code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def test_proportions_2indep(count1, nobs1, count2, nobs2, value=None, method=None, compare='diff', alternative='two-sided', correction=True, return_results=True): """ Hypothesis test for comparing two independent proportions This assumes that we have two independent binomial samples. The Null and alternative hypothesis are for compare = 'diff' - H0: prop1 - prop2 - value = 0 - H1: prop1 - prop2 - value != 0 if alternative = 'two-sided' - H1: prop1 - prop2 - value > 0 if alternative = 'larger' - H1: prop1 - prop2 - value < 0 if alternative = 'smaller' for compare = 'ratio' - H0: prop1 / prop2 - value = 0 - H1: prop1 / prop2 - value != 0 if alternative = 'two-sided' - H1: prop1 / prop2 - value > 0 if alternative = 'larger' - H1: prop1 / prop2 - value < 0 if alternative = 'smaller' for compare = 'odds-ratio' - H0: or - value = 0 - H1: or - value != 0 if alternative = 'two-sided' - H1: or - value > 0 if alternative = 'larger' - H1: or - value < 0 if alternative = 'smaller' where odds-ratio or = prop1 / (1 - prop1) / (prop2 / (1 - prop2)) Parameters ---------- count1 : int Count for first sample. nobs1 : int Sample size for first sample. count2 : int Count for the second sample. nobs2 : int Sample size for the second sample. value : float Value of the difference, risk ratio or odds ratio of 2 independent proportions under the null hypothesis. Default is equal proportions, 0 for diff and 1 for risk-ratio and for odds-ratio. method : string Method for computing the hypothesis test. If method is None, then a default method is used. The default might change as more methods are added. diff: - 'wald', - 'agresti-caffo' - 'score' if correction is True, then this uses the degrees of freedom correction ``nobs / (nobs - 1)`` as in Miettinen Nurminen 1985 ratio: - 'log': wald test using log transformation - 'log-adjusted': wald test using log transformation, adds 0.5 to counts - 'score': if correction is True, then this uses the degrees of freedom correction ``nobs / (nobs - 1)`` as in Miettinen Nurminen 1985 odds-ratio: - 'logit': wald test using logit transformation - 'logit-adjusted': wald test using logit transformation, adds 0.5 to counts - 'logit-smoothed': wald test using logit transformation, biases cell counts towards independence by adding two observations in total. - 'score' if correction is True, then this uses the degrees of freedom correction ``nobs / (nobs - 1)`` as in Miettinen Nurminen 1985 compare : {'diff', 'ratio' 'odds-ratio'} If compare is `diff`, then the hypothesis test is for the risk difference diff = p1 - p2. If compare is `ratio`, then the hypothesis test is for the risk ratio defined by ratio = p1 / p2. If compare is `odds-ratio`, then the hypothesis test is for the odds-ratio defined by or = p1 / (1 - p1) / (p2 / (1 - p2) alternative : {'two-sided', 'smaller', 'larger'} alternative hypothesis, which can be two-sided or either one of the one-sided tests. correction : bool If correction is True (default), then the Miettinen and Nurminen small sample correction to the variance nobs / (nobs - 1) is used. Applies only if method='score'. return_results : bool If true, then a results instance with extra information is returned, otherwise a tuple with statistic and pvalue is returned. Returns ------- results : results instance or tuple If return_results is True, then a results instance with the information in attributes is returned. If return_results is False, then only ``statistic`` and ``pvalue`` are returned. statistic : float test statistic asymptotically normal distributed N(0, 1) pvalue : float p-value based on normal distribution other attributes : additional information about the hypothesis test See Also -------- tost_proportions_2indep confint_proportions_2indep Notes ----- Status: experimental, API and defaults might still change. More ``methods`` will be added. The current default methods are - 'diff': 'agresti-caffo', - 'ratio': 'log-adjusted', - 'odds-ratio': 'logit-adjusted' """ method_default = {'diff': 'agresti-caffo', 'ratio': 'log-adjusted', 'odds-ratio': 'logit-adjusted'} # normalize compare name if compare.lower() == 'or': compare = 'odds-ratio' if method is None: method = method_default[compare] method = method.lower() if method.startswith('agr'): method = 'agresti-caffo' if value is None: # TODO: odds ratio does not work if value=1 for score test value = 0 if compare == 'diff' else 1 count1, nobs1, count2, nobs2 = map(np.asarray, [count1, nobs1, count2, nobs2]) p1 = count1 / nobs1 p2 = count2 / nobs2 diff = p1 - p2 ratio = p1 / p2 odds_ratio = p1 / (1 - p1) / p2 * (1 - p2) res = None if compare == 'diff': if method in ['wald', 'agresti-caffo']: addone = 1 if method == 'agresti-caffo' else 0 count1_, nobs1_ = count1 + addone, nobs1 + 2 * addone count2_, nobs2_ = count2 + addone, nobs2 + 2 * addone p1_ = count1_ / nobs1_ p2_ = count2_ / nobs2_ diff_stat = p1_ - p2_ - value var = p1_ * (1 - p1_) / nobs1_ + p2_ * (1 - p2_) / nobs2_ statistic = diff_stat / np.sqrt(var) distr = 'normal' elif method.startswith('newcomb'): msg = 'newcomb not available for hypothesis test' raise NotImplementedError(msg) elif method == 'score': # Note score part is the same call for all compare res = score_test_proportions_2indep(count1, nobs1, count2, nobs2, value=value, compare=compare, alternative=alternative, correction=correction, return_results=return_results) if return_results is False: statistic, pvalue = res[:2] distr = 'normal' # TODO/Note score_test_proportion_2samp returns statistic and # not diff_stat diff_stat = None else: raise ValueError('method not recognized') elif compare == 'ratio': if method in ['log', 'log-adjusted']: addhalf = 0.5 if method == 'log-adjusted' else 0 count1_, nobs1_ = count1 + addhalf, nobs1 + addhalf count2_, nobs2_ = count2 + addhalf, nobs2 + addhalf p1_ = count1_ / nobs1_ p2_ = count2_ / nobs2_ ratio_ = p1_ / p2_ var = (1 / count1_) - 1 / nobs1_ + 1 / count2_ - 1 / nobs2_ diff_stat = np.log(ratio_) - np.log(value) statistic = diff_stat / np.sqrt(var) distr = 'normal' elif method == 'score': res = score_test_proportions_2indep(count1, nobs1, count2, nobs2, value=value, compare=compare, alternative=alternative, correction=correction, return_results=return_results) if return_results is False: statistic, pvalue = res[:2] distr = 'normal' diff_stat = None else: raise ValueError('method not recognized') elif compare == "odds-ratio": if method in ['logit', 'logit-adjusted', 'logit-smoothed']: if method in ['logit-smoothed']: adjusted = _shrink_prob(count1, nobs1, count2, nobs2, shrink_factor=2, return_corr=False)[0] count1_, nobs1_, count2_, nobs2_ = adjusted else: addhalf = 0.5 if method == 'logit-adjusted' else 0 count1_, nobs1_ = count1 + addhalf, nobs1 + 2 * addhalf count2_, nobs2_ = count2 + addhalf, nobs2 + 2 * addhalf p1_ = count1_ / nobs1_ p2_ = count2_ / nobs2_ odds_ratio_ = p1_ / (1 - p1_) / p2_ * (1 - p2_) var = (1 / count1_ + 1 / (nobs1_ - count1_) + 1 / count2_ + 1 / (nobs2_ - count2_)) diff_stat = np.log(odds_ratio_) - np.log(value) statistic = diff_stat / np.sqrt(var) distr = 'normal' elif method == 'score': res = score_test_proportions_2indep(count1, nobs1, count2, nobs2, value=value, compare=compare, alternative=alternative, correction=correction, return_results=return_results) if return_results is False: statistic, pvalue = res[:2] distr = 'normal' diff_stat = None else: raise ValueError('method "%s" not recognized' % method) else: raise ValueError('compare "%s" not recognized' % compare) if distr == 'normal' and diff_stat is not None: statistic, pvalue = _zstat_generic2(diff_stat, np.sqrt(var), alternative=alternative) if return_results: if res is None: res = HolderTuple(statistic=statistic, pvalue=pvalue, compare=compare, method=method, diff=diff, ratio=ratio, odds_ratio=odds_ratio, variance=var, alternative=alternative, value=value, ) else: # we already have a return result from score test # add missing attributes res.diff = diff res.ratio = ratio res.odds_ratio = odds_ratio res.value = value return res else: return statistic, pvalue
Hypothesis test for comparing two independent proportions This assumes that we have two independent binomial samples. The Null and alternative hypothesis are for compare = 'diff' - H0: prop1 - prop2 - value = 0 - H1: prop1 - prop2 - value != 0 if alternative = 'two-sided' - H1: prop1 - prop2 - value > 0 if alternative = 'larger' - H1: prop1 - prop2 - value < 0 if alternative = 'smaller' for compare = 'ratio' - H0: prop1 / prop2 - value = 0 - H1: prop1 / prop2 - value != 0 if alternative = 'two-sided' - H1: prop1 / prop2 - value > 0 if alternative = 'larger' - H1: prop1 / prop2 - value < 0 if alternative = 'smaller' for compare = 'odds-ratio' - H0: or - value = 0 - H1: or - value != 0 if alternative = 'two-sided' - H1: or - value > 0 if alternative = 'larger' - H1: or - value < 0 if alternative = 'smaller' where odds-ratio or = prop1 / (1 - prop1) / (prop2 / (1 - prop2)) Parameters ---------- count1 : int Count for first sample. nobs1 : int Sample size for first sample. count2 : int Count for the second sample. nobs2 : int Sample size for the second sample. value : float Value of the difference, risk ratio or odds ratio of 2 independent proportions under the null hypothesis. Default is equal proportions, 0 for diff and 1 for risk-ratio and for odds-ratio. method : string Method for computing the hypothesis test. If method is None, then a default method is used. The default might change as more methods are added. diff: - 'wald', - 'agresti-caffo' - 'score' if correction is True, then this uses the degrees of freedom correction ``nobs / (nobs - 1)`` as in Miettinen Nurminen 1985 ratio: - 'log': wald test using log transformation - 'log-adjusted': wald test using log transformation, adds 0.5 to counts - 'score': if correction is True, then this uses the degrees of freedom correction ``nobs / (nobs - 1)`` as in Miettinen Nurminen 1985 odds-ratio: - 'logit': wald test using logit transformation - 'logit-adjusted': wald test using logit transformation, adds 0.5 to counts - 'logit-smoothed': wald test using logit transformation, biases cell counts towards independence by adding two observations in total. - 'score' if correction is True, then this uses the degrees of freedom correction ``nobs / (nobs - 1)`` as in Miettinen Nurminen 1985 compare : {'diff', 'ratio' 'odds-ratio'} If compare is `diff`, then the hypothesis test is for the risk difference diff = p1 - p2. If compare is `ratio`, then the hypothesis test is for the risk ratio defined by ratio = p1 / p2. If compare is `odds-ratio`, then the hypothesis test is for the odds-ratio defined by or = p1 / (1 - p1) / (p2 / (1 - p2) alternative : {'two-sided', 'smaller', 'larger'} alternative hypothesis, which can be two-sided or either one of the one-sided tests. correction : bool If correction is True (default), then the Miettinen and Nurminen small sample correction to the variance nobs / (nobs - 1) is used. Applies only if method='score'. return_results : bool If true, then a results instance with extra information is returned, otherwise a tuple with statistic and pvalue is returned. Returns ------- results : results instance or tuple If return_results is True, then a results instance with the information in attributes is returned. If return_results is False, then only ``statistic`` and ``pvalue`` are returned. statistic : float test statistic asymptotically normal distributed N(0, 1) pvalue : float p-value based on normal distribution other attributes : additional information about the hypothesis test See Also -------- tost_proportions_2indep confint_proportions_2indep Notes ----- Status: experimental, API and defaults might still change. More ``methods`` will be added. The current default methods are - 'diff': 'agresti-caffo', - 'ratio': 'log-adjusted', - 'odds-ratio': 'logit-adjusted'
test_proportions_2indep
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def tost_proportions_2indep(count1, nobs1, count2, nobs2, low, upp, method=None, compare='diff', correction=True): """ Equivalence test based on two one-sided `test_proportions_2indep` This assumes that we have two independent binomial samples. The Null and alternative hypothesis for equivalence testing are for compare = 'diff' - H0: prop1 - prop2 <= low or upp <= prop1 - prop2 - H1: low < prop1 - prop2 < upp for compare = 'ratio' - H0: prop1 / prop2 <= low or upp <= prop1 / prop2 - H1: low < prop1 / prop2 < upp for compare = 'odds-ratio' - H0: or <= low or upp <= or - H1: low < or < upp where odds-ratio or = prop1 / (1 - prop1) / (prop2 / (1 - prop2)) Parameters ---------- count1, nobs1 : count and sample size for first sample count2, nobs2 : count and sample size for the second sample low, upp : equivalence margin for diff, risk ratio or odds ratio method : string method for computing the hypothesis test. If method is None, then a default method is used. The default might change as more methods are added. diff: - 'wald', - 'agresti-caffo' - 'score' if correction is True, then this uses the degrees of freedom correction ``nobs / (nobs - 1)`` as in Miettinen Nurminen 1985. ratio: - 'log': wald test using log transformation - 'log-adjusted': wald test using log transformation, adds 0.5 to counts - 'score' if correction is True, then this uses the degrees of freedom correction ``nobs / (nobs - 1)`` as in Miettinen Nurminen 1985. odds-ratio: - 'logit': wald test using logit transformation - 'logit-adjusted': : wald test using logit transformation, adds 0.5 to counts - 'logit-smoothed': : wald test using logit transformation, biases cell counts towards independence by adding two observations in total. - 'score' if correction is True, then this uses the degrees of freedom correction ``nobs / (nobs - 1)`` as in Miettinen Nurminen 1985 compare : string in ['diff', 'ratio' 'odds-ratio'] If compare is `diff`, then the hypothesis test is for diff = p1 - p2. If compare is `ratio`, then the hypothesis test is for the risk ratio defined by ratio = p1 / p2. If compare is `odds-ratio`, then the hypothesis test is for the odds-ratio defined by or = p1 / (1 - p1) / (p2 / (1 - p2). correction : bool If correction is True (default), then the Miettinen and Nurminen small sample correction to the variance nobs / (nobs - 1) is used. Applies only if method='score'. Returns ------- pvalue : float p-value is the max of the pvalues of the two one-sided tests t1 : test results results instance for one-sided hypothesis at the lower margin t1 : test results results instance for one-sided hypothesis at the upper margin See Also -------- test_proportions_2indep confint_proportions_2indep Notes ----- Status: experimental, API and defaults might still change. The TOST equivalence test delegates to `test_proportions_2indep` and has the same method and comparison options. """ tt1 = test_proportions_2indep(count1, nobs1, count2, nobs2, value=low, method=method, compare=compare, alternative='larger', correction=correction, return_results=True) tt2 = test_proportions_2indep(count1, nobs1, count2, nobs2, value=upp, method=method, compare=compare, alternative='smaller', correction=correction, return_results=True) # idx_max = 1 if t1.pvalue < t2.pvalue else 0 idx_max = np.asarray(tt1.pvalue < tt2.pvalue, int) statistic = np.choose(idx_max, [tt1.statistic, tt2.statistic]) pvalue = np.choose(idx_max, [tt1.pvalue, tt2.pvalue]) res = HolderTuple(statistic=statistic, pvalue=pvalue, compare=compare, method=method, results_larger=tt1, results_smaller=tt2, title="Equivalence test for 2 independent proportions" ) return res
Equivalence test based on two one-sided `test_proportions_2indep` This assumes that we have two independent binomial samples. The Null and alternative hypothesis for equivalence testing are for compare = 'diff' - H0: prop1 - prop2 <= low or upp <= prop1 - prop2 - H1: low < prop1 - prop2 < upp for compare = 'ratio' - H0: prop1 / prop2 <= low or upp <= prop1 / prop2 - H1: low < prop1 / prop2 < upp for compare = 'odds-ratio' - H0: or <= low or upp <= or - H1: low < or < upp where odds-ratio or = prop1 / (1 - prop1) / (prop2 / (1 - prop2)) Parameters ---------- count1, nobs1 : count and sample size for first sample count2, nobs2 : count and sample size for the second sample low, upp : equivalence margin for diff, risk ratio or odds ratio method : string method for computing the hypothesis test. If method is None, then a default method is used. The default might change as more methods are added. diff: - 'wald', - 'agresti-caffo' - 'score' if correction is True, then this uses the degrees of freedom correction ``nobs / (nobs - 1)`` as in Miettinen Nurminen 1985. ratio: - 'log': wald test using log transformation - 'log-adjusted': wald test using log transformation, adds 0.5 to counts - 'score' if correction is True, then this uses the degrees of freedom correction ``nobs / (nobs - 1)`` as in Miettinen Nurminen 1985. odds-ratio: - 'logit': wald test using logit transformation - 'logit-adjusted': : wald test using logit transformation, adds 0.5 to counts - 'logit-smoothed': : wald test using logit transformation, biases cell counts towards independence by adding two observations in total. - 'score' if correction is True, then this uses the degrees of freedom correction ``nobs / (nobs - 1)`` as in Miettinen Nurminen 1985 compare : string in ['diff', 'ratio' 'odds-ratio'] If compare is `diff`, then the hypothesis test is for diff = p1 - p2. If compare is `ratio`, then the hypothesis test is for the risk ratio defined by ratio = p1 / p2. If compare is `odds-ratio`, then the hypothesis test is for the odds-ratio defined by or = p1 / (1 - p1) / (p2 / (1 - p2). correction : bool If correction is True (default), then the Miettinen and Nurminen small sample correction to the variance nobs / (nobs - 1) is used. Applies only if method='score'. Returns ------- pvalue : float p-value is the max of the pvalues of the two one-sided tests t1 : test results results instance for one-sided hypothesis at the lower margin t1 : test results results instance for one-sided hypothesis at the upper margin See Also -------- test_proportions_2indep confint_proportions_2indep Notes ----- Status: experimental, API and defaults might still change. The TOST equivalence test delegates to `test_proportions_2indep` and has the same method and comparison options.
tost_proportions_2indep
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def _std_2prop_power(diff, p2, ratio=1, alpha=0.05, value=0): """ Compute standard error under null and alternative for 2 proportions helper function for power and sample size computation """ if value != 0: msg = 'non-zero diff under null, value, is not yet implemented' raise NotImplementedError(msg) nobs_ratio = ratio p1 = p2 + diff # The following contains currently redundant variables that will # be useful for different options for the null variance p_pooled = (p1 + p2 * ratio) / (1 + ratio) # probabilities for the variance for the null statistic p1_vnull, p2_vnull = p_pooled, p_pooled p2_alt = p2 p1_alt = p2_alt + diff std_null = _std_diff_prop(p1_vnull, p2_vnull, ratio=nobs_ratio) std_alt = _std_diff_prop(p1_alt, p2_alt, ratio=nobs_ratio) return p_pooled, std_null, std_alt
Compute standard error under null and alternative for 2 proportions helper function for power and sample size computation
_std_2prop_power
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def power_proportions_2indep(diff, prop2, nobs1, ratio=1, alpha=0.05, value=0, alternative='two-sided', return_results=True): """ Power for ztest that two independent proportions are equal This assumes that the variance is based on the pooled proportion under the null and the non-pooled variance under the alternative Parameters ---------- diff : float difference between proportion 1 and 2 under the alternative prop2 : float proportion for the reference case, prop2, proportions for the first case will be computed using p2 and diff p1 = p2 + diff nobs1 : float or int number of observations in sample 1 ratio : float sample size ratio, nobs2 = ratio * nobs1 alpha : float in interval (0,1) Significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. value : float currently only `value=0`, i.e. equality testing, is supported alternative : string, 'two-sided' (default), 'larger', 'smaller' Alternative hypothesis whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. return_results : bool If true, then a results instance with extra information is returned, otherwise only the computed power is returned. Returns ------- results : results instance or float If return_results is True, then a results instance with the information in attributes is returned. If return_results is False, then only the power is returned. power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. Other attributes in results instance include : p_pooled pooled proportion, used for std_null std_null standard error of difference under the null hypothesis (without sqrt(nobs1)) std_alt standard error of difference under the alternative hypothesis (without sqrt(nobs1)) """ # TODO: avoid possible circular import, check if needed from statsmodels.stats.power import normal_power_het p_pooled, std_null, std_alt = _std_2prop_power(diff, prop2, ratio=ratio, alpha=alpha, value=value) pow_ = normal_power_het(diff, nobs1, alpha, std_null=std_null, std_alternative=std_alt, alternative=alternative) if return_results: res = Holder(power=pow_, p_pooled=p_pooled, std_null=std_null, std_alt=std_alt, nobs1=nobs1, nobs2=ratio * nobs1, nobs_ratio=ratio, alpha=alpha, ) return res else: return pow_
Power for ztest that two independent proportions are equal This assumes that the variance is based on the pooled proportion under the null and the non-pooled variance under the alternative Parameters ---------- diff : float difference between proportion 1 and 2 under the alternative prop2 : float proportion for the reference case, prop2, proportions for the first case will be computed using p2 and diff p1 = p2 + diff nobs1 : float or int number of observations in sample 1 ratio : float sample size ratio, nobs2 = ratio * nobs1 alpha : float in interval (0,1) Significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. value : float currently only `value=0`, i.e. equality testing, is supported alternative : string, 'two-sided' (default), 'larger', 'smaller' Alternative hypothesis whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. return_results : bool If true, then a results instance with extra information is returned, otherwise only the computed power is returned. Returns ------- results : results instance or float If return_results is True, then a results instance with the information in attributes is returned. If return_results is False, then only the power is returned. power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. Other attributes in results instance include : p_pooled pooled proportion, used for std_null std_null standard error of difference under the null hypothesis (without sqrt(nobs1)) std_alt standard error of difference under the alternative hypothesis (without sqrt(nobs1))
power_proportions_2indep
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def samplesize_proportions_2indep_onetail(diff, prop2, power, ratio=1, alpha=0.05, value=0, alternative='two-sided'): """ Required sample size assuming normal distribution based on one tail This uses an explicit computation for the sample size that is required to achieve a given power corresponding to the appropriate tails of the normal distribution. This ignores the far tail in a two-sided test which is negligible in the common case when alternative and null are far apart. Parameters ---------- diff : float Difference between proportion 1 and 2 under the alternative prop2 : float proportion for the reference case, prop2, proportions for the first case will be computing using p2 and diff p1 = p2 + diff power : float Power for which sample size is computed. ratio : float Sample size ratio, nobs2 = ratio * nobs1 alpha : float in interval (0,1) Significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. value : float Currently only `value=0`, i.e. equality testing, is supported alternative : string, 'two-sided' (default), 'larger', 'smaller' Alternative hypothesis whether the power is calculated for a two-sided (default) or one sided test. In the case of a one-sided alternative, it is assumed that the test is in the appropriate tail. Returns ------- nobs1 : float Number of observations in sample 1. """ # TODO: avoid possible circular import, check if needed from statsmodels.stats.power import normal_sample_size_one_tail if alternative in ['two-sided', '2s']: alpha = alpha / 2 _, std_null, std_alt = _std_2prop_power(diff, prop2, ratio=ratio, alpha=alpha, value=value) nobs = normal_sample_size_one_tail(diff, power, alpha, std_null=std_null, std_alternative=std_alt) return nobs
Required sample size assuming normal distribution based on one tail This uses an explicit computation for the sample size that is required to achieve a given power corresponding to the appropriate tails of the normal distribution. This ignores the far tail in a two-sided test which is negligible in the common case when alternative and null are far apart. Parameters ---------- diff : float Difference between proportion 1 and 2 under the alternative prop2 : float proportion for the reference case, prop2, proportions for the first case will be computing using p2 and diff p1 = p2 + diff power : float Power for which sample size is computed. ratio : float Sample size ratio, nobs2 = ratio * nobs1 alpha : float in interval (0,1) Significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. value : float Currently only `value=0`, i.e. equality testing, is supported alternative : string, 'two-sided' (default), 'larger', 'smaller' Alternative hypothesis whether the power is calculated for a two-sided (default) or one sided test. In the case of a one-sided alternative, it is assumed that the test is in the appropriate tail. Returns ------- nobs1 : float Number of observations in sample 1.
samplesize_proportions_2indep_onetail
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def _score_confint_inversion(count1, nobs1, count2, nobs2, compare='diff', alpha=0.05, correction=True): """ Compute score confidence interval by inverting score test Parameters ---------- count1, nobs1 : Count and sample size for first sample. count2, nobs2 : Count and sample size for the second sample. compare : string in ['diff', 'ratio' 'odds-ratio'] If compare is `diff`, then the confidence interval is for diff = p1 - p2. If compare is `ratio`, then the confidence interval is for the risk ratio defined by ratio = p1 / p2. If compare is `odds-ratio`, then the confidence interval is for the odds-ratio defined by or = p1 / (1 - p1) / (p2 / (1 - p2). alpha : float in interval (0,1) Significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. correction : bool If correction is True (default), then the Miettinen and Nurminen small sample correction to the variance nobs / (nobs - 1) is used. Applies only if method='score'. Returns ------- low : float Lower confidence bound. upp : float Upper confidence bound. """ def func(v): r = test_proportions_2indep(count1, nobs1, count2, nobs2, value=v, compare=compare, method='score', correction=correction, alternative="two-sided") return r.pvalue - alpha rt0 = test_proportions_2indep(count1, nobs1, count2, nobs2, value=0, compare=compare, method='score', correction=correction, alternative="two-sided") # use default method to get starting values # this will not work if score confint becomes default # maybe use "wald" as alias that works for all compare statistics use_method = {"diff": "wald", "ratio": "log", "odds-ratio": "logit"} rci0 = confint_proportions_2indep(count1, nobs1, count2, nobs2, method=use_method[compare], compare=compare, alpha=alpha) # Note diff might be negative ub = rci0[1] + np.abs(rci0[1]) * 0.5 lb = rci0[0] - np.abs(rci0[0]) * 0.25 if compare == 'diff': param = rt0.diff # 1 might not be the correct upper bound because # rootfinding is for the `diff` and not for a probability. ub = min(ub, 0.99999) elif compare == 'ratio': param = rt0.ratio ub *= 2 # add more buffer if compare == 'odds-ratio': param = rt0.odds_ratio # root finding for confint bounds upp = optimize.brentq(func, param, ub) low = optimize.brentq(func, lb, param) return low, upp
Compute score confidence interval by inverting score test Parameters ---------- count1, nobs1 : Count and sample size for first sample. count2, nobs2 : Count and sample size for the second sample. compare : string in ['diff', 'ratio' 'odds-ratio'] If compare is `diff`, then the confidence interval is for diff = p1 - p2. If compare is `ratio`, then the confidence interval is for the risk ratio defined by ratio = p1 / p2. If compare is `odds-ratio`, then the confidence interval is for the odds-ratio defined by or = p1 / (1 - p1) / (p2 / (1 - p2). alpha : float in interval (0,1) Significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. correction : bool If correction is True (default), then the Miettinen and Nurminen small sample correction to the variance nobs / (nobs - 1) is used. Applies only if method='score'. Returns ------- low : float Lower confidence bound. upp : float Upper confidence bound.
_score_confint_inversion
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def _confint_riskratio_koopman(count1, nobs1, count2, nobs2, alpha=0.05, correction=True): """ Score confidence interval for ratio or proportions, Koopman/Nam signature not consistent with other functions When correction is True, then the small sample correction nobs / (nobs - 1) by Miettinen/Nurminen is used. """ # The names below follow Nam x0, x1, n0, n1 = count2, count1, nobs2, nobs1 x = x0 + x1 n = n0 + n1 z = stats.norm.isf(alpha / 2)**2 if correction: # Mietinnen/Nurminen small sample correction z *= n / (n - 1) # z = stats.chi2.isf(alpha, 1) # equ 6 in Nam 1995 a1 = n0 * (n0 * n * x1 + n1 * (n0 + x1) * z) a2 = - n0 * (n0 * n1 * x + 2 * n * x0 * x1 + n1 * (n0 + x0 + 2 * x1) * z) a3 = 2 * n0 * n1 * x0 * x + n * x0 * x0 * x1 + n0 * n1 * x * z a4 = - n1 * x0 * x0 * x p_roots_ = np.sort(np.roots([a1, a2, a3, a4])) p_roots = p_roots_[:2][::-1] # equ 5 ci = (1 - (n1 - x1) * (1 - p_roots) / (x0 + n1 - n * p_roots)) / p_roots res = Holder() res.confint = ci res._p_roots = p_roots_ # for unit tests, can be dropped return res
Score confidence interval for ratio or proportions, Koopman/Nam signature not consistent with other functions When correction is True, then the small sample correction nobs / (nobs - 1) by Miettinen/Nurminen is used.
_confint_riskratio_koopman
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def _confint_riskratio_paired_nam(table, alpha=0.05): """ Confidence interval for marginal risk ratio for matched pairs need full table success fail marginal success x11 x10 x1. fail x01 x00 x0. marginal x.1 x.0 n The confidence interval is for the ratio p1 / p0 where p1 = x1. / n and p0 - x.1 / n Todo: rename p1 to pa and p2 to pb, so we have a, b for treatment and 0, 1 for success/failure current namings follow Nam 2009 status testing: compared to example in Nam 2009 internal polynomial coefficients in calculation correspond at around 4 decimals confidence interval agrees only at 2 decimals """ x11, x10, x01, x00 = np.ravel(table) n = np.sum(table) # nobs p10, p01 = x10 / n, x01 / n p1 = (x11 + x10) / n p0 = (x11 + x01) / n q00 = 1 - x00 / n z2 = stats.norm.isf(alpha / 2)**2 # z = stats.chi2.isf(alpha, 1) # before equ 3 in Nam 2009 g1 = (n * p0 + z2 / 2) * p0 g2 = - (2 * n * p1 * p0 + z2 * q00) g3 = (n * p1 + z2 / 2) * p1 a0 = g1**2 - (z2 * p0 / 2)**2 a1 = 2 * g1 * g2 a2 = g2**2 + 2 * g1 * g3 + z2**2 * (p1 * p0 - 2 * p10 * p01) / 2 a3 = 2 * g2 * g3 a4 = g3**2 - (z2 * p1 / 2)**2 p_roots = np.sort(np.roots([a0, a1, a2, a3, a4])) # p_roots = np.sort(np.roots([1, a1 / a0, a2 / a0, a3 / a0, a4 / a0])) ci = [p_roots.min(), p_roots.max()] res = Holder() res.confint = ci res.p = p1, p0 res._p_roots = p_roots # for unit tests, can be dropped return res
Confidence interval for marginal risk ratio for matched pairs need full table success fail marginal success x11 x10 x1. fail x01 x00 x0. marginal x.1 x.0 n The confidence interval is for the ratio p1 / p0 where p1 = x1. / n and p0 - x.1 / n Todo: rename p1 to pa and p2 to pb, so we have a, b for treatment and 0, 1 for success/failure current namings follow Nam 2009 status testing: compared to example in Nam 2009 internal polynomial coefficients in calculation correspond at around 4 decimals confidence interval agrees only at 2 decimals
_confint_riskratio_paired_nam
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def _make_asymptotic_function(params): """ Generates an asymptotic distribution callable from a param matrix Polynomial is a[0] * x**(-1/2) + a[1] * x**(-1) + a[2] * x**(-3/2) Parameters ---------- params : ndarray Array with shape (nalpha, 3) where nalpha is the number of significance levels """ def f(n): poly = np.array([1, np.log(n), np.log(n) ** 2]) return np.exp(poly.dot(params.T)) return f
Generates an asymptotic distribution callable from a param matrix Polynomial is a[0] * x**(-1/2) + a[1] * x**(-1) + a[2] * x**(-3/2) Parameters ---------- params : ndarray Array with shape (nalpha, 3) where nalpha is the number of significance levels
_make_asymptotic_function
python
statsmodels/statsmodels
statsmodels/stats/_lilliefors.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_lilliefors.py
BSD-3-Clause
def ksstat(x, cdf, alternative='two_sided', args=()): """ Calculate statistic for the Kolmogorov-Smirnov test for goodness of fit This calculates the test statistic for a test of the distribution G(x) of an observed variable against a given distribution F(x). Under the null hypothesis the two distributions are identical, G(x)=F(x). The alternative hypothesis can be either 'two_sided' (default), 'less' or 'greater'. The KS test is only valid for continuous distributions. Parameters ---------- x : array_like, 1d array of observations cdf : str or callable string: name of a distribution in scipy.stats callable: function to evaluate cdf alternative : 'two_sided' (default), 'less' or 'greater' defines the alternative hypothesis (see explanation) args : tuple, sequence distribution parameters for call to cdf Returns ------- D : float KS test statistic, either D, D+ or D- See Also -------- scipy.stats.kstest Notes ----- In the one-sided test, the alternative is that the empirical cumulative distribution function of the random variable is "less" or "greater" than the cumulative distribution function F(x) of the hypothesis, G(x)<=F(x), resp. G(x)>=F(x). In contrast to scipy.stats.kstest, this function only calculates the statistic which can be used either as distance measure or to implement case specific p-values. """ nobs = float(len(x)) if isinstance(cdf, str): cdf = getattr(stats.distributions, cdf).cdf elif hasattr(cdf, 'cdf'): cdf = getattr(cdf, 'cdf') x = np.sort(x) cdfvals = cdf(x, *args) d_plus = (np.arange(1.0, nobs + 1) / nobs - cdfvals).max() d_min = (cdfvals - np.arange(0.0, nobs) / nobs).max() if alternative == 'greater': return d_plus elif alternative == 'less': return d_min return np.max([d_plus, d_min])
Calculate statistic for the Kolmogorov-Smirnov test for goodness of fit This calculates the test statistic for a test of the distribution G(x) of an observed variable against a given distribution F(x). Under the null hypothesis the two distributions are identical, G(x)=F(x). The alternative hypothesis can be either 'two_sided' (default), 'less' or 'greater'. The KS test is only valid for continuous distributions. Parameters ---------- x : array_like, 1d array of observations cdf : str or callable string: name of a distribution in scipy.stats callable: function to evaluate cdf alternative : 'two_sided' (default), 'less' or 'greater' defines the alternative hypothesis (see explanation) args : tuple, sequence distribution parameters for call to cdf Returns ------- D : float KS test statistic, either D, D+ or D- See Also -------- scipy.stats.kstest Notes ----- In the one-sided test, the alternative is that the empirical cumulative distribution function of the random variable is "less" or "greater" than the cumulative distribution function F(x) of the hypothesis, G(x)<=F(x), resp. G(x)>=F(x). In contrast to scipy.stats.kstest, this function only calculates the statistic which can be used either as distance measure or to implement case specific p-values.
ksstat
python
statsmodels/statsmodels
statsmodels/stats/_lilliefors.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_lilliefors.py
BSD-3-Clause
def get_lilliefors_table(dist='norm'): """ Generates tables for significance levels of Lilliefors test statistics Tables for available normal and exponential distribution testing, as specified in Lilliefors references above Parameters ---------- dist : str distribution being tested in set {'norm', 'exp'}. Returns ------- lf : TableDist object. table of critical values """ # function just to keep things together # for this test alpha is sf probability, i.e. right tail probability alpha = 1 - np.array(PERCENTILES) / 100.0 alpha = alpha[::-1] dist = 'normal' if dist == 'norm' else dist if dist not in critical_values: raise ValueError("Invalid dist parameter. Must be 'norm' or 'exp'") cv_data = critical_values[dist] acv_data = asymp_critical_values[dist] size = np.array(sorted(cv_data), dtype=float) crit_lf = np.array([cv_data[key] for key in sorted(cv_data)]) crit_lf = crit_lf[:, ::-1] asym_params = np.array([acv_data[key] for key in sorted(acv_data)]) asymp_fn = _make_asymptotic_function(asym_params[::-1]) lf = TableDist(alpha, size, crit_lf, asymptotic=asymp_fn) return lf
Generates tables for significance levels of Lilliefors test statistics Tables for available normal and exponential distribution testing, as specified in Lilliefors references above Parameters ---------- dist : str distribution being tested in set {'norm', 'exp'}. Returns ------- lf : TableDist object. table of critical values
get_lilliefors_table
python
statsmodels/statsmodels
statsmodels/stats/_lilliefors.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_lilliefors.py
BSD-3-Clause
def pval_lf(d_max, n): """ Approximate pvalues for Lilliefors test This is only valid for pvalues smaller than 0.1 which is not checked in this function. Parameters ---------- d_max : array_like two-sided Kolmogorov-Smirnov test statistic n : int or float sample size Returns ------- p-value : float or ndarray pvalue according to approximation formula of Dallal and Wilkinson. Notes ----- This is mainly a helper function where the calling code should dispatch on bound violations. Therefore it does not check whether the pvalue is in the valid range. Precision for the pvalues is around 2 to 3 decimals. This approximation is also used by other statistical packages (e.g. R:fBasics) but might not be the most precise available. References ---------- DallalWilkinson1986 """ # todo: check boundaries, valid range for n and Dmax if n > 100: d_max *= (n / 100.) ** 0.49 n = 100 pval = np.exp(-7.01256 * d_max ** 2 * (n + 2.78019) + 2.99587 * d_max * np.sqrt(n + 2.78019) - 0.122119 + 0.974598 / np.sqrt(n) + 1.67997 / n) return pval
Approximate pvalues for Lilliefors test This is only valid for pvalues smaller than 0.1 which is not checked in this function. Parameters ---------- d_max : array_like two-sided Kolmogorov-Smirnov test statistic n : int or float sample size Returns ------- p-value : float or ndarray pvalue according to approximation formula of Dallal and Wilkinson. Notes ----- This is mainly a helper function where the calling code should dispatch on bound violations. Therefore it does not check whether the pvalue is in the valid range. Precision for the pvalues is around 2 to 3 decimals. This approximation is also used by other statistical packages (e.g. R:fBasics) but might not be the most precise available. References ---------- DallalWilkinson1986
pval_lf
python
statsmodels/statsmodels
statsmodels/stats/_lilliefors.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_lilliefors.py
BSD-3-Clause
def kstest_fit(x, dist='norm', pvalmethod="table"): """ Test assumed normal or exponential distribution using Lilliefors' test. Lilliefors' test is a Kolmogorov-Smirnov test with estimated parameters. Parameters ---------- x : array_like, 1d Data to test. dist : {'norm', 'exp'}, optional The assumed distribution. pvalmethod : {'approx', 'table'}, optional The method used to compute the p-value of the test statistic. In general, 'table' is preferred and makes use of a very large simulation. 'approx' is only valid for normality. if `dist = 'exp'` `table` is always used. 'approx' uses the approximation formula of Dalal and Wilkinson, valid for pvalues < 0.1. If the pvalue is larger than 0.1, then the result of `table` is returned. Returns ------- ksstat : float Kolmogorov-Smirnov test statistic with estimated mean and variance. pvalue : float If the pvalue is lower than some threshold, e.g. 0.05, then we can reject the Null hypothesis that the sample comes from a normal distribution. Notes ----- 'table' uses an improved table based on 10,000,000 simulations. The critical values are approximated using log(cv_alpha) = b_alpha + c[0] log(n) + c[1] log(n)**2 where cv_alpha is the critical value for a test with size alpha, b_alpha is an alpha-specific intercept term and c[1] and c[2] are coefficients that are shared all alphas. Values in the table are linearly interpolated. Values outside the range are be returned as bounds, 0.990 for large and 0.001 for small pvalues. For implementation details, see lilliefors_critical_value_simulation.py in the test directory. """ pvalmethod = string_like(pvalmethod, "pvalmethod", options=("approx", "table")) x = np.asarray(x) if x.ndim == 2 and x.shape[1] == 1: x = x[:, 0] elif x.ndim != 1: raise ValueError("Invalid parameter `x`: must be a one-dimensional" " array-like or a single-column DataFrame") nobs = len(x) if dist == 'norm': z = (x - x.mean()) / x.std(ddof=1) test_d = stats.norm.cdf lilliefors_table = lilliefors_table_norm elif dist == 'exp': z = x / x.mean() test_d = stats.expon.cdf lilliefors_table = lilliefors_table_expon pvalmethod = 'table' else: raise ValueError("Invalid dist parameter, must be 'norm' or 'exp'") min_nobs = 4 if dist == 'norm' else 3 if nobs < min_nobs: raise ValueError('Test for distribution {} requires at least {} ' 'observations'.format(dist, min_nobs)) d_ks = ksstat(z, test_d, alternative='two_sided') if pvalmethod == 'approx': pval = pval_lf(d_ks, nobs) # check pval is in desired range if pval > 0.1: pval = lilliefors_table.prob(d_ks, nobs) else: # pvalmethod == 'table' pval = lilliefors_table.prob(d_ks, nobs) return d_ks, pval
Test assumed normal or exponential distribution using Lilliefors' test. Lilliefors' test is a Kolmogorov-Smirnov test with estimated parameters. Parameters ---------- x : array_like, 1d Data to test. dist : {'norm', 'exp'}, optional The assumed distribution. pvalmethod : {'approx', 'table'}, optional The method used to compute the p-value of the test statistic. In general, 'table' is preferred and makes use of a very large simulation. 'approx' is only valid for normality. if `dist = 'exp'` `table` is always used. 'approx' uses the approximation formula of Dalal and Wilkinson, valid for pvalues < 0.1. If the pvalue is larger than 0.1, then the result of `table` is returned. Returns ------- ksstat : float Kolmogorov-Smirnov test statistic with estimated mean and variance. pvalue : float If the pvalue is lower than some threshold, e.g. 0.05, then we can reject the Null hypothesis that the sample comes from a normal distribution. Notes ----- 'table' uses an improved table based on 10,000,000 simulations. The critical values are approximated using log(cv_alpha) = b_alpha + c[0] log(n) + c[1] log(n)**2 where cv_alpha is the critical value for a test with size alpha, b_alpha is an alpha-specific intercept term and c[1] and c[2] are coefficients that are shared all alphas. Values in the table are linearly interpolated. Values outside the range are be returned as bounds, 0.990 for large and 0.001 for small pvalues. For implementation details, see lilliefors_critical_value_simulation.py in the test directory.
kstest_fit
python
statsmodels/statsmodels
statsmodels/stats/_lilliefors.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_lilliefors.py
BSD-3-Clause
def threshold(self, tfdr): """ Returns the threshold statistic for a given target FDR. """ if np.min(self._ufdr) <= tfdr: return self._unq[self._ufdr <= tfdr][0] else: return np.inf
Returns the threshold statistic for a given target FDR.
threshold
python
statsmodels/statsmodels
statsmodels/stats/_knockoff.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_knockoff.py
BSD-3-Clause
def _design_knockoff_sdp(exog): """ Use semidefinite programming to construct a knockoff design matrix. Requires cvxopt to be installed. """ try: from cvxopt import solvers, matrix except ImportError: raise ValueError("SDP knockoff designs require installation of cvxopt") nobs, nvar = exog.shape # Standardize exog xnm = np.sum(exog**2, 0) xnm = np.sqrt(xnm) exog = exog / xnm Sigma = np.dot(exog.T, exog) c = matrix(-np.ones(nvar)) h0 = np.concatenate((np.zeros(nvar), np.ones(nvar))) h0 = matrix(h0) G0 = np.concatenate((-np.eye(nvar), np.eye(nvar)), axis=0) G0 = matrix(G0) h1 = 2 * Sigma h1 = matrix(h1) i, j = np.diag_indices(nvar) G1 = np.zeros((nvar*nvar, nvar)) G1[i*nvar + j, i] = 1 G1 = matrix(G1) solvers.options['show_progress'] = False sol = solvers.sdp(c, G0, h0, [G1], [h1]) sl = np.asarray(sol['x']).ravel() xcov = np.dot(exog.T, exog) exogn = _get_knmat(exog, xcov, sl) return exog, exogn, sl
Use semidefinite programming to construct a knockoff design matrix. Requires cvxopt to be installed.
_design_knockoff_sdp
python
statsmodels/statsmodels
statsmodels/stats/_knockoff.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_knockoff.py
BSD-3-Clause
def _design_knockoff_equi(exog): """ Construct an equivariant design matrix for knockoff analysis. Follows the 'equi-correlated knockoff approach of equation 2.4 in Barber and Candes. Constructs a pair of design matrices exogs, exogn such that exogs is a scaled/centered version of the input matrix exog, exogn is another matrix of the same shape with cov(exogn) = cov(exogs), and the covariances between corresponding columns of exogn and exogs are as small as possible. """ nobs, nvar = exog.shape if nobs < 2*nvar: msg = "The equivariant knockoff can ony be used when n >= 2*p" raise ValueError(msg) # Standardize exog xnm = np.sum(exog**2, 0) xnm = np.sqrt(xnm) exog = exog / xnm xcov = np.dot(exog.T, exog) ev, _ = np.linalg.eig(xcov) evmin = np.min(ev) sl = min(2*evmin, 1) sl = sl * np.ones(nvar) exogn = _get_knmat(exog, xcov, sl) return exog, exogn, sl
Construct an equivariant design matrix for knockoff analysis. Follows the 'equi-correlated knockoff approach of equation 2.4 in Barber and Candes. Constructs a pair of design matrices exogs, exogn such that exogs is a scaled/centered version of the input matrix exog, exogn is another matrix of the same shape with cov(exogn) = cov(exogs), and the covariances between corresponding columns of exogn and exogs are as small as possible.
_design_knockoff_equi
python
statsmodels/statsmodels
statsmodels/stats/_knockoff.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_knockoff.py
BSD-3-Clause
def conf_int(self, alpha=0.05): """ Returns the confidence interval of the value, `effect` of the constraint. This is currently only available for t and z tests. Parameters ---------- alpha : float, optional The significance level for the confidence interval. ie., The default `alpha` = .05 returns a 95% confidence interval. Returns ------- ci : ndarray, (k_constraints, 2) The array has the lower and the upper limit of the confidence interval in the columns. """ if self.effect is not None: # confidence intervals q = self.dist.ppf(1 - alpha / 2., *self.dist_args) lower = self.effect - q * self.sd upper = self.effect + q * self.sd return np.column_stack((lower, upper)) else: raise NotImplementedError('Confidence Interval not available')
Returns the confidence interval of the value, `effect` of the constraint. This is currently only available for t and z tests. Parameters ---------- alpha : float, optional The significance level for the confidence interval. ie., The default `alpha` = .05 returns a 95% confidence interval. Returns ------- ci : ndarray, (k_constraints, 2) The array has the lower and the upper limit of the confidence interval in the columns.
conf_int
python
statsmodels/statsmodels
statsmodels/stats/contrast.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contrast.py
BSD-3-Clause
def summary(self, xname=None, alpha=0.05, title=None): """Summarize the Results of the hypothesis test Parameters ---------- xname : list[str], optional Default is `c_##` for ## in the number of regressors alpha : float significance level for the confidence intervals. Default is alpha = 0.05 which implies a confidence level of 95%. title : str, optional Title for the params table. If not None, then this replaces the default title Returns ------- smry : str or Summary instance This contains a parameter results table in the case of t or z test in the same form as the parameter results table in the model results summary. For F or Wald test, the return is a string. """ if self.effect is not None: # TODO: should also add some extra information, e.g. robust cov ? # TODO: can we infer names for constraints, xname in __init__ ? if title is None: title = 'Test for Constraints' elif title == '': # do not add any title, # I think SimpleTable skips on None - check title = None # we have everything for a params table use_t = (self.distribution == 't') yname='constraints' # Not used in params_frame if xname is None: xname = self.c_names from statsmodels.iolib.summary import summary_params pvalues = np.atleast_1d(self.pvalue) summ = summary_params((self, self.effect, self.sd, self.statistic, pvalues, self.conf_int(alpha)), yname=yname, xname=xname, use_t=use_t, title=title, alpha=alpha) return summ elif hasattr(self, 'fvalue'): # TODO: create something nicer for these casee return ('<F test: F=%s, p=%s, df_denom=%.3g, df_num=%.3g>' % (repr(self.fvalue), self.pvalue, self.df_denom, self.df_num)) elif self.distribution == 'chi2': return ('<Wald test (%s): statistic=%s, p-value=%s, df_denom=%.3g>' % (self.distribution, self.statistic, self.pvalue, self.df_denom)) else: # generic return ('<Wald test: statistic=%s, p-value=%s>' % (self.statistic, self.pvalue))
Summarize the Results of the hypothesis test Parameters ---------- xname : list[str], optional Default is `c_##` for ## in the number of regressors alpha : float significance level for the confidence intervals. Default is alpha = 0.05 which implies a confidence level of 95%. title : str, optional Title for the params table. If not None, then this replaces the default title Returns ------- smry : str or Summary instance This contains a parameter results table in the case of t or z test in the same form as the parameter results table in the model results summary. For F or Wald test, the return is a string.
summary
python
statsmodels/statsmodels
statsmodels/stats/contrast.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contrast.py
BSD-3-Clause
def summary_frame(self, xname=None, alpha=0.05): """Return the parameter table as a pandas DataFrame This is only available for t and normal tests """ if self.effect is not None: # we have everything for a params table use_t = (self.distribution == 't') yname='constraints' # Not used in params_frame if xname is None: xname = self.c_names from statsmodels.iolib.summary import summary_params_frame summ = summary_params_frame((self, self.effect, self.sd, self.statistic,self.pvalue, self.conf_int(alpha)), yname=yname, xname=xname, use_t=use_t, alpha=alpha) return summ else: # TODO: create something nicer raise NotImplementedError('only available for t and z')
Return the parameter table as a pandas DataFrame This is only available for t and normal tests
summary_frame
python
statsmodels/statsmodels
statsmodels/stats/contrast.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contrast.py
BSD-3-Clause
def _get_matrix(self): """ Gets the contrast_matrix property """ if not hasattr(self, "_contrast_matrix"): self.compute_matrix() return self._contrast_matrix
Gets the contrast_matrix property
_get_matrix
python
statsmodels/statsmodels
statsmodels/stats/contrast.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contrast.py
BSD-3-Clause
def compute_matrix(self): """ Construct a contrast matrix C so that colspan(dot(D, C)) = colspan(dot(D, dot(pinv(D), T))) where pinv(D) is the generalized inverse of D=design. """ T = self.term if T.ndim == 1: T = T[:,None] self.T = clean0(T) self.D = self.design self._contrast_matrix = contrastfromcols(self.T, self.D) try: self.rank = self.matrix.shape[1] except (AttributeError, IndexError): self.rank = 1
Construct a contrast matrix C so that colspan(dot(D, C)) = colspan(dot(D, dot(pinv(D), T))) where pinv(D) is the generalized inverse of D=design.
compute_matrix
python
statsmodels/statsmodels
statsmodels/stats/contrast.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contrast.py
BSD-3-Clause
def contrastfromcols(L, D, pseudo=None): """ From an n x p design matrix D and a matrix L, tries to determine a p x q contrast matrix C which determines a contrast of full rank, i.e. the n x q matrix dot(transpose(C), pinv(D)) is full rank. L must satisfy either L.shape[0] == n or L.shape[1] == p. If L.shape[0] == n, then L is thought of as representing columns in the column space of D. If L.shape[1] == p, then L is thought of as what is known as a contrast matrix. In this case, this function returns an estimable contrast corresponding to the dot(D, L.T) Note that this always produces a meaningful contrast, not always with the intended properties because q is always non-zero unless L is identically 0. That is, it produces a contrast that spans the column space of L (after projection onto the column space of D). Parameters ---------- L : array_like D : array_like """ L = np.asarray(L) D = np.asarray(D) n, p = D.shape if L.shape[0] != n and L.shape[1] != p: raise ValueError("shape of L and D mismatched") if pseudo is None: pseudo = np.linalg.pinv(D) # D^+ \approx= ((dot(D.T,D))^(-1),D.T) if L.shape[0] == n: C = np.dot(pseudo, L).T else: C = L C = np.dot(pseudo, np.dot(D, C.T)).T Lp = np.dot(D, C.T) if len(Lp.shape) == 1: Lp.shape = (n, 1) if np.linalg.matrix_rank(Lp) != Lp.shape[1]: Lp = fullrank(Lp) C = np.dot(pseudo, Lp).T return np.squeeze(C)
From an n x p design matrix D and a matrix L, tries to determine a p x q contrast matrix C which determines a contrast of full rank, i.e. the n x q matrix dot(transpose(C), pinv(D)) is full rank. L must satisfy either L.shape[0] == n or L.shape[1] == p. If L.shape[0] == n, then L is thought of as representing columns in the column space of D. If L.shape[1] == p, then L is thought of as what is known as a contrast matrix. In this case, this function returns an estimable contrast corresponding to the dot(D, L.T) Note that this always produces a meaningful contrast, not always with the intended properties because q is always non-zero unless L is identically 0. That is, it produces a contrast that spans the column space of L (after projection onto the column space of D). Parameters ---------- L : array_like D : array_like
contrastfromcols
python
statsmodels/statsmodels
statsmodels/stats/contrast.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contrast.py
BSD-3-Clause
def col_names(self): """column names for summary table """ pr_test = "P>%s" % self.distribution col_names = [self.distribution, pr_test, 'df constraint'] if self.distribution == 'F': col_names.append('df denom') return col_names
column names for summary table
col_names
python
statsmodels/statsmodels
statsmodels/stats/contrast.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contrast.py
BSD-3-Clause
def _get_pairs_labels(k_level, level_names): """helper function for labels for pairwise comparisons """ idx_pairs_all = np.triu_indices(k_level, 1) labels = [f'{level_names[name[1]]}-{level_names[name[0]]}' for name in zip(*idx_pairs_all)] return labels
helper function for labels for pairwise comparisons
_get_pairs_labels
python
statsmodels/statsmodels
statsmodels/stats/contrast.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contrast.py
BSD-3-Clause
def _contrast_pairs(k_params, k_level, idx_start): """create pairwise contrast for reference coding currently not used, using encoding contrast matrix is more general, but requires requires factor information from a formula's model_spec. Parameters ---------- k_params : int number of parameters k_level : int number of levels or categories (including reference case) idx_start : int Index of the first parameter of this factor. The restrictions on the factor are inserted as a block in the full restriction matrix starting at column with index `idx_start`. Returns ------- contrasts : ndarray restriction matrix with k_params columns and number of rows equal to the number of restrictions. """ k_level_m1 = k_level - 1 idx_pairs = np.triu_indices(k_level_m1, 1) k = len(idx_pairs[0]) c_pairs = np.zeros((k, k_level_m1)) c_pairs[np.arange(k), idx_pairs[0]] = -1 c_pairs[np.arange(k), idx_pairs[1]] = 1 c_reference = np.eye(k_level_m1) c = np.concatenate((c_reference, c_pairs), axis=0) k_all = c.shape[0] contrasts = np.zeros((k_all, k_params)) contrasts[:, idx_start : idx_start + k_level_m1] = c return contrasts
create pairwise contrast for reference coding currently not used, using encoding contrast matrix is more general, but requires requires factor information from a formula's model_spec. Parameters ---------- k_params : int number of parameters k_level : int number of levels or categories (including reference case) idx_start : int Index of the first parameter of this factor. The restrictions on the factor are inserted as a block in the full restriction matrix starting at column with index `idx_start`. Returns ------- contrasts : ndarray restriction matrix with k_params columns and number of rows equal to the number of restrictions.
_contrast_pairs
python
statsmodels/statsmodels
statsmodels/stats/contrast.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contrast.py
BSD-3-Clause
def t_test_multi(result, contrasts, method='hs', alpha=0.05, ci_method=None, contrast_names=None): """perform t_test and add multiplicity correction to results dataframe Parameters ---------- result results instance results of an estimated model contrasts : ndarray restriction matrix for t_test method : str or list of strings method for multiple testing p-value correction, default is'hs'. alpha : float significance level for multiple testing reject decision. ci_method : None not used yet, will be for multiplicity corrected confidence intervals contrast_names : {list[str], None} If contrast_names are provided, then they are used in the index of the returned dataframe, otherwise some generic default names are created. Returns ------- res_df : pandas DataFrame The dataframe contains the results of the t_test and additional columns for multiplicity corrected p-values and boolean indicator for whether the Null hypothesis is rejected. """ tt = result.t_test(contrasts) res_df = tt.summary_frame(xname=contrast_names) if type(method) is not list: method = [method] for meth in method: mt = multipletests(tt.pvalue, method=meth, alpha=alpha) res_df['pvalue-%s' % meth] = mt[1] res_df['reject-%s' % meth] = mt[0] return res_df
perform t_test and add multiplicity correction to results dataframe Parameters ---------- result results instance results of an estimated model contrasts : ndarray restriction matrix for t_test method : str or list of strings method for multiple testing p-value correction, default is'hs'. alpha : float significance level for multiple testing reject decision. ci_method : None not used yet, will be for multiplicity corrected confidence intervals contrast_names : {list[str], None} If contrast_names are provided, then they are used in the index of the returned dataframe, otherwise some generic default names are created. Returns ------- res_df : pandas DataFrame The dataframe contains the results of the t_test and additional columns for multiplicity corrected p-values and boolean indicator for whether the Null hypothesis is rejected.
t_test_multi
python
statsmodels/statsmodels
statsmodels/stats/contrast.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contrast.py
BSD-3-Clause
def _embed_constraints(contrasts, k_params, idx_start, index=None): """helper function to expand constraints to a full restriction matrix Parameters ---------- contrasts : ndarray restriction matrix for t_test k_params : int number of parameters idx_start : int Index of the first parameter of this factor. The restrictions on the factor are inserted as a block in the full restriction matrix starting at column with index `idx_start`. index : slice or ndarray Column index if constraints do not form a block in the full restriction matrix, i.e. if parameters that are subject to restrictions are not consecutive in the list of parameters. If index is not None, then idx_start is ignored. Returns ------- contrasts : ndarray restriction matrix with k_params columns and number of rows equal to the number of restrictions. """ k_c, k_p = contrasts.shape c = np.zeros((k_c, k_params)) if index is None: c[:, idx_start : idx_start + k_p] = contrasts else: c[:, index] = contrasts return c
helper function to expand constraints to a full restriction matrix Parameters ---------- contrasts : ndarray restriction matrix for t_test k_params : int number of parameters idx_start : int Index of the first parameter of this factor. The restrictions on the factor are inserted as a block in the full restriction matrix starting at column with index `idx_start`. index : slice or ndarray Column index if constraints do not form a block in the full restriction matrix, i.e. if parameters that are subject to restrictions are not consecutive in the list of parameters. If index is not None, then idx_start is ignored. Returns ------- contrasts : ndarray restriction matrix with k_params columns and number of rows equal to the number of restrictions.
_embed_constraints
python
statsmodels/statsmodels
statsmodels/stats/contrast.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contrast.py
BSD-3-Clause
def _constraints_factor(encoding_matrix, comparison='pairwise', k_params=None, idx_start=None): """helper function to create constraints based on encoding matrix Parameters ---------- encoding_matrix : ndarray contrast matrix for the encoding of a factor as defined by patsy. The number of rows should be equal to the number of levels or categories of the factor, the number of columns should be equal to the number of parameters for this factor. comparison : str Currently only 'pairwise' is implemented. The restriction matrix can be used for testing the hypothesis that all pairwise differences are zero. k_params : int number of parameters idx_start : int Index of the first parameter of this factor. The restrictions on the factor are inserted as a block in the full restriction matrix starting at column with index `idx_start`. Returns ------- contrast : ndarray Contrast or restriction matrix that can be used in hypothesis test of model results. The number of columns is k_params. """ cm = encoding_matrix k_level, k_p = cm.shape import statsmodels.sandbox.stats.multicomp as mc if comparison in ['pairwise', 'pw', 'pairs']: c_all = -mc.contrast_allpairs(k_level) else: raise NotImplementedError('currentlyonly pairwise comparison') contrasts = c_all.dot(cm) if k_params is not None: if idx_start is None: raise ValueError("if k_params is not None, then idx_start is " "required") contrasts = _embed_constraints(contrasts, k_params, idx_start) return contrasts
helper function to create constraints based on encoding matrix Parameters ---------- encoding_matrix : ndarray contrast matrix for the encoding of a factor as defined by patsy. The number of rows should be equal to the number of levels or categories of the factor, the number of columns should be equal to the number of parameters for this factor. comparison : str Currently only 'pairwise' is implemented. The restriction matrix can be used for testing the hypothesis that all pairwise differences are zero. k_params : int number of parameters idx_start : int Index of the first parameter of this factor. The restrictions on the factor are inserted as a block in the full restriction matrix starting at column with index `idx_start`. Returns ------- contrast : ndarray Contrast or restriction matrix that can be used in hypothesis test of model results. The number of columns is k_params.
_constraints_factor
python
statsmodels/statsmodels
statsmodels/stats/contrast.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contrast.py
BSD-3-Clause
def t_test_pairwise(result, term_name, method='hs', alpha=0.05, factor_labels=None, ignore=False): """ Perform pairwise t_test with multiple testing corrected p-values. This uses the formula's model_spec encoding contrast matrix and should work for all encodings of a main effect. Parameters ---------- result : result instance The results of an estimated model with a categorical main effect. term_name : str name of the term for which pairwise comparisons are computed. Term names for categorical effects are created by patsy and correspond to the main part of the exog names. method : {str, list[str]} multiple testing p-value correction, default is 'hs', see stats.multipletesting alpha : float significance level for multiple testing reject decision. factor_labels : {list[str], None} Labels for the factor levels used for pairwise labels. If not provided, then the labels from the formula's model_spec are used. ignore : bool Turn off some of the exceptions raised by input checks. Returns ------- MultiCompResult The results are stored as attributes, the main attributes are the following two. Other attributes are added for debugging purposes or as background information. - result_frame : pandas DataFrame with t_test results and multiple testing corrected p-values. - contrasts : matrix of constraints of the null hypothesis in the t_test. Notes ----- Status: experimental. Currently only checked for treatment coding with and without specified reference level. Currently there are no multiple testing corrected confidence intervals available. """ mgr = FormulaManager() model_spec = result.model.data.model_spec term_idx = mgr.get_term_names(model_spec).index(term_name) term = model_spec.terms[term_idx] idx_start = model_spec.term_slices[term].start if not ignore and len(term.factors) > 1: raise ValueError('interaction effects not yet supported') factor = term.factors[0] cat = mgr.get_factor_categories(factor, model_spec) # cat = model_spec.encoder_state[factor][1]["categories"] # model_spec.factor_infos[factor].categories if factor_labels is not None: if len(factor_labels) == len(cat): cat = factor_labels else: raise ValueError("factor_labels has the wrong length, should be %d" % len(cat)) k_level = len(cat) cm = mgr.get_contrast_matrix(term, factor, model_spec) k_params = len(result.params) labels = _get_pairs_labels(k_level, cat) import statsmodels.sandbox.stats.multicomp as mc c_all_pairs = -mc.contrast_allpairs(k_level) contrasts_sub = c_all_pairs.dot(cm) contrasts = _embed_constraints(contrasts_sub, k_params, idx_start) res_df = t_test_multi(result, contrasts, method=method, ci_method=None, alpha=alpha, contrast_names=labels) res = MultiCompResult(result_frame=res_df, contrasts=contrasts, term=term, contrast_labels=labels, term_encoding_matrix=cm) return res
Perform pairwise t_test with multiple testing corrected p-values. This uses the formula's model_spec encoding contrast matrix and should work for all encodings of a main effect. Parameters ---------- result : result instance The results of an estimated model with a categorical main effect. term_name : str name of the term for which pairwise comparisons are computed. Term names for categorical effects are created by patsy and correspond to the main part of the exog names. method : {str, list[str]} multiple testing p-value correction, default is 'hs', see stats.multipletesting alpha : float significance level for multiple testing reject decision. factor_labels : {list[str], None} Labels for the factor levels used for pairwise labels. If not provided, then the labels from the formula's model_spec are used. ignore : bool Turn off some of the exceptions raised by input checks. Returns ------- MultiCompResult The results are stored as attributes, the main attributes are the following two. Other attributes are added for debugging purposes or as background information. - result_frame : pandas DataFrame with t_test results and multiple testing corrected p-values. - contrasts : matrix of constraints of the null hypothesis in the t_test. Notes ----- Status: experimental. Currently only checked for treatment coding with and without specified reference level. Currently there are no multiple testing corrected confidence intervals available.
t_test_pairwise
python
statsmodels/statsmodels
statsmodels/stats/contrast.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contrast.py
BSD-3-Clause
def _offset_constraint(r_matrix, params_est, params_alt): """offset to the value of a linear constraint for new params usage: (cm, v) is original constraint vo = offset_constraint(cm, res2.params, params_alt) fs = res2.wald_test((cm, v + vo)) nc = fs.statistic * fs.df_num """ diff_est = r_matrix @ params_est diff_alt = r_matrix @ params_alt return diff_est - diff_alt
offset to the value of a linear constraint for new params usage: (cm, v) is original constraint vo = offset_constraint(cm, res2.params, params_alt) fs = res2.wald_test((cm, v + vo)) nc = fs.statistic * fs.df_num
_offset_constraint
python
statsmodels/statsmodels
statsmodels/stats/contrast.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contrast.py
BSD-3-Clause
def wald_test_noncent(params, r_matrix, value, results, diff=None, joint=True): """Moncentrality parameter for a wald test in model results The null hypothesis is ``diff = r_matrix @ params - value = 0`` Parameters ---------- params : ndarray parameters of the model at which to evaluate noncentrality. This can be estimated parameters or parameters under an alternative. r_matrix : ndarray Restriction matrix or contrasts for the Null hypothesis value : None or ndarray Value of the linear combination of parameters under the null hypothesis. If value is None, then it will be replaced by zero. results : Results instance of a model The results instance is used to compute the covariance matrix of the linear constraints using `cov_params. diff : None or ndarray If diff is not None, then it will be used instead of ``diff = r_matrix @ params - value`` joint : bool If joint is True, then the noncentrality parameter for the joint hypothesis will be returned. If joint is True, then an array of noncentrality parameters will be returned, where elements correspond to rows of the restriction matrix. This correspond to the `t_test` in models and is not a quadratic form. Returns ------- nc : float or ndarray Noncentrality parameter for Wald tests, correspondig to `wald_test` or `t_test` depending on whether `joint` is true or not. It needs to be divided by nobs to obtain effect size. Notes ----- Status : experimental, API will likely change """ if diff is None: diff = r_matrix @ params - value # at parameter under alternative cov_c = results.cov_params(r_matrix=r_matrix) if joint: nc = diff @ np.linalg.solve(cov_c, diff) else: nc = diff / np.sqrt(np.diag(cov_c)) return nc
Moncentrality parameter for a wald test in model results The null hypothesis is ``diff = r_matrix @ params - value = 0`` Parameters ---------- params : ndarray parameters of the model at which to evaluate noncentrality. This can be estimated parameters or parameters under an alternative. r_matrix : ndarray Restriction matrix or contrasts for the Null hypothesis value : None or ndarray Value of the linear combination of parameters under the null hypothesis. If value is None, then it will be replaced by zero. results : Results instance of a model The results instance is used to compute the covariance matrix of the linear constraints using `cov_params. diff : None or ndarray If diff is not None, then it will be used instead of ``diff = r_matrix @ params - value`` joint : bool If joint is True, then the noncentrality parameter for the joint hypothesis will be returned. If joint is True, then an array of noncentrality parameters will be returned, where elements correspond to rows of the restriction matrix. This correspond to the `t_test` in models and is not a quadratic form. Returns ------- nc : float or ndarray Noncentrality parameter for Wald tests, correspondig to `wald_test` or `t_test` depending on whether `joint` is true or not. It needs to be divided by nobs to obtain effect size. Notes ----- Status : experimental, API will likely change
wald_test_noncent
python
statsmodels/statsmodels
statsmodels/stats/contrast.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contrast.py
BSD-3-Clause
def wald_test_noncent_generic(params, r_matrix, value, cov_params, diff=None, joint=True): """noncentrality parameter for a wald test The null hypothesis is ``diff = r_matrix @ params - value = 0`` Parameters ---------- params : ndarray parameters of the model at which to evaluate noncentrality. This can be estimated parameters or parameters under an alternative. r_matrix : ndarray Restriction matrix or contrasts for the Null hypothesis value : None or ndarray Value of the linear combination of parameters under the null hypothesis. If value is None, then it will be replace by zero. cov_params : ndarray covariance matrix of the parameter estimates diff : None or ndarray If diff is not None, then it will be used instead of ``diff = r_matrix @ params - value`` joint : bool If joint is True, then the noncentrality parameter for the joint hypothesis will be returned. If joint is True, then an array of noncentrality parameters will be returned, where elements correspond to rows of the restriction matrix. This correspond to the `t_test` in models and is not a quadratic form. Returns ------- nc : float or ndarray Noncentrality parameter for Wald tests, correspondig to `wald_test` or `t_test` depending on whether `joint` is true or not. It needs to be divided by nobs to obtain effect size. Notes ----- Status : experimental, API will likely change """ if value is None: value = 0 if diff is None: # at parameter under alternative diff = r_matrix @ params - value c = r_matrix cov_c = c.dot(cov_params).dot(c.T) if joint: nc = diff @ np.linalg.solve(cov_c, diff) else: nc = diff / np.sqrt(np.diag(cov_c)) return nc
noncentrality parameter for a wald test The null hypothesis is ``diff = r_matrix @ params - value = 0`` Parameters ---------- params : ndarray parameters of the model at which to evaluate noncentrality. This can be estimated parameters or parameters under an alternative. r_matrix : ndarray Restriction matrix or contrasts for the Null hypothesis value : None or ndarray Value of the linear combination of parameters under the null hypothesis. If value is None, then it will be replace by zero. cov_params : ndarray covariance matrix of the parameter estimates diff : None or ndarray If diff is not None, then it will be used instead of ``diff = r_matrix @ params - value`` joint : bool If joint is True, then the noncentrality parameter for the joint hypothesis will be returned. If joint is True, then an array of noncentrality parameters will be returned, where elements correspond to rows of the restriction matrix. This correspond to the `t_test` in models and is not a quadratic form. Returns ------- nc : float or ndarray Noncentrality parameter for Wald tests, correspondig to `wald_test` or `t_test` depending on whether `joint` is true or not. It needs to be divided by nobs to obtain effect size. Notes ----- Status : experimental, API will likely change
wald_test_noncent_generic
python
statsmodels/statsmodels
statsmodels/stats/contrast.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contrast.py
BSD-3-Clause
def _HCCM(results, scale): ''' sandwich with pinv(x) * diag(scale) * pinv(x).T where pinv(x) = (X'X)^(-1) X and scale is (nobs,) ''' H = np.dot(results.model.pinv_wexog, scale[:,None]*results.model.pinv_wexog.T) return H
sandwich with pinv(x) * diag(scale) * pinv(x).T where pinv(x) = (X'X)^(-1) X and scale is (nobs,)
_HCCM
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def cov_hc0(results): """ See statsmodels.RegressionResults """ het_scale = results.resid**2 # or whitened residuals? only OLS? cov_hc0 = _HCCM(results, het_scale) return cov_hc0
See statsmodels.RegressionResults
cov_hc0
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def cov_hc1(results): """ See statsmodels.RegressionResults """ het_scale = results.nobs/(results.df_resid)*(results.resid**2) cov_hc1 = _HCCM(results, het_scale) return cov_hc1
See statsmodels.RegressionResults
cov_hc1
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def cov_hc2(results): """ See statsmodels.RegressionResults """ # probably could be optimized h = np.diag(np.dot(results.model.exog, np.dot(results.normalized_cov_params, results.model.exog.T))) het_scale = results.resid**2/(1-h) cov_hc2_ = _HCCM(results, het_scale) return cov_hc2_
See statsmodels.RegressionResults
cov_hc2
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def cov_hc3(results): """ See statsmodels.RegressionResults """ # above probably could be optimized to only calc the diag h = np.diag(np.dot(results.model.exog, np.dot(results.normalized_cov_params, results.model.exog.T))) het_scale=(results.resid/(1-h))**2 cov_hc3_ = _HCCM(results, het_scale) return cov_hc3_
See statsmodels.RegressionResults
cov_hc3
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def _get_sandwich_arrays(results, cov_type=''): """Helper function to get scores from results Parameters """ if isinstance(results, tuple): # assume we have jac and hessian_inv jac, hessian_inv = results xu = jac = np.asarray(jac) hessian_inv = np.asarray(hessian_inv) elif hasattr(results, 'model'): if hasattr(results, '_results'): # remove wrapper results = results._results # assume we have a results instance if hasattr(results.model, 'jac'): xu = results.model.jac(results.params) hessian_inv = np.linalg.inv(results.model.hessian(results.params)) elif hasattr(results.model, 'score_obs'): xu = results.model.score_obs(results.params) hessian_inv = np.linalg.inv(results.model.hessian(results.params)) else: xu = results.model.wexog * results.wresid[:, None] hessian_inv = np.asarray(results.normalized_cov_params) # experimental support for freq_weights if hasattr(results.model, 'freq_weights') and not cov_type == 'clu': # we do not want to square the weights in the covariance calculations # assumes that freq_weights are incorporated in score_obs or equivalent # assumes xu/score_obs is 2D # temporary asarray xu /= np.sqrt(np.asarray(results.model.freq_weights)[:, None]) else: raise ValueError('need either tuple of (jac, hessian_inv) or results' + 'instance') return xu, hessian_inv
Helper function to get scores from results Parameters
_get_sandwich_arrays
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def _HCCM1(results, scale): ''' sandwich with pinv(x) * scale * pinv(x).T where pinv(x) = (X'X)^(-1) X and scale is (nobs, nobs), or (nobs,) with diagonal matrix diag(scale) Parameters ---------- results : result instance need to contain regression results, uses results.model.pinv_wexog scale : ndarray (nobs,) or (nobs, nobs) scale matrix, treated as diagonal matrix if scale is one-dimensional Returns ------- H : ndarray (k_vars, k_vars) robust covariance matrix for the parameter estimates ''' if scale.ndim == 1: H = np.dot(results.model.pinv_wexog, scale[:,None]*results.model.pinv_wexog.T) else: H = np.dot(results.model.pinv_wexog, np.dot(scale, results.model.pinv_wexog.T)) return H
sandwich with pinv(x) * scale * pinv(x).T where pinv(x) = (X'X)^(-1) X and scale is (nobs, nobs), or (nobs,) with diagonal matrix diag(scale) Parameters ---------- results : result instance need to contain regression results, uses results.model.pinv_wexog scale : ndarray (nobs,) or (nobs, nobs) scale matrix, treated as diagonal matrix if scale is one-dimensional Returns ------- H : ndarray (k_vars, k_vars) robust covariance matrix for the parameter estimates
_HCCM1
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def _HCCM2(hessian_inv, scale): ''' sandwich with (X'X)^(-1) * scale * (X'X)^(-1) scale is (kvars, kvars) this uses results.normalized_cov_params for (X'X)^(-1) Parameters ---------- results : result instance need to contain regression results, uses results.normalized_cov_params scale : ndarray (k_vars, k_vars) scale matrix Returns ------- H : ndarray (k_vars, k_vars) robust covariance matrix for the parameter estimates ''' if scale.ndim == 1: scale = scale[:,None] xxi = hessian_inv H = np.dot(np.dot(xxi, scale), xxi.T) return H
sandwich with (X'X)^(-1) * scale * (X'X)^(-1) scale is (kvars, kvars) this uses results.normalized_cov_params for (X'X)^(-1) Parameters ---------- results : result instance need to contain regression results, uses results.normalized_cov_params scale : ndarray (k_vars, k_vars) scale matrix Returns ------- H : ndarray (k_vars, k_vars) robust covariance matrix for the parameter estimates
_HCCM2
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def weights_bartlett(nlags): '''Bartlett weights for HAC this will be moved to another module Parameters ---------- nlags : int highest lag in the kernel window, this does not include the zero lag Returns ------- kernel : ndarray, (nlags+1,) weights for Bartlett kernel ''' #with lag zero return 1 - np.arange(nlags+1)/(nlags+1.)
Bartlett weights for HAC this will be moved to another module Parameters ---------- nlags : int highest lag in the kernel window, this does not include the zero lag Returns ------- kernel : ndarray, (nlags+1,) weights for Bartlett kernel
weights_bartlett
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def weights_uniform(nlags): '''uniform weights for HAC this will be moved to another module Parameters ---------- nlags : int highest lag in the kernel window, this does not include the zero lag Returns ------- kernel : ndarray, (nlags+1,) weights for uniform kernel ''' #with lag zero return np.ones(nlags+1)
uniform weights for HAC this will be moved to another module Parameters ---------- nlags : int highest lag in the kernel window, this does not include the zero lag Returns ------- kernel : ndarray, (nlags+1,) weights for uniform kernel
weights_uniform
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def S_hac_simple(x, nlags=None, weights_func=weights_bartlett): '''inner covariance matrix for HAC (Newey, West) sandwich assumes we have a single time series with zero axis consecutive, equal spaced time periods Parameters ---------- x : ndarray (nobs,) or (nobs, k_var) data, for HAC this is array of x_i * u_i nlags : int or None highest lag to include in kernel window. If None, then nlags = floor(4(T/100)^(2/9)) is used. weights_func : callable weights_func is called with nlags as argument to get the kernel weights. default are Bartlett weights Returns ------- S : ndarray, (k_vars, k_vars) inner covariance matrix for sandwich Notes ----- used by cov_hac_simple options might change when other kernels besides Bartlett are available. ''' if x.ndim == 1: x = x[:,None] n_periods = x.shape[0] if nlags is None: nlags = int(np.floor(4 * (n_periods / 100.)**(2./9.))) weights = weights_func(nlags) S = weights[0] * np.dot(x.T, x) #weights[0] just for completeness, is 1 for lag in range(1, nlags+1): s = np.dot(x[lag:].T, x[:-lag]) S += weights[lag] * (s + s.T) return S
inner covariance matrix for HAC (Newey, West) sandwich assumes we have a single time series with zero axis consecutive, equal spaced time periods Parameters ---------- x : ndarray (nobs,) or (nobs, k_var) data, for HAC this is array of x_i * u_i nlags : int or None highest lag to include in kernel window. If None, then nlags = floor(4(T/100)^(2/9)) is used. weights_func : callable weights_func is called with nlags as argument to get the kernel weights. default are Bartlett weights Returns ------- S : ndarray, (k_vars, k_vars) inner covariance matrix for sandwich Notes ----- used by cov_hac_simple options might change when other kernels besides Bartlett are available.
S_hac_simple
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def S_white_simple(x): '''inner covariance matrix for White heteroscedastistity sandwich Parameters ---------- x : ndarray (nobs,) or (nobs, k_var) data, for HAC this is array of x_i * u_i Returns ------- S : ndarray, (k_vars, k_vars) inner covariance matrix for sandwich Notes ----- this is just dot(X.T, X) ''' if x.ndim == 1: x = x[:,None] return np.dot(x.T, x)
inner covariance matrix for White heteroscedastistity sandwich Parameters ---------- x : ndarray (nobs,) or (nobs, k_var) data, for HAC this is array of x_i * u_i Returns ------- S : ndarray, (k_vars, k_vars) inner covariance matrix for sandwich Notes ----- this is just dot(X.T, X)
S_white_simple
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def S_hac_groupsum(x, time, nlags=None, weights_func=weights_bartlett): '''inner covariance matrix for HAC over group sums sandwich This assumes we have complete equal spaced time periods. The number of time periods per group need not be the same, but we need at least one observation for each time period For a single categorical group only, or a everything else but time dimension. This first aggregates x over groups for each time period, then applies HAC on the sum per period. Parameters ---------- x : ndarray (nobs,) or (nobs, k_var) data, for HAC this is array of x_i * u_i time : ndarray, (nobs,) timeindes, assumed to be integers range(n_periods) nlags : int or None highest lag to include in kernel window. If None, then nlags = floor[4(T/100)^(2/9)] is used. weights_func : callable weights_func is called with nlags as argument to get the kernel weights. default are Bartlett weights Returns ------- S : ndarray, (k_vars, k_vars) inner covariance matrix for sandwich References ---------- Daniel Hoechle, xtscc paper Driscoll and Kraay ''' #needs groupsums x_group_sums = group_sums(x, time).T #TODO: transpose return in grou_sum return S_hac_simple(x_group_sums, nlags=nlags, weights_func=weights_func)
inner covariance matrix for HAC over group sums sandwich This assumes we have complete equal spaced time periods. The number of time periods per group need not be the same, but we need at least one observation for each time period For a single categorical group only, or a everything else but time dimension. This first aggregates x over groups for each time period, then applies HAC on the sum per period. Parameters ---------- x : ndarray (nobs,) or (nobs, k_var) data, for HAC this is array of x_i * u_i time : ndarray, (nobs,) timeindes, assumed to be integers range(n_periods) nlags : int or None highest lag to include in kernel window. If None, then nlags = floor[4(T/100)^(2/9)] is used. weights_func : callable weights_func is called with nlags as argument to get the kernel weights. default are Bartlett weights Returns ------- S : ndarray, (k_vars, k_vars) inner covariance matrix for sandwich References ---------- Daniel Hoechle, xtscc paper Driscoll and Kraay
S_hac_groupsum
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def S_crosssection(x, group): '''inner covariance matrix for White on group sums sandwich I guess for a single categorical group only, categorical group, can also be the product/intersection of groups This is used by cov_cluster and indirectly verified ''' x_group_sums = group_sums(x, group).T #TODO: why transposed return S_white_simple(x_group_sums)
inner covariance matrix for White on group sums sandwich I guess for a single categorical group only, categorical group, can also be the product/intersection of groups This is used by cov_cluster and indirectly verified
S_crosssection
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def cov_crosssection_0(results, group): '''this one is still wrong, use cov_cluster instead''' #TODO: currently used version of groupsums requires 2d resid scale = S_crosssection(results.resid[:,None], group) scale = np.squeeze(scale) cov = _HCCM1(results, scale) return cov
this one is still wrong, use cov_cluster instead
cov_crosssection_0
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def cov_cluster(results, group, use_correction=True): '''cluster robust covariance matrix Calculates sandwich covariance matrix for a single cluster, i.e. grouped variables. Parameters ---------- results : result instance result of a regression, uses results.model.exog and results.resid TODO: this should use wexog instead use_correction : bool If true (default), then the small sample correction factor is used. Returns ------- cov : ndarray, (k_vars, k_vars) cluster robust covariance matrix for parameter estimates Notes ----- same result as Stata in UCLA example and same as Peterson ''' #TODO: currently used version of groupsums requires 2d resid xu, hessian_inv = _get_sandwich_arrays(results, cov_type='clu') if not hasattr(group, 'dtype') or group.dtype != np.dtype('int'): clusters, group = np.unique(group, return_inverse=True) else: clusters = np.unique(group) scale = S_crosssection(xu, group) nobs, k_params = xu.shape n_groups = len(clusters) #replace with stored group attributes if available cov_c = _HCCM2(hessian_inv, scale) if use_correction: cov_c *= (n_groups / (n_groups - 1.) * ((nobs-1.) / float(nobs - k_params))) return cov_c
cluster robust covariance matrix Calculates sandwich covariance matrix for a single cluster, i.e. grouped variables. Parameters ---------- results : result instance result of a regression, uses results.model.exog and results.resid TODO: this should use wexog instead use_correction : bool If true (default), then the small sample correction factor is used. Returns ------- cov : ndarray, (k_vars, k_vars) cluster robust covariance matrix for parameter estimates Notes ----- same result as Stata in UCLA example and same as Peterson
cov_cluster
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def cov_cluster_2groups(results, group, group2=None, use_correction=True): '''cluster robust covariance matrix for two groups/clusters Parameters ---------- results : result instance result of a regression, uses results.model.exog and results.resid TODO: this should use wexog instead use_correction : bool If true (default), then the small sample correction factor is used. Returns ------- cov_both : ndarray, (k_vars, k_vars) cluster robust covariance matrix for parameter estimates, for both clusters cov_0 : ndarray, (k_vars, k_vars) cluster robust covariance matrix for parameter estimates for first cluster cov_1 : ndarray, (k_vars, k_vars) cluster robust covariance matrix for parameter estimates for second cluster Notes ----- verified against Peterson's table, (4 decimal print precision) ''' if group2 is None: if group.ndim !=2 or group.shape[1] != 2: raise ValueError('if group2 is not given, then groups needs to be ' + 'an array with two columns') group0 = group[:, 0] group1 = group[:, 1] else: group0 = group group1 = group2 group = (group0, group1) cov0 = cov_cluster(results, group0, use_correction=use_correction) #[0] because we get still also returns bse cov1 = cov_cluster(results, group1, use_correction=use_correction) # cov of cluster formed by intersection of two groups cov01 = cov_cluster(results, combine_indices(group)[0], use_correction=use_correction) #robust cov matrix for union of groups cov_both = cov0 + cov1 - cov01 #return all three (for now?) return cov_both, cov0, cov1
cluster robust covariance matrix for two groups/clusters Parameters ---------- results : result instance result of a regression, uses results.model.exog and results.resid TODO: this should use wexog instead use_correction : bool If true (default), then the small sample correction factor is used. Returns ------- cov_both : ndarray, (k_vars, k_vars) cluster robust covariance matrix for parameter estimates, for both clusters cov_0 : ndarray, (k_vars, k_vars) cluster robust covariance matrix for parameter estimates for first cluster cov_1 : ndarray, (k_vars, k_vars) cluster robust covariance matrix for parameter estimates for second cluster Notes ----- verified against Peterson's table, (4 decimal print precision)
cov_cluster_2groups
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def cov_white_simple(results, use_correction=True): ''' heteroscedasticity robust covariance matrix (White) Parameters ---------- results : result instance result of a regression, uses results.model.exog and results.resid TODO: this should use wexog instead Returns ------- cov : ndarray, (k_vars, k_vars) heteroscedasticity robust covariance matrix for parameter estimates Notes ----- This produces the same result as cov_hc0, and does not include any small sample correction. verified (against LinearRegressionResults and Peterson) See Also -------- cov_hc1, cov_hc2, cov_hc3 : heteroscedasticity robust covariance matrices with small sample corrections ''' xu, hessian_inv = _get_sandwich_arrays(results) sigma = S_white_simple(xu) cov_w = _HCCM2(hessian_inv, sigma) #add bread to sandwich if use_correction: nobs, k_params = xu.shape cov_w *= nobs / float(nobs - k_params) return cov_w
heteroscedasticity robust covariance matrix (White) Parameters ---------- results : result instance result of a regression, uses results.model.exog and results.resid TODO: this should use wexog instead Returns ------- cov : ndarray, (k_vars, k_vars) heteroscedasticity robust covariance matrix for parameter estimates Notes ----- This produces the same result as cov_hc0, and does not include any small sample correction. verified (against LinearRegressionResults and Peterson) See Also -------- cov_hc1, cov_hc2, cov_hc3 : heteroscedasticity robust covariance matrices with small sample corrections
cov_white_simple
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def cov_hac_simple(results, nlags=None, weights_func=weights_bartlett, use_correction=True): ''' heteroscedasticity and autocorrelation robust covariance matrix (Newey-West) Assumes we have a single time series with zero axis consecutive, equal spaced time periods Parameters ---------- results : result instance result of a regression, uses results.model.exog and results.resid TODO: this should use wexog instead nlags : int or None highest lag to include in kernel window. If None, then nlags = floor[4(T/100)^(2/9)] is used. weights_func : callable weights_func is called with nlags as argument to get the kernel weights. default are Bartlett weights Returns ------- cov : ndarray, (k_vars, k_vars) HAC robust covariance matrix for parameter estimates Notes ----- verified only for nlags=0, which is just White just guessing on correction factor, need reference options might change when other kernels besides Bartlett are available. ''' xu, hessian_inv = _get_sandwich_arrays(results) sigma = S_hac_simple(xu, nlags=nlags, weights_func=weights_func) cov_hac = _HCCM2(hessian_inv, sigma) if use_correction: nobs, k_params = xu.shape cov_hac *= nobs / float(nobs - k_params) return cov_hac
heteroscedasticity and autocorrelation robust covariance matrix (Newey-West) Assumes we have a single time series with zero axis consecutive, equal spaced time periods Parameters ---------- results : result instance result of a regression, uses results.model.exog and results.resid TODO: this should use wexog instead nlags : int or None highest lag to include in kernel window. If None, then nlags = floor[4(T/100)^(2/9)] is used. weights_func : callable weights_func is called with nlags as argument to get the kernel weights. default are Bartlett weights Returns ------- cov : ndarray, (k_vars, k_vars) HAC robust covariance matrix for parameter estimates Notes ----- verified only for nlags=0, which is just White just guessing on correction factor, need reference options might change when other kernels besides Bartlett are available.
cov_hac_simple
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def lagged_groups(x, lag, groupidx): ''' assumes sorted by time, groupidx is tuple of start and end values not optimized, just to get a working version, loop over groups ''' out0 = [] out_lagged = [] for lo, up in groupidx: if lo+lag < up: #group is longer than lag out0.append(x[lo+lag:up]) out_lagged.append(x[lo:up-lag]) if out0 == []: raise ValueError('all groups are empty taking lags') return np.vstack(out0), np.vstack(out_lagged)
assumes sorted by time, groupidx is tuple of start and end values not optimized, just to get a working version, loop over groups
lagged_groups
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def S_nw_panel(xw, weights, groupidx): '''inner covariance matrix for HAC for panel data no denominator nobs used no reference for this, just accounting for time indices ''' nlags = len(weights)-1 S = weights[0] * np.dot(xw.T, xw) #weights just for completeness for lag in range(1, nlags+1): xw0, xwlag = lagged_groups(xw, lag, groupidx) s = np.dot(xw0.T, xwlag) S += weights[lag] * (s + s.T) return S
inner covariance matrix for HAC for panel data no denominator nobs used no reference for this, just accounting for time indices
S_nw_panel
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def cov_nw_panel(results, nlags, groupidx, weights_func=weights_bartlett, use_correction='hac'): '''Panel HAC robust covariance matrix Assumes we have a panel of time series with consecutive, equal spaced time periods. Data is assumed to be in long format with time series of each individual stacked into one array. Panel can be unbalanced. Parameters ---------- results : result instance result of a regression, uses results.model.exog and results.resid TODO: this should use wexog instead nlags : int or None Highest lag to include in kernel window. Currently, no default because the optimal length will depend on the number of observations per cross-sectional unit. groupidx : list of tuple each tuple should contain the start and end index for an individual. (groupidx might change in future). weights_func : callable weights_func is called with nlags as argument to get the kernel weights. default are Bartlett weights use_correction : 'cluster' or 'hac' or False If False, then no small sample correction is used. If 'cluster' (default), then the same correction as in cov_cluster is used. If 'hac', then the same correction as in single time series, cov_hac is used. Returns ------- cov : ndarray, (k_vars, k_vars) HAC robust covariance matrix for parameter estimates Notes ----- For nlags=0, this is just White covariance, cov_white. If kernel is uniform, `weights_uniform`, with nlags equal to the number of observations per unit in a balance panel, then cov_cluster and cov_hac_panel are identical. Tested against STATA `newey` command with same defaults. Options might change when other kernels besides Bartlett and uniform are available. ''' if nlags == 0: #so we can reproduce HC0 White weights = [1, 0] #to avoid the scalar check in hac_nw else: weights = weights_func(nlags) xu, hessian_inv = _get_sandwich_arrays(results) S_hac = S_nw_panel(xu, weights, groupidx) cov_hac = _HCCM2(hessian_inv, S_hac) if use_correction: nobs, k_params = xu.shape if use_correction == 'hac': cov_hac *= nobs / float(nobs - k_params) elif use_correction in ['c', 'clu', 'cluster']: n_groups = len(groupidx) cov_hac *= n_groups / (n_groups - 1.) cov_hac *= ((nobs-1.) / float(nobs - k_params)) return cov_hac
Panel HAC robust covariance matrix Assumes we have a panel of time series with consecutive, equal spaced time periods. Data is assumed to be in long format with time series of each individual stacked into one array. Panel can be unbalanced. Parameters ---------- results : result instance result of a regression, uses results.model.exog and results.resid TODO: this should use wexog instead nlags : int or None Highest lag to include in kernel window. Currently, no default because the optimal length will depend on the number of observations per cross-sectional unit. groupidx : list of tuple each tuple should contain the start and end index for an individual. (groupidx might change in future). weights_func : callable weights_func is called with nlags as argument to get the kernel weights. default are Bartlett weights use_correction : 'cluster' or 'hac' or False If False, then no small sample correction is used. If 'cluster' (default), then the same correction as in cov_cluster is used. If 'hac', then the same correction as in single time series, cov_hac is used. Returns ------- cov : ndarray, (k_vars, k_vars) HAC robust covariance matrix for parameter estimates Notes ----- For nlags=0, this is just White covariance, cov_white. If kernel is uniform, `weights_uniform`, with nlags equal to the number of observations per unit in a balance panel, then cov_cluster and cov_hac_panel are identical. Tested against STATA `newey` command with same defaults. Options might change when other kernels besides Bartlett and uniform are available.
cov_nw_panel
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def cov_nw_groupsum(results, nlags, time, weights_func=weights_bartlett, use_correction=0): '''Driscoll and Kraay Panel robust covariance matrix Robust covariance matrix for panel data of Driscoll and Kraay. Assumes we have a panel of time series where the time index is available. The time index is assumed to represent equal spaced periods. At least one observation per period is required. Parameters ---------- results : result instance result of a regression, uses results.model.exog and results.resid TODO: this should use wexog instead nlags : int or None Highest lag to include in kernel window. Currently, no default because the optimal length will depend on the number of observations per cross-sectional unit. time : ndarray of int this should contain the coding for the time period of each observation. time periods should be integers in range(maxT) where maxT is obs of i weights_func : callable weights_func is called with nlags as argument to get the kernel weights. default are Bartlett weights use_correction : 'cluster' or 'hac' or False If False, then no small sample correction is used. If 'hac' (default), then the same correction as in single time series, cov_hac is used. If 'cluster', then the same correction as in cov_cluster is used. Returns ------- cov : ndarray, (k_vars, k_vars) HAC robust covariance matrix for parameter estimates Notes ----- Tested against STATA xtscc package, which uses no small sample correction This first averages relevant variables for each time period over all individuals/groups, and then applies the same kernel weighted averaging over time as in HAC. Warning: In the example with a short panel (few time periods and many individuals) with mainly across individual variation this estimator did not produce reasonable results. Options might change when other kernels besides Bartlett and uniform are available. References ---------- Daniel Hoechle, xtscc paper Driscoll and Kraay ''' xu, hessian_inv = _get_sandwich_arrays(results) #S_hac = S_nw_panel(xw, weights, groupidx) S_hac = S_hac_groupsum(xu, time, nlags=nlags, weights_func=weights_func) cov_hac = _HCCM2(hessian_inv, S_hac) if use_correction: nobs, k_params = xu.shape if use_correction == 'hac': cov_hac *= nobs / float(nobs - k_params) elif use_correction in ['c', 'cluster']: n_groups = len(np.unique(time)) cov_hac *= n_groups / (n_groups - 1.) cov_hac *= ((nobs-1.) / float(nobs - k_params)) return cov_hac
Driscoll and Kraay Panel robust covariance matrix Robust covariance matrix for panel data of Driscoll and Kraay. Assumes we have a panel of time series where the time index is available. The time index is assumed to represent equal spaced periods. At least one observation per period is required. Parameters ---------- results : result instance result of a regression, uses results.model.exog and results.resid TODO: this should use wexog instead nlags : int or None Highest lag to include in kernel window. Currently, no default because the optimal length will depend on the number of observations per cross-sectional unit. time : ndarray of int this should contain the coding for the time period of each observation. time periods should be integers in range(maxT) where maxT is obs of i weights_func : callable weights_func is called with nlags as argument to get the kernel weights. default are Bartlett weights use_correction : 'cluster' or 'hac' or False If False, then no small sample correction is used. If 'hac' (default), then the same correction as in single time series, cov_hac is used. If 'cluster', then the same correction as in cov_cluster is used. Returns ------- cov : ndarray, (k_vars, k_vars) HAC robust covariance matrix for parameter estimates Notes ----- Tested against STATA xtscc package, which uses no small sample correction This first averages relevant variables for each time period over all individuals/groups, and then applies the same kernel weighted averaging over time as in HAC. Warning: In the example with a short panel (few time periods and many individuals) with mainly across individual variation this estimator did not produce reasonable results. Options might change when other kernels besides Bartlett and uniform are available. References ---------- Daniel Hoechle, xtscc paper Driscoll and Kraay
cov_nw_groupsum
python
statsmodels/statsmodels
statsmodels/stats/sandwich_covariance.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/sandwich_covariance.py
BSD-3-Clause
def effectsize_oneway(means, vars_, nobs, use_var="unequal", ddof_between=0): """ Effect size corresponding to Cohen's f = nc / nobs for oneway anova This contains adjustment for Welch and Brown-Forsythe Anova so that effect size can be used with FTestAnovaPower. Parameters ---------- means : array_like Mean of samples to be compared vars_ : float or array_like Residual (within) variance of each sample or pooled If ``vars_`` is scalar, then it is interpreted as pooled variance that is the same for all samples, ``use_var`` will be ignored. Otherwise, the variances are used depending on the ``use_var`` keyword. nobs : int or array_like Number of observations for the samples. If nobs is scalar, then it is assumed that all samples have the same number ``nobs`` of observation, i.e. a balanced sample case. Otherwise, statistics will be weighted corresponding to nobs. Only relative sizes are relevant, any proportional change to nobs does not change the effect size. use_var : {"unequal", "equal", "bf"} If ``use_var`` is "unequal", then the variances can differ across samples and the effect size for Welch anova will be computed. ddof_between : int Degrees of freedom correction for the weighted between sum of squares. The denominator is ``nobs_total - ddof_between`` This can be used to match differences across reference literature. Returns ------- f2 : float Effect size corresponding to squared Cohen's f, which is also equal to the noncentrality divided by total number of observations. Notes ----- This currently handles the following cases for oneway anova - balanced sample with homoscedastic variances - samples with different number of observations and with homoscedastic variances - samples with different number of observations and with heteroskedastic variances. This corresponds to Welch anova In the case of "unequal" and "bf" methods for unequal variances, the effect sizes do not directly correspond to the test statistic in Anova. Both have correction terms dropped or added, so the effect sizes match up with using FTestAnovaPower. If all variances are equal, then all three methods result in the same effect size. If variances are unequal, then the three methods produce small differences in effect size. Note, the effect size and power computation for BF Anova was not found in the literature. The correction terms were added so that FTestAnovaPower provides a good approximation to the power. Status: experimental We might add additional returns, if those are needed to support power and sample size applications. Examples -------- The following shows how to compute effect size and power for each of the three anova methods. The null hypothesis is that the means are equal which corresponds to a zero effect size. Under the alternative, means differ with two sample means at a distance delta from the mean. We assume the variance is the same under the null and alternative hypothesis. ``nobs`` for the samples defines the fraction of observations in the samples. ``nobs`` in the power method defines the total sample size. In simulations, the computed power for standard anova, i.e.``use_var="equal"`` overestimates the simulated power by a few percent. The equal variance assumption does not hold in this example. >>> from statsmodels.stats.oneway import effectsize_oneway >>> from statsmodels.stats.power import FTestAnovaPower >>> >>> nobs = np.array([10, 12, 13, 15]) >>> delta = 0.5 >>> means_alt = np.array([-1, 0, 0, 1]) * delta >>> vars_ = np.arange(1, len(means_alt) + 1) >>> >>> f2_alt = effectsize_oneway(means_alt, vars_, nobs, use_var="equal") >>> f2_alt 0.04581300813008131 >>> >>> kwds = {'effect_size': np.sqrt(f2_alt), 'nobs': 100, 'alpha': 0.05, ... 'k_groups': 4} >>> power = FTestAnovaPower().power(**kwds) >>> power 0.39165892158983273 >>> >>> f2_alt = effectsize_oneway(means_alt, vars_, nobs, use_var="unequal") >>> f2_alt 0.060640138408304504 >>> >>> kwds['effect_size'] = np.sqrt(f2_alt) >>> power = FTestAnovaPower().power(**kwds) >>> power 0.5047366512800622 >>> >>> f2_alt = effectsize_oneway(means_alt, vars_, nobs, use_var="bf") >>> f2_alt 0.04391324307956788 >>> >>> kwds['effect_size'] = np.sqrt(f2_alt) >>> power = FTestAnovaPower().power(**kwds) >>> power 0.3765792117047725 """ # the code here is largely a copy of onway_generic with adjustments means = np.asarray(means) n_groups = means.shape[0] if np.size(nobs) == 1: nobs = np.ones(n_groups) * nobs nobs_t = nobs.sum() if use_var == "equal": if np.size(vars_) == 1: var_resid = vars_ else: vars_ = np.asarray(vars_) var_resid = ((nobs - 1) * vars_).sum() / (nobs_t - n_groups) vars_ = var_resid # scalar, if broadcasting works weights = nobs / vars_ w_total = weights.sum() w_rel = weights / w_total # meanw_t = (weights * means).sum() / w_total meanw_t = w_rel @ means f2 = np.dot(weights, (means - meanw_t)**2) / (nobs_t - ddof_between) if use_var.lower() == "bf": weights = nobs w_total = weights.sum() w_rel = weights / w_total meanw_t = w_rel @ means # TODO: reuse general case with weights tmp = ((1. - nobs / nobs_t) * vars_).sum() statistic = 1. * (nobs * (means - meanw_t)**2).sum() statistic /= tmp f2 = statistic * (1. - nobs / nobs_t).sum() / nobs_t # correction factor for df_num in BFM df_num2 = n_groups - 1 df_num = tmp**2 / ((vars_**2).sum() + (nobs / nobs_t * vars_).sum()**2 - 2 * (nobs / nobs_t * vars_**2).sum()) f2 *= df_num / df_num2 return f2
Effect size corresponding to Cohen's f = nc / nobs for oneway anova This contains adjustment for Welch and Brown-Forsythe Anova so that effect size can be used with FTestAnovaPower. Parameters ---------- means : array_like Mean of samples to be compared vars_ : float or array_like Residual (within) variance of each sample or pooled If ``vars_`` is scalar, then it is interpreted as pooled variance that is the same for all samples, ``use_var`` will be ignored. Otherwise, the variances are used depending on the ``use_var`` keyword. nobs : int or array_like Number of observations for the samples. If nobs is scalar, then it is assumed that all samples have the same number ``nobs`` of observation, i.e. a balanced sample case. Otherwise, statistics will be weighted corresponding to nobs. Only relative sizes are relevant, any proportional change to nobs does not change the effect size. use_var : {"unequal", "equal", "bf"} If ``use_var`` is "unequal", then the variances can differ across samples and the effect size for Welch anova will be computed. ddof_between : int Degrees of freedom correction for the weighted between sum of squares. The denominator is ``nobs_total - ddof_between`` This can be used to match differences across reference literature. Returns ------- f2 : float Effect size corresponding to squared Cohen's f, which is also equal to the noncentrality divided by total number of observations. Notes ----- This currently handles the following cases for oneway anova - balanced sample with homoscedastic variances - samples with different number of observations and with homoscedastic variances - samples with different number of observations and with heteroskedastic variances. This corresponds to Welch anova In the case of "unequal" and "bf" methods for unequal variances, the effect sizes do not directly correspond to the test statistic in Anova. Both have correction terms dropped or added, so the effect sizes match up with using FTestAnovaPower. If all variances are equal, then all three methods result in the same effect size. If variances are unequal, then the three methods produce small differences in effect size. Note, the effect size and power computation for BF Anova was not found in the literature. The correction terms were added so that FTestAnovaPower provides a good approximation to the power. Status: experimental We might add additional returns, if those are needed to support power and sample size applications. Examples -------- The following shows how to compute effect size and power for each of the three anova methods. The null hypothesis is that the means are equal which corresponds to a zero effect size. Under the alternative, means differ with two sample means at a distance delta from the mean. We assume the variance is the same under the null and alternative hypothesis. ``nobs`` for the samples defines the fraction of observations in the samples. ``nobs`` in the power method defines the total sample size. In simulations, the computed power for standard anova, i.e.``use_var="equal"`` overestimates the simulated power by a few percent. The equal variance assumption does not hold in this example. >>> from statsmodels.stats.oneway import effectsize_oneway >>> from statsmodels.stats.power import FTestAnovaPower >>> >>> nobs = np.array([10, 12, 13, 15]) >>> delta = 0.5 >>> means_alt = np.array([-1, 0, 0, 1]) * delta >>> vars_ = np.arange(1, len(means_alt) + 1) >>> >>> f2_alt = effectsize_oneway(means_alt, vars_, nobs, use_var="equal") >>> f2_alt 0.04581300813008131 >>> >>> kwds = {'effect_size': np.sqrt(f2_alt), 'nobs': 100, 'alpha': 0.05, ... 'k_groups': 4} >>> power = FTestAnovaPower().power(**kwds) >>> power 0.39165892158983273 >>> >>> f2_alt = effectsize_oneway(means_alt, vars_, nobs, use_var="unequal") >>> f2_alt 0.060640138408304504 >>> >>> kwds['effect_size'] = np.sqrt(f2_alt) >>> power = FTestAnovaPower().power(**kwds) >>> power 0.5047366512800622 >>> >>> f2_alt = effectsize_oneway(means_alt, vars_, nobs, use_var="bf") >>> f2_alt 0.04391324307956788 >>> >>> kwds['effect_size'] = np.sqrt(f2_alt) >>> power = FTestAnovaPower().power(**kwds) >>> power 0.3765792117047725
effectsize_oneway
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def convert_effectsize_fsqu(f2=None, eta2=None): """Convert squared effect sizes in f family f2 is signal to noise ratio, var_explained / var_residual eta2 is proportion of explained variance, var_explained / var_total uses the relationship: f2 = eta2 / (1 - eta2) Parameters ---------- f2 : None or float Squared Cohen's F effect size. If f2 is not None, then eta2 will be computed. eta2 : None or float Squared eta effect size. If f2 is None and eta2 is not None, then f2 is computed. Returns ------- res : Holder instance An instance of the Holder class with f2 and eta2 as attributes. """ if f2 is not None: eta2 = 1 / (1 + 1 / f2) elif eta2 is not None: f2 = eta2 / (1 - eta2) res = Holder(f2=f2, eta2=eta2) return res
Convert squared effect sizes in f family f2 is signal to noise ratio, var_explained / var_residual eta2 is proportion of explained variance, var_explained / var_total uses the relationship: f2 = eta2 / (1 - eta2) Parameters ---------- f2 : None or float Squared Cohen's F effect size. If f2 is not None, then eta2 will be computed. eta2 : None or float Squared eta effect size. If f2 is None and eta2 is not None, then f2 is computed. Returns ------- res : Holder instance An instance of the Holder class with f2 and eta2 as attributes.
convert_effectsize_fsqu
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def _fstat2effectsize(f_stat, df): """Compute anova effect size from F-statistic This might be combined with convert_effectsize_fsqu Parameters ---------- f_stat : array_like Test statistic of an F-test df : tuple degrees of freedom ``df = (df1, df2)`` where - df1 : numerator degrees of freedom, number of constraints - df2 : denominator degrees of freedom, df_resid Returns ------- res : Holder instance This instance contains effect size measures f2, eta2, omega2 and eps2 as attributes. Notes ----- This uses the following definitions: - f2 = f_stat * df1 / df2 - eta2 = f2 / (f2 + 1) - omega2 = (f2 - df1 / df2) / (f2 + 2) - eps2 = (f2 - df1 / df2) / (f2 + 1) This differs from effect size measures in other function which define ``f2 = f_stat * df1 / nobs`` or an equivalent expression for power computation. The noncentrality index for the hypothesis test is in those cases given by ``nc = f_stat * df1``. Currently omega2 and eps2 are computed in two different ways. Those values agree for regular cases but can show different behavior in corner cases (e.g. zero division). """ df1, df2 = df f2 = f_stat * df1 / df2 eta2 = f2 / (f2 + 1) omega2_ = (f_stat - 1) / (f_stat + (df2 + 1) / df1) omega2 = (f2 - df1 / df2) / (f2 + 1 + 1 / df2) # rewrite eps2_ = (f_stat - 1) / (f_stat + df2 / df1) eps2 = (f2 - df1 / df2) / (f2 + 1) # rewrite return Holder(f2=f2, eta2=eta2, omega2=omega2, eps2=eps2, eps2_=eps2_, omega2_=omega2_)
Compute anova effect size from F-statistic This might be combined with convert_effectsize_fsqu Parameters ---------- f_stat : array_like Test statistic of an F-test df : tuple degrees of freedom ``df = (df1, df2)`` where - df1 : numerator degrees of freedom, number of constraints - df2 : denominator degrees of freedom, df_resid Returns ------- res : Holder instance This instance contains effect size measures f2, eta2, omega2 and eps2 as attributes. Notes ----- This uses the following definitions: - f2 = f_stat * df1 / df2 - eta2 = f2 / (f2 + 1) - omega2 = (f2 - df1 / df2) / (f2 + 2) - eps2 = (f2 - df1 / df2) / (f2 + 1) This differs from effect size measures in other function which define ``f2 = f_stat * df1 / nobs`` or an equivalent expression for power computation. The noncentrality index for the hypothesis test is in those cases given by ``nc = f_stat * df1``. Currently omega2 and eps2 are computed in two different ways. Those values agree for regular cases but can show different behavior in corner cases (e.g. zero division).
_fstat2effectsize
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def wellek_to_f2(eps, n_groups): """Convert Wellek's effect size (sqrt) to Cohen's f-squared This computes the following effect size : f2 = 1 / n_groups * eps**2 Parameters ---------- eps : float or ndarray Wellek's effect size used in anova equivalence test n_groups : int Number of groups in oneway comparison Returns ------- f2 : effect size Cohen's f-squared """ f2 = 1 / n_groups * eps**2 return f2
Convert Wellek's effect size (sqrt) to Cohen's f-squared This computes the following effect size : f2 = 1 / n_groups * eps**2 Parameters ---------- eps : float or ndarray Wellek's effect size used in anova equivalence test n_groups : int Number of groups in oneway comparison Returns ------- f2 : effect size Cohen's f-squared
wellek_to_f2
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def f2_to_wellek(f2, n_groups): """Convert Cohen's f-squared to Wellek's effect size (sqrt) This computes the following effect size : eps = sqrt(n_groups * f2) Parameters ---------- f2 : float or ndarray Effect size Cohen's f-squared n_groups : int Number of groups in oneway comparison Returns ------- eps : float or ndarray Wellek's effect size used in anova equivalence test """ eps = np.sqrt(n_groups * f2) return eps
Convert Cohen's f-squared to Wellek's effect size (sqrt) This computes the following effect size : eps = sqrt(n_groups * f2) Parameters ---------- f2 : float or ndarray Effect size Cohen's f-squared n_groups : int Number of groups in oneway comparison Returns ------- eps : float or ndarray Wellek's effect size used in anova equivalence test
f2_to_wellek
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def fstat_to_wellek(f_stat, n_groups, nobs_mean): """Convert F statistic to wellek's effect size eps squared This computes the following effect size : es = f_stat * (n_groups - 1) / nobs_mean Parameters ---------- f_stat : float or ndarray Test statistic of an F-test. n_groups : int Number of groups in oneway comparison nobs_mean : float or ndarray Average number of observations across groups. Returns ------- eps : float or ndarray Wellek's effect size used in anova equivalence test """ es = f_stat * (n_groups - 1) / nobs_mean return es
Convert F statistic to wellek's effect size eps squared This computes the following effect size : es = f_stat * (n_groups - 1) / nobs_mean Parameters ---------- f_stat : float or ndarray Test statistic of an F-test. n_groups : int Number of groups in oneway comparison nobs_mean : float or ndarray Average number of observations across groups. Returns ------- eps : float or ndarray Wellek's effect size used in anova equivalence test
fstat_to_wellek
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def confint_noncentrality(f_stat, df, alpha=0.05, alternative="two-sided"): """ Confidence interval for noncentrality parameter in F-test This does not yet handle non-negativity constraint on nc. Currently only two-sided alternative is supported. Parameters ---------- f_stat : float df : tuple degrees of freedom ``df = (df1, df2)`` where - df1 : numerator degrees of freedom, number of constraints - df2 : denominator degrees of freedom, df_resid alpha : float, default 0.05 alternative : {"two-sided"} Other alternatives have not been implements. Returns ------- float The end point of the confidence interval. Notes ----- The algorithm inverts the cdf of the noncentral F distribution with respect to the noncentrality parameters. See Steiger 2004 and references cited in it. References ---------- .. [1] Steiger, James H. 2004. “Beyond the F Test: Effect Size Confidence Intervals and Tests of Close Fit in the Analysis of Variance and Contrast Analysis.” Psychological Methods 9 (2): 164–82. https://doi.org/10.1037/1082-989X.9.2.164. See Also -------- confint_effectsize_oneway """ df1, df2 = df if alternative in ["two-sided", "2s", "ts"]: alpha1s = alpha / 2 ci = ncfdtrinc(df1, df2, [1 - alpha1s, alpha1s], f_stat) else: raise NotImplementedError return ci
Confidence interval for noncentrality parameter in F-test This does not yet handle non-negativity constraint on nc. Currently only two-sided alternative is supported. Parameters ---------- f_stat : float df : tuple degrees of freedom ``df = (df1, df2)`` where - df1 : numerator degrees of freedom, number of constraints - df2 : denominator degrees of freedom, df_resid alpha : float, default 0.05 alternative : {"two-sided"} Other alternatives have not been implements. Returns ------- float The end point of the confidence interval. Notes ----- The algorithm inverts the cdf of the noncentral F distribution with respect to the noncentrality parameters. See Steiger 2004 and references cited in it. References ---------- .. [1] Steiger, James H. 2004. “Beyond the F Test: Effect Size Confidence Intervals and Tests of Close Fit in the Analysis of Variance and Contrast Analysis.” Psychological Methods 9 (2): 164–82. https://doi.org/10.1037/1082-989X.9.2.164. See Also -------- confint_effectsize_oneway
confint_noncentrality
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def confint_effectsize_oneway(f_stat, df, alpha=0.05, nobs=None): """ Confidence interval for effect size in oneway anova for F distribution This does not yet handle non-negativity constraint on nc. Currently only two-sided alternative is supported. Parameters ---------- f_stat : float df : tuple degrees of freedom ``df = (df1, df2)`` where - df1 : numerator degrees of freedom, number of constraints - df2 : denominator degrees of freedom, df_resid alpha : float, default 0.05 nobs : int, default None Returns ------- Holder Class with effect size and confidence attributes Notes ----- The confidence interval for the noncentrality parameter is obtained by inverting the cdf of the noncentral F distribution. Confidence intervals for other effect sizes are computed by endpoint transformation. R package ``effectsize`` does not compute the confidence intervals in the same way. Their confidence intervals can be replicated with >>> ci_nc = confint_noncentrality(f_stat, df1, df2, alpha=0.1) >>> ci_es = smo._fstat2effectsize(ci_nc / df1, df1, df2) See Also -------- confint_noncentrality """ df1, df2 = df if nobs is None: nobs = df1 + df2 + 1 ci_nc = confint_noncentrality(f_stat, df, alpha=alpha) ci_f2 = ci_nc / nobs ci_res = convert_effectsize_fsqu(f2=ci_f2) ci_res.ci_omega2 = (ci_f2 - df1 / df2) / (ci_f2 + 1 + 1 / df2) ci_res.ci_nc = ci_nc ci_res.ci_f = np.sqrt(ci_res.f2) ci_res.ci_eta = np.sqrt(ci_res.eta2) ci_res.ci_f_corrected = np.sqrt(ci_res.f2 * (df1 + 1) / df1) return ci_res
Confidence interval for effect size in oneway anova for F distribution This does not yet handle non-negativity constraint on nc. Currently only two-sided alternative is supported. Parameters ---------- f_stat : float df : tuple degrees of freedom ``df = (df1, df2)`` where - df1 : numerator degrees of freedom, number of constraints - df2 : denominator degrees of freedom, df_resid alpha : float, default 0.05 nobs : int, default None Returns ------- Holder Class with effect size and confidence attributes Notes ----- The confidence interval for the noncentrality parameter is obtained by inverting the cdf of the noncentral F distribution. Confidence intervals for other effect sizes are computed by endpoint transformation. R package ``effectsize`` does not compute the confidence intervals in the same way. Their confidence intervals can be replicated with >>> ci_nc = confint_noncentrality(f_stat, df1, df2, alpha=0.1) >>> ci_es = smo._fstat2effectsize(ci_nc / df1, df1, df2) See Also -------- confint_noncentrality
confint_effectsize_oneway
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def anova_generic(means, variances, nobs, use_var="unequal", welch_correction=True, info=None): """ Oneway Anova based on summary statistics Parameters ---------- means : array_like Mean of samples to be compared variances : float or array_like Residual (within) variance of each sample or pooled. If ``variances`` is scalar, then it is interpreted as pooled variance that is the same for all samples, ``use_var`` will be ignored. Otherwise, the variances are used depending on the ``use_var`` keyword. nobs : int or array_like Number of observations for the samples. If nobs is scalar, then it is assumed that all samples have the same number ``nobs`` of observation, i.e. a balanced sample case. Otherwise, statistics will be weighted corresponding to nobs. Only relative sizes are relevant, any proportional change to nobs does not change the effect size. use_var : {"unequal", "equal", "bf"} If ``use_var`` is "unequal", then the variances can differ across samples and the effect size for Welch anova will be computed. welch_correction : bool If this is false, then the Welch correction to the test statistic is not included. This allows the computation of an effect size measure that corresponds more closely to Cohen's f. info : not used yet Returns ------- res : results instance This includes `statistic` and `pvalue`. """ options = {"use_var": use_var, "welch_correction": welch_correction } if means.ndim != 1: raise ValueError('data (means, ...) has to be one-dimensional') nobs_t = nobs.sum() n_groups = len(means) # mean_t = (nobs * means).sum() / nobs_t if use_var == "unequal": weights = nobs / variances else: weights = nobs w_total = weights.sum() w_rel = weights / w_total # meanw_t = (weights * means).sum() / w_total meanw_t = w_rel @ means statistic = np.dot(weights, (means - meanw_t)**2) / (n_groups - 1.) df_num = n_groups - 1. if use_var == "unequal": tmp = ((1 - w_rel)**2 / (nobs - 1)).sum() / (n_groups**2 - 1) if welch_correction: statistic /= 1 + 2 * (n_groups - 2) * tmp df_denom = 1. / (3. * tmp) elif use_var == "equal": # variance of group demeaned total sample, pooled var_resid tmp = ((nobs - 1) * variances).sum() / (nobs_t - n_groups) statistic /= tmp df_denom = nobs_t - n_groups elif use_var == "bf": tmp = ((1. - nobs / nobs_t) * variances).sum() statistic = 1. * (nobs * (means - meanw_t)**2).sum() statistic /= tmp df_num2 = n_groups - 1 df_denom = tmp**2 / ((1. - nobs / nobs_t) ** 2 * variances ** 2 / (nobs - 1)).sum() df_num = tmp**2 / ((variances ** 2).sum() + (nobs / nobs_t * variances).sum() ** 2 - 2 * (nobs / nobs_t * variances ** 2).sum()) pval2 = stats.f.sf(statistic, df_num2, df_denom) options["df2"] = (df_num2, df_denom) options["df_num2"] = df_num2 options["pvalue2"] = pval2 else: raise ValueError('use_var is to be one of "unequal", "equal" or "bf"') pval = stats.f.sf(statistic, df_num, df_denom) res = HolderTuple(statistic=statistic, pvalue=pval, df=(df_num, df_denom), df_num=df_num, df_denom=df_denom, nobs_t=nobs_t, n_groups=n_groups, means=means, nobs=nobs, vars_=variances, **options ) return res
Oneway Anova based on summary statistics Parameters ---------- means : array_like Mean of samples to be compared variances : float or array_like Residual (within) variance of each sample or pooled. If ``variances`` is scalar, then it is interpreted as pooled variance that is the same for all samples, ``use_var`` will be ignored. Otherwise, the variances are used depending on the ``use_var`` keyword. nobs : int or array_like Number of observations for the samples. If nobs is scalar, then it is assumed that all samples have the same number ``nobs`` of observation, i.e. a balanced sample case. Otherwise, statistics will be weighted corresponding to nobs. Only relative sizes are relevant, any proportional change to nobs does not change the effect size. use_var : {"unequal", "equal", "bf"} If ``use_var`` is "unequal", then the variances can differ across samples and the effect size for Welch anova will be computed. welch_correction : bool If this is false, then the Welch correction to the test statistic is not included. This allows the computation of an effect size measure that corresponds more closely to Cohen's f. info : not used yet Returns ------- res : results instance This includes `statistic` and `pvalue`.
anova_generic
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def anova_oneway(data, groups=None, use_var="unequal", welch_correction=True, trim_frac=0): """Oneway Anova This implements standard anova, Welch and Brown-Forsythe, and trimmed (Yuen) variants of those. Parameters ---------- data : tuple of array_like or DataFrame or Series Data for k independent samples, with k >= 2. The data can be provided as a tuple or list of arrays or in long format with outcome observations in ``data`` and group membership in ``groups``. groups : ndarray or Series If data is in long format, then groups is needed as indicator to which group or sample and observations belongs. use_var : {"unequal", "equal" or "bf"} `use_var` specified how to treat heteroscedasticity, unequal variance, across samples. Three approaches are available "unequal" : Variances are not assumed to be equal across samples. Heteroscedasticity is taken into account with Welch Anova and Satterthwaite-Welch degrees of freedom. This is the default. "equal" : Variances are assumed to be equal across samples. This is the standard Anova. "bf" : Variances are not assumed to be equal across samples. The method is Browne-Forsythe (1971) for testing equality of means with the corrected degrees of freedom by Merothra. The original BF degrees of freedom are available as additional attributes in the results instance, ``df_denom2`` and ``p_value2``. welch_correction : bool If this is false, then the Welch correction to the test statistic is not included. This allows the computation of an effect size measure that corresponds more closely to Cohen's f. trim_frac : float in [0, 0.5) Optional trimming for Anova with trimmed mean and winsorized variances. With the default trim_frac equal to zero, the oneway Anova statistics are computed without trimming. If `trim_frac` is larger than zero, then the largest and smallest observations in each sample are trimmed. The number of trimmed observations is the fraction of number of observations in the sample truncated to the next lower integer. `trim_frac` has to be smaller than 0.5, however, if the fraction is so large that there are not enough observations left over, then `nan` will be returned. Returns ------- res : results instance The returned HolderTuple instance has the following main attributes and some additional information in other attributes. statistic : float Test statistic for k-sample mean comparison which is approximately F-distributed. pvalue : float If ``use_var="bf"``, then the p-value is based on corrected degrees of freedom following Mehrotra 1997. pvalue2 : float This is the p-value based on degrees of freedom as in Brown-Forsythe 1974 and is only available if ``use_var="bf"``. df = (df_denom, df_num) : tuple of floats Degreeds of freedom for the F-distribution depend on ``use_var``. If ``use_var="bf"``, then `df_denom` is for Mehrotra p-values `df_denom2` is available for Brown-Forsythe 1974 p-values. `df_num` is the same numerator degrees of freedom for both p-values. Notes ----- Welch's anova is correctly sized (not liberal or conservative) in smaller samples if the distribution of the samples is not very far away from the normal distribution. The test can become liberal if the data is strongly skewed. Welch's Anova can also be correctly sized for discrete distributions with finite support, like Lickert scale data. The trimmed version is robust to many non-normal distributions, it stays correctly sized in many cases, and is more powerful in some cases with skewness or heavy tails. Trimming is currently based on the integer part of ``nobs * trim_frac``. The default might change to including fractional observations as in the original articles by Yuen. See Also -------- anova_generic References ---------- Brown, Morton B., and Alan B. Forsythe. 1974. “The Small Sample Behavior of Some Statistics Which Test the Equality of Several Means.” Technometrics 16 (1) (February 1): 129–132. doi:10.2307/1267501. Mehrotra, Devan V. 1997. “Improving the Brown-Forsythe Solution to the Generalized Behrens-Fisher Problem.” Communications in Statistics - Simulation and Computation 26 (3): 1139–1145. doi:10.1080/03610919708813431. """ if groups is not None: uniques = np.unique(groups) data = [data[groups == uni] for uni in uniques] else: # uniques = None # not used yet, add to info? pass args = list(map(np.asarray, data)) if any([x.ndim != 1 for x in args]): raise ValueError('data arrays have to be one-dimensional') nobs = np.array([len(x) for x in args], float) # n_groups = len(args) # not used # means = np.array([np.mean(x, axis=0) for x in args], float) # vars_ = np.array([np.var(x, ddof=1, axis=0) for x in args], float) if trim_frac == 0: means = np.array([x.mean() for x in args]) vars_ = np.array([x.var(ddof=1) for x in args]) else: tms = [TrimmedMean(x, trim_frac) for x in args] means = np.array([tm.mean_trimmed for tm in tms]) # R doesn't use uncorrected var_winsorized # vars_ = np.array([tm.var_winsorized for tm in tms]) vars_ = np.array([tm.var_winsorized * (tm.nobs - 1) / (tm.nobs_reduced - 1) for tm in tms]) # nobs_original = nobs # store just in case nobs = np.array([tm.nobs_reduced for tm in tms]) res = anova_generic(means, vars_, nobs, use_var=use_var, welch_correction=welch_correction) return res
Oneway Anova This implements standard anova, Welch and Brown-Forsythe, and trimmed (Yuen) variants of those. Parameters ---------- data : tuple of array_like or DataFrame or Series Data for k independent samples, with k >= 2. The data can be provided as a tuple or list of arrays or in long format with outcome observations in ``data`` and group membership in ``groups``. groups : ndarray or Series If data is in long format, then groups is needed as indicator to which group or sample and observations belongs. use_var : {"unequal", "equal" or "bf"} `use_var` specified how to treat heteroscedasticity, unequal variance, across samples. Three approaches are available "unequal" : Variances are not assumed to be equal across samples. Heteroscedasticity is taken into account with Welch Anova and Satterthwaite-Welch degrees of freedom. This is the default. "equal" : Variances are assumed to be equal across samples. This is the standard Anova. "bf" : Variances are not assumed to be equal across samples. The method is Browne-Forsythe (1971) for testing equality of means with the corrected degrees of freedom by Merothra. The original BF degrees of freedom are available as additional attributes in the results instance, ``df_denom2`` and ``p_value2``. welch_correction : bool If this is false, then the Welch correction to the test statistic is not included. This allows the computation of an effect size measure that corresponds more closely to Cohen's f. trim_frac : float in [0, 0.5) Optional trimming for Anova with trimmed mean and winsorized variances. With the default trim_frac equal to zero, the oneway Anova statistics are computed without trimming. If `trim_frac` is larger than zero, then the largest and smallest observations in each sample are trimmed. The number of trimmed observations is the fraction of number of observations in the sample truncated to the next lower integer. `trim_frac` has to be smaller than 0.5, however, if the fraction is so large that there are not enough observations left over, then `nan` will be returned. Returns ------- res : results instance The returned HolderTuple instance has the following main attributes and some additional information in other attributes. statistic : float Test statistic for k-sample mean comparison which is approximately F-distributed. pvalue : float If ``use_var="bf"``, then the p-value is based on corrected degrees of freedom following Mehrotra 1997. pvalue2 : float This is the p-value based on degrees of freedom as in Brown-Forsythe 1974 and is only available if ``use_var="bf"``. df = (df_denom, df_num) : tuple of floats Degreeds of freedom for the F-distribution depend on ``use_var``. If ``use_var="bf"``, then `df_denom` is for Mehrotra p-values `df_denom2` is available for Brown-Forsythe 1974 p-values. `df_num` is the same numerator degrees of freedom for both p-values. Notes ----- Welch's anova is correctly sized (not liberal or conservative) in smaller samples if the distribution of the samples is not very far away from the normal distribution. The test can become liberal if the data is strongly skewed. Welch's Anova can also be correctly sized for discrete distributions with finite support, like Lickert scale data. The trimmed version is robust to many non-normal distributions, it stays correctly sized in many cases, and is more powerful in some cases with skewness or heavy tails. Trimming is currently based on the integer part of ``nobs * trim_frac``. The default might change to including fractional observations as in the original articles by Yuen. See Also -------- anova_generic References ---------- Brown, Morton B., and Alan B. Forsythe. 1974. “The Small Sample Behavior of Some Statistics Which Test the Equality of Several Means.” Technometrics 16 (1) (February 1): 129–132. doi:10.2307/1267501. Mehrotra, Devan V. 1997. “Improving the Brown-Forsythe Solution to the Generalized Behrens-Fisher Problem.” Communications in Statistics - Simulation and Computation 26 (3): 1139–1145. doi:10.1080/03610919708813431.
anova_oneway
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def equivalence_oneway_generic(f_stat, n_groups, nobs, equiv_margin, df, alpha=0.05, margin_type="f2"): """Equivalence test for oneway anova (Wellek and extensions) This is an helper function when summary statistics are available. Use `equivalence_oneway` instead. The null hypothesis is that the means differ by more than `equiv_margin` in the anova distance measure. If the Null is rejected, then the data supports that means are equivalent, i.e. within a given distance. Parameters ---------- f_stat : float F-statistic n_groups : int Number of groups in oneway comparison. nobs : ndarray Array of number of observations in groups. equiv_margin : float Equivalence margin in terms of effect size. Effect size can be chosen with `margin_type`. default is squared Cohen's f. df : tuple degrees of freedom ``df = (df1, df2)`` where - df1 : numerator degrees of freedom, number of constraints - df2 : denominator degrees of freedom, df_resid alpha : float in (0, 1) Significance level for the hypothesis test. margin_type : "f2" or "wellek" Type of effect size used for equivalence margin. Returns ------- results : instance of HolderTuple class The two main attributes are test statistic `statistic` and p-value `pvalue`. Notes ----- Equivalence in this function is defined in terms of a squared distance measure similar to Mahalanobis distance. Alternative definitions for the oneway case are based on maximum difference between pairs of means or similar pairwise distances. The equivalence margin is used for the noncentrality parameter in the noncentral F distribution for the test statistic. In samples with unequal variances estimated using Welch or Brown-Forsythe Anova, the f-statistic depends on the unequal variances and corrections to the test statistic. This means that the equivalence margins are not fully comparable across methods for treating unequal variances. References ---------- Wellek, Stefan. 2010. Testing Statistical Hypotheses of Equivalence and Noninferiority. 2nd ed. Boca Raton: CRC Press. Cribbie, Robert A., Chantal A. Arpin-Cribbie, and Jamie A. Gruman. 2009. “Tests of Equivalence for One-Way Independent Groups Designs.” The Journal of Experimental Education 78 (1): 1–13. https://doi.org/10.1080/00220970903224552. Jan, Show-Li, and Gwowen Shieh. 2019. “On the Extended Welch Test for Assessing Equivalence of Standardized Means.” Statistics in Biopharmaceutical Research 0 (0): 1–8. https://doi.org/10.1080/19466315.2019.1654915. """ nobs_t = nobs.sum() nobs_mean = nobs_t / n_groups if margin_type == "wellek": nc_null = nobs_mean * equiv_margin**2 es = f_stat * (n_groups - 1) / nobs_mean type_effectsize = "Wellek's psi_squared" elif margin_type in ["f2", "fsqu", "fsquared"]: nc_null = nobs_t * equiv_margin es = f_stat / nobs_t type_effectsize = "Cohen's f_squared" else: raise ValueError('`margin_type` should be "f2" or "wellek"') crit_f = ncf_ppf(alpha, df[0], df[1], nc_null) if margin_type == "wellek": # TODO: do we need a sqrt crit_es = crit_f * (n_groups - 1) / nobs_mean elif margin_type in ["f2", "fsqu", "fsquared"]: crit_es = crit_f / nobs_t reject = (es < crit_es) pv = ncf_cdf(f_stat, df[0], df[1], nc_null) pwr = ncf_cdf(crit_f, df[0], df[1], 1e-13) # scipy, cannot be 0 res = HolderTuple(statistic=f_stat, pvalue=pv, effectsize=es, # match es type to margin_type crit_f=crit_f, crit_es=crit_es, reject=reject, power_zero=pwr, df=df, f_stat=f_stat, type_effectsize=type_effectsize ) return res
Equivalence test for oneway anova (Wellek and extensions) This is an helper function when summary statistics are available. Use `equivalence_oneway` instead. The null hypothesis is that the means differ by more than `equiv_margin` in the anova distance measure. If the Null is rejected, then the data supports that means are equivalent, i.e. within a given distance. Parameters ---------- f_stat : float F-statistic n_groups : int Number of groups in oneway comparison. nobs : ndarray Array of number of observations in groups. equiv_margin : float Equivalence margin in terms of effect size. Effect size can be chosen with `margin_type`. default is squared Cohen's f. df : tuple degrees of freedom ``df = (df1, df2)`` where - df1 : numerator degrees of freedom, number of constraints - df2 : denominator degrees of freedom, df_resid alpha : float in (0, 1) Significance level for the hypothesis test. margin_type : "f2" or "wellek" Type of effect size used for equivalence margin. Returns ------- results : instance of HolderTuple class The two main attributes are test statistic `statistic` and p-value `pvalue`. Notes ----- Equivalence in this function is defined in terms of a squared distance measure similar to Mahalanobis distance. Alternative definitions for the oneway case are based on maximum difference between pairs of means or similar pairwise distances. The equivalence margin is used for the noncentrality parameter in the noncentral F distribution for the test statistic. In samples with unequal variances estimated using Welch or Brown-Forsythe Anova, the f-statistic depends on the unequal variances and corrections to the test statistic. This means that the equivalence margins are not fully comparable across methods for treating unequal variances. References ---------- Wellek, Stefan. 2010. Testing Statistical Hypotheses of Equivalence and Noninferiority. 2nd ed. Boca Raton: CRC Press. Cribbie, Robert A., Chantal A. Arpin-Cribbie, and Jamie A. Gruman. 2009. “Tests of Equivalence for One-Way Independent Groups Designs.” The Journal of Experimental Education 78 (1): 1–13. https://doi.org/10.1080/00220970903224552. Jan, Show-Li, and Gwowen Shieh. 2019. “On the Extended Welch Test for Assessing Equivalence of Standardized Means.” Statistics in Biopharmaceutical Research 0 (0): 1–8. https://doi.org/10.1080/19466315.2019.1654915.
equivalence_oneway_generic
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def equivalence_oneway(data, equiv_margin, groups=None, use_var="unequal", welch_correction=True, trim_frac=0, margin_type="f2"): """equivalence test for oneway anova (Wellek's Anova) The null hypothesis is that the means differ by more than `equiv_margin` in the anova distance measure. If the Null is rejected, then the data supports that means are equivalent, i.e. within a given distance. Parameters ---------- data : tuple of array_like or DataFrame or Series Data for k independent samples, with k >= 2. The data can be provided as a tuple or list of arrays or in long format with outcome observations in ``data`` and group membership in ``groups``. equiv_margin : float Equivalence margin in terms of effect size. Effect size can be chosen with `margin_type`. default is squared Cohen's f. groups : ndarray or Series If data is in long format, then groups is needed as indicator to which group or sample and observations belongs. use_var : {"unequal", "equal" or "bf"} `use_var` specified how to treat heteroscedasticity, unequal variance, across samples. Three approaches are available "unequal" : Variances are not assumed to be equal across samples. Heteroscedasticity is taken into account with Welch Anova and Satterthwaite-Welch degrees of freedom. This is the default. "equal" : Variances are assumed to be equal across samples. This is the standard Anova. "bf: Variances are not assumed to be equal across samples. The method is Browne-Forsythe (1971) for testing equality of means with the corrected degrees of freedom by Merothra. The original BF degrees of freedom are available as additional attributes in the results instance, ``df_denom2`` and ``p_value2``. welch_correction : bool If this is false, then the Welch correction to the test statistic is not included. This allows the computation of an effect size measure that corresponds more closely to Cohen's f. trim_frac : float in [0, 0.5) Optional trimming for Anova with trimmed mean and winsorized variances. With the default trim_frac equal to zero, the oneway Anova statistics are computed without trimming. If `trim_frac` is larger than zero, then the largest and smallest observations in each sample are trimmed. The number of trimmed observations is the fraction of number of observations in the sample truncated to the next lower integer. `trim_frac` has to be smaller than 0.5, however, if the fraction is so large that there are not enough observations left over, then `nan` will be returned. margin_type : "f2" or "wellek" Type of effect size used for equivalence margin, either squared Cohen's f or Wellek's psi. Default is "f2". Returns ------- results : instance of HolderTuple class The two main attributes are test statistic `statistic` and p-value `pvalue`. See Also -------- anova_oneway equivalence_scale_oneway """ # use anova to compute summary statistics and f-statistic res0 = anova_oneway(data, groups=groups, use_var=use_var, welch_correction=welch_correction, trim_frac=trim_frac) f_stat = res0.statistic res = equivalence_oneway_generic(f_stat, res0.n_groups, res0.nobs_t, equiv_margin, res0.df, alpha=0.05, margin_type=margin_type) return res
equivalence test for oneway anova (Wellek's Anova) The null hypothesis is that the means differ by more than `equiv_margin` in the anova distance measure. If the Null is rejected, then the data supports that means are equivalent, i.e. within a given distance. Parameters ---------- data : tuple of array_like or DataFrame or Series Data for k independent samples, with k >= 2. The data can be provided as a tuple or list of arrays or in long format with outcome observations in ``data`` and group membership in ``groups``. equiv_margin : float Equivalence margin in terms of effect size. Effect size can be chosen with `margin_type`. default is squared Cohen's f. groups : ndarray or Series If data is in long format, then groups is needed as indicator to which group or sample and observations belongs. use_var : {"unequal", "equal" or "bf"} `use_var` specified how to treat heteroscedasticity, unequal variance, across samples. Three approaches are available "unequal" : Variances are not assumed to be equal across samples. Heteroscedasticity is taken into account with Welch Anova and Satterthwaite-Welch degrees of freedom. This is the default. "equal" : Variances are assumed to be equal across samples. This is the standard Anova. "bf: Variances are not assumed to be equal across samples. The method is Browne-Forsythe (1971) for testing equality of means with the corrected degrees of freedom by Merothra. The original BF degrees of freedom are available as additional attributes in the results instance, ``df_denom2`` and ``p_value2``. welch_correction : bool If this is false, then the Welch correction to the test statistic is not included. This allows the computation of an effect size measure that corresponds more closely to Cohen's f. trim_frac : float in [0, 0.5) Optional trimming for Anova with trimmed mean and winsorized variances. With the default trim_frac equal to zero, the oneway Anova statistics are computed without trimming. If `trim_frac` is larger than zero, then the largest and smallest observations in each sample are trimmed. The number of trimmed observations is the fraction of number of observations in the sample truncated to the next lower integer. `trim_frac` has to be smaller than 0.5, however, if the fraction is so large that there are not enough observations left over, then `nan` will be returned. margin_type : "f2" or "wellek" Type of effect size used for equivalence margin, either squared Cohen's f or Wellek's psi. Default is "f2". Returns ------- results : instance of HolderTuple class The two main attributes are test statistic `statistic` and p-value `pvalue`. See Also -------- anova_oneway equivalence_scale_oneway
equivalence_oneway
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def _power_equivalence_oneway_emp(f_stat, n_groups, nobs, eps, df, alpha=0.05): """Empirical power of oneway equivalence test This only returns post-hoc, empirical power. Warning: eps is currently effect size margin as defined as in Wellek, and not the signal to noise ratio (Cohen's f family). Parameters ---------- f_stat : float F-statistic from oneway anova, used to compute empirical effect size n_groups : int Number of groups in oneway comparison. nobs : ndarray Array of number of observations in groups. eps : float Equivalence margin in terms of effect size given by Wellek's psi. df : tuple Degrees of freedom for F distribution. alpha : float in (0, 1) Significance level for the hypothesis test. Returns ------- pow : float Ex-post, post-hoc or empirical power at f-statistic of the equivalence test. """ res = equivalence_oneway_generic(f_stat, n_groups, nobs, eps, df, alpha=alpha, margin_type="wellek") nobs_mean = nobs.sum() / n_groups fn = f_stat # post-hoc power, empirical power at estimate esn = fn * (n_groups - 1) / nobs_mean # Wellek psi pow_ = ncf_cdf(res.crit_f, df[0], df[1], nobs_mean * esn) return pow_
Empirical power of oneway equivalence test This only returns post-hoc, empirical power. Warning: eps is currently effect size margin as defined as in Wellek, and not the signal to noise ratio (Cohen's f family). Parameters ---------- f_stat : float F-statistic from oneway anova, used to compute empirical effect size n_groups : int Number of groups in oneway comparison. nobs : ndarray Array of number of observations in groups. eps : float Equivalence margin in terms of effect size given by Wellek's psi. df : tuple Degrees of freedom for F distribution. alpha : float in (0, 1) Significance level for the hypothesis test. Returns ------- pow : float Ex-post, post-hoc or empirical power at f-statistic of the equivalence test.
_power_equivalence_oneway_emp
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def power_equivalence_oneway(f2_alt, equiv_margin, nobs_t, n_groups=None, df=None, alpha=0.05, margin_type="f2"): """ Power of oneway equivalence test Parameters ---------- f2_alt : float Effect size, squared Cohen's f, under the alternative. equiv_margin : float Equivalence margin in terms of effect size. Effect size can be chosen with `margin_type`. default is squared Cohen's f. nobs_t : ndarray Total number of observations summed over all groups. n_groups : int Number of groups in oneway comparison. If margin_type is "wellek", then either ``n_groups`` or ``df`` has to be given. df : tuple Degrees of freedom for F distribution, ``df = (n_groups - 1, nobs_t - n_groups)`` alpha : float in (0, 1) Significance level for the hypothesis test. margin_type : "f2" or "wellek" Type of effect size used for equivalence margin, either squared Cohen's f or Wellek's psi. Default is "f2". Returns ------- pow_alt : float Power of the equivalence test at given equivalence effect size under the alternative. """ # one of n_groups or df has to be specified if df is None: if n_groups is None: raise ValueError("either df or n_groups has to be provided") df = (n_groups - 1, nobs_t - n_groups) # esn = fn * (n_groups - 1) / nobs_mean # Wellek psi # fix for scipy, ncf does not allow nc == 0, fixed in scipy master if f2_alt == 0: f2_alt = 1e-13 # effect size, critical value at margin # f2_null = equiv_margin if margin_type in ["f2", "fsqu", "fsquared"]: f2_null = equiv_margin elif margin_type == "wellek": if n_groups is None: raise ValueError("If margin_type is wellek, then n_groups has " "to be provided") # f2_null = (n_groups - 1) * n_groups / nobs_t * equiv_margin**2 nobs_mean = nobs_t / n_groups f2_null = nobs_mean * equiv_margin**2 / nobs_t f2_alt = nobs_mean * f2_alt**2 / nobs_t else: raise ValueError('`margin_type` should be "f2" or "wellek"') crit_f_margin = ncf_ppf(alpha, df[0], df[1], nobs_t * f2_null) pwr_alt = ncf_cdf(crit_f_margin, df[0], df[1], nobs_t * f2_alt) return pwr_alt
Power of oneway equivalence test Parameters ---------- f2_alt : float Effect size, squared Cohen's f, under the alternative. equiv_margin : float Equivalence margin in terms of effect size. Effect size can be chosen with `margin_type`. default is squared Cohen's f. nobs_t : ndarray Total number of observations summed over all groups. n_groups : int Number of groups in oneway comparison. If margin_type is "wellek", then either ``n_groups`` or ``df`` has to be given. df : tuple Degrees of freedom for F distribution, ``df = (n_groups - 1, nobs_t - n_groups)`` alpha : float in (0, 1) Significance level for the hypothesis test. margin_type : "f2" or "wellek" Type of effect size used for equivalence margin, either squared Cohen's f or Wellek's psi. Default is "f2". Returns ------- pow_alt : float Power of the equivalence test at given equivalence effect size under the alternative.
power_equivalence_oneway
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def simulate_power_equivalence_oneway(means, nobs, equiv_margin, vars_=None, k_mc=1000, trim_frac=0, options_var=None, margin_type="f2" ): # , anova_options=None): #TODO """Simulate Power for oneway equivalence test (Wellek's Anova) This function is experimental and written to evaluate asymptotic power function. This function will change without backwards compatibility constraints. The only part that is stable is `pvalue` attribute in results. Effect size for equivalence margin """ if options_var is None: options_var = ["unequal", "equal", "bf"] if vars_ is not None: stds = np.sqrt(vars_) else: stds = np.ones(len(means)) nobs_mean = nobs.mean() n_groups = len(nobs) res_mc = [] f_mc = [] reject_mc = [] other_mc = [] for _ in range(k_mc): y0, y1, y2, y3 = (m + std * np.random.randn(n) for (n, m, std) in zip(nobs, means, stds)) res_i = [] f_i = [] reject_i = [] other_i = [] for uv in options_var: # for welch in options_welch: # res1 = sma.anova_generic(means, vars_, nobs, use_var=uv, # welch_correction=welch) res0 = anova_oneway([y0, y1, y2, y3], use_var=uv, trim_frac=trim_frac) f_stat = res0.statistic res1 = equivalence_oneway_generic(f_stat, n_groups, nobs.sum(), equiv_margin, res0.df, alpha=0.05, margin_type=margin_type) res_i.append(res1.pvalue) es_wellek = f_stat * (n_groups - 1) / nobs_mean f_i.append(es_wellek) reject_i.append(res1.reject) other_i.extend([res1.crit_f, res1.crit_es, res1.power_zero]) res_mc.append(res_i) f_mc.append(f_i) reject_mc.append(reject_i) other_mc.append(other_i) f_mc = np.asarray(f_mc) other_mc = np.asarray(other_mc) res_mc = np.asarray(res_mc) reject_mc = np.asarray(reject_mc) res = Holder(f_stat=f_mc, other=other_mc, pvalue=res_mc, reject=reject_mc ) return res
Simulate Power for oneway equivalence test (Wellek's Anova) This function is experimental and written to evaluate asymptotic power function. This function will change without backwards compatibility constraints. The only part that is stable is `pvalue` attribute in results. Effect size for equivalence margin
simulate_power_equivalence_oneway
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def test_scale_oneway(data, method="bf", center="median", transform="abs", trim_frac_mean=0.1, trim_frac_anova=0.0): """Oneway Anova test for equal scale, variance or dispersion This hypothesis test performs a oneway anova test on transformed data and includes Levene and Brown-Forsythe tests for equal variances as special cases. Parameters ---------- data : tuple of array_like or DataFrame or Series Data for k independent samples, with k >= 2. The data can be provided as a tuple or list of arrays or in long format with outcome observations in ``data`` and group membership in ``groups``. method : {"unequal", "equal" or "bf"} How to treat heteroscedasticity across samples. This is used as `use_var` option in `anova_oneway` and refers to the variance of the transformed data, i.e. assumption is on 4th moment if squares are used as transform. Three approaches are available: "unequal" : Variances are not assumed to be equal across samples. Heteroscedasticity is taken into account with Welch Anova and Satterthwaite-Welch degrees of freedom. This is the default. "equal" : Variances are assumed to be equal across samples. This is the standard Anova. "bf" : Variances are not assumed to be equal across samples. The method is Browne-Forsythe (1971) for testing equality of means with the corrected degrees of freedom by Merothra. The original BF degrees of freedom are available as additional attributes in the results instance, ``df_denom2`` and ``p_value2``. center : "median", "mean", "trimmed" or float Statistic used for centering observations. If a float, then this value is used to center. Default is median. transform : "abs", "square" or callable Transformation for the centered observations. If a callable, then this function is called on the centered data. Default is absolute value. trim_frac_mean=0.1 : float in [0, 0.5) Trim fraction for the trimmed mean when `center` is "trimmed" trim_frac_anova : float in [0, 0.5) Optional trimming for Anova with trimmed mean and Winsorized variances. With the default trim_frac equal to zero, the oneway Anova statistics are computed without trimming. If `trim_frac` is larger than zero, then the largest and smallest observations in each sample are trimmed. see ``trim_frac`` option in `anova_oneway` Returns ------- res : results instance The returned HolderTuple instance has the following main attributes and some additional information in other attributes. statistic : float Test statistic for k-sample mean comparison which is approximately F-distributed. pvalue : float If ``method="bf"``, then the p-value is based on corrected degrees of freedom following Mehrotra 1997. pvalue2 : float This is the p-value based on degrees of freedom as in Brown-Forsythe 1974 and is only available if ``method="bf"``. df : (df_denom, df_num) Tuple containing degrees of freedom for the F-distribution depend on ``method``. If ``method="bf"``, then `df_denom` is for Mehrotra p-values `df_denom2` is available for Brown-Forsythe 1974 p-values. `df_num` is the same numerator degrees of freedom for both p-values. See Also -------- anova_oneway scale_transform """ data = map(np.asarray, data) xxd = [scale_transform(x, center=center, transform=transform, trim_frac=trim_frac_mean) for x in data] res = anova_oneway(xxd, groups=None, use_var=method, welch_correction=True, trim_frac=trim_frac_anova) res.data_transformed = xxd return res
Oneway Anova test for equal scale, variance or dispersion This hypothesis test performs a oneway anova test on transformed data and includes Levene and Brown-Forsythe tests for equal variances as special cases. Parameters ---------- data : tuple of array_like or DataFrame or Series Data for k independent samples, with k >= 2. The data can be provided as a tuple or list of arrays or in long format with outcome observations in ``data`` and group membership in ``groups``. method : {"unequal", "equal" or "bf"} How to treat heteroscedasticity across samples. This is used as `use_var` option in `anova_oneway` and refers to the variance of the transformed data, i.e. assumption is on 4th moment if squares are used as transform. Three approaches are available: "unequal" : Variances are not assumed to be equal across samples. Heteroscedasticity is taken into account with Welch Anova and Satterthwaite-Welch degrees of freedom. This is the default. "equal" : Variances are assumed to be equal across samples. This is the standard Anova. "bf" : Variances are not assumed to be equal across samples. The method is Browne-Forsythe (1971) for testing equality of means with the corrected degrees of freedom by Merothra. The original BF degrees of freedom are available as additional attributes in the results instance, ``df_denom2`` and ``p_value2``. center : "median", "mean", "trimmed" or float Statistic used for centering observations. If a float, then this value is used to center. Default is median. transform : "abs", "square" or callable Transformation for the centered observations. If a callable, then this function is called on the centered data. Default is absolute value. trim_frac_mean=0.1 : float in [0, 0.5) Trim fraction for the trimmed mean when `center` is "trimmed" trim_frac_anova : float in [0, 0.5) Optional trimming for Anova with trimmed mean and Winsorized variances. With the default trim_frac equal to zero, the oneway Anova statistics are computed without trimming. If `trim_frac` is larger than zero, then the largest and smallest observations in each sample are trimmed. see ``trim_frac`` option in `anova_oneway` Returns ------- res : results instance The returned HolderTuple instance has the following main attributes and some additional information in other attributes. statistic : float Test statistic for k-sample mean comparison which is approximately F-distributed. pvalue : float If ``method="bf"``, then the p-value is based on corrected degrees of freedom following Mehrotra 1997. pvalue2 : float This is the p-value based on degrees of freedom as in Brown-Forsythe 1974 and is only available if ``method="bf"``. df : (df_denom, df_num) Tuple containing degrees of freedom for the F-distribution depend on ``method``. If ``method="bf"``, then `df_denom` is for Mehrotra p-values `df_denom2` is available for Brown-Forsythe 1974 p-values. `df_num` is the same numerator degrees of freedom for both p-values. See Also -------- anova_oneway scale_transform
test_scale_oneway
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def equivalence_scale_oneway(data, equiv_margin, method='bf', center='median', transform='abs', trim_frac_mean=0., trim_frac_anova=0.): """Oneway Anova test for equivalence of scale, variance or dispersion This hypothesis test performs a oneway equivalence anova test on transformed data. Note, the interpretation of the equivalence margin `equiv_margin` will depend on the transformation of the data. Transformations like absolute deviation are not scaled to correspond to the variance under normal distribution. Parameters ---------- data : tuple of array_like or DataFrame or Series Data for k independent samples, with k >= 2. The data can be provided as a tuple or list of arrays or in long format with outcome observations in ``data`` and group membership in ``groups``. equiv_margin : float Equivalence margin in terms of effect size. Effect size can be chosen with `margin_type`. default is squared Cohen's f. method : {"unequal", "equal" or "bf"} How to treat heteroscedasticity across samples. This is used as `use_var` option in `anova_oneway` and refers to the variance of the transformed data, i.e. assumption is on 4th moment if squares are used as transform. Three approaches are available: "unequal" : Variances are not assumed to be equal across samples. Heteroscedasticity is taken into account with Welch Anova and Satterthwaite-Welch degrees of freedom. This is the default. "equal" : Variances are assumed to be equal across samples. This is the standard Anova. "bf" : Variances are not assumed to be equal across samples. The method is Browne-Forsythe (1971) for testing equality of means with the corrected degrees of freedom by Merothra. The original BF degrees of freedom are available as additional attributes in the results instance, ``df_denom2`` and ``p_value2``. center : "median", "mean", "trimmed" or float Statistic used for centering observations. If a float, then this value is used to center. Default is median. transform : "abs", "square" or callable Transformation for the centered observations. If a callable, then this function is called on the centered data. Default is absolute value. trim_frac_mean : float in [0, 0.5) Trim fraction for the trimmed mean when `center` is "trimmed" trim_frac_anova : float in [0, 0.5) Optional trimming for Anova with trimmed mean and Winsorized variances. With the default trim_frac equal to zero, the oneway Anova statistics are computed without trimming. If `trim_frac` is larger than zero, then the largest and smallest observations in each sample are trimmed. see ``trim_frac`` option in `anova_oneway` Returns ------- results : instance of HolderTuple class The two main attributes are test statistic `statistic` and p-value `pvalue`. See Also -------- anova_oneway scale_transform equivalence_oneway """ data = map(np.asarray, data) xxd = [scale_transform(x, center=center, transform=transform, trim_frac=trim_frac_mean) for x in data] res = equivalence_oneway(xxd, equiv_margin, use_var=method, welch_correction=True, trim_frac=trim_frac_anova) res.x_transformed = xxd return res
Oneway Anova test for equivalence of scale, variance or dispersion This hypothesis test performs a oneway equivalence anova test on transformed data. Note, the interpretation of the equivalence margin `equiv_margin` will depend on the transformation of the data. Transformations like absolute deviation are not scaled to correspond to the variance under normal distribution. Parameters ---------- data : tuple of array_like or DataFrame or Series Data for k independent samples, with k >= 2. The data can be provided as a tuple or list of arrays or in long format with outcome observations in ``data`` and group membership in ``groups``. equiv_margin : float Equivalence margin in terms of effect size. Effect size can be chosen with `margin_type`. default is squared Cohen's f. method : {"unequal", "equal" or "bf"} How to treat heteroscedasticity across samples. This is used as `use_var` option in `anova_oneway` and refers to the variance of the transformed data, i.e. assumption is on 4th moment if squares are used as transform. Three approaches are available: "unequal" : Variances are not assumed to be equal across samples. Heteroscedasticity is taken into account with Welch Anova and Satterthwaite-Welch degrees of freedom. This is the default. "equal" : Variances are assumed to be equal across samples. This is the standard Anova. "bf" : Variances are not assumed to be equal across samples. The method is Browne-Forsythe (1971) for testing equality of means with the corrected degrees of freedom by Merothra. The original BF degrees of freedom are available as additional attributes in the results instance, ``df_denom2`` and ``p_value2``. center : "median", "mean", "trimmed" or float Statistic used for centering observations. If a float, then this value is used to center. Default is median. transform : "abs", "square" or callable Transformation for the centered observations. If a callable, then this function is called on the centered data. Default is absolute value. trim_frac_mean : float in [0, 0.5) Trim fraction for the trimmed mean when `center` is "trimmed" trim_frac_anova : float in [0, 0.5) Optional trimming for Anova with trimmed mean and Winsorized variances. With the default trim_frac equal to zero, the oneway Anova statistics are computed without trimming. If `trim_frac` is larger than zero, then the largest and smallest observations in each sample are trimmed. see ``trim_frac`` option in `anova_oneway` Returns ------- results : instance of HolderTuple class The two main attributes are test statistic `statistic` and p-value `pvalue`. See Also -------- anova_oneway scale_transform equivalence_oneway
equivalence_scale_oneway
python
statsmodels/statsmodels
statsmodels/stats/oneway.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oneway.py
BSD-3-Clause
def mc2mnc(mc): """convert central to non-central moments, uses recursive formula optionally adjusts first moment to return mean """ x = _convert_to_multidim(mc) def _local_counts(mc): mean = mc[0] mc = [1] + list(mc) # add zero moment = 1 mc[1] = 0 # define central mean as zero for formula mnc = [1, mean] # zero and first raw moments for nn, m in enumerate(mc[2:]): n = nn + 2 mnc.append(0) for k in range(n + 1): mnc[n] += comb(n, k, exact=True) * mc[k] * mean ** (n - k) return mnc[1:] res = np.apply_along_axis(_local_counts, 0, x) # for backward compatibility convert 1-dim output to list/tuple return _convert_from_multidim(res)
convert central to non-central moments, uses recursive formula optionally adjusts first moment to return mean
mc2mnc
python
statsmodels/statsmodels
statsmodels/stats/moment_helpers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/moment_helpers.py
BSD-3-Clause
def mnc2mc(mnc, wmean=True): """convert non-central to central moments, uses recursive formula optionally adjusts first moment to return mean """ X = _convert_to_multidim(mnc) def _local_counts(mnc): mean = mnc[0] mnc = [1] + list(mnc) # add zero moment = 1 mu = [] for n, m in enumerate(mnc): mu.append(0) for k in range(n + 1): sgn_comb = (-1) ** (n - k) * comb(n, k, exact=True) mu[n] += sgn_comb * mnc[k] * mean ** (n - k) if wmean: mu[1] = mean return mu[1:] res = np.apply_along_axis(_local_counts, 0, X) # for backward compatibility convert 1-dim output to list/tuple return _convert_from_multidim(res)
convert non-central to central moments, uses recursive formula optionally adjusts first moment to return mean
mnc2mc
python
statsmodels/statsmodels
statsmodels/stats/moment_helpers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/moment_helpers.py
BSD-3-Clause
def cum2mc(kappa): """convert non-central moments to cumulants recursive formula produces as many cumulants as moments References ---------- Kenneth Lange: Numerical Analysis for Statisticians, page 40 """ X = _convert_to_multidim(kappa) def _local_counts(kappa): mc = [1, 0.0] # _kappa[0]] #insert 0-moment and mean kappa0 = kappa[0] kappa = [1] + list(kappa) for nn, m in enumerate(kappa[2:]): n = nn + 2 mc.append(0) for k in range(n - 1): mc[n] += comb(n - 1, k, exact=True) * kappa[n - k] * mc[k] mc[1] = kappa0 # insert mean as first moments by convention return mc[1:] res = np.apply_along_axis(_local_counts, 0, X) # for backward compatibility convert 1-dim output to list/tuple return _convert_from_multidim(res)
convert non-central moments to cumulants recursive formula produces as many cumulants as moments References ---------- Kenneth Lange: Numerical Analysis for Statisticians, page 40
cum2mc
python
statsmodels/statsmodels
statsmodels/stats/moment_helpers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/moment_helpers.py
BSD-3-Clause
def mnc2cum(mnc): """convert non-central moments to cumulants recursive formula produces as many cumulants as moments https://en.wikipedia.org/wiki/Cumulant#Cumulants_and_moments """ X = _convert_to_multidim(mnc) def _local_counts(mnc): mnc = [1] + list(mnc) kappa = [1] for nn, m in enumerate(mnc[1:]): n = nn + 1 kappa.append(m) for k in range(1, n): num_ways = comb(n - 1, k - 1, exact=True) kappa[n] -= num_ways * kappa[k] * mnc[n - k] return kappa[1:] res = np.apply_along_axis(_local_counts, 0, X) # for backward compatibility convert 1-dim output to list/tuple return _convert_from_multidim(res)
convert non-central moments to cumulants recursive formula produces as many cumulants as moments https://en.wikipedia.org/wiki/Cumulant#Cumulants_and_moments
mnc2cum
python
statsmodels/statsmodels
statsmodels/stats/moment_helpers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/moment_helpers.py
BSD-3-Clause
def mc2cum(mc): """ just chained because I have still the test case """ first_step = mc2mnc(mc) if isinstance(first_step, np.ndarray): first_step = first_step.T return mnc2cum(first_step)
just chained because I have still the test case
mc2cum
python
statsmodels/statsmodels
statsmodels/stats/moment_helpers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/moment_helpers.py
BSD-3-Clause
def mvsk2mc(args): """convert mean, variance, skew, kurtosis to central moments""" X = _convert_to_multidim(args) def _local_counts(args): mu, sig2, sk, kur = args cnt = [None] * 4 cnt[0] = mu cnt[1] = sig2 cnt[2] = sk * sig2 ** 1.5 cnt[3] = (kur + 3.0) * sig2 ** 2.0 return tuple(cnt) res = np.apply_along_axis(_local_counts, 0, X) # for backward compatibility convert 1-dim output to list/tuple return _convert_from_multidim(res, tuple)
convert mean, variance, skew, kurtosis to central moments
mvsk2mc
python
statsmodels/statsmodels
statsmodels/stats/moment_helpers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/moment_helpers.py
BSD-3-Clause
def mvsk2mnc(args): """convert mean, variance, skew, kurtosis to non-central moments""" X = _convert_to_multidim(args) def _local_counts(args): mc, mc2, skew, kurt = args mnc = mc mnc2 = mc2 + mc * mc mc3 = skew * (mc2 ** 1.5) # 3rd central moment mnc3 = mc3 + 3 * mc * mc2 + mc ** 3 # 3rd non-central moment mc4 = (kurt + 3.0) * (mc2 ** 2.0) # 4th central moment mnc4 = mc4 + 4 * mc * mc3 + 6 * mc * mc * mc2 + mc ** 4 return (mnc, mnc2, mnc3, mnc4) res = np.apply_along_axis(_local_counts, 0, X) # for backward compatibility convert 1-dim output to list/tuple return _convert_from_multidim(res, tuple)
convert mean, variance, skew, kurtosis to non-central moments
mvsk2mnc
python
statsmodels/statsmodels
statsmodels/stats/moment_helpers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/moment_helpers.py
BSD-3-Clause
def mc2mvsk(args): """convert central moments to mean, variance, skew, kurtosis""" X = _convert_to_multidim(args) def _local_counts(args): mc, mc2, mc3, mc4 = args skew = np.divide(mc3, mc2 ** 1.5) kurt = np.divide(mc4, mc2 ** 2.0) - 3.0 return (mc, mc2, skew, kurt) res = np.apply_along_axis(_local_counts, 0, X) # for backward compatibility convert 1-dim output to list/tuple return _convert_from_multidim(res, tuple)
convert central moments to mean, variance, skew, kurtosis
mc2mvsk
python
statsmodels/statsmodels
statsmodels/stats/moment_helpers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/moment_helpers.py
BSD-3-Clause
def mnc2mvsk(args): """convert central moments to mean, variance, skew, kurtosis """ X = _convert_to_multidim(args) def _local_counts(args): # convert four non-central moments to central moments mnc, mnc2, mnc3, mnc4 = args mc = mnc mc2 = mnc2 - mnc * mnc mc3 = mnc3 - (3 * mc * mc2 + mc ** 3) # 3rd central moment mc4 = mnc4 - (4 * mc * mc3 + 6 * mc * mc * mc2 + mc ** 4) return mc2mvsk((mc, mc2, mc3, mc4)) res = np.apply_along_axis(_local_counts, 0, X) # for backward compatibility convert 1-dim output to list/tuple return _convert_from_multidim(res, tuple)
convert central moments to mean, variance, skew, kurtosis
mnc2mvsk
python
statsmodels/statsmodels
statsmodels/stats/moment_helpers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/moment_helpers.py
BSD-3-Clause
def cov2corr(cov, return_std=False): """ convert covariance matrix to correlation matrix Parameters ---------- cov : array_like, 2d covariance matrix, see Notes Returns ------- corr : ndarray (subclass) correlation matrix return_std : bool If this is true then the standard deviation is also returned. By default only the correlation matrix is returned. Notes ----- This function does not convert subclasses of ndarrays. This requires that division is defined elementwise. np.ma.array and np.matrix are allowed. """ cov = np.asanyarray(cov) std_ = np.sqrt(np.diag(cov)) corr = cov / np.outer(std_, std_) if return_std: return corr, std_ else: return corr
convert covariance matrix to correlation matrix Parameters ---------- cov : array_like, 2d covariance matrix, see Notes Returns ------- corr : ndarray (subclass) correlation matrix return_std : bool If this is true then the standard deviation is also returned. By default only the correlation matrix is returned. Notes ----- This function does not convert subclasses of ndarrays. This requires that division is defined elementwise. np.ma.array and np.matrix are allowed.
cov2corr
python
statsmodels/statsmodels
statsmodels/stats/moment_helpers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/moment_helpers.py
BSD-3-Clause
def corr2cov(corr, std): """ convert correlation matrix to covariance matrix given standard deviation Parameters ---------- corr : array_like, 2d correlation matrix, see Notes std : array_like, 1d standard deviation Returns ------- cov : ndarray (subclass) covariance matrix Notes ----- This function does not convert subclasses of ndarrays. This requires that multiplication is defined elementwise. np.ma.array are allowed, but not matrices. """ corr = np.asanyarray(corr) std_ = np.asanyarray(std) cov = corr * np.outer(std_, std_) return cov
convert correlation matrix to covariance matrix given standard deviation Parameters ---------- corr : array_like, 2d correlation matrix, see Notes std : array_like, 1d standard deviation Returns ------- cov : ndarray (subclass) covariance matrix Notes ----- This function does not convert subclasses of ndarrays. This requires that multiplication is defined elementwise. np.ma.array are allowed, but not matrices.
corr2cov
python
statsmodels/statsmodels
statsmodels/stats/moment_helpers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/moment_helpers.py
BSD-3-Clause
def se_cov(cov): """ get standard deviation from covariance matrix just a shorthand function np.sqrt(np.diag(cov)) Parameters ---------- cov : array_like, square covariance matrix Returns ------- std : ndarray standard deviation from diagonal of cov """ return np.sqrt(np.diag(cov))
get standard deviation from covariance matrix just a shorthand function np.sqrt(np.diag(cov)) Parameters ---------- cov : array_like, square covariance matrix Returns ------- std : ndarray standard deviation from diagonal of cov
se_cov
python
statsmodels/statsmodels
statsmodels/stats/moment_helpers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/moment_helpers.py
BSD-3-Clause
def anderson_statistic(x, dist='norm', fit=True, params=(), axis=0): """ Calculate the Anderson-Darling a2 statistic. Parameters ---------- x : array_like The data to test. dist : {'norm', callable} The assumed distribution under the null of test statistic. fit : bool If True, then the distribution parameters are estimated. Currently only for 1d data x, except in case dist='norm'. params : tuple The optional distribution parameters if fit is False. axis : int If dist is 'norm' or fit is False, then data can be an n-dimensional and axis specifies the axis of a variable. Returns ------- {float, ndarray} The Anderson-Darling statistic. """ x = array_like(x, 'x', ndim=None) fit = bool_like(fit, 'fit') axis = int_like(axis, 'axis') y = np.sort(x, axis=axis) nobs = y.shape[axis] if fit: if dist == 'norm': xbar = np.expand_dims(np.mean(x, axis=axis), axis) s = np.expand_dims(np.std(x, ddof=1, axis=axis), axis) w = (y - xbar) / s z = stats.norm.cdf(w) elif callable(dist): params = dist.fit(x) z = dist.cdf(y, *params) else: raise ValueError("dist must be 'norm' or a Callable") else: if callable(dist): z = dist.cdf(y, *params) else: raise ValueError('if fit is false, then dist must be callable') i = np.arange(1, nobs + 1) sl1 = [None] * x.ndim sl1[axis] = slice(None) sl1 = tuple(sl1) sl2 = [slice(None)] * x.ndim sl2[axis] = slice(None, None, -1) sl2 = tuple(sl2) with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message="divide by zero encountered in log1p" ) ad_values = (2 * i[sl1] - 1.0) / nobs * (np.log(z) + np.log1p(-z[sl2])) s = np.sum(ad_values, axis=axis) a2 = -nobs - s return a2
Calculate the Anderson-Darling a2 statistic. Parameters ---------- x : array_like The data to test. dist : {'norm', callable} The assumed distribution under the null of test statistic. fit : bool If True, then the distribution parameters are estimated. Currently only for 1d data x, except in case dist='norm'. params : tuple The optional distribution parameters if fit is False. axis : int If dist is 'norm' or fit is False, then data can be an n-dimensional and axis specifies the axis of a variable. Returns ------- {float, ndarray} The Anderson-Darling statistic.
anderson_statistic
python
statsmodels/statsmodels
statsmodels/stats/_adnorm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_adnorm.py
BSD-3-Clause
def normal_ad(x, axis=0): """ Anderson-Darling test for normal distribution unknown mean and variance. Parameters ---------- x : array_like The data array. axis : int The axis to perform the test along. Returns ------- ad2 : float Anderson Darling test statistic. pval : float The pvalue for hypothesis that the data comes from a normal distribution with unknown mean and variance. See Also -------- statsmodels.stats.diagnostic.anderson_statistic The Anderson-Darling a2 statistic. statsmodels.stats.diagnostic.kstest_fit Kolmogorov-Smirnov test with estimated parameters for Normal or Exponential distributions. """ ad2 = anderson_statistic(x, dist='norm', fit=True, axis=axis) n = x.shape[axis] ad2a = ad2 * (1 + 0.75 / n + 2.25 / n ** 2) if np.size(ad2a) == 1: if (ad2a >= 0.00 and ad2a < 0.200): pval = 1 - np.exp(-13.436 + 101.14 * ad2a - 223.73 * ad2a ** 2) elif ad2a < 0.340: pval = 1 - np.exp(-8.318 + 42.796 * ad2a - 59.938 * ad2a ** 2) elif ad2a < 0.600: pval = np.exp(0.9177 - 4.279 * ad2a - 1.38 * ad2a ** 2) elif ad2a <= 13: pval = np.exp(1.2937 - 5.709 * ad2a + 0.0186 * ad2a ** 2) else: pval = 0.0 # is < 4.9542108058458799e-31 else: bounds = np.array([0.0, 0.200, 0.340, 0.600]) def pval0(ad2a): return np.nan * np.ones_like(ad2a) def pval1(ad2a): return 1 - np.exp(-13.436 + 101.14 * ad2a - 223.73 * ad2a ** 2) def pval2(ad2a): return 1 - np.exp(-8.318 + 42.796 * ad2a - 59.938 * ad2a ** 2) def pval3(ad2a): return np.exp(0.9177 - 4.279 * ad2a - 1.38 * ad2a ** 2) def pval4(ad2a): return np.exp(1.2937 - 5.709 * ad2a + 0.0186 * ad2a ** 2) pvalli = [pval0, pval1, pval2, pval3, pval4] idx = np.searchsorted(bounds, ad2a, side='right') pval = np.nan * np.ones_like(ad2a) for i in range(5): mask = (idx == i) pval[mask] = pvalli[i](ad2a[mask]) return ad2, pval
Anderson-Darling test for normal distribution unknown mean and variance. Parameters ---------- x : array_like The data array. axis : int The axis to perform the test along. Returns ------- ad2 : float Anderson Darling test statistic. pval : float The pvalue for hypothesis that the data comes from a normal distribution with unknown mean and variance. See Also -------- statsmodels.stats.diagnostic.anderson_statistic The Anderson-Darling a2 statistic. statsmodels.stats.diagnostic.kstest_fit Kolmogorov-Smirnov test with estimated parameters for Normal or Exponential distributions.
normal_ad
python
statsmodels/statsmodels
statsmodels/stats/_adnorm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_adnorm.py
BSD-3-Clause
def sum_weights(self): """Sum of weights""" return self.weights.sum(0)
Sum of weights
sum_weights
python
statsmodels/statsmodels
statsmodels/stats/weightstats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/weightstats.py
BSD-3-Clause
def nobs(self): """alias for number of observations/cases, equal to sum of weights """ return self.sum_weights
alias for number of observations/cases, equal to sum of weights
nobs
python
statsmodels/statsmodels
statsmodels/stats/weightstats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/weightstats.py
BSD-3-Clause
def sum(self): """weighted sum of data""" return np.dot(self.data.T, self.weights)
weighted sum of data
sum
python
statsmodels/statsmodels
statsmodels/stats/weightstats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/weightstats.py
BSD-3-Clause
def mean(self): """weighted mean of data""" return self.sum / self.sum_weights
weighted mean of data
mean
python
statsmodels/statsmodels
statsmodels/stats/weightstats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/weightstats.py
BSD-3-Clause
def demeaned(self): """data with weighted mean subtracted""" return self.data - self.mean
data with weighted mean subtracted
demeaned
python
statsmodels/statsmodels
statsmodels/stats/weightstats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/weightstats.py
BSD-3-Clause
def sumsquares(self): """weighted sum of squares of demeaned data""" return np.dot((self.demeaned ** 2).T, self.weights)
weighted sum of squares of demeaned data
sumsquares
python
statsmodels/statsmodels
statsmodels/stats/weightstats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/weightstats.py
BSD-3-Clause
def var_ddof(self, ddof=0): """variance of data given ddof Parameters ---------- ddof : int, float degrees of freedom correction, independent of attribute ddof Returns ------- var : float, ndarray variance with denominator ``sum_weights - ddof`` """ return self.sumsquares / (self.sum_weights - ddof)
variance of data given ddof Parameters ---------- ddof : int, float degrees of freedom correction, independent of attribute ddof Returns ------- var : float, ndarray variance with denominator ``sum_weights - ddof``
var_ddof
python
statsmodels/statsmodels
statsmodels/stats/weightstats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/weightstats.py
BSD-3-Clause
def std_ddof(self, ddof=0): """standard deviation of data with given ddof Parameters ---------- ddof : int, float degrees of freedom correction, independent of attribute ddof Returns ------- std : float, ndarray standard deviation with denominator ``sum_weights - ddof`` """ return np.sqrt(self.var_ddof(ddof=ddof))
standard deviation of data with given ddof Parameters ---------- ddof : int, float degrees of freedom correction, independent of attribute ddof Returns ------- std : float, ndarray standard deviation with denominator ``sum_weights - ddof``
std_ddof
python
statsmodels/statsmodels
statsmodels/stats/weightstats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/weightstats.py
BSD-3-Clause
def var(self): """variance with default degrees of freedom correction """ return self.sumsquares / (self.sum_weights - self.ddof)
variance with default degrees of freedom correction
var
python
statsmodels/statsmodels
statsmodels/stats/weightstats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/weightstats.py
BSD-3-Clause
def _var(self): """variance without degrees of freedom correction used for statistical tests with controlled ddof """ return self.sumsquares / self.sum_weights
variance without degrees of freedom correction used for statistical tests with controlled ddof
_var
python
statsmodels/statsmodels
statsmodels/stats/weightstats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/weightstats.py
BSD-3-Clause
def std(self): """standard deviation with default degrees of freedom correction """ return np.sqrt(self.var)
standard deviation with default degrees of freedom correction
std
python
statsmodels/statsmodels
statsmodels/stats/weightstats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/weightstats.py
BSD-3-Clause
def cov(self): """weighted covariance of data if data is 2 dimensional assumes variables in columns and observations in rows uses default ddof """ cov_ = np.dot(self.weights * self.demeaned.T, self.demeaned) cov_ /= self.sum_weights - self.ddof return cov_
weighted covariance of data if data is 2 dimensional assumes variables in columns and observations in rows uses default ddof
cov
python
statsmodels/statsmodels
statsmodels/stats/weightstats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/weightstats.py
BSD-3-Clause
def corrcoef(self): """weighted correlation with default ddof assumes variables in columns and observations in rows """ return self.cov / self.std / self.std[:, None]
weighted correlation with default ddof assumes variables in columns and observations in rows
corrcoef
python
statsmodels/statsmodels
statsmodels/stats/weightstats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/weightstats.py
BSD-3-Clause
def std_mean(self): """standard deviation of weighted mean """ std = self.std if self.ddof != 0: # ddof correction, (need copy of std) std = std * np.sqrt( (self.sum_weights - self.ddof) / self.sum_weights ) return std / np.sqrt(self.sum_weights - 1)
standard deviation of weighted mean
std_mean
python
statsmodels/statsmodels
statsmodels/stats/weightstats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/weightstats.py
BSD-3-Clause