code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def __init__(
self,
active_dims: tp.Union[list[int], slice, None] = None,
lengthscale: tp.Union[LengthscaleCompatible, nnx.Variable[Lengthscale]] = 1.0,
variance: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
period: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
n_dims: tp.Union[int, None] = None,
compute_engine: AbstractKernelComputation = DenseKernelComputation(),
):
"""Initializes the kernel.
Args:
active_dims: the indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
period: the period of the kernel p.
n_dims: the number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: the computation engine that the kernel uses to compute the
covariance matrix.
"""
if isinstance(period, nnx.Variable):
self.period = period
else:
self.period = PositiveReal(period)
super().__init__(active_dims, lengthscale, variance, n_dims, compute_engine) | Initializes the kernel.
Args:
active_dims: the indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
period: the period of the kernel p.
n_dims: the number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: the computation engine that the kernel uses to compute the
covariance matrix. | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/stationary/periodic.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/stationary/periodic.py | Apache-2.0 |
def __init__(
self,
active_dims: tp.Union[list[int], slice, None] = None,
variance: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
n_dims: tp.Union[int, None] = None,
compute_engine: AbstractKernelComputation = ConstantDiagonalKernelComputation(),
):
"""Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
variance: the variance of the kernel σ.
n_dims: The number of input dimensions.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix
"""
super().__init__(active_dims, 1.0, variance, n_dims, compute_engine) | Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
variance: the variance of the kernel σ.
n_dims: The number of input dimensions.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/stationary/white.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/stationary/white.py | Apache-2.0 |
def __init__(
self,
active_dims: tp.Union[list[int], slice, None] = None,
lengthscale: tp.Union[LengthscaleCompatible, nnx.Variable[Lengthscale]] = 1.0,
variance: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
n_dims: tp.Union[int, None] = None,
compute_engine: AbstractKernelComputation = DenseKernelComputation(),
):
"""Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
n_dims: The number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix.
"""
super().__init__(active_dims, n_dims, compute_engine)
self.n_dims = _validate_lengthscale(lengthscale, self.n_dims)
if isinstance(lengthscale, nnx.Variable):
self.lengthscale = lengthscale
else:
self.lengthscale = PositiveReal(lengthscale)
# static typing
if tp.TYPE_CHECKING:
self.lengthscale = tp.cast(PositiveReal[Lengthscale], self.lengthscale)
if isinstance(variance, nnx.Variable):
self.variance = variance
else:
self.variance = PositiveReal(variance)
# static typing
if tp.TYPE_CHECKING:
self.variance = tp.cast(PositiveReal[ScalarFloat], self.variance) | Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
n_dims: The number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix. | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/stationary/base.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/stationary/base.py | Apache-2.0 |
def _check_lengthscale(lengthscale: tp.Any):
"""Check that the lengthscale is a valid value."""
if isinstance(lengthscale, nnx.Variable):
_check_lengthscale(lengthscale.value)
return
if not isinstance(lengthscale, (int, float, jnp.ndarray, list, tuple)):
raise TypeError(
f"Expected `lengthscale` to be a array-like. Got {lengthscale}."
)
if isinstance(lengthscale, (jnp.ndarray, list)):
ls_shape = jnp.shape(jnp.asarray(lengthscale))
if len(ls_shape) > 1:
raise ValueError(
f"Expected `lengthscale` to be a scalar or 1D array. "
f"Got `lengthscale` with shape {ls_shape}."
) | Check that the lengthscale is a valid value. | _check_lengthscale | python | JaxGaussianProcesses/GPJax | gpjax/kernels/stationary/base.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/stationary/base.py | Apache-2.0 |
def __init__(
self,
active_dims: tp.Union[list[int], slice, None] = None,
lengthscale: tp.Union[LengthscaleCompatible, nnx.Variable[Lengthscale]] = 1.0,
variance: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
alpha: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
n_dims: tp.Union[int, None] = None,
compute_engine: AbstractKernelComputation = DenseKernelComputation(),
):
"""Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
alpha: the alpha parameter of the kernel α.
n_dims: The number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix.
"""
if isinstance(alpha, nnx.Variable):
self.alpha = alpha
else:
self.alpha = PositiveReal(alpha)
super().__init__(active_dims, lengthscale, variance, n_dims, compute_engine) | Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
alpha: the alpha parameter of the kernel α.
n_dims: The number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix. | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/stationary/rational_quadratic.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/stationary/rational_quadratic.py | Apache-2.0 |
def __init__(
self,
active_dims: tp.Union[list[int], slice, None] = None,
lengthscale: tp.Union[LengthscaleCompatible, nnx.Variable[Lengthscale]] = 1.0,
variance: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
power: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
n_dims: tp.Union[int, None] = None,
compute_engine: AbstractKernelComputation = DenseKernelComputation(),
):
"""Initializes the kernel.
Args:
active_dims: the indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
power: the power of the kernel κ.
n_dims: the number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: the computation engine that the kernel uses to compute the
covariance matrix.
"""
if isinstance(power, nnx.Variable):
self.power = power
else:
self.power = SigmoidBounded(power)
super().__init__(active_dims, lengthscale, variance, n_dims, compute_engine) | Initializes the kernel.
Args:
active_dims: the indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
power: the power of the kernel κ.
n_dims: the number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: the computation engine that the kernel uses to compute the
covariance matrix. | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/stationary/powered_exponential.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/stationary/powered_exponential.py | Apache-2.0 |
def __init__(
self,
laplacian: Num[Array, "N N"],
active_dims: tp.Union[list[int], slice, None] = None,
lengthscale: tp.Union[ScalarFloat, Float[Array, " D"], Parameter] = 1.0,
variance: tp.Union[ScalarFloat, Parameter] = 1.0,
smoothness: ScalarFloat = 1.0,
n_dims: tp.Union[int, None] = None,
compute_engine: AbstractKernelComputation = EigenKernelComputation(),
):
"""Initializes the kernel.
Args:
laplacian: the Laplacian matrix of the graph.
active_dims: The indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
smoothness: the smoothness parameter of the Matérn kernel.
n_dims: The number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix.
"""
if isinstance(smoothness, Parameter):
self.smoothness = smoothness
else:
self.smoothness = PositiveReal(smoothness)
self.laplacian = Static(laplacian)
evals, eigenvectors = jnp.linalg.eigh(self.laplacian.value)
self.eigenvectors = Static(eigenvectors)
self.eigenvalues = Static(evals.reshape(-1, 1))
self.num_vertex = self.eigenvalues.value.shape[0]
super().__init__(active_dims, lengthscale, variance, n_dims, compute_engine) | Initializes the kernel.
Args:
laplacian: the Laplacian matrix of the graph.
active_dims: The indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
smoothness: the smoothness parameter of the Matérn kernel.
n_dims: The number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix. | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/non_euclidean/graph.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/non_euclidean/graph.py | Apache-2.0 |
def __post_init__(self):
"""
At initialisation we check that the posterior handlers and datasets are
consistent (i.e. have the same tags), and then initialise the posteriors, optimizing them using the
corresponding datasets.
"""
self.datasets = copy.copy(
self.datasets
) # Ensure initial datasets passed in to DecisionMaker are not mutated from within
if self.batch_size < 1:
raise ValueError(
f"Batch size must be greater than 0, got {self.batch_size}."
)
# Check that posterior handlers and datasets are consistent
if self.posterior_handlers.keys() != self.datasets.keys():
raise ValueError(
"Posterior handlers and datasets must have the same keys. "
f"Got posterior handlers keys {self.posterior_handlers.keys()} and "
f"datasets keys {self.datasets.keys()}."
)
# Initialize posteriors
self.posteriors: Dict[str, AbstractPosterior] = {}
for tag, posterior_handler in self.posterior_handlers.items():
self.posteriors[tag] = posterior_handler.get_posterior(
self.datasets[tag], optimize=True, key=self.key
) | At initialisation we check that the posterior handlers and datasets are
consistent (i.e. have the same tags), and then initialise the posteriors, optimizing them using the
corresponding datasets. | __post_init__ | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/decision_maker.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/decision_maker.py | Apache-2.0 |
def ask(self, key: KeyArray) -> Float[Array, "B D"]:
"""
Get the point(s) to be queried next.
Args:
key (KeyArray): JAX PRNG key for controlling random state.
Returns:
Float[Array, "1 D"]: Point to be queried next
"""
raise NotImplementedError | Get the point(s) to be queried next.
Args:
key (KeyArray): JAX PRNG key for controlling random state.
Returns:
Float[Array, "1 D"]: Point to be queried next | ask | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/decision_maker.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/decision_maker.py | Apache-2.0 |
def tell(self, observation_datasets: Mapping[str, Dataset], key: KeyArray):
"""
Add newly observed data to datasets and update the corresponding posteriors.
Args:
observation_datasets: dictionary of datasets containing new observations.
Tags are used to distinguish datasets, and correspond to tags in
`posterior_handlers` and `self.datasets`.
key: JAX PRNG key for controlling random state.
"""
if observation_datasets.keys() != self.datasets.keys():
raise ValueError(
"Observation datasets and existing datasets must have the same keys. "
f"Got observation datasets keys {observation_datasets.keys()} and "
f"existing datasets keys {self.datasets.keys()}."
)
for tag, observation_dataset in observation_datasets.items():
self.datasets[tag] += observation_dataset
for tag, posterior_handler in self.posterior_handlers.items():
key, _ = jr.split(key)
self.posteriors[tag] = posterior_handler.update_posterior(
self.datasets[tag], self.posteriors[tag], optimize=True, key=key
) | Add newly observed data to datasets and update the corresponding posteriors.
Args:
observation_datasets: dictionary of datasets containing new observations.
Tags are used to distinguish datasets, and correspond to tags in
`posterior_handlers` and `self.datasets`.
key: JAX PRNG key for controlling random state. | tell | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/decision_maker.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/decision_maker.py | Apache-2.0 |
def run(
self, n_steps: int, black_box_function_evaluator: FunctionEvaluator
) -> Mapping[str, Dataset]:
"""
Run the decision making loop continuously for for `n_steps`. This is broken down
into three main steps:
1. Call the `ask` method to get the point to be queried next.
2. Call the `black_box_function_evaluator` to evaluate the black box functions
of interest at the point chosen to be queried.
3. Call the `tell` method to update the datasets and posteriors with the newly
observed data.
In addition to this, after the `ask` step, the functions in the `post_ask` list
are executed, taking as arguments the decision maker and the point chosen to be
queried next. Similarly, after the `tell` step, the functions in the `post_tell`
list are executed, taking the decision maker as the sole argument.
Args:
n_steps (int): Number of steps to run the decision making loop for.
black_box_function_evaluator (FunctionEvaluator): Function evaluator which
evaluates the black box functions of interest at supplied points.
Returns:
Mapping[str, Dataset]: Dictionary of datasets containing the observations
made throughout the decision making loop, as well as the initial data
supplied when initialising the `DecisionMaker`.
"""
for _ in range(n_steps):
query_point = self.ask(self.key)
for post_ask_method in self.post_ask:
post_ask_method(self, query_point)
self.key, _ = jr.split(self.key)
observation_datasets = black_box_function_evaluator(query_point)
self.tell(observation_datasets, self.key)
for post_tell_method in self.post_tell:
post_tell_method(self)
return self.datasets | Run the decision making loop continuously for for `n_steps`. This is broken down
into three main steps:
1. Call the `ask` method to get the point to be queried next.
2. Call the `black_box_function_evaluator` to evaluate the black box functions
of interest at the point chosen to be queried.
3. Call the `tell` method to update the datasets and posteriors with the newly
observed data.
In addition to this, after the `ask` step, the functions in the `post_ask` list
are executed, taking as arguments the decision maker and the point chosen to be
queried next. Similarly, after the `tell` step, the functions in the `post_tell`
list are executed, taking the decision maker as the sole argument.
Args:
n_steps (int): Number of steps to run the decision making loop for.
black_box_function_evaluator (FunctionEvaluator): Function evaluator which
evaluates the black box functions of interest at supplied points.
Returns:
Mapping[str, Dataset]: Dictionary of datasets containing the observations
made throughout the decision making loop, as well as the initial data
supplied when initialising the `DecisionMaker`. | run | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/decision_maker.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/decision_maker.py | Apache-2.0 |
def ask(self, key: KeyArray) -> Float[Array, "B D"]:
"""
Get updated utility function(s) and return the point(s) which maximises it/them. This
method also stores the utility function(s) in
`self.current_utility_functions` so that they can be accessed after the ask
function has been called. This is useful for non-deterministic utility
functions, which may differ between calls to `ask` due to the splitting of
`self.key`.
Note that in general `SinglePointUtilityFunction`s are only capable of
generating one point to be queried at each iteration of the decision making loop
(i.e. `self.batch_size` must be 1). However, Thompson sampling can be used in a
batched setting by drawing a batch of different samples from the GP posterior.
This is done by calling `build_utility_function` with different keys
sequentilly, and optimising each of these individual samples in sequence in
order to obtain `self.batch_size` points to query next.
Args:
key (KeyArray): JAX PRNG key for controlling random state.
Returns:
Float[Array, "B D"]: Point(s) to be queried next.
"""
self.current_utility_functions = []
maximizers = []
# We currently only allow Thompson sampling to be run with batch size > 1. More
# batched utility functions may be added in the future.
if isinstance(self.utility_function_builder, ThompsonSampling) or (
(not isinstance(self.utility_function_builder, ThompsonSampling))
and (self.batch_size == 1)
):
# Draw 'self.batch_size' Thompson samples and optimize each of them in order to
# obtain 'self.batch_size' points to query next.
for _ in range(self.batch_size):
decision_function = (
self.utility_function_builder.build_utility_function(
self.posteriors, self.datasets, key
)
)
self.current_utility_functions.append(decision_function)
_, key = jr.split(key)
maximizer = self.utility_maximizer.maximize(
decision_function, self.search_space, key
)
maximizers.append(maximizer)
_, key = jr.split(key)
maximizers = jnp.concatenate(maximizers)
return maximizers
else:
raise NotImplementedError(
"Only Thompson sampling currently supports batch size > 1."
) | Get updated utility function(s) and return the point(s) which maximises it/them. This
method also stores the utility function(s) in
`self.current_utility_functions` so that they can be accessed after the ask
function has been called. This is useful for non-deterministic utility
functions, which may differ between calls to `ask` due to the splitting of
`self.key`.
Note that in general `SinglePointUtilityFunction`s are only capable of
generating one point to be queried at each iteration of the decision making loop
(i.e. `self.batch_size` must be 1). However, Thompson sampling can be used in a
batched setting by drawing a batch of different samples from the GP posterior.
This is done by calling `build_utility_function` with different keys
sequentilly, and optimising each of these individual samples in sequence in
order to obtain `self.batch_size` points to query next.
Args:
key (KeyArray): JAX PRNG key for controlling random state.
Returns:
Float[Array, "B D"]: Point(s) to be queried next. | ask | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/decision_maker.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/decision_maker.py | Apache-2.0 |
def build_function_evaluator(
functions: Dict[str, Callable[[Float[Array, "N D"]], Float[Array, "N 1"]]],
) -> FunctionEvaluator:
"""
Takes a dictionary of functions and returns a `FunctionEvaluator` which can be
used to evaluate each of the functions at a supplied set of points and return a
dictionary of datasets storing the evaluated points.
"""
return lambda x: {tag: Dataset(x, f(x)) for tag, f in functions.items()} | Takes a dictionary of functions and returns a `FunctionEvaluator` which can be
used to evaluate each of the functions at a supplied set of points and return a
dictionary of datasets storing the evaluated points. | build_function_evaluator | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utils.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utils.py | Apache-2.0 |
def get_best_latent_observation_val(
posterior: AbstractPosterior, dataset: Dataset
) -> Float[Array, ""]:
"""
Takes a posterior and dataset and returns the best (latent) function value in the
dataset, corresponding to the minimum of the posterior mean value evaluated at
locations in the dataset. In the noiseless case, this corresponds to the minimum
value in the dataset.
"""
return jnp.min(posterior(dataset.X, dataset).mean()) | Takes a posterior and dataset and returns the best (latent) function value in the
dataset, corresponding to the minimum of the posterior mean value evaluated at
locations in the dataset. In the noiseless case, this corresponds to the minimum
value in the dataset. | get_best_latent_observation_val | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utils.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utils.py | Apache-2.0 |
def get_posterior(
self, dataset: Dataset, optimize: bool, key: Optional[KeyArray] = None
) -> AbstractPosterior:
"""
Initialise (and optionally optimize) a posterior using the given dataset.
Args:
dataset: dataset to get posterior for.
optimize: whether to optimize the posterior hyperparameters.
key: a JAX PRNG key which is used for optimizing the posterior
hyperparameters.
Returns:
Posterior for the given dataset.
"""
posterior = self.prior * self.likelihood_builder(dataset.n)
if optimize:
if key is None:
raise ValueError(
"A key must be provided in order to optimize the posterior."
)
posterior = self._optimize_posterior(posterior, dataset, key)
return posterior | Initialise (and optionally optimize) a posterior using the given dataset.
Args:
dataset: dataset to get posterior for.
optimize: whether to optimize the posterior hyperparameters.
key: a JAX PRNG key which is used for optimizing the posterior
hyperparameters.
Returns:
Posterior for the given dataset. | get_posterior | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/posterior_handler.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/posterior_handler.py | Apache-2.0 |
def update_posterior(
self,
dataset: Dataset,
previous_posterior: AbstractPosterior,
optimize: bool,
key: Optional[KeyArray] = None,
) -> AbstractPosterior:
"""
Update the given posterior with the given dataset. This needs to be done when
the number of datapoints in the (training) dataset of the posterior changes, as
the `AbstractLikelihood` class requires the number of datapoints to be specified.
Hyperparameters may or may not be optimized, depending on the value of the
`optimize` parameter. Note that the updated poterior will be initialised with
the same prior hyperparameters as the previous posterior, but the likelihood
will be re-initialised with the new number of datapoints, and hyperparameters
set as in the `likelihood_builder` function.
Args:
dataset: dataset to get posterior for.
previous_posterior: posterior being updated. This is supplied as one may
wish to simply increase the number of datapoints in the likelihood, without
optimizing the posterior hyperparameters, in which case the previous
posterior can be used to obtain the previously set prior hyperparameters.
optimize: whether to optimize the posterior hyperparameters.
key: A JAX PRNG key which is used for optimizing the posterior
hyperparameters.
"""
posterior = previous_posterior.prior * self.likelihood_builder(dataset.n)
if optimize:
if key is None:
raise ValueError(
"A key must be provided in order to optimize the posterior."
)
posterior = self._optimize_posterior(posterior, dataset, key)
return posterior | Update the given posterior with the given dataset. This needs to be done when
the number of datapoints in the (training) dataset of the posterior changes, as
the `AbstractLikelihood` class requires the number of datapoints to be specified.
Hyperparameters may or may not be optimized, depending on the value of the
`optimize` parameter. Note that the updated poterior will be initialised with
the same prior hyperparameters as the previous posterior, but the likelihood
will be re-initialised with the new number of datapoints, and hyperparameters
set as in the `likelihood_builder` function.
Args:
dataset: dataset to get posterior for.
previous_posterior: posterior being updated. This is supplied as one may
wish to simply increase the number of datapoints in the likelihood, without
optimizing the posterior hyperparameters, in which case the previous
posterior can be used to obtain the previously set prior hyperparameters.
optimize: whether to optimize the posterior hyperparameters.
key: A JAX PRNG key which is used for optimizing the posterior
hyperparameters. | update_posterior | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/posterior_handler.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/posterior_handler.py | Apache-2.0 |
def _optimize_posterior(
self, posterior: AbstractPosterior, dataset: Dataset, key: KeyArray
) -> AbstractPosterior:
"""
Takes a posterior and corresponding dataset and optimizes the posterior using the
GPJax `fit` method.
Args:
posterior: Posterior being optimized.
dataset: Dataset used for optimizing posterior.
key: A JAX PRNG key for generating random numbers.
Returns:
Optimized posterior.
"""
opt_posterior, _ = gpx.fit(
model=posterior,
objective=self.optimization_objective,
train_data=dataset,
optim=self.optimizer,
num_iters=self.num_optimization_iters,
safe=True,
key=key,
verbose=False,
)
return opt_posterior | Takes a posterior and corresponding dataset and optimizes the posterior using the
GPJax `fit` method.
Args:
posterior: Posterior being optimized.
dataset: Dataset used for optimizing posterior.
key: A JAX PRNG key for generating random numbers.
Returns:
Optimized posterior. | _optimize_posterior | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/posterior_handler.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/posterior_handler.py | Apache-2.0 |
def sample(self, num_points: int, key: KeyArray) -> Float[Array, "N D"]:
"""Sample points from the search space.
Args:
num_points (int): Number of points to be sampled from the search space.
key (KeyArray): JAX PRNG key.
Returns:
Float[Array, "N D"]: `num_points` points sampled from the search space.
"""
raise NotImplementedError | Sample points from the search space.
Args:
num_points (int): Number of points to be sampled from the search space.
key (KeyArray): JAX PRNG key.
Returns:
Float[Array, "N D"]: `num_points` points sampled from the search space. | sample | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/search_space.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/search_space.py | Apache-2.0 |
def dimensionality(self) -> int:
"""Dimensionality of the search space.
Returns:
int: Dimensionality of the search space.
"""
raise NotImplementedError | Dimensionality of the search space.
Returns:
int: Dimensionality of the search space. | dimensionality | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/search_space.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/search_space.py | Apache-2.0 |
def sample(self, num_points: int, key: KeyArray) -> Float[Array, "N D"]:
"""Sample points from the search space using a Halton sequence.
Args:
num_points (int): Number of points to be sampled from the search space.
key (KeyArray): JAX PRNG key.
Returns:
Float[Array, "N D"]: `num_points` points sampled using the Halton sequence
from the search space.
"""
if num_points <= 0:
raise ValueError("Number of points must be greater than 0.")
initial_sample = tfp.mcmc.sample_halton_sequence(
dim=self.dimensionality, num_results=num_points, seed=key
)
return (
self.lower_bounds + (self.upper_bounds - self.lower_bounds) * initial_sample
) | Sample points from the search space using a Halton sequence.
Args:
num_points (int): Number of points to be sampled from the search space.
key (KeyArray): JAX PRNG key.
Returns:
Float[Array, "N D"]: `num_points` points sampled using the Halton sequence
from the search space. | sample | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/search_space.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/search_space.py | Apache-2.0 |
def _get_discrete_maximizer(
query_points: Float[Array, "N D"], utility_function: SinglePointUtilityFunction
) -> Float[Array, "1 D"]:
"""Get the point which maximises the utility function evaluated at a given set of points.
Args:
query_points: set of points at which to evaluate the utility function, as an array
of shape `[n_points, n_dims]`.
utility_function: the single point utility function to be evaluated at `query_points`.
Returns:
Array of shape `[1, n_dims]` representing the point which maximises the utility function.
"""
utility_function_values = utility_function(query_points)
max_utility_function_value_idx = jnp.argmax(
utility_function_values, axis=0, keepdims=True
)
best_sample_point = jnp.take_along_axis(
query_points, max_utility_function_value_idx, axis=0
)
return best_sample_point | Get the point which maximises the utility function evaluated at a given set of points.
Args:
query_points: set of points at which to evaluate the utility function, as an array
of shape `[n_points, n_dims]`.
utility_function: the single point utility function to be evaluated at `query_points`.
Returns:
Array of shape `[1, n_dims]` representing the point which maximises the utility function. | _get_discrete_maximizer | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utility_maximizer.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utility_maximizer.py | Apache-2.0 |
def maximize(
self,
utility_function: SinglePointUtilityFunction,
search_space: AbstractSearchSpace,
key: KeyArray,
) -> Float[Array, "1 D"]:
"""Maximize the given utility function over the search space provided.
Args:
utility_function: utility function to be maximized.
search_space: search space over which to maximize the utility function.
key: JAX PRNG key.
Returns:
Float[Array, "1 D"]: Point at which the utility function is maximized.
"""
raise NotImplementedError | Maximize the given utility function over the search space provided.
Args:
utility_function: utility function to be maximized.
search_space: search space over which to maximize the utility function.
key: JAX PRNG key.
Returns:
Float[Array, "1 D"]: Point at which the utility function is maximized. | maximize | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utility_maximizer.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utility_maximizer.py | Apache-2.0 |
def _scalar_utility_function(x: Float[Array, "1 D"]) -> ScalarFloat:
"""
The Jaxopt minimizer requires a function which returns a scalar. It calls the
utility function with one point at a time, so the utility function
returns an array of shape [1, 1], so we index to return a scalar. Note that
we also return the negative of the utility function - this is because
utility functions should be *maximimized* but the Jaxopt minimizer
minimizes functions.
"""
return -utility_function(x)[0][0] | The Jaxopt minimizer requires a function which returns a scalar. It calls the
utility function with one point at a time, so the utility function
returns an array of shape [1, 1], so we index to return a scalar. Note that
we also return the negative of the utility function - this is because
utility functions should be *maximimized* but the Jaxopt minimizer
minimizes functions. | maximize._scalar_utility_function | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utility_maximizer.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utility_maximizer.py | Apache-2.0 |
def maximize(
self,
utility_function: SinglePointUtilityFunction,
search_space: ContinuousSearchSpace,
key: KeyArray,
) -> Float[Array, "1 D"]:
max_observed_utility_function_value = None
maximizer = None
for _ in range(self.num_restarts):
key, _ = jr.split(key)
initial_sample_points = search_space.sample(
self.num_initial_samples, key=key
)
best_initial_sample_point = _get_discrete_maximizer(
initial_sample_points, utility_function
)
def _scalar_utility_function(x: Float[Array, "1 D"]) -> ScalarFloat:
"""
The Jaxopt minimizer requires a function which returns a scalar. It calls the
utility function with one point at a time, so the utility function
returns an array of shape [1, 1], so we index to return a scalar. Note that
we also return the negative of the utility function - this is because
utility functions should be *maximimized* but the Jaxopt minimizer
minimizes functions.
"""
return -utility_function(x)[0][0]
lbfgsb = ScipyBoundedMinimize(
fun=_scalar_utility_function, method="l-bfgs-b"
)
bounds = (search_space.lower_bounds, search_space.upper_bounds)
optimized_point = lbfgsb.run(
best_initial_sample_point, bounds=bounds
).params
optimized_utility_function_value = _scalar_utility_function(optimized_point)
if (max_observed_utility_function_value is None) or (
optimized_utility_function_value > max_observed_utility_function_value
):
max_observed_utility_function_value = optimized_utility_function_value
maximizer = optimized_point
return maximizer | The Jaxopt minimizer requires a function which returns a scalar. It calls the
utility function with one point at a time, so the utility function
returns an array of shape [1, 1], so we index to return a scalar. Note that
we also return the negative of the utility function - this is because
utility functions should be *maximimized* but the Jaxopt minimizer
minimizes functions. | maximize | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utility_maximizer.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utility_maximizer.py | Apache-2.0 |
def generate_dataset(
self, num_points: int, key: KeyArray, obs_stddev: float = 0.0
) -> Dataset:
"""
Generate a toy dataset from the test function.
Args:
num_points (int): Number of points to sample.
key (KeyArray): JAX PRNG key.
obs_stddev (float): (Optional) standard deviation of Gaussian distributed
noise added to observations.
Returns:
Dataset: Dataset of points sampled from the test function.
"""
X = self.search_space.sample(num_points=num_points, key=key)
gaussian_noise = tfp.distributions.Normal(
jnp.zeros(num_points), obs_stddev * jnp.ones(num_points)
)
y = self.evaluate(X) + jnp.transpose(
gaussian_noise.sample(sample_shape=[1], seed=key)
)
return Dataset(X=X, y=y) | Generate a toy dataset from the test function.
Args:
num_points (int): Number of points to sample.
key (KeyArray): JAX PRNG key.
obs_stddev (float): (Optional) standard deviation of Gaussian distributed
noise added to observations.
Returns:
Dataset: Dataset of points sampled from the test function. | generate_dataset | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/test_functions/continuous_functions.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/test_functions/continuous_functions.py | Apache-2.0 |
def generate_test_points(
self, num_points: int, key: KeyArray
) -> Float[Array, "N D"]:
"""
Generate test points from the search space of the test function.
Args:
num_points (int): Number of points to sample.
key (KeyArray): JAX PRNG key.
Returns:
Float[Array, 'N D']: Test points sampled from the search space.
"""
return self.search_space.sample(num_points=num_points, key=key) | Generate test points from the search space of the test function.
Args:
num_points (int): Number of points to sample.
key (KeyArray): JAX PRNG key.
Returns:
Float[Array, 'N D']: Test points sampled from the search space. | generate_test_points | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/test_functions/continuous_functions.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/test_functions/continuous_functions.py | Apache-2.0 |
def evaluate(self, x: Float[Array, "N D"]) -> Float[Array, "N 1"]:
"""
Evaluate the test function at a set of points.
Args:
x (Float[Array, 'N D']): Points to evaluate the test function at.
Returns:
Float[Array, 'N 1']: Values of the test function at the points.
"""
raise NotImplementedError | Evaluate the test function at a set of points.
Args:
x (Float[Array, 'N D']): Points to evaluate the test function at.
Returns:
Float[Array, 'N 1']: Values of the test function at the points. | evaluate | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/test_functions/continuous_functions.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/test_functions/continuous_functions.py | Apache-2.0 |
def generate_dataset(self, num_points: int, key: KeyArray) -> Dataset:
"""
Generate a toy dataset from the test function.
Args:
num_points (int): Number of points to sample.
key (KeyArray): JAX PRNG key.
Returns:
Dataset: Dataset of points sampled from the test function.
"""
X = self.search_space.sample(num_points=num_points, key=key)
y = self.evaluate(X)
return Dataset(X=X, y=y) | Generate a toy dataset from the test function.
Args:
num_points (int): Number of points to sample.
key (KeyArray): JAX PRNG key.
Returns:
Dataset: Dataset of points sampled from the test function. | generate_dataset | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/test_functions/non_conjugate_functions.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/test_functions/non_conjugate_functions.py | Apache-2.0 |
def generate_test_points(
self, num_points: int, key: KeyArray
) -> Float[Array, "N D"]:
"""
Generate test points from the search space of the test function.
Args:
num_points (int): Number of points to sample.
key (KeyArray): JAX PRNG key.
Returns:
Float[Array, 'N D']: Test points sampled from the search space.
"""
return self.search_space.sample(num_points=num_points, key=key) | Generate test points from the search space of the test function.
Args:
num_points (int): Number of points to sample.
key (KeyArray): JAX PRNG key.
Returns:
Float[Array, 'N D']: Test points sampled from the search space. | generate_test_points | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/test_functions/non_conjugate_functions.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/test_functions/non_conjugate_functions.py | Apache-2.0 |
def evaluate(self, x: Float[Array, "N 1"]) -> Int[Array, "N 1"]:
"""
Evaluate the test function at a set of points. Function taken from
https://docs.jaxgaussianprocesses.com/_examples/poisson/#dataset.
Args:
x (Float[Array, 'N D']): Points to evaluate the test function at.
Returns:
Float[Array, 'N 1']: Values of the test function at the points.
"""
key = jr.key(42)
f = lambda x: 2.0 * jnp.sin(3 * x) + 0.5 * x
return jr.poisson(key, jnp.exp(f(x))) | Evaluate the test function at a set of points. Function taken from
https://docs.jaxgaussianprocesses.com/_examples/poisson/#dataset.
Args:
x (Float[Array, 'N D']): Points to evaluate the test function at.
Returns:
Float[Array, 'N 1']: Values of the test function at the points. | evaluate | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/test_functions/non_conjugate_functions.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/test_functions/non_conjugate_functions.py | Apache-2.0 |
def build_utility_function(
self,
posteriors: Mapping[str, ConjugatePosterior],
datasets: Mapping[str, Dataset],
key: KeyArray,
) -> SinglePointUtilityFunction:
"""
Constructs the probability of improvement utility function
using the predictive posterior of the objective function.
Args:
posteriors (Mapping[str, AbstractPosterior]): Dictionary of posteriors to be
used to form the utility function. One of the posteriors must correspond
to the `OBJECTIVE` key, as we sample from the objective posterior to form
the utility function.
datasets (Mapping[str, Dataset]): Dictionary of datasets which may be used
to form the utility function. Keys in `datasets` should correspond to
keys in `posteriors`. One of the datasets must correspond
to the `OBJECTIVE` key.
key (KeyArray): JAX PRNG key used for random number generation. Since
the probability of improvement is computed deterministically
from the predictive posterior, the key is not used.
Returns:
SinglePointUtilityFunction: the probability of improvement utility function.
"""
self.check_objective_present(posteriors, datasets)
objective_posterior = posteriors[OBJECTIVE]
if not isinstance(objective_posterior, ConjugatePosterior):
raise ValueError(
"Objective posterior must be a ConjugatePosterior to compute the Probability of Improvement using a Gaussian CDF."
)
objective_dataset = datasets[OBJECTIVE]
if (
objective_dataset.X is None
or objective_dataset.n == 0
or objective_dataset.y is None
):
raise ValueError(
"Objective dataset must be non-empty to compute the "
"Probability of Improvement (since we need a "
"`best_y` value)."
)
def probability_of_improvement(x_test: Num[Array, "N D"]):
best_y = get_best_latent_observation_val(
objective_posterior, objective_dataset
)
predictive_dist = objective_posterior.predict(x_test, objective_dataset)
normal_dist = tfp.distributions.Normal(
loc=predictive_dist.mean(),
scale=predictive_dist.stddev(),
)
return normal_dist.cdf(best_y).reshape(-1, 1)
return probability_of_improvement | Constructs the probability of improvement utility function
using the predictive posterior of the objective function.
Args:
posteriors (Mapping[str, AbstractPosterior]): Dictionary of posteriors to be
used to form the utility function. One of the posteriors must correspond
to the `OBJECTIVE` key, as we sample from the objective posterior to form
the utility function.
datasets (Mapping[str, Dataset]): Dictionary of datasets which may be used
to form the utility function. Keys in `datasets` should correspond to
keys in `posteriors`. One of the datasets must correspond
to the `OBJECTIVE` key.
key (KeyArray): JAX PRNG key used for random number generation. Since
the probability of improvement is computed deterministically
from the predictive posterior, the key is not used.
Returns:
SinglePointUtilityFunction: the probability of improvement utility function. | build_utility_function | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utility_functions/probability_of_improvement.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utility_functions/probability_of_improvement.py | Apache-2.0 |
def build_utility_function(
self,
posteriors: Mapping[str, ConjugatePosterior],
datasets: Mapping[str, Dataset],
key: KeyArray,
) -> SinglePointUtilityFunction:
"""
Draw an approximate sample from the posterior of the objective model and return
the *negative* of this sample as a utility function, as utility functions
are *maximised*.
Args:
posteriors (Mapping[str, ConjugatePosterior]): Dictionary of posteriors to
be used to form the utility function. One of the posteriors must correspond
to the `OBJECTIVE` key, as we sample from the objective posterior to form
the utility function.
datasets (Mapping[str, Dataset]): Dictionary of datasets which may be used
to form the utility function. Keys in `datasets` should correspond to
keys in `posteriors`. One of the datasets must correspond
to the `OBJECTIVE` key.
key (KeyArray): JAX PRNG key used for random number generation. This can be
changed to draw different samples.
Returns:
SinglePointUtilityFunction: An appproximate sample from the objective model
posterior to to be *maximised* in order to decide which point to query
next.
"""
self.check_objective_present(posteriors, datasets)
objective_posterior = posteriors[OBJECTIVE]
if not isinstance(objective_posterior, ConjugatePosterior):
raise ValueError(
"Objective posterior must be a ConjugatePosterior to draw an approximate sample."
)
objective_dataset = datasets[OBJECTIVE]
thompson_sample = objective_posterior.sample_approx(
num_samples=1,
train_data=objective_dataset,
key=key,
num_features=self.num_features,
)
return lambda x: -1.0 * thompson_sample(x) # Utility functions are *maximised* | Draw an approximate sample from the posterior of the objective model and return
the *negative* of this sample as a utility function, as utility functions
are *maximised*.
Args:
posteriors (Mapping[str, ConjugatePosterior]): Dictionary of posteriors to
be used to form the utility function. One of the posteriors must correspond
to the `OBJECTIVE` key, as we sample from the objective posterior to form
the utility function.
datasets (Mapping[str, Dataset]): Dictionary of datasets which may be used
to form the utility function. Keys in `datasets` should correspond to
keys in `posteriors`. One of the datasets must correspond
to the `OBJECTIVE` key.
key (KeyArray): JAX PRNG key used for random number generation. This can be
changed to draw different samples.
Returns:
SinglePointUtilityFunction: An appproximate sample from the objective model
posterior to to be *maximised* in order to decide which point to query
next. | build_utility_function | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utility_functions/thompson_sampling.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utility_functions/thompson_sampling.py | Apache-2.0 |
def check_objective_present(
self,
posteriors: Mapping[str, AbstractPosterior],
datasets: Mapping[str, Dataset],
) -> None:
"""
Check that the objective posterior and dataset are present in the posteriors and
datasets.
Args:
posteriors: dictionary of posteriors to be used to form the utility function.
datasets: dictionary of datasets which may be used to form the utility function.
Raises:
ValueError: If the objective posterior or dataset are not present in the
posteriors or datasets.
"""
if OBJECTIVE not in posteriors.keys():
raise ValueError("Objective posterior not found in posteriors")
elif OBJECTIVE not in datasets.keys():
raise ValueError("Objective dataset not found in datasets") | Check that the objective posterior and dataset are present in the posteriors and
datasets.
Args:
posteriors: dictionary of posteriors to be used to form the utility function.
datasets: dictionary of datasets which may be used to form the utility function.
Raises:
ValueError: If the objective posterior or dataset are not present in the
posteriors or datasets. | check_objective_present | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utility_functions/base.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utility_functions/base.py | Apache-2.0 |
def build_utility_function(
self,
posteriors: Mapping[str, AbstractPosterior],
datasets: Mapping[str, Dataset],
key: KeyArray,
) -> SinglePointUtilityFunction:
"""
Build a `UtilityFunction` from a set of posteriors and datasets.
Args:
posteriors: dictionary of posteriors to be used to form the utility function.
datasets: dictionary of datasets which may be used to form the utility function.
key: JAX PRNG key used for random number generation.
Returns:
SinglePointUtilityFunction: Utility function to be *maximised* in order to
decide which point to query next.
"""
raise NotImplementedError | Build a `UtilityFunction` from a set of posteriors and datasets.
Args:
posteriors: dictionary of posteriors to be used to form the utility function.
datasets: dictionary of datasets which may be used to form the utility function.
key: JAX PRNG key used for random number generation.
Returns:
SinglePointUtilityFunction: Utility function to be *maximised* in order to
decide which point to query next. | build_utility_function | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utility_functions/base.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utility_functions/base.py | Apache-2.0 |
def process_file(file: Path, out_file: Path | None = None, execute: bool = False):
"""Converts a python file to markdown using jupytext and nbconvert."""
out_dir = out_file.parent
command = f"cd {out_dir.as_posix()} && "
out_file = out_file.relative_to(out_dir).as_posix()
if execute:
command += f"jupytext --to ipynb {file} --output - "
command += (
f"| jupyter nbconvert --to markdown --execute --stdin --output {out_file}"
)
else:
command += f"jupytext --to markdown {file} --output {out_file}"
subprocess.run(command, shell=True, check=False) | Converts a python file to markdown using jupytext and nbconvert. | process_file | python | JaxGaussianProcesses/GPJax | docs/scripts/gen_examples.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/docs/scripts/gen_examples.py | Apache-2.0 |
def is_modified(file: Path, out_file: Path):
"""Check if the output file is older than the input file."""
return out_file.exists() and out_file.stat().st_mtime < file.stat().st_mtime | Check if the output file is older than the input file. | is_modified | python | JaxGaussianProcesses/GPJax | docs/scripts/gen_examples.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/docs/scripts/gen_examples.py | Apache-2.0 |
def confidence_ellipse(x, y, ax, n_std=3.0, facecolor="none", **kwargs):
"""
Create a plot of the covariance confidence ellipse of *x* and *y*.
Parameters
----------
x, y : array-like, shape (n, )
Input data.
ax : matplotlib.axes.Axes
The axes object to draw the ellipse into.
n_std : float
The number of standard deviations to determine the ellipse's radiuses.
**kwargs
Forwarded to `~matplotlib.patches.Ellipse`
Returns
-------
matplotlib.patches.Ellipse
"""
x = np.array(x)
y = np.array(y)
if x.size != y.size:
raise ValueError("x and y must be the same size")
cov = np.cov(x, y)
pearson = cov[0, 1] / np.sqrt(cov[0, 0] * cov[1, 1])
# Using a special case to obtain the eigenvalues of this
# two-dimensionl dataset.
ell_radius_x = np.sqrt(1 + pearson)
ell_radius_y = np.sqrt(1 - pearson)
ellipse = Ellipse(
(0, 0),
width=ell_radius_x * 2,
height=ell_radius_y * 2,
facecolor=facecolor,
**kwargs,
)
# Calculating the stdandard deviation of x from
# the squareroot of the variance and multiplying
# with the given number of standard deviations.
scale_x = np.sqrt(cov[0, 0]) * n_std
mean_x = np.mean(x)
# calculating the stdandard deviation of y ...
scale_y = np.sqrt(cov[1, 1]) * n_std
mean_y = np.mean(y)
transf = (
transforms.Affine2D()
.rotate_deg(45)
.scale(scale_x, scale_y)
.translate(mean_x, mean_y)
)
ellipse.set_transform(transf + ax.transData)
return ax.add_patch(ellipse) | Create a plot of the covariance confidence ellipse of *x* and *y*.
Parameters
----------
x, y : array-like, shape (n, )
Input data.
ax : matplotlib.axes.Axes
The axes object to draw the ellipse into.
n_std : float
The number of standard deviations to determine the ellipse's radiuses.
**kwargs
Forwarded to `~matplotlib.patches.Ellipse`
Returns
-------
matplotlib.patches.Ellipse | confidence_ellipse | python | JaxGaussianProcesses/GPJax | examples/utils.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/examples/utils.py | Apache-2.0 |
def pytest_addoption(parser):
"""Define pytest command-line option"""
group = parser.getgroup("jupyter_book")
group.addoption(
"--jb-tempdir",
dest="jb_tempdir",
default=None,
help="Specify a directory in which to create tempdirs",
) | Define pytest command-line option | pytest_addoption | python | jupyter-book/jupyter-book | conftest.py | https://github.com/jupyter-book/jupyter-book/blob/master/conftest.py | BSD-3-Clause |
def test_myst_init(cli: CliRunner, temp_with_override):
"""Test adding myst metadata to text files."""
path = temp_with_override.joinpath("tmp.md").absolute()
text = "TEST"
with open(path, "w") as ff:
ff.write(text)
init_myst_file(path, kernel="python3")
# Make sure it runs properly. Default kernel should be python3
new_text = path.read_text(encoding="utf8")
assert "format_name: myst" in new_text
assert "TEST" == new_text.strip().split("\n")[-1]
assert "name: python3" in new_text
# Make sure the CLI works too
with warnings.catch_warnings():
warnings.simplefilter("error")
result = cli.invoke(myst_init, f"{path} --kernel python3".split())
# old versions of jupytext give: UserWarning: myst-parse failed unexpectedly
assert result.exit_code == 0
# Non-existent kernel
with pytest.raises(Exception) as err:
init_myst_file(path, kernel="blah")
assert "Did not find kernel: blah" in str(err)
# Missing file
with pytest.raises(Exception) as err:
init_myst_file(path.joinpath("MISSING"), kernel="python3")
assert "Markdown file not found:" in str(err) | Test adding myst metadata to text files. | test_myst_init | python | jupyter-book/jupyter-book | tests/test_utils.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_utils.py | BSD-3-Clause |
def test_toc_startwithlist(cli: CliRunner, temp_with_override, file_regression):
"""Testing a basic _toc.yml for tableofcontents directive"""
path_output = temp_with_override.joinpath("mybook").absolute()
# Regular TOC should work
p_toc = path_books.joinpath("toc")
path_toc = p_toc.joinpath("_toc_startwithlist.yml")
result = cli.invoke(
build,
[
p_toc.as_posix(),
"--path-output",
path_output.as_posix(),
"--toc",
path_toc.as_posix(),
"-W",
],
)
# print(result.output)
assert result.exit_code == 0
path_toc_directive = path_output.joinpath("_build", "html", "index.html")
# print(path_toc_directive.read_text(encoding="utf8"))
# get the tableofcontents markup
soup = BeautifulSoup(path_toc_directive.read_text(encoding="utf8"), "html.parser")
toc = soup.find_all("div", class_="toctree-wrapper")
assert len(toc) == 1
file_regression.check(toc[0].prettify(), extension=".html", encoding="utf8") | Testing a basic _toc.yml for tableofcontents directive | test_toc_startwithlist | python | jupyter-book/jupyter-book | tests/test_tocdirective.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_tocdirective.py | BSD-3-Clause |
def test_toc_parts(cli: CliRunner, temp_with_override, file_regression):
"""Testing `header` in _toc.yml"""
path_input = temp_with_override.joinpath("mybook_input").absolute()
path_output = temp_with_override.joinpath("mybook").absolute()
# Regular TOC should work
p_toc = path_books.joinpath("toc")
shutil.copytree(p_toc, path_input)
# setup correct files
(path_input / "subfolder" / "asubpage.md").unlink()
for i in range(4):
(path_input / "subfolder" / f"asubpage{i+1}.md").write_text(
f"# A subpage {i+1}\n", encoding="utf8"
)
path_toc = path_input.joinpath("_toc_parts.yml")
result = cli.invoke(
build,
[
path_input.as_posix(),
"--path-output",
path_output.as_posix(),
"--toc",
path_toc.as_posix(),
"-W",
],
)
# print(result.output)
assert result.exit_code == 0
path_index = path_output.joinpath("_build", "html", "index.html")
# get the tableofcontents markup
soup = BeautifulSoup(path_index.read_text(encoding="utf8"), "html.parser")
toc = soup.find_all("div", class_="toctree-wrapper")
assert len(toc) == 2
file_regression.check(
toc[0].prettify(),
basename="test_toc_parts_directive",
extension=f"{SPHINX_VERSION}.html",
encoding="utf8",
)
# check the sidebar structure is correct
file_regression.check(
soup.select(".bd-links")[0].prettify(),
basename="test_toc_parts_sidebar",
extension=f"{SPHINX_VERSION}.html",
encoding="utf8",
) | Testing `header` in _toc.yml | test_toc_parts | python | jupyter-book/jupyter-book | tests/test_tocdirective.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_tocdirective.py | BSD-3-Clause |
def test_toc_urllink(cli: CliRunner, temp_with_override, file_regression):
"""Testing with additional `url` link key in _toc.yml"""
path_output = temp_with_override.joinpath("mybook").absolute()
# Regular TOC should work
p_toc = path_books.joinpath("toc")
path_toc = p_toc.joinpath("_toc_urllink.yml")
result = cli.invoke(
build,
[
p_toc.as_posix(),
"--path-output",
path_output.as_posix(),
"--toc",
path_toc.as_posix(),
],
)
print(result.output)
assert result.exit_code == 0
path_toc_directive = path_output.joinpath("_build", "html", "index.html")
# get the tableofcontents markup
soup = BeautifulSoup(path_toc_directive.read_text(encoding="utf8"), "html.parser")
toc = soup.find_all("div", class_="toctree-wrapper")
assert len(toc) == 1
file_regression.check(toc[0].prettify(), extension=".html", encoding="utf8") | Testing with additional `url` link key in _toc.yml | test_toc_urllink | python | jupyter-book/jupyter-book | tests/test_tocdirective.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_tocdirective.py | BSD-3-Clause |
def test_toc_latex_parts(cli: CliRunner, temp_with_override, file_regression):
"""Testing LaTex output"""
path_input = temp_with_override.joinpath("mybook_input").absolute()
path_output = temp_with_override.joinpath("mybook").absolute()
# Regular TOC should work
p_toc = path_books.joinpath("toc")
shutil.copytree(p_toc, path_input)
# setup correct files
(path_input / "subfolder" / "asubpage.md").unlink()
for i in range(4):
(path_input / "subfolder" / f"asubpage{i+1}.md").write_text(
f"# A subpage {i+1}\n", encoding="utf8"
)
path_toc = path_input.joinpath("_toc_parts.yml")
result = cli.invoke(
build,
[
path_input.as_posix(),
"--path-output",
path_output.as_posix(),
"--toc",
path_toc.as_posix(),
"--builder",
"pdflatex",
"-W",
],
)
assert result.exit_code == 0, result.output
# reading the tex file
path_output_file = path_output.joinpath("_build", "latex", "toc-tests.tex")
file_content = TexSoup(path_output_file.read_text())
# checking the table of contents which is a list with '\begin{itemize}'
itemizes = file_content.find_all("itemize")
file_regression.check(
str(itemizes[0]) + "\n" + str(itemizes[1]), extension=".tex", encoding="utf8"
) | Testing LaTex output | test_toc_latex_parts | python | jupyter-book/jupyter-book | tests/test_tocdirective.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_tocdirective.py | BSD-3-Clause |
def test_toc_latex_urllink(cli: CliRunner, temp_with_override, file_regression):
"""Testing LaTex output"""
path_output = temp_with_override.joinpath("mybook").absolute()
# Regular TOC should work
p_toc = path_books.joinpath("toc")
path_toc = p_toc.joinpath("_toc_urllink.yml")
result = cli.invoke(
build,
[
p_toc.as_posix(),
"--path-output",
path_output.as_posix(),
"--toc",
path_toc.as_posix(),
"--builder",
"pdflatex",
],
)
assert result.exit_code == 0, result.output
# reading the tex file
path_output_file = path_output.joinpath("_build", "latex", "toc-tests.tex")
file_content = TexSoup(path_output_file.read_text())
# checking the table of contents which is a list with the first '\begin{itemize}'
file_regression.check(str(file_content.itemize), extension=".tex", encoding="utf8") | Testing LaTex output | test_toc_latex_urllink | python | jupyter-book/jupyter-book | tests/test_tocdirective.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_tocdirective.py | BSD-3-Clause |
def build_resources(temp_with_override):
"""Copys ./books and ./books/tocs to a temporary directory and yields the paths
as `pathlib.Path` objects.
"""
src = Path(__file__).parent.resolve().joinpath("books").absolute()
dst = temp_with_override / "books"
shutil.copytree(src, dst)
yield Path(dst), Path(dst) / "toc"
shutil.rmtree(dst) | Copys ./books and ./books/tocs to a temporary directory and yields the paths
as `pathlib.Path` objects. | build_resources | python | jupyter-book/jupyter-book | tests/conftest.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/conftest.py | BSD-3-Clause |
def pages(temp_with_override):
"""Copys ./pages to a temporary directory and yields the path as a `pathlib.Path`
object.
"""
src = Path(__file__).parent.joinpath("pages").absolute()
dst = temp_with_override / "pages"
shutil.copytree(src, dst)
yield Path(dst)
shutil.rmtree(dst) | Copys ./pages to a temporary directory and yields the path as a `pathlib.Path`
object. | pages | python | jupyter-book/jupyter-book | tests/conftest.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/conftest.py | BSD-3-Clause |
def cli():
"""Provides a click.testing CliRunner object for invoking CLI commands."""
runner = CliRunner()
yield runner
del runner | Provides a click.testing CliRunner object for invoking CLI commands. | cli | python | jupyter-book/jupyter-book | tests/conftest.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/conftest.py | BSD-3-Clause |
def test_build_from_template(temp_with_override, cli):
"""Test building the book template and a few test configs."""
# Create the book from the template
book = temp_with_override / "new_book"
_ = cli.invoke(commands.create, book.as_posix())
build_result = cli.invoke(
commands.build, [book.as_posix(), "-n", "-W", "--keep-going"]
)
assert build_result.exit_code == 0, build_result.output
html = book.joinpath("_build", "html")
assert html.joinpath("index.html").exists()
assert html.joinpath("intro.html").exists() | Test building the book template and a few test configs. | test_build_from_template | python | jupyter-book/jupyter-book | tests/test_build.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_build.py | BSD-3-Clause |
def test_build_dirhtml_from_template(temp_with_override, cli):
"""Test building the book template with dirhtml."""
# Create the book from the template
book = temp_with_override / "new_book"
_ = cli.invoke(commands.create, book.as_posix())
build_result = cli.invoke(
commands.build, [book.as_posix(), "-n", "-W", "--builder", "dirhtml"]
)
assert build_result.exit_code == 0, build_result.output
html = book.joinpath("_build", "dirhtml")
assert html.joinpath("index.html").exists()
assert html.joinpath("intro", "index.html").exists() | Test building the book template with dirhtml. | test_build_dirhtml_from_template | python | jupyter-book/jupyter-book | tests/test_build.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_build.py | BSD-3-Clause |
def test_build_singlehtml_from_template(temp_with_override, cli):
"""Test building the book template with singlehtml."""
# Create the book from the template
book = temp_with_override / "new_book"
_ = cli.invoke(commands.create, book.as_posix())
build_result = cli.invoke(
commands.build, [book.as_posix(), "-n", "-W", "--builder", "singlehtml"]
)
# TODO: Remove when docutils>=0.20 is pinned in jupyter-book
# https://github.com/mcmtroffaes/sphinxcontrib-bibtex/issues/322
if (0, 18) <= docutils.__version_info__ < (0, 20):
assert build_result.exit_code == 1, build_result.output
else:
assert build_result.exit_code == 0, build_result.output
html = book.joinpath("_build", "singlehtml")
assert html.joinpath("index.html").exists()
assert html.joinpath("intro.html").exists() | Test building the book template with singlehtml. | test_build_singlehtml_from_template | python | jupyter-book/jupyter-book | tests/test_build.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_build.py | BSD-3-Clause |
def test_custom_config(cli, build_resources):
"""Test a variety of custom configuration values."""
books, _ = build_resources
config = books.joinpath("config")
result = cli.invoke(commands.build, [config.as_posix(), "-n", "-W", "--keep-going"])
assert result.exit_code == 0, result.output
html = config.joinpath("_build", "html", "index.html").read_text(encoding="utf8")
soup = BeautifulSoup(html, "html.parser")
assert '<p class="title logo__title">TEST PROJECT NAME</p>' in html
assert '<div class="tab-set docutils">' in html
assert '<link rel="stylesheet" type="text/css" href="_static/mycss.css" />' in html
assert '<script src="_static/js/myjs.js"></script>' in html
# Check that our comments engines were correctly added
assert soup.find("script", attrs={"kind": "hypothesis"})
assert soup.find("script", attrs={"kind": "utterances"}) | Test a variety of custom configuration values. | test_custom_config | python | jupyter-book/jupyter-book | tests/test_build.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_build.py | BSD-3-Clause |
def test_toc_builds(cli, build_resources, toc):
"""Test building the book template with several different TOC files."""
books, tocs = build_resources
result = cli.invoke(
commands.build,
[tocs.as_posix(), "--toc", (tocs / toc).as_posix(), "-n", "-W", "--keep-going"],
)
assert result.exit_code == 0, result.output | Test building the book template with several different TOC files. | test_toc_builds | python | jupyter-book/jupyter-book | tests/test_build.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_build.py | BSD-3-Clause |
def test_toc_rebuild(cli, build_resources):
"""Changes to the TOC should force a re-build of pages. Also tests for changes
to the relative ordering of content pages.
"""
_, tocs = build_resources
toc = tocs / "_toc_simple.yml"
index_html = tocs.joinpath("_build", "html", "index.html")
# Not using -W because we expect warnings for pages not listed in TOC
result = cli.invoke(
commands.build,
[tocs.as_posix(), "--toc", toc.as_posix(), "-n"],
)
html = BeautifulSoup(index_html.read_text(encoding="utf8"), "html.parser")
tags = html.find_all("a", "reference internal")
assert result.exit_code == 0, result.output
assert tags[1].attrs["href"] == "content1.html"
assert tags[2].attrs["href"] == "content2.html"
# Clean build manually (to avoid caching of sidebar)
build_path = tocs.joinpath("_build")
shutil.rmtree(build_path)
# Build with secondary ToC
toc = tocs / "_toc_simple_changed.yml"
result = cli.invoke(
commands.build,
[tocs.as_posix(), "--toc", toc.as_posix(), "-n"],
)
assert result.exit_code == 0, result.output
html = BeautifulSoup(index_html.read_text(encoding="utf8"), "html.parser")
tags = html.find_all("a", "reference internal")
# The rendered TOC should reflect the order in the modified _toc.yml
assert tags[1].attrs["href"] == "content2.html"
assert tags[2].attrs["href"] == "content1.html" | Changes to the TOC should force a re-build of pages. Also tests for changes
to the relative ordering of content pages. | test_toc_rebuild | python | jupyter-book/jupyter-book | tests/test_build.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_build.py | BSD-3-Clause |
def test_build_page(pages, cli):
"""Test building a page."""
page = pages.joinpath("single_page.ipynb")
html = pages.joinpath("_build", "_page", "single_page", "html")
index = html.joinpath("index.html")
result = cli.invoke(commands.build, [page.as_posix(), "-n", "-W", "--keep-going"])
assert result.exit_code == 0, result.output
assert html.joinpath("single_page.html").exists()
assert not html.joinpath("extra_page.html").exists()
assert 'url=single_page.html" />' in index.read_text(encoding="utf8") | Test building a page. | test_build_page | python | jupyter-book/jupyter-book | tests/test_build.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_build.py | BSD-3-Clause |
def test_build_page_nested(build_resources, cli):
"""Test building a page."""
books, _ = build_resources
src = books.joinpath("nested")
page = src.joinpath("contents", "markdown.md")
html = src.joinpath("_build", "_page", "contents-markdown", "html")
index = html.joinpath("index.html")
result = cli.invoke(commands.build, [page.as_posix(), "-n", "-W", "--keep-going"])
assert result.exit_code == 0, result.output
assert html.joinpath("markdown.html").exists()
assert not html.joinpath("extra_page.html").exists()
assert 'url=markdown.html" />' in index.read_text(encoding="utf8") | Test building a page. | test_build_page_nested | python | jupyter-book/jupyter-book | tests/test_build.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_build.py | BSD-3-Clause |
def test_execution_timeout(pages, build_resources, cli):
"""Testing timeout execution for a page."""
books, _ = build_resources
path_page = pages.joinpath("loop_unrun.ipynb")
path_c = books.joinpath("config", "_config_timeout.yml")
path_html = pages.joinpath("_build", "_page", "loop_unrun", "html")
result = cli.invoke(
commands.build,
[
path_page.as_posix(),
"--config",
path_c.as_posix(),
"-n",
"-W",
"--keep-going",
],
)
assert "Executing notebook failed:" in result.stdout
assert path_html.joinpath("reports", "loop_unrun.err.log").exists() | Testing timeout execution for a page. | test_execution_timeout | python | jupyter-book/jupyter-book | tests/test_build.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_build.py | BSD-3-Clause |
def test_build_using_custom_builder(cli, build_resources):
"""Test building the book template using a custom builder"""
books, _ = build_resources
config = books.joinpath("config_custombuilder")
result = cli.invoke(
commands.build,
[
config.as_posix(),
"--builder=custom",
"--custom-builder=mycustombuilder",
"-n",
"-W",
"--keep-going",
],
)
assert result.exit_code == 0, result.output
html = config.joinpath("_build", "mycustombuilder", "index.html").read_text(
encoding="utf8"
)
assert '<p class="title logo__title">TEST PROJECT NAME</p>' in html
assert '<link rel="stylesheet" type="text/css" href="_static/mycss.css" />' in html
assert '<script src="_static/js/myjs.js"></script>' in html | Test building the book template using a custom builder | test_build_using_custom_builder | python | jupyter-book/jupyter-book | tests/test_build.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_build.py | BSD-3-Clause |
def test_toc_numbered(
toc_file: str, cli: CliRunner, temp_with_override, file_regression
):
"""Testing that numbers make it into the sidebar"""
path_output = temp_with_override.joinpath("book1").absolute()
p_toc = PATH_BOOKS.joinpath("toc")
path_toc = p_toc.joinpath(toc_file)
result = cli.invoke(
commands.build,
[
p_toc.as_posix(),
"--path-output",
path_output.as_posix(),
"--toc",
path_toc.as_posix(),
"-W",
],
)
assert result.exit_code == 0, result.output
path_toc_directive = path_output.joinpath("_build", "html", "index.html")
# get the tableofcontents markup
soup = BeautifulSoup(path_toc_directive.read_text(encoding="utf8"), "html.parser")
toc = soup.select("nav.bd-links")[0]
file_regression.check(
toc.prettify(),
basename=toc_file.split(".")[0],
extension=f"{SPHINX_VERSION}.html",
) | Testing that numbers make it into the sidebar | test_toc_numbered | python | jupyter-book/jupyter-book | tests/test_build.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_build.py | BSD-3-Clause |
def test_toc_numbered_multitoc_numbering_false(
toc_file, cli, build_resources, file_regression
):
"""Testing use_multitoc_numbering: false"""
books, tocs = build_resources
config = books.joinpath("config").joinpath("_config_sphinx_multitoc_numbering.yml")
toc = tocs.joinpath(toc_file)
# TODO: commented out because of the issue described below. Uncomment when it is resolved.
# Issue #1339: There is an issue when using CliRunner and building projects
# that make use of --config. The internal state of Sphinx appears to
# be correct, but the written outputs (i.e. html) are not correct
# suggesting some type of caching is going on.
# result = cli.invoke(
# commands.build,
# [
# tocs.as_posix(),
# "--path-output",
# books.as_posix(),
# "--toc",
# toc.as_posix(),
# "--config",
# config.as_posix(),
# "-W",
# ],
# )
# assert result.exit_code == 0, result.output
process = subprocess.Popen(
[
"jb",
"build",
tocs.as_posix(),
"--path-output",
books.as_posix(),
"--toc",
toc.as_posix(),
"--config",
config.as_posix(),
"-W",
],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
stdout, stderr = process.communicate()
assert process.returncode == 0, stderr
path_toc_directive = books.joinpath("_build", "html", "index.html")
# get the tableofcontents markup
soup = BeautifulSoup(path_toc_directive.read_text(encoding="utf8"), "html.parser")
toc = soup.select("nav.bd-links")[0]
file_regression.check(
toc.prettify(),
basename=toc_file.split(".")[0] + "_multitoc_numbering_false",
extension=f"{SPHINX_VERSION}.html",
) | Testing use_multitoc_numbering: false | test_toc_numbered_multitoc_numbering_false | python | jupyter-book/jupyter-book | tests/test_sphinx_multitoc_numbering.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_sphinx_multitoc_numbering.py | BSD-3-Clause |
def test_toc_fail(cli: CliRunner, build_resources):
"""Folder with no content should return none"""
books, tocs = build_resources
p_empty = tocs.parent
result = cli.invoke(create_toc, [p_empty.as_posix()])
assert result.exit_code != 0
assert isinstance(result.exception, OSError)
assert "path does not contain a root file" in str(result.exception) | Folder with no content should return none | test_toc_fail | python | jupyter-book/jupyter-book | tests/test_toc.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_toc.py | BSD-3-Clause |
def init_myst_file(path, kernel, verbose=True):
"""Initialize a file with a Jupytext header that marks it as MyST markdown.
Parameters
----------
path : string
A path to a markdown file to be initialized for Jupytext
kernel : string
A kernel name to add to the markdown file. See a list of kernel names with
`jupyter kernelspec list`.
"""
try:
from jupytext.cli import jupytext
except ImportError:
raise ImportError(
"In order to use myst markdown features, " "please install jupytext first."
)
if not Path(path).exists():
raise FileNotFoundError(f"Markdown file not found: {path}")
kernels = list(find_kernel_specs().keys())
kernels_text = "\n".join(kernels)
if kernel is None:
if len(kernels) > 1:
_error(
"There are multiple kernel options, so you must give one manually."
" with `--kernel`\nPlease specify one of the following kernels.\n\n"
f"{kernels_text}"
)
else:
kernel = kernels[0]
if kernel not in kernels:
raise ValueError(
f"Did not find kernel: {kernel}\nPlease specify one of the "
f"installed kernels:\n\n{kernels_text}"
)
args = (str(path), "-q", "--set-kernel", kernel, "--set-formats", "myst")
jupytext(args)
if verbose:
print(f"Initialized file: {path}\nWith kernel: {kernel}") | Initialize a file with a Jupytext header that marks it as MyST markdown.
Parameters
----------
path : string
A path to a markdown file to be initialized for Jupytext
kernel : string
A kernel name to add to the markdown file. See a list of kernel names with
`jupyter kernelspec list`. | init_myst_file | python | jupyter-book/jupyter-book | jupyter_book/utils.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/utils.py | BSD-3-Clause |
def get_default_sphinx_config():
"""Some configuration values that are really sphinx-specific."""
return dict(
extensions=[
"sphinx_togglebutton",
"sphinx_copybutton",
"myst_nb",
"jupyter_book",
"sphinx_thebe",
"sphinx_comments",
"sphinx_external_toc",
"sphinx.ext.intersphinx",
"sphinx_design",
"sphinx_book_theme",
],
pygments_style="sphinx",
html_theme="sphinx_book_theme",
html_theme_options={"search_bar_text": "Search this book..."},
html_sourcelink_suffix="",
numfig=True,
recursive_update=False,
suppress_warnings=["myst.domains"],
) | Some configuration values that are really sphinx-specific. | get_default_sphinx_config | python | jupyter-book/jupyter-book | jupyter_book/config.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/config.py | BSD-3-Clause |
def validate_yaml(yaml: dict, raise_on_errors=False, print_func=print):
"""Validate the YAML configuration against a JSON schema."""
errors = sorted(get_validator().iter_errors(yaml), key=lambda e: e.path)
error_msg = "\n".join(
[
"- {} [key path: '{}']".format(
error.message, "/".join([str(p) for p in error.path])
)
for error in errors
]
)
if not errors:
return
if raise_on_errors:
raise jsonschema.ValidationError(error_msg)
return _message_box(
f"Warning: Validation errors in config:\n{error_msg}",
color="orange",
print_func=print_func,
) | Validate the YAML configuration against a JSON schema. | validate_yaml | python | jupyter-book/jupyter-book | jupyter_book/config.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/config.py | BSD-3-Clause |
def get_final_config(
*,
user_yaml: Optional[Union[dict, Path]] = None,
cli_config: Optional[dict] = None,
sourcedir: Optional[Path] = None,
validate: bool = True,
raise_on_invalid: bool = False,
use_external_toc: bool = True,
):
"""Create the final configuration dictionary, to parser to sphinx
:param user_config_path: A path to a YAML file written by the user
:param cli_config: Configuration coming directly from the CLI
:param sourcedir: path to source directory.
If it contains a `_static` folder, we ad that to the final `html_static_path`
:param validate: Validate user yaml against the data schema
:param raise_on_invalid: Raise a ValidationError, or only log a warning
Order of precedence is:
1. CLI Sphinx Configuration
2. User JB(YAML) Configuration
3. Default JB (YAML) Configuration
4. Default Sphinx Configuration
"""
# get the default sphinx configuration
sphinx_config = get_default_sphinx_config()
# get the default yaml configuration
yaml_config, default_yaml_update, add_paths = yaml_to_sphinx(
yaml.safe_load(PATH_YAML_DEFAULT.read_text(encoding="utf8"))
)
yaml_config.update(default_yaml_update)
# if available, get the user defined configuration
user_yaml_recurse, user_yaml_update = {}, {}
user_yaml_path = None
if user_yaml:
if isinstance(user_yaml, Path):
user_yaml_path = user_yaml
user_yaml = yaml.safe_load(user_yaml.read_text(encoding="utf8"))
else:
user_yaml = user_yaml
if validate:
validate_yaml(user_yaml, raise_on_errors=raise_on_invalid)
user_yaml_recurse, user_yaml_update, add_paths = yaml_to_sphinx(user_yaml)
# add paths from yaml config
if user_yaml_path:
for path in add_paths:
path = (user_yaml_path.parent / path).resolve()
sys.path.append(path.as_posix())
# first merge the user yaml into the default yaml
_recursive_update(yaml_config, user_yaml_recurse)
# then merge this into the default sphinx config
_recursive_update(sphinx_config, yaml_config)
# TODO: deprecate this in version 0.14
# https://github.com/executablebooks/jupyter-book/issues/1502
if "mathjax_config" in user_yaml_update:
# Switch off warning if user has specified mathjax v2
if (
"mathjax_path" in user_yaml_update
and "@2" in user_yaml_update["mathjax_path"]
):
# use mathjax2_config so not to trigger deprecation warning in future
user_yaml_update["mathjax2_config"] = user_yaml_update.pop("mathjax_config")
else:
_message_box(
(
f"[Warning] Mathjax configuration has changed for sphinx>=4.0 [Using sphinx: {sphinx.__version__}]\n" # noqa: E501
"Your _config.yml needs to be updated:\n" # noqa: E501
"mathjax_config -> mathjax3_config\n" # noqa: E501
"To continue using `mathjax v2` you will need to use the `mathjax_path` configuration\n" # noqa: E501
"\n"
"See Sphinx Documentation:\n"
"https://www.sphinx-doc.org/en/master/usage/extensions/math.html#module-sphinx.ext.mathjax" # noqa: E501
),
color="orange",
print_func=print,
)
# Automatically make the configuration name substitution so older projects build
user_yaml_update["mathjax3_config"] = user_yaml_update.pop("mathjax_config")
# Recursively update sphinx config if option is specified,
# otherwise forcefully override options non-recursively
if sphinx_config.pop("recursive_update") is True:
_recursive_update(sphinx_config, user_yaml_update)
else:
sphinx_config.update(user_yaml_update)
# This is to deal with a special case, where the override needs to be applied after
# the sphinx app is initialised (since the default is a function)
# TODO I'm not sure if there is a better way to deal with this?
config_meta = {
"latex_doc_overrides": sphinx_config.pop("latex_doc_overrides"),
"latex_individualpages": cli_config.pop("latex_individualpages"),
}
if sphinx_config.get("use_jupyterbook_latex"):
sphinx_config["extensions"].append("sphinx_jupyterbook_latex")
# Add sphinx_multitoc_numbering extension if necessary
if sphinx_config.get("use_multitoc_numbering"):
sphinx_config["extensions"].append("sphinx_multitoc_numbering")
# finally merge in CLI configuration
_recursive_update(sphinx_config, cli_config or {})
# Initialize static files
if sourcedir and Path(sourcedir).joinpath("_static").is_dir():
# Add the `_static` folder to html_static_path, only if it exists
paths_static = sphinx_config.get("html_static_path", [])
paths_static.append("_static")
sphinx_config["html_static_path"] = paths_static
# Search the static files paths and initialize any CSS or JS files.
for path in paths_static:
path = Path(sourcedir).joinpath(path)
for path_css in path.rglob("*.css"):
css_files = sphinx_config.get("html_css_files", [])
css_files.append((path_css.relative_to(path)).as_posix())
sphinx_config["html_css_files"] = css_files
for path_js in path.rglob("*.js"):
js_files = sphinx_config.get("html_js_files", [])
js_files.append((path_js.relative_to(path)).as_posix())
sphinx_config["html_js_files"] = js_files
if not use_external_toc:
# TODO perhaps a better logic for this?
# remove all configuration related to sphinx_external_toc
try:
idx = sphinx_config["extensions"].index("sphinx_external_toc")
except ValueError:
pass
else:
sphinx_config["extensions"].pop(idx)
sphinx_config.pop("external_toc_path", None)
sphinx_config.pop("external_toc_exclude_missing", None)
return sphinx_config, config_meta | Create the final configuration dictionary, to parser to sphinx
:param user_config_path: A path to a YAML file written by the user
:param cli_config: Configuration coming directly from the CLI
:param sourcedir: path to source directory.
If it contains a `_static` folder, we ad that to the final `html_static_path`
:param validate: Validate user yaml against the data schema
:param raise_on_invalid: Raise a ValidationError, or only log a warning
Order of precedence is:
1. CLI Sphinx Configuration
2. User JB(YAML) Configuration
3. Default JB (YAML) Configuration
4. Default Sphinx Configuration | get_final_config | python | jupyter-book/jupyter-book | jupyter_book/config.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/config.py | BSD-3-Clause |
def yaml_to_sphinx(yaml: dict):
"""Convert a Jupyter Book style config structure into a Sphinx config dict.
:returns: (recursive_updates, override_updates, add_paths)
add_paths collects paths that are specified in the _config.yml (such as those
provided in local_extensions) and returns them for adding to sys.path in
a context where the _config.yml path is known
"""
sphinx_config = {}
# top-level, string type
YAML_TRANSLATIONS = {
"title": "html_title",
"author": "author",
"copyright": "copyright",
"logo": "html_logo",
"project": "project",
}
for key, newkey in YAML_TRANSLATIONS.items():
if key in yaml:
val = yaml.get(key)
if val is None:
val = ""
sphinx_config[newkey] = val
# exclude patterns
if "exclude_patterns" in yaml:
# we always include these excludes, so as not to break back-compatibility
defaults = {"_build", "Thumbs.db", ".DS_Store", "**.ipynb_checkpoints"}
defaults.update(yaml["exclude_patterns"])
sphinx_config["exclude_patterns"] = list(sorted(defaults))
if "only_build_toc_files" in yaml:
sphinx_config["external_toc_exclude_missing"] = yaml["only_build_toc_files"]
# Theme
sphinx_config["html_theme_options"] = theme_options = {}
if "launch_buttons" in yaml:
theme_options["launch_buttons"] = yaml["launch_buttons"]
repository_config = yaml.get("repository", {})
for spx_key, yml_key in [
("path_to_docs", "path_to_book"),
("repository_url", "url"),
("repository_branch", "branch"),
]:
if yml_key in repository_config:
theme_options[spx_key] = repository_config[yml_key]
# HTML
html = yaml.get("html")
if html:
for spx_key, yml_key in [
("html_favicon", "favicon"),
("html_baseurl", "baseurl"),
("comments_config", "comments"),
("use_multitoc_numbering", "use_multitoc_numbering"),
]:
if yml_key in html:
sphinx_config[spx_key] = html[yml_key]
for spx_key, yml_key in [
("navbar_footer_text", "navbar_footer_text"),
# Deprecate navbar_footer_text after a release cycle
("extra_footer", "extra_footer"),
("home_page_in_toc", "home_page_in_navbar"),
("announcement", "announcement"),
]:
if yml_key in html:
theme_options[spx_key] = html[yml_key]
# Fix for renamed field
spx_analytics = theme_options["analytics"] = {}
google_analytics_id = html.get("google_analytics_id")
if google_analytics_id is not None:
_message_box(
(
"[Warning] The `html.google_analytics_id` configuration value has moved to `html.analytics.google_analytics_id`" # noqa: E501
),
color="orange",
print_func=print,
)
spx_analytics["google_analytics_id"] = google_analytics_id
# Analytics
yml_analytics = html.get("analytics", {})
for spx_key, yml_key in [
("google_analytics_id", "google_analytics_id"),
("plausible_analytics_domain", "plausible_analytics_domain"),
("plausible_analytics_url", "plausible_analytics_url"),
]:
if yml_key in yml_analytics:
spx_analytics[spx_key] = yml_analytics[yml_key]
# Pass through the buttons
btns = ["use_repository_button", "use_edit_page_button", "use_issues_button"]
use_buttons = {btn: html.get(btn) for btn in btns if btn in html}
if any(use_buttons.values()):
if not repository_config.get("url"):
raise ValueError(
"To use 'repository' buttons, you must specify the repository URL"
)
# Update our config
theme_options.update(use_buttons)
# Parse and Rendering
parse = yaml.get("parse")
if parse:
# Enable extra extensions
extensions = sphinx_config.get("myst_enable_extensions", [])
# TODO: deprecate this in v0.11.0
if parse.get("myst_extended_syntax") is True:
extensions.append(
[
"colon_fence",
"dollarmath",
"amsmath",
"deflist",
"html_image",
]
)
_message_box(
(
"myst_extended_syntax is deprecated, instead specify extensions "
"you wish to be enabled. See https://myst-parser.readthedocs.io/en/latest/using/syntax-optional.html" # noqa: E501
),
color="orange",
print_func=print,
)
for ext in parse.get("myst_enable_extensions", []):
if ext not in extensions:
extensions.append(ext)
if extensions:
sphinx_config["myst_enable_extensions"] = extensions
# Configuration values we'll just pass-through
for ikey in ["myst_substitutions", "myst_url_schemes"]:
if ikey in parse:
sphinx_config[ikey] = parse.get(ikey)
# Execution
execute = yaml.get("execute")
if execute:
for spx_key, yml_key in [
("nb_execution_allow_errors", "allow_errors"),
("nb_execution_raise_on_error", "raise_on_error"),
("nb_eval_name_regex", "eval_regex"),
("nb_execution_show_tb", "show_tb"),
("nb_execution_in_temp", "run_in_temp"),
("nb_output_stderr", "stderr_output"),
("nb_execution_timeout", "timeout"),
("nb_execution_cache_path", "cache"),
("nb_execution_mode", "execute_notebooks"),
("nb_execution_excludepatterns", "exclude_patterns"),
]:
if yml_key in execute:
sphinx_config[spx_key] = execute[yml_key]
if sphinx_config.get("nb_execution_mode") is False:
# Special case because YAML treats `off` as "False".
sphinx_config["nb_execution_mode"] = "off"
# LaTeX
latex = yaml.get("latex")
if latex:
for spx_key, yml_key in [
("latex_engine", "latex_engine"),
("use_jupyterbook_latex", "use_jupyterbook_latex"),
]:
if yml_key in latex:
sphinx_config[spx_key] = latex[yml_key]
sphinx_config["latex_doc_overrides"] = {}
if "title" in yaml:
sphinx_config["latex_doc_overrides"]["title"] = yaml["title"]
for key, val in yaml.get("latex", {}).get("latex_documents", {}).items():
sphinx_config["latex_doc_overrides"][key] = val
# Sphinx Configuration
extra_extensions = yaml.get("sphinx", {}).get("extra_extensions")
if extra_extensions:
sphinx_config["extensions"] = get_default_sphinx_config()["extensions"]
if not isinstance(extra_extensions, list):
extra_extensions = [extra_extensions]
for extension in extra_extensions:
if extension not in sphinx_config["extensions"]:
sphinx_config["extensions"].append(extension)
local_extensions = yaml.get("sphinx", {}).get("local_extensions")
# add_paths collects additional paths for sys.path
add_paths = []
if local_extensions:
if "extensions" not in sphinx_config:
sphinx_config["extensions"] = get_default_sphinx_config()["extensions"]
for extension, path in local_extensions.items():
if extension not in sphinx_config["extensions"]:
sphinx_config["extensions"].append(extension)
if path not in sys.path:
add_paths.append(path)
# Overwrite sphinx config or not
if "recursive_update" in yaml.get("sphinx", {}):
sphinx_config["recursive_update"] = yaml.get("sphinx", {}).get(
"recursive_update"
)
# Citations
sphinxcontrib_bibtex_configs = ["bibtex_bibfiles", "bibtex_reference_style"]
if any(bibtex_config in yaml for bibtex_config in sphinxcontrib_bibtex_configs):
# Load sphincontrib-bibtex
if "extensions" not in sphinx_config:
sphinx_config["extensions"] = get_default_sphinx_config()["extensions"]
sphinx_config["extensions"].append("sphinxcontrib.bibtex")
# Report Bug in Specific Docutils Versions
# TODO: Remove when docutils>=0.20 is pinned in jupyter-book
# https://github.com/mcmtroffaes/sphinxcontrib-bibtex/issues/322
if (0, 18) <= docutils.__version_info__ < (0, 20):
logger.warning(
"[sphinxcontrib-bibtex] Beware that docutils versions 0.18 and 0.19 "
"(you are running {}) are known to generate invalid html for citations. "
"If this issue affects you, please use docutils<0.18 or >=0.20 instead. "
"For more details, see https://sourceforge.net/p/docutils/patches/195/".format(
docutils.__version__
)
)
# Pass through configuration
if yaml.get("bibtex_bibfiles"):
if isinstance(yaml.get("bibtex_bibfiles"), str):
yaml["bibtex_bibfiles"] = [yaml["bibtex_bibfiles"]]
sphinx_config["bibtex_bibfiles"] = yaml["bibtex_bibfiles"]
# items in sphinx.config will override defaults,
# rather than recursively updating them
return sphinx_config, yaml.get("sphinx", {}).get("config") or {}, add_paths | Convert a Jupyter Book style config structure into a Sphinx config dict.
:returns: (recursive_updates, override_updates, add_paths)
add_paths collects paths that are specified in the _config.yml (such as those
provided in local_extensions) and returns them for adding to sys.path in
a context where the _config.yml path is known | yaml_to_sphinx | python | jupyter-book/jupyter-book | jupyter_book/config.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/config.py | BSD-3-Clause |
def _recursive_update(config, update, list_extend=False):
"""Update the dict `config` with `update` recursively.
This *updates* nested dicts / lists instead of replacing them.
"""
for key, val in update.items():
if isinstance(config.get(key), dict):
# if a dict value update is set to None,
# then the entire dict will be "wiped",
# otherwise it is recursively updated.
if isinstance(val, dict):
_recursive_update(config[key], val, list_extend)
else:
config[key] = val
elif isinstance(config.get(key), list):
if isinstance(val, list) and list_extend:
config[key].extend(val)
else:
config[key] = val
else:
config[key] = val | Update the dict `config` with `update` recursively.
This *updates* nested dicts / lists instead of replacing them. | _recursive_update | python | jupyter-book/jupyter-book | jupyter_book/config.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/config.py | BSD-3-Clause |
def build_sphinx(
sourcedir,
outputdir,
*,
use_external_toc=True,
confdir=None,
path_config=None,
noconfig=False,
confoverrides=None,
doctreedir=None,
filenames=None,
force_all=False,
quiet=False,
really_quiet=False,
builder="html",
freshenv=False,
warningiserror=False,
tags=None,
verbosity=0,
jobs=None,
keep_going=False,
) -> Union[int, Exception]:
"""Sphinx build "main" command-line entry.
This is a slightly modified version of
https://github.com/sphinx-doc/sphinx/blob/3.x/sphinx/cmd/build.py#L198.
"""
#######################
# Configuration creation
sphinx_config, config_meta = get_final_config(
user_yaml=Path(path_config) if path_config else None,
cli_config=confoverrides or {},
sourcedir=Path(sourcedir),
use_external_toc=use_external_toc,
)
##################################
# Preparing Sphinx build arguments
# Configuration directory
if noconfig:
confdir = None
elif not confdir:
confdir = sourcedir
# Doctrees directory
if not doctreedir:
doctreedir = Path(outputdir).parent.joinpath(".doctrees")
if jobs is None:
jobs = 1
# Manually re-building files in filenames
if filenames is None:
filenames = []
missing_files = []
for filename in filenames:
if not op.isfile(filename):
missing_files.append(filename)
if missing_files:
raise IOError("cannot find files %r" % missing_files)
if force_all and filenames:
raise ValueError("cannot combine -a option and filenames")
# Debug args (hack to get this to pass through properly)
def debug_args():
pass
debug_args.pdb = False
debug_args.verbosity = False
debug_args.traceback = False
# Logging behavior
status = sys.stdout
warning = sys.stderr
error = sys.stderr
if quiet:
status = None
if really_quiet:
status = warning = None
###################
# Build with Sphinx
app = None # In case we fail, this allows us to handle the exception
try:
# These patches temporarily override docutils global variables,
# such as the dictionaries of directives, roles and nodes
# NOTE: this action is not thread-safe and not suitable for asynchronous use!
with patch_docutils(confdir), docutils_namespace():
app = Sphinx(
srcdir=sourcedir,
confdir=confdir,
outdir=outputdir,
doctreedir=doctreedir,
buildername=builder,
confoverrides=sphinx_config,
status=status,
warning=warning,
freshenv=freshenv,
warningiserror=warningiserror,
tags=tags,
verbosity=verbosity,
parallel=jobs,
keep_going=keep_going,
)
# We have to apply this update after the sphinx initialisation,
# since default_latex_documents is dynamically generated
# see sphinx/builders/latex/__init__.py:default_latex_documents
new_latex_documents = update_latex_documents(
app.config.latex_documents, config_meta["latex_doc_overrides"]
)
app.config.latex_documents = new_latex_documents
# set the below flag to always to enable maths in singlehtml builder
if app.builder.name == "singlehtml":
app.set_html_assets_policy("always")
# setting up sphinx-multitoc-numbering
if app.config["use_multitoc_numbering"]:
# if sphinx-external-toc is used
if "external_toc_path" in app.config:
import yaml
site_map = app.config.external_site_map
site_map_str = yaml.dump(site_map.as_json())
# only if there is at least one numbered: true in the toc file
if "numbered: true" in site_map_str:
app.setup_extension("sphinx_multitoc_numbering")
else:
app.setup_extension("sphinx_multitoc_numbering")
# Build latex_doc tuples based on --individualpages option request
if config_meta["latex_individualpages"]:
from .pdf import autobuild_singlepage_latexdocs
# Ask Builder to read the source files to fetch titles and documents
app.builder.read()
latex_documents = autobuild_singlepage_latexdocs(app)
app.config.latex_documents = latex_documents
app.build(force_all, filenames)
return app.statuscode
except (Exception, KeyboardInterrupt) as exc:
handle_exception(app, debug_args, exc, error)
return exc | Sphinx build "main" command-line entry.
This is a slightly modified version of
https://github.com/sphinx-doc/sphinx/blob/3.x/sphinx/cmd/build.py#L198. | build_sphinx | python | jupyter-book/jupyter-book | jupyter_book/sphinx.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/sphinx.py | BSD-3-Clause |
def html_to_pdf(html_file, pdf_file):
"""
Convert arbitrary HTML file to PDF using playwright.
Parameters
----------
html_file : str
A path to an HTML file to convert to PDF
pdf_file : str
A path to an output PDF file that will be created
"""
asyncio.run(_html_to_pdf(html_file, pdf_file)) | Convert arbitrary HTML file to PDF using playwright.
Parameters
----------
html_file : str
A path to an HTML file to convert to PDF
pdf_file : str
A path to an output PDF file that will be created | html_to_pdf | python | jupyter-book/jupyter-book | jupyter_book/pdf.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/pdf.py | BSD-3-Clause |
def update_latex_documents(latex_documents, latexoverrides):
"""
Apply latexoverrides from _config.yml to latex_documents tuple
"""
if len(latex_documents) > 1:
_message_box(
"Latex documents specified as a multi element list in the _config",
"This suggests the user has made custom settings to their build",
"[Skipping] processing of automatic latex overrides",
)
return latex_documents
# Extract latex document tuple
latex_document = latex_documents[0]
# Apply single overrides from _config.yml
updated_latexdocs = []
for loc, item in enumerate(LATEX_DOCUMENTS):
# the last element toctree_only seems optionally included
if loc >= len(latex_document):
break
if item in latexoverrides.keys():
updated_latexdocs.append(latexoverrides[item])
else:
updated_latexdocs.append(latex_document[loc])
return [tuple(updated_latexdocs)] | Apply latexoverrides from _config.yml to latex_documents tuple | update_latex_documents | python | jupyter-book/jupyter-book | jupyter_book/pdf.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/pdf.py | BSD-3-Clause |
def latex_document_components(latex_documents):
"""Return a dictionary of latex_document components by name"""
latex_tuple_components = {}
for idx, item in enumerate(LATEX_DOCUMENTS):
# skip if latex_documents doesn't doesn't contain all elements
# of the LATEX_DOCUMENT specification tuple
if idx >= len(latex_documents):
continue
latex_tuple_components[item] = latex_documents[idx]
return latex_tuple_components | Return a dictionary of latex_document components by name | latex_document_components | python | jupyter-book/jupyter-book | jupyter_book/pdf.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/pdf.py | BSD-3-Clause |
def latex_document_tuple(components):
"""Return a tuple for latex_documents from named components dictionary"""
latex_doc = []
for item in LATEX_DOCUMENTS:
if item not in components.keys():
continue
else:
latex_doc.append(components[item])
return tuple(latex_doc) | Return a tuple for latex_documents from named components dictionary | latex_document_tuple | python | jupyter-book/jupyter-book | jupyter_book/pdf.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/pdf.py | BSD-3-Clause |
def autobuild_singlepage_latexdocs(app):
"""
Build list of tuples for each document in the Project
[((startdocname, targetname, title, author, theme, toctree_only))]
https://www.sphinx-doc.org/en/3.x/usage/configuration.html#confval-latex_documents
"""
latex_documents = app.config.latex_documents
if len(latex_documents) > 1:
_message_box(
"Latex documents specified as a multi element list in the _config",
"This suggests the user has made custom settings to their build",
"[Skipping] --individualpages option",
)
return latex_documents
# Extract latex_documents updated tuple
latex_documents = latex_documents[0]
titles = app.env.titles
master_doc = app.config.master_doc
sourcedir = os.path.dirname(master_doc)
# Construct Tuples
DEFAULT_VALUES = latex_document_components(latex_documents)
latex_documents = []
for doc, title in titles.items():
latex_doc = copy(DEFAULT_VALUES)
# if doc has a subdir relative to src dir
docname = None
parts = Path(doc).parts
latex_doc["startdocname"] = doc
if DEFAULT_VALUES["startdocname"] == doc:
targetdoc = DEFAULT_VALUES["targetname"]
else:
if sourcedir in parts:
parts = list(parts)
# assuming we need to remove only the first instance
parts.remove(sourcedir)
docname = "-".join(parts)
targetdoc = docname + ".tex"
latex_doc["targetname"] = targetdoc
latex_doc["title"] = title.astext()
latex_doc = latex_document_tuple(latex_doc)
latex_documents.append(latex_doc)
return latex_documents | Build list of tuples for each document in the Project
[((startdocname, targetname, title, author, theme, toctree_only))]
https://www.sphinx-doc.org/en/3.x/usage/configuration.html#confval-latex_documents | autobuild_singlepage_latexdocs | python | jupyter-book/jupyter-book | jupyter_book/pdf.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/pdf.py | BSD-3-Clause |
def version_callback(ctx, param, value):
"""Callback for supplying version information"""
if not value or ctx.resilient_parsing:
return
from jupyter_cache import __version__ as jcv
from myst_nb import __version__ as mnbv
from myst_parser import __version__ as mpv
from nbclient import __version__ as ncv
from sphinx_book_theme import __version__ as sbtv
from sphinx_external_toc import __version__ as etoc
from jupyter_book import __version__ as jbv
versions = {
"Jupyter Book": jbv,
"External ToC": etoc,
"MyST-Parser": mpv,
"MyST-NB": mnbv,
"Sphinx Book Theme": sbtv,
"Jupyter-Cache": jcv,
"NbClient": ncv,
}
versions_string = "\n".join(f"{tt:<18}: {vv}" for tt, vv in versions.items())
click.echo(versions_string)
ctx.exit() | Callback for supplying version information | version_callback | python | jupyter-book/jupyter-book | jupyter_book/cli/main.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/main.py | BSD-3-Clause |
def main():
"""Build and manage books with Jupyter."""
pass | Build and manage books with Jupyter. | main | python | jupyter-book/jupyter-book | jupyter_book/cli/main.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/main.py | BSD-3-Clause |
def build(
path_source,
path_output,
config,
toc,
warningiserror,
nitpick,
keep_going,
freshenv,
builder,
custom_builder,
verbose,
quiet,
individualpages,
get_config_only=False,
):
"""Convert your book's or page's content to HTML or a PDF."""
from sphinx_external_toc.parsing import MalformedError, parse_toc_yaml
from jupyter_book import __version__ as jbv
from jupyter_book.sphinx import build_sphinx
if not get_config_only:
click.secho(f"Running Jupyter-Book v{jbv}", bold=True, fg="green")
# Paths for the notebooks
PATH_SRC_FOLDER = Path(path_source).absolute()
config_overrides = {}
use_external_toc = True
found_config = find_config_path(PATH_SRC_FOLDER)
BUILD_PATH = path_output if path_output is not None else found_config[0]
# Set config for --individualpages option (pages, documents)
if individualpages:
if builder != "pdflatex":
_error(
"""
Specified option --individualpages only works with the
following builders:
pdflatex
"""
)
# Build Page
if not PATH_SRC_FOLDER.is_dir():
# it is a single file
build_type = "page"
use_external_toc = False
subdir = None
PATH_SRC = Path(path_source)
PATH_SRC_FOLDER = PATH_SRC.parent.absolute()
PAGE_NAME = PATH_SRC.with_suffix("").name
# checking if the page is inside a sub directory
# then changing the build_path accordingly
if str(BUILD_PATH) in str(PATH_SRC_FOLDER):
subdir = str(PATH_SRC_FOLDER.relative_to(BUILD_PATH))
if subdir and subdir != ".":
subdir = subdir.replace("/", "-")
subdir = subdir + "-" + PAGE_NAME
BUILD_PATH = Path(BUILD_PATH).joinpath("_build", "_page", subdir)
else:
BUILD_PATH = Path(BUILD_PATH).joinpath("_build", "_page", PAGE_NAME)
# Find all files that *aren't* the page we're building and exclude them
to_exclude = [
op.relpath(ifile, PATH_SRC_FOLDER)
for ifile in iglob(str(PATH_SRC_FOLDER.joinpath("**", "*")), recursive=True)
if ifile != str(PATH_SRC.absolute())
]
to_exclude.extend(["_build", "Thumbs.db", ".DS_Store", "**.ipynb_checkpoints"])
# Now call the Sphinx commands to build
config_overrides = {
"master_doc": PAGE_NAME,
"exclude_patterns": to_exclude,
# --individualpages option set to True for page call
"latex_individualpages": True,
}
# Build Project
else:
build_type = "book"
PAGE_NAME = None
BUILD_PATH = Path(BUILD_PATH).joinpath("_build")
# Table of contents
toc = PATH_SRC_FOLDER.joinpath("_toc.yml") if toc is None else Path(toc)
if not get_config_only:
if not toc.exists():
_error(
"Couldn't find a Table of Contents file. "
"To auto-generate one, run:"
f"\n\n\tjupyter-book toc from-project {path_source}"
)
# we don't need to read the toc here, but do so to control the error message
try:
parse_toc_yaml(toc)
except MalformedError as exc:
_error(
f"The Table of Contents file is malformed: {exc}\n"
"You may need to migrate from the old format, using:"
f"\n\n\tjupyter-book toc migrate {toc} -o {toc}"
)
# TODO could also check/warn if the format is not set to jb-article/jb-book?
config_overrides["external_toc_path"] = (
toc.relative_to(PATH_SRC_FOLDER).as_posix()
if get_config_only
else toc.as_posix()
)
# --individualpages option passthrough
config_overrides["latex_individualpages"] = individualpages
# Use the specified configuration file, or one found in the root directory
path_config = config or (
found_config[0].joinpath("_config.yml") if found_config[1] else None
)
if path_config and not Path(path_config).exists():
raise IOError(f"Config file path given, but not found: {path_config}")
if builder in ["html", "pdfhtml", "linkcheck"]:
OUTPUT_PATH = BUILD_PATH.joinpath("html")
elif builder in ["latex", "pdflatex"]:
OUTPUT_PATH = BUILD_PATH.joinpath("latex")
elif builder in ["dirhtml"]:
OUTPUT_PATH = BUILD_PATH.joinpath("dirhtml")
elif builder in ["singlehtml"]:
OUTPUT_PATH = BUILD_PATH.joinpath("singlehtml")
elif builder in ["custom"]:
OUTPUT_PATH = BUILD_PATH.joinpath(custom_builder)
BUILDER_OPTS["custom"] = custom_builder
if nitpick:
config_overrides["nitpicky"] = True
# If we only want config (e.g. for printing/validation), stop here
if get_config_only:
return (path_config, PATH_SRC_FOLDER, config_overrides)
# print information about the build
click.echo(
click.style("Source Folder: ", bold=True, fg="blue")
+ click.format_filename(f"{PATH_SRC_FOLDER}")
)
click.echo(
click.style("Config Path: ", bold=True, fg="blue")
+ click.format_filename(f"{path_config}")
)
click.echo(
click.style("Output Path: ", bold=True, fg="blue")
+ click.format_filename(f"{OUTPUT_PATH}")
)
# Now call the Sphinx commands to build
result = build_sphinx(
PATH_SRC_FOLDER,
OUTPUT_PATH,
use_external_toc=use_external_toc,
noconfig=True,
path_config=path_config,
confoverrides=config_overrides,
builder=BUILDER_OPTS[builder],
warningiserror=warningiserror,
keep_going=keep_going,
freshenv=freshenv,
verbosity=verbose,
quiet=quiet > 0,
really_quiet=quiet > 1,
)
builder_specific_actions(
result, builder, OUTPUT_PATH, build_type, PAGE_NAME, click.echo
) | Convert your book's or page's content to HTML or a PDF. | build | python | jupyter-book/jupyter-book | jupyter_book/cli/main.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/main.py | BSD-3-Clause |
def create(path_book, cookiecutter, no_input):
"""Create a Jupyter Book template that you can customize."""
book = Path(path_book)
if not cookiecutter: # this will be the more common option
template_path = Path(__file__).parent.parent.joinpath("book_template")
sh.copytree(template_path, book)
else:
cc_url = "gh:executablebooks/cookiecutter-jupyter-book"
try:
from cookiecutter.main import cookiecutter
except ModuleNotFoundError as e:
_error(
f"{e}. To install, run\n\n\tpip install cookiecutter",
kind=e.__class__,
)
book = cookiecutter(cc_url, output_dir=Path(path_book), no_input=no_input)
_message_box(f"Your book template can be found at\n\n {book}{os.sep}") | Create a Jupyter Book template that you can customize. | create | python | jupyter-book/jupyter-book | jupyter_book/cli/main.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/main.py | BSD-3-Clause |
def remove_option(path, option, rm_both=False):
"""Remove folder specified under option. If rm_both is True, remove folder and
skip message_box."""
option_path = path.joinpath(option)
if not option_path.is_dir():
return
sh.rmtree(option_path)
if not rm_both:
_message_box(f"Your {option} directory has been removed") | Remove folder specified under option. If rm_both is True, remove folder and
skip message_box. | clean.remove_option | python | jupyter-book/jupyter-book | jupyter_book/cli/main.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/main.py | BSD-3-Clause |
def remove_html_latex(path):
"""Remove both html and latex folders."""
print_msg = False
for opt in ["html", "latex"]:
if path.joinpath(opt).is_dir():
print_msg = True
remove_option(path, opt, True)
if print_msg:
_message_box("Your html and latex directories have been removed") | Remove both html and latex folders. | clean.remove_html_latex | python | jupyter-book/jupyter-book | jupyter_book/cli/main.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/main.py | BSD-3-Clause |
def remove_all(path):
"""Remove _build directory entirely."""
sh.rmtree(path)
_message_box("Your _build directory has been removed") | Remove _build directory entirely. | clean.remove_all | python | jupyter-book/jupyter-book | jupyter_book/cli/main.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/main.py | BSD-3-Clause |
def remove_default(path):
"""Remove all subfolders in _build except .jupyter_cache."""
to_remove = [
dd for dd in path.iterdir() if dd.is_dir() and dd.name != ".jupyter_cache"
]
for dd in to_remove:
sh.rmtree(path.joinpath(dd.name))
_message_box("Your _build directory has been emptied except for .jupyter_cache") | Remove all subfolders in _build except .jupyter_cache. | clean.remove_default | python | jupyter-book/jupyter-book | jupyter_book/cli/main.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/main.py | BSD-3-Clause |
def clean(path_book, all_, html, latex):
"""Empty the _build directory except jupyter_cache.
If the all option has been flagged, it will remove the entire _build. If html/latex
option is flagged, it will remove the html/latex subdirectories."""
def remove_option(path, option, rm_both=False):
"""Remove folder specified under option. If rm_both is True, remove folder and
skip message_box."""
option_path = path.joinpath(option)
if not option_path.is_dir():
return
sh.rmtree(option_path)
if not rm_both:
_message_box(f"Your {option} directory has been removed")
def remove_html_latex(path):
"""Remove both html and latex folders."""
print_msg = False
for opt in ["html", "latex"]:
if path.joinpath(opt).is_dir():
print_msg = True
remove_option(path, opt, True)
if print_msg:
_message_box("Your html and latex directories have been removed")
def remove_all(path):
"""Remove _build directory entirely."""
sh.rmtree(path)
_message_box("Your _build directory has been removed")
def remove_default(path):
"""Remove all subfolders in _build except .jupyter_cache."""
to_remove = [
dd for dd in path.iterdir() if dd.is_dir() and dd.name != ".jupyter_cache"
]
for dd in to_remove:
sh.rmtree(path.joinpath(dd.name))
_message_box("Your _build directory has been emptied except for .jupyter_cache")
PATH_OUTPUT = Path(path_book).absolute()
if not PATH_OUTPUT.is_dir():
_error(f"Path to book isn't a directory: {PATH_OUTPUT}")
build_path = PATH_OUTPUT.joinpath("_build")
if not build_path.is_dir():
return
if all_:
remove_all(build_path)
elif html and latex:
remove_html_latex(build_path)
elif html:
remove_option(build_path, "html")
elif latex:
remove_option(build_path, "latex")
else:
remove_default(build_path) | Empty the _build directory except jupyter_cache.
If the all option has been flagged, it will remove the entire _build. If html/latex
option is flagged, it will remove the html/latex subdirectories. | clean | python | jupyter-book/jupyter-book | jupyter_book/cli/main.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/main.py | BSD-3-Clause |
def myst():
"""Manipulate MyST markdown files."""
pass | Manipulate MyST markdown files. | myst | python | jupyter-book/jupyter-book | jupyter_book/cli/main.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/main.py | BSD-3-Clause |
def init(path, kernel):
"""Add Jupytext metadata for your markdown file(s), with optional Kernel name."""
from jupyter_book.utils import init_myst_file
for ipath in path:
init_myst_file(ipath, kernel, verbose=True) | Add Jupytext metadata for your markdown file(s), with optional Kernel name. | init | python | jupyter-book/jupyter-book | jupyter_book/cli/main.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/main.py | BSD-3-Clause |
def config():
"""Inspect your _config.yml file."""
pass | Inspect your _config.yml file. | config | python | jupyter-book/jupyter-book | jupyter_book/cli/main.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/main.py | BSD-3-Clause |
def sphinx(ctx, path_source, config, toc):
"""Generate a Sphinx conf.py representation of the build configuration."""
from jupyter_book.config import get_final_config
path_config, full_path_source, config_overrides = ctx.invoke(
build, path_source=path_source, config=config, toc=toc, get_config_only=True
)
sphinx_config, _ = get_final_config(
user_yaml=Path(path_config) if path_config else None,
sourcedir=Path(full_path_source),
cli_config=config_overrides,
)
lines = [
"###############################################################################",
"# Auto-generated by `jupyter-book config`",
"# If you wish to continue using _config.yml, make edits to that file and",
"# re-generate this one.",
"###############################################################################",
]
for key in sorted(sphinx_config):
lines.append(f"{key} = {sphinx_config[key]!r}")
content = "\n".join(lines).rstrip() + "\n"
out_folder = Path(path_config).parent if path_config else Path(full_path_source)
out_folder.joinpath("conf.py").write_text(content, encoding="utf8")
click.secho(f"Wrote conf.py to {out_folder}", fg="green") | Generate a Sphinx conf.py representation of the build configuration. | sphinx | python | jupyter-book/jupyter-book | jupyter_book/cli/main.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/main.py | BSD-3-Clause |
def find_config_path(path: Path) -> Tuple[Path, bool]:
"""checks for any _config.yml file in current/parent dirs.
if found then returns the path which has _config.yml,
else returns the present dir as the path.
"""
if path.is_dir():
current_dir = path
else:
current_dir = path.parent
if (current_dir / "_config.yml").is_file():
return (current_dir, True)
while current_dir != current_dir.parent:
if (current_dir / "_config.yml").is_file():
return (current_dir, True)
current_dir = current_dir.parent
if not path.is_dir():
return (path.parent, False)
return (path, False) | checks for any _config.yml file in current/parent dirs.
if found then returns the path which has _config.yml,
else returns the present dir as the path. | find_config_path | python | jupyter-book/jupyter-book | jupyter_book/cli/main.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/main.py | BSD-3-Clause |
def builder_specific_actions(
result, builder, output_path, cmd_type, page_name=None, print_func=print
):
"""Run post-sphinx-build actions.
:param result: the result of the build execution; a status code or and exception
"""
from jupyter_book.pdf import html_to_pdf
from jupyter_book.sphinx import REDIRECT_TEXT
if isinstance(result, Exception):
msg = (
f"There was an error in building your {cmd_type}. "
"Look above for the cause."
)
# TODO ideally we probably only want the original traceback here
raise RuntimeError(_message_box(msg, color="red", doprint=False)) from result
elif result:
msg = (
f"Building your {cmd_type}, returns a non-zero exit code ({result}). "
"Look above for the cause."
)
_message_box(msg, color="red", print_func=click.echo)
sys.exit(result)
# Builder-specific options
if builder == "html":
path_output_rel = Path(op.relpath(output_path, Path()))
if cmd_type == "page":
path_page = path_output_rel.joinpath(f"{page_name}.html")
# Write an index file if it doesn't exist so we get redirects
path_index = path_output_rel.joinpath("index.html")
if not path_index.exists():
path_index.write_text(REDIRECT_TEXT.format(first_page=path_page.name))
_message_box(
dedent(
f"""
Page build finished.
Your page folder is: {path_page.parent}{os.sep}
Open your page at: {path_page}
"""
)
)
elif cmd_type == "book":
path_output_rel = Path(op.relpath(output_path, Path()))
path_index = path_output_rel.joinpath("index.html")
_message_box(
f"""\
Finished generating HTML for {cmd_type}.
Your book's HTML pages are here:
{path_output_rel}{os.sep}
You can look at your book by opening this file in a browser:
{path_index}
Or paste this line directly into your browser bar:
file://{path_index.resolve()}\
"""
)
if builder == "pdfhtml":
print_func(f"Finished generating HTML for {cmd_type}...")
print_func(f"Converting {cmd_type} HTML into PDF...")
path_pdf_output = output_path.parent.joinpath("pdf")
path_pdf_output.mkdir(exist_ok=True)
if cmd_type == "book":
path_pdf_output = path_pdf_output.joinpath("book.pdf")
html_to_pdf(output_path.joinpath("index.html"), path_pdf_output)
elif cmd_type == "page":
path_pdf_output = path_pdf_output.joinpath(page_name + ".pdf")
html_to_pdf(output_path.joinpath(page_name + ".html"), path_pdf_output)
path_pdf_output_rel = Path(op.relpath(path_pdf_output, Path()))
_message_box(
f"""\
Finished generating PDF via HTML for {cmd_type}. Your PDF is here:
{path_pdf_output_rel}\
"""
)
if builder == "pdflatex":
print_func(f"Finished generating latex for {cmd_type}...")
print_func(f"Converting {cmd_type} latex into PDF...")
# Convert to PDF via tex and template built Makefile and make.bat
if sys.platform == "win32":
makecmd = os.environ.get("MAKE", "make.bat")
else:
makecmd = os.environ.get("MAKE", "make")
try:
output = subprocess.run([makecmd, "all-pdf"], cwd=output_path)
if output.returncode != 0:
_error("Error: Failed to build pdf")
return output.returncode
_message_box(
f"""\
A PDF of your {cmd_type} can be found at:
{output_path}
"""
)
except OSError:
_error("Error: Failed to run: %s" % makecmd)
return 1 | Run post-sphinx-build actions.
:param result: the result of the build execution; a status code or and exception | builder_specific_actions | python | jupyter-book/jupyter-book | jupyter_book/cli/main.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/main.py | BSD-3-Clause |
def __init__(self, *, entry_point_group: str, **kwargs: Any):
"""Initialize with entry point group."""
self.exclude_external_plugins = False
self._entry_point_group: str = entry_point_group
self._use_internal: Set[str] = kwargs.pop("use_internal", set())
super().__init__(**kwargs) | Initialize with entry point group. | __init__ | python | jupyter-book/jupyter-book | jupyter_book/cli/pluggable.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/pluggable.py | BSD-3-Clause |
def list_commands(self, ctx: click.Context) -> Iterable[str]:
"""Add entry point names of available plugins to the command list."""
subcommands = super().list_commands(ctx)
if not self.exclude_external_plugins:
subcommands.extend(get_entry_point_names(self._entry_point_group))
return subcommands | Add entry point names of available plugins to the command list. | list_commands | python | jupyter-book/jupyter-book | jupyter_book/cli/pluggable.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/pluggable.py | BSD-3-Clause |
def get_command(self, ctx: click.Context, name: str) -> click.BaseCommand:
"""Try to load a subcommand from entry points, else defer to super."""
command = None
if self.exclude_external_plugins or name in self._use_internal:
command = super().get_command(ctx, name)
else:
try:
command = load_entry_point(self._entry_point_group, name)
except KeyError:
command = super().get_command(ctx, name)
return command | Try to load a subcommand from entry points, else defer to super. | get_command | python | jupyter-book/jupyter-book | jupyter_book/cli/pluggable.py | https://github.com/jupyter-book/jupyter-book/blob/master/jupyter_book/cli/pluggable.py | BSD-3-Clause |
def check_source(source_name):
"""Chooses C or pyx source files, and raises if C is needed but missing"""
source_ext = ".pyx"
if not HAS_CYTHON:
source_name = source_name.replace(".pyx.in", ".c")
source_name = source_name.replace(".pyx", ".c")
source_ext = ".c"
if not os.path.exists(source_name):
msg = (
"C source not found. You must have Cython installed to "
"build if the C source files have not been generated."
)
raise OSError(msg)
return source_name, source_ext | Chooses C or pyx source files, and raises if C is needed but missing | check_source | python | statsmodels/statsmodels | setup.py | https://github.com/statsmodels/statsmodels/blob/master/setup.py | BSD-3-Clause |
def process_tempita(source_name):
"""Runs pyx.in files through tempita is needed"""
if source_name.endswith("pyx.in"):
with open(source_name, encoding="utf-8") as templated:
pyx_template = templated.read()
pyx = Tempita.sub(pyx_template)
pyx_filename = source_name[:-3]
with open(pyx_filename, "w", encoding="utf-8") as pyx_file:
pyx_file.write(pyx)
file_stats = os.stat(source_name)
try:
os.utime(
pyx_filename,
ns=(file_stats.st_atime_ns, file_stats.st_mtime_ns),
)
except AttributeError:
os.utime(pyx_filename, (file_stats.st_atime, file_stats.st_mtime))
source_name = pyx_filename
return source_name | Runs pyx.in files through tempita is needed | process_tempita | python | statsmodels/statsmodels | setup.py | https://github.com/statsmodels/statsmodels/blob/master/setup.py | BSD-3-Clause |
def close_figures():
"""
Fixture that closes all figures after a test function has completed
Returns
-------
closer : callable
Function that will close all figures when called.
Notes
-----
Used by passing as an argument to the function that produces a plot,
for example
def test_some_plot(close_figures):
<test code>
If a function creates many figures, then these can be destroyed within a
test function by calling close_figures to ensure that the number of
figures does not become too large.
def test_many_plots(close_figures):
for i in range(100000):
plt.plot(x,y)
close_figures()
"""
try:
import matplotlib.pyplot
def close():
matplotlib.pyplot.close("all")
except ImportError:
def close():
pass
yield close
close() | Fixture that closes all figures after a test function has completed
Returns
-------
closer : callable
Function that will close all figures when called.
Notes
-----
Used by passing as an argument to the function that produces a plot,
for example
def test_some_plot(close_figures):
<test code>
If a function creates many figures, then these can be destroyed within a
test function by calling close_figures to ensure that the number of
figures does not become too large.
def test_many_plots(close_figures):
for i in range(100000):
plt.plot(x,y)
close_figures() | close_figures | python | statsmodels/statsmodels | statsmodels/conftest.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/conftest.py | BSD-3-Clause |
def reset_randomstate():
"""
Fixture that set the global RandomState to the fixed seed 1
Notes
-----
Used by passing as an argument to the function that uses the global
RandomState
def test_some_plot(reset_randomstate):
<test code>
Returns the state after the test function exits
"""
state = np.random.get_state()
np.random.seed(1)
yield
np.random.set_state(state) | Fixture that set the global RandomState to the fixed seed 1
Notes
-----
Used by passing as an argument to the function that uses the global
RandomState
def test_some_plot(reset_randomstate):
<test code>
Returns the state after the test function exits | reset_randomstate | python | statsmodels/statsmodels | statsmodels/conftest.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/conftest.py | BSD-3-Clause |
def test(extra_args=None, exit=False):
"""
Run the test suite
Parameters
----------
extra_args : list[str]
List of argument to pass to pytest when running the test suite. The
default is ['--tb=short', '--disable-pytest-warnings'].
exit : bool
Flag indicating whether the test runner should exit when finished.
Returns
-------
int
The status code from the test run if exit is False.
"""
from .tools._test_runner import PytestTester
tst = PytestTester(package_path=__file__)
return tst(extra_args=extra_args, exit=exit) | Run the test suite
Parameters
----------
extra_args : list[str]
List of argument to pass to pytest when running the test suite. The
default is ['--tb=short', '--disable-pytest-warnings'].
exit : bool
Flag indicating whether the test runner should exit when finished.
Returns
-------
int
The status code from the test run if exit is False. | test | python | statsmodels/statsmodels | statsmodels/__init__.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/__init__.py | BSD-3-Clause |
def fit(self, slice_n=20, **kwargs):
"""
Estimate the EDR space using Sliced Inverse Regression.
Parameters
----------
slice_n : int, optional
Target number of observations per slice
"""
# Sample size per slice
if len(kwargs) > 0:
msg = "SIR.fit does not take any extra keyword arguments"
warnings.warn(msg)
# Number of slices
n_slice = self.exog.shape[0] // slice_n
self._prep(n_slice)
mn = [z.mean(0) for z in self._split_wexog]
n = [z.shape[0] for z in self._split_wexog]
mn = np.asarray(mn)
n = np.asarray(n)
# Estimate Cov E[X | Y=y]
mnc = np.dot(mn.T, n[:, None] * mn) / n.sum()
a, b = np.linalg.eigh(mnc)
jj = np.argsort(-a)
a = a[jj]
b = b[:, jj]
params = np.linalg.solve(self._covxr.T, b)
results = DimReductionResults(self, params, eigs=a)
return DimReductionResultsWrapper(results) | Estimate the EDR space using Sliced Inverse Regression.
Parameters
----------
slice_n : int, optional
Target number of observations per slice | fit | python | statsmodels/statsmodels | statsmodels/regression/dimred.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/dimred.py | BSD-3-Clause |
def fit_regularized(self, ndim=1, pen_mat=None, slice_n=20, maxiter=100,
gtol=1e-3, **kwargs):
"""
Estimate the EDR space using regularized SIR.
Parameters
----------
ndim : int
The number of EDR directions to estimate
pen_mat : array_like
A 2d array such that the squared Frobenius norm of
`dot(pen_mat, dirs)`` is added to the objective function,
where `dirs` is an orthogonal array whose columns span
the estimated EDR space.
slice_n : int, optional
Target number of observations per slice
maxiter :int
The maximum number of iterations for estimating the EDR
space.
gtol : float
If the norm of the gradient of the objective function
falls below this value, the algorithm has converged.
Returns
-------
A results class instance.
Notes
-----
If each row of `exog` can be viewed as containing the values of a
function evaluated at equally-spaced locations, then setting the
rows of `pen_mat` to [[1, -2, 1, ...], [0, 1, -2, 1, ..], ...]
will give smooth EDR coefficients. This is a form of "functional
SIR" using the squared second derivative as a penalty.
References
----------
L. Ferre, A.F. Yao (2003). Functional sliced inverse regression
analysis. Statistics: a journal of theoretical and applied
statistics 37(6) 475-488.
"""
if len(kwargs) > 0:
msg = "SIR.fit_regularized does not take keyword arguments"
warnings.warn(msg)
if pen_mat is None:
raise ValueError("pen_mat is a required argument")
start_params = kwargs.get("start_params", None)
# Sample size per slice
slice_n = kwargs.get("slice_n", 20)
# Number of slices
n_slice = self.exog.shape[0] // slice_n
# Sort the data by endog
ii = np.argsort(self.endog)
x = self.exog[ii, :]
x -= x.mean(0)
covx = np.cov(x.T)
# Split the data into slices
split_exog = np.array_split(x, n_slice)
mn = [z.mean(0) for z in split_exog]
n = [z.shape[0] for z in split_exog]
mn = np.asarray(mn)
n = np.asarray(n)
self._slice_props = n / n.sum()
self.ndim = ndim
self.k_vars = covx.shape[0]
self.pen_mat = pen_mat
self._covx = covx
self.n_slice = n_slice
self._slice_means = mn
if start_params is None:
params = np.zeros((self.k_vars, ndim))
params[0:ndim, 0:ndim] = np.eye(ndim)
params = params
else:
if start_params.shape[1] != ndim:
msg = "Shape of start_params is not compatible with ndim"
raise ValueError(msg)
params = start_params
params, _, cnvrg = _grass_opt(params, self._regularized_objective,
self._regularized_grad, maxiter, gtol)
if not cnvrg:
g = self._regularized_grad(params.ravel())
gn = np.sqrt(np.dot(g, g))
msg = "SIR.fit_regularized did not converge, |g|=%f" % gn
warnings.warn(msg)
results = DimReductionResults(self, params, eigs=None)
return DimReductionResultsWrapper(results) | Estimate the EDR space using regularized SIR.
Parameters
----------
ndim : int
The number of EDR directions to estimate
pen_mat : array_like
A 2d array such that the squared Frobenius norm of
`dot(pen_mat, dirs)`` is added to the objective function,
where `dirs` is an orthogonal array whose columns span
the estimated EDR space.
slice_n : int, optional
Target number of observations per slice
maxiter :int
The maximum number of iterations for estimating the EDR
space.
gtol : float
If the norm of the gradient of the objective function
falls below this value, the algorithm has converged.
Returns
-------
A results class instance.
Notes
-----
If each row of `exog` can be viewed as containing the values of a
function evaluated at equally-spaced locations, then setting the
rows of `pen_mat` to [[1, -2, 1, ...], [0, 1, -2, 1, ..], ...]
will give smooth EDR coefficients. This is a form of "functional
SIR" using the squared second derivative as a penalty.
References
----------
L. Ferre, A.F. Yao (2003). Functional sliced inverse regression
analysis. Statistics: a journal of theoretical and applied
statistics 37(6) 475-488. | fit_regularized | python | statsmodels/statsmodels | statsmodels/regression/dimred.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/dimred.py | BSD-3-Clause |
def fit(self, **kwargs):
"""
Estimate the EDR space using PHD.
Parameters
----------
resid : bool, optional
If True, use least squares regression to remove the
linear relationship between each covariate and the
response, before conducting PHD.
Returns
-------
A results instance which can be used to access the estimated
parameters.
"""
resid = kwargs.get("resid", False)
y = self.endog - self.endog.mean()
x = self.exog - self.exog.mean(0)
if resid:
from statsmodels.regression.linear_model import OLS
r = OLS(y, x).fit()
y = r.resid
cm = np.einsum('i,ij,ik->jk', y, x, x)
cm /= len(y)
cx = np.cov(x.T)
cb = np.linalg.solve(cx, cm)
a, b = np.linalg.eig(cb)
jj = np.argsort(-np.abs(a))
a = a[jj]
params = b[:, jj]
results = DimReductionResults(self, params, eigs=a)
return DimReductionResultsWrapper(results) | Estimate the EDR space using PHD.
Parameters
----------
resid : bool, optional
If True, use least squares regression to remove the
linear relationship between each covariate and the
response, before conducting PHD.
Returns
-------
A results instance which can be used to access the estimated
parameters. | fit | python | statsmodels/statsmodels | statsmodels/regression/dimred.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/dimred.py | BSD-3-Clause |
def fit(self, **kwargs):
"""
Estimate the EDR space.
Parameters
----------
slice_n : int
Number of observations per slice
"""
# Sample size per slice
slice_n = kwargs.get("slice_n", 50)
# Number of slices
n_slice = self.exog.shape[0] // slice_n
self._prep(n_slice)
cv = [np.cov(z.T) for z in self._split_wexog]
ns = [z.shape[0] for z in self._split_wexog]
p = self.wexog.shape[1]
if not self.bc:
# Cook's original approach
vm = 0
for w, cvx in zip(ns, cv):
icv = np.eye(p) - cvx
vm += w * np.dot(icv, icv)
vm /= len(cv)
else:
# The bias-corrected approach of Li and Zhu
# \Lambda_n in Li, Zhu
av = 0
for c in cv:
av += np.dot(c, c)
av /= len(cv)
# V_n in Li, Zhu
vn = 0
for x in self._split_wexog:
r = x - x.mean(0)
for i in range(r.shape[0]):
u = r[i, :]
m = np.outer(u, u)
vn += np.dot(m, m)
vn /= self.exog.shape[0]
c = np.mean(ns)
k1 = c * (c - 1) / ((c - 1)**2 + 1)
k2 = (c - 1) / ((c - 1)**2 + 1)
av2 = k1 * av - k2 * vn
vm = np.eye(p) - 2 * sum(cv) / len(cv) + av2
a, b = np.linalg.eigh(vm)
jj = np.argsort(-a)
a = a[jj]
b = b[:, jj]
params = np.linalg.solve(self._covxr.T, b)
results = DimReductionResults(self, params, eigs=a)
return DimReductionResultsWrapper(results) | Estimate the EDR space.
Parameters
----------
slice_n : int
Number of observations per slice | fit | python | statsmodels/statsmodels | statsmodels/regression/dimred.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/dimred.py | BSD-3-Clause |
def _grass_opt(params, fun, grad, maxiter, gtol):
"""
Minimize a function on a Grassmann manifold.
Parameters
----------
params : array_like
Starting value for the optimization.
fun : function
The function to be minimized.
grad : function
The gradient of fun.
maxiter : int
The maximum number of iterations.
gtol : float
Convergence occurs when the gradient norm falls below this value.
Returns
-------
params : array_like
The minimizing value for the objective function.
fval : float
The smallest achieved value of the objective function.
cnvrg : bool
True if the algorithm converged to a limit point.
Notes
-----
`params` is 2-d, but `fun` and `grad` should take 1-d arrays
`params.ravel()` as arguments.
Reference
---------
A Edelman, TA Arias, ST Smith (1998). The geometry of algorithms with
orthogonality constraints. SIAM J Matrix Anal Appl.
http://math.mit.edu/~edelman/publications/geometry_of_algorithms.pdf
"""
p, d = params.shape
params = params.ravel()
f0 = fun(params)
cnvrg = False
for _ in range(maxiter):
# Project the gradient to the tangent space
g = grad(params)
g -= np.dot(g, params) * params / np.dot(params, params)
if np.sqrt(np.sum(g * g)) < gtol:
cnvrg = True
break
gm = g.reshape((p, d))
u, s, vt = np.linalg.svd(gm, 0)
paramsm = params.reshape((p, d))
pa0 = np.dot(paramsm, vt.T)
def geo(t):
# Parameterize the geodesic path in the direction
# of the gradient as a function of a real value t.
pa = pa0 * np.cos(s * t) + u * np.sin(s * t)
return np.dot(pa, vt).ravel()
# Try to find a downhill step along the geodesic path.
step = 2.
while step > 1e-10:
pa = geo(-step)
f1 = fun(pa)
if f1 < f0:
params = pa
f0 = f1
break
step /= 2
params = params.reshape((p, d))
return params, f0, cnvrg | Minimize a function on a Grassmann manifold.
Parameters
----------
params : array_like
Starting value for the optimization.
fun : function
The function to be minimized.
grad : function
The gradient of fun.
maxiter : int
The maximum number of iterations.
gtol : float
Convergence occurs when the gradient norm falls below this value.
Returns
-------
params : array_like
The minimizing value for the objective function.
fval : float
The smallest achieved value of the objective function.
cnvrg : bool
True if the algorithm converged to a limit point.
Notes
-----
`params` is 2-d, but `fun` and `grad` should take 1-d arrays
`params.ravel()` as arguments.
Reference
---------
A Edelman, TA Arias, ST Smith (1998). The geometry of algorithms with
orthogonality constraints. SIAM J Matrix Anal Appl.
http://math.mit.edu/~edelman/publications/geometry_of_algorithms.pdf | _grass_opt | python | statsmodels/statsmodels | statsmodels/regression/dimred.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/dimred.py | BSD-3-Clause |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.