(l * (4 * l**2 - 1) // 3, l * (4 * l**2 - 1) // 3 + (2 * l + 1) ** 2) out = torch.einsum("mnzc,bmn->zbmnc", (x[s].view(2 * l + 1, 2 * l + 1, -1, 2), wigner[:, s].view(-1, 2 * l + 1, 2 * l + 1))) l1 = min(l, b_out - 1) # if b_out < b_in output[:, :, :l1 + 1, :l1 + 1] += out[:, :, l: l + l1 + 1, l: l + l1 + 1] if l > 0: output[:, :, -l1:, :l1 + 1] += out[:, :, l - l1: l, l: l + l1 + 1] output[:, :, :l1 + 1, -l1:] += out[:, :, l: l + l1 + 1, l - l1: l] output[:, :, -l1:, -l1:] += out[:, :, l - l1: l, l - l1: l] output = torch.view_as_real(torch.fft.ifftn(torch.view_as_complex(output), dim=[2,3])) * output.size(-2) ** 2 # [batch, beta, alpha, gamma, complex] output = output[..., 0] # [batch, beta, alpha, gamma] output = output.contiguous() output = output.view(*batch_size, 2 * b_out, 2 * b_out, 2 * b_out) return output
:param x: [l * m * n, ..., complex]
so3_rifft
python
jonkhler/s2cnn
s2cnn/soft/so3_fft.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/soft/so3_fft.py
MIT
def _setup_so3fft_cuda_kernel(b_in, b_out, nbatch, real_input, device=0): kernel = ''' #define B_IN {} #define B_OUT {} #define NSPEC {} #define NBATCH {} '''.format(b_in, b_out, b_out * (4 * b_out ** 2 - 1) // 3, nbatch) if real_input: kernel += ''' #define REAL_IN ''' kernel += ''' #define MOD(i, n) (((i) + (n)) % (n)) #define MAX(x, y) ((x) < (y) ? (y) : (x)) #define CEIL_DIV(x, y) (((x) + (y) - 1) / (y)) extern "C" __global__ void main_(const float* in, const float* wig, float* out) { // blockIdx = (l, batch, mn) // blockDim = (32, 32, 1) // threadIdx = (sub l, sub batch, 0) // gridDim = (b / 32, nbatch / 32, (2b-1)**2) int m = (blockIdx.z / (2 * B_OUT - 1)) - (B_OUT - 1); int n = (blockIdx.z % (2 * B_OUT - 1)) - (B_OUT - 1); int l_min = MAX(abs(m), abs(n)); if (blockIdx.x * 32 + 31 < l_min) { // for blocks fully out of l-range return; // note: this return does not depend on threadIdx } #ifdef REAL_IN if (n < 0 || (n == 0 && m < 0)) { return; // note: this return does not depend on threadIdx } #endif int batch = blockIdx.y * 32 + threadIdx.y; int l = blockIdx.x * 32 + threadIdx.x; int lmn = (4 * l*l - 1) * l / 3 + (l+m) * (2 * l + 1) + (l+n); float sum_re = 0.0; float sum_im = 0.0; for (int tile = 0; tile < CEIL_DIV(2 * B_IN, 32); ++tile) { __shared__ float tileA[32][32][2]; __shared__ float tileB[32][32]; int beta = tile * 32 + threadIdx.x; #ifdef REAL_IN // `in` shape is (NBATCH, 2 * B_IN, 2 * B_IN, B_IN + 1, 2) // http://www.fftw.org/fftw3_doc/Multi_002dDimensional-DFTs-of-Real-Data.html int i = (((batch * 2*B_IN + beta) * 2*B_IN + MOD(m, 2*B_IN)) * (B_IN + 1) + n) * 2; #else int i = (((batch * 2*B_IN + beta) * 2*B_IN + MOD(m, 2*B_IN)) * 2*B_IN + MOD(n, 2*B_IN)) * 2; #endif tileA[threadIdx.y][threadIdx.x][0] = beta < 2*B_IN && batch < NBATCH && m < B_IN && n < B_IN && m > -B_IN && n > -B_IN ? in[i + 0] : 0.0; tileA[threadIdx.y][threadIdx.x][1] = beta < 2*B_IN && batch < NBATCH && m < B_IN && n < B_IN && m > -B_IN && n > -B_IN ? in[i + 1] : 0.0; // add constraints to m and n to remove aliasing (when b_out > b_in) beta = tile * 32 + threadIdx.y; tileB[threadIdx.y][threadIdx.x] = beta < 2*B_IN && l_min <= l && l < B_OUT ? wig[beta * NSPEC + lmn] : 0.0; __syncthreads(); for (int beta = 0; beta < 32; ++beta) { sum_re += tileA[threadIdx.y][beta][0] * tileB[beta][threadIdx.x]; sum_im += tileA[threadIdx.y][beta][1] * tileB[beta][threadIdx.x]; } __syncthreads(); } // About this if: some blocks are used to compute but not to save the results if (l_min <= l && l < B_OUT && batch < NBATCH) { out[(lmn * NBATCH + batch) * 2 + 0] = sum_re; out[(lmn * NBATCH + batch) * 2 + 1] = sum_im; #ifdef REAL_IN lmn = (4 * l*l - 1) * l / 3 + (l-m) * (2 * l + 1) + (l-n); float fudge = (m - n) % 2 == 0 ? 1.0 : -1.0; out[(lmn * NBATCH + batch) * 2 + 0] = fudge * sum_re; out[(lmn * NBATCH + batch) * 2 + 1] = -fudge * sum_im; #endif } } ''' import s2cnn.utils.cuda as cuda_utils kernel = cuda_utils.compile_kernel(kernel, 'so3fft.cu', 'main_') stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream) def fun(x, wigner, output): assert output.is_contiguous() kernel(block=(32, 32, 1), grid=(math.ceil(b_out / 32), math.ceil(nbatch / 32), (2 * b_out - 1) ** 2), args=[x.contiguous().data_ptr(), wigner.contiguous().data_ptr(), output.data_ptr()], stream=stream) return fun
.format(b_in, b_out, b_out * (4 * b_out ** 2 - 1) // 3, nbatch) if real_input: kernel +=
_setup_so3fft_cuda_kernel
python
jonkhler/s2cnn
s2cnn/soft/so3_fft.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/soft/so3_fft.py
MIT
def _setup_so3ifft_cuda_kernel(b_in, b_out, nbatch, real_output, device=0): kernel = ''' #define B_IN {} #define B_OUT {} #define NSPEC {} #define NBATCH {} '''.format(b_in, b_out, b_in * (4 * b_in ** 2 - 1) // 3, nbatch) if real_output: kernel += ''' #define REAL_OUT ''' kernel += ''' #define MOD(i, n) (((i) + (n)) % (n)) #define MAX(x, y) ((x) < (y) ? (y) : (x)) #define MIN(x, y) ((x) < (y) ? (x) : (y)) #define CEIL_DIV(x, y) (((x) + (y) - 1) / (y)) extern "C" __global__ void main_(const float* in, const float* wig, float* out) { int m = (blockIdx.z / (2 * B_OUT - 1)) - (B_OUT - 1); int n = (blockIdx.z % (2 * B_OUT - 1)) - (B_OUT - 1); #ifdef REAL_OUT if (n < 0 || (n == 0 && m < 0)) { return; // note: this return does not depend on threadIdx } #endif int l_min = MAX(abs(m), abs(n)); int batch = blockIdx.y * 32 + threadIdx.y; float sum_re = 0.0; float sum_im = 0.0; // will not calculate when l > min(b_in, b_out)-1 for (int tile = 0; tile < CEIL_DIV(MIN(B_IN, B_OUT) - l_min, 32); ++tile) { __shared__ float tileA[2][32][32]; __shared__ float tileB[32][32+1]; int l = l_min + tile * 32 + threadIdx.x; int lmn = (4 * l*l - 1) * l / 3 + (l+m) * (2 * l + 1) + (l+n); int i = (lmn * NBATCH + batch) * 2; tileA[0][threadIdx.y][threadIdx.x] = l < MIN(B_IN, B_OUT) && batch < NBATCH && m < B_OUT && n < B_OUT && m > -B_OUT && n > -B_OUT ? in[i + 0] : 0.0; tileA[1][threadIdx.y][threadIdx.x] = l < MIN(B_IN, B_OUT) && batch < NBATCH && m < B_OUT && n < B_OUT && m > -B_OUT && n > -B_OUT ? in[i + 1] : 0.0; // add constraints to m and n to remove aliasing (when b_out < b_in) int beta = blockIdx.x * 32 + threadIdx.y; tileB[threadIdx.x][threadIdx.y] = l < MIN(B_IN, B_OUT) && beta < 2*B_OUT ? wig[beta * NSPEC + lmn] : 0.0; __syncthreads(); for (int l = 0; l < 32; ++l) { sum_re += tileA[0][threadIdx.y][l] * tileB[l][threadIdx.x]; sum_im += tileA[1][threadIdx.y][l] * tileB[l][threadIdx.x]; } __syncthreads(); } int beta = blockIdx.x * 32 + threadIdx.x; if (beta < 2*B_OUT && batch < NBATCH) { int i = (((batch * 2*B_OUT + beta) * 2*B_OUT + MOD(m, 2*B_OUT)) * 2*B_OUT + MOD(n, 2*B_OUT)) * 2; out[i + 0] = sum_re; out[i + 1] = sum_im; #ifdef REAL_OUT i = (((batch * 2*B_OUT + beta) * 2*B_OUT + MOD(-m, 2*B_OUT)) * 2*B_OUT + MOD(-n, 2*B_OUT)) * 2; out[i + 0] = sum_re; out[i + 1] = -sum_im; #endif } } ''' import s2cnn.utils.cuda as cuda_utils kernel = cuda_utils.compile_kernel(kernel, 'so3ifft.cu', 'main_') stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream) def fun(x, wigner, output): output[:] = 0 kernel(block=(32, 32, 1), grid=(math.ceil(2 * b_out / 32), math.ceil(nbatch / 32), (2 * b_out - 1) ** 2), args=[x.data_ptr(), wigner.data_ptr(), output.data_ptr()], stream=stream) return fun
.format(b_in, b_out, b_in * (4 * b_in ** 2 - 1) // 3, nbatch) if real_output: kernel +=
_setup_so3ifft_cuda_kernel
python
jonkhler/s2cnn
s2cnn/soft/so3_fft.py
https://github.com/jonkhler/s2cnn/blob/master/s2cnn/soft/so3_fft.py
MIT
def eval_batch_mlp(mlp, data, batch_idxs, criterion, device_id=0): """ evaluate a batch for the baseline mlp """ atom_types = to_one_hot(data["features"]["atom_types"][batch_idxs, ...], NUM_ATOM_TYPES) targets = data["targets"][batch_idxs, ...] atom_types = Variable(atom_types) targets = Variable(targets) if torch.cuda.is_available(): atom_types = atom_types.cuda(device_id) targets = targets.cuda(device_id) outputs = mlp(atom_types) loss = criterion(outputs, targets) return loss
evaluate a batch for the baseline mlp
eval_batch_mlp
python
jonkhler/s2cnn
examples/molecules/run_experiment.py
https://github.com/jonkhler/s2cnn/blob/master/examples/molecules/run_experiment.py
MIT
def eval_batch_s2cnn(mlp, s2cnn, data, batch_idxs, criterion, device_id=0): """ evaluate a batch for the s2cnn """ geometry = data["features"]["geometry"][batch_idxs, ...] atom_types = data["features"]["atom_types"][batch_idxs, ...] atom_types_one_hot = to_one_hot(atom_types, NUM_ATOM_TYPES) targets = data["targets"][batch_idxs, ...] geometry = Variable(geometry) atom_types = Variable(atom_types) atom_types_one_hot = Variable(atom_types_one_hot) targets = Variable(targets) if torch.cuda.is_available(): atom_types_one_hot = atom_types_one_hot.cuda(device_id) geometry = geometry.cuda(device_id) atom_types = atom_types.cuda(device_id) targets = targets.cuda(device_id) outputs = mlp(atom_types_one_hot) outputs += s2cnn(geometry, atom_types) loss = criterion(outputs, targets) return loss
evaluate a batch for the s2cnn
eval_batch_s2cnn
python
jonkhler/s2cnn
examples/molecules/run_experiment.py
https://github.com/jonkhler/s2cnn/blob/master/examples/molecules/run_experiment.py
MIT
def train_baseline(mlp, data, train_batches, test_batches, num_epochs, learning_rate_mlp, device_id=0): """ train the baseline model """ optim = OPTIMIZER(mlp.parameters(), lr=learning_rate_mlp) criterion = nn.MSELoss() if torch.cuda.is_available(): criterion = criterion.cuda(device_id) for epoch in range(num_epochs): train_losses = [] print("training") for iteration, batch_idxs in enumerate(train_batches): mlp.train() optim.zero_grad() loss = eval_batch_mlp(mlp, data, batch_idxs, criterion, device_id) loss.backward() optim.step() train_losses.append(loss.item()) print("\riteration {}/{}".format( iteration+1, train_batches.num_iterations()), end="") print() test_losses = [] print("evaluating") for iteration, batch_idxs in enumerate(test_batches): mlp.eval() loss = eval_batch_mlp(mlp, data, batch_idxs, criterion) test_losses.append(loss.item()) print("\riteration {}/{}".format( iteration+1, test_batches.num_iterations()), end="") print() train_loss = np.sqrt(np.mean(train_losses)) test_loss = np.sqrt(np.mean(test_losses)) print("epoch {}/{} - avg train loss: {}, test loss: {}".format( epoch+1, num_epochs, train_loss, test_loss)) return train_loss, test_loss
train the baseline model
train_baseline
python
jonkhler/s2cnn
examples/molecules/run_experiment.py
https://github.com/jonkhler/s2cnn/blob/master/examples/molecules/run_experiment.py
MIT
def train_s2cnn(mlp, s2cnn, data, train_batches, test_batches, num_epochs, init_learning_rate_s2cnn, learning_rate_decay_epochs, device_id=0): """ train the s2cnn keeping the baseline frozen """ optim = OPTIMIZER(s2cnn.parameters(), lr=init_learning_rate_s2cnn) criterion = nn.MSELoss() if torch.cuda.is_available(): criterion = criterion.cuda(device_id) for epoch in range(num_epochs): optim = exp_lr_scheduler(optim, epoch, init_lr=init_learning_rate_s2cnn, lr_decay_epoch=learning_rate_decay_epochs) train_losses = [] print("training") for iteration, batch_idxs in enumerate(train_batches): s2cnn.train() mlp.eval() optim.zero_grad() loss = eval_batch_s2cnn(mlp, s2cnn, data, batch_idxs, criterion) loss.backward() optim.step() train_losses.append(loss.item()) print("\riteration {}/{} - batch loss: {}".format( iteration+1, train_batches.num_iterations(), np.sqrt(train_losses[-1])), end="") print() test_losses = [] print("evaluating") for iteration, batch_idxs in enumerate(test_batches): s2cnn.eval() mlp.eval() loss = eval_batch_s2cnn(mlp, s2cnn, data, batch_idxs, criterion) test_losses.append(loss.item()) print("\riteration {}/{} - batch loss: {}".format( iteration+1, test_batches.num_iterations(), np.sqrt(test_losses[-1])), end="") print() train_loss = np.sqrt(np.mean(train_losses)) test_loss = np.sqrt(np.mean(test_losses)) print("epoch {}/{} - avg train loss: {}, test loss: {}".format( epoch+1, num_epochs, train_loss, test_loss)) return train_loss, test_loss
train the s2cnn keeping the baseline frozen
train_s2cnn
python
jonkhler/s2cnn
examples/molecules/run_experiment.py
https://github.com/jonkhler/s2cnn/blob/master/examples/molecules/run_experiment.py
MIT
def forward(self, x): ''' x: [batch, n_atoms, n_types, beta, alpha] types: [batch, n_atoms, n_types] ''' # get charge z = torch.autograd.Variable( torch.from_numpy(np.array(CHARGES)) ).view(1, -1).float().cuda() # get atom frequency per molecule x = torch.sum(x, dim=1) x[:, 0] = 0 # multiply frequency by charge # TODO: concatenate instead? z = z.expand_as(x) x = x * z # simple transform x = self.W_h(x) x = F.relu(x) x = self.W_h2(x) x = F.relu(x) x = self.W_t(x) return x
x: [batch, n_atoms, n_types, beta, alpha] types: [batch, n_atoms, n_types]
forward
python
jonkhler/s2cnn
examples/molecules/baseline_model.py
https://github.com/jonkhler/s2cnn/blob/master/examples/molecules/baseline_model.py
MIT
def load_data(path, test_strat_id=None, cuda=None): ''' Loads the data path: path to the molecule .gz batch_size: size of a mini batch test_strat_id: id of strat being used as test set ''' data = joblib.load(path) # map charges to type indices # TODO refactor to individual function # TODO make less reliant on individual data dict structure type_remap = -np.ones(int(data["features"]["atom_types"].max())+1) unique_types = np.unique(data["features"]["atom_types"]).astype(int) type_remap[unique_types] = np.arange(len(unique_types)) data["features"]["atom_types"] = type_remap[ data["features"]["atom_types"].astype(int)] # wrap features as torch tensors data["features"]["geometry"] = torch.FloatTensor( data["features"]["geometry"].astype(np.float32)) data["features"]["atom_types"] = torch.LongTensor( data["features"]["atom_types"].astype(np.int64)) data["targets"] = torch.from_numpy(data["targets"]) if cuda is not None: data["features"]["geometry"].cuda(cuda) data["features"]["atom_types"].cuda(cuda) data["targets"].cuda(cuda) train = np.ndarray((0)) test = np.ndarray((0)) # split in train and test set according to used strat # TODO this should be solved in a less ugly/ad-hoc fashion! if not test_strat_id: test_strat_id = np.random.randint(len(data["strats"])) for i in range(len(data["strats"])): if i != test_strat_id: train = np.concatenate((train, data["strats"][i])) else: test = np.concatenate((test, data["strats"][i])) return data, train, test
Loads the data path: path to the molecule .gz batch_size: size of a mini batch test_strat_id: id of strat being used as test set
load_data
python
jonkhler/s2cnn
examples/molecules/utils.py
https://github.com/jonkhler/s2cnn/blob/master/examples/molecules/utils.py
MIT
def exp_lr_scheduler(optimizer, epoch, init_lr=5e-3, lr_decay_epoch=40): """Decay learning rate by a factor of 0.1 every lr_decay_epoch epochs.""" lr = init_lr * (0.1**(epoch // lr_decay_epoch)) if epoch % lr_decay_epoch == 0: print('LR is set to {}'.format(lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr return optimizer
Decay learning rate by a factor of 0.1 every lr_decay_epoch epochs.
exp_lr_scheduler
python
jonkhler/s2cnn
examples/molecules/utils.py
https://github.com/jonkhler/s2cnn/blob/master/examples/molecules/utils.py
MIT
def get_raw_data(path): """ load data from matlab file """ raw = spio.loadmat(path) coordinates = raw["R"] charges = raw["Z"] energies = raw["T"] strat_ids = raw["P"] return coordinates, charges, energies, strat_ids
load data from matlab file
get_raw_data
python
jonkhler/s2cnn
examples/molecules/datagen.py
https://github.com/jonkhler/s2cnn/blob/master/examples/molecules/datagen.py
MIT