code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def FromJson( cls, json_str: str, ) -> "VersionTuple": """Creates a version tuple from a JSON response. The JSON response must be serialized variant of the `ApiGetGrrVersionResult` message. Args: json_str: A string object with version information JSON data. Returns: Parsed version tuple. """ result = metadata_pb2.ApiGetGrrVersionResult() json_format.Parse(json_str, result, ignore_unknown_fields=True) return cls.FromProto(result)
Creates a version tuple from a JSON response. The JSON response must be serialized variant of the `ApiGetGrrVersionResult` message. Args: json_str: A string object with version information JSON data. Returns: Parsed version tuple.
FromJson
python
google/grr
api_client/python/grr_api_client/connectors/http.py
https://github.com/google/grr/blob/master/api_client/python/grr_api_client/connectors/http.py
Apache-2.0
def FromProto( cls, proto: metadata_pb2.ApiGetGrrVersionResult, ) -> "VersionTuple": """Creates a version tuple from a server response. Args: proto: A server response with version information. Returns: Parsed version tuple. """ return VersionTuple( major=proto.major, minor=proto.minor, revision=proto.revision, release=proto.release)
Creates a version tuple from a server response. Args: proto: A server response with version information. Returns: Parsed version tuple.
FromProto
python
google/grr
api_client/python/grr_api_client/connectors/http.py
https://github.com/google/grr/blob/master/api_client/python/grr_api_client/connectors/http.py
Apache-2.0
def FromString(cls, string: str) -> "VersionTuple": """Creates a version tuple from a version string (like '1.3.3.post7'). Args: string: A version string. Returns: Parsed version tuple. """ match = _VERSION_STRING_PATTERN.match(string) if match is None: raise ValueError(f"Incorrect version string: {string!r}") return VersionTuple( major=int(match[1]), minor=int(match[2]), revision=int(match[3]), # TODO(hanuszczak): Replace with `str.removeprefix` once we support only # Python 3.9+. release=int(match[4][len("post"):] if match[4] .startswith("post") else match[4]))
Creates a version tuple from a version string (like '1.3.3.post7'). Args: string: A version string. Returns: Parsed version tuple.
FromString
python
google/grr
api_client/python/grr_api_client/connectors/http.py
https://github.com/google/grr/blob/master/api_client/python/grr_api_client/connectors/http.py
Apache-2.0
def _FetchVersion(self) -> Optional[VersionTuple]: """Fetches version information about the GRR server. Note that it might be the case that the server version is so old that it does not have the method for retrieving server version. In such case, the method will return `None`. Returns: A message with version descriptor (if possible). """ headers = { "x-csrftoken": self.csrf_token, "x-requested-with": "XMLHttpRequest", } cookies = { "csrftoken": self.csrf_token, } response = self.session.get( url=f"{self.api_endpoint}/api/v2/metadata/version", headers=headers, cookies=cookies, ) try: self._CheckResponseStatus(response) except errors.Error: return None json_str = response.content.decode("utf-8").lstrip(self.JSON_PREFIX) return VersionTuple.FromJson(json_str)
Fetches version information about the GRR server. Note that it might be the case that the server version is so old that it does not have the method for retrieving server version. In such case, the method will return `None`. Returns: A message with version descriptor (if possible).
_FetchVersion
python
google/grr
api_client/python/grr_api_client/connectors/http.py
https://github.com/google/grr/blob/master/api_client/python/grr_api_client/connectors/http.py
Apache-2.0
def _ValidateVersion(self): """Validates that the API client is compatible the GRR server. In case version is impossible to validate (e.g. we are not running from a PIP package), this function does nothing and skips validation. Raises: VersionMismatchError: If the API client is incompatible with the server. """ api_client_version = self.api_client_version server_version = self.server_version if api_client_version is None or server_version is None: # If either of the versions is unspecified, we cannot properly validate. return if api_client_version < server_version: raise errors.VersionMismatchError( server_version=server_version, api_client_version=api_client_version)
Validates that the API client is compatible the GRR server. In case version is impossible to validate (e.g. we are not running from a PIP package), this function does nothing and skips validation. Raises: VersionMismatchError: If the API client is incompatible with the server.
_ValidateVersion
python
google/grr
api_client/python/grr_api_client/connectors/http.py
https://github.com/google/grr/blob/master/api_client/python/grr_api_client/connectors/http.py
Apache-2.0
def server_version(self) -> Optional[VersionTuple]: """Retrieves (lazily) the version server tuple.""" if self._server_version is None: self._server_version = self._FetchVersion() return self._server_version
Retrieves (lazily) the version server tuple.
server_version
python
google/grr
api_client/python/grr_api_client/connectors/http.py
https://github.com/google/grr/blob/master/api_client/python/grr_api_client/connectors/http.py
Apache-2.0
def api_client_version(self) -> Optional[VersionTuple]: """Retrieves (lazily) the API client version tuple (if possible).""" if self._api_client_version is None: try: distribution = pkg_resources.get_distribution("grr_api_client") except pkg_resources.DistributionNotFound: # Distribution might not be available if we are not running from within # a PIP package. In such case, it is not possible to retrieve version. return None self._api_client_version = VersionTuple.FromString(distribution.version) return self._api_client_version
Retrieves (lazily) the API client version tuple (if possible).
api_client_version
python
google/grr
api_client/python/grr_api_client/connectors/http.py
https://github.com/google/grr/blob/master/api_client/python/grr_api_client/connectors/http.py
Apache-2.0
def make_ui_files(): """Builds necessary assets from sources.""" # Install node_modules, but keep package(-lock).json frozen. # Using shell=True, otherwise npm is not found in a nodeenv-built # virtualenv on Windows. subprocess.check_call( "npm ci", shell=True, cwd="grr_response_server/gui/static") subprocess.check_call( "npm run gulp compile", shell=True, cwd="grr_response_server/gui/static") # Compile UI v2. subprocess.check_call("npm ci", shell=True, cwd="grr_response_server/gui/ui") subprocess.check_call( "npm run ng build --prod", shell=True, cwd="grr_response_server/gui/ui")
Builds necessary assets from sources.
make_ui_files
python
google/grr
grr/server/setup.py
https://github.com/google/grr/blob/master/grr/server/setup.py
Apache-2.0
def get_config(): """Get relative path to version.ini file and the INI parser with its data.""" rel_ini_path = "version.ini" ini_path = os.path.join(THIS_DIRECTORY, rel_ini_path) if not os.path.exists(ini_path): rel_ini_path = os.path.join("..", "..", "version.ini") ini_path = os.path.join(THIS_DIRECTORY, rel_ini_path) if not os.path.exists(ini_path): raise RuntimeError("Couldn't find version.ini") config = configparser.ConfigParser() config.read(ini_path) return rel_ini_path, config
Get relative path to version.ini file and the INI parser with its data.
get_config
python
google/grr
grr/server/setup.py
https://github.com/google/grr/blob/master/grr/server/setup.py
Apache-2.0
def testEventNotification(self): """Test that events are sent to listeners.""" TestListener.received_events = [] event = rdf_flows.GrrMessage( session_id=rdfvalue.SessionID(flow_name="SomeFlow"), name="test message", payload=rdf_paths.PathSpec(path="foobar", pathtype="TSK"), source="aff4:/C.0000000000000001", auth_state="AUTHENTICATED", ) events.Events.PublishEvent("TestEvent", event, username=self.test_username) # Make sure the source is correctly propagated. self.assertEqual(TestListener.received_events[0], event)
Test that events are sent to listeners.
testEventNotification
python
google/grr
grr/server/grr_response_server/events_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/events_test.py
Apache-2.0
def Register(cls: Type[base.ExportConverter]): """Registers an ExportConversion class. Args: cls: ExportConversion class. """ _EXPORT_CONVERTER_REGISTRY.add(cls)
Registers an ExportConversion class. Args: cls: ExportConversion class.
Register
python
google/grr
grr/server/grr_response_server/export_converters_registry.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/export_converters_registry.py
Apache-2.0
def Unregister(cls: Type[base.ExportConverter]): """Unregisters an ExportConversion class. Args: cls: ExportConversion class to be unregistered. """ _EXPORT_CONVERTER_REGISTRY.remove(cls)
Unregisters an ExportConversion class. Args: cls: ExportConversion class to be unregistered.
Unregister
python
google/grr
grr/server/grr_response_server/export_converters_registry.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/export_converters_registry.py
Apache-2.0
def ClearExportConverters(): """Clears converters registry and its cached values.""" _EXPORT_CONVERTER_REGISTRY.clear()
Clears converters registry and its cached values.
ClearExportConverters
python
google/grr
grr/server/grr_response_server/export_converters_registry.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/export_converters_registry.py
Apache-2.0
def GetConvertersByClass(value_cls): """Returns all converters that take given value as an input value.""" results = [ cls for cls in _EXPORT_CONVERTER_REGISTRY if cls.input_rdf_type == value_cls ] if not results: results = [data_agnostic.DataAgnosticExportConverter] return results
Returns all converters that take given value as an input value.
GetConvertersByClass
python
google/grr
grr/server/grr_response_server/export_converters_registry.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/export_converters_registry.py
Apache-2.0
def GetConvertersByValue(value): """Returns all converters that take given value as an input value.""" return GetConvertersByClass(value.__class__)
Returns all converters that take given value as an input value.
GetConvertersByValue
python
google/grr
grr/server/grr_response_server/export_converters_registry.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/export_converters_registry.py
Apache-2.0
def testReceiveMessages(self): """Tests receiving messages.""" client_id = "C.1234567890123456" flow_id = "12345678" data_store.REL_DB.WriteClientMetadata(client_id) before_flow_create = data_store.REL_DB.Now() _, req = self._FlowSetup(client_id, flow_id) after_flow_create = data_store.REL_DB.Now() session_id = "%s/%s" % (client_id, flow_id) messages = [ rdf_flows.GrrMessage( request_id=1, response_id=i, session_id=session_id, auth_state="AUTHENTICATED", payload=rdfvalue.RDFInteger(i), ) for i in range(1, 10) ] ReceiveMessages(client_id, messages) received = data_store.REL_DB.ReadAllFlowRequestsAndResponses( client_id, flow_id ) self.assertLen(received, 1) received_request = received[0][0] self.assertEqual(received_request.client_id, req.client_id) self.assertEqual(received_request.flow_id, req.flow_id) self.assertEqual(received_request.request_id, req.request_id) self.assertBetween( received_request.timestamp, before_flow_create, after_flow_create ) self.assertLen(received[0][1], 9)
Tests receiving messages.
testReceiveMessages
python
google/grr
grr/server/grr_response_server/frontend_lib_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/frontend_lib_test.py
Apache-2.0
def AddFile(self, hash_id: rdf_objects.HashID, metadata: FileMetadata): """Add a new file to the file store.""" raise NotImplementedError()
Add a new file to the file store.
AddFile
python
google/grr
grr/server/grr_response_server/file_store.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/file_store.py
Apache-2.0
def AddFiles(self, hash_id_metadatas: Dict[rdf_objects.HashID, FileMetadata]): """Adds multiple files to the file store. Args: hash_id_metadatas: A dictionary mapping hash ids to file metadata (a tuple of hash client path and blob references). """ for hash_id, metadata in hash_id_metadatas.items(): self.AddFile(hash_id, metadata)
Adds multiple files to the file store. Args: hash_id_metadatas: A dictionary mapping hash ids to file metadata (a tuple of hash client path and blob references).
AddFiles
python
google/grr
grr/server/grr_response_server/file_store.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/file_store.py
Apache-2.0
def _GetChunk( self, ) -> tuple[Optional[bytes], Optional[rdf_objects.BlobReference]]: """Fetches a chunk corresponding to the current offset.""" found_ref = None for ref in self._blob_refs: if self._offset >= ref.offset and self._offset < (ref.offset + ref.size): found_ref = ref break if not found_ref: return None, None # If self._current_ref == found_ref, then simply return previously found # chunk. Otherwise, update self._current_chunk value. if self._current_ref != found_ref: self._current_ref = found_ref blob_id = models_blob.BlobID(found_ref.blob_id) data = data_store.BLOBS.ReadBlobs([blob_id]) if data[blob_id] is None: raise BlobNotFoundError(blob_id) self._current_chunk = data[blob_id] return self._current_chunk, self._current_ref
Fetches a chunk corresponding to the current offset.
_GetChunk
python
google/grr
grr/server/grr_response_server/file_store.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/file_store.py
Apache-2.0
def Read(self, length: Optional[int] = None) -> bytes: """Reads data.""" if length is None: length = self._length - self._offset # Only enforce limit when length is not specified manually. if length > self._max_unbound_read: raise OversizedReadError( "Attempted to read %d bytes when Server.max_unbound_read_size is %d" % (length, self._max_unbound_read) ) result = io.BytesIO() while result.tell() < length: chunk, ref = self._GetChunk() if not chunk: break part = chunk[self._offset - ref.offset :] if not part: break result.write(part) self._offset += min(length, len(part)) return result.getvalue()[:length]
Reads data.
Read
python
google/grr
grr/server/grr_response_server/file_store.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/file_store.py
Apache-2.0
def Tell(self) -> int: """Returns current reading cursor position.""" return self._offset
Returns current reading cursor position.
Tell
python
google/grr
grr/server/grr_response_server/file_store.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/file_store.py
Apache-2.0
def Seek(self, offset: int, whence=os.SEEK_SET) -> None: """Moves the reading cursor.""" if whence == os.SEEK_SET: self._offset = offset elif whence == os.SEEK_CUR: self._offset += offset elif whence == os.SEEK_END: self._offset = self._length + offset else: raise ValueError("Invalid whence argument: %s" % whence)
Moves the reading cursor.
Seek
python
google/grr
grr/server/grr_response_server/file_store.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/file_store.py
Apache-2.0
def size(self) -> int: """Size of the hashed data.""" return self._length
Size of the hashed data.
size
python
google/grr
grr/server/grr_response_server/file_store.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/file_store.py
Apache-2.0
def hash_id(self) -> rdf_objects.HashID: """Hash ID identifying hashed data.""" return self._hash_id
Hash ID identifying hashed data.
hash_id
python
google/grr
grr/server/grr_response_server/file_store.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/file_store.py
Apache-2.0
def AddFilesWithUnknownHashes( client_path_blob_refs: Dict[ db.ClientPath, Iterable[rdf_objects.BlobReference] ], use_external_stores: bool = True, ) -> Dict[db.ClientPath, rdf_objects.SHA256HashID]: """Adds new files consisting of given blob references. Args: client_path_blob_refs: A dictionary mapping `db.ClientPath` instances to lists of blob references. use_external_stores: A flag indicating if the files should also be added to external file stores. Returns: A dictionary mapping `db.ClientPath` to hash ids of the file. Raises: BlobNotFoundError: If one of the referenced blobs cannot be found. InvalidBlobSizeError: if reference's blob size is different from an actual blob size. InvalidBlobOffsetError: if reference's blob offset is different from an actual blob offset. """ hash_id_blob_refs = dict() client_path_hash_id = dict() metadatas = dict() all_client_path_blob_refs = list() for client_path, blob_refs in client_path_blob_refs.items(): if blob_refs: for blob_ref in blob_refs: blob_ref = mig_objects.ToProtoBlobReference(blob_ref) all_client_path_blob_refs.append((client_path, blob_ref)) else: # Make sure empty files (without blobs) are correctly handled. hash_id = rdf_objects.SHA256HashID.FromData(b"") client_path_hash_id[client_path] = hash_id hash_id_blob_refs[hash_id] = [] metadatas[hash_id] = FileMetadata(client_path=client_path, blob_refs=[]) client_path_offset = collections.defaultdict(lambda: 0) client_path_sha256 = collections.defaultdict(hashlib.sha256) verified_client_path_blob_refs = collections.defaultdict(list) client_path_blob_ref_batches = collection.Batch( items=all_client_path_blob_refs, size=_BLOBS_READ_BATCH_SIZE ) for client_path_blob_ref_batch in client_path_blob_ref_batches: blob_id_batch = set( models_blob.BlobID(blob_ref.blob_id) for _, blob_ref in client_path_blob_ref_batch ) blobs = data_store.BLOBS.ReadAndWaitForBlobs( blob_id_batch, timeout=BLOBS_READ_TIMEOUT ) for client_path, blob_ref in client_path_blob_ref_batch: blob = blobs[models_blob.BlobID(blob_ref.blob_id)] if blob is None: raise BlobNotFoundError(blob_ref.blob_id) offset = client_path_offset[client_path] if blob_ref.size != len(blob): raise InvalidBlobSizeError( "Got conflicting size information for blob %s: %d vs %d." % (blob_ref.blob_id, blob_ref.size, len(blob)) ) if blob_ref.offset != offset: raise InvalidBlobOffsetError( "Got conflicting offset information for blob %s: %d vs %d." % (blob_ref.blob_id, blob_ref.offset, offset) ) verified_client_path_blob_refs[client_path].append(blob_ref) client_path_offset[client_path] = offset + len(blob) client_path_sha256[client_path].update(blob) for client_path in client_path_sha256.keys(): sha256 = client_path_sha256[client_path].digest() hash_id = rdf_objects.SHA256HashID.FromSerializedBytes(sha256) client_path_hash_id[client_path] = hash_id hash_id_blob_refs[hash_id] = verified_client_path_blob_refs[client_path] data_store.REL_DB.WriteHashBlobReferences(hash_id_blob_refs) if use_external_stores: for client_path in verified_client_path_blob_refs.keys(): metadatas[client_path_hash_id[client_path]] = FileMetadata( client_path=client_path, blob_refs=list( map( mig_objects.ToRDFBlobReference, verified_client_path_blob_refs[client_path], ) ), ) EXTERNAL_FILE_STORE.AddFiles(metadatas) return client_path_hash_id
Adds new files consisting of given blob references. Args: client_path_blob_refs: A dictionary mapping `db.ClientPath` instances to lists of blob references. use_external_stores: A flag indicating if the files should also be added to external file stores. Returns: A dictionary mapping `db.ClientPath` to hash ids of the file. Raises: BlobNotFoundError: If one of the referenced blobs cannot be found. InvalidBlobSizeError: if reference's blob size is different from an actual blob size. InvalidBlobOffsetError: if reference's blob offset is different from an actual blob offset.
AddFilesWithUnknownHashes
python
google/grr
grr/server/grr_response_server/file_store.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/file_store.py
Apache-2.0
def AddFileWithUnknownHash( client_path: db.ClientPath, blob_refs: Sequence[rdf_objects.BlobReference], use_external_stores: bool = True, ) -> Dict[db.ClientPath, rdf_objects.SHA256HashID]: """Add a new file consisting of given blob IDs.""" precondition.AssertType(client_path, db.ClientPath) precondition.AssertIterableType(blob_refs, rdf_objects.BlobReference) return AddFilesWithUnknownHashes( {client_path: blob_refs}, use_external_stores=use_external_stores )[client_path]
Add a new file consisting of given blob IDs.
AddFileWithUnknownHash
python
google/grr
grr/server/grr_response_server/file_store.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/file_store.py
Apache-2.0
def CheckHashes( hash_ids: Collection[rdf_objects.SHA256HashID], ) -> Dict[rdf_objects.SHA256HashID, bool]: """Checks if files with given hashes are present in the file store. Args: hash_ids: A list of SHA256HashID objects. Returns: A dict where SHA256HashID objects are keys. Corresponding values may be False (if hash id is not present) or True if it is not present. """ return { k: bool(v) for k, v in data_store.REL_DB.ReadHashBlobReferences(hash_ids).items() }
Checks if files with given hashes are present in the file store. Args: hash_ids: A list of SHA256HashID objects. Returns: A dict where SHA256HashID objects are keys. Corresponding values may be False (if hash id is not present) or True if it is not present.
CheckHashes
python
google/grr
grr/server/grr_response_server/file_store.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/file_store.py
Apache-2.0
def OpenFile( client_path: db.ClientPath, max_timestamp: Optional[rdfvalue.RDFDatetime] = None, ) -> BlobStream: """Opens latest content of a given file for reading. Args: client_path: A path to a file. max_timestamp: If specified, will open the last collected version with a timestamp equal or lower than max_timestamp. If not specified, will simply open the latest version. Returns: A file like object with random access support. Raises: FileHasNoContentError: if the file was never collected. MissingBlobReferencesError: if one of the blobs was not found. """ proto_path_info = data_store.REL_DB.ReadLatestPathInfosWithHashBlobReferences( [client_path], max_timestamp=max_timestamp )[client_path] path_info = None if proto_path_info: path_info = mig_objects.ToRDFPathInfo(proto_path_info) if path_info is None: # If path_info returned by ReadLatestPathInfosWithHashBlobReferences # is None, do one more ReadPathInfo call to check if this path info # was ever present in the database. try: data_store.REL_DB.ReadPathInfo( client_path.client_id, client_path.path_type, client_path.components ) except db.UnknownPathError: raise FileNotFoundError(client_path) # If the given path info is present in the database, but there are # no suitable hash blob references associated with it, raise # FileHasNoContentError instead of FileNotFoundError. raise FileHasNoContentError(client_path) hash_id = rdf_objects.SHA256HashID.FromSerializedBytes( path_info.hash_entry.sha256.AsBytes() ) blob_references = data_store.REL_DB.ReadHashBlobReferences([hash_id])[hash_id] if blob_references is None: raise MissingBlobReferencesError( "File hash was expected to have corresponding " "blob references, but they were not found: %r" % hash_id ) blob_references = list(map(mig_objects.ToRDFBlobReference, blob_references)) return BlobStream(client_path, blob_references, hash_id)
Opens latest content of a given file for reading. Args: client_path: A path to a file. max_timestamp: If specified, will open the last collected version with a timestamp equal or lower than max_timestamp. If not specified, will simply open the latest version. Returns: A file like object with random access support. Raises: FileHasNoContentError: if the file was never collected. MissingBlobReferencesError: if one of the blobs was not found.
OpenFile
python
google/grr
grr/server/grr_response_server/file_store.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/file_store.py
Apache-2.0
def __init__( self, client_path: db.ClientPath, data: bytes, chunk_index: int, total_chunks: int, offset: int, total_size: int, ) -> None: """Initializes StreamedFileChunk object. Args: client_path: db.ClientPath identifying the file. data: bytes with chunk's contents. chunk_index: Index of this chunk (relative to the sequence of chunks corresponding to the file). total_chunks: Total number of chunks corresponding to a given file. offset: Offset of this chunk in bytes from the beginning of the file. total_size: Total size of the file in bytes. """ self.client_path = client_path self.data = data self.offset = offset self.total_size = total_size self.chunk_index = chunk_index self.total_chunks = total_chunks
Initializes StreamedFileChunk object. Args: client_path: db.ClientPath identifying the file. data: bytes with chunk's contents. chunk_index: Index of this chunk (relative to the sequence of chunks corresponding to the file). total_chunks: Total number of chunks corresponding to a given file. offset: Offset of this chunk in bytes from the beginning of the file. total_size: Total size of the file in bytes.
__init__
python
google/grr
grr/server/grr_response_server/file_store.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/file_store.py
Apache-2.0
def StreamFilesChunks( client_paths: Collection[db.ClientPath], max_timestamp: Optional[rdfvalue.RDFDatetime] = None, max_size: Optional[int] = None, ) -> Iterable[StreamedFileChunk]: """Streams contents of given files. Args: client_paths: db.ClientPath objects describing paths to files. max_timestamp: If specified, then for every requested file will open the last collected version of the file with a timestamp equal or lower than max_timestamp. If not specified, will simply open a latest version for each file. max_size: If specified, only the chunks covering max_size bytes will be returned. Yields: StreamedFileChunk objects for every file read. Chunks will be returned sequentially, their order will correspond to the client_paths order. Files having no content will simply be ignored. Raises: BlobNotFoundError: if one of the blobs wasn't found while streaming. """ proto_path_infos_by_cp = ( data_store.REL_DB.ReadLatestPathInfosWithHashBlobReferences( client_paths, max_timestamp=max_timestamp ) ) path_infos_by_cp = {} for k, v in proto_path_infos_by_cp.items(): path_infos_by_cp[k] = None if v is not None: path_infos_by_cp[k] = v hash_ids_by_cp = {} for cp, pi in path_infos_by_cp.items(): if pi: hash_ids_by_cp[cp] = rdf_objects.SHA256HashID.FromSerializedBytes( pi.hash_entry.sha256 ) blob_refs_by_hash_id = data_store.REL_DB.ReadHashBlobReferences( hash_ids_by_cp.values() ) all_chunks = [] for cp in client_paths: try: hash_id = hash_ids_by_cp[cp] except KeyError: continue try: blob_refs = blob_refs_by_hash_id[hash_id] except KeyError: continue num_blobs = len(blob_refs) total_size = 0 for ref in blob_refs: total_size += ref.size cur_size = 0 for i, ref in enumerate(blob_refs): blob_id = models_blob.BlobID(ref.blob_id) all_chunks.append((cp, blob_id, i, num_blobs, ref.offset, total_size)) cur_size += ref.size if max_size is not None and cur_size >= max_size: break for batch in collection.Batch(all_chunks, STREAM_CHUNKS_READ_AHEAD): blobs = data_store.BLOBS.ReadBlobs( [blob_id for _, blob_id, _, _, _, _ in batch] ) for cp, blob_id, i, num_blobs, offset, total_size in batch: blob_data = blobs[blob_id] if blob_data is None: raise BlobNotFoundError(blob_id) yield StreamedFileChunk(cp, blob_data, i, num_blobs, offset, total_size)
Streams contents of given files. Args: client_paths: db.ClientPath objects describing paths to files. max_timestamp: If specified, then for every requested file will open the last collected version of the file with a timestamp equal or lower than max_timestamp. If not specified, will simply open a latest version for each file. max_size: If specified, only the chunks covering max_size bytes will be returned. Yields: StreamedFileChunk objects for every file read. Chunks will be returned sequentially, their order will correspond to the client_paths order. Files having no content will simply be ignored. Raises: BlobNotFoundError: if one of the blobs wasn't found while streaming.
StreamFilesChunks
python
google/grr
grr/server/grr_response_server/file_store.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/file_store.py
Apache-2.0
def RetrieveIP4Info(self, ip): """Retrieves information for an IP4 address.""" if ip.is_private: return (IPInfo.INTERNAL, "Internal IP address.") try: # It's an external IP, let's try to do a reverse lookup. res = socket.getnameinfo((str(ip), 0), socket.NI_NAMEREQD) return (IPInfo.EXTERNAL, res[0]) except (socket.error, socket.herror, socket.gaierror): return (IPInfo.EXTERNAL, "Unknown IP address.")
Retrieves information for an IP4 address.
RetrieveIP4Info
python
google/grr
grr/server/grr_response_server/ip_resolver.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/ip_resolver.py
Apache-2.0
def RetrieveIP6Info(self, ip): """Retrieves information for an IP6 address.""" _ = ip return (IPInfo.INTERNAL, "Internal IP6 address.")
Retrieves information for an IP6 address.
RetrieveIP6Info
python
google/grr
grr/server/grr_response_server/ip_resolver.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/ip_resolver.py
Apache-2.0
def IPResolverInitOnce(): """Initializes IP resolver.""" global IP_RESOLVER ip_resolver_cls_name = config.CONFIG["Server.ip_resolver_class"] logging.debug("Using ip resolver: %s", ip_resolver_cls_name) cls = IPResolverBase.GetPlugin(ip_resolver_cls_name) IP_RESOLVER = cls()
Initializes IP resolver.
IPResolverInitOnce
python
google/grr
grr/server/grr_response_server/ip_resolver.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/ip_resolver.py
Apache-2.0
def Sign(self, command: execute_signed_command_pb2.Command) -> bytes: """Signs a command and returns the signature."""
Signs a command and returns the signature.
Sign
python
google/grr
grr/server/grr_response_server/command_signer.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/command_signer.py
Apache-2.0
def Verify( self, signature: bytes, command: execute_signed_command_pb2.Command, ) -> None: """Validates a signature for given data with a verification key. Args: signature: Signature to verify. command: Command that was signed. Raises: CommandSignatureValidationError: Invalid signature """
Validates a signature for given data with a verification key. Args: signature: Signature to verify. command: Command that was signed. Raises: CommandSignatureValidationError: Invalid signature
Verify
python
google/grr
grr/server/grr_response_server/command_signer.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/command_signer.py
Apache-2.0
def testNotMatchingArgTypeRaises(self): """Check that flows reject not matching args type.""" with self.assertRaises(TypeError): flow.StartFlow( client_id=self.client_id, flow_cls=CallStateFlow, flow_args=dummy.DummyArgs(), )
Check that flows reject not matching args type.
testNotMatchingArgTypeRaises
python
google/grr
grr/server/grr_response_server/flow_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_test.py
Apache-2.0
def testCallState(self): """Test the ability to chain flows.""" CallStateFlow.success = False # Run the flow in the simulated way flow_test_lib.StartAndRunFlow(CallStateFlow, client_id=self.client_id) self.assertEqual(CallStateFlow.success, True)
Test the ability to chain flows.
testCallState
python
google/grr
grr/server/grr_response_server/flow_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_test.py
Apache-2.0
def testCallStateProto(self): """Test the ability to chain states.""" CallStateProtoFlow.success = False # Run the flow in the simulated way flow_test_lib.StartAndRunFlow(CallStateProtoFlow, client_id=self.client_id) self.assertTrue(CallStateProtoFlow.success)
Test the ability to chain states.
testCallStateProto
python
google/grr
grr/server/grr_response_server/flow_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_test.py
Apache-2.0
def testCallStateWithResponses(self): """Test the ability to chain flows.""" CallStateFlowWithResponses.success = False # Run the flow in the simulated way flow_test_lib.StartAndRunFlow( CallStateFlowWithResponses, client_id=self.client_id ) self.assertTrue(CallStateFlowWithResponses.success)
Test the ability to chain flows.
testCallStateWithResponses
python
google/grr
grr/server/grr_response_server/flow_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_test.py
Apache-2.0
def testCallStateProtoWithResponsesMixed(self): """Test the ability to chain states.""" CallStateProtoFlowWithResponsesMixed.success = False # Run the flow in the simulated way flow_test_lib.StartAndRunFlow( CallStateProtoFlowWithResponsesMixed, client_id=self.client_id ) self.assertTrue(CallStateProtoFlowWithResponsesMixed.success)
Test the ability to chain states.
testCallStateProtoWithResponsesMixed
python
google/grr
grr/server/grr_response_server/flow_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_test.py
Apache-2.0
def testCallStateProtoWithResponsesOnlyProtos(self): """Test the ability to chain states.""" CallStateProtoFlowWithResponsesOnlyProtos.success = False # Run the flow in the simulated way flow_test_lib.StartAndRunFlow( CallStateProtoFlowWithResponsesOnlyProtos, client_id=self.client_id ) self.assertTrue(CallStateProtoFlowWithResponsesOnlyProtos.success)
Test the ability to chain states.
testCallStateProtoWithResponsesOnlyProtos
python
google/grr
grr/server/grr_response_server/flow_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_test.py
Apache-2.0
def testChainedFlow(self): """Test the ability to chain flows.""" ParentFlow.success = False # Run the flow in the simulated way flow_test_lib.StartAndRunFlow( ParentFlow, client_mock=ClientMock(), client_id=self.client_id ) self.assertEqual(ParentFlow.success, True)
Test the ability to chain flows.
testChainedFlow
python
google/grr
grr/server/grr_response_server/flow_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_test.py
Apache-2.0
def testBrokenChainedFlowProto(self): # TODO: Add child flow with arguments and check that they are # passed correctly from parent to child. class BrokenParentCallFlowProto(flow_base.FlowBase): """This flow will launch a broken child flow.""" # This is a global flag which will be set when the flow runs. success = False def Start(self): # Call the child flow. self.CallFlowProto("BrokenChildFlow", next_state="ReceiveHello") def ReceiveHello(self, responses): if responses or responses.status.status == "OK": raise RuntimeError("Error not propagated to parent") BrokenParentCallFlowProto.success = True # The parent flow does not fail, just assert the child does. flow_test_lib.StartAndRunFlow( BrokenParentCallFlowProto, client_mock=ClientMock(), client_id=self.client_id, check_flow_errors=False, ) self.assertEqual(BrokenParentCallFlowProto.success, True)
This flow will launch a broken child flow.
testBrokenChainedFlowProto
python
google/grr
grr/server/grr_response_server/flow_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_test.py
Apache-2.0
def testLimitPropagation(self): """This tests that client actions are limited properly.""" client_mock = action_mocks.CPULimitClientMock( user_cpu_usage=[10], system_cpu_usage=[10], network_usage=[1000], runtime_us=[rdfvalue.Duration.From(1, rdfvalue.SECONDS)], ) flow_test_lib.StartAndRunFlow( flow_test_lib.CPULimitFlow, client_mock=client_mock, client_id=self.client_id, cpu_limit=1000, network_bytes_limit=10000, runtime_limit=rdfvalue.Duration.From(5, rdfvalue.SECONDS), ) self.assertEqual(client_mock.storage["cpulimit"], [1000, 980, 960]) self.assertEqual(client_mock.storage["networklimit"], [10000, 9000, 8000]) self.assertEqual(client_mock.storage["networklimit"], [10000, 9000, 8000]) self.assertEqual( client_mock.storage["runtimelimit"], [ rdfvalue.Duration.From(5, rdfvalue.SECONDS), rdfvalue.Duration.From(4, rdfvalue.SECONDS), rdfvalue.Duration.From(3, rdfvalue.SECONDS), ], )
This tests that client actions are limited properly.
testLimitPropagation
python
google/grr
grr/server/grr_response_server/flow_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_test.py
Apache-2.0
def testCPULimitExceeded(self): """This tests that the cpu limit for flows is working.""" client_mock = action_mocks.CPULimitClientMock( user_cpu_usage=[10], system_cpu_usage=[10], network_usage=[1000] ) with test_lib.SuppressLogs(): flow_id = flow_test_lib.StartAndRunFlow( flow_test_lib.CPULimitFlow, client_mock=client_mock, client_id=self.client_id, cpu_limit=30, network_bytes_limit=10000, check_flow_errors=False, ) rdf_flow = data_store.REL_DB.ReadFlowObject(self.client_id, flow_id) self.assertEqual(rdf_flow.flow_state, flows_pb2.Flow.FlowState.ERROR) self.assertIn("CPU limit exceeded", rdf_flow.error_message)
This tests that the cpu limit for flows is working.
testCPULimitExceeded
python
google/grr
grr/server/grr_response_server/flow_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_test.py
Apache-2.0
def testNetworkLimitExceeded(self): """This tests that the network limit for flows is working.""" client_mock = action_mocks.CPULimitClientMock( user_cpu_usage=[10], system_cpu_usage=[10], network_usage=[1000] ) with test_lib.SuppressLogs(): flow_id = flow_test_lib.StartAndRunFlow( flow_test_lib.CPULimitFlow, client_mock=client_mock, client_id=self.client_id, cpu_limit=1000, network_bytes_limit=1500, check_flow_errors=False, ) rdf_flow = data_store.REL_DB.ReadFlowObject(self.client_id, flow_id) self.assertEqual(rdf_flow.flow_state, flows_pb2.Flow.FlowState.ERROR) self.assertIn("bytes limit exceeded", rdf_flow.error_message)
This tests that the network limit for flows is working.
testNetworkLimitExceeded
python
google/grr
grr/server/grr_response_server/flow_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_test.py
Apache-2.0
def testUserGetsNotificationWithNumberOfResultsProto(self): username = "notification_test_user" self.CreateUser(username) class FlowWithMultipleResultTypesProto(flow_base.FlowBase): """Flow with multiple result types.""" proto_result_types = ( jobs_pb2.LogMessage, jobs_pb2.PathSpec, jobs_pb2.ClientInformation, ) def Start(self): self.SendReplyProto(jobs_pb2.LogMessage(data="foo")) self.SendReplyProto(jobs_pb2.PathSpec(path="bar.txt")) self.SendReplyProto(jobs_pb2.PathSpec(path="baz.txt")) self.SendReplyProto(jobs_pb2.ClientInformation(client_name="foo")) self.SendReplyProto(jobs_pb2.ClientInformation(client_name="bar")) self.SendReplyProto(jobs_pb2.ClientInformation(client_name="baz")) flow_test_lib.StartAndRunFlow( FlowWithMultipleResultTypesProto, client_id=self.client_id, creator=username, ) notifications = self.GetUserNotifications(username) self.assertIn( "FlowWithMultipleResultTypesProto completed with 6 results", notifications[0].message, )
Flow with multiple result types.
testUserGetsNotificationWithNumberOfResultsProto
python
google/grr
grr/server/grr_response_server/flow_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_test.py
Apache-2.0
def testOutputPluginsOnlyRunInParentFlow_DoesNotForwardProto(self): class ChildFlowProtoIgnored(flow_base.FlowBase): proto_result_types = (jobs_pb2.LogMessage,) def Start(self): self.SendReplyProto(jobs_pb2.LogMessage(data="IgnoredInParent")) class ParentFlowWithoutForwardingOutputPluginsProto(flow_base.FlowBase): """This flow creates a Child without forwarding OutputPlugins.""" proto_result_types = (jobs_pb2.LogMessage,) def Start(self): # Call the child flow WITHOUT output plugins. self.CallFlowProto( ChildFlowProtoIgnored.__name__, next_state="IgnoreChildReplies" ) def IgnoreChildReplies(self, responses): del responses # Unused self.SendReplyProto(jobs_pb2.LogMessage(data="Parent received")) self.RunFlow( flow_cls=ParentFlowWithoutForwardingOutputPluginsProto, client_mock=ClientMock(), output_plugins=[ rdf_output_plugin.OutputPluginDescriptor( plugin_name="DummyFlowOutputPlugin" ) ], ) # Parent calls once, and child doesn't call. self.assertEqual(test_output_plugins.DummyFlowOutputPlugin.num_calls, 1) # Parent has one response, child has two. self.assertEqual(test_output_plugins.DummyFlowOutputPlugin.num_responses, 1)
This flow creates a Child without forwarding OutputPlugins.
testOutputPluginsOnlyRunInParentFlow_DoesNotForwardProto
python
google/grr
grr/server/grr_response_server/flow_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_test.py
Apache-2.0
def testAllConfigs(self): """Go through all our config files looking for errors.""" # Test the current loaded configuration. configs = [config.CONFIG] # Test all the other configs in the server config dir (/etc/grr by default) glob_path = os.path.join(config.CONFIG["Config.directory"], "*.yaml") for cfg_file in glob.glob(glob_path): if os.access(cfg_file, os.R_OK): configs.append(cfg_file) else: logging.info( "Skipping checking %s, you probably need to be root", cfg_file ) self.ValidateConfigs(configs)
Go through all our config files looking for errors.
testAllConfigs
python
google/grr
grr/server/grr_response_server/config_validation_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/config_validation_test.py
Apache-2.0
def setupAndRun(self, cls: type[flow_base.FlowBase]) -> flows_pb2.Flow: """Sets up and runs a flow of the given type.""" assert data_store.REL_DB is not None db = data_store.REL_DB client_id = db_test_utils.InitializeClient(db) test_username = db_test_utils.InitializeUser(db) flow_id = flow_test_lib.StartAndRunFlow( cls, action_mocks.ActionMock(action_mocks.Store), client_id=client_id, creator=test_username, ) return db.ReadFlowObject(client_id, flow_id)
Sets up and runs a flow of the given type.
setupAndRun
python
google/grr
grr/server/grr_response_server/flow_base_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base_test.py
Apache-2.0
def testStorePersists_CallState(self): class StoreCallStateFlow( flow_base.FlowBase[flows_pb2.EmptyFlowArgs, tests_pb2.DummyFlowStore] ): """Dummy flow that uses store.""" proto_store_type = tests_pb2.DummyFlowStore def Start(self) -> None: self.store.msg = "Hello from Start!" self.CallState(next_state="AfterCallState") def AfterCallState(self, responses=None): del responses assert self.store.msg == "Hello from Start!" self.store.msg = "Hello from AfterCallState!" flow = self.setupAndRun(StoreCallStateFlow) self.assertTrue(flow.HasField("store")) store = tests_pb2.DummyFlowStore() flow.store.Unpack(store) self.assertEqual(store.msg, "Hello from AfterCallState!")
Dummy flow that uses store.
testStorePersists_CallState
python
google/grr
grr/server/grr_response_server/flow_base_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base_test.py
Apache-2.0
def testStorePersists_CallStateProto(self): class StoreCallStateProtoFlow( flow_base.FlowBase[flows_pb2.EmptyFlowArgs, tests_pb2.DummyFlowStore] ): """Dummy flow that uses store.""" proto_store_type = tests_pb2.DummyFlowStore def Start(self) -> None: self.store.msg = "Hello from Start!" self.CallStateProto(next_state="AfterCallStateProto") def AfterCallStateProto(self, responses=None): del responses assert self.store.msg == "Hello from Start!" self.store.msg = "Hello from AfterCallStateProto!" flow = self.setupAndRun(StoreCallStateProtoFlow) self.assertTrue(flow.HasField("store")) store = tests_pb2.DummyFlowStore() flow.store.Unpack(store) self.assertEqual(store.msg, "Hello from AfterCallStateProto!")
Dummy flow that uses store.
testStorePersists_CallStateProto
python
google/grr
grr/server/grr_response_server/flow_base_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base_test.py
Apache-2.0
def testStorePersists_CallStateInline(self): class StoreCallStateInlineFlow( flow_base.FlowBase[flows_pb2.EmptyFlowArgs, tests_pb2.DummyFlowStore] ): """Dummy flow that uses store.""" proto_store_type = tests_pb2.DummyFlowStore def Start(self) -> None: self.store.msg = "Hello from Start!" self.CallStateInline(next_state="AfterCallStateInline") def AfterCallStateInline(self, responses=None): del responses assert self.store.msg == "Hello from Start!" self.store.msg = "Hello from AfterCallStateInline!" flow = self.setupAndRun(StoreCallStateInlineFlow) self.assertTrue(flow.HasField("store")) store = tests_pb2.DummyFlowStore() flow.store.Unpack(store) self.assertEqual(store.msg, "Hello from AfterCallStateInline!")
Dummy flow that uses store.
testStorePersists_CallStateInline
python
google/grr
grr/server/grr_response_server/flow_base_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base_test.py
Apache-2.0
def testStorePersists_CallStateInlineProto(self): class StoreCallStateInlineProtoFlow( flow_base.FlowBase[flows_pb2.EmptyFlowArgs, tests_pb2.DummyFlowStore] ): """Dummy flow that uses store.""" proto_store_type = tests_pb2.DummyFlowStore def Start(self) -> None: self.store.msg = "Hello from Start!" self.CallStateInlineProto(next_state="AfterCallStateInlineProto") @flow_base.UseProto2AnyResponses def AfterCallStateInlineProto(self, responses=None): del responses assert self.store.msg == "Hello from Start!" self.store.msg = "Hello from AfterCallStateInlineProto!" flow = self.setupAndRun(StoreCallStateInlineProtoFlow) self.assertTrue(flow.HasField("store")) store = tests_pb2.DummyFlowStore() flow.store.Unpack(store) self.assertEqual(store.msg, "Hello from AfterCallStateInlineProto!")
Dummy flow that uses store.
testStorePersists_CallStateInlineProto
python
google/grr
grr/server/grr_response_server/flow_base_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base_test.py
Apache-2.0
def testStorePersists_CallStateInlineProtoWithResponses(self): class StoreCallStateInlineProtoWithResponsesFlow( flow_base.FlowBase[flows_pb2.EmptyFlowArgs, tests_pb2.DummyFlowStore] ): """Dummy flow that uses store.""" proto_store_type = tests_pb2.DummyFlowStore def Start(self) -> None: self.store.msg = "Hello from Start!" self.CallStateInlineProtoWithResponses( next_state="AfterCallStateInlineProtoWithResponses" ) @flow_base.UseProto2AnyResponses def AfterCallStateInlineProtoWithResponses(self, responses=None): del responses assert self.store.msg == "Hello from Start!" self.store.msg = "Hello from AfterCallStateInlineProtoWithResponses!" flow = self.setupAndRun(StoreCallStateInlineProtoWithResponsesFlow) self.assertTrue(flow.HasField("store")) store = tests_pb2.DummyFlowStore() flow.store.Unpack(store) self.assertEqual( store.msg, "Hello from AfterCallStateInlineProtoWithResponses!" )
Dummy flow that uses store.
testStorePersists_CallStateInlineProtoWithResponses
python
google/grr
grr/server/grr_response_server/flow_base_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base_test.py
Apache-2.0
def testStorePersists_CallFlow(self): class StoreCallFlowFlow( flow_base.FlowBase[flows_pb2.EmptyFlowArgs, tests_pb2.DummyFlowStore] ): """Dummy flow that uses store.""" proto_store_type = tests_pb2.DummyFlowStore def Start(self) -> None: self.store.msg = "Hello from Start!" self.CallFlow( flow_test_lib.DummyFlowWithSingleReply.__name__, next_state="AfterCallFlow", ) def AfterCallFlow(self, responses=None): del responses assert self.store.msg == "Hello from Start!" self.store.msg = "Hello from AfterCallFlow!" flow = self.setupAndRun(StoreCallFlowFlow) self.assertTrue(flow.HasField("store")) store = tests_pb2.DummyFlowStore() flow.store.Unpack(store) self.assertEqual(store.msg, "Hello from AfterCallFlow!")
Dummy flow that uses store.
testStorePersists_CallFlow
python
google/grr
grr/server/grr_response_server/flow_base_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base_test.py
Apache-2.0
def testStorePersists_CallFlowProto(self): class StoreCallFlowProtoFlow( flow_base.FlowBase[flows_pb2.EmptyFlowArgs, tests_pb2.DummyFlowStore] ): """Dummy flow that uses store.""" proto_store_type = tests_pb2.DummyFlowStore def Start(self) -> None: self.store.msg = "Hello from Start!" self.CallFlowProto( flow_test_lib.DummyFlowWithSingleReply.__name__, next_state="AfterCallFlowProto", ) def AfterCallFlowProto(self, responses=None): del responses assert self.store.msg == "Hello from Start!" self.store.msg = "Hello from AfterCallFlowProto!" flow = self.setupAndRun(StoreCallFlowProtoFlow) self.assertTrue(flow.HasField("store")) store = tests_pb2.DummyFlowStore() flow.store.Unpack(store) self.assertEqual(store.msg, "Hello from AfterCallFlowProto!")
Dummy flow that uses store.
testStorePersists_CallFlowProto
python
google/grr
grr/server/grr_response_server/flow_base_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base_test.py
Apache-2.0
def testStorePersists_CallClient(self): class StoreCallClientFlow( flow_base.FlowBase[flows_pb2.EmptyFlowArgs, tests_pb2.DummyFlowStore] ): """Dummy flow that uses store.""" proto_store_type = tests_pb2.DummyFlowStore def Start(self) -> None: self.store.msg = "Hello from Start!" self.CallClient( action_registry.ACTION_STUB_BY_ID["Store"], request=rdf_protodict.DataBlob(string="Hey!"), next_state="AfterCallClient", ) def AfterCallClient(self, responses=None): del responses assert self.store.msg == "Hello from Start!" self.store.msg = "Hello from AfterCallClient!" flow = self.setupAndRun(StoreCallClientFlow) self.assertTrue(flow.HasField("store")) store = tests_pb2.DummyFlowStore() flow.store.Unpack(store) self.assertEqual(store.msg, "Hello from AfterCallClient!")
Dummy flow that uses store.
testStorePersists_CallClient
python
google/grr
grr/server/grr_response_server/flow_base_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base_test.py
Apache-2.0
def testStorePersists_CallClientProto(self): class StoreCallClientProtoFlow( flow_base.FlowBase[flows_pb2.EmptyFlowArgs, tests_pb2.DummyFlowStore] ): """Dummy flow that uses store.""" proto_store_type = tests_pb2.DummyFlowStore def Start(self) -> None: self.store.msg = "Hello from Start!" self.CallClientProto( action_registry.ACTION_STUB_BY_ID["Store"], action_args=jobs_pb2.DataBlob(string="Hey!"), next_state="AfterCallClientProto", ) def AfterCallClientProto(self, responses=None): del responses assert self.store.msg == "Hello from Start!" self.store.msg = "Hello from AfterCallClientProto!" flow = self.setupAndRun(StoreCallClientProtoFlow) self.assertTrue(flow.HasField("store")) store = tests_pb2.DummyFlowStore() flow.store.Unpack(store) self.assertEqual(store.msg, "Hello from AfterCallClientProto!")
Dummy flow that uses store.
testStorePersists_CallClientProto
python
google/grr
grr/server/grr_response_server/flow_base_test.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base_test.py
Apache-2.0
def ProcessMessageHandlerRequests( requests: Sequence[objects_pb2.MessageHandlerRequest], ) -> None: """Processes message handler requests.""" logging.info( "Leased message handler request ids: %s", ",".join(str(r.request_id) for r in requests), ) grouped_requests = collection.Group(requests, lambda r: r.handler_name) for handler_name, requests_for_handler in grouped_requests.items(): requests_for_handler = [ mig_objects.ToRDFMessageHandlerRequest(r) for r in requests_for_handler ] handler_cls = handler_registry.handler_name_map.get(handler_name) if not handler_cls: logging.error("Unknown message handler: %s", handler_name) continue num_requests = len(requests_for_handler) WELL_KNOWN_FLOW_REQUESTS.Increment( fields=[handler_name], delta=num_requests ) try: logging.debug( "Running %d messages for handler %s", num_requests, handler_name ) handler_cls().ProcessMessages(requests_for_handler) except Exception as e: # pylint: disable=broad-except logging.exception( "Exception while processing message handler %s: %s", handler_name, e ) logging.info( "Deleting message handler request ids: %s", ",".join(str(r.request_id) for r in requests), ) data_store.REL_DB.DeleteMessageHandlerRequests(requests)
Processes message handler requests.
ProcessMessageHandlerRequests
python
google/grr
grr/server/grr_response_server/worker_lib.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/worker_lib.py
Apache-2.0
def __init__(self, disabled: bool = False): """Constructor.""" self.disabled = disabled logging.info("Started GRR worker.")
Constructor.
__init__
python
google/grr
grr/server/grr_response_server/worker_lib.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/worker_lib.py
Apache-2.0
def Run(self) -> None: """Event loop.""" if not self.disabled: data_store.REL_DB.RegisterMessageHandler( ProcessMessageHandlerRequests, self.message_handler_lease_time, limit=100, ) data_store.REL_DB.RegisterFlowProcessingHandler(self.ProcessFlow) try: # The main thread just keeps sleeping and listens to keyboard interrupt # events in case the server is running from a console. while True: time.sleep(3600) except KeyboardInterrupt: logging.info("Caught interrupt, exiting.") self.Shutdown()
Event loop.
Run
python
google/grr
grr/server/grr_response_server/worker_lib.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/worker_lib.py
Apache-2.0
def _ReleaseProcessedFlow(self, flow_obj: rdf_flow_objects.Flow) -> bool: """Release a processed flow if the processing deadline is not exceeded.""" rdf_flow = flow_obj.rdf_flow if rdf_flow.processing_deadline < rdfvalue.RDFDatetime.Now(): raise flow_base.FlowError( "Lease expired for flow %s on %s (%s)." % ( rdf_flow.flow_id, rdf_flow.client_id, rdf_flow.processing_deadline, ), ) flow_obj.FlushQueuedMessages() proto_flow = mig_flow_objects.ToProtoFlow(rdf_flow) return data_store.REL_DB.ReleaseProcessedFlow(proto_flow)
Release a processed flow if the processing deadline is not exceeded.
_ReleaseProcessedFlow
python
google/grr
grr/server/grr_response_server/worker_lib.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/worker_lib.py
Apache-2.0
def ProcessFlow( self, flow_processing_request: flows_pb2.FlowProcessingRequest ) -> None: """The callback for the flow processing queue.""" client_id = flow_processing_request.client_id flow_id = flow_processing_request.flow_id data_store.REL_DB.AckFlowProcessingRequests([flow_processing_request]) try: flow = data_store.REL_DB.LeaseFlowForProcessing( client_id, flow_id, processing_time=rdfvalue.Duration.From(6, rdfvalue.HOURS), ) except db.ParentHuntIsNotRunningError: flow_base.TerminateFlow(client_id, flow_id, "Parent hunt stopped.") return rdf_flow = mig_flow_objects.ToRDFFlow(flow) first_request_to_process = rdf_flow.next_request_to_process logging.info( "Processing Flow %s/%s/%d (%s).", client_id, flow_id, first_request_to_process, rdf_flow.flow_class_name, ) flow_cls = registry.FlowRegistry.FlowClassByName(rdf_flow.flow_class_name) flow_obj = flow_cls(rdf_flow) if not flow_obj.IsRunning(): logging.info( "Received a request to process flow %s on client %s that is not " "running.", flow_id, client_id, ) return processed, incrementally_processed = flow_obj.ProcessAllReadyRequests() if processed == 0 and incrementally_processed == 0: raise FlowHasNothingToProcessError( "Unable to process any requests for flow %s on client %s." % (flow_id, client_id) ) while not self._ReleaseProcessedFlow(flow_obj): processed, incrementally_processed = flow_obj.ProcessAllReadyRequests() if processed == 0 and incrementally_processed == 0: raise FlowHasNothingToProcessError( "%s/%s: ReleaseProcessedFlow returned false but no " "request could be processed (next req: %d)." % (client_id, flow_id, flow_obj.rdf_flow.next_request_to_process) ) if flow_obj.IsRunning(): logging.info( "Processing Flow %s/%s/%d (%s) done, next request to process: %d.", client_id, flow_id, first_request_to_process, rdf_flow.flow_class_name, rdf_flow.next_request_to_process, ) else: logging.info( "Processing Flow %s/%s/%d (%s) done, flow is done.", client_id, flow_id, first_request_to_process, rdf_flow.flow_class_name, )
The callback for the flow processing queue.
ProcessFlow
python
google/grr
grr/server/grr_response_server/worker_lib.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/worker_lib.py
Apache-2.0
def CreateBlobStore(self): """Create a test blob store. Returns: A tuple (blob_store, cleanup), where blob_store is an instance of blob_store.BlobStore to be tested and cleanup is a function which destroys blob_store, releasing any resources held by it. """
Create a test blob store. Returns: A tuple (blob_store, cleanup), where blob_store is an instance of blob_store.BlobStore to be tested and cleanup is a function which destroys blob_store, releasing any resources held by it.
CreateBlobStore
python
google/grr
grr/server/grr_response_server/blob_store_test_mixin.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/blob_store_test_mixin.py
Apache-2.0
def FromResponses(cls, request=None, responses=None) -> "Responses": """Creates a Responses object from new style flow request and responses.""" res = cls() res.request = request if request: res.request_data = request.request_data for r in responses or []: if isinstance(r, rdf_flow_objects.FlowResponse): res.responses.append(r.payload) elif isinstance(r, rdf_flow_objects.FlowStatus): res.status = r res.success = r.status == "OK" elif isinstance(r, rdf_flow_objects.FlowIterator): pass else: raise TypeError("Got unexpected response type: %s" % type(r)) return res
Creates a Responses object from new style flow request and responses.
FromResponses
python
google/grr
grr/server/grr_response_server/flow_responses.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_responses.py
Apache-2.0
def FromResponsesProto2Any( cls, responses: Sequence[ Union[ rdf_flow_objects.FlowResponse, rdf_flow_objects.FlowStatus, rdf_flow_objects.FlowIterator, ], ], request: Optional[rdf_flow_objects.FlowRequest] = None, ) -> "Responses[any_pb2.Any]": # pytype: enable=name-error """Creates a `Response` object from raw flow responses. Unlike the `Responses.FromResponses` method, this method does not use any RDF-value magic to deserialize `Any` messages on the fly. Instead, it just passes raw `Any` message as it is stored in the `any_payload` field of the `FlowResponse` message. Args: responses: Flow responses from which to construct this object. request: Flow request to which these responses belong. Returns: Wrapped flow responses. """ result = Responses() if request is not None: result.request = request result.request_data = request.request_data for response in responses: if isinstance(response, rdf_flow_objects.FlowStatus): if result.status is not None: raise ValueError(f"Duplicated status response: {response}") result.success = ( response.status == rdf_flow_objects.FlowStatus.Status.OK ) result.status = response elif isinstance(response, rdf_flow_objects.FlowResponse): result.responses.append(response.any_payload.AsPrimitiveProto()) else: # Note that this also covers `FlowIterator`—it is a legacy class that # should no longer be used and new state methods (that are expected to # trigger this code path) should not rely on it. raise TypeError(f"Unexpected response: {response}") if result.status is None: raise ValueError("Missing status response") return result
Creates a `Response` object from raw flow responses. Unlike the `Responses.FromResponses` method, this method does not use any RDF-value magic to deserialize `Any` messages on the fly. Instead, it just passes raw `Any` message as it is stored in the `any_payload` field of the `FlowResponse` message. Args: responses: Flow responses from which to construct this object. request: Flow request to which these responses belong. Returns: Wrapped flow responses.
FromResponsesProto2Any
python
google/grr
grr/server/grr_response_server/flow_responses.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_responses.py
Apache-2.0
def First(self) -> Optional[T]: """A convenience method to return the first response.""" for x in self: return x
A convenience method to return the first response.
First
python
google/grr
grr/server/grr_response_server/flow_responses.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_responses.py
Apache-2.0
def Last(self) -> Optional[T]: """A convenience method to return the last response.""" *_, last = self return last
A convenience method to return the last response.
Last
python
google/grr
grr/server/grr_response_server/flow_responses.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_responses.py
Apache-2.0
def GetBigQueryClient( service_account_json=None, project_id=None, dataset_id=None ): """Create a BigQueryClient.""" service_account_data = ( service_account_json or config.CONFIG["BigQuery.service_acct_json"] ) project_id = project_id or config.CONFIG["BigQuery.project_id"] dataset_id = dataset_id or config.CONFIG["BigQuery.dataset_id"] if not (service_account_data and project_id and dataset_id): raise RuntimeError( "BigQuery.service_account_json, " "BigQuery.project_id and BigQuery.dataset_id " "must be defined." ) creds = ServiceAccountCredentials.from_json_keyfile_dict( json.loads(service_account_data), scopes=BIGQUERY_SCOPE ) http_obj = httplib2.Http() http_obj = creds.authorize(http_obj) service = discovery.build("bigquery", "v2", http=http_obj) return BigQueryClient( project_id=project_id, bq_service=service, dataset_id=dataset_id )
Create a BigQueryClient.
GetBigQueryClient
python
google/grr
grr/server/grr_response_server/bigquery.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/bigquery.py
Apache-2.0
def CreateDataset(self): """Create a dataset.""" body = { "datasetReference": { "datasetId": self.dataset_id, "description": "Data exported from GRR", "friendlyName": "GRRExportData", "projectId": self.project_id, } } result = ( self.service.datasets() .insert(projectId=self.project_id, body=body) .execute() ) self.datasets[self.dataset_id] = result return result
Create a dataset.
CreateDataset
python
google/grr
grr/server/grr_response_server/bigquery.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/bigquery.py
Apache-2.0
def GetDataset(self, dataset_id): """Get a dataset.""" if dataset_id not in self.datasets: try: result = ( self.service.datasets() .get(projectId=self.project_id, datasetId=dataset_id) .execute() ) self.datasets[dataset_id] = result except errors.HttpError: return None return self.datasets[dataset_id]
Get a dataset.
GetDataset
python
google/grr
grr/server/grr_response_server/bigquery.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/bigquery.py
Apache-2.0
def IsErrorRetryable(self, e): """Return true if we should retry on this error. Default status codes come from this advice: https://developers.google.com/api-client-library/python/guide/media_upload Args: e: errors.HttpError object. Returns: boolean """ return e.resp.status in config.CONFIG["BigQuery.retry_status_codes"]
Return true if we should retry on this error. Default status codes come from this advice: https://developers.google.com/api-client-library/python/guide/media_upload Args: e: errors.HttpError object. Returns: boolean
IsErrorRetryable
python
google/grr
grr/server/grr_response_server/bigquery.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/bigquery.py
Apache-2.0
def InsertData(self, table_id, fd, schema, job_id): """Insert data into a bigquery table. If the table specified doesn't exist, it will be created with the specified schema. Args: table_id: string table id fd: open file descriptor containing the newline separated JSON schema: BigQuery schema dict job_id: string job id Returns: API response object on success, None on failure """ configuration = { "schema": { "fields": schema, }, "destinationTable": { "projectId": self.project_id, "tableId": table_id, "datasetId": self.dataset_id, }, "sourceFormat": "NEWLINE_DELIMITED_JSON", } body = { "configuration": { "load": configuration, }, "jobReference": { "projectId": self.project_id, "jobId": job_id, }, } # File content can be gzipped for bandwidth efficiency. The server handles # it correctly without any changes to the request. mediafile = http.MediaFileUpload( fd.name, mimetype="application/octet-stream" ) job = self.service.jobs().insert( projectId=self.project_id, body=body, media_body=mediafile ) first_try = True @retry.When( errors.HttpError, self.IsErrorRetryable, opts=retry.Opts( attempts=config.CONFIG["BigQuery.retry_max_attempts"], init_delay=config.CONFIG["BigQuery.retry_interval"].AsTimedelta(), backoff=config.CONFIG["BigQuery.retry_multiplier"], ), ) def Execute() -> None: nonlocal first_try try: job.execute() except errors.HttpError: if first_try: first_try = False if self.GetDataset(self.dataset_id): logging.exception("Error with job: %s", job_id) else: # If this is our first export ever, we need to create the dataset. logging.info("Attempting to create dataset: %s", self.dataset_id) self.CreateDataset() raise try: Execute() except errors.HttpError as error: raise BigQueryJobUploadError(f"Failed job '{job_id}'") from error
Insert data into a bigquery table. If the table specified doesn't exist, it will be created with the specified schema. Args: table_id: string table id fd: open file descriptor containing the newline separated JSON schema: BigQuery schema dict job_id: string job id Returns: API response object on success, None on failure
InsertData
python
google/grr
grr/server/grr_response_server/bigquery.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/bigquery.py
Apache-2.0
def ProcessEvents(self, msgs=None, publisher_username=None): """Processes a message for the event."""
Processes a message for the event.
ProcessEvents
python
google/grr
grr/server/grr_response_server/events.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/events.py
Apache-2.0
def PublishEvent(cls, event_name, event, username=None): """Publish the message into all listeners of the event. We send the message to all event handlers which contain this string in their EVENT static member. This allows the event to be sent to multiple interested listeners. Args: event_name: An event name. event: The message to send to the event handler. username: Username of the publisher of the message. Raises: ValueError: If the message is invalid. The message must be a Semantic Value (instance of RDFValue) or a full GrrMessage. """ cls.PublishMultipleEvents({event_name: [event]}, username=username)
Publish the message into all listeners of the event. We send the message to all event handlers which contain this string in their EVENT static member. This allows the event to be sent to multiple interested listeners. Args: event_name: An event name. event: The message to send to the event handler. username: Username of the publisher of the message. Raises: ValueError: If the message is invalid. The message must be a Semantic Value (instance of RDFValue) or a full GrrMessage.
PublishEvent
python
google/grr
grr/server/grr_response_server/events.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/events.py
Apache-2.0
def PublishMultipleEvents(cls, events, username=None): """Publishes multiple messages at once. Args: events: A dict with keys being event names and values being lists of messages. username: Username of the publisher of the messages. Raises: ValueError: If the message is invalid. The message must be a Semantic Value (instance of RDFValue) or a full GrrMessage. """ event_name_map = EventRegistry.EVENT_NAME_MAP for event_name, messages in events.items(): if not isinstance(event_name, str): raise ValueError( "Event names should be string, got: %s" % type(event_name) ) for msg in messages: if not isinstance(msg, rdfvalue.RDFValue): raise ValueError("Can only publish RDFValue instances.") for event_cls in event_name_map.get(event_name, []): event_cls().ProcessEvents(messages, publisher_username=username)
Publishes multiple messages at once. Args: events: A dict with keys being event names and values being lists of messages. username: Username of the publisher of the messages. Raises: ValueError: If the message is invalid. The message must be a Semantic Value (instance of RDFValue) or a full GrrMessage.
PublishMultipleEvents
python
google/grr
grr/server/grr_response_server/events.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/events.py
Apache-2.0
def GetClientIDsForHostnames( hostnames: Iterable[str], ) -> Mapping[str, Sequence[str]]: """Gets all client_ids for a given list of hostnames or FQDNS. Args: hostnames: A list of hostnames / FQDNs. Returns: A dict with a list of all known GRR client_ids for each hostname. """ index = ClientIndex() keywords = set() for hostname in hostnames: if hostname.startswith("host:"): keywords.add(hostname) else: keywords.add("host:%s" % hostname) results = index.ReadClientPostingLists(keywords) result = {} for keyword, hits in results.items(): result[keyword[len("host:") :]] = hits return result
Gets all client_ids for a given list of hostnames or FQDNS. Args: hostnames: A list of hostnames / FQDNs. Returns: A dict with a list of all known GRR client_ids for each hostname.
GetClientIDsForHostnames
python
google/grr
grr/server/grr_response_server/client_index.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/client_index.py
Apache-2.0
def _AnalyzeKeywords(self, keywords): """Extracts a start time from a list of keywords if present.""" start_time = max( rdfvalue.RDFDatetime.Now() - rdfvalue.Duration.From(180, rdfvalue.DAYS), data_store.REL_DB.MinTimestamp(), ) filtered_keywords = [] for k in keywords: if k.startswith(self.START_TIME_PREFIX): try: start_time = rdfvalue.RDFDatetime.FromHumanReadable( k[self.START_TIME_PREFIX_LEN :] ) except ValueError: pass else: filtered_keywords.append(k) if not filtered_keywords: filtered_keywords.append(".") return start_time, filtered_keywords
Extracts a start time from a list of keywords if present.
_AnalyzeKeywords
python
google/grr
grr/server/grr_response_server/client_index.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/client_index.py
Apache-2.0
def LookupClients(self, keywords: Iterable[str]) -> Sequence[str]: """Returns a list of client URNs associated with keywords. Args: keywords: The list of keywords to search by. Returns: A list of client URNs. Raises: ValueError: A string (single keyword) was passed instead of an iterable. """ if isinstance(keywords, str): raise ValueError( "Keywords should be an iterable, not a string (got %s)." % keywords ) start_time, filtered_keywords = self._AnalyzeKeywords(keywords) keyword_map = data_store.REL_DB.ListClientsForKeywords( list(map(self._NormalizeKeyword, filtered_keywords)), start_time=start_time, ) relevant_set = functools.reduce( operator.and_, map(set, keyword_map.values()) ) return sorted(relevant_set)
Returns a list of client URNs associated with keywords. Args: keywords: The list of keywords to search by. Returns: A list of client URNs. Raises: ValueError: A string (single keyword) was passed instead of an iterable.
LookupClients
python
google/grr
grr/server/grr_response_server/client_index.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/client_index.py
Apache-2.0
def ReadClientPostingLists( self, keywords: Iterable[str] ) -> Mapping[str, Sequence[str]]: """Looks up all clients associated with any of the given keywords. Args: keywords: A list of keywords we are interested in. Returns: A dict mapping each keyword to a list of matching clients. """ start_time, filtered_keywords = self._AnalyzeKeywords(keywords) return data_store.REL_DB.ListClientsForKeywords( filtered_keywords, start_time=start_time )
Looks up all clients associated with any of the given keywords. Args: keywords: A list of keywords we are interested in. Returns: A dict mapping each keyword to a list of matching clients.
ReadClientPostingLists
python
google/grr
grr/server/grr_response_server/client_index.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/client_index.py
Apache-2.0
def AnalyzeClient(self, client: rdf_objects.ClientSnapshot) -> Sequence[str]: """Finds the client_id and keywords for a client. Args: client: A ClientSnapshot object record to find keywords for. Returns: A Sequence of keywords related to client. """ # Start with a universal keyword, used to find all clients. # # TODO(user): Remove the universal keyword once we have a better way # to do this, i.e., once we have a storage library which can list all # clients directly. keywords = set(["."]) def TryAppend(prefix, keyword): precondition.AssertType(prefix, str) precondition.AssertType(keyword, str) if keyword: keyword_string = self._NormalizeKeyword(keyword) keywords.add(keyword_string) if prefix: keywords.add(prefix + ":" + keyword_string) def TryAppendPrefixes(prefix, keyword, delimiter): TryAppend(prefix, keyword) segments = keyword.split(delimiter) for i in range(1, len(segments)): TryAppend(prefix, delimiter.join(segments[0:i])) return len(segments) def TryAppendIP(ip): TryAppend("ip", ip) # IP4v? if TryAppendPrefixes("ip", str(ip), ".") == 4: return # IP6v? TryAppendPrefixes("ip", str(ip), ":") def TryAppendMac(mac): TryAppend("mac", mac) if len(mac) == 12: # If looks like a mac address without ":" symbols, also add the keyword # with them. TryAppend("mac", ":".join([mac[i : i + 2] for i in range(0, 12, 2)])) TryAppend("host", client.knowledge_base.fqdn) host = client.knowledge_base.fqdn.split(".", 1)[0] TryAppendPrefixes("host", host, "-") TryAppendPrefixes("host", client.knowledge_base.fqdn, ".") TryAppend("", client.knowledge_base.os) TryAppend("", client.os_release) TryAppend("", client.os_version) TryAppend("", client.kernel) TryAppend("", client.arch) TryAppend("serial_number", client.hardware_info.serial_number) TryAppend("system_uuid", client.hardware_info.system_uuid) kb = client.knowledge_base if kb: for user in kb.users: TryAppend("user", user.username) TryAppend("", user.full_name) if user.full_name: for name in user.full_name.split(): # full_name often includes nicknames and similar, wrapped in # punctuation, e.g. "Thomas 'TJ' Jones". We remove the most common # wrapping characters. TryAppend("", name.strip("\"'()")) for ip in client.GetIPAddresses(): TryAppendIP(ip) for mac in client.GetMacAddresses(): TryAppendMac(mac) client_info = client.startup_info.client_info if client_info: TryAppend("client", client_info.client_name) TryAppend("client", str(client_info.client_version)) if client_info.labels: for label in client_info.labels: TryAppend("label", label) return keywords
Finds the client_id and keywords for a client. Args: client: A ClientSnapshot object record to find keywords for. Returns: A Sequence of keywords related to client.
AnalyzeClient
python
google/grr
grr/server/grr_response_server/client_index.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/client_index.py
Apache-2.0
def AddClient(self, client: rdf_objects.ClientSnapshot): """Adds a client to the index. Args: client: A ClientSnapshot object record. """ keywords = self.AnalyzeClient(client) keywords.add(self._NormalizeKeyword(client.client_id)) data_store.REL_DB.AddClientKeywords(client.client_id, keywords)
Adds a client to the index. Args: client: A ClientSnapshot object record.
AddClient
python
google/grr
grr/server/grr_response_server/client_index.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/client_index.py
Apache-2.0
def MultiAddClientLabels( self, client_ids: Collection[str], labels: Collection[str], ) -> None: """Associates given labels with the specified clients. Args: client_ids: Client identifiers of clients to annotate with the labels. labels: Labels to use for annotating the clients. """ precondition.AssertIterableType(labels, str) keywords = set() for label in labels: keyword_string = self._NormalizeKeyword(label) keywords.add(keyword_string) keywords.add("label:" + keyword_string) data_store.REL_DB.MultiAddClientKeywords(client_ids, keywords)
Associates given labels with the specified clients. Args: client_ids: Client identifiers of clients to annotate with the labels. labels: Labels to use for annotating the clients.
MultiAddClientLabels
python
google/grr
grr/server/grr_response_server/client_index.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/client_index.py
Apache-2.0
def RemoveAllClientLabels(self, client_id: str): """Removes all labels for a given client. Args: client_id: The client_id. """ labels_to_remove = set( [l.name for l in data_store.REL_DB.ReadClientLabels(client_id)] ) self.RemoveClientLabels(client_id, labels_to_remove)
Removes all labels for a given client. Args: client_id: The client_id.
RemoveAllClientLabels
python
google/grr
grr/server/grr_response_server/client_index.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/client_index.py
Apache-2.0
def RemoveClientLabels(self, client_id: str, labels: Iterable[str]): """Removes all labels for a given client. Args: client_id: The client_id. labels: A list of labels to remove. """ for label in labels: keyword = self._NormalizeKeyword(label) # This might actually delete a keyword with the same name as the label (if # there is one). data_store.REL_DB.RemoveClientKeyword(client_id, keyword) data_store.REL_DB.RemoveClientKeyword(client_id, "label:%s" % keyword)
Removes all labels for a given client. Args: client_id: The client_id. labels: A list of labels to remove.
RemoveClientLabels
python
google/grr
grr/server/grr_response_server/client_index.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/client_index.py
Apache-2.0
def Evaluate(self, client_info): """Evaluates the rule represented by this object. Args: client_info: A `db.ClientFullInfo` instance. Returns: A bool value of the evaluation. """ raise NotImplementedError
Evaluates the rule represented by this object. Args: client_info: A `db.ClientFullInfo` instance. Returns: A bool value of the evaluation.
Evaluate
python
google/grr
grr/server/grr_response_server/foreman_rules.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/foreman_rules.py
Apache-2.0
def Evaluate(self, client_info): """Evaluates rules held in the rule set. Args: client_info: A client_info dict as returned by ReadFullInfoClient. Returns: A bool value of the evaluation. Raises: ValueError: The match mode is of unknown value. """ if self.match_mode == ForemanClientRuleSet.MatchMode.MATCH_ALL: quantifier = all elif self.match_mode == ForemanClientRuleSet.MatchMode.MATCH_ANY: quantifier = any else: raise ValueError("Unexpected match mode value: %s" % self.match_mode) return quantifier(rule.Evaluate(client_info) for rule in self.rules)
Evaluates rules held in the rule set. Args: client_info: A client_info dict as returned by ReadFullInfoClient. Returns: A bool value of the evaluation. Raises: ValueError: The match mode is of unknown value.
Evaluate
python
google/grr
grr/server/grr_response_server/foreman_rules.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/foreman_rules.py
Apache-2.0
def hunt_id(self): """Returns hunt id of this rule's actions or None if there's none.""" for action in self.actions or []: if action.hunt_id is not None: return action.hunt_id
Returns hunt id of this rule's actions or None if there's none.
hunt_id
python
google/grr
grr/server/grr_response_server/foreman_rules.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/foreman_rules.py
Apache-2.0
def __init__(self, address, port): """Instantiates a new StatsServer. Args: address: The IP address of the server to bind. port: The TCP port that the server should listen to. """ super().__init__(address, port) self._http_server = None self._server_thread = None
Instantiates a new StatsServer. Args: address: The IP address of the server to bind. port: The TCP port that the server should listen to.
__init__
python
google/grr
grr/server/grr_response_server/stats_server.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/stats_server.py
Apache-2.0
def Start(self): """Start HTTPServer.""" ip = ipaddress.ip_address(self.address) if ip.version == 4: server_cls = http_server.HTTPServer else: server_cls = IPv6HTTPServer try: self._http_server = server_cls( (self.address, self.port), StatsServerHandler, ) except socket.error as e: if e.errno == errno.EADDRINUSE: raise base_stats_server.PortInUseError(self.port) else: raise self._server_thread = threading.Thread( target=self._http_server.serve_forever ) self._server_thread.daemon = True self._server_thread.start()
Start HTTPServer.
Start
python
google/grr
grr/server/grr_response_server/stats_server.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/stats_server.py
Apache-2.0
def Stop(self): """Stops serving statistics.""" self._http_server.shutdown() self._server_thread.join()
Stops serving statistics.
Stop
python
google/grr
grr/server/grr_response_server/stats_server.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/stats_server.py
Apache-2.0
def InitializeStatsServerOnce(): """Starts up a varz server after everything is registered. StatsServer implementation may be overridden. If there's a "stats_server" module present in grr/local directory then grr.local.stats_server.StatsServer implementation will be used instead of a default one. """ address = config.CONFIG["Monitoring.http_address"] # Figure out which port to use. port = config.CONFIG["Monitoring.http_port"] if not port: logging.info("Monitoring server disabled.") return max_port = config.CONFIG.Get("Monitoring.http_port_max", None) if max_port is None: # Use the same number of available ports as the adminui is using. If we # have 10 available for adminui we will need 10 for the stats server. adminui_max_port = config.CONFIG.Get( "AdminUI.port_max", config.CONFIG["AdminUI.port"] ) max_port = port + adminui_max_port - config.CONFIG["AdminUI.port"] try: # pylint: disable=g-import-not-at-top from grr_response_server.local import stats_server # pylint: enable=g-import-not-at-top server_cls = stats_server.StatsServer logging.debug("Using local StatsServer") except ImportError: logging.debug("Using default StatsServer") server_cls = StatsServer for port in range(port, max_port + 1): try: logging.info( "Starting monitoring server on address %s and port %d.", address, port ) server_obj = server_cls(address, port) server_obj.Start() return except base_stats_server.PortInUseError as e: if e.port < max_port: logging.info(e) continue raise
Starts up a varz server after everything is registered. StatsServer implementation may be overridden. If there's a "stats_server" module present in grr/local directory then grr.local.stats_server.StatsServer implementation will be used instead of a default one.
InitializeStatsServerOnce
python
google/grr
grr/server/grr_response_server/stats_server.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/stats_server.py
Apache-2.0
def __init__(self, port): """Instantiates a new PortInUseError. Args: port: The port being used. """ super().__init__("Port {} is already in use.".format(port)) self.port = port
Instantiates a new PortInUseError. Args: port: The port being used.
__init__
python
google/grr
grr/server/grr_response_server/base_stats_server.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/base_stats_server.py
Apache-2.0
def __init__(self, address, port): """Instantiates a new BaseStatsServer. Args: address: The IP address of the server to bind. port: The TCP port that the server should listen to. """ self.address = address self.port = port
Instantiates a new BaseStatsServer. Args: address: The IP address of the server to bind. port: The TCP port that the server should listen to.
__init__
python
google/grr
grr/server/grr_response_server/base_stats_server.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/base_stats_server.py
Apache-2.0
def Start(self): """Starts serving statistics. Raises: PortInUseError: The given port is already used. """ raise NotImplementedError()
Starts serving statistics. Raises: PortInUseError: The given port is already used.
Start
python
google/grr
grr/server/grr_response_server/base_stats_server.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/base_stats_server.py
Apache-2.0
def Stop(self): """Stops serving statistics.""" raise NotImplementedError()
Stops serving statistics.
Stop
python
google/grr
grr/server/grr_response_server/base_stats_server.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/base_stats_server.py
Apache-2.0
def __init__(self, message_queue, pool, name): # fmt: off """Initializer. This creates a new worker object for the ThreadPool class. Args: message_queue: A queue.Queue object used by the ThreadPool class to communicate with the workers. When a new task arrives, the ThreadPool notifies the workers by putting a message into this queue that has the format (target, args, name, queueing_time). target - A callable, the function to call. args - A tuple of positional arguments to target. Keyword arguments are not supported. name - A name for this task. If None, it will be unique generated by the threading library. queueing_time - The timestamp when this task was queued as returned by time.time(). Or, alternatively, the message in the queue can be STOP_MESSAGE which indicates that the worker should terminate. pool: The thread pool this worker belongs to. name: A name for this worker thread. """ # fmt: on super().__init__(name=name) self.pool = pool self._queue = message_queue self.daemon = True self.idle = True self.started = time.time()
Initializer. This creates a new worker object for the ThreadPool class. Args: message_queue: A queue.Queue object used by the ThreadPool class to communicate with the workers. When a new task arrives, the ThreadPool notifies the workers by putting a message into this queue that has the format (target, args, name, queueing_time). target - A callable, the function to call. args - A tuple of positional arguments to target. Keyword arguments are not supported. name - A name for this task. If None, it will be unique generated by the threading library. queueing_time - The timestamp when this task was queued as returned by time.time(). Or, alternatively, the message in the queue can be STOP_MESSAGE which indicates that the worker should terminate. pool: The thread pool this worker belongs to. name: A name for this worker thread.
__init__
python
google/grr
grr/server/grr_response_server/threadpool.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/threadpool.py
Apache-2.0
def ProcessTask(self, target, args, name, queueing_time): """Processes the tasks.""" if self.pool.name: time_in_queue = time.time() - queueing_time THREADPOOL_QUEUEING_TIME.RecordEvent( time_in_queue, fields=[self.pool.name] ) start_time = time.time() try: target(*args) # We can't let a worker die because one of the tasks it has to process # throws an exception. Therefore, we catch every error that is # raised in the call to target(). except Exception: # pylint: disable=broad-except if self.pool.name: THREADPOOL_TASK_EXCEPTIONS.Increment(fields=[self.pool.name]) logging.exception("Caught exception in worker thread (%s)", name) if self.pool.name: total_time = time.time() - start_time THREADPOOL_WORKING_TIME.RecordEvent(total_time, fields=[self.pool.name])
Processes the tasks.
ProcessTask
python
google/grr
grr/server/grr_response_server/threadpool.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/threadpool.py
Apache-2.0
def _RemoveFromPool(self): """Remove ourselves from the pool. Returns: True if removal was possible, and False if it was not possible. """ with self.pool.lock: # Pool is shutting down, we can't interfere. if not self.pool.started: return False # Keep a minimum number of threads in the pool. if len(self.pool) <= self.pool.min_threads: return False # Remove us from our pool. self.pool._RemoveWorker(self.name) # pylint: disable=protected-access return True
Remove ourselves from the pool. Returns: True if removal was possible, and False if it was not possible.
_RemoveFromPool
python
google/grr
grr/server/grr_response_server/threadpool.py
https://github.com/google/grr/blob/master/grr/server/grr_response_server/threadpool.py
Apache-2.0