code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def resid_pearson(self): """ Returns Pearson residuals. The Pearson residuals are calculated under a model where the rows and columns of the table are independent. """ fit = self.fittedvalues resids = (self.table - fit) / np.sqrt(fit) return resids
Returns Pearson residuals. The Pearson residuals are calculated under a model where the rows and columns of the table are independent.
resid_pearson
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def standardized_resids(self): """ Returns standardized residuals under independence. """ row, col = self.marginal_probabilities sresids = self.resid_pearson / np.sqrt(np.outer(1 - row, 1 - col)) return sresids
Returns standardized residuals under independence.
standardized_resids
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def chi2_contribs(self): """ Returns the contributions to the chi^2 statistic for independence. The returned table contains the contribution of each cell to the chi^2 test statistic for the null hypothesis that the rows and columns are independent. """ return self.resid_pearson**2
Returns the contributions to the chi^2 statistic for independence. The returned table contains the contribution of each cell to the chi^2 test statistic for the null hypothesis that the rows and columns are independent.
chi2_contribs
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def local_log_oddsratios(self): """ Returns local log odds ratios. The local log odds ratios are the log odds ratios calculated for contiguous 2x2 sub-tables. """ ta = self.table.copy() a = ta[0:-1, 0:-1] b = ta[0:-1, 1:] c = ta[1:, 0:-1] d = ta[1:, 1:] tab = np.log(a) + np.log(d) - np.log(b) - np.log(c) rslt = np.empty(self.table.shape, np.float64) rslt *= np.nan rslt[0:-1, 0:-1] = tab if isinstance(self.table_orig, pd.DataFrame): rslt = pd.DataFrame(rslt, index=self.table_orig.index, columns=self.table_orig.columns) return rslt
Returns local log odds ratios. The local log odds ratios are the log odds ratios calculated for contiguous 2x2 sub-tables.
local_log_oddsratios
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def local_oddsratios(self): """ Returns local odds ratios. See documentation for local_log_oddsratios. """ return np.exp(self.local_log_oddsratios)
Returns local odds ratios. See documentation for local_log_oddsratios.
local_oddsratios
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def cumulative_log_oddsratios(self): """ Returns cumulative log odds ratios. The cumulative log odds ratios for a contingency table with ordered rows and columns are calculated by collapsing all cells to the left/right and above/below a given point, to obtain a 2x2 table from which a log odds ratio can be calculated. """ ta = self.table.cumsum(0).cumsum(1) a = ta[0:-1, 0:-1] b = ta[0:-1, -1:] - a c = ta[-1:, 0:-1] - a d = ta[-1, -1] - (a + b + c) tab = np.log(a) + np.log(d) - np.log(b) - np.log(c) rslt = np.empty(self.table.shape, np.float64) rslt *= np.nan rslt[0:-1, 0:-1] = tab if isinstance(self.table_orig, pd.DataFrame): rslt = pd.DataFrame(rslt, index=self.table_orig.index, columns=self.table_orig.columns) return rslt
Returns cumulative log odds ratios. The cumulative log odds ratios for a contingency table with ordered rows and columns are calculated by collapsing all cells to the left/right and above/below a given point, to obtain a 2x2 table from which a log odds ratio can be calculated.
cumulative_log_oddsratios
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def cumulative_oddsratios(self): """ Returns the cumulative odds ratios for a contingency table. See documentation for cumulative_log_oddsratio. """ return np.exp(self.cumulative_log_oddsratios)
Returns the cumulative odds ratios for a contingency table. See documentation for cumulative_log_oddsratio.
cumulative_oddsratios
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def symmetry(self, method="bowker"): """ Test for symmetry of a joint distribution. This procedure tests the null hypothesis that the joint distribution is symmetric around the main diagonal, that is .. math:: p_{i, j} = p_{j, i} for all i, j Returns ------- Bunch A bunch with attributes * statistic : float chisquare test statistic * p-value : float p-value of the test statistic based on chisquare distribution * df : int degrees of freedom of the chisquare distribution Notes ----- The implementation is based on the SAS documentation. R includes it in `mcnemar.test` if the table is not 2 by 2. However a more direct generalization of the McNemar test to larger tables is provided by the homogeneity test (TableSymmetry.homogeneity). The p-value is based on the chi-square distribution which requires that the sample size is not very small to be a good approximation of the true distribution. For 2x2 contingency tables the exact distribution can be obtained with `mcnemar` See Also -------- mcnemar homogeneity """ if method.lower() != "bowker": raise ValueError("method for symmetry testing must be 'bowker'") k = self.table.shape[0] upp_idx = np.triu_indices(k, 1) tril = self.table.T[upp_idx] # lower triangle in column order triu = self.table[upp_idx] # upper triangle in row order statistic = ((tril - triu)**2 / (tril + triu + 1e-20)).sum() df = k * (k-1) / 2. pvalue = stats.chi2.sf(statistic, df) b = _Bunch() b.statistic = statistic b.pvalue = pvalue b.df = df return b
Test for symmetry of a joint distribution. This procedure tests the null hypothesis that the joint distribution is symmetric around the main diagonal, that is .. math:: p_{i, j} = p_{j, i} for all i, j Returns ------- Bunch A bunch with attributes * statistic : float chisquare test statistic * p-value : float p-value of the test statistic based on chisquare distribution * df : int degrees of freedom of the chisquare distribution Notes ----- The implementation is based on the SAS documentation. R includes it in `mcnemar.test` if the table is not 2 by 2. However a more direct generalization of the McNemar test to larger tables is provided by the homogeneity test (TableSymmetry.homogeneity). The p-value is based on the chi-square distribution which requires that the sample size is not very small to be a good approximation of the true distribution. For 2x2 contingency tables the exact distribution can be obtained with `mcnemar` See Also -------- mcnemar homogeneity
symmetry
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def homogeneity(self, method="stuart_maxwell"): """ Compare row and column marginal distributions. Parameters ---------- method : str Either 'stuart_maxwell' or 'bhapkar', leading to two different estimates of the covariance matrix for the estimated difference between the row margins and the column margins. Returns ------- Bunch A bunch with attributes: * statistic : float The chi^2 test statistic * pvalue : float The p-value of the test statistic * df : int The degrees of freedom of the reference distribution Notes ----- For a 2x2 table this is equivalent to McNemar's test. More generally the procedure tests the null hypothesis that the marginal distribution of the row factor is equal to the marginal distribution of the column factor. For this to be meaningful, the two factors must have the same sample space (i.e. the same categories). """ if self.table.shape[0] < 1: raise ValueError('table is empty') elif self.table.shape[0] == 1: b = _Bunch() b.statistic = 0 b.pvalue = 1 b.df = 0 return b method = method.lower() if method not in ["bhapkar", "stuart_maxwell"]: raise ValueError("method '%s' for homogeneity not known" % method) n_obs = self.table.sum() pr = self.table.astype(np.float64) / n_obs # Compute margins, eliminate last row/column so there is no # degeneracy row = pr.sum(1)[0:-1] col = pr.sum(0)[0:-1] pr = pr[0:-1, 0:-1] # The estimated difference between row and column margins. d = col - row # The degrees of freedom of the chi^2 reference distribution. df = pr.shape[0] if method == "bhapkar": vmat = -(pr + pr.T) - np.outer(d, d) dv = col + row - 2*np.diag(pr) - d**2 np.fill_diagonal(vmat, dv) elif method == "stuart_maxwell": vmat = -(pr + pr.T) dv = row + col - 2*np.diag(pr) np.fill_diagonal(vmat, dv) try: statistic = n_obs * np.dot(d, np.linalg.solve(vmat, d)) except np.linalg.LinAlgError: warnings.warn("Unable to invert covariance matrix", sm_exceptions.SingularMatrixWarning) b = _Bunch() b.statistic = np.nan b.pvalue = np.nan b.df = df return b pvalue = 1 - stats.chi2.cdf(statistic, df) b = _Bunch() b.statistic = statistic b.pvalue = pvalue b.df = df return b
Compare row and column marginal distributions. Parameters ---------- method : str Either 'stuart_maxwell' or 'bhapkar', leading to two different estimates of the covariance matrix for the estimated difference between the row margins and the column margins. Returns ------- Bunch A bunch with attributes: * statistic : float The chi^2 test statistic * pvalue : float The p-value of the test statistic * df : int The degrees of freedom of the reference distribution Notes ----- For a 2x2 table this is equivalent to McNemar's test. More generally the procedure tests the null hypothesis that the marginal distribution of the row factor is equal to the marginal distribution of the column factor. For this to be meaningful, the two factors must have the same sample space (i.e. the same categories).
homogeneity
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def summary(self, alpha=0.05, float_format="%.3f"): """ Produce a summary of the analysis. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the interval. float_format : str Used to format numeric values in the table. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ fmt = float_format headers = ["Statistic", "P-value", "DF"] stubs = ["Symmetry", "Homogeneity"] sy = self.symmetry() hm = self.homogeneity() data = [[fmt % sy.statistic, fmt % sy.pvalue, '%d' % sy.df], [fmt % hm.statistic, fmt % hm.pvalue, '%d' % hm.df]] tab = iolib.SimpleTable(data, headers, stubs, data_aligns="r", table_dec_above='') return tab
Produce a summary of the analysis. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the interval. float_format : str Used to format numeric values in the table. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation.
summary
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def from_data(cls, data, shift_zeros=True): """ Construct a Table object from data. Parameters ---------- data : array_like The raw data, the first column defines the rows and the second column defines the columns. shift_zeros : bool If True, and if there are any zeros in the contingency table, add 0.5 to all four cells of the table. """ if isinstance(data, pd.DataFrame): table = pd.crosstab(data.iloc[:, 0], data.iloc[:, 1]) else: table = pd.crosstab(data[:, 0], data[:, 1]) return cls(table, shift_zeros)
Construct a Table object from data. Parameters ---------- data : array_like The raw data, the first column defines the rows and the second column defines the columns. shift_zeros : bool If True, and if there are any zeros in the contingency table, add 0.5 to all four cells of the table.
from_data
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def log_oddsratio(self): """ Returns the log odds ratio for a 2x2 table. """ f = self.table.flatten() return np.dot(np.log(f), np.r_[1, -1, -1, 1])
Returns the log odds ratio for a 2x2 table.
log_oddsratio
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def oddsratio(self): """ Returns the odds ratio for a 2x2 table. """ return (self.table[0, 0] * self.table[1, 1] / (self.table[0, 1] * self.table[1, 0]))
Returns the odds ratio for a 2x2 table.
oddsratio
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def log_oddsratio_se(self): """ Returns the standard error for the log odds ratio. """ return np.sqrt(np.sum(1 / self.table))
Returns the standard error for the log odds ratio.
log_oddsratio_se
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def oddsratio_pvalue(self, null=1): """ P-value for a hypothesis test about the odds ratio. Parameters ---------- null : float The null value of the odds ratio. """ return self.log_oddsratio_pvalue(np.log(null))
P-value for a hypothesis test about the odds ratio. Parameters ---------- null : float The null value of the odds ratio.
oddsratio_pvalue
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def log_oddsratio_pvalue(self, null=0): """ P-value for a hypothesis test about the log odds ratio. Parameters ---------- null : float The null value of the log odds ratio. """ zscore = (self.log_oddsratio - null) / self.log_oddsratio_se pvalue = 2 * stats.norm.cdf(-np.abs(zscore)) return pvalue
P-value for a hypothesis test about the log odds ratio. Parameters ---------- null : float The null value of the log odds ratio.
log_oddsratio_pvalue
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def log_oddsratio_confint(self, alpha=0.05, method="normal"): """ A confidence level for the log odds ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ f = -stats.norm.ppf(alpha / 2) lor = self.log_oddsratio se = self.log_oddsratio_se lcb = lor - f * se ucb = lor + f * se return lcb, ucb
A confidence level for the log odds ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation.
log_oddsratio_confint
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def oddsratio_confint(self, alpha=0.05, method="normal"): """ A confidence interval for the odds ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ lcb, ucb = self.log_oddsratio_confint(alpha, method=method) return np.exp(lcb), np.exp(ucb)
A confidence interval for the odds ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation.
oddsratio_confint
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def riskratio(self): """ Returns the risk ratio for a 2x2 table. The risk ratio is calculated with respect to the rows. """ p = self.table[:, 0] / self.table.sum(1) return p[0] / p[1]
Returns the risk ratio for a 2x2 table. The risk ratio is calculated with respect to the rows.
riskratio
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def log_riskratio(self): """ Returns the log of the risk ratio. """ return np.log(self.riskratio)
Returns the log of the risk ratio.
log_riskratio
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def log_riskratio_se(self): """ Returns the standard error of the log of the risk ratio. """ n = self.table.sum(1) p = self.table[:, 0] / n va = np.sum((1 - p) / (n*p)) return np.sqrt(va)
Returns the standard error of the log of the risk ratio.
log_riskratio_se
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def riskratio_pvalue(self, null=1): """ p-value for a hypothesis test about the risk ratio. Parameters ---------- null : float The null value of the risk ratio. """ return self.log_riskratio_pvalue(np.log(null))
p-value for a hypothesis test about the risk ratio. Parameters ---------- null : float The null value of the risk ratio.
riskratio_pvalue
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def log_riskratio_pvalue(self, null=0): """ p-value for a hypothesis test about the log risk ratio. Parameters ---------- null : float The null value of the log risk ratio. """ zscore = (self.log_riskratio - null) / self.log_riskratio_se pvalue = 2 * stats.norm.cdf(-np.abs(zscore)) return pvalue
p-value for a hypothesis test about the log risk ratio. Parameters ---------- null : float The null value of the log risk ratio.
log_riskratio_pvalue
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def log_riskratio_confint(self, alpha=0.05, method="normal"): """ A confidence interval for the log risk ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ f = -stats.norm.ppf(alpha / 2) lrr = self.log_riskratio se = self.log_riskratio_se lcb = lrr - f * se ucb = lrr + f * se return lcb, ucb
A confidence interval for the log risk ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation.
log_riskratio_confint
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def riskratio_confint(self, alpha=0.05, method="normal"): """ A confidence interval for the risk ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ lcb, ucb = self.log_riskratio_confint(alpha, method=method) return np.exp(lcb), np.exp(ucb)
A confidence interval for the risk ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation.
riskratio_confint
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def summary(self, alpha=0.05, float_format="%.3f", method="normal"): """ Summarizes results for a 2x2 table analysis. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence intervals. float_format : str Used to format the numeric values in the table. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ def fmt(x): if isinstance(x, str): return x return float_format % x headers = ["Estimate", "SE", "LCB", "UCB", "p-value"] stubs = ["Odds ratio", "Log odds ratio", "Risk ratio", "Log risk ratio"] lcb1, ucb1 = self.oddsratio_confint(alpha, method) lcb2, ucb2 = self.log_oddsratio_confint(alpha, method) lcb3, ucb3 = self.riskratio_confint(alpha, method) lcb4, ucb4 = self.log_riskratio_confint(alpha, method) data = [[fmt(x) for x in [self.oddsratio, "", lcb1, ucb1, self.oddsratio_pvalue()]], [fmt(x) for x in [self.log_oddsratio, self.log_oddsratio_se, lcb2, ucb2, self.oddsratio_pvalue()]], [fmt(x) for x in [self.riskratio, "", lcb3, ucb3, self.riskratio_pvalue()]], [fmt(x) for x in [self.log_riskratio, self.log_riskratio_se, lcb4, ucb4, self.riskratio_pvalue()]]] tab = iolib.SimpleTable(data, headers, stubs, data_aligns="r", table_dec_above='') return tab
Summarizes results for a 2x2 table analysis. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence intervals. float_format : str Used to format the numeric values in the table. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation.
summary
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def from_data(cls, var1, var2, strata, data): """ Construct a StratifiedTable object from data. Parameters ---------- var1 : int or string The column index or name of `data` specifying the variable defining the rows of the contingency table. The variable must have only two distinct values. var2 : int or string The column index or name of `data` specifying the variable defining the columns of the contingency table. The variable must have only two distinct values. strata : int or string The column index or name of `data` specifying the variable defining the strata. data : array_like The raw data. A cross-table for analysis is constructed from the first two columns. Returns ------- StratifiedTable """ if not isinstance(data, pd.DataFrame): data1 = pd.DataFrame(index=np.arange(data.shape[0]), columns=[var1, var2, strata]) data1[data1.columns[var1]] = data[:, var1] data1[data1.columns[var2]] = data[:, var2] data1[data1.columns[strata]] = data[:, strata] else: data1 = data[[var1, var2, strata]] gb = data1.groupby(strata).groups tables = [] for g in gb: ii = gb[g] tab = pd.crosstab(data1.loc[ii, var1], data1.loc[ii, var2]) if (tab.shape != np.r_[2, 2]).any(): msg = "Invalid table dimensions" raise ValueError(msg) tables.append(np.asarray(tab)) return cls(tables)
Construct a StratifiedTable object from data. Parameters ---------- var1 : int or string The column index or name of `data` specifying the variable defining the rows of the contingency table. The variable must have only two distinct values. var2 : int or string The column index or name of `data` specifying the variable defining the columns of the contingency table. The variable must have only two distinct values. strata : int or string The column index or name of `data` specifying the variable defining the strata. data : array_like The raw data. A cross-table for analysis is constructed from the first two columns. Returns ------- StratifiedTable
from_data
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def test_null_odds(self, correction=False): """ Test that all tables have odds ratio equal to 1. This is the 'Mantel-Haenszel' test. Parameters ---------- correction : bool If True, use the continuity correction when calculating the test statistic. Returns ------- Bunch A bunch containing the chi^2 test statistic and p-value. """ statistic = np.sum(self.table[0, 0, :] - self._apb * self._apc / self._n) statistic = np.abs(statistic) if correction: statistic -= 0.5 statistic = statistic**2 denom = self._apb * self._apc * self._bpd * self._cpd denom /= (self._n**2 * (self._n - 1)) denom = np.sum(denom) statistic /= denom # df is always 1 pvalue = 1 - stats.chi2.cdf(statistic, 1) b = _Bunch() b.statistic = statistic b.pvalue = pvalue return b
Test that all tables have odds ratio equal to 1. This is the 'Mantel-Haenszel' test. Parameters ---------- correction : bool If True, use the continuity correction when calculating the test statistic. Returns ------- Bunch A bunch containing the chi^2 test statistic and p-value.
test_null_odds
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def oddsratio_pooled(self): """ The pooled odds ratio. The value is an estimate of a common odds ratio across all of the stratified tables. """ odds_ratio = np.sum(self._ad / self._n) / np.sum(self._bc / self._n) return odds_ratio
The pooled odds ratio. The value is an estimate of a common odds ratio across all of the stratified tables.
oddsratio_pooled
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def logodds_pooled(self): """ Returns the logarithm of the pooled odds ratio. See oddsratio_pooled for more information. """ return np.log(self.oddsratio_pooled)
Returns the logarithm of the pooled odds ratio. See oddsratio_pooled for more information.
logodds_pooled
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def riskratio_pooled(self): """ Estimate of the pooled risk ratio. """ acd = self.table[0, 0, :] * self._cpd cab = self.table[1, 0, :] * self._apb rr = np.sum(acd / self._n) / np.sum(cab / self._n) return rr
Estimate of the pooled risk ratio.
riskratio_pooled
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def logodds_pooled_se(self): """ Estimated standard error of the pooled log odds ratio References ---------- J. Robins, N. Breslow, S. Greenland. "Estimators of the Mantel-Haenszel Variance Consistent in Both Sparse Data and Large-Strata Limiting Models." Biometrics 42, no. 2 (1986): 311-23. """ adns = np.sum(self._ad / self._n) bcns = np.sum(self._bc / self._n) lor_va = np.sum(self._apd * self._ad / self._n**2) / adns**2 mid = self._apd * self._bc / self._n**2 mid += (1 - self._apd / self._n) * self._ad / self._n mid = np.sum(mid) mid /= (adns * bcns) lor_va += mid lor_va += np.sum((1 - self._apd / self._n) * self._bc / self._n) / bcns**2 lor_va /= 2 lor_se = np.sqrt(lor_va) return lor_se
Estimated standard error of the pooled log odds ratio References ---------- J. Robins, N. Breslow, S. Greenland. "Estimators of the Mantel-Haenszel Variance Consistent in Both Sparse Data and Large-Strata Limiting Models." Biometrics 42, no. 2 (1986): 311-23.
logodds_pooled_se
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def logodds_pooled_confint(self, alpha=0.05, method="normal"): """ A confidence interval for the pooled log odds ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. Returns ------- lcb : float The lower confidence limit. ucb : float The upper confidence limit. """ lor = np.log(self.oddsratio_pooled) lor_se = self.logodds_pooled_se f = -stats.norm.ppf(alpha / 2) lcb = lor - f * lor_se ucb = lor + f * lor_se return lcb, ucb
A confidence interval for the pooled log odds ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. Returns ------- lcb : float The lower confidence limit. ucb : float The upper confidence limit.
logodds_pooled_confint
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def oddsratio_pooled_confint(self, alpha=0.05, method="normal"): """ A confidence interval for the pooled odds ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. Returns ------- lcb : float The lower confidence limit. ucb : float The upper confidence limit. """ lcb, ucb = self.logodds_pooled_confint(alpha, method=method) lcb = np.exp(lcb) ucb = np.exp(ucb) return lcb, ucb
A confidence interval for the pooled odds ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. Returns ------- lcb : float The lower confidence limit. ucb : float The upper confidence limit.
oddsratio_pooled_confint
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def test_equal_odds(self, adjust=False): """ Test that all odds ratios are identical. This is the 'Breslow-Day' testing procedure. Parameters ---------- adjust : bool Use the 'Tarone' adjustment to achieve the chi^2 asymptotic distribution. Returns ------- A bunch containing the following attributes: statistic : float The chi^2 test statistic. p-value : float The p-value for the test. """ table = self.table r = self.oddsratio_pooled a = 1 - r b = r * (self._apb + self._apc) + self._dma c = -r * self._apb * self._apc # Expected value of first cell dr = np.sqrt(b**2 - 4*a*c) e11 = (-b + dr) / (2*a) # Variance of the first cell v11 = (1 / e11 + 1 / (self._apc - e11) + 1 / (self._apb - e11) + 1 / (self._dma + e11)) v11 = 1 / v11 statistic = np.sum((table[0, 0, :] - e11)**2 / v11) if adjust: adj = table[0, 0, :].sum() - e11.sum() adj = adj**2 adj /= np.sum(v11) statistic -= adj pvalue = 1 - stats.chi2.cdf(statistic, table.shape[2] - 1) b = _Bunch() b.statistic = statistic b.pvalue = pvalue return b
Test that all odds ratios are identical. This is the 'Breslow-Day' testing procedure. Parameters ---------- adjust : bool Use the 'Tarone' adjustment to achieve the chi^2 asymptotic distribution. Returns ------- A bunch containing the following attributes: statistic : float The chi^2 test statistic. p-value : float The p-value for the test.
test_equal_odds
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def summary(self, alpha=0.05, float_format="%.3f", method="normal"): """ A summary of all the main results. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence intervals. float_format : str Used for formatting numeric values in the summary. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ def fmt(x): if isinstance(x, str): return x return float_format % x co_lcb, co_ucb = self.oddsratio_pooled_confint( alpha=alpha, method=method) clo_lcb, clo_ucb = self.logodds_pooled_confint( alpha=alpha, method=method) headers = ["Estimate", "LCB", "UCB"] stubs = ["Pooled odds", "Pooled log odds", "Pooled risk ratio", ""] data = [[fmt(x) for x in [self.oddsratio_pooled, co_lcb, co_ucb]], [fmt(x) for x in [self.logodds_pooled, clo_lcb, clo_ucb]], [fmt(x) for x in [self.riskratio_pooled, "", ""]], ['', '', '']] tab1 = iolib.SimpleTable(data, headers, stubs, data_aligns="r", table_dec_above='') headers = ["Statistic", "P-value", ""] stubs = ["Test of OR=1", "Test constant OR"] rslt1 = self.test_null_odds() rslt2 = self.test_equal_odds() data = [[fmt(x) for x in [rslt1.statistic, rslt1.pvalue, ""]], [fmt(x) for x in [rslt2.statistic, rslt2.pvalue, ""]]] tab2 = iolib.SimpleTable(data, headers, stubs, data_aligns="r") tab1.extend(tab2) headers = ["", "", ""] stubs = ["Number of tables", "Min n", "Max n", "Avg n", "Total n"] ss = self.table.sum(0).sum(0) data = [["%d" % self.table.shape[2], '', ''], ["%d" % min(ss), '', ''], ["%d" % max(ss), '', ''], ["%.0f" % np.mean(ss), '', ''], ["%d" % sum(ss), '', '', '']] tab3 = iolib.SimpleTable(data, headers, stubs, data_aligns="r") tab1.extend(tab3) return tab1
A summary of all the main results. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence intervals. float_format : str Used for formatting numeric values in the summary. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation.
summary
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def mcnemar(table, exact=True, correction=True): """ McNemar test of homogeneity. Parameters ---------- table : array_like A square contingency table. exact : bool If exact is true, then the binomial distribution will be used. If exact is false, then the chisquare distribution will be used, which is the approximation to the distribution of the test statistic for large sample sizes. correction : bool If true, then a continuity correction is used for the chisquare distribution (if exact is false.) Returns ------- A bunch with attributes: statistic : float or int, array The test statistic is the chisquare statistic if exact is false. If the exact binomial distribution is used, then this contains the min(n1, n2), where n1, n2 are cases that are zero in one sample but one in the other sample. pvalue : float or array p-value of the null hypothesis of equal marginal distributions. Notes ----- This is a special case of Cochran's Q test, and of the homogeneity test. The results when the chisquare distribution is used are identical, except for continuity correction. """ table = _make_df_square(table) table = np.asarray(table, dtype=np.float64) n1, n2 = table[0, 1], table[1, 0] if exact: statistic = np.minimum(n1, n2) # binom is symmetric with p=0.5 # SciPy 1.7+ requires int arguments int_sum = int(n1 + n2) if int_sum != (n1 + n2): raise ValueError( "exact can only be used with tables containing integers." ) pvalue = stats.binom.cdf(statistic, int_sum, 0.5) * 2 pvalue = np.minimum(pvalue, 1) # limit to 1 if n1==n2 else: corr = int(correction) # convert bool to 0 or 1 statistic = (np.abs(n1 - n2) - corr)**2 / (1. * (n1 + n2)) df = 1 pvalue = stats.chi2.sf(statistic, df) b = _Bunch() b.statistic = statistic b.pvalue = pvalue return b
McNemar test of homogeneity. Parameters ---------- table : array_like A square contingency table. exact : bool If exact is true, then the binomial distribution will be used. If exact is false, then the chisquare distribution will be used, which is the approximation to the distribution of the test statistic for large sample sizes. correction : bool If true, then a continuity correction is used for the chisquare distribution (if exact is false.) Returns ------- A bunch with attributes: statistic : float or int, array The test statistic is the chisquare statistic if exact is false. If the exact binomial distribution is used, then this contains the min(n1, n2), where n1, n2 are cases that are zero in one sample but one in the other sample. pvalue : float or array p-value of the null hypothesis of equal marginal distributions. Notes ----- This is a special case of Cochran's Q test, and of the homogeneity test. The results when the chisquare distribution is used are identical, except for continuity correction.
mcnemar
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def cochrans_q(x, return_object=True): """ Cochran's Q test for identical binomial proportions. Parameters ---------- x : array_like, 2d (N, k) data with N cases and k variables return_object : bool Return values as bunch instead of as individual values. Returns ------- Returns a bunch containing the following attributes, or the individual values according to the value of `return_object`. statistic : float test statistic pvalue : float pvalue from the chisquare distribution Notes ----- Cochran's Q is a k-sample extension of the McNemar test. If there are only two groups, then Cochran's Q test and the McNemar test are equivalent. The procedure tests that the probability of success is the same for every group. The alternative hypothesis is that at least two groups have a different probability of success. In Wikipedia terminology, rows are blocks and columns are treatments. The number of rows N, should be large for the chisquare distribution to be a good approximation. The Null hypothesis of the test is that all treatments have the same effect. References ---------- https://en.wikipedia.org/wiki/Cochran_test SAS Manual for NPAR TESTS """ x = np.asarray(x, dtype=np.float64) gruni = np.unique(x) N, k = x.shape count_row_success = (x == gruni[-1]).sum(1, float) count_col_success = (x == gruni[-1]).sum(0, float) count_row_ss = count_row_success.sum() count_col_ss = count_col_success.sum() assert count_row_ss == count_col_ss # just a calculation check # From the SAS manual q_stat = ((k-1) * (k * np.sum(count_col_success**2) - count_col_ss**2) / (k * count_row_ss - np.sum(count_row_success**2))) # Note: the denominator looks just like k times the variance of # the columns # Wikipedia uses a different, but equivalent expression # q_stat = (k-1) * (k * np.sum(count_row_success**2) - count_row_ss**2) # / (k * count_col_ss - np.sum(count_col_success**2)) df = k - 1 pvalue = stats.chi2.sf(q_stat, df) if return_object: b = _Bunch() b.statistic = q_stat b.df = df b.pvalue = pvalue return b return q_stat, pvalue, df
Cochran's Q test for identical binomial proportions. Parameters ---------- x : array_like, 2d (N, k) data with N cases and k variables return_object : bool Return values as bunch instead of as individual values. Returns ------- Returns a bunch containing the following attributes, or the individual values according to the value of `return_object`. statistic : float test statistic pvalue : float pvalue from the chisquare distribution Notes ----- Cochran's Q is a k-sample extension of the McNemar test. If there are only two groups, then Cochran's Q test and the McNemar test are equivalent. The procedure tests that the probability of success is the same for every group. The alternative hypothesis is that at least two groups have a different probability of success. In Wikipedia terminology, rows are blocks and columns are treatments. The number of rows N, should be large for the chisquare distribution to be a good approximation. The Null hypothesis of the test is that all treatments have the same effect. References ---------- https://en.wikipedia.org/wiki/Cochran_test SAS Manual for NPAR TESTS
cochrans_q
python
statsmodels/statsmodels
statsmodels/stats/contingency_tables.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/contingency_tables.py
BSD-3-Clause
def _ecdf(x): '''no frills empirical cdf used in fdrcorrection ''' nobs = len(x) return np.arange(1,nobs+1)/float(nobs)
no frills empirical cdf used in fdrcorrection
_ecdf
python
statsmodels/statsmodels
statsmodels/stats/multitest.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multitest.py
BSD-3-Clause
def multipletests(pvals, alpha=0.05, method='hs', maxiter=1, is_sorted=False, returnsorted=False): """ Test results and p-value correction for multiple tests Parameters ---------- pvals : array_like, 1-d uncorrected p-values. Must be 1-dimensional. alpha : float FWER, family-wise error rate, e.g. 0.1 method : str Method used for testing and adjustment of pvalues. Can be either the full name or initial letters. Available methods are: - `bonferroni` : one-step correction - `sidak` : one-step correction - `holm-sidak` : step down method using Sidak adjustments - `holm` : step-down method using Bonferroni adjustments - `simes-hochberg` : step-up method (independent) - `hommel` : closed method based on Simes tests (non-negative) - `fdr_bh` : Benjamini/Hochberg (non-negative) - `fdr_by` : Benjamini/Yekutieli (negative) - `fdr_tsbh` : two stage fdr correction (non-negative) - `fdr_tsbky` : two stage fdr correction (non-negative) maxiter : int or bool Maximum number of iterations for two-stage fdr, `fdr_tsbh` and `fdr_tsbky`. It is ignored by all other methods. maxiter=1 (default) corresponds to the two stage method. maxiter=-1 corresponds to full iterations which is maxiter=len(pvals). maxiter=0 uses only a single stage fdr correction using a 'bh' or 'bky' prior fraction of assumed true hypotheses. is_sorted : bool If False (default), the p_values will be sorted, but the corrected pvalues are in the original order. If True, then it assumed that the pvalues are already sorted in ascending order. returnsorted : bool not tested, return sorted p-values instead of original sequence Returns ------- reject : ndarray, boolean true for hypothesis that can be rejected for given alpha pvals_corrected : ndarray p-values corrected for multiple tests alphacSidak : float corrected alpha for Sidak method alphacBonf : float corrected alpha for Bonferroni method Notes ----- There may be API changes for this function in the future. Except for 'fdr_twostage', the p-value correction is independent of the alpha specified as argument. In these cases the corrected p-values can also be compared with a different alpha. In the case of 'fdr_twostage', the corrected p-values are specific to the given alpha, see ``fdrcorrection_twostage``. The 'fdr_gbs' procedure is not verified against another package, p-values are derived from scratch and are not derived in the reference. In Monte Carlo experiments the method worked correctly and maintained the false discovery rate. All procedures that are included, control FWER or FDR in the independent case, and most are robust in the positively correlated case. `fdr_gbs`: high power, fdr control for independent case and only small violation in positively correlated case **Timing**: Most of the time with large arrays is spent in `argsort`. When we want to calculate the p-value for several methods, then it is more efficient to presort the pvalues, and put the results back into the original order outside of the function. Method='hommel' is very slow for large arrays, since it requires the evaluation of n partitions, where n is the number of p-values. """ import gc pvals = np.asarray(pvals) alphaf = alpha # Notation ? if not is_sorted: sortind = np.argsort(pvals) pvals = np.take(pvals, sortind) ntests = len(pvals) alphacSidak = 1 - np.power((1. - alphaf), 1./ntests) alphacBonf = alphaf / float(ntests) if method.lower() in ['b', 'bonf', 'bonferroni']: reject = pvals <= alphacBonf pvals_corrected = pvals * float(ntests) elif method.lower() in ['s', 'sidak']: reject = pvals <= alphacSidak pvals_corrected = -np.expm1(ntests * np.log1p(-pvals)) elif method.lower() in ['hs', 'holm-sidak']: alphacSidak_all = 1 - np.power((1. - alphaf), 1./np.arange(ntests, 0, -1)) notreject = pvals > alphacSidak_all del alphacSidak_all nr_index = np.nonzero(notreject)[0] if nr_index.size == 0: # nonreject is empty, all rejected notrejectmin = len(pvals) else: notrejectmin = np.min(nr_index) notreject[notrejectmin:] = True reject = ~notreject del notreject # It's eqivalent to 1 - np.power((1. - pvals), # np.arange(ntests, 0, -1)) # but prevents the issue of the floating point precision pvals_corrected_raw = -np.expm1(np.arange(ntests, 0, -1) * np.log1p(-pvals)) pvals_corrected = np.maximum.accumulate(pvals_corrected_raw) del pvals_corrected_raw elif method.lower() in ['h', 'holm']: notreject = pvals > alphaf / np.arange(ntests, 0, -1) nr_index = np.nonzero(notreject)[0] if nr_index.size == 0: # nonreject is empty, all rejected notrejectmin = len(pvals) else: notrejectmin = np.min(nr_index) notreject[notrejectmin:] = True reject = ~notreject pvals_corrected_raw = pvals * np.arange(ntests, 0, -1) pvals_corrected = np.maximum.accumulate(pvals_corrected_raw) del pvals_corrected_raw gc.collect() elif method.lower() in ['sh', 'simes-hochberg']: alphash = alphaf / np.arange(ntests, 0, -1) reject = pvals <= alphash rejind = np.nonzero(reject) if rejind[0].size > 0: rejectmax = np.max(np.nonzero(reject)) reject[:rejectmax] = True pvals_corrected_raw = np.arange(ntests, 0, -1) * pvals pvals_corrected = np.minimum.accumulate(pvals_corrected_raw[::-1])[::-1] del pvals_corrected_raw elif method.lower() in ['ho', 'hommel']: # we need a copy because we overwrite it in a loop a = pvals.copy() for m in range(ntests, 1, -1): cim = np.min(m * pvals[-m:] / np.arange(1,m+1.)) a[-m:] = np.maximum(a[-m:], cim) a[:-m] = np.maximum(a[:-m], np.minimum(m * pvals[:-m], cim)) pvals_corrected = a reject = a <= alphaf elif method.lower() in ['fdr_bh', 'fdr_i', 'fdr_p', 'fdri', 'fdrp']: # delegate, call with sorted pvals reject, pvals_corrected = fdrcorrection(pvals, alpha=alpha, method='indep', is_sorted=True) elif method.lower() in ['fdr_by', 'fdr_n', 'fdr_c', 'fdrn', 'fdrcorr']: # delegate, call with sorted pvals reject, pvals_corrected = fdrcorrection(pvals, alpha=alpha, method='n', is_sorted=True) elif method.lower() in ['fdr_tsbky', 'fdr_2sbky', 'fdr_twostage']: # delegate, call with sorted pvals reject, pvals_corrected = fdrcorrection_twostage(pvals, alpha=alpha, method='bky', maxiter=maxiter, is_sorted=True)[:2] elif method.lower() in ['fdr_tsbh', 'fdr_2sbh']: # delegate, call with sorted pvals reject, pvals_corrected = fdrcorrection_twostage(pvals, alpha=alpha, method='bh', maxiter=maxiter, is_sorted=True)[:2] elif method.lower() in ['fdr_gbs']: #adaptive stepdown in Gavrilov, Benjamini, Sarkar, Annals of Statistics 2009 ## notreject = pvals > alphaf / np.arange(ntests, 0, -1) #alphacSidak ## notrejectmin = np.min(np.nonzero(notreject)) ## notreject[notrejectmin:] = True ## reject = ~notreject ii = np.arange(1, ntests + 1) q = (ntests + 1. - ii)/ii * pvals / (1. - pvals) pvals_corrected_raw = np.maximum.accumulate(q) #up requirementd pvals_corrected = np.minimum.accumulate(pvals_corrected_raw[::-1])[::-1] del pvals_corrected_raw reject = pvals_corrected <= alpha else: raise ValueError('method not recognized') if pvals_corrected is not None: #not necessary anymore pvals_corrected[pvals_corrected>1] = 1 if is_sorted or returnsorted: return reject, pvals_corrected, alphacSidak, alphacBonf else: pvals_corrected_ = np.empty_like(pvals_corrected) pvals_corrected_[sortind] = pvals_corrected del pvals_corrected reject_ = np.empty_like(reject) reject_[sortind] = reject return reject_, pvals_corrected_, alphacSidak, alphacBonf
Test results and p-value correction for multiple tests Parameters ---------- pvals : array_like, 1-d uncorrected p-values. Must be 1-dimensional. alpha : float FWER, family-wise error rate, e.g. 0.1 method : str Method used for testing and adjustment of pvalues. Can be either the full name or initial letters. Available methods are: - `bonferroni` : one-step correction - `sidak` : one-step correction - `holm-sidak` : step down method using Sidak adjustments - `holm` : step-down method using Bonferroni adjustments - `simes-hochberg` : step-up method (independent) - `hommel` : closed method based on Simes tests (non-negative) - `fdr_bh` : Benjamini/Hochberg (non-negative) - `fdr_by` : Benjamini/Yekutieli (negative) - `fdr_tsbh` : two stage fdr correction (non-negative) - `fdr_tsbky` : two stage fdr correction (non-negative) maxiter : int or bool Maximum number of iterations for two-stage fdr, `fdr_tsbh` and `fdr_tsbky`. It is ignored by all other methods. maxiter=1 (default) corresponds to the two stage method. maxiter=-1 corresponds to full iterations which is maxiter=len(pvals). maxiter=0 uses only a single stage fdr correction using a 'bh' or 'bky' prior fraction of assumed true hypotheses. is_sorted : bool If False (default), the p_values will be sorted, but the corrected pvalues are in the original order. If True, then it assumed that the pvalues are already sorted in ascending order. returnsorted : bool not tested, return sorted p-values instead of original sequence Returns ------- reject : ndarray, boolean true for hypothesis that can be rejected for given alpha pvals_corrected : ndarray p-values corrected for multiple tests alphacSidak : float corrected alpha for Sidak method alphacBonf : float corrected alpha for Bonferroni method Notes ----- There may be API changes for this function in the future. Except for 'fdr_twostage', the p-value correction is independent of the alpha specified as argument. In these cases the corrected p-values can also be compared with a different alpha. In the case of 'fdr_twostage', the corrected p-values are specific to the given alpha, see ``fdrcorrection_twostage``. The 'fdr_gbs' procedure is not verified against another package, p-values are derived from scratch and are not derived in the reference. In Monte Carlo experiments the method worked correctly and maintained the false discovery rate. All procedures that are included, control FWER or FDR in the independent case, and most are robust in the positively correlated case. `fdr_gbs`: high power, fdr control for independent case and only small violation in positively correlated case **Timing**: Most of the time with large arrays is spent in `argsort`. When we want to calculate the p-value for several methods, then it is more efficient to presort the pvalues, and put the results back into the original order outside of the function. Method='hommel' is very slow for large arrays, since it requires the evaluation of n partitions, where n is the number of p-values.
multipletests
python
statsmodels/statsmodels
statsmodels/stats/multitest.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multitest.py
BSD-3-Clause
def fdrcorrection(pvals, alpha=0.05, method='indep', is_sorted=False): ''' pvalue correction for false discovery rate. This covers Benjamini/Hochberg for independent or positively correlated and Benjamini/Yekutieli for general or negatively correlated tests. Parameters ---------- pvals : array_like, 1d Set of p-values of the individual tests. alpha : float, optional Family-wise error rate. Defaults to ``0.05``. method : {'i', 'indep', 'p', 'poscorr', 'n', 'negcorr'}, optional Which method to use for FDR correction. ``{'i', 'indep', 'p', 'poscorr'}`` all refer to ``fdr_bh`` (Benjamini/Hochberg for independent or positively correlated tests). ``{'n', 'negcorr'}`` both refer to ``fdr_by`` (Benjamini/Yekutieli for general or negatively correlated tests). Defaults to ``'indep'``. is_sorted : bool, optional If False (default), the p_values will be sorted, but the corrected pvalues are in the original order. If True, then it assumed that the pvalues are already sorted in ascending order. Returns ------- rejected : ndarray, bool True if a hypothesis is rejected, False if not pvalue-corrected : ndarray pvalues adjusted for multiple hypothesis testing to limit FDR Notes ----- If there is prior information on the fraction of true hypothesis, then alpha should be set to ``alpha * m/m_0`` where m is the number of tests, given by the p-values, and m_0 is an estimate of the true hypothesis. (see Benjamini, Krieger and Yekuteli) The two-step method of Benjamini, Krieger and Yekutiel that estimates the number of false hypotheses will be available (soon). Both methods exposed via this function (Benjamini/Hochberg, Benjamini/Yekutieli) are also available in the function ``multipletests``, as ``method="fdr_bh"`` and ``method="fdr_by"``, respectively. See also -------- multipletests ''' pvals = np.asarray(pvals) assert pvals.ndim == 1, "pvals must be 1-dimensional, that is of shape (n,)" if not is_sorted: pvals_sortind = np.argsort(pvals) pvals_sorted = np.take(pvals, pvals_sortind) else: pvals_sorted = pvals # alias if method in ['i', 'indep', 'p', 'poscorr']: ecdffactor = _ecdf(pvals_sorted) elif method in ['n', 'negcorr']: cm = np.sum(1./np.arange(1, len(pvals_sorted)+1)) #corrected this ecdffactor = _ecdf(pvals_sorted) / cm ## elif method in ['n', 'negcorr']: ## cm = np.sum(np.arange(len(pvals))) ## ecdffactor = ecdf(pvals_sorted)/cm else: raise ValueError('only indep and negcorr implemented') reject = pvals_sorted <= ecdffactor*alpha if reject.any(): rejectmax = max(np.nonzero(reject)[0]) reject[:rejectmax] = True pvals_corrected_raw = pvals_sorted / ecdffactor pvals_corrected = np.minimum.accumulate(pvals_corrected_raw[::-1])[::-1] del pvals_corrected_raw pvals_corrected[pvals_corrected>1] = 1 if not is_sorted: pvals_corrected_ = np.empty_like(pvals_corrected) pvals_corrected_[pvals_sortind] = pvals_corrected del pvals_corrected reject_ = np.empty_like(reject) reject_[pvals_sortind] = reject return reject_, pvals_corrected_ else: return reject, pvals_corrected
pvalue correction for false discovery rate. This covers Benjamini/Hochberg for independent or positively correlated and Benjamini/Yekutieli for general or negatively correlated tests. Parameters ---------- pvals : array_like, 1d Set of p-values of the individual tests. alpha : float, optional Family-wise error rate. Defaults to ``0.05``. method : {'i', 'indep', 'p', 'poscorr', 'n', 'negcorr'}, optional Which method to use for FDR correction. ``{'i', 'indep', 'p', 'poscorr'}`` all refer to ``fdr_bh`` (Benjamini/Hochberg for independent or positively correlated tests). ``{'n', 'negcorr'}`` both refer to ``fdr_by`` (Benjamini/Yekutieli for general or negatively correlated tests). Defaults to ``'indep'``. is_sorted : bool, optional If False (default), the p_values will be sorted, but the corrected pvalues are in the original order. If True, then it assumed that the pvalues are already sorted in ascending order. Returns ------- rejected : ndarray, bool True if a hypothesis is rejected, False if not pvalue-corrected : ndarray pvalues adjusted for multiple hypothesis testing to limit FDR Notes ----- If there is prior information on the fraction of true hypothesis, then alpha should be set to ``alpha * m/m_0`` where m is the number of tests, given by the p-values, and m_0 is an estimate of the true hypothesis. (see Benjamini, Krieger and Yekuteli) The two-step method of Benjamini, Krieger and Yekutiel that estimates the number of false hypotheses will be available (soon). Both methods exposed via this function (Benjamini/Hochberg, Benjamini/Yekutieli) are also available in the function ``multipletests``, as ``method="fdr_bh"`` and ``method="fdr_by"``, respectively. See also -------- multipletests
fdrcorrection
python
statsmodels/statsmodels
statsmodels/stats/multitest.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multitest.py
BSD-3-Clause
def fdrcorrection_twostage(pvals, alpha=0.05, method='bky', maxiter=1, iter=None, is_sorted=False): '''(iterated) two stage linear step-up procedure with estimation of number of true hypotheses Benjamini, Krieger and Yekuteli, procedure in Definition 6 Parameters ---------- pvals : array_like set of p-values of the individual tests. alpha : float error rate method : {'bky', 'bh') see Notes for details * 'bky' - implements the procedure in Definition 6 of Benjamini, Krieger and Yekuteli 2006 * 'bh' - the two stage method of Benjamini and Hochberg maxiter : int or bool Maximum number of iterations. maxiter=1 (default) corresponds to the two stage method. maxiter=-1 corresponds to full iterations which is maxiter=len(pvals). maxiter=0 uses only a single stage fdr correction using a 'bh' or 'bky' prior fraction of assumed true hypotheses. Boolean maxiter is allowed for backwards compatibility with the deprecated ``iter`` keyword. maxiter=False is two-stage fdr (maxiter=1) maxiter=True is full iteration (maxiter=-1 or maxiter=len(pvals)) .. versionadded:: 0.14 Replacement for ``iter`` with additional features. iter : bool ``iter`` is deprecated use ``maxiter`` instead. If iter is True, then only one iteration step is used, this is the two-step method. If iter is False, then iterations are stopped at convergence which occurs in a finite number of steps (at most len(pvals) steps). .. deprecated:: 0.14 Use ``maxiter`` instead of ``iter``. Returns ------- rejected : ndarray, bool True if a hypothesis is rejected, False if not pvalue-corrected : ndarray pvalues adjusted for multiple hypotheses testing to limit FDR m0 : int ntest - rej, estimated number of true (not rejected) hypotheses alpha_stages : list of floats A list of alphas that have been used at each stage Notes ----- The returned corrected p-values are specific to the given alpha, they cannot be used for a different alpha. The returned corrected p-values are from the last stage of the fdr_bh linear step-up procedure (fdrcorrection0 with method='indep') corrected for the estimated fraction of true hypotheses. This means that the rejection decision can be obtained with ``pval_corrected <= alpha``, where ``alpha`` is the original significance level. (Note: This has changed from earlier versions (<0.5.0) of statsmodels.) BKY described several other multi-stage methods, which would be easy to implement. However, in their simulation the simple two-stage method (with iter=False) was the most robust to the presence of positive correlation TODO: What should be returned? ''' pvals = np.asarray(pvals) if iter is not None: import warnings msg = "iter keyword is deprecated, use maxiter keyword instead." warnings.warn(msg, FutureWarning) if iter is False: maxiter = 1 elif iter is True or maxiter in [-1, None] : maxiter = len(pvals) # otherwise we use maxiter if not is_sorted: pvals_sortind = np.argsort(pvals) pvals = np.take(pvals, pvals_sortind) ntests = len(pvals) if method == 'bky': fact = (1.+alpha) alpha_prime = alpha / fact elif method == 'bh': fact = 1. alpha_prime = alpha else: raise ValueError("only 'bky' and 'bh' are available as method") alpha_stages = [alpha_prime] rej, pvalscorr = fdrcorrection(pvals, alpha=alpha_prime, method='indep', is_sorted=True) r1 = rej.sum() if (r1 == 0) or (r1 == ntests): # return rej, pvalscorr * fact, ntests - r1, alpha_stages reject = rej pvalscorr *= fact ri = r1 else: ri_old = ri = r1 ntests0 = ntests # needed if maxiter=0 # while True: for it in range(maxiter): ntests0 = 1.0 * ntests - ri_old alpha_star = alpha_prime * ntests / ntests0 alpha_stages.append(alpha_star) #print ntests0, alpha_star rej, pvalscorr = fdrcorrection(pvals, alpha=alpha_star, method='indep', is_sorted=True) ri = rej.sum() if (it >= maxiter - 1) or ri == ri_old: break elif ri < ri_old: # prevent cycles and endless loops raise RuntimeError(" oops - should not be here") ri_old = ri # make adjustment to pvalscorr to reflect estimated number of Non-Null cases # decision is then pvalscorr < alpha (or <=) pvalscorr *= ntests0 * 1.0 / ntests if method == 'bky': pvalscorr *= (1. + alpha) pvalscorr[pvalscorr>1] = 1 if not is_sorted: pvalscorr_ = np.empty_like(pvalscorr) pvalscorr_[pvals_sortind] = pvalscorr del pvalscorr reject = np.empty_like(rej) reject[pvals_sortind] = rej return reject, pvalscorr_, ntests - ri, alpha_stages else: return rej, pvalscorr, ntests - ri, alpha_stages
(iterated) two stage linear step-up procedure with estimation of number of true hypotheses Benjamini, Krieger and Yekuteli, procedure in Definition 6 Parameters ---------- pvals : array_like set of p-values of the individual tests. alpha : float error rate method : {'bky', 'bh') see Notes for details * 'bky' - implements the procedure in Definition 6 of Benjamini, Krieger and Yekuteli 2006 * 'bh' - the two stage method of Benjamini and Hochberg maxiter : int or bool Maximum number of iterations. maxiter=1 (default) corresponds to the two stage method. maxiter=-1 corresponds to full iterations which is maxiter=len(pvals). maxiter=0 uses only a single stage fdr correction using a 'bh' or 'bky' prior fraction of assumed true hypotheses. Boolean maxiter is allowed for backwards compatibility with the deprecated ``iter`` keyword. maxiter=False is two-stage fdr (maxiter=1) maxiter=True is full iteration (maxiter=-1 or maxiter=len(pvals)) .. versionadded:: 0.14 Replacement for ``iter`` with additional features. iter : bool ``iter`` is deprecated use ``maxiter`` instead. If iter is True, then only one iteration step is used, this is the two-step method. If iter is False, then iterations are stopped at convergence which occurs in a finite number of steps (at most len(pvals) steps). .. deprecated:: 0.14 Use ``maxiter`` instead of ``iter``. Returns ------- rejected : ndarray, bool True if a hypothesis is rejected, False if not pvalue-corrected : ndarray pvalues adjusted for multiple hypotheses testing to limit FDR m0 : int ntest - rej, estimated number of true (not rejected) hypotheses alpha_stages : list of floats A list of alphas that have been used at each stage Notes ----- The returned corrected p-values are specific to the given alpha, they cannot be used for a different alpha. The returned corrected p-values are from the last stage of the fdr_bh linear step-up procedure (fdrcorrection0 with method='indep') corrected for the estimated fraction of true hypotheses. This means that the rejection decision can be obtained with ``pval_corrected <= alpha``, where ``alpha`` is the original significance level. (Note: This has changed from earlier versions (<0.5.0) of statsmodels.) BKY described several other multi-stage methods, which would be easy to implement. However, in their simulation the simple two-stage method (with iter=False) was the most robust to the presence of positive correlation TODO: What should be returned?
fdrcorrection_twostage
python
statsmodels/statsmodels
statsmodels/stats/multitest.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multitest.py
BSD-3-Clause
def local_fdr(zscores, null_proportion=1.0, null_pdf=None, deg=7, nbins=30, alpha=0): """ Calculate local FDR values for a list of Z-scores. Parameters ---------- zscores : array_like A vector of Z-scores null_proportion : float The assumed proportion of true null hypotheses null_pdf : function mapping reals to positive reals The density of null Z-scores; if None, use standard normal deg : int The maximum exponent in the polynomial expansion of the density of non-null Z-scores nbins : int The number of bins for estimating the marginal density of Z-scores. alpha : float Use Poisson ridge regression with parameter alpha to estimate the density of non-null Z-scores. Returns ------- fdr : array_like A vector of FDR values References ---------- B Efron (2008). Microarrays, Empirical Bayes, and the Two-Groups Model. Statistical Science 23:1, 1-22. Examples -------- Basic use (the null Z-scores are taken to be standard normal): >>> from statsmodels.stats.multitest import local_fdr >>> import numpy as np >>> zscores = np.random.randn(30) >>> fdr = local_fdr(zscores) Use a Gaussian null distribution estimated from the data: >>> null = EmpiricalNull(zscores) >>> fdr = local_fdr(zscores, null_pdf=null.pdf) """ from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod.generalized_linear_model import families from statsmodels.regression.linear_model import OLS # Bins for Poisson modeling of the marginal Z-score density minz = min(zscores) maxz = max(zscores) bins = np.linspace(minz, maxz, nbins) # Bin counts zhist = np.histogram(zscores, bins)[0] # Bin centers zbins = (bins[:-1] + bins[1:]) / 2 # The design matrix at bin centers dmat = np.vander(zbins, deg + 1) # Rescale the design matrix sd = dmat.std(0) ii = sd >1e-8 dmat[:, ii] /= sd[ii] start = OLS(np.log(1 + zhist), dmat).fit().params # Poisson regression if alpha > 0: md = GLM(zhist, dmat, family=families.Poisson()).fit_regularized(L1_wt=0, alpha=alpha, start_params=start) else: md = GLM(zhist, dmat, family=families.Poisson()).fit(start_params=start) # The design matrix for all Z-scores dmat_full = np.vander(zscores, deg + 1) dmat_full[:, ii] /= sd[ii] # The height of the estimated marginal density of Z-scores, # evaluated at every observed Z-score. fz = md.predict(dmat_full) / (len(zscores) * (bins[1] - bins[0])) # The null density. if null_pdf is None: f0 = np.exp(-0.5 * zscores**2) / np.sqrt(2 * np.pi) else: f0 = null_pdf(zscores) # The local FDR values fdr = null_proportion * f0 / fz fdr = np.clip(fdr, 0, 1) return fdr
Calculate local FDR values for a list of Z-scores. Parameters ---------- zscores : array_like A vector of Z-scores null_proportion : float The assumed proportion of true null hypotheses null_pdf : function mapping reals to positive reals The density of null Z-scores; if None, use standard normal deg : int The maximum exponent in the polynomial expansion of the density of non-null Z-scores nbins : int The number of bins for estimating the marginal density of Z-scores. alpha : float Use Poisson ridge regression with parameter alpha to estimate the density of non-null Z-scores. Returns ------- fdr : array_like A vector of FDR values References ---------- B Efron (2008). Microarrays, Empirical Bayes, and the Two-Groups Model. Statistical Science 23:1, 1-22. Examples -------- Basic use (the null Z-scores are taken to be standard normal): >>> from statsmodels.stats.multitest import local_fdr >>> import numpy as np >>> zscores = np.random.randn(30) >>> fdr = local_fdr(zscores) Use a Gaussian null distribution estimated from the data: >>> null = EmpiricalNull(zscores) >>> fdr = local_fdr(zscores, null_pdf=null.pdf)
local_fdr
python
statsmodels/statsmodels
statsmodels/stats/multitest.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multitest.py
BSD-3-Clause
def fun(params): """ Negative log-likelihood of z-scores. The function has three arguments, packed into a vector: mean : location parameter logscale : log of the scale parameter logitprop : logit of the proportion of true nulls The implementation follows section 4 from Efron 2008. """ d, s, p = xform(params) # Mass within the central region central_mass = (norm.cdf((null_ub - d) / s) - norm.cdf((null_lb - d) / s)) # Probability that a Z-score is null and is in the central region cp = p * central_mass # Binomial term rval = n_zs0 * np.log(cp) + (n_zs - n_zs0) * np.log(1 - cp) # Truncated Gaussian term for null Z-scores zv = (zscores0 - d) / s rval += np.sum(-zv**2 / 2) - n_zs0 * np.log(s) rval -= n_zs0 * np.log(central_mass) return -rval
Negative log-likelihood of z-scores. The function has three arguments, packed into a vector: mean : location parameter logscale : log of the scale parameter logitprop : logit of the proportion of true nulls The implementation follows section 4 from Efron 2008.
__init__.fun
python
statsmodels/statsmodels
statsmodels/stats/multitest.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multitest.py
BSD-3-Clause
def __init__(self, zscores, null_lb=-1, null_ub=1, estimate_mean=True, estimate_scale=True, estimate_null_proportion=False): # Extract the null z-scores ii = np.flatnonzero((zscores >= null_lb) & (zscores <= null_ub)) if len(ii) == 0: raise RuntimeError("No Z-scores fall between null_lb and null_ub") zscores0 = zscores[ii] # Number of Z-scores, and null Z-scores n_zs, n_zs0 = len(zscores), len(zscores0) # Unpack and transform the parameters to the natural scale, hold # parameters fixed as specified. def xform(params): mean = 0. sd = 1. prob = 1. ii = 0 if estimate_mean: mean = params[ii] ii += 1 if estimate_scale: sd = np.exp(params[ii]) ii += 1 if estimate_null_proportion: prob = 1 / (1 + np.exp(-params[ii])) return mean, sd, prob from scipy.stats.distributions import norm def fun(params): """ Negative log-likelihood of z-scores. The function has three arguments, packed into a vector: mean : location parameter logscale : log of the scale parameter logitprop : logit of the proportion of true nulls The implementation follows section 4 from Efron 2008. """ d, s, p = xform(params) # Mass within the central region central_mass = (norm.cdf((null_ub - d) / s) - norm.cdf((null_lb - d) / s)) # Probability that a Z-score is null and is in the central region cp = p * central_mass # Binomial term rval = n_zs0 * np.log(cp) + (n_zs - n_zs0) * np.log(1 - cp) # Truncated Gaussian term for null Z-scores zv = (zscores0 - d) / s rval += np.sum(-zv**2 / 2) - n_zs0 * np.log(s) rval -= n_zs0 * np.log(central_mass) return -rval # Estimate the parameters from scipy.optimize import minimize # starting values are mean = 0, scale = 1, p0 ~ 1 mz = minimize(fun, np.r_[0., 0, 3], method="Nelder-Mead") mean, sd, prob = xform(mz['x']) self.mean = mean self.sd = sd self.null_proportion = prob
Negative log-likelihood of z-scores. The function has three arguments, packed into a vector: mean : location parameter logscale : log of the scale parameter logitprop : logit of the proportion of true nulls The implementation follows section 4 from Efron 2008.
__init__
python
statsmodels/statsmodels
statsmodels/stats/multitest.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multitest.py
BSD-3-Clause
def pdf(self, zscores): """ Evaluates the fitted empirical null Z-score density. Parameters ---------- zscores : scalar or array_like The point or points at which the density is to be evaluated. Returns ------- The empirical null Z-score density evaluated at the given points. """ zval = (zscores - self.mean) / self.sd return np.exp(-0.5*zval**2 - np.log(self.sd) - 0.5*np.log(2*np.pi))
Evaluates the fitted empirical null Z-score density. Parameters ---------- zscores : scalar or array_like The point or points at which the density is to be evaluated. Returns ------- The empirical null Z-score density evaluated at the given points.
pdf
python
statsmodels/statsmodels
statsmodels/stats/multitest.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multitest.py
BSD-3-Clause
def pairwise_tukeyhsd(endog, groups, alpha=0.05, use_var='equal'): """ Calculate all pairwise comparisons with TukeyHSD or Games-Howell. Parameters ---------- endog : ndarray, float, 1d response variable groups : ndarray, 1d array with groups, can be string or integers alpha : float significance level for the test use_var : {"unequal", "equal"} If ``use_var`` is "equal", then the Tukey-hsd pvalues are returned. Tukey-hsd assumes that (within) variances are the same across groups. If ``use_var`` is "unequal", then the Games-Howell pvalues are returned. This uses Welch's t-test for unequal variances with Satterthwaite's corrected degrees of freedom for each pairwise comparison. Returns ------- results : TukeyHSDResults instance A results class containing relevant data and some post-hoc calculations, including adjusted p-value Notes ----- This is just a wrapper around tukeyhsd method of MultiComparison. Tukey-hsd is not robust to heteroscedasticity, i.e. variance differ across groups, especially if group sizes also vary. In those cases, the actual size (rejection rate under the Null hypothesis) might be far from the nominal size of the test. The Games-Howell method uses pairwise t-tests that are robust to differences in variances and approximately maintains size unless samples are very small. .. versionadded:: 0.15 ` The `use_var` keyword and option for Games-Howell test. See Also -------- MultiComparison tukeyhsd statsmodels.sandbox.stats.multicomp.TukeyHSDResults """ return MultiComparison(endog, groups).tukeyhsd(alpha=alpha, use_var=use_var)
Calculate all pairwise comparisons with TukeyHSD or Games-Howell. Parameters ---------- endog : ndarray, float, 1d response variable groups : ndarray, 1d array with groups, can be string or integers alpha : float significance level for the test use_var : {"unequal", "equal"} If ``use_var`` is "equal", then the Tukey-hsd pvalues are returned. Tukey-hsd assumes that (within) variances are the same across groups. If ``use_var`` is "unequal", then the Games-Howell pvalues are returned. This uses Welch's t-test for unequal variances with Satterthwaite's corrected degrees of freedom for each pairwise comparison. Returns ------- results : TukeyHSDResults instance A results class containing relevant data and some post-hoc calculations, including adjusted p-value Notes ----- This is just a wrapper around tukeyhsd method of MultiComparison. Tukey-hsd is not robust to heteroscedasticity, i.e. variance differ across groups, especially if group sizes also vary. In those cases, the actual size (rejection rate under the Null hypothesis) might be far from the nominal size of the test. The Games-Howell method uses pairwise t-tests that are robust to differences in variances and approximately maintains size unless samples are very small. .. versionadded:: 0.15 ` The `use_var` keyword and option for Games-Howell test. See Also -------- MultiComparison tukeyhsd statsmodels.sandbox.stats.multicomp.TukeyHSDResults
pairwise_tukeyhsd
python
statsmodels/statsmodels
statsmodels/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multicomp.py
BSD-3-Clause
def ttest_power(effect_size, nobs, alpha, df=None, alternative='two-sided'): '''Calculate power of a ttest ''' d = effect_size if df is None: df = nobs - 1 if alternative in ['two-sided', '2s']: alpha_ = alpha / 2. #no inplace changes, does not work elif alternative in ['smaller', 'larger']: alpha_ = alpha else: raise ValueError("alternative has to be 'two-sided', 'larger' " + "or 'smaller'") pow_ = 0 if alternative in ['two-sided', '2s', 'larger']: crit_upp = stats.t.isf(alpha_, df) #print crit_upp, df, d*np.sqrt(nobs) # use private methods, generic methods return nan with negative d if np.any(np.isnan(crit_upp)): # avoid endless loop, https://github.com/scipy/scipy/issues/2667 pow_ = np.nan else: # pow_ = stats.nct._sf(crit_upp, df, d*np.sqrt(nobs)) # use scipy.special pow_ = nct_sf(crit_upp, df, d*np.sqrt(nobs)) if alternative in ['two-sided', '2s', 'smaller']: crit_low = stats.t.ppf(alpha_, df) #print crit_low, df, d*np.sqrt(nobs) if np.any(np.isnan(crit_low)): pow_ = np.nan else: # pow_ += stats.nct._cdf(crit_low, df, d*np.sqrt(nobs)) pow_ += nct_cdf(crit_low, df, d*np.sqrt(nobs)) return pow_
Calculate power of a ttest
ttest_power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def normal_power(effect_size, nobs, alpha, alternative='two-sided', sigma=1.): """Calculate power of a normal distributed test statistic This is an generalization of `normal_power` when variance under Null and Alternative differ. Parameters ---------- effect size : float difference in the estimated means or statistics under the alternative normalized by the standard deviation (without division by sqrt(nobs). nobs : float or int number of observations alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. alternative : string, 'two-sided' (default), 'larger', 'smaller' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. """ d = effect_size if alternative in ['two-sided', '2s']: alpha_ = alpha / 2. #no inplace changes, does not work elif alternative in ['smaller', 'larger']: alpha_ = alpha else: raise ValueError("alternative has to be 'two-sided', 'larger' " + "or 'smaller'") pow_ = 0 if alternative in ['two-sided', '2s', 'larger']: crit = stats.norm.isf(alpha_) pow_ = stats.norm.sf(crit - d*np.sqrt(nobs)/sigma) if alternative in ['two-sided', '2s', 'smaller']: crit = stats.norm.ppf(alpha_) pow_ += stats.norm.cdf(crit - d*np.sqrt(nobs)/sigma) return pow_
Calculate power of a normal distributed test statistic This is an generalization of `normal_power` when variance under Null and Alternative differ. Parameters ---------- effect size : float difference in the estimated means or statistics under the alternative normalized by the standard deviation (without division by sqrt(nobs). nobs : float or int number of observations alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. alternative : string, 'two-sided' (default), 'larger', 'smaller' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'.
normal_power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def normal_power_het(diff, nobs, alpha, std_null=1., std_alternative=None, alternative='two-sided'): """Calculate power of a normal distributed test statistic This is an generalization of `normal_power` when variance under Null and Alternative differ. Parameters ---------- diff : float difference in the estimated means or statistics under the alternative. nobs : float or int number of observations alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. std_null : float standard deviation under the Null hypothesis without division by sqrt(nobs) std_alternative : float standard deviation under the Alternative hypothesis without division by sqrt(nobs) alternative : string, 'two-sided' (default), 'larger', 'smaller' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. Returns ------- power : float """ d = diff if std_alternative is None: std_alternative = std_null if alternative in ['two-sided', '2s']: alpha_ = alpha / 2. #no inplace changes, does not work elif alternative in ['smaller', 'larger']: alpha_ = alpha else: raise ValueError("alternative has to be 'two-sided', 'larger' " + "or 'smaller'") std_ratio = std_null / std_alternative pow_ = 0 if alternative in ['two-sided', '2s', 'larger']: crit = stats.norm.isf(alpha_) pow_ = stats.norm.sf(crit * std_ratio - d*np.sqrt(nobs) / std_alternative) if alternative in ['two-sided', '2s', 'smaller']: crit = stats.norm.ppf(alpha_) pow_ += stats.norm.cdf(crit * std_ratio - d*np.sqrt(nobs) / std_alternative) return pow_
Calculate power of a normal distributed test statistic This is an generalization of `normal_power` when variance under Null and Alternative differ. Parameters ---------- diff : float difference in the estimated means or statistics under the alternative. nobs : float or int number of observations alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. std_null : float standard deviation under the Null hypothesis without division by sqrt(nobs) std_alternative : float standard deviation under the Alternative hypothesis without division by sqrt(nobs) alternative : string, 'two-sided' (default), 'larger', 'smaller' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. Returns ------- power : float
normal_power_het
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def normal_sample_size_one_tail(diff, power, alpha, std_null=1., std_alternative=None): """explicit sample size computation if only one tail is relevant The sample size is based on the power in one tail assuming that the alternative is in the tail where the test has power that increases with sample size. Use alpha/2 to compute the one tail approximation to the two-sided test, i.e. consider only one tail of two-sided test. Parameters ---------- diff : float difference in the estimated means or statistics under the alternative. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. Note: alpha is used for one tail. Use alpha/2 for two-sided alternative. std_null : float standard deviation under the Null hypothesis without division by sqrt(nobs) std_alternative : float standard deviation under the Alternative hypothesis without division by sqrt(nobs). Defaults to None. If None, ``std_alternative`` is set to the value of ``std_null``. Returns ------- nobs : float Sample size to achieve (at least) the desired power. If the minimum power is satisfied for all positive sample sizes, then ``nobs`` will be zero. This will be the case when power <= alpha if std_alternative is equal to std_null. """ if std_alternative is None: std_alternative = std_null crit_power = stats.norm.isf(power) crit = stats.norm.isf(alpha) n1 = (np.maximum(crit * std_null - crit_power * std_alternative, 0) / diff)**2 return n1
explicit sample size computation if only one tail is relevant The sample size is based on the power in one tail assuming that the alternative is in the tail where the test has power that increases with sample size. Use alpha/2 to compute the one tail approximation to the two-sided test, i.e. consider only one tail of two-sided test. Parameters ---------- diff : float difference in the estimated means or statistics under the alternative. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. Note: alpha is used for one tail. Use alpha/2 for two-sided alternative. std_null : float standard deviation under the Null hypothesis without division by sqrt(nobs) std_alternative : float standard deviation under the Alternative hypothesis without division by sqrt(nobs). Defaults to None. If None, ``std_alternative`` is set to the value of ``std_null``. Returns ------- nobs : float Sample size to achieve (at least) the desired power. If the minimum power is satisfied for all positive sample sizes, then ``nobs`` will be zero. This will be the case when power <= alpha if std_alternative is equal to std_null.
normal_sample_size_one_tail
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def ftest_anova_power(effect_size, nobs, alpha, k_groups=2, df=None): '''power for ftest for one way anova with k equal sized groups nobs total sample size, sum over all groups should be general nobs observations, k_groups restrictions ??? ''' df_num = k_groups - 1 df_denom = nobs - k_groups crit = stats.f.isf(alpha, df_num, df_denom) pow_ = ncf_sf(crit, df_num, df_denom, effect_size**2 * nobs) return pow_
power for ftest for one way anova with k equal sized groups nobs total sample size, sum over all groups should be general nobs observations, k_groups restrictions ???
ftest_anova_power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def ftest_power(effect_size, df2, df1, alpha, ncc=1): '''Calculate the power of a F-test. Parameters ---------- effect_size : float The effect size is here Cohen's ``f``, the square root of ``f2``. df2 : int or float Denominator degrees of freedom. This corresponds to the df_resid in Wald tests. df1 : int or float Numerator degrees of freedom. This corresponds to the number of constraints in Wald tests. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. ncc : int degrees of freedom correction for non-centrality parameter. see Notes Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. Notes ----- changed in 0.14: use df2, df1 instead of df_num, df_denom as arg names. The latter had reversed meaning. The sample size is given implicitly by ``df2`` with fixed number of constraints given by numerator degrees of freedom ``df1``: nobs = df2 + df1 + ncc Set ncc=0 to match t-test, or f-test in LikelihoodModelResults. ncc=1 matches the non-centrality parameter in R::pwr::pwr.f2.test ftest_power with ncc=0 should also be correct for f_test in regression models, with df_num (df1) as number of constraints and d_denom (df2) as df_resid. ''' df_num, df_denom = df1, df2 nc = effect_size**2 * (df_denom + df_num + ncc) crit = stats.f.isf(alpha, df_num, df_denom) # pow_ = stats.ncf.sf(crit, df_num, df_denom, nc) # use scipy.special for ncf pow_ = ncf_sf(crit, df_num, df_denom, nc) return pow_ #, crit, nc
Calculate the power of a F-test. Parameters ---------- effect_size : float The effect size is here Cohen's ``f``, the square root of ``f2``. df2 : int or float Denominator degrees of freedom. This corresponds to the df_resid in Wald tests. df1 : int or float Numerator degrees of freedom. This corresponds to the number of constraints in Wald tests. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. ncc : int degrees of freedom correction for non-centrality parameter. see Notes Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. Notes ----- changed in 0.14: use df2, df1 instead of df_num, df_denom as arg names. The latter had reversed meaning. The sample size is given implicitly by ``df2`` with fixed number of constraints given by numerator degrees of freedom ``df1``: nobs = df2 + df1 + ncc Set ncc=0 to match t-test, or f-test in LikelihoodModelResults. ncc=1 matches the non-centrality parameter in R::pwr::pwr.f2.test ftest_power with ncc=0 should also be correct for f_test in regression models, with df_num (df1) as number of constraints and d_denom (df2) as df_resid.
ftest_power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def ftest_power_f2(effect_size, df_num, df_denom, alpha, ncc=1): '''Calculate the power of a F-test. Based on Cohen's `f^2` effect size. This assumes df_num : numerator degrees of freedom, (number of constraints) df_denom : denominator degrees of freedom (df_resid in regression) nobs = df_denom + df_num + ncc nc = effect_size * nobs (noncentrality index) Power is computed one-sided in the upper tail. Parameters ---------- effect_size : float Cohen's f2 effect size or noncentrality divided by nobs. df_num : int or float Numerator degrees of freedom. This corresponds to the number of constraints in Wald tests. df_denom : int or float Denominator degrees of freedom. This corresponds to the df_resid in Wald tests. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. ncc : int degrees of freedom correction for non-centrality parameter. see Notes Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. Notes The sample size is given implicitly by ``df_denom`` with fixed number of constraints given by numerator degrees of freedom ``df_num``: nobs = df_denom + df_num + ncc Set ncc=0 to match t-test, or f-test in LikelihoodModelResults. ncc=1 matches the non-centrality parameter in R::pwr::pwr.f2.test ftest_power with ncc=0 should also be correct for f_test in regression models, with df_num (df1) as number of constraints and d_denom (df2) as df_resid. ''' nc = effect_size * (df_denom + df_num + ncc) crit = stats.f.isf(alpha, df_num, df_denom) # pow_ = stats.ncf.sf(crit, df_num, df_denom, nc) # use scipy.special for ncf pow_ = ncf_sf(crit, df_num, df_denom, nc) return pow_
Calculate the power of a F-test. Based on Cohen's `f^2` effect size. This assumes df_num : numerator degrees of freedom, (number of constraints) df_denom : denominator degrees of freedom (df_resid in regression) nobs = df_denom + df_num + ncc nc = effect_size * nobs (noncentrality index) Power is computed one-sided in the upper tail. Parameters ---------- effect_size : float Cohen's f2 effect size or noncentrality divided by nobs. df_num : int or float Numerator degrees of freedom. This corresponds to the number of constraints in Wald tests. df_denom : int or float Denominator degrees of freedom. This corresponds to the df_resid in Wald tests. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. ncc : int degrees of freedom correction for non-centrality parameter. see Notes Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. Notes The sample size is given implicitly by ``df_denom`` with fixed number of constraints given by numerator degrees of freedom ``df_num``: nobs = df_denom + df_num + ncc Set ncc=0 to match t-test, or f-test in LikelihoodModelResults. ncc=1 matches the non-centrality parameter in R::pwr::pwr.f2.test ftest_power with ncc=0 should also be correct for f_test in regression models, with df_num (df1) as number of constraints and d_denom (df2) as df_resid.
ftest_power_f2
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def solve_power(self, **kwds): '''solve for any one of the parameters of a t-test for t-test the keywords are: effect_size, nobs, alpha, power exactly one needs to be ``None``, all others need numeric values *attaches* cache_fit_res : list Cache of the result of the root finding procedure for the latest call to ``solve_power``, mainly for debugging purposes. The first element is the success indicator, one if successful. The remaining elements contain the return information of the up to three solvers that have been tried. ''' #TODO: maybe use explicit kwds, # nicer but requires inspect? and not generic across tests # I'm duplicating this in the subclass to get informative docstring key = [k for k,v in kwds.items() if v is None] #print kwds, key if len(key) != 1: raise ValueError('need exactly one keyword that is None') key = key[0] if key == 'power': del kwds['power'] return self.power(**kwds) if kwds['effect_size'] == 0: import warnings from statsmodels.tools.sm_exceptions import HypothesisTestWarning warnings.warn('Warning: Effect size of 0 detected', HypothesisTestWarning) if key == 'power': return kwds['alpha'] if key == 'alpha': return kwds['power'] else: raise ValueError('Cannot detect an effect-size of 0. Try changing your effect-size.') self._counter = 0 def func(x): kwds[key] = x fval = self._power_identity(**kwds) self._counter += 1 #print self._counter, if self._counter > 500: raise RuntimeError('possible endless loop (500 NaNs)') if np.isnan(fval): return np.inf else: return fval #TODO: I'm using the following so I get a warning when start_ttp is not defined try: start_value = self.start_ttp[key] except KeyError: start_value = 0.9 import warnings from statsmodels.tools.sm_exceptions import ValueWarning warnings.warn(f'Warning: using default start_value for {key}', ValueWarning) fit_kwds = self.start_bqexp[key] fit_res = [] #print vars() try: val, res = brentq_expanding(func, full_output=True, **fit_kwds) failed = False fit_res.append(res) except ValueError: failed = True fit_res.append(None) success = None if (not failed) and res.converged: success = 1 else: # try backup # TODO: check more cases to make this robust if not np.isnan(start_value): val, infodict, ier, msg = optimize.fsolve(func, start_value, full_output=True) #scalar #val = optimize.newton(func, start_value) #scalar fval = infodict['fvec'] fit_res.append(infodict) else: ier = -1 fval = 1 fit_res.append([None]) if ier == 1 and np.abs(fval) < 1e-4 : success = 1 else: #print infodict if key in ['alpha', 'power', 'effect_size']: val, r = optimize.brentq(func, 1e-8, 1-1e-8, full_output=True) #scalar success = 1 if r.converged else 0 fit_res.append(r) else: success = 0 if not success == 1: import warnings from statsmodels.tools.sm_exceptions import (ConvergenceWarning, convergence_doc) warnings.warn(convergence_doc, ConvergenceWarning) #attach fit_res, for reading only, should be needed only for debugging fit_res.insert(0, success) self.cache_fit_res = fit_res return val
solve for any one of the parameters of a t-test for t-test the keywords are: effect_size, nobs, alpha, power exactly one needs to be ``None``, all others need numeric values *attaches* cache_fit_res : list Cache of the result of the root finding procedure for the latest call to ``solve_power``, mainly for debugging purposes. The first element is the success indicator, one if successful. The remaining elements contain the return information of the up to three solvers that have been tried.
solve_power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def plot_power(self, dep_var='nobs', nobs=None, effect_size=None, alpha=0.05, ax=None, title=None, plt_kwds=None, **kwds): """ Plot power with number of observations or effect size on x-axis Parameters ---------- dep_var : {'nobs', 'effect_size', 'alpha'} This specifies which variable is used for the horizontal axis. If dep_var='nobs' (default), then one curve is created for each value of ``effect_size``. If dep_var='effect_size' or alpha, then one curve is created for each value of ``nobs``. nobs : {scalar, array_like} specifies the values of the number of observations in the plot effect_size : {scalar, array_like} specifies the values of the effect_size in the plot alpha : {float, array_like} The significance level (type I error) used in the power calculation. Can only be more than a scalar, if ``dep_var='alpha'`` ax : None or axis instance If ax is None, than a matplotlib figure is created. If ax is a matplotlib axis instance, then it is reused, and the plot elements are created with it. title : str title for the axis. Use an empty string, ``''``, to avoid a title. plt_kwds : {None, dict} not used yet kwds : dict These remaining keyword arguments are used as arguments to the power function. Many power function support ``alternative`` as a keyword argument, two-sample test support ``ratio``. Returns ------- Figure If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. Notes ----- This works only for classes where the ``power`` method has ``effect_size``, ``nobs`` and ``alpha`` as the first three arguments. If the second argument is ``nobs1``, then the number of observations in the plot are those for the first sample. TODO: fix this for FTestPower and GofChisquarePower TODO: maybe add line variable, if we want more than nobs and effectsize """ #if pwr_kwds is None: # pwr_kwds = {} from statsmodels.graphics import utils from statsmodels.graphics.plottools import rainbow fig, ax = utils.create_mpl_ax(ax) import matplotlib.pyplot as plt colormap = plt.cm.Dark2 #pylint: disable-msg=E1101 plt_alpha = 1 #0.75 lw = 2 if dep_var == 'nobs': colors = rainbow(len(effect_size)) colors = [colormap(i) for i in np.linspace(0, 0.9, len(effect_size))] for ii, es in enumerate(effect_size): power = self.power(es, nobs, alpha, **kwds) ax.plot(nobs, power, lw=lw, alpha=plt_alpha, color=colors[ii], label='es=%4.2F' % es) xlabel = 'Number of Observations' elif dep_var in ['effect size', 'effect_size', 'es']: colors = rainbow(len(nobs)) colors = [colormap(i) for i in np.linspace(0, 0.9, len(nobs))] for ii, n in enumerate(nobs): power = self.power(effect_size, n, alpha, **kwds) ax.plot(effect_size, power, lw=lw, alpha=plt_alpha, color=colors[ii], label='N=%4.2F' % n) xlabel = 'Effect Size' elif dep_var in ['alpha']: # experimental nobs as defining separate lines colors = rainbow(len(nobs)) for ii, n in enumerate(nobs): power = self.power(effect_size, n, alpha, **kwds) ax.plot(alpha, power, lw=lw, alpha=plt_alpha, color=colors[ii], label='N=%4.2F' % n) xlabel = 'alpha' else: raise ValueError('depvar not implemented') if title is None: title = 'Power of Test' ax.set_xlabel(xlabel) ax.set_title(title) ax.legend(loc='lower right') return fig
Plot power with number of observations or effect size on x-axis Parameters ---------- dep_var : {'nobs', 'effect_size', 'alpha'} This specifies which variable is used for the horizontal axis. If dep_var='nobs' (default), then one curve is created for each value of ``effect_size``. If dep_var='effect_size' or alpha, then one curve is created for each value of ``nobs``. nobs : {scalar, array_like} specifies the values of the number of observations in the plot effect_size : {scalar, array_like} specifies the values of the effect_size in the plot alpha : {float, array_like} The significance level (type I error) used in the power calculation. Can only be more than a scalar, if ``dep_var='alpha'`` ax : None or axis instance If ax is None, than a matplotlib figure is created. If ax is a matplotlib axis instance, then it is reused, and the plot elements are created with it. title : str title for the axis. Use an empty string, ``''``, to avoid a title. plt_kwds : {None, dict} not used yet kwds : dict These remaining keyword arguments are used as arguments to the power function. Many power function support ``alternative`` as a keyword argument, two-sample test support ``ratio``. Returns ------- Figure If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. Notes ----- This works only for classes where the ``power`` method has ``effect_size``, ``nobs`` and ``alpha`` as the first three arguments. If the second argument is ``nobs1``, then the number of observations in the plot are those for the first sample. TODO: fix this for FTestPower and GofChisquarePower TODO: maybe add line variable, if we want more than nobs and effectsize
plot_power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def power(self, effect_size, nobs, alpha, df=None, alternative='two-sided'): '''Calculate the power of a t-test for one sample or paired samples. Parameters ---------- effect_size : float standardized effect size, mean divided by the standard deviation. effect size has to be positive. nobs : int or float sample size, number of observations. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. df : int or float degrees of freedom. By default this is None, and the df from the one sample or paired ttest is used, ``df = nobs1 - 1`` alternative : str, 'two-sided' (default), 'larger', 'smaller' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. . Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. ''' # for debugging #print 'calling ttest power with', (effect_size, nobs, alpha, df, alternative) return ttest_power(effect_size, nobs, alpha, df=df, alternative=alternative)
Calculate the power of a t-test for one sample or paired samples. Parameters ---------- effect_size : float standardized effect size, mean divided by the standard deviation. effect size has to be positive. nobs : int or float sample size, number of observations. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. df : int or float degrees of freedom. By default this is None, and the df from the one sample or paired ttest is used, ``df = nobs1 - 1`` alternative : str, 'two-sided' (default), 'larger', 'smaller' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. . Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true.
power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def solve_power(self, effect_size=None, nobs=None, alpha=None, power=None, alternative='two-sided'): '''solve for any one parameter of the power of a one sample t-test for the one sample t-test the keywords are: effect_size, nobs, alpha, power Exactly one needs to be ``None``, all others need numeric values. This test can also be used for a paired t-test, where effect size is defined in terms of the mean difference, and nobs is the number of pairs. Parameters ---------- effect_size : float Standardized effect size.The effect size is here Cohen's f, square root of "f2". nobs : int or float sample size, number of observations. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. alternative : str, 'two-sided' (default) or 'one-sided' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. 'one-sided' assumes we are in the relevant tail. Returns ------- value : float The value of the parameter that was set to None in the call. The value solves the power equation given the remaining parameters. *attaches* cache_fit_res : list Cache of the result of the root finding procedure for the latest call to ``solve_power``, mainly for debugging purposes. The first element is the success indicator, one if successful. The remaining elements contain the return information of the up to three solvers that have been tried. Notes ----- The function uses scipy.optimize for finding the value that satisfies the power equation. It first uses ``brentq`` with a prior search for bounds. If this fails to find a root, ``fsolve`` is used. If ``fsolve`` also fails, then, for ``alpha``, ``power`` and ``effect_size``, ``brentq`` with fixed bounds is used. However, there can still be cases where this fails. ''' # for debugging #print 'calling ttest solve with', (effect_size, nobs, alpha, power, alternative) return super().solve_power(effect_size=effect_size, nobs=nobs, alpha=alpha, power=power, alternative=alternative)
solve for any one parameter of the power of a one sample t-test for the one sample t-test the keywords are: effect_size, nobs, alpha, power Exactly one needs to be ``None``, all others need numeric values. This test can also be used for a paired t-test, where effect size is defined in terms of the mean difference, and nobs is the number of pairs. Parameters ---------- effect_size : float Standardized effect size.The effect size is here Cohen's f, square root of "f2". nobs : int or float sample size, number of observations. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. alternative : str, 'two-sided' (default) or 'one-sided' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. 'one-sided' assumes we are in the relevant tail. Returns ------- value : float The value of the parameter that was set to None in the call. The value solves the power equation given the remaining parameters. *attaches* cache_fit_res : list Cache of the result of the root finding procedure for the latest call to ``solve_power``, mainly for debugging purposes. The first element is the success indicator, one if successful. The remaining elements contain the return information of the up to three solvers that have been tried. Notes ----- The function uses scipy.optimize for finding the value that satisfies the power equation. It first uses ``brentq`` with a prior search for bounds. If this fails to find a root, ``fsolve`` is used. If ``fsolve`` also fails, then, for ``alpha``, ``power`` and ``effect_size``, ``brentq`` with fixed bounds is used. However, there can still be cases where this fails.
solve_power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def power(self, effect_size, nobs1, alpha, ratio=1, df=None, alternative='two-sided'): '''Calculate the power of a t-test for two independent sample Parameters ---------- effect_size : float standardized effect size, difference between the two means divided by the standard deviation. `effect_size` has to be positive. nobs1 : int or float number of observations of sample 1. The number of observations of sample two is ratio times the size of sample 1, i.e. ``nobs2 = nobs1 * ratio`` alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. ratio : float ratio of the number of observations in sample 2 relative to sample 1. see description of nobs1 The default for ratio is 1; to solve for ratio given the other arguments, it has to be explicitly set to None. df : int or float degrees of freedom. By default this is None, and the df from the ttest with pooled variance is used, ``df = (nobs1 - 1 + nobs2 - 1)`` alternative : str, 'two-sided' (default), 'larger', 'smaller' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. ''' nobs2 = nobs1*ratio #pooled variance if df is None: df = (nobs1 - 1 + nobs2 - 1) nobs = 1./ (1. / nobs1 + 1. / nobs2) #print 'calling ttest power with', (effect_size, nobs, alpha, df, alternative) return ttest_power(effect_size, nobs, alpha, df=df, alternative=alternative)
Calculate the power of a t-test for two independent sample Parameters ---------- effect_size : float standardized effect size, difference between the two means divided by the standard deviation. `effect_size` has to be positive. nobs1 : int or float number of observations of sample 1. The number of observations of sample two is ratio times the size of sample 1, i.e. ``nobs2 = nobs1 * ratio`` alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. ratio : float ratio of the number of observations in sample 2 relative to sample 1. see description of nobs1 The default for ratio is 1; to solve for ratio given the other arguments, it has to be explicitly set to None. df : int or float degrees of freedom. By default this is None, and the df from the ttest with pooled variance is used, ``df = (nobs1 - 1 + nobs2 - 1)`` alternative : str, 'two-sided' (default), 'larger', 'smaller' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true.
power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def solve_power(self, effect_size=None, nobs1=None, alpha=None, power=None, ratio=1., alternative='two-sided'): '''solve for any one parameter of the power of a two sample t-test for t-test the keywords are: effect_size, nobs1, alpha, power, ratio exactly one needs to be ``None``, all others need numeric values Parameters ---------- effect_size : float standardized effect size, difference between the two means divided by the standard deviation. `effect_size` has to be positive. nobs1 : int or float number of observations of sample 1. The number of observations of sample two is ratio times the size of sample 1, i.e. ``nobs2 = nobs1 * ratio`` alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. ratio : float ratio of the number of observations in sample 2 relative to sample 1. see description of nobs1 The default for ratio is 1; to solve for ratio given the other arguments it has to be explicitly set to None. alternative : str, 'two-sided' (default), 'larger', 'smaller' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. Returns ------- value : float The value of the parameter that was set to None in the call. The value solves the power equation given the remaining parameters. Notes ----- The function uses scipy.optimize for finding the value that satisfies the power equation. It first uses ``brentq`` with a prior search for bounds. If this fails to find a root, ``fsolve`` is used. If ``fsolve`` also fails, then, for ``alpha``, ``power`` and ``effect_size``, ``brentq`` with fixed bounds is used. However, there can still be cases where this fails. ''' return super().solve_power(effect_size=effect_size, nobs1=nobs1, alpha=alpha, power=power, ratio=ratio, alternative=alternative)
solve for any one parameter of the power of a two sample t-test for t-test the keywords are: effect_size, nobs1, alpha, power, ratio exactly one needs to be ``None``, all others need numeric values Parameters ---------- effect_size : float standardized effect size, difference between the two means divided by the standard deviation. `effect_size` has to be positive. nobs1 : int or float number of observations of sample 1. The number of observations of sample two is ratio times the size of sample 1, i.e. ``nobs2 = nobs1 * ratio`` alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. ratio : float ratio of the number of observations in sample 2 relative to sample 1. see description of nobs1 The default for ratio is 1; to solve for ratio given the other arguments it has to be explicitly set to None. alternative : str, 'two-sided' (default), 'larger', 'smaller' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. Returns ------- value : float The value of the parameter that was set to None in the call. The value solves the power equation given the remaining parameters. Notes ----- The function uses scipy.optimize for finding the value that satisfies the power equation. It first uses ``brentq`` with a prior search for bounds. If this fails to find a root, ``fsolve`` is used. If ``fsolve`` also fails, then, for ``alpha``, ``power`` and ``effect_size``, ``brentq`` with fixed bounds is used. However, there can still be cases where this fails.
solve_power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def power(self, effect_size, nobs1, alpha, ratio=1, alternative='two-sided'): '''Calculate the power of a z-test for two independent sample Parameters ---------- effect_size : float standardized effect size, difference between the two means divided by the standard deviation. effect size has to be positive. nobs1 : int or float number of observations of sample 1. The number of observations of sample two is ratio times the size of sample 1, i.e. ``nobs2 = nobs1 * ratio`` ``ratio`` can be set to zero in order to get the power for a one sample test. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. ratio : float ratio of the number of observations in sample 2 relative to sample 1. see description of nobs1 alternative : str, 'two-sided' (default), 'larger', 'smaller' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. ''' ddof = self.ddof # for correlation, ddof=3 # get effective nobs, factor for std of test statistic if ratio > 0: nobs2 = nobs1*ratio #equivalent to nobs = n1*n2/(n1+n2)=n1*ratio/(1+ratio) nobs = 1./ (1. / (nobs1 - ddof) + 1. / (nobs2 - ddof)) else: nobs = nobs1 - ddof return normal_power(effect_size, nobs, alpha, alternative=alternative)
Calculate the power of a z-test for two independent sample Parameters ---------- effect_size : float standardized effect size, difference between the two means divided by the standard deviation. effect size has to be positive. nobs1 : int or float number of observations of sample 1. The number of observations of sample two is ratio times the size of sample 1, i.e. ``nobs2 = nobs1 * ratio`` ``ratio`` can be set to zero in order to get the power for a one sample test. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. ratio : float ratio of the number of observations in sample 2 relative to sample 1. see description of nobs1 alternative : str, 'two-sided' (default), 'larger', 'smaller' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true.
power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def solve_power(self, effect_size=None, nobs1=None, alpha=None, power=None, ratio=1., alternative='two-sided'): '''solve for any one parameter of the power of a two sample z-test for z-test the keywords are: effect_size, nobs1, alpha, power, ratio exactly one needs to be ``None``, all others need numeric values Parameters ---------- effect_size : float standardized effect size, difference between the two means divided by the standard deviation. If ratio=0, then this is the standardized mean in the one sample test. nobs1 : int or float number of observations of sample 1. The number of observations of sample two is ratio times the size of sample 1, i.e. ``nobs2 = nobs1 * ratio`` ``ratio`` can be set to zero in order to get the power for a one sample test. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. ratio : float ratio of the number of observations in sample 2 relative to sample 1. see description of nobs1 The default for ratio is 1; to solve for ration given the other arguments it has to be explicitly set to None. alternative : str, 'two-sided' (default), 'larger', 'smaller' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. Returns ------- value : float The value of the parameter that was set to None in the call. The value solves the power equation given the remaining parameters. Notes ----- The function uses scipy.optimize for finding the value that satisfies the power equation. It first uses ``brentq`` with a prior search for bounds. If this fails to find a root, ``fsolve`` is used. If ``fsolve`` also fails, then, for ``alpha``, ``power`` and ``effect_size``, ``brentq`` with fixed bounds is used. However, there can still be cases where this fails. ''' return super().solve_power(effect_size=effect_size, nobs1=nobs1, alpha=alpha, power=power, ratio=ratio, alternative=alternative)
solve for any one parameter of the power of a two sample z-test for z-test the keywords are: effect_size, nobs1, alpha, power, ratio exactly one needs to be ``None``, all others need numeric values Parameters ---------- effect_size : float standardized effect size, difference between the two means divided by the standard deviation. If ratio=0, then this is the standardized mean in the one sample test. nobs1 : int or float number of observations of sample 1. The number of observations of sample two is ratio times the size of sample 1, i.e. ``nobs2 = nobs1 * ratio`` ``ratio`` can be set to zero in order to get the power for a one sample test. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. ratio : float ratio of the number of observations in sample 2 relative to sample 1. see description of nobs1 The default for ratio is 1; to solve for ration given the other arguments it has to be explicitly set to None. alternative : str, 'two-sided' (default), 'larger', 'smaller' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. The one-sided test can be either 'larger', 'smaller'. Returns ------- value : float The value of the parameter that was set to None in the call. The value solves the power equation given the remaining parameters. Notes ----- The function uses scipy.optimize for finding the value that satisfies the power equation. It first uses ``brentq`` with a prior search for bounds. If this fails to find a root, ``fsolve`` is used. If ``fsolve`` also fails, then, for ``alpha``, ``power`` and ``effect_size``, ``brentq`` with fixed bounds is used. However, there can still be cases where this fails.
solve_power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def power(self, effect_size, df_num, df_denom, alpha, ncc=1): '''Calculate the power of a F-test. The effect size is Cohen's ``f``, square root of ``f2``. The sample size is given by ``nobs = df_denom + df_num + ncc`` Warning: The meaning of df_num and df_denom is reversed. Parameters ---------- effect_size : float Standardized effect size. The effect size is here Cohen's ``f``, square root of ``f2``. df_num : int or float Warning incorrect name denominator degrees of freedom, This corresponds to the number of constraints in Wald tests. df_denom : int or float Warning incorrect name numerator degrees of freedom. This corresponds to the df_resid in Wald tests. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. ncc : int degrees of freedom correction for non-centrality parameter. see Notes Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. Notes ----- sample size is given implicitly by df_num set ncc=0 to match t-test, or f-test in LikelihoodModelResults. ncc=1 matches the non-centrality parameter in R::pwr::pwr.f2.test ftest_power with ncc=0 should also be correct for f_test in regression models, with df_num and d_denom as defined there. (not verified yet) ''' pow_ = ftest_power(effect_size, df_num, df_denom, alpha, ncc=ncc) #print effect_size, df_num, df_denom, alpha, pow_ return pow_
Calculate the power of a F-test. The effect size is Cohen's ``f``, square root of ``f2``. The sample size is given by ``nobs = df_denom + df_num + ncc`` Warning: The meaning of df_num and df_denom is reversed. Parameters ---------- effect_size : float Standardized effect size. The effect size is here Cohen's ``f``, square root of ``f2``. df_num : int or float Warning incorrect name denominator degrees of freedom, This corresponds to the number of constraints in Wald tests. df_denom : int or float Warning incorrect name numerator degrees of freedom. This corresponds to the df_resid in Wald tests. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. ncc : int degrees of freedom correction for non-centrality parameter. see Notes Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. Notes ----- sample size is given implicitly by df_num set ncc=0 to match t-test, or f-test in LikelihoodModelResults. ncc=1 matches the non-centrality parameter in R::pwr::pwr.f2.test ftest_power with ncc=0 should also be correct for f_test in regression models, with df_num and d_denom as defined there. (not verified yet)
power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def solve_power(self, effect_size=None, df_num=None, df_denom=None, alpha=None, power=None, ncc=1, **kwargs): '''solve for any one parameter of the power of a F-test for the one sample F-test the keywords are: effect_size, df_num, df_denom, alpha, power Exactly one needs to be ``None``, all others need numeric values. The effect size is Cohen's ``f``, square root of ``f2``. The sample size is given by ``nobs = df_denom + df_num + ncc``. Warning: The meaning of df_num and df_denom is reversed. Parameters ---------- effect_size : float Standardized effect size. The effect size is here Cohen's ``f``, square root of ``f2``. df_num : int or float Warning incorrect name denominator degrees of freedom, This corresponds to the number of constraints in Wald tests. Sample size is given by ``nobs = df_denom + df_num + ncc`` df_denom : int or float Warning incorrect name numerator degrees of freedom. This corresponds to the df_resid in Wald tests. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. ncc : int degrees of freedom correction for non-centrality parameter. see Notes kwargs : empty ``kwargs`` are not used and included for backwards compatibility. If ``nobs`` is used as keyword, then a warning is issued. All other keywords in ``kwargs`` raise a ValueError. Returns ------- value : float The value of the parameter that was set to None in the call. The value solves the power equation given the remaining parameters. Notes ----- The method uses scipy.optimize for finding the value that satisfies the power equation. It first uses ``brentq`` with a prior search for bounds. If this fails to find a root, ``fsolve`` is used. If ``fsolve`` also fails, then, for ``alpha``, ``power`` and ``effect_size``, ``brentq`` with fixed bounds is used. However, there can still be cases where this fails. ''' if kwargs: if "nobs" in kwargs: warnings.warn("nobs is not used") else: raise ValueError(f"incorrect keyword(s) {kwargs}") return super().solve_power(effect_size=effect_size, df_num=df_num, df_denom=df_denom, alpha=alpha, power=power, ncc=ncc)
solve for any one parameter of the power of a F-test for the one sample F-test the keywords are: effect_size, df_num, df_denom, alpha, power Exactly one needs to be ``None``, all others need numeric values. The effect size is Cohen's ``f``, square root of ``f2``. The sample size is given by ``nobs = df_denom + df_num + ncc``. Warning: The meaning of df_num and df_denom is reversed. Parameters ---------- effect_size : float Standardized effect size. The effect size is here Cohen's ``f``, square root of ``f2``. df_num : int or float Warning incorrect name denominator degrees of freedom, This corresponds to the number of constraints in Wald tests. Sample size is given by ``nobs = df_denom + df_num + ncc`` df_denom : int or float Warning incorrect name numerator degrees of freedom. This corresponds to the df_resid in Wald tests. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. ncc : int degrees of freedom correction for non-centrality parameter. see Notes kwargs : empty ``kwargs`` are not used and included for backwards compatibility. If ``nobs`` is used as keyword, then a warning is issued. All other keywords in ``kwargs`` raise a ValueError. Returns ------- value : float The value of the parameter that was set to None in the call. The value solves the power equation given the remaining parameters. Notes ----- The method uses scipy.optimize for finding the value that satisfies the power equation. It first uses ``brentq`` with a prior search for bounds. If this fails to find a root, ``fsolve`` is used. If ``fsolve`` also fails, then, for ``alpha``, ``power`` and ``effect_size``, ``brentq`` with fixed bounds is used. However, there can still be cases where this fails.
solve_power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def power(self, effect_size, df_num, df_denom, alpha, ncc=1): '''Calculate the power of a F-test. The effect size is Cohen's ``f^2``. The sample size is given by ``nobs = df_denom + df_num + ncc`` Parameters ---------- effect_size : float The effect size is here Cohen's ``f2``. This is equal to the noncentrality of an F-test divided by nobs. df_num : int or float Numerator degrees of freedom, This corresponds to the number of constraints in Wald tests. df_denom : int or float Denominator degrees of freedom. This corresponds to the df_resid in Wald tests. alpha : float in interval (0,1) Significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. ncc : int Degrees of freedom correction for non-centrality parameter. see Notes Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. Notes ----- The sample size is given implicitly by df_denom set ncc=0 to match t-test, or f-test in LikelihoodModelResults. ncc=1 matches the non-centrality parameter in R::pwr::pwr.f2.test ftest_power with ncc=0 should also be correct for f_test in regression models, with df_num and d_denom as defined there. (not verified yet) ''' pow_ = ftest_power_f2(effect_size, df_num, df_denom, alpha, ncc=ncc) return pow_
Calculate the power of a F-test. The effect size is Cohen's ``f^2``. The sample size is given by ``nobs = df_denom + df_num + ncc`` Parameters ---------- effect_size : float The effect size is here Cohen's ``f2``. This is equal to the noncentrality of an F-test divided by nobs. df_num : int or float Numerator degrees of freedom, This corresponds to the number of constraints in Wald tests. df_denom : int or float Denominator degrees of freedom. This corresponds to the df_resid in Wald tests. alpha : float in interval (0,1) Significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. ncc : int Degrees of freedom correction for non-centrality parameter. see Notes Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. Notes ----- The sample size is given implicitly by df_denom set ncc=0 to match t-test, or f-test in LikelihoodModelResults. ncc=1 matches the non-centrality parameter in R::pwr::pwr.f2.test ftest_power with ncc=0 should also be correct for f_test in regression models, with df_num and d_denom as defined there. (not verified yet)
power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def solve_power(self, effect_size=None, df_num=None, df_denom=None, alpha=None, power=None, ncc=1): '''Solve for any one parameter of the power of a F-test for the one sample F-test the keywords are: effect_size, df_num, df_denom, alpha, power Exactly one needs to be ``None``, all others need numeric values. The effect size is Cohen's ``f2``. The sample size is given by ``nobs = df_denom + df_num + ncc``, and can be found by solving for df_denom. Parameters ---------- effect_size : float The effect size is here Cohen's ``f2``. This is equal to the noncentrality of an F-test divided by nobs. df_num : int or float Numerator degrees of freedom, This corresponds to the number of constraints in Wald tests. df_denom : int or float Denominator degrees of freedom. This corresponds to the df_resid in Wald tests. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. ncc : int degrees of freedom correction for non-centrality parameter. see Notes Returns ------- value : float The value of the parameter that was set to None in the call. The value solves the power equation given the remaining parameters. Notes ----- The function uses scipy.optimize for finding the value that satisfies the power equation. It first uses ``brentq`` with a prior search for bounds. If this fails to find a root, ``fsolve`` is used. If ``fsolve`` also fails, then, for ``alpha``, ``power`` and ``effect_size``, ``brentq`` with fixed bounds is used. However, there can still be cases where this fails. ''' return super().solve_power(effect_size=effect_size, df_num=df_num, df_denom=df_denom, alpha=alpha, power=power, ncc=ncc)
Solve for any one parameter of the power of a F-test for the one sample F-test the keywords are: effect_size, df_num, df_denom, alpha, power Exactly one needs to be ``None``, all others need numeric values. The effect size is Cohen's ``f2``. The sample size is given by ``nobs = df_denom + df_num + ncc``, and can be found by solving for df_denom. Parameters ---------- effect_size : float The effect size is here Cohen's ``f2``. This is equal to the noncentrality of an F-test divided by nobs. df_num : int or float Numerator degrees of freedom, This corresponds to the number of constraints in Wald tests. df_denom : int or float Denominator degrees of freedom. This corresponds to the df_resid in Wald tests. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. ncc : int degrees of freedom correction for non-centrality parameter. see Notes Returns ------- value : float The value of the parameter that was set to None in the call. The value solves the power equation given the remaining parameters. Notes ----- The function uses scipy.optimize for finding the value that satisfies the power equation. It first uses ``brentq`` with a prior search for bounds. If this fails to find a root, ``fsolve`` is used. If ``fsolve`` also fails, then, for ``alpha``, ``power`` and ``effect_size``, ``brentq`` with fixed bounds is used. However, there can still be cases where this fails.
solve_power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def power(self, effect_size, nobs, alpha, k_groups=2): '''Calculate the power of a F-test for one factor ANOVA. Parameters ---------- effect_size : float standardized effect size. The effect size is here Cohen's f, square root of "f2". nobs : int or float sample size, number of observations. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. k_groups : int or float number of groups in the ANOVA or k-sample comparison. Default is 2. Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. ''' return ftest_anova_power(effect_size, nobs, alpha, k_groups=k_groups)
Calculate the power of a F-test for one factor ANOVA. Parameters ---------- effect_size : float standardized effect size. The effect size is here Cohen's f, square root of "f2". nobs : int or float sample size, number of observations. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. k_groups : int or float number of groups in the ANOVA or k-sample comparison. Default is 2. Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true.
power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def solve_power(self, effect_size=None, nobs=None, alpha=None, power=None, k_groups=2): '''solve for any one parameter of the power of a F-test for the one sample F-test the keywords are: effect_size, nobs, alpha, power Exactly one needs to be ``None``, all others need numeric values. Parameters ---------- effect_size : float standardized effect size, mean divided by the standard deviation. effect size has to be positive. nobs : int or float sample size, number of observations. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. Returns ------- value : float The value of the parameter that was set to None in the call. The value solves the power equation given the remaining parameters. Notes ----- The function uses scipy.optimize for finding the value that satisfies the power equation. It first uses ``brentq`` with a prior search for bounds. If this fails to find a root, ``fsolve`` is used. If ``fsolve`` also fails, then, for ``alpha``, ``power`` and ``effect_size``, ``brentq`` with fixed bounds is used. However, there can still be cases where this fails. ''' # update start values for root finding if k_groups is not None: self.start_ttp['nobs'] = k_groups * 10 self.start_bqexp['nobs'] = dict(low=k_groups * 2, start_upp=k_groups * 10) # first attempt at special casing if effect_size is None: return self._solve_effect_size(effect_size=effect_size, nobs=nobs, alpha=alpha, k_groups=k_groups, power=power) return super().solve_power(effect_size=effect_size, nobs=nobs, alpha=alpha, k_groups=k_groups, power=power)
solve for any one parameter of the power of a F-test for the one sample F-test the keywords are: effect_size, nobs, alpha, power Exactly one needs to be ``None``, all others need numeric values. Parameters ---------- effect_size : float standardized effect size, mean divided by the standard deviation. effect size has to be positive. nobs : int or float sample size, number of observations. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. Returns ------- value : float The value of the parameter that was set to None in the call. The value solves the power equation given the remaining parameters. Notes ----- The function uses scipy.optimize for finding the value that satisfies the power equation. It first uses ``brentq`` with a prior search for bounds. If this fails to find a root, ``fsolve`` is used. If ``fsolve`` also fails, then, for ``alpha``, ``power`` and ``effect_size``, ``brentq`` with fixed bounds is used. However, there can still be cases where this fails.
solve_power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def _solve_effect_size(self, effect_size=None, nobs=None, alpha=None, power=None, k_groups=2): '''experimental, test failure in solve_power for effect_size ''' def func(x): effect_size = x return self._power_identity(effect_size=effect_size, nobs=nobs, alpha=alpha, k_groups=k_groups, power=power) val, r = optimize.brentq(func, 1e-8, 1-1e-8, full_output=True) if not r.converged: print(r) return val
experimental, test failure in solve_power for effect_size
_solve_effect_size
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def power(self, effect_size, nobs, alpha, n_bins, ddof=0):#alternative='two-sided'): '''Calculate the power of a chisquare test for one sample Only two-sided alternative is implemented Parameters ---------- effect_size : float standardized effect size, according to Cohen's definition. see :func:`statsmodels.stats.gof.chisquare_effectsize` nobs : int or float sample size, number of observations. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. n_bins : int number of bins or cells in the distribution. Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. ''' from statsmodels.stats.gof import chisquare_power return chisquare_power(effect_size, nobs, n_bins, alpha, ddof=0)
Calculate the power of a chisquare test for one sample Only two-sided alternative is implemented Parameters ---------- effect_size : float standardized effect size, according to Cohen's definition. see :func:`statsmodels.stats.gof.chisquare_effectsize` nobs : int or float sample size, number of observations. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. n_bins : int number of bins or cells in the distribution. Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true.
power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def solve_power(self, effect_size=None, nobs=None, alpha=None, power=None, n_bins=2): '''solve for any one parameter of the power of a one sample chisquare-test for the one sample chisquare-test the keywords are: effect_size, nobs, alpha, power Exactly one needs to be ``None``, all others need numeric values. n_bins needs to be defined, a default=2 is used. Parameters ---------- effect_size : float standardized effect size, according to Cohen's definition. see :func:`statsmodels.stats.gof.chisquare_effectsize` nobs : int or float sample size, number of observations. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. n_bins : int number of bins or cells in the distribution Returns ------- value : float The value of the parameter that was set to None in the call. The value solves the power equation given the remaining parameters. Notes ----- The function uses scipy.optimize for finding the value that satisfies the power equation. It first uses ``brentq`` with a prior search for bounds. If this fails to find a root, ``fsolve`` is used. If ``fsolve`` also fails, then, for ``alpha``, ``power`` and ``effect_size``, ``brentq`` with fixed bounds is used. However, there can still be cases where this fails. ''' return super().solve_power(effect_size=effect_size, nobs=nobs, n_bins=n_bins, alpha=alpha, power=power)
solve for any one parameter of the power of a one sample chisquare-test for the one sample chisquare-test the keywords are: effect_size, nobs, alpha, power Exactly one needs to be ``None``, all others need numeric values. n_bins needs to be defined, a default=2 is used. Parameters ---------- effect_size : float standardized effect size, according to Cohen's definition. see :func:`statsmodels.stats.gof.chisquare_effectsize` nobs : int or float sample size, number of observations. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. n_bins : int number of bins or cells in the distribution Returns ------- value : float The value of the parameter that was set to None in the call. The value solves the power equation given the remaining parameters. Notes ----- The function uses scipy.optimize for finding the value that satisfies the power equation. It first uses ``brentq`` with a prior search for bounds. If this fails to find a root, ``fsolve`` is used. If ``fsolve`` also fails, then, for ``alpha``, ``power`` and ``effect_size``, ``brentq`` with fixed bounds is used. However, there can still be cases where this fails.
solve_power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def power(self, effect_size, nobs1, alpha, ratio=1, alternative='two-sided'): '''Calculate the power of a chisquare for two independent sample Parameters ---------- effect_size : float standardize effect size, difference between the two means divided by the standard deviation. effect size has to be positive. nobs1 : int or float number of observations of sample 1. The number of observations of sample two is ratio times the size of sample 1, i.e. ``nobs2 = nobs1 * ratio`` alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. ratio : float ratio of the number of observations in sample 2 relative to sample 1. see description of nobs1 The default for ratio is 1; to solve for ration given the other arguments it has to be explicitely set to None. alternative : str, 'two-sided' (default) or 'one-sided' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. 'one-sided' assumes we are in the relevant tail. Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. ''' from statsmodels.stats.gof import chisquare_power nobs2 = nobs1*ratio #equivalent to nobs = n1*n2/(n1+n2)=n1*ratio/(1+ratio) nobs = 1./ (1. / nobs1 + 1. / nobs2) return chisquare_power(effect_size, nobs, alpha)
Calculate the power of a chisquare for two independent sample Parameters ---------- effect_size : float standardize effect size, difference between the two means divided by the standard deviation. effect size has to be positive. nobs1 : int or float number of observations of sample 1. The number of observations of sample two is ratio times the size of sample 1, i.e. ``nobs2 = nobs1 * ratio`` alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. ratio : float ratio of the number of observations in sample 2 relative to sample 1. see description of nobs1 The default for ratio is 1; to solve for ration given the other arguments it has to be explicitely set to None. alternative : str, 'two-sided' (default) or 'one-sided' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. 'one-sided' assumes we are in the relevant tail. Returns ------- power : float Power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true.
power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def solve_power(self, effect_size=None, nobs1=None, alpha=None, power=None, ratio=1., alternative='two-sided'): '''solve for any one parameter of the power of a two sample z-test for z-test the keywords are: effect_size, nobs1, alpha, power, ratio exactly one needs to be ``None``, all others need numeric values Parameters ---------- effect_size : float standardize effect size, difference between the two means divided by the standard deviation. nobs1 : int or float number of observations of sample 1. The number of observations of sample two is ratio times the size of sample 1, i.e. ``nobs2 = nobs1 * ratio`` alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. ratio : float ratio of the number of observations in sample 2 relative to sample 1. see description of nobs1 The default for ratio is 1; to solve for ration given the other arguments it has to be explicitely set to None. alternative : str, 'two-sided' (default) or 'one-sided' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. 'one-sided' assumes we are in the relevant tail. Returns ------- value : float The value of the parameter that was set to None in the call. The value solves the power equation given the remaining parameters. Notes ----- The function uses scipy.optimize for finding the value that satisfies the power equation. It first uses ``brentq`` with a prior search for bounds. If this fails to find a root, ``fsolve`` is used. If ``fsolve`` also fails, then, for ``alpha``, ``power`` and ``effect_size``, ``brentq`` with fixed bounds is used. However, there can still be cases where this fails. ''' return super().solve_power(effect_size=effect_size, nobs1=nobs1, alpha=alpha, power=power, ratio=ratio, alternative=alternative)
solve for any one parameter of the power of a two sample z-test for z-test the keywords are: effect_size, nobs1, alpha, power, ratio exactly one needs to be ``None``, all others need numeric values Parameters ---------- effect_size : float standardize effect size, difference between the two means divided by the standard deviation. nobs1 : int or float number of observations of sample 1. The number of observations of sample two is ratio times the size of sample 1, i.e. ``nobs2 = nobs1 * ratio`` alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) power of the test, e.g. 0.8, is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. ratio : float ratio of the number of observations in sample 2 relative to sample 1. see description of nobs1 The default for ratio is 1; to solve for ration given the other arguments it has to be explicitely set to None. alternative : str, 'two-sided' (default) or 'one-sided' extra argument to choose whether the power is calculated for a two-sided (default) or one sided test. 'one-sided' assumes we are in the relevant tail. Returns ------- value : float The value of the parameter that was set to None in the call. The value solves the power equation given the remaining parameters. Notes ----- The function uses scipy.optimize for finding the value that satisfies the power equation. It first uses ``brentq`` with a prior search for bounds. If this fails to find a root, ``fsolve`` is used. If ``fsolve`` also fails, then, for ``alpha``, ``power`` and ``effect_size``, ``brentq`` with fixed bounds is used. However, there can still be cases where this fails.
solve_power
python
statsmodels/statsmodels
statsmodels/stats/power.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/power.py
BSD-3-Clause
def _bound_proportion_confint( func: Callable[[float], float], qi: float, lower: bool = True ) -> float: """ Try hard to find a bound different from eps/1 - eps in proportion_confint Parameters ---------- func : callable Callable function to use as the objective of the search qi : float The empirical success rate lower : bool Whether to fund a lower bound for the left side of the CI Returns ------- float The coarse bound """ default = FLOAT_INFO.eps if lower else 1.0 - FLOAT_INFO.eps def step(v): return v / 8 if lower else v + (1.0 - v) / 8 x = step(qi) w = func(x) cnt = 1 while w > 0 and cnt < 10: x = step(x) w = func(x) cnt += 1 return x if cnt < 10 else default
Try hard to find a bound different from eps/1 - eps in proportion_confint Parameters ---------- func : callable Callable function to use as the objective of the search qi : float The empirical success rate lower : bool Whether to fund a lower bound for the left side of the CI Returns ------- float The coarse bound
_bound_proportion_confint
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def _bisection_search_conservative( func: Callable[[float], float], lb: float, ub: float, steps: int = 27 ) -> tuple[float, float]: """ Private function used as a fallback by proportion_confint Used when brentq returns a non-conservative bound for the CI Parameters ---------- func : callable Callable function to use as the objective of the search lb : float Lower bound ub : float Upper bound steps : int Number of steps to use in the bisection Returns ------- est : float The estimated value. Will always produce a negative value of func func_val : float The value of the function at the estimate """ upper = func(ub) lower = func(lb) best = upper if upper < 0 else lower best_pt = ub if upper < 0 else lb if np.sign(lower) == np.sign(upper): raise ValueError("problem with signs") mp = (ub + lb) / 2 mid = func(mp) if (mid < 0) and (mid > best): best = mid best_pt = mp for _ in range(steps): if np.sign(mid) == np.sign(upper): ub = mp upper = mid else: lb = mp mp = (ub + lb) / 2 mid = func(mp) if (mid < 0) and (mid > best): best = mid best_pt = mp return best_pt, best
Private function used as a fallback by proportion_confint Used when brentq returns a non-conservative bound for the CI Parameters ---------- func : callable Callable function to use as the objective of the search lb : float Lower bound ub : float Upper bound steps : int Number of steps to use in the bisection Returns ------- est : float The estimated value. Will always produce a negative value of func func_val : float The value of the function at the estimate
_bisection_search_conservative
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def proportion_confint(count, nobs, alpha:float=0.05, method="normal", alternative:str='two-sided'): """ Confidence interval for a binomial proportion Parameters ---------- count : {int or float, array_like} number of successes, can be pandas Series or DataFrame. Arrays must contain integer values if method is "binom_test". nobs : {int or float, array_like} total number of trials. Arrays must contain integer values if method is "binom_test". alpha : float Significance level, default 0.05. Must be in (0, 1) method : {"normal", "agresti_coull", "beta", "wilson", "binom_test"} default: "normal" method to use for confidence interval. Supported methods: - `normal` : asymptotic normal approximation - `agresti_coull` : Agresti-Coull interval - `beta` : Clopper-Pearson interval based on Beta distribution - `wilson` : Wilson Score interval - `jeffreys` : Jeffreys Bayesian Interval - `binom_test` : Numerical inversion of binom_test alternative : {"two-sided", "larger", "smaller"} default: "two-sided" specifies whether to calculate a two-sided or one-sided confidence interval. Returns ------- ci_low, ci_upp : {float, ndarray, Series DataFrame} larger and smaller confidence level with coverage (approximately) 1-alpha. When a pandas object is returned, then the index is taken from `count`. When side is not "two-sided", lower or upper bound is set to 0 or 1 respectively. Notes ----- Beta, the Clopper-Pearson exact interval has coverage at least 1-alpha, but is in general conservative. Most of the other methods have average coverage equal to 1-alpha, but will have smaller coverage in some cases. The "beta" and "jeffreys" interval are central, they use alpha/2 in each tail, and alpha is not adjusted at the boundaries. In the extreme case when `count` is zero or equal to `nobs`, then the coverage will be only 1 - alpha/2 in the case of "beta". The confidence intervals are clipped to be in the [0, 1] interval in the case of "normal" and "agresti_coull". Method "binom_test" directly inverts the binomial test in scipy.stats. which has discrete steps. TODO: binom_test intervals raise an exception in small samples if one interval bound is close to zero or one. References ---------- .. [*] https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval .. [*] Brown, Lawrence D.; Cai, T. Tony; DasGupta, Anirban (2001). "Interval Estimation for a Binomial Proportion", Statistical Science 16 (2): 101–133. doi:10.1214/ss/1009213286. """ is_scalar = np.isscalar(count) and np.isscalar(nobs) is_pandas = isinstance(count, (pd.Series, pd.DataFrame)) count_a = array_like(count, "count", optional=False, ndim=None) nobs_a = array_like(nobs, "nobs", optional=False, ndim=None) def _check(x: np.ndarray, name: str) -> np.ndarray: if np.issubdtype(x.dtype, np.integer): return x y = x.astype(np.int64, casting="unsafe") if np.any(y != x): raise ValueError( f"{name} must have an integral dtype. Found data with " f"dtype {x.dtype}" ) return y if method == "binom_test": count_a = _check(np.asarray(count_a), "count") nobs_a = _check(np.asarray(nobs_a), "count") q_ = count_a / nobs_a if alternative == 'two-sided': if method != "binom_test": alpha = alpha / 2.0 elif alternative not in ['larger', 'smaller']: raise NotImplementedError(f"alternative {alternative} is not available") if method == "normal": std_ = np.sqrt(q_ * (1 - q_) / nobs_a) dist = stats.norm.isf(alpha) * std_ ci_low = q_ - dist ci_upp = q_ + dist elif method == "binom_test" and alternative == 'two-sided': def func_factory(count: int, nobs: int) -> Callable[[float], float]: if hasattr(stats, "binomtest"): def func(qi): return stats.binomtest(count, nobs, p=qi).pvalue - alpha else: # Remove after min SciPy >= 1.7 def func(qi): return stats.binom_test(count, nobs, p=qi) - alpha return func bcast = np.broadcast(count_a, nobs_a) ci_low = np.zeros(bcast.shape) ci_upp = np.zeros(bcast.shape) index = bcast.index for c, n in bcast: # Enforce symmetry reverse = False _q = q_.flat[index] if c > n // 2: c = n - c reverse = True _q = 1 - _q func = func_factory(c, n) if c == 0: ci_low.flat[index] = 0.0 else: lower_bnd = _bound_proportion_confint(func, _q, lower=True) val, _z = optimize.brentq( func, lower_bnd, _q, full_output=True ) if func(val) > 0: power = 10 new_lb = val - (val - lower_bnd) / 2**power while func(new_lb) > 0 and power >= 0: power -= 1 new_lb = val - (val - lower_bnd) / 2**power val, _ = _bisection_search_conservative(func, new_lb, _q) ci_low.flat[index] = val if c == n: ci_upp.flat[index] = 1.0 else: upper_bnd = _bound_proportion_confint(func, _q, lower=False) val, _z = optimize.brentq( func, _q, upper_bnd, full_output=True ) if func(val) > 0: power = 10 new_ub = val + (upper_bnd - val) / 2**power while func(new_ub) > 0 and power >= 0: power -= 1 new_ub = val - (upper_bnd - val) / 2**power val, _ = _bisection_search_conservative(func, _q, new_ub) ci_upp.flat[index] = val if reverse: temp = ci_upp.flat[index] ci_upp.flat[index] = 1 - ci_low.flat[index] ci_low.flat[index] = 1 - temp index = bcast.index elif method == "beta" or (method == "binom_test" and alternative != 'two-sided'): ci_low = stats.beta.ppf(alpha, count_a, nobs_a - count_a + 1) ci_upp = stats.beta.isf(alpha, count_a + 1, nobs_a - count_a) if np.ndim(ci_low) > 0: ci_low.flat[q_.flat == 0] = 0 ci_upp.flat[q_.flat == 1] = 1 else: ci_low = 0 if q_ == 0 else ci_low ci_upp = 1 if q_ == 1 else ci_upp elif method == "agresti_coull": crit = stats.norm.isf(alpha) nobs_c = nobs_a + crit**2 q_c = (count_a + crit**2 / 2.0) / nobs_c std_c = np.sqrt(q_c * (1.0 - q_c) / nobs_c) dist = crit * std_c ci_low = q_c - dist ci_upp = q_c + dist elif method == "wilson": crit = stats.norm.isf(alpha) crit2 = crit**2 denom = 1 + crit2 / nobs_a center = (q_ + crit2 / (2 * nobs_a)) / denom dist = crit * np.sqrt( q_ * (1.0 - q_) / nobs_a + crit2 / (4.0 * nobs_a**2) ) dist /= denom ci_low = center - dist ci_upp = center + dist # method adjusted to be more forgiving of misspellings or incorrect option name elif method[:4] == "jeff": ci_low = stats.beta.ppf(alpha, count_a + 0.5, nobs_a - count_a + 0.5) ci_upp = stats.beta.isf(alpha, count_a + 0.5, nobs_a - count_a + 0.5) else: raise NotImplementedError(f"method {method} is not available") if method in ["normal", "agresti_coull"]: ci_low = np.clip(ci_low, 0, 1) ci_upp = np.clip(ci_upp, 0, 1) if is_pandas: container = pd.Series if isinstance(count, pd.Series) else pd.DataFrame ci_low = container(ci_low, index=count.index) ci_upp = container(ci_upp, index=count.index) if alternative == 'larger': ci_low = 0 elif alternative == 'smaller': ci_upp = 1 if is_scalar: return float(ci_low), float(ci_upp) return ci_low, ci_upp
Confidence interval for a binomial proportion Parameters ---------- count : {int or float, array_like} number of successes, can be pandas Series or DataFrame. Arrays must contain integer values if method is "binom_test". nobs : {int or float, array_like} total number of trials. Arrays must contain integer values if method is "binom_test". alpha : float Significance level, default 0.05. Must be in (0, 1) method : {"normal", "agresti_coull", "beta", "wilson", "binom_test"} default: "normal" method to use for confidence interval. Supported methods: - `normal` : asymptotic normal approximation - `agresti_coull` : Agresti-Coull interval - `beta` : Clopper-Pearson interval based on Beta distribution - `wilson` : Wilson Score interval - `jeffreys` : Jeffreys Bayesian Interval - `binom_test` : Numerical inversion of binom_test alternative : {"two-sided", "larger", "smaller"} default: "two-sided" specifies whether to calculate a two-sided or one-sided confidence interval. Returns ------- ci_low, ci_upp : {float, ndarray, Series DataFrame} larger and smaller confidence level with coverage (approximately) 1-alpha. When a pandas object is returned, then the index is taken from `count`. When side is not "two-sided", lower or upper bound is set to 0 or 1 respectively. Notes ----- Beta, the Clopper-Pearson exact interval has coverage at least 1-alpha, but is in general conservative. Most of the other methods have average coverage equal to 1-alpha, but will have smaller coverage in some cases. The "beta" and "jeffreys" interval are central, they use alpha/2 in each tail, and alpha is not adjusted at the boundaries. In the extreme case when `count` is zero or equal to `nobs`, then the coverage will be only 1 - alpha/2 in the case of "beta". The confidence intervals are clipped to be in the [0, 1] interval in the case of "normal" and "agresti_coull". Method "binom_test" directly inverts the binomial test in scipy.stats. which has discrete steps. TODO: binom_test intervals raise an exception in small samples if one interval bound is close to zero or one. References ---------- .. [*] https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval .. [*] Brown, Lawrence D.; Cai, T. Tony; DasGupta, Anirban (2001). "Interval Estimation for a Binomial Proportion", Statistical Science 16 (2): 101–133. doi:10.1214/ss/1009213286.
proportion_confint
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def poisson_interval(interval, p): """ Compute P(b <= Z <= a) where Z ~ Poisson(p) and `interval = (b, a)`. """ b, a = interval prob = stats.poisson.cdf(a, p) - stats.poisson.cdf(b - 1, p) return prob
Compute P(b <= Z <= a) where Z ~ Poisson(p) and `interval = (b, a)`.
multinomial_proportions_confint.poisson_interval
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def truncated_poisson_factorial_moment(interval, r, p): """ Compute mu_r, the r-th factorial moment of a poisson random variable of parameter `p` truncated to `interval = (b, a)`. """ b, a = interval return p ** r * (1 - ((poisson_interval((a - r + 1, a), p) - poisson_interval((b - r, b - 1), p)) / poisson_interval((b, a), p)))
Compute mu_r, the r-th factorial moment of a poisson random variable of parameter `p` truncated to `interval = (b, a)`.
multinomial_proportions_confint.truncated_poisson_factorial_moment
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def edgeworth(intervals): """ Compute the Edgeworth expansion term of Sison & Glaz's formula (1) (approximated probability for multinomial proportions in a given box). """ # Compute means and central moments of the truncated poisson # variables. mu_r1, mu_r2, mu_r3, mu_r4 = ( np.array([truncated_poisson_factorial_moment(interval, r, p) for (interval, p) in zip(intervals, counts)]) for r in range(1, 5) ) mu = mu_r1 mu2 = mu_r2 + mu - mu ** 2 mu3 = mu_r3 + mu_r2 * (3 - 3 * mu) + mu - 3 * mu ** 2 + 2 * mu ** 3 mu4 = (mu_r4 + mu_r3 * (6 - 4 * mu) + mu_r2 * (7 - 12 * mu + 6 * mu ** 2) + mu - 4 * mu ** 2 + 6 * mu ** 3 - 3 * mu ** 4) # Compute expansion factors, gamma_1 and gamma_2. g1 = mu3.sum() / mu2.sum() ** 1.5 g2 = (mu4.sum() - 3 * (mu2 ** 2).sum()) / mu2.sum() ** 2 # Compute the expansion itself. x = (n - mu.sum()) / np.sqrt(mu2.sum()) phi = np.exp(- x ** 2 / 2) / np.sqrt(2 * np.pi) H3 = x ** 3 - 3 * x H4 = x ** 4 - 6 * x ** 2 + 3 H6 = x ** 6 - 15 * x ** 4 + 45 * x ** 2 - 15 f = phi * (1 + g1 * H3 / 6 + g2 * H4 / 24 + g1 ** 2 * H6 / 72) return f / np.sqrt(mu2.sum())
Compute the Edgeworth expansion term of Sison & Glaz's formula (1) (approximated probability for multinomial proportions in a given box).
multinomial_proportions_confint.edgeworth
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def approximated_multinomial_interval(intervals): """ Compute approximated probability for Multinomial(n, proportions) to be in `intervals` (Sison & Glaz's formula (1)). """ return np.exp( np.sum(np.log([poisson_interval(interval, p) for (interval, p) in zip(intervals, counts)])) + np.log(edgeworth(intervals)) - np.log(stats.poisson._pmf(n, n)) )
Compute approximated probability for Multinomial(n, proportions) to be in `intervals` (Sison & Glaz's formula (1)).
multinomial_proportions_confint.approximated_multinomial_interval
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def nu(c): """ Compute interval coverage for a given `c` (Sison & Glaz's formula (7)). """ return approximated_multinomial_interval( [(np.maximum(count - c, 0), np.minimum(count + c, n)) for count in counts])
Compute interval coverage for a given `c` (Sison & Glaz's formula (7)).
multinomial_proportions_confint.nu
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def multinomial_proportions_confint(counts, alpha=0.05, method='goodman'): """ Confidence intervals for multinomial proportions. Parameters ---------- counts : array_like of int, 1-D Number of observations in each category. alpha : float in (0, 1), optional Significance level, defaults to 0.05. method : {'goodman', 'sison-glaz'}, optional Method to use to compute the confidence intervals; available methods are: - `goodman`: based on a chi-squared approximation, valid if all values in `counts` are greater or equal to 5 [2]_ - `sison-glaz`: less conservative than `goodman`, but only valid if `counts` has 7 or more categories (``len(counts) >= 7``) [3]_ Returns ------- confint : ndarray, 2-D Array of [lower, upper] confidence levels for each category, such that overall coverage is (approximately) `1-alpha`. Raises ------ ValueError If `alpha` is not in `(0, 1)` (bounds excluded), or if the values in `counts` are not all positive or null. NotImplementedError If `method` is not kown. Exception When ``method == 'sison-glaz'``, if for some reason `c` cannot be computed; this signals a bug and should be reported. Notes ----- The `goodman` method [2]_ is based on approximating a statistic based on the multinomial as a chi-squared random variable. The usual recommendation is that this is valid if all the values in `counts` are greater than or equal to 5. There is no condition on the number of categories for this method. The `sison-glaz` method [3]_ approximates the multinomial probabilities, and evaluates that with a maximum-likelihood estimator. The first approximation is an Edgeworth expansion that converges when the number of categories goes to infinity, and the maximum-likelihood estimator converges when the number of observations (``sum(counts)``) goes to infinity. In their paper, Sison & Glaz demo their method with at least 7 categories, so ``len(counts) >= 7`` with all values in `counts` at or above 5 can be used as a rule of thumb for the validity of this method. This method is less conservative than the `goodman` method (i.e. it will yield confidence intervals closer to the desired significance level), but produces confidence intervals of uniform width over all categories (except when the intervals reach 0 or 1, in which case they are truncated), which makes it most useful when proportions are of similar magnitude. Aside from the original sources ([1]_, [2]_, and [3]_), the implementation uses the formulas (though not the code) presented in [4]_ and [5]_. References ---------- .. [1] Levin, Bruce, "A representation for multinomial cumulative distribution functions," The Annals of Statistics, Vol. 9, No. 5, 1981, pp. 1123-1126. .. [2] Goodman, L.A., "On simultaneous confidence intervals for multinomial proportions," Technometrics, Vol. 7, No. 2, 1965, pp. 247-254. .. [3] Sison, Cristina P., and Joseph Glaz, "Simultaneous Confidence Intervals and Sample Size Determination for Multinomial Proportions," Journal of the American Statistical Association, Vol. 90, No. 429, 1995, pp. 366-369. .. [4] May, Warren L., and William D. Johnson, "A SAS® macro for constructing simultaneous confidence intervals for multinomial proportions," Computer methods and programs in Biomedicine, Vol. 53, No. 3, 1997, pp. 153-162. .. [5] May, Warren L., and William D. Johnson, "Constructing two-sided simultaneous confidence intervals for multinomial proportions for small counts in a large number of cells," Journal of Statistical Software, Vol. 5, No. 6, 2000, pp. 1-24. """ if alpha <= 0 or alpha >= 1: raise ValueError('alpha must be in (0, 1), bounds excluded') counts = np.array(counts, dtype=float) if (counts < 0).any(): raise ValueError('counts must be >= 0') n = counts.sum() k = len(counts) proportions = counts / n if method == 'goodman': chi2 = stats.chi2.ppf(1 - alpha / k, 1) delta = chi2 ** 2 + (4 * n * proportions * chi2 * (1 - proportions)) region = ((2 * n * proportions + chi2 + np.array([- np.sqrt(delta), np.sqrt(delta)])) / (2 * (chi2 + n))).T elif method[:5] == 'sison': # We accept any name starting with 'sison' # Define a few functions we'll use a lot. def poisson_interval(interval, p): """ Compute P(b <= Z <= a) where Z ~ Poisson(p) and `interval = (b, a)`. """ b, a = interval prob = stats.poisson.cdf(a, p) - stats.poisson.cdf(b - 1, p) return prob def truncated_poisson_factorial_moment(interval, r, p): """ Compute mu_r, the r-th factorial moment of a poisson random variable of parameter `p` truncated to `interval = (b, a)`. """ b, a = interval return p ** r * (1 - ((poisson_interval((a - r + 1, a), p) - poisson_interval((b - r, b - 1), p)) / poisson_interval((b, a), p))) def edgeworth(intervals): """ Compute the Edgeworth expansion term of Sison & Glaz's formula (1) (approximated probability for multinomial proportions in a given box). """ # Compute means and central moments of the truncated poisson # variables. mu_r1, mu_r2, mu_r3, mu_r4 = ( np.array([truncated_poisson_factorial_moment(interval, r, p) for (interval, p) in zip(intervals, counts)]) for r in range(1, 5) ) mu = mu_r1 mu2 = mu_r2 + mu - mu ** 2 mu3 = mu_r3 + mu_r2 * (3 - 3 * mu) + mu - 3 * mu ** 2 + 2 * mu ** 3 mu4 = (mu_r4 + mu_r3 * (6 - 4 * mu) + mu_r2 * (7 - 12 * mu + 6 * mu ** 2) + mu - 4 * mu ** 2 + 6 * mu ** 3 - 3 * mu ** 4) # Compute expansion factors, gamma_1 and gamma_2. g1 = mu3.sum() / mu2.sum() ** 1.5 g2 = (mu4.sum() - 3 * (mu2 ** 2).sum()) / mu2.sum() ** 2 # Compute the expansion itself. x = (n - mu.sum()) / np.sqrt(mu2.sum()) phi = np.exp(- x ** 2 / 2) / np.sqrt(2 * np.pi) H3 = x ** 3 - 3 * x H4 = x ** 4 - 6 * x ** 2 + 3 H6 = x ** 6 - 15 * x ** 4 + 45 * x ** 2 - 15 f = phi * (1 + g1 * H3 / 6 + g2 * H4 / 24 + g1 ** 2 * H6 / 72) return f / np.sqrt(mu2.sum()) def approximated_multinomial_interval(intervals): """ Compute approximated probability for Multinomial(n, proportions) to be in `intervals` (Sison & Glaz's formula (1)). """ return np.exp( np.sum(np.log([poisson_interval(interval, p) for (interval, p) in zip(intervals, counts)])) + np.log(edgeworth(intervals)) - np.log(stats.poisson._pmf(n, n)) ) def nu(c): """ Compute interval coverage for a given `c` (Sison & Glaz's formula (7)). """ return approximated_multinomial_interval( [(np.maximum(count - c, 0), np.minimum(count + c, n)) for count in counts]) # Find the value of `c` that will give us the confidence intervals # (solving nu(c) <= 1 - alpha < nu(c + 1). c = 1.0 nuc = nu(c) nucp1 = nu(c + 1) while not (nuc <= (1 - alpha) < nucp1): if c > n: raise Exception("Couldn't find a value for `c` that " "solves nu(c) <= 1 - alpha < nu(c + 1)") c += 1 nuc = nucp1 nucp1 = nu(c + 1) # Compute gamma and the corresponding confidence intervals. g = (1 - alpha - nuc) / (nucp1 - nuc) ci_lower = np.maximum(proportions - c / n, 0) ci_upper = np.minimum(proportions + (c + 2 * g) / n, 1) region = np.array([ci_lower, ci_upper]).T else: raise NotImplementedError('method "%s" is not available' % method) return region
Confidence intervals for multinomial proportions. Parameters ---------- counts : array_like of int, 1-D Number of observations in each category. alpha : float in (0, 1), optional Significance level, defaults to 0.05. method : {'goodman', 'sison-glaz'}, optional Method to use to compute the confidence intervals; available methods are: - `goodman`: based on a chi-squared approximation, valid if all values in `counts` are greater or equal to 5 [2]_ - `sison-glaz`: less conservative than `goodman`, but only valid if `counts` has 7 or more categories (``len(counts) >= 7``) [3]_ Returns ------- confint : ndarray, 2-D Array of [lower, upper] confidence levels for each category, such that overall coverage is (approximately) `1-alpha`. Raises ------ ValueError If `alpha` is not in `(0, 1)` (bounds excluded), or if the values in `counts` are not all positive or null. NotImplementedError If `method` is not kown. Exception When ``method == 'sison-glaz'``, if for some reason `c` cannot be computed; this signals a bug and should be reported. Notes ----- The `goodman` method [2]_ is based on approximating a statistic based on the multinomial as a chi-squared random variable. The usual recommendation is that this is valid if all the values in `counts` are greater than or equal to 5. There is no condition on the number of categories for this method. The `sison-glaz` method [3]_ approximates the multinomial probabilities, and evaluates that with a maximum-likelihood estimator. The first approximation is an Edgeworth expansion that converges when the number of categories goes to infinity, and the maximum-likelihood estimator converges when the number of observations (``sum(counts)``) goes to infinity. In their paper, Sison & Glaz demo their method with at least 7 categories, so ``len(counts) >= 7`` with all values in `counts` at or above 5 can be used as a rule of thumb for the validity of this method. This method is less conservative than the `goodman` method (i.e. it will yield confidence intervals closer to the desired significance level), but produces confidence intervals of uniform width over all categories (except when the intervals reach 0 or 1, in which case they are truncated), which makes it most useful when proportions are of similar magnitude. Aside from the original sources ([1]_, [2]_, and [3]_), the implementation uses the formulas (though not the code) presented in [4]_ and [5]_. References ---------- .. [1] Levin, Bruce, "A representation for multinomial cumulative distribution functions," The Annals of Statistics, Vol. 9, No. 5, 1981, pp. 1123-1126. .. [2] Goodman, L.A., "On simultaneous confidence intervals for multinomial proportions," Technometrics, Vol. 7, No. 2, 1965, pp. 247-254. .. [3] Sison, Cristina P., and Joseph Glaz, "Simultaneous Confidence Intervals and Sample Size Determination for Multinomial Proportions," Journal of the American Statistical Association, Vol. 90, No. 429, 1995, pp. 366-369. .. [4] May, Warren L., and William D. Johnson, "A SAS® macro for constructing simultaneous confidence intervals for multinomial proportions," Computer methods and programs in Biomedicine, Vol. 53, No. 3, 1997, pp. 153-162. .. [5] May, Warren L., and William D. Johnson, "Constructing two-sided simultaneous confidence intervals for multinomial proportions for small counts in a large number of cells," Journal of Statistical Software, Vol. 5, No. 6, 2000, pp. 1-24.
multinomial_proportions_confint
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def samplesize_confint_proportion(proportion, half_length, alpha=0.05, method='normal'): """ Find sample size to get desired confidence interval length Parameters ---------- proportion : float in (0, 1) proportion or quantile half_length : float in (0, 1) desired half length of the confidence interval alpha : float in (0, 1) significance level, default 0.05, coverage of the two-sided interval is (approximately) ``1 - alpha`` method : str in ['normal'] method to use for confidence interval, currently only normal approximation Returns ------- n : float sample size to get the desired half length of the confidence interval Notes ----- this is mainly to store the formula. possible application: number of replications in bootstrap samples """ q_ = proportion if method == 'normal': n = q_ * (1 - q_) / (half_length / stats.norm.isf(alpha / 2.))**2 else: raise NotImplementedError('only "normal" is available') return n
Find sample size to get desired confidence interval length Parameters ---------- proportion : float in (0, 1) proportion or quantile half_length : float in (0, 1) desired half length of the confidence interval alpha : float in (0, 1) significance level, default 0.05, coverage of the two-sided interval is (approximately) ``1 - alpha`` method : str in ['normal'] method to use for confidence interval, currently only normal approximation Returns ------- n : float sample size to get the desired half length of the confidence interval Notes ----- this is mainly to store the formula. possible application: number of replications in bootstrap samples
samplesize_confint_proportion
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def proportion_effectsize(prop1, prop2, method='normal'): """ Effect size for a test comparing two proportions for use in power function Parameters ---------- prop1, prop2 : float or array_like The proportion value(s). Returns ------- es : float or ndarray effect size for (transformed) prop1 - prop2 Notes ----- only method='normal' is implemented to match pwr.p2.test see http://www.statmethods.net/stats/power.html Effect size for `normal` is defined as :: 2 * (arcsin(sqrt(prop1)) - arcsin(sqrt(prop2))) I think other conversions to normality can be used, but I need to check. Examples -------- >>> import statsmodels.api as sm >>> sm.stats.proportion_effectsize(0.5, 0.4) 0.20135792079033088 >>> sm.stats.proportion_effectsize([0.3, 0.4, 0.5], 0.4) array([-0.21015893, 0. , 0.20135792]) """ if method != 'normal': raise ValueError('only "normal" is implemented') es = 2 * (np.arcsin(np.sqrt(prop1)) - np.arcsin(np.sqrt(prop2))) return es
Effect size for a test comparing two proportions for use in power function Parameters ---------- prop1, prop2 : float or array_like The proportion value(s). Returns ------- es : float or ndarray effect size for (transformed) prop1 - prop2 Notes ----- only method='normal' is implemented to match pwr.p2.test see http://www.statmethods.net/stats/power.html Effect size for `normal` is defined as :: 2 * (arcsin(sqrt(prop1)) - arcsin(sqrt(prop2))) I think other conversions to normality can be used, but I need to check. Examples -------- >>> import statsmodels.api as sm >>> sm.stats.proportion_effectsize(0.5, 0.4) 0.20135792079033088 >>> sm.stats.proportion_effectsize([0.3, 0.4, 0.5], 0.4) array([-0.21015893, 0. , 0.20135792])
proportion_effectsize
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def std_prop(prop, nobs): """ Standard error for the estimate of a proportion This is just ``np.sqrt(p * (1. - p) / nobs)`` Parameters ---------- prop : array_like proportion nobs : int, array_like number of observations Returns ------- std : array_like standard error for a proportion of nobs independent observations """ return np.sqrt(prop * (1. - prop) / nobs)
Standard error for the estimate of a proportion This is just ``np.sqrt(p * (1. - p) / nobs)`` Parameters ---------- prop : array_like proportion nobs : int, array_like number of observations Returns ------- std : array_like standard error for a proportion of nobs independent observations
std_prop
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def _power_ztost(mean_low, var_low, mean_upp, var_upp, mean_alt, var_alt, alpha=0.05, discrete=True, dist='norm', nobs=None, continuity=0, critval_continuity=0): """ Generic statistical power function for normal based equivalence test This includes options to adjust the normal approximation and can use the binomial to evaluate the probability of the rejection region see power_ztost_prob for a description of the options """ # TODO: refactor structure, separate norm and binom better if not isinstance(continuity, tuple): continuity = (continuity, continuity) crit = stats.norm.isf(alpha) k_low = mean_low + np.sqrt(var_low) * crit k_upp = mean_upp - np.sqrt(var_upp) * crit if discrete or dist == 'binom': k_low = np.ceil(k_low * nobs + 0.5 * critval_continuity) k_upp = np.trunc(k_upp * nobs - 0.5 * critval_continuity) if dist == 'norm': #need proportion k_low = (k_low) * 1. / nobs #-1 to match PASS k_upp = k_upp * 1. / nobs # else: # if dist == 'binom': # #need counts # k_low *= nobs # k_upp *= nobs #print mean_low, np.sqrt(var_low), crit, var_low #print mean_upp, np.sqrt(var_upp), crit, var_upp if np.any(k_low > k_upp): #vectorize import warnings warnings.warn("no overlap, power is zero", HypothesisTestWarning) std_alt = np.sqrt(var_alt) z_low = (k_low - mean_alt - continuity[0] * 0.5 / nobs) / std_alt z_upp = (k_upp - mean_alt + continuity[1] * 0.5 / nobs) / std_alt if dist == 'norm': power = stats.norm.cdf(z_upp) - stats.norm.cdf(z_low) elif dist == 'binom': power = (stats.binom.cdf(k_upp, nobs, mean_alt) - stats.binom.cdf(k_low-1, nobs, mean_alt)) return power, (k_low, k_upp, z_low, z_upp)
Generic statistical power function for normal based equivalence test This includes options to adjust the normal approximation and can use the binomial to evaluate the probability of the rejection region see power_ztost_prob for a description of the options
_power_ztost
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def binom_tost(count, nobs, low, upp): """ Exact TOST test for one proportion using binomial distribution Parameters ---------- count : {int, array_like} the number of successes in nobs trials. nobs : int the number of trials or observations. low, upp : floats lower and upper limit of equivalence region Returns ------- pvalue : float p-value of equivalence test pval_low, pval_upp : floats p-values of lower and upper one-sided tests """ # binom_test_stat only returns pval tt1 = binom_test(count, nobs, alternative='larger', prop=low) tt2 = binom_test(count, nobs, alternative='smaller', prop=upp) return np.maximum(tt1, tt2), tt1, tt2,
Exact TOST test for one proportion using binomial distribution Parameters ---------- count : {int, array_like} the number of successes in nobs trials. nobs : int the number of trials or observations. low, upp : floats lower and upper limit of equivalence region Returns ------- pvalue : float p-value of equivalence test pval_low, pval_upp : floats p-values of lower and upper one-sided tests
binom_tost
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def binom_tost_reject_interval(low, upp, nobs, alpha=0.05): """ Rejection region for binomial TOST The interval includes the end points, `reject` if and only if `r_low <= x <= r_upp`. The interval might be empty with `r_upp < r_low`. Parameters ---------- low, upp : floats lower and upper limit of equivalence region nobs : int the number of trials or observations. Returns ------- x_low, x_upp : float lower and upper bound of rejection region """ x_low = stats.binom.isf(alpha, nobs, low) + 1 x_upp = stats.binom.ppf(alpha, nobs, upp) - 1 return x_low, x_upp
Rejection region for binomial TOST The interval includes the end points, `reject` if and only if `r_low <= x <= r_upp`. The interval might be empty with `r_upp < r_low`. Parameters ---------- low, upp : floats lower and upper limit of equivalence region nobs : int the number of trials or observations. Returns ------- x_low, x_upp : float lower and upper bound of rejection region
binom_tost_reject_interval
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def binom_test_reject_interval(value, nobs, alpha=0.05, alternative='two-sided'): """ Rejection region for binomial test for one sample proportion The interval includes the end points of the rejection region. Parameters ---------- value : float proportion under the Null hypothesis nobs : int the number of trials or observations. Returns ------- x_low, x_upp : int lower and upper bound of rejection region """ if alternative in ['2s', 'two-sided']: alternative = '2s' # normalize alternative name alpha = alpha / 2 if alternative in ['2s', 'smaller']: x_low = stats.binom.ppf(alpha, nobs, value) - 1 else: x_low = 0 if alternative in ['2s', 'larger']: x_upp = stats.binom.isf(alpha, nobs, value) + 1 else : x_upp = nobs return int(x_low), int(x_upp)
Rejection region for binomial test for one sample proportion The interval includes the end points of the rejection region. Parameters ---------- value : float proportion under the Null hypothesis nobs : int the number of trials or observations. Returns ------- x_low, x_upp : int lower and upper bound of rejection region
binom_test_reject_interval
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def binom_test(count, nobs, prop=0.5, alternative='two-sided'): """ Perform a test that the probability of success is p. This is an exact, two-sided test of the null hypothesis that the probability of success in a Bernoulli experiment is `p`. Parameters ---------- count : {int, array_like} the number of successes in nobs trials. nobs : int the number of trials or observations. prop : float, optional The probability of success under the null hypothesis, `0 <= prop <= 1`. The default value is `prop = 0.5` alternative : str in ['two-sided', 'smaller', 'larger'] alternative hypothesis, which can be two-sided or either one of the one-sided tests. Returns ------- p-value : float The p-value of the hypothesis test Notes ----- This uses scipy.stats.binom_test for the two-sided alternative. """ if np.any(prop > 1.0) or np.any(prop < 0.0): raise ValueError("p must be in range [0,1]") if alternative in ['2s', 'two-sided']: try: pval = stats.binomtest(count, n=nobs, p=prop).pvalue except AttributeError: # Remove after min SciPy >= 1.7 pval = stats.binom_test(count, n=nobs, p=prop) elif alternative in ['l', 'larger']: pval = stats.binom.sf(count-1, nobs, prop) elif alternative in ['s', 'smaller']: pval = stats.binom.cdf(count, nobs, prop) else: raise ValueError('alternative not recognized\n' 'should be two-sided, larger or smaller') return pval
Perform a test that the probability of success is p. This is an exact, two-sided test of the null hypothesis that the probability of success in a Bernoulli experiment is `p`. Parameters ---------- count : {int, array_like} the number of successes in nobs trials. nobs : int the number of trials or observations. prop : float, optional The probability of success under the null hypothesis, `0 <= prop <= 1`. The default value is `prop = 0.5` alternative : str in ['two-sided', 'smaller', 'larger'] alternative hypothesis, which can be two-sided or either one of the one-sided tests. Returns ------- p-value : float The p-value of the hypothesis test Notes ----- This uses scipy.stats.binom_test for the two-sided alternative.
binom_test
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def power_ztost_prop(low, upp, nobs, p_alt, alpha=0.05, dist='norm', variance_prop=None, discrete=True, continuity=0, critval_continuity=0): """ Power of proportions equivalence test based on normal distribution Parameters ---------- low, upp : floats lower and upper limit of equivalence region nobs : int number of observations p_alt : float in (0,1) proportion under the alternative alpha : float in (0,1) significance level of the test dist : str in ['norm', 'binom'] This defines the distribution to evaluate the power of the test. The critical values of the TOST test are always based on the normal approximation, but the distribution for the power can be either the normal (default) or the binomial (exact) distribution. variance_prop : None or float in (0,1) If this is None, then the variances for the two one sided tests are based on the proportions equal to the equivalence limits. If variance_prop is given, then it is used to calculate the variance for the TOST statistics. If this is based on an sample, then the estimated proportion can be used. discrete : bool If true, then the critical values of the rejection region are converted to integers. If dist is "binom", this is automatically assumed. If discrete is false, then the TOST critical values are used as floating point numbers, and the power is calculated based on the rejection region that is not discretized. continuity : bool or float adjust the rejection region for the normal power probability. This has and effect only if ``dist='norm'`` critval_continuity : bool or float If this is non-zero, then the critical values of the tost rejection region are adjusted before converting to integers. This affects both distributions, ``dist='norm'`` and ``dist='binom'``. Returns ------- power : float statistical power of the equivalence test. (k_low, k_upp, z_low, z_upp) : tuple of floats critical limits in intermediate steps temporary return, will be changed Notes ----- In small samples the power for the ``discrete`` version, has a sawtooth pattern as a function of the number of observations. As a consequence, small changes in the number of observations or in the normal approximation can have a large effect on the power. ``continuity`` and ``critval_continuity`` are added to match some results of PASS, and are mainly to investigate the sensitivity of the ztost power to small changes in the rejection region. From my interpretation of the equations in the SAS manual, both are zero in SAS. works vectorized **verification:** The ``dist='binom'`` results match PASS, The ``dist='norm'`` results look reasonable, but no benchmark is available. References ---------- SAS Manual: Chapter 68: The Power Procedure, Computational Resources PASS Chapter 110: Equivalence Tests for One Proportion. """ mean_low = low var_low = std_prop(low, nobs)**2 mean_upp = upp var_upp = std_prop(upp, nobs)**2 mean_alt = p_alt var_alt = std_prop(p_alt, nobs)**2 if variance_prop is not None: var_low = var_upp = std_prop(variance_prop, nobs)**2 power = _power_ztost(mean_low, var_low, mean_upp, var_upp, mean_alt, var_alt, alpha=alpha, discrete=discrete, dist=dist, nobs=nobs, continuity=continuity, critval_continuity=critval_continuity) return np.maximum(power[0], 0), power[1:]
Power of proportions equivalence test based on normal distribution Parameters ---------- low, upp : floats lower and upper limit of equivalence region nobs : int number of observations p_alt : float in (0,1) proportion under the alternative alpha : float in (0,1) significance level of the test dist : str in ['norm', 'binom'] This defines the distribution to evaluate the power of the test. The critical values of the TOST test are always based on the normal approximation, but the distribution for the power can be either the normal (default) or the binomial (exact) distribution. variance_prop : None or float in (0,1) If this is None, then the variances for the two one sided tests are based on the proportions equal to the equivalence limits. If variance_prop is given, then it is used to calculate the variance for the TOST statistics. If this is based on an sample, then the estimated proportion can be used. discrete : bool If true, then the critical values of the rejection region are converted to integers. If dist is "binom", this is automatically assumed. If discrete is false, then the TOST critical values are used as floating point numbers, and the power is calculated based on the rejection region that is not discretized. continuity : bool or float adjust the rejection region for the normal power probability. This has and effect only if ``dist='norm'`` critval_continuity : bool or float If this is non-zero, then the critical values of the tost rejection region are adjusted before converting to integers. This affects both distributions, ``dist='norm'`` and ``dist='binom'``. Returns ------- power : float statistical power of the equivalence test. (k_low, k_upp, z_low, z_upp) : tuple of floats critical limits in intermediate steps temporary return, will be changed Notes ----- In small samples the power for the ``discrete`` version, has a sawtooth pattern as a function of the number of observations. As a consequence, small changes in the number of observations or in the normal approximation can have a large effect on the power. ``continuity`` and ``critval_continuity`` are added to match some results of PASS, and are mainly to investigate the sensitivity of the ztost power to small changes in the rejection region. From my interpretation of the equations in the SAS manual, both are zero in SAS. works vectorized **verification:** The ``dist='binom'`` results match PASS, The ``dist='norm'`` results look reasonable, but no benchmark is available. References ---------- SAS Manual: Chapter 68: The Power Procedure, Computational Resources PASS Chapter 110: Equivalence Tests for One Proportion.
power_ztost_prop
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def _table_proportion(count, nobs): """ Create a k by 2 contingency table for proportion helper function for proportions_chisquare Parameters ---------- count : {int, array_like} the number of successes in nobs trials. nobs : int the number of trials or observations. Returns ------- table : ndarray (k, 2) contingency table Notes ----- recent scipy has more elaborate contingency table functions """ count = np.asarray(count) dt = np.promote_types(count.dtype, np.float64) count = np.asarray(count, dtype=dt) table = np.column_stack((count, nobs - count)) expected = table.sum(0) * table.sum(1)[:, None] * 1. / table.sum() n_rows = table.shape[0] return table, expected, n_rows
Create a k by 2 contingency table for proportion helper function for proportions_chisquare Parameters ---------- count : {int, array_like} the number of successes in nobs trials. nobs : int the number of trials or observations. Returns ------- table : ndarray (k, 2) contingency table Notes ----- recent scipy has more elaborate contingency table functions
_table_proportion
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def proportions_ztest(count, nobs, value=None, alternative='two-sided', prop_var=False): """ Test for proportions based on normal (z) test Parameters ---------- count : {int, array_like} the number of successes in nobs trials. If this is array_like, then the assumption is that this represents the number of successes for each independent sample nobs : {int, array_like} the number of trials or observations, with the same length as count. value : float, array_like or None, optional This is the value of the null hypothesis equal to the proportion in the case of a one sample test. In the case of a two-sample test, the null hypothesis is that prop[0] - prop[1] = value, where prop is the proportion in the two samples. If not provided value = 0 and the null is prop[0] = prop[1] alternative : str in ['two-sided', 'smaller', 'larger'] The alternative hypothesis can be either two-sided or one of the one- sided tests, smaller means that the alternative hypothesis is ``prop < value`` and larger means ``prop > value``. In the two sample test, smaller means that the alternative hypothesis is ``p1 < p2`` and larger means ``p1 > p2`` where ``p1`` is the proportion of the first sample and ``p2`` of the second one. prop_var : False or float in (0, 1) If prop_var is false, then the variance of the proportion estimate is calculated based on the sample proportion. Alternatively, a proportion can be specified to calculate this variance. Common use case is to use the proportion under the Null hypothesis to specify the variance of the proportion estimate. Returns ------- zstat : float test statistic for the z-test p-value : float p-value for the z-test Examples -------- >>> count = 5 >>> nobs = 83 >>> value = .05 >>> stat, pval = proportions_ztest(count, nobs, value) >>> print('{0:0.3f}'.format(pval)) 0.695 >>> import numpy as np >>> from statsmodels.stats.proportion import proportions_ztest >>> count = np.array([5, 12]) >>> nobs = np.array([83, 99]) >>> stat, pval = proportions_ztest(count, nobs) >>> print('{0:0.3f}'.format(pval)) 0.159 Notes ----- This uses a simple normal test for proportions. It should be the same as running the mean z-test on the data encoded 1 for event and 0 for no event so that the sum corresponds to the count. In the one and two sample cases with two-sided alternative, this test produces the same p-value as ``proportions_chisquare``, since the chisquare is the distribution of the square of a standard normal distribution. """ # TODO: verify that this really holds # TODO: add continuity correction or other improvements for small samples # TODO: change options similar to propotion_ztost ? count = np.asarray(count) nobs = np.asarray(nobs) if nobs.size == 1: nobs = nobs * np.ones_like(count) prop = count * 1. / nobs k_sample = np.size(prop) if value is None: if k_sample == 1: raise ValueError('value must be provided for a 1-sample test') value = 0 if k_sample == 1: diff = prop - value elif k_sample == 2: diff = prop[0] - prop[1] - value else: msg = 'more than two samples are not implemented yet' raise NotImplementedError(msg) p_pooled = np.sum(count) * 1. / np.sum(nobs) nobs_fact = np.sum(1. / nobs) if prop_var: p_pooled = prop_var var_ = p_pooled * (1 - p_pooled) * nobs_fact std_diff = np.sqrt(var_) from statsmodels.stats.weightstats import _zstat_generic2 return _zstat_generic2(diff, std_diff, alternative)
Test for proportions based on normal (z) test Parameters ---------- count : {int, array_like} the number of successes in nobs trials. If this is array_like, then the assumption is that this represents the number of successes for each independent sample nobs : {int, array_like} the number of trials or observations, with the same length as count. value : float, array_like or None, optional This is the value of the null hypothesis equal to the proportion in the case of a one sample test. In the case of a two-sample test, the null hypothesis is that prop[0] - prop[1] = value, where prop is the proportion in the two samples. If not provided value = 0 and the null is prop[0] = prop[1] alternative : str in ['two-sided', 'smaller', 'larger'] The alternative hypothesis can be either two-sided or one of the one- sided tests, smaller means that the alternative hypothesis is ``prop < value`` and larger means ``prop > value``. In the two sample test, smaller means that the alternative hypothesis is ``p1 < p2`` and larger means ``p1 > p2`` where ``p1`` is the proportion of the first sample and ``p2`` of the second one. prop_var : False or float in (0, 1) If prop_var is false, then the variance of the proportion estimate is calculated based on the sample proportion. Alternatively, a proportion can be specified to calculate this variance. Common use case is to use the proportion under the Null hypothesis to specify the variance of the proportion estimate. Returns ------- zstat : float test statistic for the z-test p-value : float p-value for the z-test Examples -------- >>> count = 5 >>> nobs = 83 >>> value = .05 >>> stat, pval = proportions_ztest(count, nobs, value) >>> print('{0:0.3f}'.format(pval)) 0.695 >>> import numpy as np >>> from statsmodels.stats.proportion import proportions_ztest >>> count = np.array([5, 12]) >>> nobs = np.array([83, 99]) >>> stat, pval = proportions_ztest(count, nobs) >>> print('{0:0.3f}'.format(pval)) 0.159 Notes ----- This uses a simple normal test for proportions. It should be the same as running the mean z-test on the data encoded 1 for event and 0 for no event so that the sum corresponds to the count. In the one and two sample cases with two-sided alternative, this test produces the same p-value as ``proportions_chisquare``, since the chisquare is the distribution of the square of a standard normal distribution.
proportions_ztest
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def proportions_ztost(count, nobs, low, upp, prop_var='sample'): """ Equivalence test based on normal distribution Parameters ---------- count : {int, array_like} the number of successes in nobs trials. If this is array_like, then the assumption is that this represents the number of successes for each independent sample nobs : int the number of trials or observations, with the same length as count. low, upp : float equivalence interval low < prop1 - prop2 < upp prop_var : str or float in (0, 1) prop_var determines which proportion is used for the calculation of the standard deviation of the proportion estimate The available options for string are 'sample' (default), 'null' and 'limits'. If prop_var is a float, then it is used directly. Returns ------- pvalue : float pvalue of the non-equivalence test t1, pv1 : tuple of floats test statistic and pvalue for lower threshold test t2, pv2 : tuple of floats test statistic and pvalue for upper threshold test Notes ----- checked only for 1 sample case """ if prop_var == 'limits': prop_var_low = low prop_var_upp = upp elif prop_var == 'sample': prop_var_low = prop_var_upp = False #ztest uses sample elif prop_var == 'null': prop_var_low = prop_var_upp = 0.5 * (low + upp) elif np.isreal(prop_var): prop_var_low = prop_var_upp = prop_var tt1 = proportions_ztest(count, nobs, alternative='larger', prop_var=prop_var_low, value=low) tt2 = proportions_ztest(count, nobs, alternative='smaller', prop_var=prop_var_upp, value=upp) return np.maximum(tt1[1], tt2[1]), tt1, tt2,
Equivalence test based on normal distribution Parameters ---------- count : {int, array_like} the number of successes in nobs trials. If this is array_like, then the assumption is that this represents the number of successes for each independent sample nobs : int the number of trials or observations, with the same length as count. low, upp : float equivalence interval low < prop1 - prop2 < upp prop_var : str or float in (0, 1) prop_var determines which proportion is used for the calculation of the standard deviation of the proportion estimate The available options for string are 'sample' (default), 'null' and 'limits'. If prop_var is a float, then it is used directly. Returns ------- pvalue : float pvalue of the non-equivalence test t1, pv1 : tuple of floats test statistic and pvalue for lower threshold test t2, pv2 : tuple of floats test statistic and pvalue for upper threshold test Notes ----- checked only for 1 sample case
proportions_ztost
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def proportions_chisquare(count, nobs, value=None): """ Test for proportions based on chisquare test Parameters ---------- count : {int, array_like} the number of successes in nobs trials. If this is array_like, then the assumption is that this represents the number of successes for each independent sample nobs : int the number of trials or observations, with the same length as count. value : None or float or array_like Returns ------- chi2stat : float test statistic for the chisquare test p-value : float p-value for the chisquare test (table, expected) table is a (k, 2) contingency table, ``expected`` is the corresponding table of counts that are expected under independence with given margins Notes ----- Recent version of scipy.stats have a chisquare test for independence in contingency tables. This function provides a similar interface to chisquare tests as ``prop.test`` in R, however without the option for Yates continuity correction. count can be the count for the number of events for a single proportion, or the counts for several independent proportions. If value is given, then all proportions are jointly tested against this value. If value is not given and count and nobs are not scalar, then the null hypothesis is that all samples have the same proportion. """ nobs = np.atleast_1d(nobs) table, expected, n_rows = _table_proportion(count, nobs) if value is not None: expected = np.column_stack((nobs * value, nobs * (1 - value))) ddof = n_rows - 1 else: ddof = n_rows #print table, expected chi2stat, pval = stats.chisquare(table.ravel(), expected.ravel(), ddof=ddof) return chi2stat, pval, (table, expected)
Test for proportions based on chisquare test Parameters ---------- count : {int, array_like} the number of successes in nobs trials. If this is array_like, then the assumption is that this represents the number of successes for each independent sample nobs : int the number of trials or observations, with the same length as count. value : None or float or array_like Returns ------- chi2stat : float test statistic for the chisquare test p-value : float p-value for the chisquare test (table, expected) table is a (k, 2) contingency table, ``expected`` is the corresponding table of counts that are expected under independence with given margins Notes ----- Recent version of scipy.stats have a chisquare test for independence in contingency tables. This function provides a similar interface to chisquare tests as ``prop.test`` in R, however without the option for Yates continuity correction. count can be the count for the number of events for a single proportion, or the counts for several independent proportions. If value is given, then all proportions are jointly tested against this value. If value is not given and count and nobs are not scalar, then the null hypothesis is that all samples have the same proportion.
proportions_chisquare
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def proportions_chisquare_allpairs(count, nobs, multitest_method='hs'): """ Chisquare test of proportions for all pairs of k samples Performs a chisquare test for proportions for all pairwise comparisons. The alternative is two-sided Parameters ---------- count : {int, array_like} the number of successes in nobs trials. nobs : int the number of trials or observations. multitest_method : str This chooses the method for the multiple testing p-value correction, that is used as default in the results. It can be any method that is available in ``multipletesting``. The default is Holm-Sidak 'hs'. Returns ------- result : AllPairsResults instance The returned results instance has several statistics, such as p-values, attached, and additional methods for using a non-default ``multitest_method``. Notes ----- Yates continuity correction is not available. """ #all_pairs = lmap(list, lzip(*np.triu_indices(4, 1))) all_pairs = lzip(*np.triu_indices(len(count), 1)) pvals = [proportions_chisquare(count[list(pair)], nobs[list(pair)])[1] for pair in all_pairs] return AllPairsResults(pvals, all_pairs, multitest_method=multitest_method)
Chisquare test of proportions for all pairs of k samples Performs a chisquare test for proportions for all pairwise comparisons. The alternative is two-sided Parameters ---------- count : {int, array_like} the number of successes in nobs trials. nobs : int the number of trials or observations. multitest_method : str This chooses the method for the multiple testing p-value correction, that is used as default in the results. It can be any method that is available in ``multipletesting``. The default is Holm-Sidak 'hs'. Returns ------- result : AllPairsResults instance The returned results instance has several statistics, such as p-values, attached, and additional methods for using a non-default ``multitest_method``. Notes ----- Yates continuity correction is not available.
proportions_chisquare_allpairs
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def proportions_chisquare_pairscontrol(count, nobs, value=None, multitest_method='hs', alternative='two-sided'): """ Chisquare test of proportions for pairs of k samples compared to control Performs a chisquare test for proportions for pairwise comparisons with a control (Dunnet's test). The control is assumed to be the first element of ``count`` and ``nobs``. The alternative is two-sided, larger or smaller. Parameters ---------- count : {int, array_like} the number of successes in nobs trials. nobs : int the number of trials or observations. multitest_method : str This chooses the method for the multiple testing p-value correction, that is used as default in the results. It can be any method that is available in ``multipletesting``. The default is Holm-Sidak 'hs'. alternative : str in ['two-sided', 'smaller', 'larger'] alternative hypothesis, which can be two-sided or either one of the one-sided tests. Returns ------- result : AllPairsResults instance The returned results instance has several statistics, such as p-values, attached, and additional methods for using a non-default ``multitest_method``. Notes ----- Yates continuity correction is not available. ``value`` and ``alternative`` options are not yet implemented. """ if (value is not None) or (alternative not in ['two-sided', '2s']): raise NotImplementedError #all_pairs = lmap(list, lzip(*np.triu_indices(4, 1))) all_pairs = [(0, k) for k in range(1, len(count))] pvals = [proportions_chisquare(count[list(pair)], nobs[list(pair)], #alternative=alternative)[1] )[1] for pair in all_pairs] return AllPairsResults(pvals, all_pairs, multitest_method=multitest_method)
Chisquare test of proportions for pairs of k samples compared to control Performs a chisquare test for proportions for pairwise comparisons with a control (Dunnet's test). The control is assumed to be the first element of ``count`` and ``nobs``. The alternative is two-sided, larger or smaller. Parameters ---------- count : {int, array_like} the number of successes in nobs trials. nobs : int the number of trials or observations. multitest_method : str This chooses the method for the multiple testing p-value correction, that is used as default in the results. It can be any method that is available in ``multipletesting``. The default is Holm-Sidak 'hs'. alternative : str in ['two-sided', 'smaller', 'larger'] alternative hypothesis, which can be two-sided or either one of the one-sided tests. Returns ------- result : AllPairsResults instance The returned results instance has several statistics, such as p-values, attached, and additional methods for using a non-default ``multitest_method``. Notes ----- Yates continuity correction is not available. ``value`` and ``alternative`` options are not yet implemented.
proportions_chisquare_pairscontrol
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def confint_proportions_2indep(count1, nobs1, count2, nobs2, method=None, compare='diff', alpha=0.05, correction=True): """ Confidence intervals for comparing two independent proportions. This assumes that we have two independent binomial samples. Parameters ---------- count1, nobs1 : float Count and sample size for first sample. count2, nobs2 : float Count and sample size for the second sample. method : str Method for computing confidence interval. If method is None, then a default method is used. The default might change as more methods are added. diff: - 'wald', - 'agresti-caffo' - 'newcomb' (default) - 'score' ratio: - 'log' - 'log-adjusted' (default) - 'score' odds-ratio: - 'logit' - 'logit-adjusted' (default) - 'score' compare : string in ['diff', 'ratio' 'odds-ratio'] If compare is diff, then the confidence interval is for diff = p1 - p2. If compare is ratio, then the confidence interval is for the risk ratio defined by ratio = p1 / p2. If compare is odds-ratio, then the confidence interval is for the odds-ratio defined by or = p1 / (1 - p1) / (p2 / (1 - p2). alpha : float Significance level for the confidence interval, default is 0.05. The nominal coverage probability is 1 - alpha. Returns ------- low, upp See Also -------- test_proportions_2indep tost_proportions_2indep Notes ----- Status: experimental, API and defaults might still change. more ``methods`` will be added. References ---------- .. [1] Fagerland, Morten W., Stian Lydersen, and Petter Laake. 2015. “Recommended Confidence Intervals for Two Independent Binomial Proportions.” Statistical Methods in Medical Research 24 (2): 224–54. https://doi.org/10.1177/0962280211415469. .. [2] Koopman, P. A. R. 1984. “Confidence Intervals for the Ratio of Two Binomial Proportions.” Biometrics 40 (2): 513–17. https://doi.org/10.2307/2531405. .. [3] Miettinen, Olli, and Markku Nurminen. "Comparative analysis of two rates." Statistics in medicine 4, no. 2 (1985): 213-226. .. [4] Newcombe, Robert G. 1998. “Interval Estimation for the Difference between Independent Proportions: Comparison of Eleven Methods.” Statistics in Medicine 17 (8): 873–90. https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<873::AID- SIM779>3.0.CO;2-I. .. [5] Newcombe, Robert G., and Markku M. Nurminen. 2011. “In Defence of Score Intervals for Proportions and Their Differences.” Communications in Statistics - Theory and Methods 40 (7): 1271–82. https://doi.org/10.1080/03610920903576580. """ method_default = {'diff': 'newcomb', 'ratio': 'log-adjusted', 'odds-ratio': 'logit-adjusted'} # normalize compare name if compare.lower() == 'or': compare = 'odds-ratio' if method is None: method = method_default[compare] method = method.lower() if method.startswith('agr'): method = 'agresti-caffo' p1 = count1 / nobs1 p2 = count2 / nobs2 diff = p1 - p2 addone = 1 if method == 'agresti-caffo' else 0 if compare == 'diff': if method in ['wald', 'agresti-caffo']: count1_, nobs1_ = count1 + addone, nobs1 + 2 * addone count2_, nobs2_ = count2 + addone, nobs2 + 2 * addone p1_ = count1_ / nobs1_ p2_ = count2_ / nobs2_ diff_ = p1_ - p2_ var = p1_ * (1 - p1_) / nobs1_ + p2_ * (1 - p2_) / nobs2_ z = stats.norm.isf(alpha / 2) d_wald = z * np.sqrt(var) low = diff_ - d_wald upp = diff_ + d_wald elif method.startswith('newcomb'): low1, upp1 = proportion_confint(count1, nobs1, method='wilson', alpha=alpha) low2, upp2 = proportion_confint(count2, nobs2, method='wilson', alpha=alpha) d_low = np.sqrt((p1 - low1)**2 + (upp2 - p2)**2) d_upp = np.sqrt((p2 - low2)**2 + (upp1 - p1)**2) low = diff - d_low upp = diff + d_upp elif method == "score": low, upp = _score_confint_inversion(count1, nobs1, count2, nobs2, compare=compare, alpha=alpha, correction=correction) else: raise ValueError('method not recognized') elif compare == 'ratio': # ratio = p1 / p2 if method in ['log', 'log-adjusted']: addhalf = 0.5 if method == 'log-adjusted' else 0 count1_, nobs1_ = count1 + addhalf, nobs1 + addhalf count2_, nobs2_ = count2 + addhalf, nobs2 + addhalf p1_ = count1_ / nobs1_ p2_ = count2_ / nobs2_ ratio_ = p1_ / p2_ var = (1 / count1_) - 1 / nobs1_ + 1 / count2_ - 1 / nobs2_ z = stats.norm.isf(alpha / 2) d_log = z * np.sqrt(var) low = np.exp(np.log(ratio_) - d_log) upp = np.exp(np.log(ratio_) + d_log) elif method == 'score': res = _confint_riskratio_koopman(count1, nobs1, count2, nobs2, alpha=alpha, correction=correction) low, upp = res.confint else: raise ValueError('method not recognized') elif compare == 'odds-ratio': # odds_ratio = p1 / (1 - p1) / p2 * (1 - p2) if method in ['logit', 'logit-adjusted', 'logit-smoothed']: if method in ['logit-smoothed']: adjusted = _shrink_prob(count1, nobs1, count2, nobs2, shrink_factor=2, return_corr=False)[0] count1_, nobs1_, count2_, nobs2_ = adjusted else: addhalf = 0.5 if method == 'logit-adjusted' else 0 count1_, nobs1_ = count1 + addhalf, nobs1 + 2 * addhalf count2_, nobs2_ = count2 + addhalf, nobs2 + 2 * addhalf p1_ = count1_ / nobs1_ p2_ = count2_ / nobs2_ odds_ratio_ = p1_ / (1 - p1_) / p2_ * (1 - p2_) var = (1 / count1_ + 1 / (nobs1_ - count1_) + 1 / count2_ + 1 / (nobs2_ - count2_)) z = stats.norm.isf(alpha / 2) d_log = z * np.sqrt(var) low = np.exp(np.log(odds_ratio_) - d_log) upp = np.exp(np.log(odds_ratio_) + d_log) elif method == "score": low, upp = _score_confint_inversion(count1, nobs1, count2, nobs2, compare=compare, alpha=alpha, correction=correction) else: raise ValueError('method not recognized') else: raise ValueError('compare not recognized') return low, upp
Confidence intervals for comparing two independent proportions. This assumes that we have two independent binomial samples. Parameters ---------- count1, nobs1 : float Count and sample size for first sample. count2, nobs2 : float Count and sample size for the second sample. method : str Method for computing confidence interval. If method is None, then a default method is used. The default might change as more methods are added. diff: - 'wald', - 'agresti-caffo' - 'newcomb' (default) - 'score' ratio: - 'log' - 'log-adjusted' (default) - 'score' odds-ratio: - 'logit' - 'logit-adjusted' (default) - 'score' compare : string in ['diff', 'ratio' 'odds-ratio'] If compare is diff, then the confidence interval is for diff = p1 - p2. If compare is ratio, then the confidence interval is for the risk ratio defined by ratio = p1 / p2. If compare is odds-ratio, then the confidence interval is for the odds-ratio defined by or = p1 / (1 - p1) / (p2 / (1 - p2). alpha : float Significance level for the confidence interval, default is 0.05. The nominal coverage probability is 1 - alpha. Returns ------- low, upp See Also -------- test_proportions_2indep tost_proportions_2indep Notes ----- Status: experimental, API and defaults might still change. more ``methods`` will be added. References ---------- .. [1] Fagerland, Morten W., Stian Lydersen, and Petter Laake. 2015. “Recommended Confidence Intervals for Two Independent Binomial Proportions.” Statistical Methods in Medical Research 24 (2): 224–54. https://doi.org/10.1177/0962280211415469. .. [2] Koopman, P. A. R. 1984. “Confidence Intervals for the Ratio of Two Binomial Proportions.” Biometrics 40 (2): 513–17. https://doi.org/10.2307/2531405. .. [3] Miettinen, Olli, and Markku Nurminen. "Comparative analysis of two rates." Statistics in medicine 4, no. 2 (1985): 213-226. .. [4] Newcombe, Robert G. 1998. “Interval Estimation for the Difference between Independent Proportions: Comparison of Eleven Methods.” Statistics in Medicine 17 (8): 873–90. https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<873::AID- SIM779>3.0.CO;2-I. .. [5] Newcombe, Robert G., and Markku M. Nurminen. 2011. “In Defence of Score Intervals for Proportions and Their Differences.” Communications in Statistics - Theory and Methods 40 (7): 1271–82. https://doi.org/10.1080/03610920903576580.
confint_proportions_2indep
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def _shrink_prob(count1, nobs1, count2, nobs2, shrink_factor=2, return_corr=True): """ Shrink observed counts towards independence Helper function for 'logit-smoothed' inference for the odds-ratio of two independent proportions. Parameters ---------- count1, nobs1 : float or int count and sample size for first sample count2, nobs2 : float or int count and sample size for the second sample shrink_factor : float This corresponds to the number of observations that are added in total proportional to the probabilities under independence. return_corr : bool If true, then only the correction term is returned If false, then the corrected counts, i.e. original counts plus correction term, are returned. Returns ------- count1_corr, nobs1_corr, count2_corr, nobs2_corr : float correction or corrected counts prob_indep : TODO/Warning : this will change most likely probabilities under independence, only returned if return_corr is false. """ vectorized = any(np.size(i) > 1 for i in [count1, nobs1, count2, nobs2]) if vectorized: raise ValueError("function is not vectorized") nobs_col = np.array([count1 + count2, nobs1 - count1 + nobs2 - count2]) nobs_row = np.array([nobs1, nobs2]) nobs = nobs1 + nobs2 prob_indep = (nobs_col * nobs_row[:, None]) / nobs**2 corr = shrink_factor * prob_indep if return_corr: return (corr[0, 0], corr[0].sum(), corr[1, 0], corr[1].sum()) else: return (count1 + corr[0, 0], nobs1 + corr[0].sum(), count2 + corr[1, 0], nobs2 + corr[1].sum()), prob_indep
Shrink observed counts towards independence Helper function for 'logit-smoothed' inference for the odds-ratio of two independent proportions. Parameters ---------- count1, nobs1 : float or int count and sample size for first sample count2, nobs2 : float or int count and sample size for the second sample shrink_factor : float This corresponds to the number of observations that are added in total proportional to the probabilities under independence. return_corr : bool If true, then only the correction term is returned If false, then the corrected counts, i.e. original counts plus correction term, are returned. Returns ------- count1_corr, nobs1_corr, count2_corr, nobs2_corr : float correction or corrected counts prob_indep : TODO/Warning : this will change most likely probabilities under independence, only returned if return_corr is false.
_shrink_prob
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause
def score_test_proportions_2indep(count1, nobs1, count2, nobs2, value=None, compare='diff', alternative='two-sided', correction=True, return_results=True): """ Score test for two independent proportions This uses the constrained estimate of the proportions to compute the variance under the Null hypothesis. Parameters ---------- count1, nobs1 : count and sample size for first sample count2, nobs2 : count and sample size for the second sample value : float diff, ratio or odds-ratio under the null hypothesis. If value is None, then equality of proportions under the Null is assumed, i.e. value=0 for 'diff' or value=1 for either rate or odds-ratio. compare : string in ['diff', 'ratio' 'odds-ratio'] If compare is diff, then the confidence interval is for diff = p1 - p2. If compare is ratio, then the confidence interval is for the risk ratio defined by ratio = p1 / p2. If compare is odds-ratio, then the confidence interval is for the odds-ratio defined by or = p1 / (1 - p1) / (p2 / (1 - p2) return_results : bool If true, then a results instance with extra information is returned, otherwise a tuple with statistic and pvalue is returned. Returns ------- results : results instance or tuple If return_results is True, then a results instance with the information in attributes is returned. If return_results is False, then only ``statistic`` and ``pvalue`` are returned. statistic : float test statistic asymptotically normal distributed N(0, 1) pvalue : float p-value based on normal distribution other attributes : additional information about the hypothesis test Notes ----- Status: experimental, the type or extra information in the return might change. """ value_default = 0 if compare == 'diff' else 1 if value is None: # TODO: odds ratio does not work if value=1 value = value_default nobs = nobs1 + nobs2 count = count1 + count2 p1 = count1 / nobs1 p2 = count2 / nobs2 if value == value_default: # use pooled estimator if equality test # shortcut, but required for odds ratio prop0 = prop1 = count / nobs # this uses index 0 from Miettinen Nurminned 1985 count0, nobs0 = count2, nobs2 p0 = p2 if compare == 'diff': diff = value # hypothesis value if diff != 0: tmp3 = nobs tmp2 = (nobs1 + 2 * nobs0) * diff - nobs - count tmp1 = (count0 * diff - nobs - 2 * count0) * diff + count tmp0 = count0 * diff * (1 - diff) q = ((tmp2 / (3 * tmp3))**3 - tmp1 * tmp2 / (6 * tmp3**2) + tmp0 / (2 * tmp3)) p = np.sign(q) * np.sqrt((tmp2 / (3 * tmp3))**2 - tmp1 / (3 * tmp3)) a = (np.pi + np.arccos(q / p**3)) / 3 prop0 = 2 * p * np.cos(a) - tmp2 / (3 * tmp3) prop1 = prop0 + diff var = prop1 * (1 - prop1) / nobs1 + prop0 * (1 - prop0) / nobs0 if correction: var *= nobs / (nobs - 1) diff_stat = (p1 - p0 - diff) elif compare == 'ratio': # risk ratio ratio = value if ratio != 1: a = nobs * ratio b = -(nobs1 * ratio + count1 + nobs2 + count0 * ratio) c = count prop0 = (-b - np.sqrt(b**2 - 4 * a * c)) / (2 * a) prop1 = prop0 * ratio var = (prop1 * (1 - prop1) / nobs1 + ratio**2 * prop0 * (1 - prop0) / nobs0) if correction: var *= nobs / (nobs - 1) # NCSS looks incorrect for var, but it is what should be reported # diff_stat = (p1 / p0 - ratio) # NCSS/PASS diff_stat = (p1 - ratio * p0) # Miettinen Nurminen elif compare in ['or', 'odds-ratio']: # odds ratio oratio = value if oratio != 1: # Note the constraint estimator does not handle odds-ratio = 1 a = nobs0 * (oratio - 1) b = nobs1 * oratio + nobs0 - count * (oratio - 1) c = -count prop0 = (-b + np.sqrt(b**2 - 4 * a * c)) / (2 * a) prop1 = prop0 * oratio / (1 + prop0 * (oratio - 1)) # try to avoid 0 and 1 proportions, # those raise Zero Division Runtime Warnings eps = 1e-10 prop0 = np.clip(prop0, eps, 1 - eps) prop1 = np.clip(prop1, eps, 1 - eps) var = (1 / (prop1 * (1 - prop1) * nobs1) + 1 / (prop0 * (1 - prop0) * nobs0)) if correction: var *= nobs / (nobs - 1) diff_stat = ((p1 - prop1) / (prop1 * (1 - prop1)) - (p0 - prop0) / (prop0 * (1 - prop0))) statistic, pvalue = _zstat_generic2(diff_stat, np.sqrt(var), alternative=alternative) if return_results: res = HolderTuple(statistic=statistic, pvalue=pvalue, compare=compare, method='score', variance=var, alternative=alternative, prop1_null=prop1, prop2_null=prop0, ) return res else: return statistic, pvalue
Score test for two independent proportions This uses the constrained estimate of the proportions to compute the variance under the Null hypothesis. Parameters ---------- count1, nobs1 : count and sample size for first sample count2, nobs2 : count and sample size for the second sample value : float diff, ratio or odds-ratio under the null hypothesis. If value is None, then equality of proportions under the Null is assumed, i.e. value=0 for 'diff' or value=1 for either rate or odds-ratio. compare : string in ['diff', 'ratio' 'odds-ratio'] If compare is diff, then the confidence interval is for diff = p1 - p2. If compare is ratio, then the confidence interval is for the risk ratio defined by ratio = p1 / p2. If compare is odds-ratio, then the confidence interval is for the odds-ratio defined by or = p1 / (1 - p1) / (p2 / (1 - p2) return_results : bool If true, then a results instance with extra information is returned, otherwise a tuple with statistic and pvalue is returned. Returns ------- results : results instance or tuple If return_results is True, then a results instance with the information in attributes is returned. If return_results is False, then only ``statistic`` and ``pvalue`` are returned. statistic : float test statistic asymptotically normal distributed N(0, 1) pvalue : float p-value based on normal distribution other attributes : additional information about the hypothesis test Notes ----- Status: experimental, the type or extra information in the return might change.
score_test_proportions_2indep
python
statsmodels/statsmodels
statsmodels/stats/proportion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/proportion.py
BSD-3-Clause