code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def loglike(self, params):
"""
Evaluate the log-likelihood
Parameters
----------
params : array_like
The projection matrix used to reduce the covariances, flattened
to 1d.
Returns the log-likelihood.
"""
p = self.covm.shape[0]
proj = params.reshape((p, self.dim))
c = np.dot(proj.T, np.dot(self.covm, proj))
_, ldet = np.linalg.slogdet(c)
f = self.nobs * ldet / 2
for j, c in enumerate(self.covs):
c = np.dot(proj.T, np.dot(c, proj))
_, ldet = np.linalg.slogdet(c)
f -= self.ns[j] * ldet / 2
return f | Evaluate the log-likelihood
Parameters
----------
params : array_like
The projection matrix used to reduce the covariances, flattened
to 1d.
Returns the log-likelihood. | loglike | python | statsmodels/statsmodels | statsmodels/regression/dimred.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/dimred.py | BSD-3-Clause |
def score(self, params):
"""
Evaluate the score function.
Parameters
----------
params : array_like
The projection matrix used to reduce the covariances,
flattened to 1d.
Returns the score function evaluated at 'params'.
"""
p = self.covm.shape[0]
proj = params.reshape((p, self.dim))
c0 = np.dot(proj.T, np.dot(self.covm, proj))
cP = np.dot(self.covm, proj)
g = self.nobs * np.linalg.solve(c0, cP.T).T
for j, c in enumerate(self.covs):
c0 = np.dot(proj.T, np.dot(c, proj))
cP = np.dot(c, proj)
g -= self.ns[j] * np.linalg.solve(c0, cP.T).T
return g.ravel() | Evaluate the score function.
Parameters
----------
params : array_like
The projection matrix used to reduce the covariances,
flattened to 1d.
Returns the score function evaluated at 'params'. | score | python | statsmodels/statsmodels | statsmodels/regression/dimred.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/dimred.py | BSD-3-Clause |
def fit(self, start_params=None, maxiter=200, gtol=1e-4):
"""
Fit the covariance reduction model.
Parameters
----------
start_params : array_like
Starting value for the projection matrix. May be
rectangular, or flattened.
maxiter : int
The maximum number of gradient steps to take.
gtol : float
Convergence criterion for the gradient norm.
Returns
-------
A results instance that can be used to access the
fitted parameters.
"""
p = self.covm.shape[0]
d = self.dim
# Starting value for params
if start_params is None:
params = np.zeros((p, d))
params[0:d, 0:d] = np.eye(d)
params = params
else:
params = start_params
# _grass_opt is designed for minimization, we are doing maximization
# here so everything needs to be flipped.
params, llf, cnvrg = _grass_opt(params, lambda x: -self.loglike(x),
lambda x: -self.score(x), maxiter,
gtol)
llf *= -1
if not cnvrg:
g = self.score(params.ravel())
gn = np.sqrt(np.sum(g * g))
msg = "CovReduce optimization did not converge, |g|=%f" % gn
warnings.warn(msg, ConvergenceWarning)
results = DimReductionResults(self, params, eigs=None)
results.llf = llf
return DimReductionResultsWrapper(results) | Fit the covariance reduction model.
Parameters
----------
start_params : array_like
Starting value for the projection matrix. May be
rectangular, or flattened.
maxiter : int
The maximum number of gradient steps to take.
gtol : float
Convergence criterion for the gradient norm.
Returns
-------
A results instance that can be used to access the
fitted parameters. | fit | python | statsmodels/statsmodels | statsmodels/regression/dimred.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/dimred.py | BSD-3-Clause |
def get_cov(self, time, sc, sm):
"""
Returns the covariance matrix for given time values.
Parameters
----------
time : array_like
The time points for the observations. If len(time) = p,
a pxp covariance matrix is returned.
sc : array_like
The scaling parameters for the observations.
sm : array_like
The smoothness parameters for the observation. See class
docstring for details.
"""
raise NotImplementedError | Returns the covariance matrix for given time values.
Parameters
----------
time : array_like
The time points for the observations. If len(time) = p,
a pxp covariance matrix is returned.
sc : array_like
The scaling parameters for the observations.
sm : array_like
The smoothness parameters for the observation. See class
docstring for details. | get_cov | python | statsmodels/statsmodels | statsmodels/regression/process_regression.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/process_regression.py | BSD-3-Clause |
def jac(self, time, sc, sm):
"""
The Jacobian of the covariance with respect to the parameters.
See get_cov for parameters.
Returns
-------
jsc : list-like
jsc[i] is the derivative of the covariance matrix
with respect to the i^th scaling parameter.
jsm : list-like
jsm[i] is the derivative of the covariance matrix
with respect to the i^th smoothness parameter.
"""
raise NotImplementedError | The Jacobian of the covariance with respect to the parameters.
See get_cov for parameters.
Returns
-------
jsc : list-like
jsc[i] is the derivative of the covariance matrix
with respect to the i^th scaling parameter.
jsm : list-like
jsm[i] is the derivative of the covariance matrix
with respect to the i^th smoothness parameter. | jac | python | statsmodels/statsmodels | statsmodels/regression/process_regression.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/process_regression.py | BSD-3-Clause |
def unpack(self, z):
"""
Split the packed parameter vector into blocks.
"""
# Mean parameters
pm = self.exog.shape[1]
mnpar = z[0:pm]
# Standard deviation parameters
pv = self.exog_scale.shape[1]
scpar = z[pm:pm + pv]
# Smoothness parameters
ps = self.exog_smooth.shape[1]
smpar = z[pm + pv:pm + pv + ps]
# Observation white noise standard deviation.
# Empty if has_noise = False.
nopar = z[pm + pv + ps:]
return mnpar, scpar, smpar, nopar | Split the packed parameter vector into blocks. | unpack | python | statsmodels/statsmodels | statsmodels/regression/process_regression.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/process_regression.py | BSD-3-Clause |
def loglike(self, params):
"""
Calculate the log-likelihood function for the model.
Parameters
----------
params : array_like
The packed parameters for the model.
Returns
-------
The log-likelihood value at the given parameter point.
Notes
-----
The mean, scaling, and smoothing parameters are packed into
a vector. Use `unpack` to access the component vectors.
"""
mnpar, scpar, smpar, nopar = self.unpack(params)
# Residuals
resid = self.endog - np.dot(self.exog, mnpar)
# Scaling parameters
sc = np.exp(np.dot(self.exog_scale, scpar))
# Smoothness parameters
sm = np.exp(np.dot(self.exog_smooth, smpar))
# White noise standard deviation
if self._has_noise:
no = np.exp(np.dot(self.exog_noise, nopar))
# Get the log-likelihood
ll = 0.
for _, ix in self._groups_ix.items():
# Get the covariance matrix for this person.
cm = self.cov.get_cov(self.time[ix], sc[ix], sm[ix])
# The variance of the additive noise, if present.
if self._has_noise:
cm.flat[::cm.shape[0] + 1] += no[ix]**2
re = resid[ix]
ll -= 0.5 * np.linalg.slogdet(cm)[1]
ll -= 0.5 * np.dot(re, np.linalg.solve(cm, re))
if self.verbose:
print("L=", ll)
return ll | Calculate the log-likelihood function for the model.
Parameters
----------
params : array_like
The packed parameters for the model.
Returns
-------
The log-likelihood value at the given parameter point.
Notes
-----
The mean, scaling, and smoothing parameters are packed into
a vector. Use `unpack` to access the component vectors. | loglike | python | statsmodels/statsmodels | statsmodels/regression/process_regression.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/process_regression.py | BSD-3-Clause |
def score(self, params):
"""
Calculate the score function for the model.
Parameters
----------
params : array_like
The packed parameters for the model.
Returns
-------
The score vector at the given parameter point.
Notes
-----
The mean, scaling, and smoothing parameters are packed into
a vector. Use `unpack` to access the component vectors.
"""
mnpar, scpar, smpar, nopar = self.unpack(params)
pm, pv, ps = len(mnpar), len(scpar), len(smpar)
# Residuals
resid = self.endog - np.dot(self.exog, mnpar)
# Scaling
sc = np.exp(np.dot(self.exog_scale, scpar))
# Smoothness
sm = np.exp(np.dot(self.exog_smooth, smpar))
# White noise standard deviation
if self._has_noise:
no = np.exp(np.dot(self.exog_noise, nopar))
# Get the log-likelihood
score = np.zeros(len(mnpar) + len(scpar) + len(smpar) + len(nopar))
for _, ix in self._groups_ix.items():
sc_i = sc[ix]
sm_i = sm[ix]
resid_i = resid[ix]
time_i = self.time[ix]
exog_i = self.exog[ix, :]
exog_scale_i = self.exog_scale[ix, :]
exog_smooth_i = self.exog_smooth[ix, :]
# Get the covariance matrix for this person.
cm = self.cov.get_cov(time_i, sc_i, sm_i)
if self._has_noise:
no_i = no[ix]
exog_noise_i = self.exog_noise[ix, :]
cm.flat[::cm.shape[0] + 1] += no[ix]**2
cmi = np.linalg.inv(cm)
jacv, jacs = self.cov.jac(time_i, sc_i, sm_i)
# The derivatives for the mean parameters.
dcr = np.linalg.solve(cm, resid_i)
score[0:pm] += np.dot(exog_i.T, dcr)
# The derivatives for the scaling parameters.
rx = np.outer(resid_i, resid_i)
qm = np.linalg.solve(cm, rx)
qm = 0.5 * np.linalg.solve(cm, qm.T)
scx = sc_i[:, None] * exog_scale_i
for i, _ in enumerate(ix):
jq = np.sum(jacv[i] * qm)
score[pm:pm + pv] += jq * scx[i, :]
score[pm:pm + pv] -= 0.5 * np.sum(jacv[i] * cmi) * scx[i, :]
# The derivatives for the smoothness parameters.
smx = sm_i[:, None] * exog_smooth_i
for i, _ in enumerate(ix):
jq = np.sum(jacs[i] * qm)
score[pm + pv:pm + pv + ps] += jq * smx[i, :]
score[pm + pv:pm + pv + ps] -= (
0.5 * np.sum(jacs[i] * cmi) * smx[i, :])
# The derivatives with respect to the standard deviation parameters
if self._has_noise:
sno = no_i[:, None]**2 * exog_noise_i
score[pm + pv + ps:] -= np.dot(cmi.flat[::cm.shape[0] + 1],
sno)
bm = np.dot(cmi, np.dot(rx, cmi))
score[pm + pv + ps:] += np.dot(bm.flat[::bm.shape[0] + 1], sno)
if self.verbose:
print("|G|=", np.sqrt(np.sum(score * score)))
return score | Calculate the score function for the model.
Parameters
----------
params : array_like
The packed parameters for the model.
Returns
-------
The score vector at the given parameter point.
Notes
-----
The mean, scaling, and smoothing parameters are packed into
a vector. Use `unpack` to access the component vectors. | score | python | statsmodels/statsmodels | statsmodels/regression/process_regression.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/process_regression.py | BSD-3-Clause |
def fit(self, start_params=None, method=None, maxiter=None,
**kwargs):
"""
Fit a grouped Gaussian process regression using MLE.
Parameters
----------
start_params : array_like
Optional starting values.
method : str or array of str
Method or sequence of methods for scipy optimize.
maxiter : int
The maximum number of iterations in the optimization.
Returns
-------
An instance of ProcessMLEResults.
"""
if "verbose" in kwargs:
self.verbose = kwargs["verbose"]
minim_opts = {}
if "minim_opts" in kwargs:
minim_opts = kwargs["minim_opts"]
if start_params is None:
start_params = self._get_start()
if isinstance(method, str):
method = [method]
elif method is None:
method = ["powell", "bfgs"]
for j, meth in enumerate(method):
if meth not in ("powell",):
def jac(x):
return -self.score(x)
else:
jac = None
if maxiter is not None:
if np.isscalar(maxiter):
minim_opts["maxiter"] = maxiter
else:
minim_opts["maxiter"] = maxiter[j % len(maxiter)]
f = minimize(
lambda x: -self.loglike(x),
method=meth,
x0=start_params,
jac=jac,
options=minim_opts)
if not f.success:
msg = "Fitting did not converge"
if jac is not None:
msg += ", |gradient|=%.6f" % np.sqrt(np.sum(f.jac**2))
if j < len(method) - 1:
msg += ", trying %s next..." % method[j+1]
warnings.warn(msg)
if np.isfinite(f.x).all():
start_params = f.x
hess = self.hessian(f.x)
try:
cov_params = -np.linalg.inv(hess)
except Exception:
cov_params = None
class rslt:
pass
r = rslt()
r.params = f.x
r.normalized_cov_params = cov_params
r.optim_retvals = f
r.scale = 1
rslt = ProcessMLEResults(self, r)
return rslt | Fit a grouped Gaussian process regression using MLE.
Parameters
----------
start_params : array_like
Optional starting values.
method : str or array of str
Method or sequence of methods for scipy optimize.
maxiter : int
The maximum number of iterations in the optimization.
Returns
-------
An instance of ProcessMLEResults. | fit | python | statsmodels/statsmodels | statsmodels/regression/process_regression.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/process_regression.py | BSD-3-Clause |
def covariance(self, time, scale_params, smooth_params, scale_data,
smooth_data):
"""
Returns a Gaussian process covariance matrix.
Parameters
----------
time : array_like
The time points at which the fitted covariance matrix is
calculated.
scale_params : array_like
The regression parameters for the scaling part
of the covariance structure.
smooth_params : array_like
The regression parameters for the smoothing part
of the covariance structure.
scale_data : DataFrame
The data used to determine the scale parameter,
must have len(time) rows.
smooth_data : DataFrame
The data used to determine the smoothness parameter,
must have len(time) rows.
Returns
-------
A covariance matrix.
Notes
-----
If the model was fit using formulas, `scale` and `smooth` should
be Dataframes, containing all variables that were present in the
respective scaling and smoothing formulas used to fit the model.
Otherwise, `scale` and `smooth` should contain data arrays whose
columns align with the fitted scaling and smoothing parameters.
The covariance is only for the Gaussian process and does not include
the white noise variance.
"""
if not hasattr(self.data, "scale_model_spec"):
sca = np.dot(scale_data, scale_params)
smo = np.dot(smooth_data, smooth_params)
else:
mgr = FormulaManager()
sc = mgr.get_matrices(self.data.scale_model_spec, scale_data, pandas=False)
sm = mgr.get_matrices(
self.data.smooth_model_spec, smooth_data, pandas=False
)
sca = np.exp(np.dot(sc, scale_params))
smo = np.exp(np.dot(sm, smooth_params))
return self.cov.get_cov(time, sca, smo) | Returns a Gaussian process covariance matrix.
Parameters
----------
time : array_like
The time points at which the fitted covariance matrix is
calculated.
scale_params : array_like
The regression parameters for the scaling part
of the covariance structure.
smooth_params : array_like
The regression parameters for the smoothing part
of the covariance structure.
scale_data : DataFrame
The data used to determine the scale parameter,
must have len(time) rows.
smooth_data : DataFrame
The data used to determine the smoothness parameter,
must have len(time) rows.
Returns
-------
A covariance matrix.
Notes
-----
If the model was fit using formulas, `scale` and `smooth` should
be Dataframes, containing all variables that were present in the
respective scaling and smoothing formulas used to fit the model.
Otherwise, `scale` and `smooth` should contain data arrays whose
columns align with the fitted scaling and smoothing parameters.
The covariance is only for the Gaussian process and does not include
the white noise variance. | covariance | python | statsmodels/statsmodels | statsmodels/regression/process_regression.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/process_regression.py | BSD-3-Clause |
def predict(self, params, exog=None, *args, **kwargs):
"""
Obtain predictions of the mean structure.
Parameters
----------
params : array_like
The model parameters, may be truncated to include only mean
parameters.
exog : array_like
The design matrix for the mean structure. If not provided,
the model's design matrix is used.
"""
if exog is None:
exog = self.exog
elif hasattr(self.data, "model_spec"):
# Run the provided data through the formula if present
mgr = FormulaManager()
exog = mgr.get_matrices(self.data.model_spec, exog)
if len(params) > exog.shape[1]:
params = params[0:exog.shape[1]]
return np.dot(exog, params) | Obtain predictions of the mean structure.
Parameters
----------
params : array_like
The model parameters, may be truncated to include only mean
parameters.
exog : array_like
The design matrix for the mean structure. If not provided,
the model's design matrix is used. | predict | python | statsmodels/statsmodels | statsmodels/regression/process_regression.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/process_regression.py | BSD-3-Clause |
def covariance(self, time, scale, smooth):
"""
Returns a fitted covariance matrix.
Parameters
----------
time : array_like
The time points at which the fitted covariance
matrix is calculated.
scale : array_like
The data used to determine the scale parameter,
must have len(time) rows.
smooth : array_like
The data used to determine the smoothness parameter,
must have len(time) rows.
Returns
-------
A covariance matrix.
Notes
-----
If the model was fit using formulas, `scale` and `smooth` should
be Dataframes, containing all variables that were present in the
respective scaling and smoothing formulas used to fit the model.
Otherwise, `scale` and `smooth` should be data arrays whose
columns align with the fitted scaling and smoothing parameters.
"""
return self.model.covariance(time, self.scale_params,
self.smooth_params, scale, smooth) | Returns a fitted covariance matrix.
Parameters
----------
time : array_like
The time points at which the fitted covariance
matrix is calculated.
scale : array_like
The data used to determine the scale parameter,
must have len(time) rows.
smooth : array_like
The data used to determine the smoothness parameter,
must have len(time) rows.
Returns
-------
A covariance matrix.
Notes
-----
If the model was fit using formulas, `scale` and `smooth` should
be Dataframes, containing all variables that were present in the
respective scaling and smoothing formulas used to fit the model.
Otherwise, `scale` and `smooth` should be data arrays whose
columns align with the fitted scaling and smoothing parameters. | covariance | python | statsmodels/statsmodels | statsmodels/regression/process_regression.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/process_regression.py | BSD-3-Clause |
def _reset(self, idx):
"""Compute xpx and xpy using a single dot product"""
_, wy, wx, _, not_missing = self._get_data(idx)
nobs = not_missing.sum()
xpx = wx.T @ wx
xpy = wx.T @ wy
return xpx, xpy, nobs | Compute xpx and xpy using a single dot product | _reset | python | statsmodels/statsmodels | statsmodels/regression/rolling.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/rolling.py | BSD-3-Clause |
def fit(
self,
method="inv",
cov_type="nonrobust",
cov_kwds=None,
reset=None,
use_t=False,
params_only=False,
):
"""
Estimate model parameters.
Parameters
----------
method : {'inv', 'lstsq', 'pinv'}
Method to use when computing the the model parameters.
* 'inv' - use moving windows inner-products and matrix inversion.
This method is the fastest, but may be less accurate than the
other methods.
* 'lstsq' - Use numpy.linalg.lstsq
* 'pinv' - Use numpy.linalg.pinv. This method matches the default
estimator in non-moving regression estimators.
cov_type : {'nonrobust', 'HCCM', 'HC0'}
Covariance estimator:
* nonrobust - The classic OLS covariance estimator
* HCCM, HC0 - White heteroskedasticity robust covariance
cov_kwds : dict
Unused
reset : int, optional
Interval to recompute the moving window inner products used to
estimate the model parameters. Smaller values improve accuracy,
although in practice this setting is not required to be set.
use_t : bool, optional
Flag indicating to use the Student's t distribution when computing
p-values.
params_only : bool, optional
Flag indicating that only parameters should be computed. Avoids
calculating all other statistics or performing inference.
Returns
-------
RollingRegressionResults
Estimation results where all pre-sample values are nan-filled.
"""
method = string_like(
method, "method", options=("inv", "lstsq", "pinv")
)
reset = int_like(reset, "reset", optional=True)
reset = self._y.shape[0] if reset is None else reset
if reset < 1:
raise ValueError("reset must be a positive integer")
nobs, k = self._x.shape
store = RollingStore(
params=np.full((nobs, k), np.nan),
ssr=np.full(nobs, np.nan),
llf=np.full(nobs, np.nan),
nobs=np.zeros(nobs, dtype=int),
s2=np.full(nobs, np.nan),
xpxi=np.full((nobs, k, k), np.nan),
xeex=np.full((nobs, k, k), np.nan),
centered_tss=np.full(nobs, np.nan),
uncentered_tss=np.full(nobs, np.nan),
)
w = self._window
first = self._min_nobs if self._expanding else w
xpx, xpy, nobs = self._reset(first)
if not (self._has_nan[first - 1] and self._skip_missing):
self._fit_single(first, xpx, xpy, nobs, store, params_only, method)
wx, wy = self._wx, self._wy
for i in range(first + 1, self._x.shape[0] + 1):
if self._has_nan[i - 1] and self._skip_missing:
continue
if i % reset == 0:
xpx, xpy, nobs = self._reset(i)
else:
if not self._is_nan[i - w - 1] and i > w:
remove_x = wx[i - w - 1 : i - w]
xpx -= remove_x.T @ remove_x
xpy -= remove_x.T @ wy[i - w - 1 : i - w]
nobs -= 1
if not self._is_nan[i - 1]:
add_x = wx[i - 1 : i]
xpx += add_x.T @ add_x
xpy += add_x.T @ wy[i - 1 : i]
nobs += 1
self._fit_single(i, xpx, xpy, nobs, store, params_only, method)
return RollingRegressionResults(
self, store, self.k_constant, use_t, cov_type
) | Estimate model parameters.
Parameters
----------
method : {'inv', 'lstsq', 'pinv'}
Method to use when computing the the model parameters.
* 'inv' - use moving windows inner-products and matrix inversion.
This method is the fastest, but may be less accurate than the
other methods.
* 'lstsq' - Use numpy.linalg.lstsq
* 'pinv' - Use numpy.linalg.pinv. This method matches the default
estimator in non-moving regression estimators.
cov_type : {'nonrobust', 'HCCM', 'HC0'}
Covariance estimator:
* nonrobust - The classic OLS covariance estimator
* HCCM, HC0 - White heteroskedasticity robust covariance
cov_kwds : dict
Unused
reset : int, optional
Interval to recompute the moving window inner products used to
estimate the model parameters. Smaller values improve accuracy,
although in practice this setting is not required to be set.
use_t : bool, optional
Flag indicating to use the Student's t distribution when computing
p-values.
params_only : bool, optional
Flag indicating that only parameters should be computed. Avoids
calculating all other statistics or performing inference.
Returns
-------
RollingRegressionResults
Estimation results where all pre-sample values are nan-filled. | fit | python | statsmodels/statsmodels | statsmodels/regression/rolling.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/rolling.py | BSD-3-Clause |
def _wrap(self, val):
"""Wrap output as pandas Series or DataFrames as needed"""
if not self._use_pandas:
return val
col_names = self.model.data.param_names
row_names = self.model.data.row_labels
if val.ndim == 1:
return Series(val, index=row_names)
if val.ndim == 2:
return DataFrame(val, columns=col_names, index=row_names)
else: # ndim == 3
mi = MultiIndex.from_product((row_names, col_names))
val = np.reshape(val, (-1, val.shape[-1]))
return DataFrame(val, columns=col_names, index=mi) | Wrap output as pandas Series or DataFrames as needed | _wrap | python | statsmodels/statsmodels | statsmodels/regression/rolling.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/rolling.py | BSD-3-Clause |
def params(self):
"""Estimated model parameters"""
return self._wrap(self._params) | Estimated model parameters | params | python | statsmodels/statsmodels | statsmodels/regression/rolling.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/rolling.py | BSD-3-Clause |
def k_constant(self):
"""Flag indicating whether the model contains a constant"""
return self._k_constant | Flag indicating whether the model contains a constant | k_constant | python | statsmodels/statsmodels | statsmodels/regression/rolling.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/rolling.py | BSD-3-Clause |
def cov_params(self):
"""
Estimated parameter covariance
Returns
-------
array_like
The estimated model covariances. If the original input is a numpy
array, the returned covariance is a 3-d array with shape
(nobs, nvar, nvar). If the original inputs are pandas types, then
the returned covariance is a DataFrame with a MultiIndex with
key (observation, variable), so that the covariance for
observation with index i is cov.loc[i].
"""
return self._wrap(self._cov_params) | Estimated parameter covariance
Returns
-------
array_like
The estimated model covariances. If the original input is a numpy
array, the returned covariance is a 3-d array with shape
(nobs, nvar, nvar). If the original inputs are pandas types, then
the returned covariance is a DataFrame with a MultiIndex with
key (observation, variable), so that the covariance for
observation with index i is cov.loc[i]. | cov_params | python | statsmodels/statsmodels | statsmodels/regression/rolling.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/rolling.py | BSD-3-Clause |
def cov_type(self):
"""Name of covariance estimator"""
return self._cov_type | Name of covariance estimator | cov_type | python | statsmodels/statsmodels | statsmodels/regression/rolling.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/rolling.py | BSD-3-Clause |
def iterative_fit(self, maxiter=3):
"""
Perform an iterative two-step procedure to estimate a WLS model.
The model is assumed to have heteroskedastic errors.
The variance is estimated by OLS regression of the link transformed
squared residuals on Z, i.e.::
link(sigma_i) = x_i*gamma.
Parameters
----------
maxiter : int, optional
the number of iterations
Notes
-----
maxiter=1: returns the estimated based on given weights
maxiter=2: performs a second estimation with the updated weights,
this is 2-step estimation
maxiter>2: iteratively estimate and update the weights
TODO: possible extension stop iteration if change in parameter
estimates is smaller than x_tol
Repeated calls to fit_iterative, will do one redundant pinv_wexog
calculation. Calling fit_iterative(maxiter) ones does not do any
redundant recalculations (whitening or calculating pinv_wexog).
"""
import collections
self.history = collections.defaultdict(list) #not really necessary
res_resid = None #if maxiter < 2 no updating
for i in range(maxiter):
#pinv_wexog is cached
if hasattr(self, 'pinv_wexog'):
del self.pinv_wexog
#self.initialize()
#print 'wls self',
results = self.fit()
self.history['self_params'].append(results.params)
if not i == maxiter-1: #skip for last iteration, could break instead
#print 'ols',
self.results_old = results #for debugging
#estimate heteroscedasticity
res_resid = OLS(self.link(results.resid**2), self.exog_var).fit()
self.history['ols_params'].append(res_resid.params)
#update weights
self.weights = 1./self.linkinv(res_resid.fittedvalues)
self.weights /= self.weights.max() #not required
self.weights[self.weights < 1e-14] = 1e-14 #clip
#print 'in iter', i, self.weights.var() #debug, do weights change
self.initialize()
#note results is the wrapper, results._results is the results instance
results._results.results_residual_regression = res_resid
return results | Perform an iterative two-step procedure to estimate a WLS model.
The model is assumed to have heteroskedastic errors.
The variance is estimated by OLS regression of the link transformed
squared residuals on Z, i.e.::
link(sigma_i) = x_i*gamma.
Parameters
----------
maxiter : int, optional
the number of iterations
Notes
-----
maxiter=1: returns the estimated based on given weights
maxiter=2: performs a second estimation with the updated weights,
this is 2-step estimation
maxiter>2: iteratively estimate and update the weights
TODO: possible extension stop iteration if change in parameter
estimates is smaller than x_tol
Repeated calls to fit_iterative, will do one redundant pinv_wexog
calculation. Calling fit_iterative(maxiter) ones does not do any
redundant recalculations (whitening or calculating pinv_wexog). | iterative_fit | python | statsmodels/statsmodels | statsmodels/regression/feasible_gls.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/feasible_gls.py | BSD-3-Clause |
def _dot(x, y):
"""
Returns the dot product of the arrays, works for sparse and dense.
"""
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
return np.dot(x, y)
elif sparse.issparse(x):
return x.dot(y)
elif sparse.issparse(y):
return y.T.dot(x.T).T | Returns the dot product of the arrays, works for sparse and dense. | _dot | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def _multi_dot_three(A, B, C):
"""
Find best ordering for three arrays and do the multiplication.
Doing in manually instead of using dynamic programing is
approximately 15 times faster.
"""
# cost1 = cost((AB)C)
cost1 = (A.shape[0] * A.shape[1] * B.shape[1] + # (AB)
A.shape[0] * B.shape[1] * C.shape[1]) # (--)C
# cost2 = cost((AB)C)
cost2 = (B.shape[0] * B.shape[1] * C.shape[1] + # (BC)
A.shape[0] * A.shape[1] * C.shape[1]) # A(--)
if cost1 < cost2:
return _dot(_dot(A, B), C)
else:
return _dot(A, _dot(B, C)) | Find best ordering for three arrays and do the multiplication.
Doing in manually instead of using dynamic programing is
approximately 15 times faster. | _multi_dot_three | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def _dotsum(x, y):
"""
Returns sum(x * y), where '*' is the pointwise product, computed
efficiently for dense and sparse matrices.
"""
if sparse.issparse(x):
return x.multiply(y).sum()
else:
# This way usually avoids allocating a temporary.
return np.dot(x.ravel(), y.ravel()) | Returns sum(x * y), where '*' is the pointwise product, computed
efficiently for dense and sparse matrices. | _dotsum | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def _get_exog_re_names(self, exog_re):
"""
Passes through if given a list of names. Otherwise, gets pandas names
or creates some generic variable names as needed.
"""
if self.k_re == 0:
return []
if isinstance(exog_re, pd.DataFrame):
return exog_re.columns.tolist()
elif isinstance(exog_re, pd.Series) and exog_re.name is not None:
return [exog_re.name]
elif isinstance(exog_re, list):
return exog_re
# Default names
defnames = [f"x_re{k + 1:1d}" for k in range(exog_re.shape[1])]
return defnames | Passes through if given a list of names. Otherwise, gets pandas names
or creates some generic variable names as needed. | _get_exog_re_names | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def from_packed(params, k_fe, k_re, use_sqrt, has_fe):
"""
Create a MixedLMParams object from packed parameter vector.
Parameters
----------
params : array_like
The mode parameters packed into a single vector.
k_fe : int
The number of covariates with fixed effects
k_re : int
The number of covariates with random effects (excluding
variance components).
use_sqrt : bool
If True, the random effects covariance matrix is provided
as its Cholesky factor, otherwise the lower triangle of
the covariance matrix is stored.
has_fe : bool
If True, `params` contains fixed effects parameters.
Otherwise, the fixed effects parameters are set to zero.
Returns
-------
A MixedLMParams object.
"""
k_re2 = int(k_re * (k_re + 1) / 2)
# The number of covariance parameters.
if has_fe:
k_vc = len(params) - k_fe - k_re2
else:
k_vc = len(params) - k_re2
pa = MixedLMParams(k_fe, k_re, k_vc)
cov_re = np.zeros((k_re, k_re))
ix = pa._ix
if has_fe:
pa.fe_params = params[0:k_fe]
cov_re[ix] = params[k_fe:k_fe+k_re2]
else:
pa.fe_params = np.zeros(k_fe)
cov_re[ix] = params[0:k_re2]
if use_sqrt:
cov_re = np.dot(cov_re, cov_re.T)
else:
cov_re = (cov_re + cov_re.T) - np.diag(np.diag(cov_re))
pa.cov_re = cov_re
if k_vc > 0:
if use_sqrt:
pa.vcomp = params[-k_vc:]**2
else:
pa.vcomp = params[-k_vc:]
else:
pa.vcomp = np.array([])
return pa | Create a MixedLMParams object from packed parameter vector.
Parameters
----------
params : array_like
The mode parameters packed into a single vector.
k_fe : int
The number of covariates with fixed effects
k_re : int
The number of covariates with random effects (excluding
variance components).
use_sqrt : bool
If True, the random effects covariance matrix is provided
as its Cholesky factor, otherwise the lower triangle of
the covariance matrix is stored.
has_fe : bool
If True, `params` contains fixed effects parameters.
Otherwise, the fixed effects parameters are set to zero.
Returns
-------
A MixedLMParams object. | from_packed | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def from_components(fe_params=None, cov_re=None, cov_re_sqrt=None,
vcomp=None):
"""
Create a MixedLMParams object from each parameter component.
Parameters
----------
fe_params : array_like
The fixed effects parameter (a 1-dimensional array). If
None, there are no fixed effects.
cov_re : array_like
The random effects covariance matrix (a square, symmetric
2-dimensional array).
cov_re_sqrt : array_like
The Cholesky (lower triangular) square root of the random
effects covariance matrix.
vcomp : array_like
The variance component parameters. If None, there are no
variance components.
Returns
-------
A MixedLMParams object.
"""
if vcomp is None:
vcomp = np.empty(0)
if fe_params is None:
fe_params = np.empty(0)
if cov_re is None and cov_re_sqrt is None:
cov_re = np.empty((0, 0))
k_fe = len(fe_params)
k_vc = len(vcomp)
k_re = cov_re.shape[0] if cov_re is not None else cov_re_sqrt.shape[0]
pa = MixedLMParams(k_fe, k_re, k_vc)
pa.fe_params = fe_params
if cov_re_sqrt is not None:
pa.cov_re = np.dot(cov_re_sqrt, cov_re_sqrt.T)
elif cov_re is not None:
pa.cov_re = cov_re
pa.vcomp = vcomp
return pa | Create a MixedLMParams object from each parameter component.
Parameters
----------
fe_params : array_like
The fixed effects parameter (a 1-dimensional array). If
None, there are no fixed effects.
cov_re : array_like
The random effects covariance matrix (a square, symmetric
2-dimensional array).
cov_re_sqrt : array_like
The Cholesky (lower triangular) square root of the random
effects covariance matrix.
vcomp : array_like
The variance component parameters. If None, there are no
variance components.
Returns
-------
A MixedLMParams object. | from_components | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def copy(self):
"""
Returns a copy of the object.
"""
obj = MixedLMParams(self.k_fe, self.k_re, self.k_vc)
obj.fe_params = self.fe_params.copy()
obj.cov_re = self.cov_re.copy()
obj.vcomp = self.vcomp.copy()
return obj | Returns a copy of the object. | copy | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def get_packed(self, use_sqrt, has_fe=False):
"""
Return the model parameters packed into a single vector.
Parameters
----------
use_sqrt : bool
If True, the Cholesky square root of `cov_re` is
included in the packed result. Otherwise the
lower triangle of `cov_re` is included.
has_fe : bool
If True, the fixed effects parameters are included
in the packed result, otherwise they are omitted.
"""
if self.k_re > 0:
if use_sqrt:
try:
L = np.linalg.cholesky(self.cov_re)
except np.linalg.LinAlgError:
L = np.diag(np.sqrt(np.diag(self.cov_re)))
cpa = L[self._ix]
else:
cpa = self.cov_re[self._ix]
else:
cpa = np.zeros(0)
if use_sqrt:
vcomp = np.sqrt(self.vcomp)
else:
vcomp = self.vcomp
if has_fe:
pa = np.concatenate((self.fe_params, cpa, vcomp))
else:
pa = np.concatenate((cpa, vcomp))
return pa | Return the model parameters packed into a single vector.
Parameters
----------
use_sqrt : bool
If True, the Cholesky square root of `cov_re` is
included in the packed result. Otherwise the
lower triangle of `cov_re` is included.
has_fe : bool
If True, the fixed effects parameters are included
in the packed result, otherwise they are omitted. | get_packed | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def _make_param_names(self, exog_re):
"""
Returns the full parameter names list, just the exogenous random
effects variables, and the exogenous random effects variables with
the interaction terms.
"""
exog_names = list(self.exog_names)
exog_re_names = _get_exog_re_names(self, exog_re)
param_names = []
jj = self.k_fe
for i in range(len(exog_re_names)):
for j in range(i + 1):
if i == j:
param_names.append(exog_re_names[i] + " Var")
else:
param_names.append(exog_re_names[j] + " x " +
exog_re_names[i] + " Cov")
jj += 1
vc_names = [x + " Var" for x in self.exog_vc.names]
return exog_names + param_names + vc_names, exog_re_names, param_names | Returns the full parameter names list, just the exogenous random
effects variables, and the exogenous random effects variables with
the interaction terms. | _make_param_names | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def from_formula(cls, formula, data, re_formula=None, vc_formula=None,
subset=None, use_sparse=False, missing='none', *args,
**kwargs):
"""
Create a Model from a formula and dataframe.
Parameters
----------
formula : str or generic Formula object
The formula specifying the model
data : array_like
The data for the model. See Notes.
re_formula : str
A one-sided formula defining the variance structure of the
model. The default gives a random intercept for each
group.
vc_formula : dict-like
Formulas describing variance components. `vc_formula[vc]` is
the formula for the component with variance parameter named
`vc`. The formula is processed into a matrix, and the columns
of this matrix are linearly combined with independent random
coefficients having mean zero and a common variance.
subset : array_like
An array-like object of booleans, integers, or index
values that indicate the subset of df to use in the
model. Assumes df is a `pandas.DataFrame`
missing : str
Either 'none' or 'drop'
args : extra arguments
These are passed to the model
kwargs : extra keyword arguments
These are passed to the model with one exception. The
``eval_env`` keyword is passed to patsy. It can be either a
:class:`patsy:patsy.EvalEnvironment` object or an integer
indicating the depth of the namespace to use. For example, the
default ``eval_env=0`` uses the calling namespace. If you wish
to use a "clean" environment set ``eval_env=-1``.
Returns
-------
model : Model instance
Notes
-----
`data` must define __getitem__ with the keys in the formula
terms args and kwargs are passed on to the model
instantiation. E.g., a numpy structured or rec array, a
dictionary, or a pandas DataFrame.
If the variance component is intended to produce random
intercepts for disjoint subsets of a group, specified by
string labels or a categorical data value, always use '0 +' in
the formula so that no overall intercept is included.
If the variance components specify random slopes and you do
not also want a random group-level intercept in the model,
then use '0 +' in the formula to exclude the intercept.
The variance components formulas are processed separately for
each group. If a variable is categorical the results will not
be affected by whether the group labels are distinct or
re-used over the top-level groups.
Examples
--------
Suppose we have data from an educational study with students
nested in classrooms nested in schools. The students take a
test, and we want to relate the test scores to the students'
ages, while accounting for the effects of classrooms and
schools. The school will be the top-level group, and the
classroom is a nested group that is specified as a variance
component. Note that the schools may have different number of
classrooms, and the classroom labels may (but need not be)
different across the schools.
>>> vc = {'classroom': '0 + C(classroom)'}
>>> MixedLM.from_formula('test_score ~ age', vc_formula=vc, \
re_formula='1', groups='school', data=data)
Now suppose we also have a previous test score called
'pretest'. If we want the relationship between pretest
scores and the current test to vary by classroom, we can
specify a random slope for the pretest score
>>> vc = {'classroom': '0 + C(classroom)', 'pretest': '0 + pretest'}
>>> MixedLM.from_formula('test_score ~ age + pretest', vc_formula=vc, \
re_formula='1', groups='school', data=data)
The following model is almost equivalent to the previous one,
but here the classroom random intercept and pretest slope may
be correlated.
>>> vc = {'classroom': '0 + C(classroom)'}
>>> MixedLM.from_formula('test_score ~ age + pretest', vc_formula=vc, \
re_formula='1 + pretest', groups='school', \
data=data)
"""
if "groups" not in kwargs.keys():
raise AttributeError("'groups' is a required keyword argument " +
"in MixedLM.from_formula")
groups = kwargs["groups"]
# If `groups` is a variable name, retrieve the data for the
# groups variable.
group_name = "Group"
if isinstance(groups, str):
group_name = groups
groups = np.asarray(data[groups])
else:
groups = np.asarray(groups)
del kwargs["groups"]
# Bypass all upstream missing data handling to properly handle
# variance components
if missing == 'drop':
data, groups = _handle_missing(data, groups, formula, re_formula,
vc_formula)
missing = 'none'
if re_formula is not None:
if re_formula.strip() == "1":
# Work around Patsy bug, fixed by 0.3.
exog_re = np.ones((data.shape[0], 1))
exog_re_names = [group_name]
else:
eval_env = kwargs.get('eval_env', None)
if eval_env is None:
eval_env = 1
elif eval_env == -1:
mgr = FormulaManager()
eval_env = mgr.get_empty_eval_env()
mgr = FormulaManager()
exog_re = mgr.get_matrices(re_formula, data, eval_env=eval_env)
exog_re_names = mgr.get_column_names(exog_re)
exog_re_names = [x.replace("Intercept", group_name)
for x in exog_re_names]
exog_re = np.asarray(exog_re)
if exog_re.ndim == 1:
exog_re = exog_re[:, None]
else:
exog_re = None
if vc_formula is None:
exog_re_names = [group_name]
else:
exog_re_names = []
if vc_formula is not None:
eval_env = kwargs.get('eval_env', None)
if eval_env is None:
eval_env = 1
elif eval_env == -1:
mgr = FormulaManager()
eval_env = mgr.get_empty_eval_env()
vc_mats = []
vc_colnames = []
vc_names = []
gb = data.groupby(groups)
kylist = sorted(gb.groups.keys())
vcf = sorted(vc_formula.keys())
mgr = FormulaManager()
for vc_name in vcf:
model_spec = mgr.get_spec(vc_formula[vc_name])
vc_names.append(vc_name)
evc_mats, evc_colnames = [], []
for group_ix, group in enumerate(kylist):
ii = gb.groups[group]
mat = mgr.get_matrices(
model_spec, data.loc[ii, :], eval_env=eval_env, pandas=True
)
evc_colnames.append(mat.columns.tolist())
if use_sparse:
evc_mats.append(sparse.csr_matrix(mat))
else:
evc_mats.append(np.asarray(mat))
vc_mats.append(evc_mats)
vc_colnames.append(evc_colnames)
exog_vc = VCSpec(vc_names, vc_colnames, vc_mats)
else:
exog_vc = VCSpec([], [], [])
kwargs["subset"] = None
kwargs["exog_re"] = exog_re
kwargs["exog_vc"] = exog_vc
kwargs["groups"] = groups
advance_eval_env(kwargs)
mod = super().from_formula(
formula, data, *args, **kwargs)
# expand re names to account for pairs of RE
(param_names,
exog_re_names,
exog_re_names_full) = mod._make_param_names(exog_re_names)
mod.data.param_names = param_names
mod.data.exog_re_names = exog_re_names
mod.data.exog_re_names_full = exog_re_names_full
if vc_formula is not None:
mod.data.vcomp_names = mod.exog_vc.names
return mod | Create a Model from a formula and dataframe.
Parameters
----------
formula : str or generic Formula object
The formula specifying the model
data : array_like
The data for the model. See Notes.
re_formula : str
A one-sided formula defining the variance structure of the
model. The default gives a random intercept for each
group.
vc_formula : dict-like
Formulas describing variance components. `vc_formula[vc]` is
the formula for the component with variance parameter named
`vc`. The formula is processed into a matrix, and the columns
of this matrix are linearly combined with independent random
coefficients having mean zero and a common variance.
subset : array_like
An array-like object of booleans, integers, or index
values that indicate the subset of df to use in the
model. Assumes df is a `pandas.DataFrame`
missing : str
Either 'none' or 'drop'
args : extra arguments
These are passed to the model
kwargs : extra keyword arguments
These are passed to the model with one exception. The
``eval_env`` keyword is passed to patsy. It can be either a
:class:`patsy:patsy.EvalEnvironment` object or an integer
indicating the depth of the namespace to use. For example, the
default ``eval_env=0`` uses the calling namespace. If you wish
to use a "clean" environment set ``eval_env=-1``.
Returns
-------
model : Model instance
Notes
-----
`data` must define __getitem__ with the keys in the formula
terms args and kwargs are passed on to the model
instantiation. E.g., a numpy structured or rec array, a
dictionary, or a pandas DataFrame.
If the variance component is intended to produce random
intercepts for disjoint subsets of a group, specified by
string labels or a categorical data value, always use '0 +' in
the formula so that no overall intercept is included.
If the variance components specify random slopes and you do
not also want a random group-level intercept in the model,
then use '0 +' in the formula to exclude the intercept.
The variance components formulas are processed separately for
each group. If a variable is categorical the results will not
be affected by whether the group labels are distinct or
re-used over the top-level groups.
Examples
--------
Suppose we have data from an educational study with students
nested in classrooms nested in schools. The students take a
test, and we want to relate the test scores to the students'
ages, while accounting for the effects of classrooms and
schools. The school will be the top-level group, and the
classroom is a nested group that is specified as a variance
component. Note that the schools may have different number of
classrooms, and the classroom labels may (but need not be)
different across the schools.
>>> vc = {'classroom': '0 + C(classroom)'}
>>> MixedLM.from_formula('test_score ~ age', vc_formula=vc, \
re_formula='1', groups='school', data=data)
Now suppose we also have a previous test score called
'pretest'. If we want the relationship between pretest
scores and the current test to vary by classroom, we can
specify a random slope for the pretest score
>>> vc = {'classroom': '0 + C(classroom)', 'pretest': '0 + pretest'}
>>> MixedLM.from_formula('test_score ~ age + pretest', vc_formula=vc, \
re_formula='1', groups='school', data=data)
The following model is almost equivalent to the previous one,
but here the classroom random intercept and pretest slope may
be correlated.
>>> vc = {'classroom': '0 + C(classroom)'}
>>> MixedLM.from_formula('test_score ~ age + pretest', vc_formula=vc, \
re_formula='1 + pretest', groups='school', \
data=data) | from_formula | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def predict(self, params, exog=None):
"""
Return predicted values from a design matrix.
Parameters
----------
params : array_like
Parameters of a mixed linear model. Can be either a
MixedLMParams instance, or a vector containing the packed
model parameters in which the fixed effects parameters are
at the beginning of the vector, or a vector containing
only the fixed effects parameters.
exog : array_like, optional
Design / exogenous data for the fixed effects. Model exog
is used if None.
Returns
-------
An array of fitted values. Note that these predicted values
only reflect the fixed effects mean structure of the model.
"""
if exog is None:
exog = self.exog
if isinstance(params, MixedLMParams):
params = params.fe_params
else:
params = params[0:self.k_fe]
return np.dot(exog, params) | Return predicted values from a design matrix.
Parameters
----------
params : array_like
Parameters of a mixed linear model. Can be either a
MixedLMParams instance, or a vector containing the packed
model parameters in which the fixed effects parameters are
at the beginning of the vector, or a vector containing
only the fixed effects parameters.
exog : array_like, optional
Design / exogenous data for the fixed effects. Model exog
is used if None.
Returns
-------
An array of fitted values. Note that these predicted values
only reflect the fixed effects mean structure of the model. | predict | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def group_list(self, array):
"""
Returns `array` split into subarrays corresponding to the
grouping structure.
"""
if array is None:
return None
if array.ndim == 1:
return [np.array(array[self.row_indices[k]])
for k in self.group_labels]
else:
return [np.array(array[self.row_indices[k], :])
for k in self.group_labels] | Returns `array` split into subarrays corresponding to the
grouping structure. | group_list | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def fit_regularized(self, start_params=None, method='l1', alpha=0,
ceps=1e-4, ptol=1e-6, maxit=200, **fit_kwargs):
"""
Fit a model in which the fixed effects parameters are
penalized. The dependence parameters are held fixed at their
estimated values in the unpenalized model.
Parameters
----------
method : str of Penalty object
Method for regularization. If a string, must be 'l1'.
alpha : array_like
Scalar or vector of penalty weights. If a scalar, the
same weight is applied to all coefficients; if a vector,
it contains a weight for each coefficient. If method is a
Penalty object, the weights are scaled by alpha. For L1
regularization, the weights are used directly.
ceps : positive real scalar
Fixed effects parameters smaller than this value
in magnitude are treated as being zero.
ptol : positive real scalar
Convergence occurs when the sup norm difference
between successive values of `fe_params` is less than
`ptol`.
maxit : int
The maximum number of iterations.
**fit_kwargs
Additional keyword arguments passed to fit.
Returns
-------
A MixedLMResults instance containing the results.
Notes
-----
The covariance structure is not updated as the fixed effects
parameters are varied.
The algorithm used here for L1 regularization is a"shooting"
or cyclic coordinate descent algorithm.
If method is 'l1', then `fe_pen` and `cov_pen` are used to
obtain the covariance structure, but are ignored during the
L1-penalized fitting.
References
----------
Friedman, J. H., Hastie, T. and Tibshirani, R. Regularized
Paths for Generalized Linear Models via Coordinate
Descent. Journal of Statistical Software, 33(1) (2008)
http://www.jstatsoft.org/v33/i01/paper
http://statweb.stanford.edu/~tibs/stat315a/Supplements/fuse.pdf
"""
if isinstance(method, str) and (method.lower() != 'l1'):
raise ValueError("Invalid regularization method")
# If method is a smooth penalty just optimize directly.
if isinstance(method, Penalty):
# Scale the penalty weights by alpha
method.alpha = alpha
fit_kwargs.update({"fe_pen": method})
return self.fit(**fit_kwargs)
if np.isscalar(alpha):
alpha = alpha * np.ones(self.k_fe, dtype=np.float64)
# Fit the unpenalized model to get the dependence structure.
mdf = self.fit(**fit_kwargs)
fe_params = mdf.fe_params
cov_re = mdf.cov_re
vcomp = mdf.vcomp
scale = mdf.scale
try:
cov_re_inv = np.linalg.inv(cov_re)
except np.linalg.LinAlgError:
cov_re_inv = None
for itr in range(maxit):
fe_params_s = fe_params.copy()
for j in range(self.k_fe):
if abs(fe_params[j]) < ceps:
continue
# The residuals
fe_params[j] = 0.
expval = np.dot(self.exog, fe_params)
resid_all = self.endog - expval
# The loss function has the form
# a*x^2 + b*x + pwt*|x|
a, b = 0., 0.
for group_ix, group in enumerate(self.group_labels):
vc_var = self._expand_vcomp(vcomp, group_ix)
exog = self.exog_li[group_ix]
ex_r, ex2_r = self._aex_r[group_ix], self._aex_r2[group_ix]
resid = resid_all[self.row_indices[group]]
solver = _smw_solver(scale, ex_r, ex2_r, cov_re_inv,
1 / vc_var)
x = exog[:, j]
u = solver(x)
a += np.dot(u, x)
b -= 2 * np.dot(u, resid)
pwt1 = alpha[j]
if b > pwt1:
fe_params[j] = -(b - pwt1) / (2 * a)
elif b < -pwt1:
fe_params[j] = -(b + pwt1) / (2 * a)
if np.abs(fe_params_s - fe_params).max() < ptol:
break
# Replace the fixed effects estimates with their penalized
# values, leave the dependence parameters in their unpenalized
# state.
params_prof = mdf.params.copy()
params_prof[0:self.k_fe] = fe_params
scale = self.get_scale(fe_params, mdf.cov_re_unscaled, mdf.vcomp)
# Get the Hessian including only the nonzero fixed effects,
# then blow back up to the full size after inverting.
hess, sing = self.hessian(params_prof)
if sing:
warnings.warn(_warn_cov_sing)
pcov = np.nan * np.ones_like(hess)
ii = np.abs(params_prof) > ceps
ii[self.k_fe:] = True
ii = np.flatnonzero(ii)
hess1 = hess[ii, :][:, ii]
pcov[np.ix_(ii, ii)] = np.linalg.inv(-hess1)
params_object = MixedLMParams.from_components(fe_params, cov_re=cov_re)
results = MixedLMResults(self, params_prof, pcov / scale)
results.params_object = params_object
results.fe_params = fe_params
results.cov_re = cov_re
results.vcomp = vcomp
results.scale = scale
results.cov_re_unscaled = mdf.cov_re_unscaled
results.method = mdf.method
results.converged = True
results.cov_pen = self.cov_pen
results.k_fe = self.k_fe
results.k_re = self.k_re
results.k_re2 = self.k_re2
results.k_vc = self.k_vc
return MixedLMResultsWrapper(results) | Fit a model in which the fixed effects parameters are
penalized. The dependence parameters are held fixed at their
estimated values in the unpenalized model.
Parameters
----------
method : str of Penalty object
Method for regularization. If a string, must be 'l1'.
alpha : array_like
Scalar or vector of penalty weights. If a scalar, the
same weight is applied to all coefficients; if a vector,
it contains a weight for each coefficient. If method is a
Penalty object, the weights are scaled by alpha. For L1
regularization, the weights are used directly.
ceps : positive real scalar
Fixed effects parameters smaller than this value
in magnitude are treated as being zero.
ptol : positive real scalar
Convergence occurs when the sup norm difference
between successive values of `fe_params` is less than
`ptol`.
maxit : int
The maximum number of iterations.
**fit_kwargs
Additional keyword arguments passed to fit.
Returns
-------
A MixedLMResults instance containing the results.
Notes
-----
The covariance structure is not updated as the fixed effects
parameters are varied.
The algorithm used here for L1 regularization is a"shooting"
or cyclic coordinate descent algorithm.
If method is 'l1', then `fe_pen` and `cov_pen` are used to
obtain the covariance structure, but are ignored during the
L1-penalized fitting.
References
----------
Friedman, J. H., Hastie, T. and Tibshirani, R. Regularized
Paths for Generalized Linear Models via Coordinate
Descent. Journal of Statistical Software, 33(1) (2008)
http://www.jstatsoft.org/v33/i01/paper
http://statweb.stanford.edu/~tibs/stat315a/Supplements/fuse.pdf | fit_regularized | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def get_fe_params(self, cov_re, vcomp, tol=1e-10):
"""
Use GLS to update the fixed effects parameter estimates.
Parameters
----------
cov_re : array_like (2d)
The covariance matrix of the random effects.
vcomp : array_like (1d)
The variance components.
tol : float
A tolerance parameter to determine when covariances
are singular.
Returns
-------
params : ndarray
The GLS estimates of the fixed effects parameters.
singular : bool
True if the covariance is singular
"""
if self.k_fe == 0:
return np.array([]), False
sing = False
if self.k_re == 0:
cov_re_inv = np.empty((0, 0))
else:
w, v = np.linalg.eigh(cov_re)
if w.min() < tol:
# Singular, use pseudo-inverse
sing = True
ii = np.flatnonzero(w >= tol)
if len(ii) == 0:
cov_re_inv = np.zeros_like(cov_re)
else:
vi = v[:, ii]
wi = w[ii]
cov_re_inv = np.dot(vi / wi, vi.T)
else:
cov_re_inv = np.linalg.inv(cov_re)
# Cache these quantities that do not change.
if not hasattr(self, "_endex_li"):
self._endex_li = []
for group_ix, _ in enumerate(self.group_labels):
mat = np.concatenate(
(self.exog_li[group_ix],
self.endog_li[group_ix][:, None]), axis=1)
self._endex_li.append(mat)
xtxy = 0.
for group_ix, group in enumerate(self.group_labels):
vc_var = self._expand_vcomp(vcomp, group_ix)
if vc_var.size > 0:
if vc_var.min() < tol:
# Pseudo-inverse
sing = True
ii = np.flatnonzero(vc_var >= tol)
vc_vari = np.zeros_like(vc_var)
vc_vari[ii] = 1 / vc_var[ii]
else:
vc_vari = 1 / vc_var
else:
vc_vari = np.empty(0)
exog = self.exog_li[group_ix]
ex_r, ex2_r = self._aex_r[group_ix], self._aex_r2[group_ix]
solver = _smw_solver(1., ex_r, ex2_r, cov_re_inv, vc_vari)
u = solver(self._endex_li[group_ix])
xtxy += np.dot(exog.T, u)
if sing:
fe_params = np.dot(np.linalg.pinv(xtxy[:, 0:-1]), xtxy[:, -1])
else:
fe_params = np.linalg.solve(xtxy[:, 0:-1], xtxy[:, -1])
return fe_params, sing | Use GLS to update the fixed effects parameter estimates.
Parameters
----------
cov_re : array_like (2d)
The covariance matrix of the random effects.
vcomp : array_like (1d)
The variance components.
tol : float
A tolerance parameter to determine when covariances
are singular.
Returns
-------
params : ndarray
The GLS estimates of the fixed effects parameters.
singular : bool
True if the covariance is singular | get_fe_params | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def _reparam(self):
"""
Returns parameters of the map converting parameters from the
form used in optimization to the form returned to the user.
Returns
-------
lin : list-like
Linear terms of the map
quad : list-like
Quadratic terms of the map
Notes
-----
If P are the standard form parameters and R are the
transformed parameters (i.e. with the Cholesky square root
covariance and square root transformed variance components),
then P[i] = lin[i] * R + R' * quad[i] * R
"""
k_fe, k_re, k_re2, k_vc = self.k_fe, self.k_re, self.k_re2, self.k_vc
k_tot = k_fe + k_re2 + k_vc
ix = np.tril_indices(self.k_re)
lin = []
for k in range(k_fe):
e = np.zeros(k_tot)
e[k] = 1
lin.append(e)
for k in range(k_re2):
lin.append(np.zeros(k_tot))
for k in range(k_vc):
lin.append(np.zeros(k_tot))
quad = []
# Quadratic terms for fixed effects.
for k in range(k_tot):
quad.append(np.zeros((k_tot, k_tot)))
# Quadratic terms for random effects covariance.
ii = np.tril_indices(k_re)
ix = [(a, b) for a, b in zip(ii[0], ii[1])]
for i1 in range(k_re2):
for i2 in range(k_re2):
ix1 = ix[i1]
ix2 = ix[i2]
if (ix1[1] == ix2[1]) and (ix1[0] <= ix2[0]):
ii = (ix2[0], ix1[0])
k = ix.index(ii)
quad[k_fe+k][k_fe+i2, k_fe+i1] += 1
for k in range(k_tot):
quad[k] = 0.5*(quad[k] + quad[k].T)
# Quadratic terms for variance components.
km = k_fe + k_re2
for k in range(km, km+k_vc):
quad[k][k, k] = 1
return lin, quad | Returns parameters of the map converting parameters from the
form used in optimization to the form returned to the user.
Returns
-------
lin : list-like
Linear terms of the map
quad : list-like
Quadratic terms of the map
Notes
-----
If P are the standard form parameters and R are the
transformed parameters (i.e. with the Cholesky square root
covariance and square root transformed variance components),
then P[i] = lin[i] * R + R' * quad[i] * R | _reparam | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def _expand_vcomp(self, vcomp, group_ix):
"""
Replicate variance parameters to match a group's design.
Parameters
----------
vcomp : array_like
The variance parameters for the variance components.
group_ix : int
The group index
Returns an expanded version of vcomp, in which each variance
parameter is copied as many times as there are independent
realizations of the variance component in the given group.
"""
if len(vcomp) == 0:
return np.empty(0)
vc_var = []
for j in range(len(self.exog_vc.names)):
d = self.exog_vc.mats[j][group_ix].shape[1]
vc_var.append(vcomp[j] * np.ones(d))
if len(vc_var) > 0:
return np.concatenate(vc_var)
else:
# Cannot reach here?
return np.empty(0) | Replicate variance parameters to match a group's design.
Parameters
----------
vcomp : array_like
The variance parameters for the variance components.
group_ix : int
The group index
Returns an expanded version of vcomp, in which each variance
parameter is copied as many times as there are independent
realizations of the variance component in the given group. | _expand_vcomp | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def _augment_exog(self, group_ix):
"""
Concatenate the columns for variance components to the columns
for other random effects to obtain a single random effects
exog matrix for a given group.
"""
ex_r = self.exog_re_li[group_ix] if self.k_re > 0 else None
if self.k_vc == 0:
return ex_r
ex = [ex_r] if self.k_re > 0 else []
any_sparse = False
for j, _ in enumerate(self.exog_vc.names):
ex.append(self.exog_vc.mats[j][group_ix])
any_sparse |= sparse.issparse(ex[-1])
if any_sparse:
for j, x in enumerate(ex):
if not sparse.issparse(x):
ex[j] = sparse.csr_matrix(x)
ex = sparse.hstack(ex)
ex = sparse.csr_matrix(ex)
else:
ex = np.concatenate(ex, axis=1)
return ex | Concatenate the columns for variance components to the columns
for other random effects to obtain a single random effects
exog matrix for a given group. | _augment_exog | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def loglike(self, params, profile_fe=True):
"""
Evaluate the (profile) log-likelihood of the linear mixed
effects model.
Parameters
----------
params : MixedLMParams, or array_like.
The parameter value. If array-like, must be a packed
parameter vector containing only the covariance
parameters.
profile_fe : bool
If True, replace the provided value of `fe_params` with
the GLS estimates.
Returns
-------
The log-likelihood value at `params`.
Notes
-----
The scale parameter `scale` is always profiled out of the
log-likelihood. In addition, if `profile_fe` is true the
fixed effects parameters are also profiled out.
"""
if type(params) is not MixedLMParams:
params = MixedLMParams.from_packed(params, self.k_fe,
self.k_re, self.use_sqrt,
has_fe=False)
cov_re = params.cov_re
vcomp = params.vcomp
# Move to the profile set
if profile_fe:
fe_params, sing = self.get_fe_params(cov_re, vcomp)
if sing:
self._cov_sing += 1
else:
fe_params = params.fe_params
if self.k_re > 0:
try:
cov_re_inv = np.linalg.inv(cov_re)
except np.linalg.LinAlgError:
cov_re_inv = np.linalg.pinv(cov_re)
self._cov_sing += 1
_, cov_re_logdet = np.linalg.slogdet(cov_re)
else:
cov_re_inv = np.zeros((0, 0))
cov_re_logdet = 0
# The residuals
expval = np.dot(self.exog, fe_params)
resid_all = self.endog - expval
likeval = 0.
# Handle the covariance penalty
if (self.cov_pen is not None) and (self.k_re > 0):
likeval -= self.cov_pen.func(cov_re, cov_re_inv)
# Handle the fixed effects penalty
if (self.fe_pen is not None):
likeval -= self.fe_pen.func(fe_params)
xvx, qf = 0., 0.
for group_ix, group in enumerate(self.group_labels):
vc_var = self._expand_vcomp(vcomp, group_ix)
cov_aug_logdet = cov_re_logdet + np.sum(np.log(vc_var))
exog = self.exog_li[group_ix]
ex_r, ex2_r = self._aex_r[group_ix], self._aex_r2[group_ix]
solver = _smw_solver(1., ex_r, ex2_r, cov_re_inv, 1 / vc_var)
resid = resid_all[self.row_indices[group]]
# Part 1 of the log likelihood (for both ML and REML)
ld = _smw_logdet(1., ex_r, ex2_r, cov_re_inv, 1 / vc_var,
cov_aug_logdet)
likeval -= ld / 2.
# Part 2 of the log likelihood (for both ML and REML)
u = solver(resid)
qf += np.dot(resid, u)
# Adjustment for REML
if self.reml:
mat = solver(exog)
xvx += np.dot(exog.T, mat)
if self.reml:
likeval -= (self.n_totobs - self.k_fe) * np.log(qf) / 2.
_, ld = np.linalg.slogdet(xvx)
likeval -= ld / 2.
likeval -= (self.n_totobs - self.k_fe) * np.log(2 * np.pi) / 2.
likeval += ((self.n_totobs - self.k_fe) *
np.log(self.n_totobs - self.k_fe) / 2.)
likeval -= (self.n_totobs - self.k_fe) / 2.
else:
likeval -= self.n_totobs * np.log(qf) / 2.
likeval -= self.n_totobs * np.log(2 * np.pi) / 2.
likeval += self.n_totobs * np.log(self.n_totobs) / 2.
likeval -= self.n_totobs / 2.
return likeval | Evaluate the (profile) log-likelihood of the linear mixed
effects model.
Parameters
----------
params : MixedLMParams, or array_like.
The parameter value. If array-like, must be a packed
parameter vector containing only the covariance
parameters.
profile_fe : bool
If True, replace the provided value of `fe_params` with
the GLS estimates.
Returns
-------
The log-likelihood value at `params`.
Notes
-----
The scale parameter `scale` is always profiled out of the
log-likelihood. In addition, if `profile_fe` is true the
fixed effects parameters are also profiled out. | loglike | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def _gen_dV_dPar(self, ex_r, solver, group_ix, max_ix=None):
"""
A generator that yields the element-wise derivative of the
marginal covariance matrix with respect to the random effects
variance and covariance parameters.
ex_r : array_like
The random effects design matrix
solver : function
A function that given x returns V^{-1}x, where V
is the group's marginal covariance matrix.
group_ix : int
The group index
max_ix : {int, None}
If not None, the generator ends when this index
is reached.
"""
axr = solver(ex_r)
# Regular random effects
jj = 0
for j1 in range(self.k_re):
for j2 in range(j1 + 1):
if max_ix is not None and jj > max_ix:
return
# Need 2d
mat_l, mat_r = ex_r[:, j1:j1+1], ex_r[:, j2:j2+1]
vsl, vsr = axr[:, j1:j1+1], axr[:, j2:j2+1]
yield jj, mat_l, mat_r, vsl, vsr, j1 == j2
jj += 1
# Variance components
for j, _ in enumerate(self.exog_vc.names):
if max_ix is not None and jj > max_ix:
return
mat = self.exog_vc.mats[j][group_ix]
axmat = solver(mat)
yield jj, mat, mat, axmat, axmat, True
jj += 1 | A generator that yields the element-wise derivative of the
marginal covariance matrix with respect to the random effects
variance and covariance parameters.
ex_r : array_like
The random effects design matrix
solver : function
A function that given x returns V^{-1}x, where V
is the group's marginal covariance matrix.
group_ix : int
The group index
max_ix : {int, None}
If not None, the generator ends when this index
is reached. | _gen_dV_dPar | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def score(self, params, profile_fe=True):
"""
Returns the score vector of the profile log-likelihood.
Notes
-----
The score vector that is returned is computed with respect to
the parameterization defined by this model instance's
`use_sqrt` attribute.
"""
if type(params) is not MixedLMParams:
params = MixedLMParams.from_packed(
params, self.k_fe, self.k_re, self.use_sqrt,
has_fe=False)
if profile_fe:
params.fe_params, sing = \
self.get_fe_params(params.cov_re, params.vcomp)
if sing:
msg = "Random effects covariance is singular"
warnings.warn(msg)
if self.use_sqrt:
score_fe, score_re, score_vc = self.score_sqrt(
params, calc_fe=not profile_fe)
else:
score_fe, score_re, score_vc = self.score_full(
params, calc_fe=not profile_fe)
if self._freepat is not None:
score_fe *= self._freepat.fe_params
score_re *= self._freepat.cov_re[self._freepat._ix]
score_vc *= self._freepat.vcomp
if profile_fe:
return np.concatenate((score_re, score_vc))
else:
return np.concatenate((score_fe, score_re, score_vc)) | Returns the score vector of the profile log-likelihood.
Notes
-----
The score vector that is returned is computed with respect to
the parameterization defined by this model instance's
`use_sqrt` attribute. | score | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def score_full(self, params, calc_fe):
"""
Returns the score with respect to untransformed parameters.
Calculates the score vector for the profiled log-likelihood of
the mixed effects model with respect to the parameterization
in which the random effects covariance matrix is represented
in its full form (not using the Cholesky factor).
Parameters
----------
params : MixedLMParams or array_like
The parameter at which the score function is evaluated.
If array-like, must contain the packed random effects
parameters (cov_re and vcomp) without fe_params.
calc_fe : bool
If True, calculate the score vector for the fixed effects
parameters. If False, this vector is not calculated, and
a vector of zeros is returned in its place.
Returns
-------
score_fe : array_like
The score vector with respect to the fixed effects
parameters.
score_re : array_like
The score vector with respect to the random effects
parameters (excluding variance components parameters).
score_vc : array_like
The score vector with respect to variance components
parameters.
Notes
-----
`score_re` is taken with respect to the parameterization in
which `cov_re` is represented through its lower triangle
(without taking the Cholesky square root).
"""
fe_params = params.fe_params
cov_re = params.cov_re
vcomp = params.vcomp
try:
cov_re_inv = np.linalg.inv(cov_re)
except np.linalg.LinAlgError:
cov_re_inv = np.linalg.pinv(cov_re)
self._cov_sing += 1
score_fe = np.zeros(self.k_fe)
score_re = np.zeros(self.k_re2)
score_vc = np.zeros(self.k_vc)
# Handle the covariance penalty.
if self.cov_pen is not None:
score_re -= self.cov_pen.deriv(cov_re, cov_re_inv)
# Handle the fixed effects penalty.
if calc_fe and (self.fe_pen is not None):
score_fe -= self.fe_pen.deriv(fe_params)
# resid' V^{-1} resid, summed over the groups (a scalar)
rvir = 0.
# exog' V^{-1} resid, summed over the groups (a k_fe
# dimensional vector)
xtvir = 0.
# exog' V^{_1} exog, summed over the groups (a k_fe x k_fe
# matrix)
xtvix = 0.
# V^{-1} exog' dV/dQ_jj exog V^{-1}, where Q_jj is the jj^th
# covariance parameter.
xtax = [0., ] * (self.k_re2 + self.k_vc)
# Temporary related to the gradient of log |V|
dlv = np.zeros(self.k_re2 + self.k_vc)
# resid' V^{-1} dV/dQ_jj V^{-1} resid (a scalar)
rvavr = np.zeros(self.k_re2 + self.k_vc)
for group_ix, group in enumerate(self.group_labels):
vc_var = self._expand_vcomp(vcomp, group_ix)
exog = self.exog_li[group_ix]
ex_r, ex2_r = self._aex_r[group_ix], self._aex_r2[group_ix]
solver = _smw_solver(1., ex_r, ex2_r, cov_re_inv, 1 / vc_var)
# The residuals
resid = self.endog_li[group_ix]
if self.k_fe > 0:
expval = np.dot(exog, fe_params)
resid = resid - expval
if self.reml:
viexog = solver(exog)
xtvix += np.dot(exog.T, viexog)
# Contributions to the covariance parameter gradient
vir = solver(resid)
for (jj, matl, matr, vsl, vsr, sym) in\
self._gen_dV_dPar(ex_r, solver, group_ix):
dlv[jj] = _dotsum(matr, vsl)
if not sym:
dlv[jj] += _dotsum(matl, vsr)
ul = _dot(vir, matl)
ur = ul.T if sym else _dot(matr.T, vir)
ulr = np.dot(ul, ur)
rvavr[jj] += ulr
if not sym:
rvavr[jj] += ulr.T
if self.reml:
ul = _dot(viexog.T, matl)
ur = ul.T if sym else _dot(matr.T, viexog)
ulr = np.dot(ul, ur)
xtax[jj] += ulr
if not sym:
xtax[jj] += ulr.T
# Contribution of log|V| to the covariance parameter
# gradient.
if self.k_re > 0:
score_re -= 0.5 * dlv[0:self.k_re2]
if self.k_vc > 0:
score_vc -= 0.5 * dlv[self.k_re2:]
rvir += np.dot(resid, vir)
if calc_fe:
xtvir += np.dot(exog.T, vir)
fac = self.n_totobs
if self.reml:
fac -= self.k_fe
if calc_fe and self.k_fe > 0:
score_fe += fac * xtvir / rvir
if self.k_re > 0:
score_re += 0.5 * fac * rvavr[0:self.k_re2] / rvir
if self.k_vc > 0:
score_vc += 0.5 * fac * rvavr[self.k_re2:] / rvir
if self.reml:
xtvixi = np.linalg.inv(xtvix)
for j in range(self.k_re2):
score_re[j] += 0.5 * _dotsum(xtvixi.T, xtax[j])
for j in range(self.k_vc):
score_vc[j] += 0.5 * _dotsum(xtvixi.T, xtax[self.k_re2 + j])
return score_fe, score_re, score_vc | Returns the score with respect to untransformed parameters.
Calculates the score vector for the profiled log-likelihood of
the mixed effects model with respect to the parameterization
in which the random effects covariance matrix is represented
in its full form (not using the Cholesky factor).
Parameters
----------
params : MixedLMParams or array_like
The parameter at which the score function is evaluated.
If array-like, must contain the packed random effects
parameters (cov_re and vcomp) without fe_params.
calc_fe : bool
If True, calculate the score vector for the fixed effects
parameters. If False, this vector is not calculated, and
a vector of zeros is returned in its place.
Returns
-------
score_fe : array_like
The score vector with respect to the fixed effects
parameters.
score_re : array_like
The score vector with respect to the random effects
parameters (excluding variance components parameters).
score_vc : array_like
The score vector with respect to variance components
parameters.
Notes
-----
`score_re` is taken with respect to the parameterization in
which `cov_re` is represented through its lower triangle
(without taking the Cholesky square root). | score_full | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def score_sqrt(self, params, calc_fe=True):
"""
Returns the score with respect to transformed parameters.
Calculates the score vector with respect to the
parameterization in which the random effects covariance matrix
is represented through its Cholesky square root.
Parameters
----------
params : MixedLMParams or array_like
The model parameters. If array-like must contain packed
parameters that are compatible with this model instance.
calc_fe : bool
If True, calculate the score vector for the fixed effects
parameters. If False, this vector is not calculated, and
a vector of zeros is returned in its place.
Returns
-------
score_fe : array_like
The score vector with respect to the fixed effects
parameters.
score_re : array_like
The score vector with respect to the random effects
parameters (excluding variance components parameters).
score_vc : array_like
The score vector with respect to variance components
parameters.
"""
score_fe, score_re, score_vc = self.score_full(params, calc_fe=calc_fe)
params_vec = params.get_packed(use_sqrt=True, has_fe=True)
score_full = np.concatenate((score_fe, score_re, score_vc))
scr = 0.
for i in range(len(params_vec)):
v = self._lin[i] + 2 * np.dot(self._quad[i], params_vec)
scr += score_full[i] * v
score_fe = scr[0:self.k_fe]
score_re = scr[self.k_fe:self.k_fe + self.k_re2]
score_vc = scr[self.k_fe + self.k_re2:]
return score_fe, score_re, score_vc | Returns the score with respect to transformed parameters.
Calculates the score vector with respect to the
parameterization in which the random effects covariance matrix
is represented through its Cholesky square root.
Parameters
----------
params : MixedLMParams or array_like
The model parameters. If array-like must contain packed
parameters that are compatible with this model instance.
calc_fe : bool
If True, calculate the score vector for the fixed effects
parameters. If False, this vector is not calculated, and
a vector of zeros is returned in its place.
Returns
-------
score_fe : array_like
The score vector with respect to the fixed effects
parameters.
score_re : array_like
The score vector with respect to the random effects
parameters (excluding variance components parameters).
score_vc : array_like
The score vector with respect to variance components
parameters. | score_sqrt | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def hessian(self, params):
"""
Returns the model's Hessian matrix.
Calculates the Hessian matrix for the linear mixed effects
model with respect to the parameterization in which the
covariance matrix is represented directly (without square-root
transformation).
Parameters
----------
params : MixedLMParams or array_like
The model parameters at which the Hessian is calculated.
If array-like, must contain the packed parameters in a
form that is compatible with this model instance.
Returns
-------
hess : 2d ndarray
The Hessian matrix, evaluated at `params`.
sing : boolean
If True, the covariance matrix is singular and a
pseudo-inverse is returned.
"""
if type(params) is not MixedLMParams:
params = MixedLMParams.from_packed(params, self.k_fe, self.k_re,
use_sqrt=self.use_sqrt,
has_fe=True)
fe_params = params.fe_params
vcomp = params.vcomp
cov_re = params.cov_re
sing = False
if self.k_re > 0:
try:
cov_re_inv = np.linalg.inv(cov_re)
except np.linalg.LinAlgError:
cov_re_inv = np.linalg.pinv(cov_re)
sing = True
else:
cov_re_inv = np.empty((0, 0))
# Blocks for the fixed and random effects parameters.
hess_fe = 0.
hess_re = np.zeros((self.k_re2 + self.k_vc, self.k_re2 + self.k_vc))
hess_fere = np.zeros((self.k_re2 + self.k_vc, self.k_fe))
fac = self.n_totobs
if self.reml:
fac -= self.exog.shape[1]
rvir = 0.
xtvix = 0.
xtax = [0., ] * (self.k_re2 + self.k_vc)
m = self.k_re2 + self.k_vc
B = np.zeros(m)
D = np.zeros((m, m))
F = [[0.] * m for k in range(m)]
for group_ix, group in enumerate(self.group_labels):
vc_var = self._expand_vcomp(vcomp, group_ix)
vc_vari = np.zeros_like(vc_var)
ii = np.flatnonzero(vc_var >= 1e-10)
if len(ii) > 0:
vc_vari[ii] = 1 / vc_var[ii]
if len(ii) < len(vc_var):
sing = True
exog = self.exog_li[group_ix]
ex_r, ex2_r = self._aex_r[group_ix], self._aex_r2[group_ix]
solver = _smw_solver(1., ex_r, ex2_r, cov_re_inv, vc_vari)
# The residuals
resid = self.endog_li[group_ix]
if self.k_fe > 0:
expval = np.dot(exog, fe_params)
resid = resid - expval
viexog = solver(exog)
xtvix += np.dot(exog.T, viexog)
vir = solver(resid)
rvir += np.dot(resid, vir)
for (jj1, matl1, matr1, vsl1, vsr1, sym1) in\
self._gen_dV_dPar(ex_r, solver, group_ix):
ul = _dot(viexog.T, matl1)
ur = _dot(matr1.T, vir)
hess_fere[jj1, :] += np.dot(ul, ur)
if not sym1:
ul = _dot(viexog.T, matr1)
ur = _dot(matl1.T, vir)
hess_fere[jj1, :] += np.dot(ul, ur)
if self.reml:
ul = _dot(viexog.T, matl1)
ur = ul if sym1 else np.dot(viexog.T, matr1)
ulr = _dot(ul, ur.T)
xtax[jj1] += ulr
if not sym1:
xtax[jj1] += ulr.T
ul = _dot(vir, matl1)
ur = ul if sym1 else _dot(vir, matr1)
B[jj1] += np.dot(ul, ur) * (1 if sym1 else 2)
# V^{-1} * dV/d_theta
E = [(vsl1, matr1)]
if not sym1:
E.append((vsr1, matl1))
for (jj2, matl2, matr2, vsl2, vsr2, sym2) in\
self._gen_dV_dPar(ex_r, solver, group_ix, jj1):
re = sum([_multi_dot_three(matr2.T, x[0], x[1].T)
for x in E])
vt = 2 * _dot(_multi_dot_three(vir[None, :], matl2, re),
vir[:, None])
if not sym2:
le = sum([_multi_dot_three(matl2.T, x[0], x[1].T)
for x in E])
vt += 2 * _dot(_multi_dot_three(
vir[None, :], matr2, le), vir[:, None])
D[jj1, jj2] += np.squeeze(vt)
if jj1 != jj2:
D[jj2, jj1] += np.squeeze(vt)
rt = _dotsum(vsl2, re.T) / 2
if not sym2:
rt += _dotsum(vsr2, le.T) / 2
hess_re[jj1, jj2] += rt
if jj1 != jj2:
hess_re[jj2, jj1] += rt
if self.reml:
ev = sum([_dot(x[0], _dot(x[1].T, viexog)) for x in E])
u1 = _dot(viexog.T, matl2)
u2 = _dot(matr2.T, ev)
um = np.dot(u1, u2)
F[jj1][jj2] += um + um.T
if not sym2:
u1 = np.dot(viexog.T, matr2)
u2 = np.dot(matl2.T, ev)
um = np.dot(u1, u2)
F[jj1][jj2] += um + um.T
hess_fe -= fac * xtvix / rvir
hess_re = hess_re - 0.5 * fac * (D/rvir - np.outer(B, B) / rvir**2)
hess_fere = -fac * hess_fere / rvir
if self.reml:
QL = [np.linalg.solve(xtvix, x) for x in xtax]
for j1 in range(self.k_re2 + self.k_vc):
for j2 in range(j1 + 1):
a = _dotsum(QL[j1].T, QL[j2])
a -= np.trace(np.linalg.solve(xtvix, F[j1][j2]))
a *= 0.5
hess_re[j1, j2] += a
if j1 > j2:
hess_re[j2, j1] += a
# Put the blocks together to get the Hessian.
m = self.k_fe + self.k_re2 + self.k_vc
hess = np.zeros((m, m))
hess[0:self.k_fe, 0:self.k_fe] = hess_fe
hess[0:self.k_fe, self.k_fe:] = hess_fere.T
hess[self.k_fe:, 0:self.k_fe] = hess_fere
hess[self.k_fe:, self.k_fe:] = hess_re
return hess, sing | Returns the model's Hessian matrix.
Calculates the Hessian matrix for the linear mixed effects
model with respect to the parameterization in which the
covariance matrix is represented directly (without square-root
transformation).
Parameters
----------
params : MixedLMParams or array_like
The model parameters at which the Hessian is calculated.
If array-like, must contain the packed parameters in a
form that is compatible with this model instance.
Returns
-------
hess : 2d ndarray
The Hessian matrix, evaluated at `params`.
sing : boolean
If True, the covariance matrix is singular and a
pseudo-inverse is returned. | hessian | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def get_scale(self, fe_params, cov_re, vcomp):
"""
Returns the estimated error variance based on given estimates
of the slopes and random effects covariance matrix.
Parameters
----------
fe_params : array_like
The regression slope estimates
cov_re : 2d array_like
Estimate of the random effects covariance matrix
vcomp : array_like
Estimate of the variance components
Returns
-------
scale : float
The estimated error variance.
"""
try:
cov_re_inv = np.linalg.inv(cov_re)
except np.linalg.LinAlgError:
cov_re_inv = np.linalg.pinv(cov_re)
warnings.warn(_warn_cov_sing)
qf = 0.
for group_ix, group in enumerate(self.group_labels):
vc_var = self._expand_vcomp(vcomp, group_ix)
exog = self.exog_li[group_ix]
ex_r, ex2_r = self._aex_r[group_ix], self._aex_r2[group_ix]
solver = _smw_solver(1., ex_r, ex2_r, cov_re_inv, 1 / vc_var)
# The residuals
resid = self.endog_li[group_ix]
if self.k_fe > 0:
expval = np.dot(exog, fe_params)
resid = resid - expval
mat = solver(resid)
qf += np.dot(resid, mat)
if self.reml:
qf /= (self.n_totobs - self.k_fe)
else:
qf /= self.n_totobs
return qf | Returns the estimated error variance based on given estimates
of the slopes and random effects covariance matrix.
Parameters
----------
fe_params : array_like
The regression slope estimates
cov_re : 2d array_like
Estimate of the random effects covariance matrix
vcomp : array_like
Estimate of the variance components
Returns
-------
scale : float
The estimated error variance. | get_scale | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def fit(self, start_params=None, reml=True, niter_sa=0,
do_cg=True, fe_pen=None, cov_pen=None, free=None,
full_output=False, method=None, **fit_kwargs):
"""
Fit a linear mixed model to the data.
Parameters
----------
start_params : array_like or MixedLMParams
Starting values for the profile log-likelihood. If not a
`MixedLMParams` instance, this should be an array
containing the packed parameters for the profile
log-likelihood, including the fixed effects
parameters.
reml : bool
If true, fit according to the REML likelihood, else
fit the standard likelihood using ML.
niter_sa : int
Currently this argument is ignored and has no effect
on the results.
cov_pen : CovariancePenalty object
A penalty for the random effects covariance matrix
do_cg : bool, defaults to True
If False, the optimization is skipped and a results
object at the given (or default) starting values is
returned.
fe_pen : Penalty object
A penalty on the fixed effects
free : MixedLMParams object
If not `None`, this is a mask that allows parameters to be
held fixed at specified values. A 1 indicates that the
corresponding parameter is estimated, a 0 indicates that
it is fixed at its starting value. Setting the `cov_re`
component to the identity matrix fits a model with
independent random effects. Note that some optimization
methods do not respect this constraint (bfgs and lbfgs both
work).
full_output : bool
If true, attach iteration history to results
method : str
Optimization method. Can be a scipy.optimize method name,
or a list of such names to be tried in sequence.
**fit_kwargs
Additional keyword arguments passed to fit.
Returns
-------
A MixedLMResults instance.
"""
_allowed_kwargs = ['gtol', 'maxiter', 'eps', 'maxcor', 'ftol',
'tol', 'disp', 'maxls']
for x in fit_kwargs.keys():
if x not in _allowed_kwargs:
warnings.warn("Argument %s not used by MixedLM.fit" % x)
if method is None:
method = ['bfgs', 'lbfgs', 'cg']
elif isinstance(method, str):
method = [method]
for meth in method:
if meth.lower() in ["newton", "ncg"]:
raise ValueError(
"method %s not available for MixedLM" % meth)
self.reml = reml
self.cov_pen = cov_pen
self.fe_pen = fe_pen
self._cov_sing = 0
self._freepat = free
if full_output:
hist = []
else:
hist = None
if start_params is None:
params = MixedLMParams(self.k_fe, self.k_re, self.k_vc)
params.fe_params = np.zeros(self.k_fe)
params.cov_re = np.eye(self.k_re)
params.vcomp = np.ones(self.k_vc)
else:
if isinstance(start_params, MixedLMParams):
params = start_params
else:
# It's a packed array
if len(start_params) == self.k_fe + self.k_re2 + self.k_vc:
params = MixedLMParams.from_packed(
start_params, self.k_fe, self.k_re, self.use_sqrt,
has_fe=True)
elif len(start_params) == self.k_re2 + self.k_vc:
params = MixedLMParams.from_packed(
start_params, self.k_fe, self.k_re, self.use_sqrt,
has_fe=False)
else:
raise ValueError("invalid start_params")
if do_cg:
fit_kwargs["retall"] = hist is not None
if "disp" not in fit_kwargs:
fit_kwargs["disp"] = False
packed = params.get_packed(use_sqrt=self.use_sqrt, has_fe=False)
if niter_sa > 0:
warnings.warn("niter_sa is currently ignored")
# Try optimizing one or more times
for j in range(len(method)):
rslt = super().fit(start_params=packed,
skip_hessian=True,
method=method[j],
**fit_kwargs)
if rslt.mle_retvals['converged']:
break
packed = rslt.params
if j + 1 < len(method):
next_method = method[j + 1]
warnings.warn(
"Retrying MixedLM optimization with %s" % next_method,
ConvergenceWarning)
else:
msg = ("MixedLM optimization failed, " +
"trying a different optimizer may help.")
warnings.warn(msg, ConvergenceWarning)
# The optimization succeeded
params = np.atleast_1d(rslt.params)
if hist is not None:
hist.append(rslt.mle_retvals)
converged = rslt.mle_retvals['converged']
if not converged:
gn = self.score(rslt.params)
gn = np.sqrt(np.sum(gn**2))
msg = "Gradient optimization failed, |grad| = %f" % gn
warnings.warn(msg, ConvergenceWarning)
# Convert to the final parameterization (i.e. undo the square
# root transform of the covariance matrix, and the profiling
# over the error variance).
params = MixedLMParams.from_packed(
params, self.k_fe, self.k_re, use_sqrt=self.use_sqrt, has_fe=False)
cov_re_unscaled = params.cov_re
vcomp_unscaled = params.vcomp
fe_params, sing = self.get_fe_params(cov_re_unscaled, vcomp_unscaled)
params.fe_params = fe_params
scale = self.get_scale(fe_params, cov_re_unscaled, vcomp_unscaled)
cov_re = scale * cov_re_unscaled
vcomp = scale * vcomp_unscaled
f1 = (self.k_re > 0) and (np.min(np.abs(np.diag(cov_re))) < 0.01)
f2 = (self.k_vc > 0) and (np.min(np.abs(vcomp)) < 0.01)
if f1 or f2:
msg = "The MLE may be on the boundary of the parameter space."
warnings.warn(msg, ConvergenceWarning)
# Compute the Hessian at the MLE. Note that this is the
# Hessian with respect to the random effects covariance matrix
# (not its square root). It is used for obtaining standard
# errors, not for optimization.
hess, sing = self.hessian(params)
if sing:
warnings.warn(_warn_cov_sing)
hess_diag = np.diag(hess)
if free is not None:
pcov = np.zeros_like(hess)
pat = self._freepat.get_packed(use_sqrt=False, has_fe=True)
ii = np.flatnonzero(pat)
hess_diag = hess_diag[ii]
if len(ii) > 0:
hess1 = hess[np.ix_(ii, ii)]
pcov[np.ix_(ii, ii)] = np.linalg.inv(-hess1)
else:
pcov = np.linalg.inv(-hess)
if np.any(hess_diag >= 0):
msg = ("The Hessian matrix at the estimated parameter values " +
"is not positive definite.")
warnings.warn(msg, ConvergenceWarning)
# Prepare a results class instance
params_packed = params.get_packed(use_sqrt=False, has_fe=True)
results = MixedLMResults(self, params_packed, pcov / scale)
results.params_object = params
results.fe_params = fe_params
results.cov_re = cov_re
results.vcomp = vcomp
results.scale = scale
results.cov_re_unscaled = cov_re_unscaled
results.method = "REML" if self.reml else "ML"
results.converged = converged
results.hist = hist
results.reml = self.reml
results.cov_pen = self.cov_pen
results.k_fe = self.k_fe
results.k_re = self.k_re
results.k_re2 = self.k_re2
results.k_vc = self.k_vc
results.use_sqrt = self.use_sqrt
results.freepat = self._freepat
return MixedLMResultsWrapper(results) | Fit a linear mixed model to the data.
Parameters
----------
start_params : array_like or MixedLMParams
Starting values for the profile log-likelihood. If not a
`MixedLMParams` instance, this should be an array
containing the packed parameters for the profile
log-likelihood, including the fixed effects
parameters.
reml : bool
If true, fit according to the REML likelihood, else
fit the standard likelihood using ML.
niter_sa : int
Currently this argument is ignored and has no effect
on the results.
cov_pen : CovariancePenalty object
A penalty for the random effects covariance matrix
do_cg : bool, defaults to True
If False, the optimization is skipped and a results
object at the given (or default) starting values is
returned.
fe_pen : Penalty object
A penalty on the fixed effects
free : MixedLMParams object
If not `None`, this is a mask that allows parameters to be
held fixed at specified values. A 1 indicates that the
corresponding parameter is estimated, a 0 indicates that
it is fixed at its starting value. Setting the `cov_re`
component to the identity matrix fits a model with
independent random effects. Note that some optimization
methods do not respect this constraint (bfgs and lbfgs both
work).
full_output : bool
If true, attach iteration history to results
method : str
Optimization method. Can be a scipy.optimize method name,
or a list of such names to be tried in sequence.
**fit_kwargs
Additional keyword arguments passed to fit.
Returns
-------
A MixedLMResults instance. | fit | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def rvs(self, n):
"""
Return a vector of simulated values from a mixed linear
model.
The parameter n is ignored, but required by the interface
"""
model = self.model
# Fixed effects
y = np.dot(self.exog, self.fe_params)
# Random effects
u = np.random.normal(size=(model.n_groups, model.k_re))
u = np.dot(u, np.linalg.cholesky(self.cov_re).T)
y += (u[self.group_idx, :] * model.exog_re).sum(1)
# Variance components
for j, _ in enumerate(model.exog_vc.names):
ex = model.exog_vc.mats[j]
v = self.vcomp[j]
for i, g in enumerate(model.group_labels):
exg = ex[i]
ii = model.row_indices[g]
u = np.random.normal(size=exg.shape[1])
y[ii] += np.sqrt(v) * np.dot(exg, u)
# Residual variance
y += np.sqrt(self.scale) * np.random.normal(size=len(y))
return y | Return a vector of simulated values from a mixed linear
model.
The parameter n is ignored, but required by the interface | rvs | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def fittedvalues(self):
"""
Returns the fitted values for the model.
The fitted values reflect the mean structure specified by the
fixed effects and the predicted random effects.
"""
fit = np.dot(self.model.exog, self.fe_params)
re = self.random_effects
for group_ix, group in enumerate(self.model.group_labels):
ix = self.model.row_indices[group]
mat = []
if self.model.exog_re_li is not None:
mat.append(self.model.exog_re_li[group_ix])
for j in range(self.k_vc):
mat.append(self.model.exog_vc.mats[j][group_ix])
mat = np.concatenate(mat, axis=1)
fit[ix] += np.dot(mat, re[group])
return fit | Returns the fitted values for the model.
The fitted values reflect the mean structure specified by the
fixed effects and the predicted random effects. | fittedvalues | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def resid(self):
"""
Returns the residuals for the model.
The residuals reflect the mean structure specified by the
fixed effects and the predicted random effects.
"""
return self.model.endog - self.fittedvalues | Returns the residuals for the model.
The residuals reflect the mean structure specified by the
fixed effects and the predicted random effects. | resid | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def bse_fe(self):
"""
Returns the standard errors of the fixed effect regression
coefficients.
"""
p = self.model.exog.shape[1]
return np.sqrt(np.diag(self.cov_params())[0:p]) | Returns the standard errors of the fixed effect regression
coefficients. | bse_fe | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def bse_re(self):
"""
Returns the standard errors of the variance parameters.
The first `k_re x (k_re + 1)` elements of the returned array
are the standard errors of the lower triangle of `cov_re`.
The remaining elements are the standard errors of the variance
components.
Note that the sampling distribution of variance parameters is
strongly skewed unless the sample size is large, so these
standard errors may not give meaningful confidence intervals
or p-values if used in the usual way.
"""
p = self.model.exog.shape[1]
return np.sqrt(self.scale * np.diag(self.cov_params())[p:]) | Returns the standard errors of the variance parameters.
The first `k_re x (k_re + 1)` elements of the returned array
are the standard errors of the lower triangle of `cov_re`.
The remaining elements are the standard errors of the variance
components.
Note that the sampling distribution of variance parameters is
strongly skewed unless the sample size is large, so these
standard errors may not give meaningful confidence intervals
or p-values if used in the usual way. | bse_re | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def random_effects(self):
"""
The conditional means of random effects given the data.
Returns
-------
random_effects : dict
A dictionary mapping the distinct `group` values to the
conditional means of the random effects for the group
given the data.
"""
try:
cov_re_inv = np.linalg.inv(self.cov_re)
except np.linalg.LinAlgError:
raise ValueError("Cannot predict random effects from " +
"singular covariance structure.")
vcomp = self.vcomp
k_re = self.k_re
ranef_dict = {}
for group_ix, group in enumerate(self.model.group_labels):
endog = self.model.endog_li[group_ix]
exog = self.model.exog_li[group_ix]
ex_r = self.model._aex_r[group_ix]
ex2_r = self.model._aex_r2[group_ix]
vc_var = self.model._expand_vcomp(vcomp, group_ix)
# Get the residuals relative to fixed effects
resid = endog
if self.k_fe > 0:
expval = np.dot(exog, self.fe_params)
resid = resid - expval
solver = _smw_solver(self.scale, ex_r, ex2_r, cov_re_inv,
1 / vc_var)
vir = solver(resid)
xtvir = _dot(ex_r.T, vir)
xtvir[0:k_re] = np.dot(self.cov_re, xtvir[0:k_re])
xtvir[k_re:] *= vc_var
ranef_dict[group] = pd.Series(
xtvir, index=self._expand_re_names(group_ix))
return ranef_dict | The conditional means of random effects given the data.
Returns
-------
random_effects : dict
A dictionary mapping the distinct `group` values to the
conditional means of the random effects for the group
given the data. | random_effects | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def random_effects_cov(self):
"""
Returns the conditional covariance matrix of the random
effects for each group given the data.
Returns
-------
random_effects_cov : dict
A dictionary mapping the distinct values of the `group`
variable to the conditional covariance matrix of the
random effects given the data.
"""
try:
cov_re_inv = np.linalg.inv(self.cov_re)
except np.linalg.LinAlgError:
cov_re_inv = None
vcomp = self.vcomp
ranef_dict = {}
for group_ix in range(self.model.n_groups):
ex_r = self.model._aex_r[group_ix]
ex2_r = self.model._aex_r2[group_ix]
label = self.model.group_labels[group_ix]
vc_var = self.model._expand_vcomp(vcomp, group_ix)
solver = _smw_solver(self.scale, ex_r, ex2_r, cov_re_inv,
1 / vc_var)
n = ex_r.shape[0]
m = self.cov_re.shape[0]
mat1 = np.empty((n, m + len(vc_var)))
mat1[:, 0:m] = np.dot(ex_r[:, 0:m], self.cov_re)
mat1[:, m:] = np.dot(ex_r[:, m:], np.diag(vc_var))
mat2 = solver(mat1)
mat2 = np.dot(mat1.T, mat2)
v = -mat2
v[0:m, 0:m] += self.cov_re
ix = np.arange(m, v.shape[0])
v[ix, ix] += vc_var
na = self._expand_re_names(group_ix)
v = pd.DataFrame(v, index=na, columns=na)
ranef_dict[label] = v
return ranef_dict | Returns the conditional covariance matrix of the random
effects for each group given the data.
Returns
-------
random_effects_cov : dict
A dictionary mapping the distinct values of the `group`
variable to the conditional covariance matrix of the
random effects given the data. | random_effects_cov | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def t_test(self, r_matrix, use_t=None):
"""
Compute a t-test for a each linear hypothesis of the form Rb = q
Parameters
----------
r_matrix : array_like
If an array is given, a p x k 2d array or length k 1d
array specifying the linear restrictions. It is assumed
that the linear combination is equal to zero.
scale : float, optional
An optional `scale` to use. Default is the scale specified
by the model fit.
use_t : bool, optional
If use_t is None, then the default of the model is used.
If use_t is True, then the p-values are based on the t
distribution.
If use_t is False, then the p-values are based on the normal
distribution.
Returns
-------
res : ContrastResults instance
The results for the test are attributes of this results instance.
The available results have the same elements as the parameter table
in `summary()`.
"""
if r_matrix.shape[1] != self.k_fe:
raise ValueError("r_matrix for t-test should have %d columns"
% self.k_fe)
d = self.k_re2 + self.k_vc
z0 = np.zeros((r_matrix.shape[0], d))
r_matrix = np.concatenate((r_matrix, z0), axis=1)
tst_rslt = super().t_test(r_matrix, use_t=use_t)
return tst_rslt | Compute a t-test for a each linear hypothesis of the form Rb = q
Parameters
----------
r_matrix : array_like
If an array is given, a p x k 2d array or length k 1d
array specifying the linear restrictions. It is assumed
that the linear combination is equal to zero.
scale : float, optional
An optional `scale` to use. Default is the scale specified
by the model fit.
use_t : bool, optional
If use_t is None, then the default of the model is used.
If use_t is True, then the p-values are based on the t
distribution.
If use_t is False, then the p-values are based on the normal
distribution.
Returns
-------
res : ContrastResults instance
The results for the test are attributes of this results instance.
The available results have the same elements as the parameter table
in `summary()`. | t_test | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def summary(self, yname=None, xname_fe=None, xname_re=None,
title=None, alpha=.05):
"""
Summarize the mixed model regression results.
Parameters
----------
yname : str, optional
Default is `y`
xname_fe : list[str], optional
Fixed effects covariate names
xname_re : list[str], optional
Random effects covariate names
title : str, optional
Title for the top table. If not None, then this replaces
the default title
alpha : float
significance level for the confidence intervals
Returns
-------
smry : Summary instance
this holds the summary tables and text, which can be
printed or converted to various output formats.
See Also
--------
statsmodels.iolib.summary2.Summary : class to hold summary results
"""
from statsmodels.iolib import summary2
smry = summary2.Summary()
info = {}
info["Model:"] = "MixedLM"
if yname is None:
yname = self.model.endog_names
param_names = self.model.data.param_names[:]
k_fe_params = len(self.fe_params)
k_re_params = len(param_names) - len(self.fe_params)
if xname_fe is not None:
if len(xname_fe) != k_fe_params:
msg = "xname_fe should be a list of length %d" % k_fe_params
raise ValueError(msg)
param_names[:k_fe_params] = xname_fe
if xname_re is not None:
if len(xname_re) != k_re_params:
msg = "xname_re should be a list of length %d" % k_re_params
raise ValueError(msg)
param_names[k_fe_params:] = xname_re
info["No. Observations:"] = str(self.model.n_totobs)
info["No. Groups:"] = str(self.model.n_groups)
gs = np.array([len(x) for x in self.model.endog_li])
info["Min. group size:"] = "%.0f" % min(gs)
info["Max. group size:"] = "%.0f" % max(gs)
info["Mean group size:"] = "%.1f" % np.mean(gs)
info["Dependent Variable:"] = yname
info["Method:"] = self.method
info["Scale:"] = self.scale
info["Log-Likelihood:"] = self.llf
info["Converged:"] = "Yes" if self.converged else "No"
smry.add_dict(info)
smry.add_title("Mixed Linear Model Regression Results")
float_fmt = "%.3f"
sdf = np.nan * np.ones((self.k_fe + self.k_re2 + self.k_vc, 6))
# Coefficient estimates
sdf[0:self.k_fe, 0] = self.fe_params
# Standard errors
sdf[0:self.k_fe, 1] = np.sqrt(np.diag(self.cov_params()[0:self.k_fe]))
# Z-scores
sdf[0:self.k_fe, 2] = sdf[0:self.k_fe, 0] / sdf[0:self.k_fe, 1]
# p-values
sdf[0:self.k_fe, 3] = 2 * norm.cdf(-np.abs(sdf[0:self.k_fe, 2]))
# Confidence intervals
qm = -norm.ppf(alpha / 2)
sdf[0:self.k_fe, 4] = sdf[0:self.k_fe, 0] - qm * sdf[0:self.k_fe, 1]
sdf[0:self.k_fe, 5] = sdf[0:self.k_fe, 0] + qm * sdf[0:self.k_fe, 1]
# All random effects variances and covariances
jj = self.k_fe
for i in range(self.k_re):
for j in range(i + 1):
sdf[jj, 0] = self.cov_re[i, j]
sdf[jj, 1] = np.sqrt(self.scale) * self.bse[jj]
jj += 1
# Variance components
for i in range(self.k_vc):
sdf[jj, 0] = self.vcomp[i]
sdf[jj, 1] = np.sqrt(self.scale) * self.bse[jj]
jj += 1
sdf = pd.DataFrame(index=param_names, data=sdf)
sdf.columns = ['Coef.', 'Std.Err.', 'z', 'P>|z|',
'[' + str(alpha/2), str(1-alpha/2) + ']']
for col in sdf.columns:
sdf[col] = [float_fmt % x if np.isfinite(x) else ""
for x in sdf[col]]
smry.add_df(sdf, align='r')
return smry | Summarize the mixed model regression results.
Parameters
----------
yname : str, optional
Default is `y`
xname_fe : list[str], optional
Fixed effects covariate names
xname_re : list[str], optional
Random effects covariate names
title : str, optional
Title for the top table. If not None, then this replaces
the default title
alpha : float
significance level for the confidence intervals
Returns
-------
smry : Summary instance
this holds the summary tables and text, which can be
printed or converted to various output formats.
See Also
--------
statsmodels.iolib.summary2.Summary : class to hold summary results | summary | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def aic(self):
"""Akaike information criterion"""
if self.reml:
return np.nan
if self.freepat is not None:
df = self.freepat.get_packed(use_sqrt=False, has_fe=True).sum() + 1
else:
df = self.params.size + 1
return -2 * (self.llf - df) | Akaike information criterion | aic | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def bic(self):
"""Bayesian information criterion"""
if self.reml:
return np.nan
if self.freepat is not None:
df = self.freepat.get_packed(use_sqrt=False, has_fe=True).sum() + 1
else:
df = self.params.size + 1
return -2 * self.llf + np.log(self.nobs) * df | Bayesian information criterion | bic | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def profile_re(self, re_ix, vtype, num_low=5, dist_low=1., num_high=5,
dist_high=1., **fit_kwargs):
"""
Profile-likelihood inference for variance parameters.
Parameters
----------
re_ix : int
If vtype is `re`, this value is the index of the variance
parameter for which to construct a profile likelihood. If
`vtype` is 'vc' then `re_ix` is the name of the variance
parameter to be profiled.
vtype : str
Either 're' or 'vc', depending on whether the profile
analysis is for a random effect or a variance component.
num_low : int
The number of points at which to calculate the likelihood
below the MLE of the parameter of interest.
dist_low : float
The distance below the MLE of the parameter of interest to
begin calculating points on the profile likelihood.
num_high : int
The number of points at which to calculate the likelihood
above the MLE of the parameter of interest.
dist_high : float
The distance above the MLE of the parameter of interest to
begin calculating points on the profile likelihood.
**fit_kwargs
Additional keyword arguments passed to fit.
Returns
-------
An array with two columns. The first column contains the
values to which the parameter of interest is constrained. The
second column contains the corresponding likelihood values.
Notes
-----
Only variance parameters can be profiled.
"""
pmodel = self.model
k_fe = pmodel.k_fe
k_re = pmodel.k_re
k_vc = pmodel.k_vc
endog, exog = pmodel.endog, pmodel.exog
# Need to permute the columns of the random effects design
# matrix so that the profiled variable is in the first column.
if vtype == 're':
ix = np.arange(k_re)
ix[0] = re_ix
ix[re_ix] = 0
exog_re = pmodel.exog_re.copy()[:, ix]
# Permute the covariance structure to match the permuted
# design matrix.
params = self.params_object.copy()
cov_re_unscaled = params.cov_re
cov_re_unscaled = cov_re_unscaled[np.ix_(ix, ix)]
params.cov_re = cov_re_unscaled
ru0 = cov_re_unscaled[0, 0]
# Convert dist_low and dist_high to the profile
# parameterization
cov_re = self.scale * cov_re_unscaled
low = (cov_re[0, 0] - dist_low) / self.scale
high = (cov_re[0, 0] + dist_high) / self.scale
elif vtype == 'vc':
re_ix = self.model.exog_vc.names.index(re_ix)
params = self.params_object.copy()
vcomp = self.vcomp
low = (vcomp[re_ix] - dist_low) / self.scale
high = (vcomp[re_ix] + dist_high) / self.scale
ru0 = vcomp[re_ix] / self.scale
# Define the sequence of values to which the parameter of
# interest will be constrained.
if low <= 0:
raise ValueError("dist_low is too large and would result in a "
"negative variance. Try a smaller value.")
left = np.linspace(low, ru0, num_low + 1)
right = np.linspace(ru0, high, num_high+1)[1:]
rvalues = np.concatenate((left, right))
# Indicators of which parameters are free and fixed.
free = MixedLMParams(k_fe, k_re, k_vc)
if self.freepat is None:
free.fe_params = np.ones(k_fe)
vcomp = np.ones(k_vc)
mat = np.ones((k_re, k_re))
else:
# If a freepat already has been specified, we add the
# constraint to it.
free.fe_params = self.freepat.fe_params
vcomp = self.freepat.vcomp
mat = self.freepat.cov_re
if vtype == 're':
mat = mat[np.ix_(ix, ix)]
if vtype == 're':
mat[0, 0] = 0
else:
vcomp[re_ix] = 0
free.cov_re = mat
free.vcomp = vcomp
klass = self.model.__class__
init_kwargs = pmodel._get_init_kwds()
if vtype == 're':
init_kwargs['exog_re'] = exog_re
likev = []
for x in rvalues:
model = klass(endog, exog, **init_kwargs)
if vtype == 're':
cov_re = params.cov_re.copy()
cov_re[0, 0] = x
params.cov_re = cov_re
else:
params.vcomp[re_ix] = x
# TODO should use fit_kwargs
rslt = model.fit(start_params=params, free=free,
reml=self.reml, cov_pen=self.cov_pen,
**fit_kwargs)._results
likev.append([x * rslt.scale, rslt.llf])
likev = np.asarray(likev)
return likev | Profile-likelihood inference for variance parameters.
Parameters
----------
re_ix : int
If vtype is `re`, this value is the index of the variance
parameter for which to construct a profile likelihood. If
`vtype` is 'vc' then `re_ix` is the name of the variance
parameter to be profiled.
vtype : str
Either 're' or 'vc', depending on whether the profile
analysis is for a random effect or a variance component.
num_low : int
The number of points at which to calculate the likelihood
below the MLE of the parameter of interest.
dist_low : float
The distance below the MLE of the parameter of interest to
begin calculating points on the profile likelihood.
num_high : int
The number of points at which to calculate the likelihood
above the MLE of the parameter of interest.
dist_high : float
The distance above the MLE of the parameter of interest to
begin calculating points on the profile likelihood.
**fit_kwargs
Additional keyword arguments passed to fit.
Returns
-------
An array with two columns. The first column contains the
values to which the parameter of interest is constrained. The
second column contains the corresponding likelihood values.
Notes
-----
Only variance parameters can be profiled. | profile_re | python | statsmodels/statsmodels | statsmodels/regression/mixed_linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/mixed_linear_model.py | BSD-3-Clause |
def fit(self, method='pinv'):
"""
Minimal implementation of WLS optimized for performance.
Parameters
----------
method : str, optional
Method to use to estimate parameters. "pinv", "qr" or "lstsq"
* "pinv" uses the Moore-Penrose pseudoinverse
to solve the least squares problem.
* "qr" uses the QR factorization.
* "lstsq" uses the least squares implementation in numpy.linalg
Returns
-------
results : namedtuple
Named tuple containing the fewest terms needed to implement
iterative estimation in models. Currently
* params : Estimated parameters
* fittedvalues : Fit values using original data
* resid : Residuals using original data
* model : namedtuple with one field, weights
* scale : scale computed using weighted residuals
Notes
-----
Does not perform and checks on the input data
See Also
--------
statsmodels.regression.linear_model.WLS
"""
if method == 'pinv':
pinv_wexog = np.linalg.pinv(self.wexog)
params = pinv_wexog.dot(self.wendog)
elif method == 'qr':
Q, R = np.linalg.qr(self.wexog)
params = np.linalg.solve(R, np.dot(Q.T, self.wendog))
else:
params, _, _, _ = np.linalg.lstsq(self.wexog, self.wendog,
rcond=-1)
return self.results(params) | Minimal implementation of WLS optimized for performance.
Parameters
----------
method : str, optional
Method to use to estimate parameters. "pinv", "qr" or "lstsq"
* "pinv" uses the Moore-Penrose pseudoinverse
to solve the least squares problem.
* "qr" uses the QR factorization.
* "lstsq" uses the least squares implementation in numpy.linalg
Returns
-------
results : namedtuple
Named tuple containing the fewest terms needed to implement
iterative estimation in models. Currently
* params : Estimated parameters
* fittedvalues : Fit values using original data
* resid : Residuals using original data
* model : namedtuple with one field, weights
* scale : scale computed using weighted residuals
Notes
-----
Does not perform and checks on the input data
See Also
--------
statsmodels.regression.linear_model.WLS | fit | python | statsmodels/statsmodels | statsmodels/regression/_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/_tools.py | BSD-3-Clause |
def results(self, params):
"""
Construct results
params : ndarray
Model parameters
Notes
-----
Allows results to be constructed from either existing parameters or
when estimated using using ``fit``
"""
fitted_values = self.exog.dot(params)
resid = self.endog - fitted_values
wresid = self.wendog - self.wexog.dot(params)
df_resid = self.wexog.shape[0] - self.wexog.shape[1]
scale = np.dot(wresid, wresid) / df_resid
return Bunch(params=params, fittedvalues=fitted_values, resid=resid,
model=self, scale=scale) | Construct results
params : ndarray
Model parameters
Notes
-----
Allows results to be constructed from either existing parameters or
when estimated using using ``fit`` | results | python | statsmodels/statsmodels | statsmodels/regression/_tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/_tools.py | BSD-3-Clause |
def whiten(self, data):
"""
QuantReg model whitener does nothing: returns data.
"""
return data | QuantReg model whitener does nothing: returns data. | whiten | python | statsmodels/statsmodels | statsmodels/regression/quantile_regression.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/quantile_regression.py | BSD-3-Clause |
def fit(self, q=.5, vcov='robust', kernel='epa', bandwidth='hsheather',
max_iter=1000, p_tol=1e-6, **kwargs):
"""
Solve by Iterative Weighted Least Squares
Parameters
----------
q : float
Quantile must be strictly between 0 and 1
vcov : str, method used to calculate the variance-covariance matrix
of the parameters. Default is ``robust``:
- robust : heteroskedasticity robust standard errors (as suggested
in Greene 6th edition)
- iid : iid errors (as in Stata 12)
kernel : str, kernel to use in the kernel density estimation for the
asymptotic covariance matrix:
- epa: Epanechnikov
- cos: Cosine
- gau: Gaussian
- par: Parzene
bandwidth : str, Bandwidth selection method in kernel density
estimation for asymptotic covariance estimate (full
references in QuantReg docstring):
- hsheather: Hall-Sheather (1988)
- bofinger: Bofinger (1975)
- chamberlain: Chamberlain (1994)
"""
if q <= 0 or q >= 1:
raise Exception('q must be strictly between 0 and 1')
kern_names = ['biw', 'cos', 'epa', 'gau', 'par']
if kernel not in kern_names:
raise Exception("kernel must be one of " + ', '.join(kern_names))
else:
kernel = kernels[kernel]
if bandwidth == 'hsheather':
bandwidth = hall_sheather
elif bandwidth == 'bofinger':
bandwidth = bofinger
elif bandwidth == 'chamberlain':
bandwidth = chamberlain
else:
raise Exception("bandwidth must be in 'hsheather', 'bofinger', 'chamberlain'")
endog = self.endog
exog = self.exog
nobs = self.nobs
exog_rank = np.linalg.matrix_rank(self.exog)
self.rank = exog_rank
self.df_model = float(self.rank - self.k_constant)
self.df_resid = self.nobs - self.rank
n_iter = 0
xstar = exog
beta = np.ones(exog.shape[1])
# TODO: better start, initial beta is used only for convergence check
# Note the following does not work yet,
# the iteration loop always starts with OLS as initial beta
# if start_params is not None:
# if len(start_params) != rank:
# raise ValueError('start_params has wrong length')
# beta = start_params
# else:
# # start with OLS
# beta = np.dot(np.linalg.pinv(exog), endog)
diff = 10
cycle = False
history = dict(params = [], mse=[])
while n_iter < max_iter and diff > p_tol and not cycle:
n_iter += 1
beta0 = beta
xtx = np.dot(xstar.T, exog)
xty = np.dot(xstar.T, endog)
beta = np.dot(pinv(xtx), xty)
resid = endog - np.dot(exog, beta)
mask = np.abs(resid) < .000001
resid[mask] = ((resid[mask] >= 0) * 2 - 1) * .000001
resid = np.where(resid < 0, q * resid, (1-q) * resid)
resid = np.abs(resid)
xstar = exog / resid[:, np.newaxis]
diff = np.max(np.abs(beta - beta0))
history['params'].append(beta)
history['mse'].append(np.mean(resid*resid))
if (n_iter >= 300) and (n_iter % 100 == 0):
# check for convergence circle, should not happen
for ii in range(2, 10):
if np.all(beta == history['params'][-ii]):
cycle = True
warnings.warn("Convergence cycle detected", ConvergenceWarning)
break
if n_iter == max_iter:
warnings.warn("Maximum number of iterations (" + str(max_iter) +
") reached.", IterationLimitWarning)
e = endog - np.dot(exog, beta)
# Greene (2008, p.407) writes that Stata 6 uses this bandwidth:
# h = 0.9 * np.std(e) / (nobs**0.2)
# Instead, we calculate bandwidth as in Stata 12
iqre = stats.scoreatpercentile(e, 75) - stats.scoreatpercentile(e, 25)
h = bandwidth(nobs, q)
h = min(np.std(endog),
iqre / 1.34) * (norm.ppf(q + h) - norm.ppf(q - h))
fhat0 = 1. / (nobs * h) * np.sum(kernel(e / h))
if vcov == 'robust':
d = np.where(e > 0, (q/fhat0)**2, ((1-q)/fhat0)**2)
xtxi = pinv(np.dot(exog.T, exog))
xtdx = np.dot(exog.T * d[np.newaxis, :], exog)
vcov = xtxi @ xtdx @ xtxi
elif vcov == 'iid':
vcov = (1. / fhat0)**2 * q * (1 - q) * pinv(np.dot(exog.T, exog))
else:
raise Exception("vcov must be 'robust' or 'iid'")
lfit = QuantRegResults(self, beta, normalized_cov_params=vcov)
lfit.q = q
lfit.iterations = n_iter
lfit.sparsity = 1. / fhat0
lfit.bandwidth = h
lfit.history = history
return RegressionResultsWrapper(lfit) | Solve by Iterative Weighted Least Squares
Parameters
----------
q : float
Quantile must be strictly between 0 and 1
vcov : str, method used to calculate the variance-covariance matrix
of the parameters. Default is ``robust``:
- robust : heteroskedasticity robust standard errors (as suggested
in Greene 6th edition)
- iid : iid errors (as in Stata 12)
kernel : str, kernel to use in the kernel density estimation for the
asymptotic covariance matrix:
- epa: Epanechnikov
- cos: Cosine
- gau: Gaussian
- par: Parzene
bandwidth : str, Bandwidth selection method in kernel density
estimation for asymptotic covariance estimate (full
references in QuantReg docstring):
- hsheather: Hall-Sheather (1988)
- bofinger: Bofinger (1975)
- chamberlain: Chamberlain (1994) | fit | python | statsmodels/statsmodels | statsmodels/regression/quantile_regression.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/quantile_regression.py | BSD-3-Clause |
def summary(self, yname=None, xname=None, title=None, alpha=.05):
"""Summarize the Regression Results
Parameters
----------
yname : str, optional
Default is `y`
xname : list[str], optional
Names for the exogenous variables. Default is `var_##` for ## in
the number of regressors. Must match the number of parameters
in the model
title : str, optional
Title for the top table. If not None, then this replaces the
default title
alpha : float
significance level for the confidence intervals
Returns
-------
smry : Summary instance
this holds the summary tables and text, which can be printed or
converted to various output formats.
See Also
--------
statsmodels.iolib.summary.Summary : class to hold summary results
"""
eigvals = self.eigenvals
condno = self.condition_number
top_left = [('Dep. Variable:', None),
('Model:', None),
('Method:', ['Least Squares']),
('Date:', None),
('Time:', None)
]
top_right = [('Pseudo R-squared:', ["%#8.4g" % self.prsquared]),
('Bandwidth:', ["%#8.4g" % self.bandwidth]),
('Sparsity:', ["%#8.4g" % self.sparsity]),
('No. Observations:', None),
('Df Residuals:', None),
('Df Model:', None)
]
if title is None:
title = self.model.__class__.__name__ + ' ' + "Regression Results"
# create summary table instance
from statsmodels.iolib.summary import Summary
smry = Summary()
smry.add_table_2cols(self, gleft=top_left, gright=top_right,
yname=yname, xname=xname, title=title)
smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha,
use_t=self.use_t)
# add warnings/notes, added to text format only
etext = []
if eigvals[-1] < 1e-10:
wstr = "The smallest eigenvalue is %6.3g. This might indicate "
wstr += "that there are\n"
wstr += "strong multicollinearity problems or that the design "
wstr += "matrix is singular."
wstr = wstr % eigvals[-1]
etext.append(wstr)
elif condno > 1000: # TODO: what is recommended
wstr = "The condition number is large, %6.3g. This might "
wstr += "indicate that there are\n"
wstr += "strong multicollinearity or other numerical "
wstr += "problems."
wstr = wstr % condno
etext.append(wstr)
if etext:
smry.add_extra_txt(etext)
return smry | Summarize the Regression Results
Parameters
----------
yname : str, optional
Default is `y`
xname : list[str], optional
Names for the exogenous variables. Default is `var_##` for ## in
the number of regressors. Must match the number of parameters
in the model
title : str, optional
Title for the top table. If not None, then this replaces the
default title
alpha : float
significance level for the confidence intervals
Returns
-------
smry : Summary instance
this holds the summary tables and text, which can be printed or
converted to various output formats.
See Also
--------
statsmodels.iolib.summary.Summary : class to hold summary results | summary | python | statsmodels/statsmodels | statsmodels/regression/quantile_regression.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/quantile_regression.py | BSD-3-Clause |
def fit(self):
"""
Fits the model by application of the Kalman filter
Returns
-------
RecursiveLSResults
"""
smoother_results = self.smooth(return_ssm=True)
with self.ssm.fixed_scale(smoother_results.scale):
res = self.smooth()
return res | Fits the model by application of the Kalman filter
Returns
-------
RecursiveLSResults | fit | python | statsmodels/statsmodels | statsmodels/regression/recursive_ls.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/recursive_ls.py | BSD-3-Clause |
def update(self, params, **kwargs):
"""
Update the parameters of the model
Updates the representation matrices to fill in the new parameter
values.
Parameters
----------
params : array_like
Array of new parameters.
transformed : bool, optional
Whether or not `params` is already transformed. If set to False,
`transform_params` is called. Default is True..
Returns
-------
params : array_like
Array of parameters.
"""
pass | Update the parameters of the model
Updates the representation matrices to fill in the new parameter
values.
Parameters
----------
params : array_like
Array of new parameters.
transformed : bool, optional
Whether or not `params` is already transformed. If set to False,
`transform_params` is called. Default is True..
Returns
-------
params : array_like
Array of parameters. | update | python | statsmodels/statsmodels | statsmodels/regression/recursive_ls.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/recursive_ls.py | BSD-3-Clause |
def recursive_coefficients(self):
"""
Estimates of regression coefficients, recursively estimated
Returns
-------
out: Bunch
Has the following attributes:
- `filtered`: a time series array with the filtered estimate of
the component
- `filtered_cov`: a time series array with the filtered estimate of
the variance/covariance of the component
- `smoothed`: a time series array with the smoothed estimate of
the component
- `smoothed_cov`: a time series array with the smoothed estimate of
the variance/covariance of the component
- `offset`: an integer giving the offset in the state vector where
this component begins
"""
out = None
spec = self.specification
start = offset = 0
end = offset + spec.k_exog
out = Bunch(
filtered=self.filtered_state[start:end],
filtered_cov=self.filtered_state_cov[start:end, start:end],
smoothed=None, smoothed_cov=None,
offset=offset
)
if self.smoothed_state is not None:
out.smoothed = self.smoothed_state[start:end]
if self.smoothed_state_cov is not None:
out.smoothed_cov = (
self.smoothed_state_cov[start:end, start:end])
return out | Estimates of regression coefficients, recursively estimated
Returns
-------
out: Bunch
Has the following attributes:
- `filtered`: a time series array with the filtered estimate of
the component
- `filtered_cov`: a time series array with the filtered estimate of
the variance/covariance of the component
- `smoothed`: a time series array with the smoothed estimate of
the component
- `smoothed_cov`: a time series array with the smoothed estimate of
the variance/covariance of the component
- `offset`: an integer giving the offset in the state vector where
this component begins | recursive_coefficients | python | statsmodels/statsmodels | statsmodels/regression/recursive_ls.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/recursive_ls.py | BSD-3-Clause |
def llf_recursive_obs(self):
"""
(float) Loglikelihood at observation, computed from recursive residuals
"""
from scipy.stats import norm
return np.log(norm.pdf(self.resid_recursive, loc=0,
scale=self.scale**0.5)) | (float) Loglikelihood at observation, computed from recursive residuals | llf_recursive_obs | python | statsmodels/statsmodels | statsmodels/regression/recursive_ls.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/recursive_ls.py | BSD-3-Clause |
def llf_recursive(self):
"""
(float) Loglikelihood defined by recursive residuals, equivalent to OLS
"""
return np.sum(self.llf_recursive_obs) | (float) Loglikelihood defined by recursive residuals, equivalent to OLS | llf_recursive | python | statsmodels/statsmodels | statsmodels/regression/recursive_ls.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/recursive_ls.py | BSD-3-Clause |
def ssr(self):
"""ssr"""
d = max(self.nobs_diffuse, self.loglikelihood_burn)
return (self.nobs - d) * self.filter_results.obs_cov[0, 0, 0] | ssr | ssr | python | statsmodels/statsmodels | statsmodels/regression/recursive_ls.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/recursive_ls.py | BSD-3-Clause |
def centered_tss(self):
"""Centered tss"""
return np.sum((self.filter_results.endog[0] -
np.mean(self.filter_results.endog))**2) | Centered tss | centered_tss | python | statsmodels/statsmodels | statsmodels/regression/recursive_ls.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/recursive_ls.py | BSD-3-Clause |
def uncentered_tss(self):
"""uncentered tss"""
return np.sum((self.filter_results.endog[0])**2) | uncentered tss | uncentered_tss | python | statsmodels/statsmodels | statsmodels/regression/recursive_ls.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/recursive_ls.py | BSD-3-Clause |
def ess(self):
"""ess"""
if self.k_constant:
return self.centered_tss - self.ssr
else:
return self.uncentered_tss - self.ssr | ess | ess | python | statsmodels/statsmodels | statsmodels/regression/recursive_ls.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/recursive_ls.py | BSD-3-Clause |
def rsquared(self):
"""rsquared"""
if self.k_constant:
return 1 - self.ssr / self.centered_tss
else:
return 1 - self.ssr / self.uncentered_tss | rsquared | rsquared | python | statsmodels/statsmodels | statsmodels/regression/recursive_ls.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/recursive_ls.py | BSD-3-Clause |
def mse_model(self):
"""mse_model"""
return self.ess / self.df_model | mse_model | mse_model | python | statsmodels/statsmodels | statsmodels/regression/recursive_ls.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/recursive_ls.py | BSD-3-Clause |
def mse_resid(self):
"""mse_resid"""
return self.ssr / self.df_resid | mse_resid | mse_resid | python | statsmodels/statsmodels | statsmodels/regression/recursive_ls.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/recursive_ls.py | BSD-3-Clause |
def mse_total(self):
"""mse_total"""
if self.k_constant:
return self.centered_tss / (self.df_resid + self.df_model)
else:
return self.uncentered_tss / (self.df_resid + self.df_model) | mse_total | mse_total | python | statsmodels/statsmodels | statsmodels/regression/recursive_ls.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/recursive_ls.py | BSD-3-Clause |
def _cusum_significance_bounds(self, alpha, ddof=0, points=None):
"""
Parameters
----------
alpha : float, optional
The significance bound is alpha %.
ddof : int, optional
The number of periods additional to `k_exog` to exclude in
constructing the bounds. Default is zero. This is usually used
only for testing purposes.
points : iterable, optional
The points at which to evaluate the significance bounds. Default is
two points, beginning and end of the sample.
Notes
-----
Comparing against the cusum6 package for Stata, this does not produce
exactly the same confidence bands (which are produced in cusum6 by
lw, uw) because they burn the first k_exog + 1 periods instead of the
first k_exog. If this change is performed
(so that `tmp = (self.nobs - d - 1)**0.5`), then the output here
matches cusum6.
The cusum6 behavior does not seem to be consistent with
Brown et al. (1975); it is likely they did that because they needed
three initial observations to get the initial OLS estimates, whereas
we do not need to do that.
"""
# Get the constant associated with the significance level
if alpha == 0.01:
scalar = 1.143
elif alpha == 0.05:
scalar = 0.948
elif alpha == 0.10:
scalar = 0.950
else:
raise ValueError('Invalid significance level.')
# Get the points for the significance bound lines
d = max(self.nobs_diffuse, self.loglikelihood_burn)
tmp = (self.nobs - d - ddof)**0.5
def upper_line(x):
return scalar * tmp + 2 * scalar * (x - d) / tmp
if points is None:
points = np.array([d, self.nobs])
return -upper_line(points), upper_line(points) | Parameters
----------
alpha : float, optional
The significance bound is alpha %.
ddof : int, optional
The number of periods additional to `k_exog` to exclude in
constructing the bounds. Default is zero. This is usually used
only for testing purposes.
points : iterable, optional
The points at which to evaluate the significance bounds. Default is
two points, beginning and end of the sample.
Notes
-----
Comparing against the cusum6 package for Stata, this does not produce
exactly the same confidence bands (which are produced in cusum6 by
lw, uw) because they burn the first k_exog + 1 periods instead of the
first k_exog. If this change is performed
(so that `tmp = (self.nobs - d - 1)**0.5`), then the output here
matches cusum6.
The cusum6 behavior does not seem to be consistent with
Brown et al. (1975); it is likely they did that because they needed
three initial observations to get the initial OLS estimates, whereas
we do not need to do that. | _cusum_significance_bounds | python | statsmodels/statsmodels | statsmodels/regression/recursive_ls.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/recursive_ls.py | BSD-3-Clause |
def _cusum_squares_significance_bounds(self, alpha, points=None):
"""
Notes
-----
Comparing against the cusum6 package for Stata, this does not produce
exactly the same confidence bands (which are produced in cusum6 by
lww, uww) because they use a different method for computing the
critical value; in particular, they use tabled values from
Table C, pp. 364-365 of "The Econometric Analysis of Time Series"
Harvey, (1990), and use the value given to 99 observations for any
larger number of observations. In contrast, we use the approximating
critical values suggested in Edgerton and Wells (1994) which allows
computing relatively good approximations for any number of
observations.
"""
# Get the approximate critical value associated with the significance
# level
d = max(self.nobs_diffuse, self.loglikelihood_burn)
n = 0.5 * (self.nobs - d) - 1
try:
ix = [0.1, 0.05, 0.025, 0.01, 0.005].index(alpha / 2)
except ValueError:
raise ValueError('Invalid significance level.')
scalars = _cusum_squares_scalars[:, ix]
crit = scalars[0] / n**0.5 + scalars[1] / n + scalars[2] / n**1.5
# Get the points for the significance bound lines
if points is None:
points = np.array([d, self.nobs])
line = (points - d) / (self.nobs - d)
return line - crit, line + crit | Notes
-----
Comparing against the cusum6 package for Stata, this does not produce
exactly the same confidence bands (which are produced in cusum6 by
lww, uww) because they use a different method for computing the
critical value; in particular, they use tabled values from
Table C, pp. 364-365 of "The Econometric Analysis of Time Series"
Harvey, (1990), and use the value given to 99 observations for any
larger number of observations. In contrast, we use the approximating
critical values suggested in Edgerton and Wells (1994) which allows
computing relatively good approximations for any number of
observations. | _cusum_squares_significance_bounds | python | statsmodels/statsmodels | statsmodels/regression/recursive_ls.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/recursive_ls.py | BSD-3-Clause |
def conf_int(self, obs=False, alpha=0.05):
"""
Returns the confidence interval of the value, `effect` of the
constraint.
This is currently only available for t and z tests.
Parameters
----------
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
Returns
-------
ci : ndarray, (k_constraints, 2)
The array has the lower and the upper limit of the confidence
interval in the columns.
"""
se = self.se_obs if obs else self.se_mean
q = self.dist.ppf(1 - alpha / 2., *self.dist_args)
lower = self.predicted_mean - q * se
upper = self.predicted_mean + q * se
return np.column_stack((lower, upper)) | Returns the confidence interval of the value, `effect` of the
constraint.
This is currently only available for t and z tests.
Parameters
----------
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
Returns
-------
ci : ndarray, (k_constraints, 2)
The array has the lower and the upper limit of the confidence
interval in the columns. | conf_int | python | statsmodels/statsmodels | statsmodels/regression/_prediction.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/_prediction.py | BSD-3-Clause |
def get_prediction(self, exog=None, transform=True, weights=None,
row_labels=None, pred_kwds=None):
"""
Compute prediction results.
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
weights : array_like, optional
Weights interpreted as in WLS, used for the variance of the predicted
residual.
row_labels : list
A list of row labels to use. If not provided, read `exog` is
available.
**kwargs
Some models can take additional keyword arguments, see the predict
method of the model for the details.
Returns
-------
linear_model.PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and summary
tables for the prediction of the mean and of new observations.
"""
# prepare exog and row_labels, based on base Results.predict
if transform and hasattr(self.model, 'formula') and exog is not None:
if isinstance(exog, pd.Series):
# GH-6509
exog = pd.DataFrame(exog)
exog = FormulaManager().get_matrices(self.model.data.model_spec, exog)
if exog is not None:
if row_labels is None:
row_labels = getattr(exog, 'index', None)
if callable(row_labels):
row_labels = None
exog = np.asarray(exog)
if exog.ndim == 1:
# Params informs whether a row or column vector
if self.params.shape[0] > 1:
exog = exog[None, :]
else:
exog = exog[:, None]
exog = np.atleast_2d(exog) # needed in count model shape[1]
else:
exog = self.model.exog
if weights is None:
weights = getattr(self.model, 'weights', None)
if row_labels is None:
row_labels = getattr(self.model.data, 'row_labels', None)
# need to handle other arrays, TODO: is delegating to model possible ?
if weights is not None:
weights = np.asarray(weights)
if (weights.size > 1 and
(weights.ndim != 1 or weights.shape[0] == exog.shape[1])):
raise ValueError('weights has wrong shape')
if pred_kwds is None:
pred_kwds = {}
predicted_mean = self.model.predict(self.params, exog, **pred_kwds)
covb = self.cov_params()
var_pred_mean = (exog * np.dot(covb, exog.T).T).sum(1)
var_resid = self.scale # self.mse_resid / weights
# TODO: check that we have correct scale, Refactor scale #???
# special case for now:
if self.cov_type == 'fixed scale':
var_resid = self.cov_kwds['scale']
if weights is not None:
var_resid /= weights
dist = ['norm', 't'][self.use_t]
return PredictionResults(predicted_mean, var_pred_mean, var_resid,
df=self.df_resid, dist=dist,
row_labels=row_labels) | Compute prediction results.
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
weights : array_like, optional
Weights interpreted as in WLS, used for the variance of the predicted
residual.
row_labels : list
A list of row labels to use. If not provided, read `exog` is
available.
**kwargs
Some models can take additional keyword arguments, see the predict
method of the model for the details.
Returns
-------
linear_model.PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and summary
tables for the prediction of the mean and of new observations. | get_prediction | python | statsmodels/statsmodels | statsmodels/regression/_prediction.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/_prediction.py | BSD-3-Clause |
def _get_sigma(sigma, nobs):
"""
Returns sigma (matrix, nobs by nobs) for GLS and the inverse of its
Cholesky decomposition. Handles dimensions and checks integrity.
If sigma is None, returns None, None. Otherwise returns sigma,
cholsigmainv.
"""
if sigma is None:
return None, None
sigma = np.asarray(sigma).squeeze()
if sigma.ndim == 0:
sigma = np.repeat(sigma, nobs)
if sigma.ndim == 1:
if sigma.shape != (nobs,):
raise ValueError("Sigma must be a scalar, 1d of length %s or a 2d "
"array of shape %s x %s" % (nobs, nobs, nobs))
cholsigmainv = 1/np.sqrt(sigma)
else:
if sigma.shape != (nobs, nobs):
raise ValueError("Sigma must be a scalar, 1d of length %s or a 2d "
"array of shape %s x %s" % (nobs, nobs, nobs))
cholsigmainv, info = dtrtri(cholesky(sigma, lower=True),
lower=True, overwrite_c=True)
if info > 0:
raise np.linalg.LinAlgError('Cholesky decomposition of sigma '
'yields a singular matrix')
elif info < 0:
raise ValueError('Invalid input to dtrtri (info = %d)' % info)
return sigma, cholsigmainv | Returns sigma (matrix, nobs by nobs) for GLS and the inverse of its
Cholesky decomposition. Handles dimensions and checks integrity.
If sigma is None, returns None, None. Otherwise returns sigma,
cholsigmainv. | _get_sigma | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def initialize(self):
"""Initialize model components."""
self.wexog = self.whiten(self.exog)
self.wendog = self.whiten(self.endog)
# overwrite nobs from class Model:
self.nobs = float(self.wexog.shape[0])
self._df_model = None
self._df_resid = None
self.rank = None | Initialize model components. | initialize | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def df_model(self):
"""
The model degree of freedom.
The dof is defined as the rank of the regressor matrix minus 1 if a
constant is included.
"""
if self._df_model is None:
if self.rank is None:
self.rank = np.linalg.matrix_rank(self.exog)
self._df_model = float(self.rank - self.k_constant)
return self._df_model | The model degree of freedom.
The dof is defined as the rank of the regressor matrix minus 1 if a
constant is included. | df_model | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def df_resid(self):
"""
The residual degree of freedom.
The dof is defined as the number of observations minus the rank of
the regressor matrix.
"""
if self._df_resid is None:
if self.rank is None:
self.rank = np.linalg.matrix_rank(self.exog)
self._df_resid = self.nobs - self.rank
return self._df_resid | The residual degree of freedom.
The dof is defined as the number of observations minus the rank of
the regressor matrix. | df_resid | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def whiten(self, x):
"""
Whiten method that must be overwritten by individual models.
Parameters
----------
x : array_like
Data to be whitened.
"""
raise NotImplementedError("Subclasses must implement.") | Whiten method that must be overwritten by individual models.
Parameters
----------
x : array_like
Data to be whitened. | whiten | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def fit(
self,
method: Literal["pinv", "qr"] = "pinv",
cov_type: Literal[
"nonrobust",
"fixed scale",
"HC0",
"HC1",
"HC2",
"HC3",
"HAC",
"hac-panel",
"hac-groupsum",
"cluster",
] = "nonrobust",
cov_kwds=None,
use_t: bool | None = None,
**kwargs
):
"""
Full fit of the model.
The results include an estimate of covariance matrix, (whitened)
residuals and an estimate of scale.
Parameters
----------
method : str, optional
Can be "pinv", "qr". "pinv" uses the Moore-Penrose pseudoinverse
to solve the least squares problem. "qr" uses the QR
factorization.
cov_type : str, optional
See `regression.linear_model.RegressionResults` for a description
of the available covariance estimators.
cov_kwds : list or None, optional
See `linear_model.RegressionResults.get_robustcov_results` for a
description required keywords for alternative covariance
estimators.
use_t : bool, optional
Flag indicating to use the Student's t distribution when computing
p-values. Default behavior depends on cov_type. See
`linear_model.RegressionResults.get_robustcov_results` for
implementation details.
**kwargs
Additional keyword arguments that contain information used when
constructing a model using the formula interface.
Returns
-------
RegressionResults
The model estimation results.
See Also
--------
RegressionResults
The results container.
RegressionResults.get_robustcov_results
A method to change the covariance estimator used when fitting the
model.
Notes
-----
The fit method uses the pseudoinverse of the design/exogenous variables
to solve the least squares minimization.
"""
if method == "pinv":
if not (hasattr(self, 'pinv_wexog') and
hasattr(self, 'normalized_cov_params') and
hasattr(self, 'rank')):
self.pinv_wexog, singular_values = pinv_extended(self.wexog)
self.normalized_cov_params = np.dot(
self.pinv_wexog, np.transpose(self.pinv_wexog))
# Cache these singular values for use later.
self.wexog_singular_values = singular_values
self.rank = np.linalg.matrix_rank(np.diag(singular_values))
beta = np.dot(self.pinv_wexog, self.wendog)
elif method == "qr":
if not (hasattr(self, 'exog_Q') and
hasattr(self, 'exog_R') and
hasattr(self, 'normalized_cov_params') and
hasattr(self, 'rank')):
Q, R = np.linalg.qr(self.wexog)
self.exog_Q, self.exog_R = Q, R
self.normalized_cov_params = np.linalg.inv(np.dot(R.T, R))
# Cache singular values from R.
self.wexog_singular_values = np.linalg.svd(R, 0, 0)
self.rank = np.linalg.matrix_rank(R)
else:
Q, R = self.exog_Q, self.exog_R
# Needed for some covariance estimators, see GH #8157
self.pinv_wexog = np.linalg.pinv(self.wexog)
# used in ANOVA
self.effects = effects = np.dot(Q.T, self.wendog)
beta = np.linalg.solve(R, effects)
else:
raise ValueError('method has to be "pinv" or "qr"')
if self._df_model is None:
self._df_model = float(self.rank - self.k_constant)
if self._df_resid is None:
self.df_resid = self.nobs - self.rank
if isinstance(self, OLS):
lfit = OLSResults(
self, beta,
normalized_cov_params=self.normalized_cov_params,
cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t)
else:
lfit = RegressionResults(
self, beta,
normalized_cov_params=self.normalized_cov_params,
cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t,
**kwargs)
return RegressionResultsWrapper(lfit) | Full fit of the model.
The results include an estimate of covariance matrix, (whitened)
residuals and an estimate of scale.
Parameters
----------
method : str, optional
Can be "pinv", "qr". "pinv" uses the Moore-Penrose pseudoinverse
to solve the least squares problem. "qr" uses the QR
factorization.
cov_type : str, optional
See `regression.linear_model.RegressionResults` for a description
of the available covariance estimators.
cov_kwds : list or None, optional
See `linear_model.RegressionResults.get_robustcov_results` for a
description required keywords for alternative covariance
estimators.
use_t : bool, optional
Flag indicating to use the Student's t distribution when computing
p-values. Default behavior depends on cov_type. See
`linear_model.RegressionResults.get_robustcov_results` for
implementation details.
**kwargs
Additional keyword arguments that contain information used when
constructing a model using the formula interface.
Returns
-------
RegressionResults
The model estimation results.
See Also
--------
RegressionResults
The results container.
RegressionResults.get_robustcov_results
A method to change the covariance estimator used when fitting the
model.
Notes
-----
The fit method uses the pseudoinverse of the design/exogenous variables
to solve the least squares minimization. | fit | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def predict(self, params, exog=None):
"""
Return linear predicted values from a design matrix.
Parameters
----------
params : array_like
Parameters of a linear model.
exog : array_like, optional
Design / exogenous data. Model exog is used if None.
Returns
-------
array_like
An array of fitted values.
Notes
-----
If the model has not yet been fit, params is not optional.
"""
# JP: this does not look correct for GLMAR
# SS: it needs its own predict method
if exog is None:
exog = self.exog
return np.dot(exog, params) | Return linear predicted values from a design matrix.
Parameters
----------
params : array_like
Parameters of a linear model.
exog : array_like, optional
Design / exogenous data. Model exog is used if None.
Returns
-------
array_like
An array of fitted values.
Notes
-----
If the model has not yet been fit, params is not optional. | predict | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def get_distribution(self, params, scale, exog=None, dist_class=None):
"""
Construct a random number generator for the predictive distribution.
Parameters
----------
params : array_like
The model parameters (regression coefficients).
scale : scalar
The variance parameter.
exog : array_like
The predictor variable matrix.
dist_class : class
A random number generator class. Must take 'loc' and 'scale'
as arguments and return a random number generator implementing
an ``rvs`` method for simulating random values. Defaults to normal.
Returns
-------
gen
Frozen random number generator object with mean and variance
determined by the fitted linear model. Use the ``rvs`` method
to generate random values.
Notes
-----
Due to the behavior of ``scipy.stats.distributions objects``,
the returned random number generator must be called with
``gen.rvs(n)`` where ``n`` is the number of observations in
the data set used to fit the model. If any other value is
used for ``n``, misleading results will be produced.
"""
fit = self.predict(params, exog)
if dist_class is None:
from scipy.stats.distributions import norm
dist_class = norm
gen = dist_class(loc=fit, scale=np.sqrt(scale))
return gen | Construct a random number generator for the predictive distribution.
Parameters
----------
params : array_like
The model parameters (regression coefficients).
scale : scalar
The variance parameter.
exog : array_like
The predictor variable matrix.
dist_class : class
A random number generator class. Must take 'loc' and 'scale'
as arguments and return a random number generator implementing
an ``rvs`` method for simulating random values. Defaults to normal.
Returns
-------
gen
Frozen random number generator object with mean and variance
determined by the fitted linear model. Use the ``rvs`` method
to generate random values.
Notes
-----
Due to the behavior of ``scipy.stats.distributions objects``,
the returned random number generator must be called with
``gen.rvs(n)`` where ``n`` is the number of observations in
the data set used to fit the model. If any other value is
used for ``n``, misleading results will be produced. | get_distribution | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def whiten(self, x):
"""
GLS whiten method.
Parameters
----------
x : array_like
Data to be whitened.
Returns
-------
ndarray
The value np.dot(cholsigmainv,X).
See Also
--------
GLS : Fit a linear model using Generalized Least Squares.
"""
x = np.asarray(x)
if self.sigma is None or self.sigma.shape == ():
return x
elif self.sigma.ndim == 1:
if x.ndim == 1:
return x * self.cholsigmainv
else:
return x * self.cholsigmainv[:, None]
else:
return np.dot(self.cholsigmainv, x) | GLS whiten method.
Parameters
----------
x : array_like
Data to be whitened.
Returns
-------
ndarray
The value np.dot(cholsigmainv,X).
See Also
--------
GLS : Fit a linear model using Generalized Least Squares. | whiten | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def hessian_factor(self, params, scale=None, observed=True):
"""
Compute weights for calculating Hessian.
Parameters
----------
params : ndarray
The parameter at which Hessian is evaluated.
scale : None or float
If scale is None, then the default scale will be calculated.
Default scale is defined by `self.scaletype` and set in fit.
If scale is not None, then it is used as a fixed scale.
observed : bool
If True, then the observed Hessian is returned. If false then the
expected information matrix is returned.
Returns
-------
ndarray
A 1d weight vector used in the calculation of the Hessian.
The hessian is obtained by `(exog.T * hessian_factor).dot(exog)`.
"""
if self.sigma is None or self.sigma.shape == ():
return np.ones(self.exog.shape[0])
elif self.sigma.ndim == 1:
return self.cholsigmainv
else:
return np.diag(self.cholsigmainv) | Compute weights for calculating Hessian.
Parameters
----------
params : ndarray
The parameter at which Hessian is evaluated.
scale : None or float
If scale is None, then the default scale will be calculated.
Default scale is defined by `self.scaletype` and set in fit.
If scale is not None, then it is used as a fixed scale.
observed : bool
If True, then the observed Hessian is returned. If false then the
expected information matrix is returned.
Returns
-------
ndarray
A 1d weight vector used in the calculation of the Hessian.
The hessian is obtained by `(exog.T * hessian_factor).dot(exog)`. | hessian_factor | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def whiten(self, x):
"""
Whitener for WLS model, multiplies each column by sqrt(self.weights).
Parameters
----------
x : array_like
Data to be whitened.
Returns
-------
array_like
The whitened values sqrt(weights)*X.
"""
x = np.asarray(x)
if x.ndim == 1:
return x * np.sqrt(self.weights)
elif x.ndim == 2:
return np.sqrt(self.weights)[:, None] * x | Whitener for WLS model, multiplies each column by sqrt(self.weights).
Parameters
----------
x : array_like
Data to be whitened.
Returns
-------
array_like
The whitened values sqrt(weights)*X. | whiten | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def hessian_factor(self, params, scale=None, observed=True):
"""
Compute the weights for calculating the Hessian.
Parameters
----------
params : ndarray
The parameter at which Hessian is evaluated.
scale : None or float
If scale is None, then the default scale will be calculated.
Default scale is defined by `self.scaletype` and set in fit.
If scale is not None, then it is used as a fixed scale.
observed : bool
If True, then the observed Hessian is returned. If false then the
expected information matrix is returned.
Returns
-------
ndarray
A 1d weight vector used in the calculation of the Hessian.
The hessian is obtained by `(exog.T * hessian_factor).dot(exog)`.
"""
return self.weights | Compute the weights for calculating the Hessian.
Parameters
----------
params : ndarray
The parameter at which Hessian is evaluated.
scale : None or float
If scale is None, then the default scale will be calculated.
Default scale is defined by `self.scaletype` and set in fit.
If scale is not None, then it is used as a fixed scale.
observed : bool
If True, then the observed Hessian is returned. If false then the
expected information matrix is returned.
Returns
-------
ndarray
A 1d weight vector used in the calculation of the Hessian.
The hessian is obtained by `(exog.T * hessian_factor).dot(exog)`. | hessian_factor | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def loglike(self, params, scale=None):
"""
The likelihood function for the OLS model.
Parameters
----------
params : array_like
The coefficients with which to estimate the log-likelihood.
scale : float or None
If None, return the profile (concentrated) log likelihood
(profiled over the scale parameter), else return the
log-likelihood using the given scale value.
Returns
-------
float
The likelihood function evaluated at params.
"""
nobs2 = self.nobs / 2.0
nobs = float(self.nobs)
resid = self.endog - np.dot(self.exog, params)
if hasattr(self, 'offset'):
resid -= self.offset
ssr = np.sum(resid**2)
if scale is None:
# profile log likelihood
llf = -nobs2*np.log(2*np.pi) - nobs2*np.log(ssr / nobs) - nobs2
else:
# log-likelihood
llf = -nobs2 * np.log(2 * np.pi * scale) - ssr / (2*scale)
return llf | The likelihood function for the OLS model.
Parameters
----------
params : array_like
The coefficients with which to estimate the log-likelihood.
scale : float or None
If None, return the profile (concentrated) log likelihood
(profiled over the scale parameter), else return the
log-likelihood using the given scale value.
Returns
-------
float
The likelihood function evaluated at params. | loglike | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def whiten(self, x):
"""
OLS model whitener does nothing.
Parameters
----------
x : array_like
Data to be whitened.
Returns
-------
array_like
The input array unmodified.
See Also
--------
OLS : Fit a linear model using Ordinary Least Squares.
"""
return x | OLS model whitener does nothing.
Parameters
----------
x : array_like
Data to be whitened.
Returns
-------
array_like
The input array unmodified.
See Also
--------
OLS : Fit a linear model using Ordinary Least Squares. | whiten | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def score(self, params, scale=None):
"""
Evaluate the score function at a given point.
The score corresponds to the profile (concentrated)
log-likelihood in which the scale parameter has been profiled
out.
Parameters
----------
params : array_like
The parameter vector at which the score function is
computed.
scale : float or None
If None, return the profile (concentrated) log likelihood
(profiled over the scale parameter), else return the
log-likelihood using the given scale value.
Returns
-------
ndarray
The score vector.
"""
if not hasattr(self, "_wexog_xprod"):
self._setup_score_hess()
xtxb = np.dot(self._wexog_xprod, params)
sdr = -self._wexog_x_wendog + xtxb
if scale is None:
ssr = self._wendog_xprod - 2 * np.dot(self._wexog_x_wendog.T,
params)
ssr += np.dot(params, xtxb)
return -self.nobs * sdr / ssr
else:
return -sdr / scale | Evaluate the score function at a given point.
The score corresponds to the profile (concentrated)
log-likelihood in which the scale parameter has been profiled
out.
Parameters
----------
params : array_like
The parameter vector at which the score function is
computed.
scale : float or None
If None, return the profile (concentrated) log likelihood
(profiled over the scale parameter), else return the
log-likelihood using the given scale value.
Returns
-------
ndarray
The score vector. | score | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def hessian(self, params, scale=None):
"""
Evaluate the Hessian function at a given point.
Parameters
----------
params : array_like
The parameter vector at which the Hessian is computed.
scale : float or None
If None, return the profile (concentrated) log likelihood
(profiled over the scale parameter), else return the
log-likelihood using the given scale value.
Returns
-------
ndarray
The Hessian matrix.
"""
if not hasattr(self, "_wexog_xprod"):
self._setup_score_hess()
xtxb = np.dot(self._wexog_xprod, params)
if scale is None:
ssr = self._wendog_xprod - 2 * np.dot(self._wexog_x_wendog.T,
params)
ssr += np.dot(params, xtxb)
ssrp = -2*self._wexog_x_wendog + 2*xtxb
hm = self._wexog_xprod / ssr - np.outer(ssrp, ssrp) / ssr**2
return -self.nobs * hm / 2
else:
return -self._wexog_xprod / scale | Evaluate the Hessian function at a given point.
Parameters
----------
params : array_like
The parameter vector at which the Hessian is computed.
scale : float or None
If None, return the profile (concentrated) log likelihood
(profiled over the scale parameter), else return the
log-likelihood using the given scale value.
Returns
-------
ndarray
The Hessian matrix. | hessian | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def hessian_factor(self, params, scale=None, observed=True):
"""
Calculate the weights for the Hessian.
Parameters
----------
params : ndarray
The parameter at which Hessian is evaluated.
scale : None or float
If scale is None, then the default scale will be calculated.
Default scale is defined by `self.scaletype` and set in fit.
If scale is not None, then it is used as a fixed scale.
observed : bool
If True, then the observed Hessian is returned. If false then the
expected information matrix is returned.
Returns
-------
ndarray
A 1d weight vector used in the calculation of the Hessian.
The hessian is obtained by `(exog.T * hessian_factor).dot(exog)`.
"""
return np.ones(self.exog.shape[0]) | Calculate the weights for the Hessian.
Parameters
----------
params : ndarray
The parameter at which Hessian is evaluated.
scale : None or float
If scale is None, then the default scale will be calculated.
Default scale is defined by `self.scaletype` and set in fit.
If scale is not None, then it is used as a fixed scale.
observed : bool
If True, then the observed Hessian is returned. If false then the
expected information matrix is returned.
Returns
-------
ndarray
A 1d weight vector used in the calculation of the Hessian.
The hessian is obtained by `(exog.T * hessian_factor).dot(exog)`. | hessian_factor | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def _fit_ridge(self, alpha):
"""
Fit a linear model using ridge regression.
Parameters
----------
alpha : scalar or array_like
The penalty weight. If a scalar, the same penalty weight
applies to all variables in the model. If a vector, it
must have the same length as `params`, and contains a
penalty weight for each coefficient.
Notes
-----
Equivalent to fit_regularized with L1_wt = 0 (but implemented
more efficiently).
"""
u, s, vt = np.linalg.svd(self.exog, 0)
v = vt.T
q = np.dot(u.T, self.endog) * s
s2 = s * s
if np.isscalar(alpha):
sd = s2 + alpha * self.nobs
params = q / sd
params = np.dot(v, params)
else:
alpha = np.asarray(alpha)
vtav = self.nobs * np.dot(vt, alpha[:, None] * v)
d = np.diag(vtav) + s2
np.fill_diagonal(vtav, d)
r = np.linalg.solve(vtav, q)
params = np.dot(v, r)
from statsmodels.base.elastic_net import RegularizedResults
return RegularizedResults(self, params) | Fit a linear model using ridge regression.
Parameters
----------
alpha : scalar or array_like
The penalty weight. If a scalar, the same penalty weight
applies to all variables in the model. If a vector, it
must have the same length as `params`, and contains a
penalty weight for each coefficient.
Notes
-----
Equivalent to fit_regularized with L1_wt = 0 (but implemented
more efficiently). | _fit_ridge | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def iterative_fit(self, maxiter=3, rtol=1e-4, **kwargs):
"""
Perform an iterative two-stage procedure to estimate a GLS model.
The model is assumed to have AR(p) errors, AR(p) parameters and
regression coefficients are estimated iteratively.
Parameters
----------
maxiter : int, optional
The number of iterations.
rtol : float, optional
Relative tolerance between estimated coefficients to stop the
estimation. Stops if max(abs(last - current) / abs(last)) < rtol.
**kwargs
Additional keyword arguments passed to `fit`.
Returns
-------
RegressionResults
The results computed using an iterative fit.
"""
# TODO: update this after going through example.
converged = False
i = -1 # need to initialize for maxiter < 1 (skip loop)
history = {'params': [], 'rho': [self.rho]}
for i in range(maxiter - 1):
if hasattr(self, 'pinv_wexog'):
del self.pinv_wexog
self.initialize()
results = self.fit()
history['params'].append(results.params)
if i == 0:
last = results.params
else:
diff = np.max(np.abs(last - results.params) / np.abs(last))
if diff < rtol:
converged = True
break
last = results.params
self.rho, _ = yule_walker(results.resid,
order=self.order, df=None)
history['rho'].append(self.rho)
# why not another call to self.initialize
# Use kwarg to insert history
if not converged and maxiter > 0:
# maxiter <= 0 just does OLS
if hasattr(self, 'pinv_wexog'):
del self.pinv_wexog
self.initialize()
# if converged then this is a duplicate fit, because we did not
# update rho
results = self.fit(history=history, **kwargs)
results.iter = i + 1
# add last fit to history, not if duplicate fit
if not converged:
results.history['params'].append(results.params)
results.iter += 1
results.converged = converged
return results | Perform an iterative two-stage procedure to estimate a GLS model.
The model is assumed to have AR(p) errors, AR(p) parameters and
regression coefficients are estimated iteratively.
Parameters
----------
maxiter : int, optional
The number of iterations.
rtol : float, optional
Relative tolerance between estimated coefficients to stop the
estimation. Stops if max(abs(last - current) / abs(last)) < rtol.
**kwargs
Additional keyword arguments passed to `fit`.
Returns
-------
RegressionResults
The results computed using an iterative fit. | iterative_fit | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def whiten(self, x):
"""
Whiten a series of columns according to an AR(p) covariance structure.
Whitening using this method drops the initial p observations.
Parameters
----------
x : array_like
The data to be whitened.
Returns
-------
ndarray
The whitened data.
"""
# TODO: notation for AR process
x = np.asarray(x, np.float64)
_x = x.copy()
# the following loops over the first axis, works for 1d and nd
for i in range(self.order):
_x[(i + 1):] = _x[(i + 1):] - self.rho[i] * x[0:-(i + 1)]
return _x[self.order:] | Whiten a series of columns according to an AR(p) covariance structure.
Whitening using this method drops the initial p observations.
Parameters
----------
x : array_like
The data to be whitened.
Returns
-------
ndarray
The whitened data. | whiten | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
def yule_walker(x, order=1, method="adjusted", df=None, inv=False,
demean=True):
"""
Estimate AR(p) parameters from a sequence using the Yule-Walker equations.
Adjusted or maximum-likelihood estimator (mle)
Parameters
----------
x : array_like
A 1d array.
order : int, optional
The order of the autoregressive process. Default is 1.
method : str, optional
Method can be 'adjusted' or 'mle' and this determines
denominator in estimate of autocorrelation function (ACF) at
lag k. If 'mle', the denominator is n=X.shape[0], if 'adjusted'
the denominator is n-k. The default is adjusted.
df : int, optional
Specifies the degrees of freedom. If `df` is supplied, then it
is assumed the X has `df` degrees of freedom rather than `n`.
Default is None.
inv : bool
If inv is True the inverse of R is also returned. Default is
False.
demean : bool
True, the mean is subtracted from `X` before estimation.
Returns
-------
rho : ndarray
AR(p) coefficients computed using the Yule-Walker method.
sigma : float
The estimate of the residual standard deviation.
See Also
--------
burg : Burg's AR estimator.
Notes
-----
See https://en.wikipedia.org/wiki/Autoregressive_moving_average_model for
further details.
Examples
--------
>>> import statsmodels.api as sm
>>> from statsmodels.datasets.sunspots import load
>>> data = load()
>>> rho, sigma = sm.regression.yule_walker(data.endog, order=4,
... method="mle")
>>> rho
array([ 1.28310031, -0.45240924, -0.20770299, 0.04794365])
>>> sigma
16.808022730464351
"""
# TODO: define R better, look back at notes and technical notes on YW.
# First link here is useful
# http://www-stat.wharton.upenn.edu/~steele/Courses/956/ResourceDetails/YuleWalkerAndMore.htm
method = string_like(
method, "method", options=("adjusted", "unbiased", "mle")
)
if method == "unbiased":
warnings.warn(
"unbiased is deprecated in factor of adjusted to reflect that the "
"term is adjusting the sample size used in the autocovariance "
"calculation rather than estimating an unbiased autocovariance. "
"After release 0.13, using 'unbiased' will raise.",
FutureWarning,
)
method = "adjusted"
if method not in ("adjusted", "mle"):
raise ValueError("ACF estimation method must be 'adjusted' or 'MLE'")
# TODO: Require??
x = np.array(x, dtype=np.float64)
if demean:
if not x.flags.writeable:
x = np.require(x, requirements="W")
x -= x.mean()
n = df or x.shape[0]
# this handles df_resid ie., n - p
adj_needed = method == "adjusted"
if x.ndim > 1 and x.shape[1] != 1:
raise ValueError("expecting a vector to estimate AR parameters")
r = np.zeros(order+1, np.float64)
r[0] = (x ** 2).sum() / n
for k in range(1, order+1):
r[k] = (x[0:-k] * x[k:]).sum() / (n - k * adj_needed)
R = toeplitz(r[:-1])
try:
rho = np.linalg.solve(R, r[1:])
except np.linalg.LinAlgError as err:
if 'Singular matrix' in str(err):
warnings.warn("Matrix is singular. Using pinv.", ValueWarning)
rho = np.linalg.pinv(R) @ r[1:]
else:
raise
sigmasq = r[0] - (r[1:]*rho).sum()
if not np.isnan(sigmasq) and sigmasq > 0:
sigma = np.sqrt(sigmasq)
else:
sigma = np.nan
if inv:
return rho, sigma, np.linalg.inv(R)
else:
return rho, sigma | Estimate AR(p) parameters from a sequence using the Yule-Walker equations.
Adjusted or maximum-likelihood estimator (mle)
Parameters
----------
x : array_like
A 1d array.
order : int, optional
The order of the autoregressive process. Default is 1.
method : str, optional
Method can be 'adjusted' or 'mle' and this determines
denominator in estimate of autocorrelation function (ACF) at
lag k. If 'mle', the denominator is n=X.shape[0], if 'adjusted'
the denominator is n-k. The default is adjusted.
df : int, optional
Specifies the degrees of freedom. If `df` is supplied, then it
is assumed the X has `df` degrees of freedom rather than `n`.
Default is None.
inv : bool
If inv is True the inverse of R is also returned. Default is
False.
demean : bool
True, the mean is subtracted from `X` before estimation.
Returns
-------
rho : ndarray
AR(p) coefficients computed using the Yule-Walker method.
sigma : float
The estimate of the residual standard deviation.
See Also
--------
burg : Burg's AR estimator.
Notes
-----
See https://en.wikipedia.org/wiki/Autoregressive_moving_average_model for
further details.
Examples
--------
>>> import statsmodels.api as sm
>>> from statsmodels.datasets.sunspots import load
>>> data = load()
>>> rho, sigma = sm.regression.yule_walker(data.endog, order=4,
... method="mle")
>>> rho
array([ 1.28310031, -0.45240924, -0.20770299, 0.04794365])
>>> sigma
16.808022730464351 | yule_walker | python | statsmodels/statsmodels | statsmodels/regression/linear_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py | BSD-3-Clause |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.