code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def approx_hess_cs(x, f, epsilon=None, args=(), kwargs={}): '''Calculate Hessian with complex-step derivative approximation Parameters ---------- x : array_like value at which function derivative is evaluated f : function function of one array f(x) epsilon : float stepsize, if None, then stepsize is automatically chosen Returns ------- hess : ndarray array of partial second derivatives, Hessian Notes ----- based on equation 10 in M. S. RIDOUT: Statistical Applications of the Complex-step Method of Numerical Differentiation, University of Kent, Canterbury, Kent, U.K. The stepsize is the same for the complex and the finite difference part. ''' # TODO: might want to consider lowering the step for pure derivatives n = len(x) h = _get_epsilon(x, 3, epsilon, n) ee = np.diag(h) hess = np.outer(h, h) n = len(x) for i in range(n): for j in range(i, n): hess[i, j] = np.squeeze( (f(*((x + 1j*ee[i, :] + ee[j, :],) + args), **kwargs) - f(*((x + 1j*ee[i, :] - ee[j, :],)+args), **kwargs)).imag/2./hess[i, j] ) hess[j, i] = hess[i, j] return hess
Calculate Hessian with complex-step derivative approximation Parameters ---------- x : array_like value at which function derivative is evaluated f : function function of one array f(x) epsilon : float stepsize, if None, then stepsize is automatically chosen Returns ------- hess : ndarray array of partial second derivatives, Hessian Notes ----- based on equation 10 in M. S. RIDOUT: Statistical Applications of the Complex-step Method of Numerical Differentiation, University of Kent, Canterbury, Kent, U.K. The stepsize is the same for the complex and the finite difference part.
approx_hess_cs
python
statsmodels/statsmodels
statsmodels/tools/numdiff.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/numdiff.py
BSD-3-Clause
def test_missing_data_pandas(): """ Fixes GH: #144 """ X = np.random.random((10, 5)) X[1, 2] = np.nan df = pandas.DataFrame(X) vals, cnames, rnames = data.interpret_data(df) np.testing.assert_equal(rnames.tolist(), [0, 2, 3, 4, 5, 6, 7, 8, 9])
Fixes GH: #144
test_missing_data_pandas
python
statsmodels/statsmodels
statsmodels/tools/tests/test_data.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/tests/test_data.py
BSD-3-Clause
def _right_squeeze(arr, stop_dim=0): """ Remove trailing singleton dimensions Parameters ---------- arr : ndarray Input array stop_dim : int Dimension where checking should stop so that shape[i] is not checked for i < stop_dim Returns ------- squeezed : ndarray Array with all trailing singleton dimensions (0 or 1) removed. Singleton dimensions for dimension < stop_dim are retained. """ last = arr.ndim for s in reversed(arr.shape): if s > 1: break last -= 1 last = max(last, stop_dim) return arr.reshape(arr.shape[:last])
Remove trailing singleton dimensions Parameters ---------- arr : ndarray Input array stop_dim : int Dimension where checking should stop so that shape[i] is not checked for i < stop_dim Returns ------- squeezed : ndarray Array with all trailing singleton dimensions (0 or 1) removed. Singleton dimensions for dimension < stop_dim are retained.
_right_squeeze
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def array_like( obj, name, dtype=np.double, ndim=1, maxdim=None, shape=None, order=None, contiguous=False, optional=False, writeable=True, ): """ Convert array-like to a ndarray and check conditions Parameters ---------- obj : array_like An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence. name : str Name of the variable to use in exceptions dtype : {None, numpy.dtype, str} Required dtype. Default is double. If None, does not change the dtype of obj (if present) or uses NumPy to automatically detect the dtype ndim : {int, None} Required number of dimensions of obj. If None, no check is performed. If the number of dimensions of obj is less than ndim, additional axes are inserted on the right. See examples. maxdim : {int, None} Maximum allowed dimension. Use ``maxdim`` instead of ``ndim`` when inputs are allowed to have ndim 1, 2, ..., or maxdim. shape : {tuple[int], None} Required shape obj. If None, no check is performed. Partially restricted shapes can be checked using None. See examples. order : {'C', 'F', None} Order of the array contiguous : bool Ensure that the array's data is contiguous with order ``order`` optional : bool Flag indicating whether None is allowed writeable : bool Whether to ensure the returned array is writeable Returns ------- ndarray The converted input. Examples -------- Convert a list or pandas series to an array >>> import pandas as pd >>> x = [0, 1, 2, 3] >>> a = array_like(x, 'x', ndim=1) >>> a.shape (4,) >>> a = array_like(pd.Series(x), 'x', ndim=1) >>> a.shape (4,) >>> type(a.orig) pandas.core.series.Series Squeezes singleton dimensions when required >>> x = np.array(x).reshape((4, 1)) >>> a = array_like(x, 'x', ndim=1) >>> a.shape (4,) Right-appends when required size is larger than actual >>> x = [0, 1, 2, 3] >>> a = array_like(x, 'x', ndim=2) >>> a.shape (4, 1) Check only the first and last dimension of the input >>> x = np.arange(4*10*4).reshape((4, 10, 4)) >>> y = array_like(x, 'x', ndim=3, shape=(4, None, 4)) Check only the first two dimensions >>> z = array_like(x, 'x', ndim=3, shape=(4, 10)) Raises ValueError if constraints are not satisfied >>> z = array_like(x, 'x', ndim=2) Traceback (most recent call last): ... ValueError: x is required to have ndim 2 but has ndim 3 >>> z = array_like(x, 'x', shape=(10, 4, 4)) Traceback (most recent call last): ... ValueError: x is required to have shape (10, 4, 4) but has shape (4, 10, 4) >>> z = array_like(x, 'x', shape=(None, 4, 4)) Traceback (most recent call last): ... ValueError: x is required to have shape (*, 4, 4) but has shape (4, 10, 4) """ if optional and obj is None: return None reqs = ["W"] if writeable else [] if order == "C" or contiguous: reqs += ["C"] elif order == "F": reqs += ["F"] arr = np.require(obj, dtype=dtype, requirements=reqs) if maxdim is not None: if arr.ndim > maxdim: msg = f"{name} must have ndim <= {maxdim}" raise ValueError(msg) elif ndim is not None: if arr.ndim > ndim: arr = _right_squeeze(arr, stop_dim=ndim) elif arr.ndim < ndim: arr = np.reshape(arr, arr.shape + (1,) * (ndim - arr.ndim)) if arr.ndim != ndim: msg = "{0} is required to have ndim {1} but has ndim {2}" raise ValueError(msg.format(name, ndim, arr.ndim)) if shape is not None: for actual, req in zip(arr.shape, shape): if req is not None and actual != req: req_shape = str(shape).replace("None, ", "*, ") msg = "{0} is required to have shape {1} but has shape {2}" raise ValueError(msg.format(name, req_shape, arr.shape)) return arr
Convert array-like to a ndarray and check conditions Parameters ---------- obj : array_like An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence. name : str Name of the variable to use in exceptions dtype : {None, numpy.dtype, str} Required dtype. Default is double. If None, does not change the dtype of obj (if present) or uses NumPy to automatically detect the dtype ndim : {int, None} Required number of dimensions of obj. If None, no check is performed. If the number of dimensions of obj is less than ndim, additional axes are inserted on the right. See examples. maxdim : {int, None} Maximum allowed dimension. Use ``maxdim`` instead of ``ndim`` when inputs are allowed to have ndim 1, 2, ..., or maxdim. shape : {tuple[int], None} Required shape obj. If None, no check is performed. Partially restricted shapes can be checked using None. See examples. order : {'C', 'F', None} Order of the array contiguous : bool Ensure that the array's data is contiguous with order ``order`` optional : bool Flag indicating whether None is allowed writeable : bool Whether to ensure the returned array is writeable Returns ------- ndarray The converted input. Examples -------- Convert a list or pandas series to an array >>> import pandas as pd >>> x = [0, 1, 2, 3] >>> a = array_like(x, 'x', ndim=1) >>> a.shape (4,) >>> a = array_like(pd.Series(x), 'x', ndim=1) >>> a.shape (4,) >>> type(a.orig) pandas.core.series.Series Squeezes singleton dimensions when required >>> x = np.array(x).reshape((4, 1)) >>> a = array_like(x, 'x', ndim=1) >>> a.shape (4,) Right-appends when required size is larger than actual >>> x = [0, 1, 2, 3] >>> a = array_like(x, 'x', ndim=2) >>> a.shape (4, 1) Check only the first and last dimension of the input >>> x = np.arange(4*10*4).reshape((4, 10, 4)) >>> y = array_like(x, 'x', ndim=3, shape=(4, None, 4)) Check only the first two dimensions >>> z = array_like(x, 'x', ndim=3, shape=(4, 10)) Raises ValueError if constraints are not satisfied >>> z = array_like(x, 'x', ndim=2) Traceback (most recent call last): ... ValueError: x is required to have ndim 2 but has ndim 3 >>> z = array_like(x, 'x', shape=(10, 4, 4)) Traceback (most recent call last): ... ValueError: x is required to have shape (10, 4, 4) but has shape (4, 10, 4) >>> z = array_like(x, 'x', shape=(None, 4, 4)) Traceback (most recent call last): ... ValueError: x is required to have shape (*, 4, 4) but has shape (4, 10, 4)
array_like
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def wrap(self, obj, columns=None, append=None, trim_start=0, trim_end=0): """ Parameters ---------- obj : {array_like} The value to wrap like to a pandas Series or DataFrame. columns : {str, list[str]} Column names or series name, if obj is 1d. append : str String to append to the columns to create a new column name. trim_start : int The number of observations to drop from the start of the index, so that the index applied is index[trim_start:]. trim_end : int The number of observations to drop from the end of the index , so that the index applied is index[:nobs - trim_end]. Returns ------- array_like A pandas Series or DataFrame, depending on the shape of obj. """ obj = np.asarray(obj) if not self._is_pandas: return obj if obj.shape[0] + trim_start + trim_end != self._pandas_obj.shape[0]: raise ValueError( "obj must have the same number of elements in " "axis 0 as orig" ) index = self._pandas_obj.index index = index[trim_start: index.shape[0] - trim_end] if obj.ndim == 1: if columns is None: name = getattr(self._pandas_obj, "name", None) elif isinstance(columns, str): name = columns else: name = columns[0] if append is not None: name = append if name is None else f"{name}_{append}" return pd.Series(obj, name=name, index=index) elif obj.ndim == 2: if columns is None: columns = getattr(self._pandas_obj, "columns", None) if append is not None: new = [] for c in columns: new.append(append if c is None else f"{c}_{append}") columns = new return pd.DataFrame(obj, columns=columns, index=index) else: raise ValueError("Can only wrap 1 or 2-d array_like")
Parameters ---------- obj : {array_like} The value to wrap like to a pandas Series or DataFrame. columns : {str, list[str]} Column names or series name, if obj is 1d. append : str String to append to the columns to create a new column name. trim_start : int The number of observations to drop from the start of the index, so that the index applied is index[trim_start:]. trim_end : int The number of observations to drop from the end of the index , so that the index applied is index[:nobs - trim_end]. Returns ------- array_like A pandas Series or DataFrame, depending on the shape of obj.
wrap
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def bool_like(value, name, optional=False, strict=False): """ Convert to bool or raise if not bool_like Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow bool. If False, allow types that support casting to bool. Returns ------- converted : bool value converted to a bool """ if optional and value is None: return value extra_text = " or None" if optional else "" if strict: if isinstance(value, bool): return value else: raise TypeError(f"{name} must be a bool{extra_text}") if hasattr(value, "squeeze") and callable(value.squeeze): value = value.squeeze() try: return bool(value) except Exception: raise TypeError( "{} must be a bool (or bool-compatible)" "{}".format(name, extra_text) )
Convert to bool or raise if not bool_like Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow bool. If False, allow types that support casting to bool. Returns ------- converted : bool value converted to a bool
bool_like
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def int_like( value: Any, name: str, optional: bool = False, strict: bool = False ) -> Optional[int]: """ Convert to int or raise if not int_like Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow int or np.integer that are not bool. If False, allow types that support integer division by 1 and conversion to int. Returns ------- converted : int value converted to a int """ if optional and value is None: return None is_bool_timedelta = isinstance(value, (bool, np.timedelta64)) if hasattr(value, "squeeze") and callable(value.squeeze): value = value.squeeze() if isinstance(value, (int, np.integer)) and not is_bool_timedelta: return int(value) elif not strict and not is_bool_timedelta: try: if value == (value // 1): return int(value) except Exception: pass extra_text = " or None" if optional else "" raise TypeError( "{} must be integer_like (int or np.integer, but not bool" " or timedelta64){}".format(name, extra_text) )
Convert to int or raise if not int_like Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow int or np.integer that are not bool. If False, allow types that support integer division by 1 and conversion to int. Returns ------- converted : int value converted to a int
int_like
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def required_int_like(value: Any, name: str, strict: bool = False) -> int: """ Convert to int or raise if not int_like Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow int or np.integer that are not bool. If False, allow types that support integer division by 1 and conversion to int. Returns ------- converted : int value converted to a int """ _int = int_like(value, name, optional=False, strict=strict) assert _int is not None return _int
Convert to int or raise if not int_like Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow int or np.integer that are not bool. If False, allow types that support integer division by 1 and conversion to int. Returns ------- converted : int value converted to a int
required_int_like
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def float_like(value, name, optional=False, strict=False): """ Convert to float or raise if not float_like Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow int, np.integer, float or np.inexact that are not bool or complex. If False, allow complex types with 0 imag part or any other type that is float like in the sense that it support multiplication by 1.0 and conversion to float. Returns ------- converted : float value converted to a float """ if optional and value is None: return None is_bool = isinstance(value, bool) is_complex = isinstance(value, (complex, np.complexfloating)) if hasattr(value, "squeeze") and callable(value.squeeze): value = value.squeeze() if isinstance(value, (int, np.integer, float, np.inexact)) and not ( is_bool or is_complex ): return float(value) elif not strict and is_complex: imag = np.imag(value) if imag == 0: return float(np.real(value)) elif not strict and not is_bool: try: return float(value / 1.0) except Exception: pass extra_text = " or None" if optional else "" raise TypeError( "{} must be float_like (float or np.inexact)" "{}".format(name, extra_text) )
Convert to float or raise if not float_like Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow int, np.integer, float or np.inexact that are not bool or complex. If False, allow complex types with 0 imag part or any other type that is float like in the sense that it support multiplication by 1.0 and conversion to float. Returns ------- converted : float value converted to a float
float_like
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def string_like(value, name, optional=False, options=None, lower=True): """ Check if object is string-like and raise if not Parameters ---------- value : object Value to verify. name : str Variable name for exceptions. optional : bool Flag indicating whether None is allowed. options : tuple[str] Allowed values for input parameter `value`. lower : bool Convert all case-based characters in `value` into lowercase. Returns ------- str The validated input Raises ------ TypeError If the value is not a string or None when optional is True. ValueError If the input is not in ``options`` when ``options`` is set. """ if value is None: return None if not isinstance(value, str): extra_text = " or None" if optional else "" raise TypeError(f"{name} must be a string{extra_text}") if lower: value = value.lower() if options is not None and value not in options: extra_text = "If not None, " if optional else "" options_text = "'" + "', '".join(options) + "'" msg = "{}{} must be one of: {}".format( extra_text, name, options_text ) raise ValueError(msg) return value
Check if object is string-like and raise if not Parameters ---------- value : object Value to verify. name : str Variable name for exceptions. optional : bool Flag indicating whether None is allowed. options : tuple[str] Allowed values for input parameter `value`. lower : bool Convert all case-based characters in `value` into lowercase. Returns ------- str The validated input Raises ------ TypeError If the value is not a string or None when optional is True. ValueError If the input is not in ``options`` when ``options`` is set.
string_like
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def dict_like(value, name, optional=False, strict=True): """ Check if dict_like (dict, Mapping) or raise if not Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow dict. If False, allow any Mapping-like object. Returns ------- converted : dict_like value """ if optional and value is None: return None if not isinstance(value, Mapping) or ( strict and not (isinstance(value, dict)) ): extra_text = "If not None, " if optional else "" strict_text = " or dict_like (i.e., a Mapping)" if strict else "" msg = f"{extra_text}{name} must be a dict{strict_text}" raise TypeError(msg) return value
Check if dict_like (dict, Mapping) or raise if not Parameters ---------- value : object Value to verify name : str Variable name for exceptions optional : bool Flag indicating whether None is allowed strict : bool If True, then only allow dict. If False, allow any Mapping-like object. Returns ------- converted : dict_like value
dict_like
python
statsmodels/statsmodels
statsmodels/tools/validation/validation.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tools/validation/validation.py
BSD-3-Clause
def _noncentrality_chisquare(chi2_stat, df, alpha=0.05): """noncentrality parameter for chi-square statistic `nc` is zero-truncated umvue Parameters ---------- chi2_stat : float Chisquare-statistic, for example from a hypothesis test df : int or float Degrees of freedom alpha : float in (0, 1) Significance level for the confidence interval, covarage is 1 - alpha. Returns ------- HolderTuple The main attributes are - ``nc`` : estimate of noncentrality parameter - ``confint`` : lower and upper bound of confidence interval for `nc`` Other attributes are estimates for nc by different methods. References ---------- .. [1] Kubokawa, T., C.P. Robert, and A.K.Md.E. Saleh. 1993. “Estimation of Noncentrality Parameters.” Canadian Journal of Statistics 21 (1): 45–57. https://doi.org/10.2307/3315657. .. [2] Li, Qizhai, Junjian Zhang, and Shuai Dai. 2009. “On Estimating the Non-Centrality Parameter of a Chi-Squared Distribution.” Statistics & Probability Letters 79 (1): 98–104. https://doi.org/10.1016/j.spl.2008.07.025. """ alpha_half = alpha / 2 nc_umvue = chi2_stat - df nc = np.maximum(nc_umvue, 0) nc_lzd = np.maximum(nc_umvue, chi2_stat / (df + 1)) nc_krs = np.maximum(nc_umvue, chi2_stat * 2 / (df + 2)) nc_median = special.chndtrinc(chi2_stat, df, 0.5) ci = special.chndtrinc(chi2_stat, df, [1 - alpha_half, alpha_half]) res = Holder(nc=nc, confint=ci, nc_umvue=nc_umvue, nc_lzd=nc_lzd, nc_krs=nc_krs, nc_median=nc_median, name="Noncentrality for chisquare-distributed random variable" ) return res
noncentrality parameter for chi-square statistic `nc` is zero-truncated umvue Parameters ---------- chi2_stat : float Chisquare-statistic, for example from a hypothesis test df : int or float Degrees of freedom alpha : float in (0, 1) Significance level for the confidence interval, covarage is 1 - alpha. Returns ------- HolderTuple The main attributes are - ``nc`` : estimate of noncentrality parameter - ``confint`` : lower and upper bound of confidence interval for `nc`` Other attributes are estimates for nc by different methods. References ---------- .. [1] Kubokawa, T., C.P. Robert, and A.K.Md.E. Saleh. 1993. “Estimation of Noncentrality Parameters.” Canadian Journal of Statistics 21 (1): 45–57. https://doi.org/10.2307/3315657. .. [2] Li, Qizhai, Junjian Zhang, and Shuai Dai. 2009. “On Estimating the Non-Centrality Parameter of a Chi-Squared Distribution.” Statistics & Probability Letters 79 (1): 98–104. https://doi.org/10.1016/j.spl.2008.07.025.
_noncentrality_chisquare
python
statsmodels/statsmodels
statsmodels/stats/effect_size.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/effect_size.py
BSD-3-Clause
def _noncentrality_f(f_stat, df1, df2, alpha=0.05): """noncentrality parameter for f statistic `nc` is zero-truncated umvue Parameters ---------- fstat : float f-statistic, for example from a hypothesis test df : int or float Degrees of freedom alpha : float in (0, 1) Significance level for the confidence interval, covarage is 1 - alpha. Returns ------- HolderTuple The main attributes are - ``nc`` : estimate of noncentrality parameter - ``confint`` : lower and upper bound of confidence interval for `nc`` Other attributes are estimates for nc by different methods. References ---------- .. [1] Kubokawa, T., C.P. Robert, and A.K.Md.E. Saleh. 1993. “Estimation of Noncentrality Parameters.” Canadian Journal of Statistics 21 (1): 45–57. https://doi.org/10.2307/3315657. """ alpha_half = alpha / 2 x_s = f_stat * df1 / df2 nc_umvue = (df2 - 2) * x_s - df1 nc = np.maximum(nc_umvue, 0) nc_krs = np.maximum(nc_umvue, x_s * 2 * (df2 - 1) / (df1 + 2)) nc_median = special.ncfdtrinc(df1, df2, 0.5, f_stat) ci = special.ncfdtrinc(df1, df2, [1 - alpha_half, alpha_half], f_stat) res = Holder(nc=nc, confint=ci, nc_umvue=nc_umvue, nc_krs=nc_krs, nc_median=nc_median, name="Noncentrality for F-distributed random variable" ) return res
noncentrality parameter for f statistic `nc` is zero-truncated umvue Parameters ---------- fstat : float f-statistic, for example from a hypothesis test df : int or float Degrees of freedom alpha : float in (0, 1) Significance level for the confidence interval, covarage is 1 - alpha. Returns ------- HolderTuple The main attributes are - ``nc`` : estimate of noncentrality parameter - ``confint`` : lower and upper bound of confidence interval for `nc`` Other attributes are estimates for nc by different methods. References ---------- .. [1] Kubokawa, T., C.P. Robert, and A.K.Md.E. Saleh. 1993. “Estimation of Noncentrality Parameters.” Canadian Journal of Statistics 21 (1): 45–57. https://doi.org/10.2307/3315657.
_noncentrality_f
python
statsmodels/statsmodels
statsmodels/stats/effect_size.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/effect_size.py
BSD-3-Clause
def _noncentrality_t(t_stat, df, alpha=0.05): """noncentrality parameter for t statistic Parameters ---------- fstat : float f-statistic, for example from a hypothesis test df : int or float Degrees of freedom alpha : float in (0, 1) Significance level for the confidence interval, covarage is 1 - alpha. Returns ------- HolderTuple The main attributes are - ``nc`` : estimate of noncentrality parameter - ``confint`` : lower and upper bound of confidence interval for `nc`` Other attributes are estimates for nc by different methods. References ---------- .. [1] Hedges, Larry V. 2016. “Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators:” Journal of Educational Statistics, November. https://doi.org/10.3102/10769986006002107. """ alpha_half = alpha / 2 gfac = np.exp(special.gammaln(df/2.-0.5) - special.gammaln(df/2.)) c11 = np.sqrt(df/2.) * gfac nc = t_stat / c11 nc_median = special.nctdtrinc(df, 0.5, t_stat) ci = special.nctdtrinc(df, [1 - alpha_half, alpha_half], t_stat) res = Holder(nc=nc, confint=ci, nc_median=nc_median, name="Noncentrality for t-distributed random variable" ) return res
noncentrality parameter for t statistic Parameters ---------- fstat : float f-statistic, for example from a hypothesis test df : int or float Degrees of freedom alpha : float in (0, 1) Significance level for the confidence interval, covarage is 1 - alpha. Returns ------- HolderTuple The main attributes are - ``nc`` : estimate of noncentrality parameter - ``confint`` : lower and upper bound of confidence interval for `nc`` Other attributes are estimates for nc by different methods. References ---------- .. [1] Hedges, Larry V. 2016. “Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators:” Journal of Educational Statistics, November. https://doi.org/10.3102/10769986006002107.
_noncentrality_t
python
statsmodels/statsmodels
statsmodels/stats/effect_size.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/effect_size.py
BSD-3-Clause
def _kurtosis(a): """ wrapper for scipy.stats.kurtosis that returns nan instead of raising Error missing options """ try: res = stats.kurtosis(a) except ValueError: res = np.nan return res
wrapper for scipy.stats.kurtosis that returns nan instead of raising Error missing options
_kurtosis
python
statsmodels/statsmodels
statsmodels/stats/descriptivestats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/descriptivestats.py
BSD-3-Clause
def _skew(a): """ wrapper for scipy.stats.skew that returns nan instead of raising Error missing options """ try: res = stats.skew(a) except ValueError: res = np.nan return res
wrapper for scipy.stats.skew that returns nan instead of raising Error missing options
_skew
python
statsmodels/statsmodels
statsmodels/stats/descriptivestats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/descriptivestats.py
BSD-3-Clause
def sign_test(samp, mu0=0): """ Signs test Parameters ---------- samp : array_like 1d array. The sample for which you want to perform the sign test. mu0 : float See Notes for the definition of the sign test. mu0 is 0 by default, but it is common to set it to the median. Returns ------- M p-value Notes ----- The signs test returns M = (N(+) - N(-))/2 where N(+) is the number of values above `mu0`, N(-) is the number of values below. Values equal to `mu0` are discarded. The p-value for M is calculated using the binomial distribution and can be interpreted the same as for a t-test. The test-statistic is distributed Binom(min(N(+), N(-)), n_trials, .5) where n_trials equals N(+) + N(-). See Also -------- scipy.stats.wilcoxon """ samp = np.asarray(samp) pos = np.sum(samp > mu0) neg = np.sum(samp < mu0) M = (pos - neg) / 2.0 try: p = stats.binomtest(min(pos, neg), pos + neg, 0.5).pvalue except AttributeError: # Remove after min SciPy >= 1.7 p = stats.binom_test(min(pos, neg), pos + neg, 0.5) return M, p
Signs test Parameters ---------- samp : array_like 1d array. The sample for which you want to perform the sign test. mu0 : float See Notes for the definition of the sign test. mu0 is 0 by default, but it is common to set it to the median. Returns ------- M p-value Notes ----- The signs test returns M = (N(+) - N(-))/2 where N(+) is the number of values above `mu0`, N(-) is the number of values below. Values equal to `mu0` are discarded. The p-value for M is calculated using the binomial distribution and can be interpreted the same as for a t-test. The test-statistic is distributed Binom(min(N(+), N(-)), n_trials, .5) where n_trials equals N(+) + N(-). See Also -------- scipy.stats.wilcoxon
sign_test
python
statsmodels/statsmodels
statsmodels/stats/descriptivestats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/descriptivestats.py
BSD-3-Clause
def frame(self) -> pd.DataFrame: """ Descriptive statistics for both numeric and categorical data Returns ------- DataFrame The statistics """ numeric = self.numeric categorical = self.categorical if categorical.shape[1] == 0: return numeric elif numeric.shape[1] == 0: return categorical df = pd.concat([numeric, categorical], axis=1) return self._reorder(df[self._data.columns])
Descriptive statistics for both numeric and categorical data Returns ------- DataFrame The statistics
frame
python
statsmodels/statsmodels
statsmodels/stats/descriptivestats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/descriptivestats.py
BSD-3-Clause
def numeric(self) -> pd.DataFrame: """ Descriptive statistics for numeric data Returns ------- DataFrame The statistics of the numeric columns """ df: pd.DataFrame = self._data.loc[:, self._is_numeric] cols = df.columns _, k = df.shape std = df.std() count = df.count() mean = df.mean() mad = (df - mean).abs().mean() std_err = std.copy() std_err.loc[count > 0] /= count.loc[count > 0] ** 0.5 if self._use_t: q = stats.t(count - 1).ppf(1.0 - self._alpha / 2) else: q = stats.norm.ppf(1.0 - self._alpha / 2) def _mode(ser): dtype = ser.dtype if isinstance(ser.dtype, np.dtype) else ser.dtype.numpy_dtype ser_no_missing = ser.dropna().to_numpy(dtype=dtype) kwargs = {} if SP_LT_19 else {"keepdims": True} mode_res = stats.mode(ser_no_missing, **kwargs) # Changes in SciPy 1.10 if np.isscalar(mode_res[0]): return float(mode_res[0]), mode_res[1] if mode_res[0].shape[0] > 0: return [float(val) for val in mode_res] return np.nan, np.nan mode_values = df.apply(_mode).T if mode_values.size > 0: if isinstance(mode_values, pd.DataFrame): # pandas 1.0 or later mode = np.asarray(mode_values[0], dtype=float) mode_counts = np.asarray(mode_values[1], dtype=np.int64) else: # pandas before 1.0 returns a Series of 2-elem list mode = [] mode_counts = [] for idx in mode_values.index: val = mode_values.loc[idx] mode.append(val[0]) mode_counts.append(val[1]) mode = np.atleast_1d(mode) mode_counts = np.atleast_1d(mode_counts) else: mode = mode_counts = np.empty(0) loc = count > 0 mode_freq = np.full(mode.shape[0], np.nan) mode_freq[loc] = mode_counts[loc] / count.loc[loc] # TODO: Workaround for pandas AbstractMethodError in extension # types. Remove when quantile is supported for these _df = df try: from pandas.api.types import is_extension_array_dtype _df = df.copy() for col in df: if is_extension_array_dtype(df[col].dtype): if _df[col].isnull().any(): _df[col] = _df[col].fillna(np.nan) except ImportError: pass if df.shape[1] > 0: iqr = _df.quantile(0.75) - _df.quantile(0.25) else: iqr = mean def _safe_jarque_bera(c): a = np.asarray(c) if a.shape[0] < 2: return (np.nan,) * 4 return jarque_bera(a) jb = df.apply( lambda x: list(_safe_jarque_bera(x.dropna())), result_type="expand" ).T nan_mean = mean.copy() nan_mean.loc[nan_mean == 0] = np.nan coef_var = std / nan_mean results = { "nobs": pd.Series( np.ones(k, dtype=np.int64) * df.shape[0], index=cols ), "missing": df.shape[0] - count, "mean": mean, "std_err": std_err, "upper_ci": mean + q * std_err, "lower_ci": mean - q * std_err, "std": std, "iqr": iqr, "mad": mad, "coef_var": coef_var, "range": pd_ptp(df), "max": df.max(), "min": df.min(), "skew": jb[2], "kurtosis": jb[3], "iqr_normal": iqr / np.diff(stats.norm.ppf([0.25, 0.75])), "mad_normal": mad / np.sqrt(2 / np.pi), "jarque_bera": jb[0], "jarque_bera_pval": jb[1], "mode": pd.Series(mode, index=cols), "mode_freq": pd.Series(mode_freq, index=cols), "median": df.median(), } final = {k: v for k, v in results.items() if k in self._stats} results_df = pd.DataFrame( list(final.values()), columns=cols, index=list(final.keys()) ) if "percentiles" not in self._stats: return results_df # Pandas before 1.0 cannot handle empty DF if df.shape[1] > 0: # TODO: Remove when extension types support quantile perc = _df.quantile(self._percentiles / 100).astype(float) else: perc = pd.DataFrame(index=self._percentiles / 100, dtype=float) if np.all(np.floor(100 * perc.index) == (100 * perc.index)): perc.index = [f"{int(100 * idx)}%" for idx in perc.index] else: dupe = True scale = 100 index = perc.index while dupe: scale *= 10 idx = np.floor(scale * perc.index) if np.all(np.diff(idx) > 0): dupe = False index = np.floor(scale * index) / (scale / 100) fmt = f"0.{len(str(scale//100))-1}f" output = f"{{0:{fmt}}}%" perc.index = [output.format(val) for val in index] # Add in the names of the percentiles to the output self._stats = self._stats + perc.index.tolist() return self._reorder(pd.concat([results_df, perc], axis=0))
Descriptive statistics for numeric data Returns ------- DataFrame The statistics of the numeric columns
numeric
python
statsmodels/statsmodels
statsmodels/stats/descriptivestats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/descriptivestats.py
BSD-3-Clause
def categorical(self) -> pd.DataFrame: """ Descriptive statistics for categorical data Returns ------- DataFrame The statistics of the categorical columns """ df = self._data.loc[:, [col for col in self._is_cat_like]] k = df.shape[1] cols = df.columns vc = {col: df[col].value_counts(normalize=True) for col in df} distinct = pd.Series( {col: vc[col].shape[0] for col in vc}, dtype=np.int64 ) top = {} freq = {} for col in vc: single = vc[col] if single.shape[0] >= self._ntop: top[col] = single.index[: self._ntop] freq[col] = np.asarray(single.iloc[:5]) else: val = list(single.index) val += [None] * (self._ntop - len(val)) top[col] = val freq_val = list(single) freq_val += [np.nan] * (self._ntop - len(freq_val)) freq[col] = np.asarray(freq_val) index = [f"top_{i}" for i in range(1, self._ntop + 1)] top_df = pd.DataFrame(top, dtype="object", index=index, columns=cols) index = [f"freq_{i}" for i in range(1, self._ntop + 1)] freq_df = pd.DataFrame(freq, dtype="object", index=index, columns=cols) results = { "nobs": pd.Series( np.ones(k, dtype=np.int64) * df.shape[0], index=cols ), "missing": df.shape[0] - df.count(), "distinct": distinct, } final = {k: v for k, v in results.items() if k in self._stats} results_df = pd.DataFrame( list(final.values()), columns=cols, index=list(final.keys()), dtype="object", ) if self._compute_top: results_df = pd.concat([results_df, top_df], axis=0) if self._compute_freq: results_df = pd.concat([results_df, freq_df], axis=0) return self._reorder(results_df)
Descriptive statistics for categorical data Returns ------- DataFrame The statistics of the categorical columns
categorical
python
statsmodels/statsmodels
statsmodels/stats/descriptivestats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/descriptivestats.py
BSD-3-Clause
def summary(self) -> SimpleTable: """ Summary table of the descriptive statistics Returns ------- SimpleTable A table instance supporting export to text, csv and LaTeX """ df = self.frame.astype(object) if df.isnull().any().any(): df = df.fillna("") cols = [str(col) for col in df.columns] stubs = [str(idx) for idx in df.index] data = [] for _, row in df.iterrows(): data.append([v for v in row]) def _formatter(v): if isinstance(v, str): return v elif v // 1 == v: return str(int(v)) return f"{v:0.4g}" return SimpleTable( data, header=cols, stubs=stubs, title="Descriptive Statistics", txt_fmt={"data_fmts": {0: "%s", 1: _formatter}}, datatypes=[1] * len(data), )
Summary table of the descriptive statistics Returns ------- SimpleTable A table instance supporting export to text, csv and LaTeX
summary
python
statsmodels/statsmodels
statsmodels/stats/descriptivestats.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/descriptivestats.py
BSD-3-Clause
def corr_nearest(corr, threshold=1e-15, n_fact=100): ''' Find the nearest correlation matrix that is positive semi-definite. The function iteratively adjust the correlation matrix by clipping the eigenvalues of a difference matrix. The diagonal elements are set to one. Parameters ---------- corr : ndarray, (k, k) initial correlation matrix threshold : float clipping threshold for smallest eigenvalue, see Notes n_fact : int or float factor to determine the maximum number of iterations. The maximum number of iterations is the integer part of the number of columns in the correlation matrix times n_fact. Returns ------- corr_new : ndarray, (optional) corrected correlation matrix Notes ----- The smallest eigenvalue of the corrected correlation matrix is approximately equal to the ``threshold``. If the threshold=0, then the smallest eigenvalue of the correlation matrix might be negative, but zero within a numerical error, for example in the range of -1e-16. Assumes input correlation matrix is symmetric. Stops after the first step if correlation matrix is already positive semi-definite or positive definite, so that smallest eigenvalue is above threshold. In this case, the returned array is not the original, but is equal to it within numerical precision. See Also -------- corr_clipped cov_nearest ''' k_vars = corr.shape[0] if k_vars != corr.shape[1]: raise ValueError("matrix is not square") diff = np.zeros(corr.shape) x_new = corr.copy() diag_idx = np.arange(k_vars) for ii in range(int(len(corr) * n_fact)): x_adj = x_new - diff x_psd, clipped = clip_evals(x_adj, value=threshold) if not clipped: x_new = x_psd break diff = x_psd - x_adj x_new = x_psd.copy() x_new[diag_idx, diag_idx] = 1 else: warnings.warn(iteration_limit_doc, IterationLimitWarning) return x_new
Find the nearest correlation matrix that is positive semi-definite. The function iteratively adjust the correlation matrix by clipping the eigenvalues of a difference matrix. The diagonal elements are set to one. Parameters ---------- corr : ndarray, (k, k) initial correlation matrix threshold : float clipping threshold for smallest eigenvalue, see Notes n_fact : int or float factor to determine the maximum number of iterations. The maximum number of iterations is the integer part of the number of columns in the correlation matrix times n_fact. Returns ------- corr_new : ndarray, (optional) corrected correlation matrix Notes ----- The smallest eigenvalue of the corrected correlation matrix is approximately equal to the ``threshold``. If the threshold=0, then the smallest eigenvalue of the correlation matrix might be negative, but zero within a numerical error, for example in the range of -1e-16. Assumes input correlation matrix is symmetric. Stops after the first step if correlation matrix is already positive semi-definite or positive definite, so that smallest eigenvalue is above threshold. In this case, the returned array is not the original, but is equal to it within numerical precision. See Also -------- corr_clipped cov_nearest
corr_nearest
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def corr_clipped(corr, threshold=1e-15): ''' Find a near correlation matrix that is positive semi-definite This function clips the eigenvalues, replacing eigenvalues smaller than the threshold by the threshold. The new matrix is normalized, so that the diagonal elements are one. Compared to corr_nearest, the distance between the original correlation matrix and the positive definite correlation matrix is larger, however, it is much faster since it only computes eigenvalues once. Parameters ---------- corr : ndarray, (k, k) initial correlation matrix threshold : float clipping threshold for smallest eigenvalue, see Notes Returns ------- corr_new : ndarray, (optional) corrected correlation matrix Notes ----- The smallest eigenvalue of the corrected correlation matrix is approximately equal to the ``threshold``. In examples, the smallest eigenvalue can be by a factor of 10 smaller than the threshold, e.g. threshold 1e-8 can result in smallest eigenvalue in the range between 1e-9 and 1e-8. If the threshold=0, then the smallest eigenvalue of the correlation matrix might be negative, but zero within a numerical error, for example in the range of -1e-16. Assumes input correlation matrix is symmetric. The diagonal elements of returned correlation matrix is set to ones. If the correlation matrix is already positive semi-definite given the threshold, then the original correlation matrix is returned. ``cov_clipped`` is 40 or more times faster than ``cov_nearest`` in simple example, but has a slightly larger approximation error. See Also -------- corr_nearest cov_nearest ''' x_new, clipped = clip_evals(corr, value=threshold) if not clipped: return corr # cov2corr x_std = np.sqrt(np.diag(x_new)) x_new = x_new / x_std / x_std[:, None] return x_new
Find a near correlation matrix that is positive semi-definite This function clips the eigenvalues, replacing eigenvalues smaller than the threshold by the threshold. The new matrix is normalized, so that the diagonal elements are one. Compared to corr_nearest, the distance between the original correlation matrix and the positive definite correlation matrix is larger, however, it is much faster since it only computes eigenvalues once. Parameters ---------- corr : ndarray, (k, k) initial correlation matrix threshold : float clipping threshold for smallest eigenvalue, see Notes Returns ------- corr_new : ndarray, (optional) corrected correlation matrix Notes ----- The smallest eigenvalue of the corrected correlation matrix is approximately equal to the ``threshold``. In examples, the smallest eigenvalue can be by a factor of 10 smaller than the threshold, e.g. threshold 1e-8 can result in smallest eigenvalue in the range between 1e-9 and 1e-8. If the threshold=0, then the smallest eigenvalue of the correlation matrix might be negative, but zero within a numerical error, for example in the range of -1e-16. Assumes input correlation matrix is symmetric. The diagonal elements of returned correlation matrix is set to ones. If the correlation matrix is already positive semi-definite given the threshold, then the original correlation matrix is returned. ``cov_clipped`` is 40 or more times faster than ``cov_nearest`` in simple example, but has a slightly larger approximation error. See Also -------- corr_nearest cov_nearest
corr_clipped
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def cov_nearest(cov, method='clipped', threshold=1e-15, n_fact=100, return_all=False): """ Find the nearest covariance matrix that is positive (semi-) definite This leaves the diagonal, i.e. the variance, unchanged Parameters ---------- cov : ndarray, (k,k) initial covariance matrix method : str if "clipped", then the faster but less accurate ``corr_clipped`` is used.if "nearest", then ``corr_nearest`` is used threshold : float clipping threshold for smallest eigen value, see Notes n_fact : int or float factor to determine the maximum number of iterations in ``corr_nearest``. See its doc string return_all : bool if False (default), then only the covariance matrix is returned. If True, then correlation matrix and standard deviation are additionally returned. Returns ------- cov_ : ndarray corrected covariance matrix corr_ : ndarray, (optional) corrected correlation matrix std_ : ndarray, (optional) standard deviation Notes ----- This converts the covariance matrix to a correlation matrix. Then, finds the nearest correlation matrix that is positive semidefinite and converts it back to a covariance matrix using the initial standard deviation. The smallest eigenvalue of the intermediate correlation matrix is approximately equal to the ``threshold``. If the threshold=0, then the smallest eigenvalue of the correlation matrix might be negative, but zero within a numerical error, for example in the range of -1e-16. Assumes input covariance matrix is symmetric. See Also -------- corr_nearest corr_clipped """ from statsmodels.stats.moment_helpers import cov2corr, corr2cov cov_, std_ = cov2corr(cov, return_std=True) if method == 'clipped': corr_ = corr_clipped(cov_, threshold=threshold) else: # method == 'nearest' corr_ = corr_nearest(cov_, threshold=threshold, n_fact=n_fact) cov_ = corr2cov(corr_, std_) if return_all: return cov_, corr_, std_ else: return cov_
Find the nearest covariance matrix that is positive (semi-) definite This leaves the diagonal, i.e. the variance, unchanged Parameters ---------- cov : ndarray, (k,k) initial covariance matrix method : str if "clipped", then the faster but less accurate ``corr_clipped`` is used.if "nearest", then ``corr_nearest`` is used threshold : float clipping threshold for smallest eigen value, see Notes n_fact : int or float factor to determine the maximum number of iterations in ``corr_nearest``. See its doc string return_all : bool if False (default), then only the covariance matrix is returned. If True, then correlation matrix and standard deviation are additionally returned. Returns ------- cov_ : ndarray corrected covariance matrix corr_ : ndarray, (optional) corrected correlation matrix std_ : ndarray, (optional) standard deviation Notes ----- This converts the covariance matrix to a correlation matrix. Then, finds the nearest correlation matrix that is positive semidefinite and converts it back to a covariance matrix using the initial standard deviation. The smallest eigenvalue of the intermediate correlation matrix is approximately equal to the ``threshold``. If the threshold=0, then the smallest eigenvalue of the correlation matrix might be negative, but zero within a numerical error, for example in the range of -1e-16. Assumes input covariance matrix is symmetric. See Also -------- corr_nearest corr_clipped
cov_nearest
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def _nmono_linesearch(obj, grad, x, d, obj_hist, M=10, sig1=0.1, sig2=0.9, gam=1e-4, maxiter=100): """ Implements the non-monotone line search of Grippo et al. (1986), as described in Birgin, Martinez and Raydan (2013). Parameters ---------- obj : real-valued function The objective function, to be minimized grad : vector-valued function The gradient of the objective function x : array_like The starting point for the line search d : array_like The search direction obj_hist : array_like Objective function history (must contain at least one value) M : positive int Number of previous function points to consider (see references for details). sig1 : real Tuning parameter, see references for details. sig2 : real Tuning parameter, see references for details. gam : real Tuning parameter, see references for details. maxiter : int The maximum number of iterations; returns Nones if convergence does not occur by this point Returns ------- alpha : real The step value x : Array_like The function argument at the final step obval : Real The function value at the final step g : Array_like The gradient at the final step Notes ----- The basic idea is to take a big step in the direction of the gradient, even if the function value is not decreased (but there is a maximum allowed increase in terms of the recent history of the iterates). References ---------- Grippo L, Lampariello F, Lucidi S (1986). A Nonmonotone Line Search Technique for Newton's Method. SIAM Journal on Numerical Analysis, 23, 707-716. E. Birgin, J.M. Martinez, and M. Raydan. Spectral projected gradient methods: Review and perspectives. Journal of Statistical Software (preprint). """ alpha = 1. last_obval = obj(x) obj_max = max(obj_hist[-M:]) for iter in range(maxiter): obval = obj(x + alpha*d) g = grad(x) gtd = (g * d).sum() if obval <= obj_max + gam*alpha*gtd: return alpha, x + alpha*d, obval, g a1 = -0.5*alpha**2*gtd / (obval - last_obval - alpha*gtd) if (sig1 <= a1) and (a1 <= sig2*alpha): alpha = a1 else: alpha /= 2. last_obval = obval return None, None, None, None
Implements the non-monotone line search of Grippo et al. (1986), as described in Birgin, Martinez and Raydan (2013). Parameters ---------- obj : real-valued function The objective function, to be minimized grad : vector-valued function The gradient of the objective function x : array_like The starting point for the line search d : array_like The search direction obj_hist : array_like Objective function history (must contain at least one value) M : positive int Number of previous function points to consider (see references for details). sig1 : real Tuning parameter, see references for details. sig2 : real Tuning parameter, see references for details. gam : real Tuning parameter, see references for details. maxiter : int The maximum number of iterations; returns Nones if convergence does not occur by this point Returns ------- alpha : real The step value x : Array_like The function argument at the final step obval : Real The function value at the final step g : Array_like The gradient at the final step Notes ----- The basic idea is to take a big step in the direction of the gradient, even if the function value is not decreased (but there is a maximum allowed increase in terms of the recent history of the iterates). References ---------- Grippo L, Lampariello F, Lucidi S (1986). A Nonmonotone Line Search Technique for Newton's Method. SIAM Journal on Numerical Analysis, 23, 707-716. E. Birgin, J.M. Martinez, and M. Raydan. Spectral projected gradient methods: Review and perspectives. Journal of Statistical Software (preprint).
_nmono_linesearch
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def _spg_optim(func, grad, start, project, maxiter=1e4, M=10, ctol=1e-3, maxiter_nmls=200, lam_min=1e-30, lam_max=1e30, sig1=0.1, sig2=0.9, gam=1e-4): """ Implements the spectral projected gradient method for minimizing a differentiable function on a convex domain. Parameters ---------- func : real valued function The objective function to be minimized. grad : real array-valued function The gradient of the objective function start : array_like The starting point project : function In-place projection of the argument to the domain of func. ... See notes regarding additional arguments Returns ------- rslt : Bunch rslt.params is the final iterate, other fields describe convergence status. Notes ----- This can be an effective heuristic algorithm for problems where no guaranteed algorithm for computing a global minimizer is known. There are a number of tuning parameters, but these generally should not be changed except for `maxiter` (positive integer) and `ctol` (small positive real). See the Birgin et al reference for more information about the tuning parameters. Reference --------- E. Birgin, J.M. Martinez, and M. Raydan. Spectral projected gradient methods: Review and perspectives. Journal of Statistical Software (preprint). Available at: http://www.ime.usp.br/~egbirgin/publications/bmr5.pdf """ lam = min(10*lam_min, lam_max) params = start.copy() gval = grad(params) obj_hist = [func(params), ] for itr in range(int(maxiter)): # Check convergence df = params - gval project(df) df -= params if np.max(np.abs(df)) < ctol: return Bunch(**{"Converged": True, "params": params, "objective_values": obj_hist, "Message": "Converged successfully"}) # The line search direction d = params - lam*gval project(d) d -= params # Carry out the nonmonotone line search alpha, params1, fval, gval1 = _nmono_linesearch( func, grad, params, d, obj_hist, M=M, sig1=sig1, sig2=sig2, gam=gam, maxiter=maxiter_nmls) if alpha is None: return Bunch(**{"Converged": False, "params": params, "objective_values": obj_hist, "Message": "Failed in nmono_linesearch"}) obj_hist.append(fval) s = params1 - params y = gval1 - gval sy = (s*y).sum() if sy <= 0: lam = lam_max else: ss = (s*s).sum() lam = max(lam_min, min(ss/sy, lam_max)) params = params1 gval = gval1 return Bunch(**{"Converged": False, "params": params, "objective_values": obj_hist, "Message": "spg_optim did not converge"})
Implements the spectral projected gradient method for minimizing a differentiable function on a convex domain. Parameters ---------- func : real valued function The objective function to be minimized. grad : real array-valued function The gradient of the objective function start : array_like The starting point project : function In-place projection of the argument to the domain of func. ... See notes regarding additional arguments Returns ------- rslt : Bunch rslt.params is the final iterate, other fields describe convergence status. Notes ----- This can be an effective heuristic algorithm for problems where no guaranteed algorithm for computing a global minimizer is known. There are a number of tuning parameters, but these generally should not be changed except for `maxiter` (positive integer) and `ctol` (small positive real). See the Birgin et al reference for more information about the tuning parameters. Reference --------- E. Birgin, J.M. Martinez, and M. Raydan. Spectral projected gradient methods: Review and perspectives. Journal of Statistical Software (preprint). Available at: http://www.ime.usp.br/~egbirgin/publications/bmr5.pdf
_spg_optim
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def _project_correlation_factors(X): """ Project a matrix into the domain of matrices whose row-wise sums of squares are less than or equal to 1. The input matrix is modified in-place. """ nm = np.sqrt((X*X).sum(1)) ii = np.flatnonzero(nm > 1) if len(ii) > 0: X[ii, :] /= nm[ii][:, None]
Project a matrix into the domain of matrices whose row-wise sums of squares are less than or equal to 1. The input matrix is modified in-place.
_project_correlation_factors
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def to_matrix(self): """ Returns the PSD matrix represented by this instance as a full (square) matrix. """ return np.diag(self.diag) + np.dot(self.root, self.root.T)
Returns the PSD matrix represented by this instance as a full (square) matrix.
to_matrix
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def decorrelate(self, rhs): """ Decorrelate the columns of `rhs`. Parameters ---------- rhs : array_like A 2 dimensional array with the same number of rows as the PSD matrix represented by the class instance. Returns ------- C^{-1/2} * rhs, where C is the covariance matrix represented by this class instance. Notes ----- The returned matrix has the identity matrix as its row-wise population covariance matrix. This function exploits the factor structure for efficiency. """ # I + factor * qval * factor' is the inverse square root of # the covariance matrix in the homogeneous case where diag = # 1. qval = -1 + 1 / np.sqrt(1 + self.scales) # Decorrelate in the general case. rhs = rhs / np.sqrt(self.diag)[:, None] rhs1 = np.dot(self.factor.T, rhs) rhs1 *= qval[:, None] rhs1 = np.dot(self.factor, rhs1) rhs += rhs1 return rhs
Decorrelate the columns of `rhs`. Parameters ---------- rhs : array_like A 2 dimensional array with the same number of rows as the PSD matrix represented by the class instance. Returns ------- C^{-1/2} * rhs, where C is the covariance matrix represented by this class instance. Notes ----- The returned matrix has the identity matrix as its row-wise population covariance matrix. This function exploits the factor structure for efficiency.
decorrelate
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def solve(self, rhs): """ Solve a linear system of equations with factor-structured coefficients. Parameters ---------- rhs : array_like A 2 dimensional array with the same number of rows as the PSD matrix represented by the class instance. Returns ------- C^{-1} * rhs, where C is the covariance matrix represented by this class instance. Notes ----- This function exploits the factor structure for efficiency. """ qval = -self.scales / (1 + self.scales) dr = np.sqrt(self.diag) rhs = rhs / dr[:, None] mat = qval[:, None] * np.dot(self.factor.T, rhs) rhs = rhs + np.dot(self.factor, mat) return rhs / dr[:, None]
Solve a linear system of equations with factor-structured coefficients. Parameters ---------- rhs : array_like A 2 dimensional array with the same number of rows as the PSD matrix represented by the class instance. Returns ------- C^{-1} * rhs, where C is the covariance matrix represented by this class instance. Notes ----- This function exploits the factor structure for efficiency.
solve
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def logdet(self): """ Returns the logarithm of the determinant of a factor-structured matrix. """ logdet = np.sum(np.log(self.diag)) logdet += np.sum(np.log(self.scales)) logdet += np.sum(np.log(1 + 1 / self.scales)) return logdet
Returns the logarithm of the determinant of a factor-structured matrix.
logdet
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def corr_nearest_factor(corr, rank, ctol=1e-6, lam_min=1e-30, lam_max=1e30, maxiter=1000): """ Find the nearest correlation matrix with factor structure to a given square matrix. Parameters ---------- corr : square array The target matrix (to which the nearest correlation matrix is sought). Must be square, but need not be positive semidefinite. rank : int The rank of the factor structure of the solution, i.e., the number of linearly independent columns of X. ctol : positive real Convergence criterion. lam_min : float Tuning parameter for spectral projected gradient optimization (smallest allowed step in the search direction). lam_max : float Tuning parameter for spectral projected gradient optimization (largest allowed step in the search direction). maxiter : int Maximum number of iterations in spectral projected gradient optimization. Returns ------- rslt : Bunch rslt.corr is a FactoredPSDMatrix defining the estimated correlation structure. Other fields of `rslt` contain returned values from spg_optim. Notes ----- A correlation matrix has factor structure if it can be written in the form I + XX' - diag(XX'), where X is n x k with linearly independent columns, and with each row having sum of squares at most equal to 1. The approximation is made in terms of the Frobenius norm. This routine is useful when one has an approximate correlation matrix that is not positive semidefinite, and there is need to estimate the inverse, square root, or inverse square root of the population correlation matrix. The factor structure allows these tasks to be done without constructing any n x n matrices. This is a non-convex problem with no known guaranteed globally convergent algorithm for computing the solution. Borsdof, Higham and Raydan (2010) compared several methods for this problem and found the spectral projected gradient (SPG) method (used here) to perform best. The input matrix `corr` can be a dense numpy array or any scipy sparse matrix. The latter is useful if the input matrix is obtained by thresholding a very large sample correlation matrix. If `corr` is sparse, the calculations are optimized to save memory, so no working matrix with more than 10^6 elements is constructed. References ---------- .. [*] R Borsdof, N Higham, M Raydan (2010). Computing a nearest correlation matrix with factor structure. SIAM J Matrix Anal Appl, 31:5, 2603-2622. http://eprints.ma.man.ac.uk/1523/01/covered/MIMS_ep2009_87.pdf Examples -------- Hard thresholding a correlation matrix may result in a matrix that is not positive semidefinite. We can approximate a hard thresholded correlation matrix with a PSD matrix as follows, where `corr` is the input correlation matrix. >>> import numpy as np >>> from statsmodels.stats.correlation_tools import corr_nearest_factor >>> np.random.seed(1234) >>> b = 1.5 - np.random.rand(10, 1) >>> x = np.random.randn(100,1).dot(b.T) + np.random.randn(100,10) >>> corr = np.corrcoef(x.T) >>> corr = corr * (np.abs(corr) >= 0.3) >>> rslt = corr_nearest_factor(corr, 3) """ p, _ = corr.shape # Starting values (following the PCA method in BHR). u, s, vt = svds(corr, rank) X = u * np.sqrt(s) nm = np.sqrt((X**2).sum(1)) ii = np.flatnonzero(nm > 1e-5) X[ii, :] /= nm[ii][:, None] # Zero the diagonal corr1 = corr.copy() if type(corr1) is np.ndarray: np.fill_diagonal(corr1, 0) elif sparse.issparse(corr1): corr1.setdiag(np.zeros(corr1.shape[0])) corr1.eliminate_zeros() corr1.sort_indices() else: raise ValueError("Matrix type not supported") # The gradient, from lemma 4.1 of BHR. def grad(X): gr = np.dot(X, np.dot(X.T, X)) if type(corr1) is np.ndarray: gr -= np.dot(corr1, X) else: gr -= corr1.dot(X) gr -= (X*X).sum(1)[:, None] * X return 4*gr # The objective function (sum of squared deviations between fitted # and observed arrays). def func(X): if type(corr1) is np.ndarray: M = np.dot(X, X.T) np.fill_diagonal(M, 0) M -= corr1 fval = (M*M).sum() return fval else: fval = 0. # Control the size of intermediates max_ws = 1e6 bs = int(max_ws / X.shape[0]) ir = 0 while ir < X.shape[0]: ir2 = min(ir+bs, X.shape[0]) u = np.dot(X[ir:ir2, :], X.T) ii = np.arange(u.shape[0]) u[ii, ir+ii] = 0 u -= np.asarray(corr1[ir:ir2, :].todense()) fval += (u*u).sum() ir += bs return fval rslt = _spg_optim(func, grad, X, _project_correlation_factors, ctol=ctol, lam_min=lam_min, lam_max=lam_max, maxiter=maxiter) root = rslt.params diag = 1 - (root**2).sum(1) soln = FactoredPSDMatrix(diag, root) rslt.corr = soln del rslt.params return rslt
Find the nearest correlation matrix with factor structure to a given square matrix. Parameters ---------- corr : square array The target matrix (to which the nearest correlation matrix is sought). Must be square, but need not be positive semidefinite. rank : int The rank of the factor structure of the solution, i.e., the number of linearly independent columns of X. ctol : positive real Convergence criterion. lam_min : float Tuning parameter for spectral projected gradient optimization (smallest allowed step in the search direction). lam_max : float Tuning parameter for spectral projected gradient optimization (largest allowed step in the search direction). maxiter : int Maximum number of iterations in spectral projected gradient optimization. Returns ------- rslt : Bunch rslt.corr is a FactoredPSDMatrix defining the estimated correlation structure. Other fields of `rslt` contain returned values from spg_optim. Notes ----- A correlation matrix has factor structure if it can be written in the form I + XX' - diag(XX'), where X is n x k with linearly independent columns, and with each row having sum of squares at most equal to 1. The approximation is made in terms of the Frobenius norm. This routine is useful when one has an approximate correlation matrix that is not positive semidefinite, and there is need to estimate the inverse, square root, or inverse square root of the population correlation matrix. The factor structure allows these tasks to be done without constructing any n x n matrices. This is a non-convex problem with no known guaranteed globally convergent algorithm for computing the solution. Borsdof, Higham and Raydan (2010) compared several methods for this problem and found the spectral projected gradient (SPG) method (used here) to perform best. The input matrix `corr` can be a dense numpy array or any scipy sparse matrix. The latter is useful if the input matrix is obtained by thresholding a very large sample correlation matrix. If `corr` is sparse, the calculations are optimized to save memory, so no working matrix with more than 10^6 elements is constructed. References ---------- .. [*] R Borsdof, N Higham, M Raydan (2010). Computing a nearest correlation matrix with factor structure. SIAM J Matrix Anal Appl, 31:5, 2603-2622. http://eprints.ma.man.ac.uk/1523/01/covered/MIMS_ep2009_87.pdf Examples -------- Hard thresholding a correlation matrix may result in a matrix that is not positive semidefinite. We can approximate a hard thresholded correlation matrix with a PSD matrix as follows, where `corr` is the input correlation matrix. >>> import numpy as np >>> from statsmodels.stats.correlation_tools import corr_nearest_factor >>> np.random.seed(1234) >>> b = 1.5 - np.random.rand(10, 1) >>> x = np.random.randn(100,1).dot(b.T) + np.random.randn(100,10) >>> corr = np.corrcoef(x.T) >>> corr = corr * (np.abs(corr) >= 0.3) >>> rslt = corr_nearest_factor(corr, 3)
corr_nearest_factor
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def cov_nearest_factor_homog(cov, rank): """ Approximate an arbitrary square matrix with a factor-structured matrix of the form k*I + XX'. Parameters ---------- cov : array_like The input array, must be square but need not be positive semidefinite rank : int The rank of the fitted factor structure Returns ------- A FactoredPSDMatrix instance containing the fitted matrix Notes ----- This routine is useful if one has an estimated covariance matrix that is not SPD, and the ultimate goal is to estimate the inverse, square root, or inverse square root of the true covariance matrix. The factor structure allows these tasks to be performed without constructing any n x n matrices. The calculations use the fact that if k is known, then X can be determined from the eigen-decomposition of cov - k*I, which can in turn be easily obtained form the eigen-decomposition of `cov`. Thus the problem can be reduced to a 1-dimensional search for k that does not require repeated eigen-decompositions. If the input matrix is sparse, then cov - k*I is also sparse, so the eigen-decomposition can be done efficiently using sparse routines. The one-dimensional search for the optimal value of k is not convex, so a local minimum could be obtained. Examples -------- Hard thresholding a covariance matrix may result in a matrix that is not positive semidefinite. We can approximate a hard thresholded covariance matrix with a PSD matrix as follows: >>> import numpy as np >>> np.random.seed(1234) >>> b = 1.5 - np.random.rand(10, 1) >>> x = np.random.randn(100,1).dot(b.T) + np.random.randn(100,10) >>> cov = np.cov(x) >>> cov = cov * (np.abs(cov) >= 0.3) >>> rslt = cov_nearest_factor_homog(cov, 3) """ m, n = cov.shape Q, Lambda, _ = svds(cov, rank) if sparse.issparse(cov): QSQ = np.dot(Q.T, cov.dot(Q)) ts = cov.diagonal().sum() tss = cov.dot(cov).diagonal().sum() else: QSQ = np.dot(Q.T, np.dot(cov, Q)) ts = np.trace(cov) tss = np.trace(np.dot(cov, cov)) def fun(k): Lambda_t = Lambda - k v = tss + m*(k**2) + np.sum(Lambda_t**2) - 2*k*ts v += 2*k*np.sum(Lambda_t) - 2*np.sum(np.diag(QSQ) * Lambda_t) return v # Get the optimal decomposition k_opt = fminbound(fun, 0, 1e5) Lambda_opt = Lambda - k_opt fac_opt = Q * np.sqrt(Lambda_opt) diag = k_opt * np.ones(m, dtype=np.float64) # - (fac_opt**2).sum(1) return FactoredPSDMatrix(diag, fac_opt)
Approximate an arbitrary square matrix with a factor-structured matrix of the form k*I + XX'. Parameters ---------- cov : array_like The input array, must be square but need not be positive semidefinite rank : int The rank of the fitted factor structure Returns ------- A FactoredPSDMatrix instance containing the fitted matrix Notes ----- This routine is useful if one has an estimated covariance matrix that is not SPD, and the ultimate goal is to estimate the inverse, square root, or inverse square root of the true covariance matrix. The factor structure allows these tasks to be performed without constructing any n x n matrices. The calculations use the fact that if k is known, then X can be determined from the eigen-decomposition of cov - k*I, which can in turn be easily obtained form the eigen-decomposition of `cov`. Thus the problem can be reduced to a 1-dimensional search for k that does not require repeated eigen-decompositions. If the input matrix is sparse, then cov - k*I is also sparse, so the eigen-decomposition can be done efficiently using sparse routines. The one-dimensional search for the optimal value of k is not convex, so a local minimum could be obtained. Examples -------- Hard thresholding a covariance matrix may result in a matrix that is not positive semidefinite. We can approximate a hard thresholded covariance matrix with a PSD matrix as follows: >>> import numpy as np >>> np.random.seed(1234) >>> b = 1.5 - np.random.rand(10, 1) >>> x = np.random.randn(100,1).dot(b.T) + np.random.randn(100,10) >>> cov = np.cov(x) >>> cov = cov * (np.abs(cov) >= 0.3) >>> rslt = cov_nearest_factor_homog(cov, 3)
cov_nearest_factor_homog
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def set_bandwidth(self, bw): """ Set the bandwidth to the given vector. Parameters ---------- bw : array_like A vector of non-negative bandwidth values. """ self.bw = bw self._setup()
Set the bandwidth to the given vector. Parameters ---------- bw : array_like A vector of non-negative bandwidth values.
set_bandwidth
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def set_default_bw(self, loc, bwm=None): """ Set default bandwiths based on domain values. Parameters ---------- loc : array_like Values from the domain to which the kernel will be applied. bwm : scalar, optional A non-negative scalar that is used to multiply the default bandwidth. """ sd = loc.std(0) q25, q75 = np.percentile(loc, [25, 75], axis=0) iqr = (q75 - q25) / 1.349 bw = np.where(iqr < sd, iqr, sd) bw *= 0.9 / loc.shape[0] ** 0.2 if bwm is not None: bw *= bwm # The final bandwidths self.bw = np.asarray(bw, dtype=np.float64) self._setup()
Set default bandwiths based on domain values. Parameters ---------- loc : array_like Values from the domain to which the kernel will be applied. bwm : scalar, optional A non-negative scalar that is used to multiply the default bandwidth.
set_default_bw
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def kernel_covariance(exog, loc, groups, kernel=None, bw=None): """ Use kernel averaging to estimate a multivariate covariance function. The goal is to estimate a covariance function C(x, y) = cov(Z(x), Z(y)) where x, y are vectors in R^p (e.g. representing locations in time or space), and Z(.) represents a multivariate process on R^p. The data used for estimation can be observed at arbitrary values of the position vector, and there can be multiple independent observations from the process. Parameters ---------- exog : array_like The rows of exog are realizations of the process obtained at specified points. loc : array_like The rows of loc are the locations (e.g. in space or time) at which the rows of exog are observed. groups : array_like The values of groups are labels for distinct independent copies of the process. kernel : MultivariateKernel instance, optional An instance of MultivariateKernel, defaults to GaussianMultivariateKernel. bw : array_like or scalar A bandwidth vector, or bandwidth multiplier. If a 1d array, it contains kernel bandwidths for each component of the process, and must have length equal to the number of columns of exog. If a scalar, bw is a bandwidth multiplier used to adjust the default bandwidth; if None, a default bandwidth is used. Returns ------- A real-valued function C(x, y) that returns an estimate of the covariance between values of the process located at x and y. References ---------- .. [1] Genton M, W Kleiber (2015). Cross covariance functions for multivariate geostatics. Statistical Science 30(2). https://arxiv.org/pdf/1507.08017.pdf """ exog = np.asarray(exog) loc = np.asarray(loc) groups = np.asarray(groups) if loc.ndim == 1: loc = loc[:, None] v = [exog.shape[0], loc.shape[0], len(groups)] if min(v) != max(v): msg = "exog, loc, and groups must have the same number of rows" raise ValueError(msg) # Map from group labels to the row indices in each group. ix = {} for i, g in enumerate(groups): if g not in ix: ix[g] = [] ix[g].append(i) for g in ix.keys(): ix[g] = np.sort(ix[g]) if kernel is None: kernel = GaussianMultivariateKernel() if bw is None: kernel.set_default_bw(loc) elif np.isscalar(bw): kernel.set_default_bw(loc, bwm=bw) else: kernel.set_bandwidth(bw) def cov(x, y): kx = kernel.call(x, loc) ky = kernel.call(y, loc) cm, cw = 0., 0. for g, ii in ix.items(): m = len(ii) j1, j2 = np.indices((m, m)) j1 = ii[j1.flat] j2 = ii[j2.flat] w = kx[j1] * ky[j2] # TODO: some other form of broadcasting may be faster than # einsum here cm += np.einsum("ij,ik,i->jk", exog[j1, :], exog[j2, :], w) cw += w.sum() if cw < 1e-10: msg = ("Effective sample size is 0. The bandwidth may be too " + "small, or you are outside the range of your data.") warnings.warn(msg) return np.nan * np.ones_like(cm) return cm / cw return cov
Use kernel averaging to estimate a multivariate covariance function. The goal is to estimate a covariance function C(x, y) = cov(Z(x), Z(y)) where x, y are vectors in R^p (e.g. representing locations in time or space), and Z(.) represents a multivariate process on R^p. The data used for estimation can be observed at arbitrary values of the position vector, and there can be multiple independent observations from the process. Parameters ---------- exog : array_like The rows of exog are realizations of the process obtained at specified points. loc : array_like The rows of loc are the locations (e.g. in space or time) at which the rows of exog are observed. groups : array_like The values of groups are labels for distinct independent copies of the process. kernel : MultivariateKernel instance, optional An instance of MultivariateKernel, defaults to GaussianMultivariateKernel. bw : array_like or scalar A bandwidth vector, or bandwidth multiplier. If a 1d array, it contains kernel bandwidths for each component of the process, and must have length equal to the number of columns of exog. If a scalar, bw is a bandwidth multiplier used to adjust the default bandwidth; if None, a default bandwidth is used. Returns ------- A real-valued function C(x, y) that returns an estimate of the covariance between values of the process located at x and y. References ---------- .. [1] Genton M, W Kleiber (2015). Cross covariance functions for multivariate geostatics. Statistical Science 30(2). https://arxiv.org/pdf/1507.08017.pdf
kernel_covariance
python
statsmodels/statsmodels
statsmodels/stats/correlation_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/correlation_tools.py
BSD-3-Clause
def omni_normtest(resids, axis=0): """ Omnibus test for normality Parameters ---------- resid : array_like axis : int, optional Default is 0 Returns ------- Chi^2 score, two-tail probability """ # TODO: change to exception in summary branch and catch in summary() # behavior changed between scipy 0.9 and 0.10 resids = np.asarray(resids) n = resids.shape[axis] if n < 8: from warnings import warn warn("omni_normtest is not valid with less than 8 observations; %i " "samples were given." % int(n), ValueWarning) return np.nan, np.nan return stats.normaltest(resids, axis=axis)
Omnibus test for normality Parameters ---------- resid : array_like axis : int, optional Default is 0 Returns ------- Chi^2 score, two-tail probability
omni_normtest
python
statsmodels/statsmodels
statsmodels/stats/stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/stattools.py
BSD-3-Clause
def robust_skewness(y, axis=0): """ Calculates the four skewness measures in Kim & White Parameters ---------- y : array_like Data to compute use in the estimator. axis : int or None, optional Axis along which the skewness measures are computed. If `None`, the entire array is used. Returns ------- sk1 : ndarray The standard skewness estimator. sk2 : ndarray Skewness estimator based on quartiles. sk3 : ndarray Skewness estimator based on mean-median difference, standardized by absolute deviation. sk4 : ndarray Skewness estimator based on mean-median difference, standardized by standard deviation. Notes ----- The robust skewness measures are defined .. math:: SK_{2}=\\frac{\\left(q_{.75}-q_{.5}\\right) -\\left(q_{.5}-q_{.25}\\right)}{q_{.75}-q_{.25}} .. math:: SK_{3}=\\frac{\\mu-\\hat{q}_{0.5}} {\\hat{E}\\left[\\left|y-\\hat{\\mu}\\right|\\right]} .. math:: SK_{4}=\\frac{\\mu-\\hat{q}_{0.5}}{\\hat{\\sigma}} .. [*] Tae-Hwan Kim and Halbert White, "On more robust estimation of skewness and kurtosis," Finance Research Letters, vol. 1, pp. 56-73, March 2004. """ if axis is None: y = y.ravel() axis = 0 y = np.sort(y, axis) q1, q2, q3 = np.percentile(y, [25.0, 50.0, 75.0], axis=axis) mu = y.mean(axis) shape = (y.size,) if axis is not None: shape = list(mu.shape) shape.insert(axis, 1) shape = tuple(shape) mu_b = np.reshape(mu, shape) q2_b = np.reshape(q2, shape) sigma = np.sqrt(np.mean(((y - mu_b)**2), axis)) sk1 = stats.skew(y, axis=axis) sk2 = (q1 + q3 - 2.0 * q2) / (q3 - q1) sk3 = (mu - q2) / np.mean(abs(y - q2_b), axis=axis) sk4 = (mu - q2) / sigma return sk1, sk2, sk3, sk4
Calculates the four skewness measures in Kim & White Parameters ---------- y : array_like Data to compute use in the estimator. axis : int or None, optional Axis along which the skewness measures are computed. If `None`, the entire array is used. Returns ------- sk1 : ndarray The standard skewness estimator. sk2 : ndarray Skewness estimator based on quartiles. sk3 : ndarray Skewness estimator based on mean-median difference, standardized by absolute deviation. sk4 : ndarray Skewness estimator based on mean-median difference, standardized by standard deviation. Notes ----- The robust skewness measures are defined .. math:: SK_{2}=\\frac{\\left(q_{.75}-q_{.5}\\right) -\\left(q_{.5}-q_{.25}\\right)}{q_{.75}-q_{.25}} .. math:: SK_{3}=\\frac{\\mu-\\hat{q}_{0.5}} {\\hat{E}\\left[\\left|y-\\hat{\\mu}\\right|\\right]} .. math:: SK_{4}=\\frac{\\mu-\\hat{q}_{0.5}}{\\hat{\\sigma}} .. [*] Tae-Hwan Kim and Halbert White, "On more robust estimation of skewness and kurtosis," Finance Research Letters, vol. 1, pp. 56-73, March 2004.
robust_skewness
python
statsmodels/statsmodels
statsmodels/stats/stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/stattools.py
BSD-3-Clause
def _kr3(y, alpha=5.0, beta=50.0): """ KR3 estimator from Kim & White Parameters ---------- y : array_like, 1-d Data to compute use in the estimator. alpha : float, optional Lower cut-off for measuring expectation in tail. beta : float, optional Lower cut-off for measuring expectation in center. Returns ------- kr3 : float Robust kurtosis estimator based on standardized lower- and upper-tail expected values Notes ----- .. [*] Tae-Hwan Kim and Halbert White, "On more robust estimation of skewness and kurtosis," Finance Research Letters, vol. 1, pp. 56-73, March 2004. """ perc = (alpha, 100.0 - alpha, beta, 100.0 - beta) lower_alpha, upper_alpha, lower_beta, upper_beta = np.percentile(y, perc) l_alpha = np.mean(y[y < lower_alpha]) u_alpha = np.mean(y[y > upper_alpha]) l_beta = np.mean(y[y < lower_beta]) u_beta = np.mean(y[y > upper_beta]) return (u_alpha - l_alpha) / (u_beta - l_beta)
KR3 estimator from Kim & White Parameters ---------- y : array_like, 1-d Data to compute use in the estimator. alpha : float, optional Lower cut-off for measuring expectation in tail. beta : float, optional Lower cut-off for measuring expectation in center. Returns ------- kr3 : float Robust kurtosis estimator based on standardized lower- and upper-tail expected values Notes ----- .. [*] Tae-Hwan Kim and Halbert White, "On more robust estimation of skewness and kurtosis," Finance Research Letters, vol. 1, pp. 56-73, March 2004.
_kr3
python
statsmodels/statsmodels
statsmodels/stats/stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/stattools.py
BSD-3-Clause
def expected_robust_kurtosis(ab=(5.0, 50.0), dg=(2.5, 25.0)): """ Calculates the expected value of the robust kurtosis measures in Kim and White assuming the data are normally distributed. Parameters ---------- ab : iterable, optional Contains 100*(alpha, beta) in the kr3 measure where alpha is the tail quantile cut-off for measuring the extreme tail and beta is the central quantile cutoff for the standardization of the measure db : iterable, optional Contains 100*(delta, gamma) in the kr4 measure where delta is the tail quantile for measuring extreme values and gamma is the central quantile used in the the standardization of the measure Returns ------- ekr : ndarray, 4-element Contains the expected values of the 4 robust kurtosis measures Notes ----- See `robust_kurtosis` for definitions of the robust kurtosis measures """ alpha, beta = ab delta, gamma = dg expected_value = np.zeros(4) ppf = stats.norm.ppf pdf = stats.norm.pdf q1, q2, q3, q5, q6, q7 = ppf(np.array((1.0, 2.0, 3.0, 5.0, 6.0, 7.0)) / 8) expected_value[0] = 3 expected_value[1] = ((q7 - q5) + (q3 - q1)) / (q6 - q2) q_alpha, q_beta = ppf(np.array((alpha / 100.0, beta / 100.0))) expected_value[2] = (2 * pdf(q_alpha) / alpha) / (2 * pdf(q_beta) / beta) q_delta, q_gamma = ppf(np.array((delta / 100.0, gamma / 100.0))) expected_value[3] = (-2.0 * q_delta) / (-2.0 * q_gamma) return expected_value
Calculates the expected value of the robust kurtosis measures in Kim and White assuming the data are normally distributed. Parameters ---------- ab : iterable, optional Contains 100*(alpha, beta) in the kr3 measure where alpha is the tail quantile cut-off for measuring the extreme tail and beta is the central quantile cutoff for the standardization of the measure db : iterable, optional Contains 100*(delta, gamma) in the kr4 measure where delta is the tail quantile for measuring extreme values and gamma is the central quantile used in the the standardization of the measure Returns ------- ekr : ndarray, 4-element Contains the expected values of the 4 robust kurtosis measures Notes ----- See `robust_kurtosis` for definitions of the robust kurtosis measures
expected_robust_kurtosis
python
statsmodels/statsmodels
statsmodels/stats/stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/stattools.py
BSD-3-Clause
def robust_kurtosis(y, axis=0, ab=(5.0, 50.0), dg=(2.5, 25.0), excess=True): """ Calculates the four kurtosis measures in Kim & White Parameters ---------- y : array_like Data to compute use in the estimator. axis : int or None, optional Axis along which the kurtosis are computed. If `None`, the entire array is used. a iterable, optional Contains 100*(alpha, beta) in the kr3 measure where alpha is the tail quantile cut-off for measuring the extreme tail and beta is the central quantile cutoff for the standardization of the measure db : iterable, optional Contains 100*(delta, gamma) in the kr4 measure where delta is the tail quantile for measuring extreme values and gamma is the central quantile used in the the standardization of the measure excess : bool, optional If true (default), computed values are excess of those for a standard normal distribution. Returns ------- kr1 : ndarray The standard kurtosis estimator. kr2 : ndarray Kurtosis estimator based on octiles. kr3 : ndarray Kurtosis estimators based on exceedance expectations. kr4 : ndarray Kurtosis measure based on the spread between high and low quantiles. Notes ----- The robust kurtosis measures are defined .. math:: KR_{2}=\\frac{\\left(\\hat{q}_{.875}-\\hat{q}_{.625}\\right) +\\left(\\hat{q}_{.375}-\\hat{q}_{.125}\\right)} {\\hat{q}_{.75}-\\hat{q}_{.25}} .. math:: KR_{3}=\\frac{\\hat{E}\\left(y|y>\\hat{q}_{1-\\alpha}\\right) -\\hat{E}\\left(y|y<\\hat{q}_{\\alpha}\\right)} {\\hat{E}\\left(y|y>\\hat{q}_{1-\\beta}\\right) -\\hat{E}\\left(y|y<\\hat{q}_{\\beta}\\right)} .. math:: KR_{4}=\\frac{\\hat{q}_{1-\\delta}-\\hat{q}_{\\delta}} {\\hat{q}_{1-\\gamma}-\\hat{q}_{\\gamma}} where :math:`\\hat{q}_{p}` is the estimated quantile at :math:`p`. .. [*] Tae-Hwan Kim and Halbert White, "On more robust estimation of skewness and kurtosis," Finance Research Letters, vol. 1, pp. 56-73, March 2004. """ if (axis is None or (y.squeeze().ndim == 1 and y.ndim != 1)): y = y.ravel() axis = 0 alpha, beta = ab delta, gamma = dg perc = (12.5, 25.0, 37.5, 62.5, 75.0, 87.5, delta, 100.0 - delta, gamma, 100.0 - gamma) e1, e2, e3, e5, e6, e7, fd, f1md, fg, f1mg = np.percentile(y, perc, axis=axis) expected_value = (expected_robust_kurtosis(ab, dg) if excess else np.zeros(4)) kr1 = stats.kurtosis(y, axis, False) - expected_value[0] kr2 = ((e7 - e5) + (e3 - e1)) / (e6 - e2) - expected_value[1] if y.ndim == 1: kr3 = _kr3(y, alpha, beta) else: kr3 = np.apply_along_axis(_kr3, axis, y, alpha, beta) kr3 -= expected_value[2] kr4 = (f1md - fd) / (f1mg - fg) - expected_value[3] return kr1, kr2, kr3, kr4
Calculates the four kurtosis measures in Kim & White Parameters ---------- y : array_like Data to compute use in the estimator. axis : int or None, optional Axis along which the kurtosis are computed. If `None`, the entire array is used. a iterable, optional Contains 100*(alpha, beta) in the kr3 measure where alpha is the tail quantile cut-off for measuring the extreme tail and beta is the central quantile cutoff for the standardization of the measure db : iterable, optional Contains 100*(delta, gamma) in the kr4 measure where delta is the tail quantile for measuring extreme values and gamma is the central quantile used in the the standardization of the measure excess : bool, optional If true (default), computed values are excess of those for a standard normal distribution. Returns ------- kr1 : ndarray The standard kurtosis estimator. kr2 : ndarray Kurtosis estimator based on octiles. kr3 : ndarray Kurtosis estimators based on exceedance expectations. kr4 : ndarray Kurtosis measure based on the spread between high and low quantiles. Notes ----- The robust kurtosis measures are defined .. math:: KR_{2}=\\frac{\\left(\\hat{q}_{.875}-\\hat{q}_{.625}\\right) +\\left(\\hat{q}_{.375}-\\hat{q}_{.125}\\right)} {\\hat{q}_{.75}-\\hat{q}_{.25}} .. math:: KR_{3}=\\frac{\\hat{E}\\left(y|y>\\hat{q}_{1-\\alpha}\\right) -\\hat{E}\\left(y|y<\\hat{q}_{\\alpha}\\right)} {\\hat{E}\\left(y|y>\\hat{q}_{1-\\beta}\\right) -\\hat{E}\\left(y|y<\\hat{q}_{\\beta}\\right)} .. math:: KR_{4}=\\frac{\\hat{q}_{1-\\delta}-\\hat{q}_{\\delta}} {\\hat{q}_{1-\\gamma}-\\hat{q}_{\\gamma}} where :math:`\\hat{q}_{p}` is the estimated quantile at :math:`p`. .. [*] Tae-Hwan Kim and Halbert White, "On more robust estimation of skewness and kurtosis," Finance Research Letters, vol. 1, pp. 56-73, March 2004.
robust_kurtosis
python
statsmodels/statsmodels
statsmodels/stats/stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/stattools.py
BSD-3-Clause
def _medcouple_1d(y): """ Calculates the medcouple robust measure of skew. Parameters ---------- y : array_like, 1-d Data to compute use in the estimator. Returns ------- mc : float The medcouple statistic Notes ----- The current algorithm requires a O(N**2) memory allocations, and so may not work for very large arrays (N>10000). .. [*] M. Hubert and E. Vandervieren, "An adjusted boxplot for skewed distributions" Computational Statistics & Data Analysis, vol. 52, pp. 5186-5201, August 2008. """ # Parameter changes the algorithm to the slower for large n y = np.squeeze(np.asarray(y)) if y.ndim != 1: raise ValueError("y must be squeezable to a 1-d array") y = np.sort(y) n = y.shape[0] if n % 2 == 0: mf = (y[n // 2 - 1] + y[n // 2]) / 2 else: mf = y[(n - 1) // 2] z = y - mf lower = z[z <= 0.0] upper = z[z >= 0.0] upper = upper[:, None] standardization = upper - lower is_zero = np.logical_and(lower == 0.0, upper == 0.0) standardization[is_zero] = np.inf spread = upper + lower h = spread / standardization # GH5395 num_ties = np.sum(lower == 0.0) if num_ties: # Replacements has -1 above the anti-diagonal, 0 on the anti-diagonal, # and 1 below the anti-diagonal replacements = np.ones((num_ties, num_ties)) - np.eye(num_ties) replacements -= 2 * np.triu(replacements) # Convert diagonal to anti-diagonal replacements = np.fliplr(replacements) # Always replace upper right block h[:num_ties, -num_ties:] = replacements return np.median(h)
Calculates the medcouple robust measure of skew. Parameters ---------- y : array_like, 1-d Data to compute use in the estimator. Returns ------- mc : float The medcouple statistic Notes ----- The current algorithm requires a O(N**2) memory allocations, and so may not work for very large arrays (N>10000). .. [*] M. Hubert and E. Vandervieren, "An adjusted boxplot for skewed distributions" Computational Statistics & Data Analysis, vol. 52, pp. 5186-5201, August 2008.
_medcouple_1d
python
statsmodels/statsmodels
statsmodels/stats/stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/stattools.py
BSD-3-Clause
def medcouple(y, axis=0): """ Calculate the medcouple robust measure of skew. Parameters ---------- y : array_like Data to compute use in the estimator. axis : {int, None} Axis along which the medcouple statistic is computed. If `None`, the entire array is used. Returns ------- mc : ndarray The medcouple statistic with the same shape as `y`, with the specified axis removed. Notes ----- The current algorithm requires a O(N**2) memory allocations, and so may not work for very large arrays (N>10000). .. [*] M. Hubert and E. Vandervieren, "An adjusted boxplot for skewed distributions" Computational Statistics & Data Analysis, vol. 52, pp. 5186-5201, August 2008. """ y = np.asarray(y, dtype=np.double) # GH 4243 if axis is None: return _medcouple_1d(y.ravel()) return np.apply_along_axis(_medcouple_1d, axis, y)
Calculate the medcouple robust measure of skew. Parameters ---------- y : array_like Data to compute use in the estimator. axis : {int, None} Axis along which the medcouple statistic is computed. If `None`, the entire array is used. Returns ------- mc : ndarray The medcouple statistic with the same shape as `y`, with the specified axis removed. Notes ----- The current algorithm requires a O(N**2) memory allocations, and so may not work for very large arrays (N>10000). .. [*] M. Hubert and E. Vandervieren, "An adjusted boxplot for skewed distributions" Computational Statistics & Data Analysis, vol. 52, pp. 5186-5201, August 2008.
medcouple
python
statsmodels/statsmodels
statsmodels/stats/stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/stattools.py
BSD-3-Clause
def _mover_confint(stat1, stat2, ci1, ci2, contrast="diff"): """ References ---------- .. [#] Krishnamoorthy, K., Jie Peng, and Dan Zhang. 2016. “Modified Large Sample Confidence Intervals for Poisson Distributions: Ratio, Weighted Average, and Product of Means.” Communications in Statistics - Theory and Methods 45 (1): 83–97. https://doi.org/10.1080/03610926.2013.821486. .. [#] Li, Yanhong, John J. Koval, Allan Donner, and G. Y. Zou. 2010. “Interval Estimation for the Area under the Receiver Operating Characteristic Curve When Data Are Subject to Error.” Statistics in Medicine 29 (24): 2521–31. https://doi.org/10.1002/sim.4015. .. [#] Zou, G. Y., and A. Donner. 2008. “Construction of Confidence Limits about Effect Measures: A General Approach.” Statistics in Medicine 27 (10): 1693–1702. https://doi.org/10.1002/sim.3095. """ if contrast == "diff": stat = stat1 - stat2 low_half = np.sqrt((stat1 - ci1[0])**2 + (stat2 - ci2[1])**2) upp_half = np.sqrt((stat1 - ci1[1])**2 + (stat2 - ci2[0])**2) ci = (stat - low_half, stat + upp_half) elif contrast == "sum": stat = stat1 + stat2 low_half = np.sqrt((stat1 - ci1[0])**2 + (stat2 - ci2[0])**2) upp_half = np.sqrt((stat1 - ci1[1])**2 + (stat2 - ci2[1])**2) ci = (stat - low_half, stat + upp_half) elif contrast == "ratio": # stat = stat1 / stat2 prod = stat1 * stat2 term1 = stat2**2 - (ci2[1] - stat2)**2 term2 = stat2**2 - (ci2[0] - stat2)**2 low_ = (prod - np.sqrt(prod**2 - term1 * (stat1**2 - (ci1[0] - stat1)**2)) ) / term1 upp_ = (prod + np.sqrt(prod**2 - term2 * (stat1**2 - (ci1[1] - stat1)**2)) ) / term2 # method 2 Li, Tang, Wong 2014 low1, upp1 = ci1 low2, upp2 = ci2 term1 = upp2 * (2 * stat2 - upp2) term2 = low2 * (2 * stat2 - low2) low = (prod - np.sqrt(prod**2 - term1 * low1 * (2 * stat1 - low1)) ) / term1 upp = (prod + np.sqrt(prod**2 - term2 * upp1 * (2 * stat1 - upp1)) ) / term2 assert_allclose((low_, upp_), (low, upp), atol=1e-15, rtol=1e-10) ci = (low, upp) return ci
References ---------- .. [#] Krishnamoorthy, K., Jie Peng, and Dan Zhang. 2016. “Modified Large Sample Confidence Intervals for Poisson Distributions: Ratio, Weighted Average, and Product of Means.” Communications in Statistics - Theory and Methods 45 (1): 83–97. https://doi.org/10.1080/03610926.2013.821486. .. [#] Li, Yanhong, John J. Koval, Allan Donner, and G. Y. Zou. 2010. “Interval Estimation for the Area under the Receiver Operating Characteristic Curve When Data Are Subject to Error.” Statistics in Medicine 29 (24): 2521–31. https://doi.org/10.1002/sim.4015. .. [#] Zou, G. Y., and A. Donner. 2008. “Construction of Confidence Limits about Effect Measures: A General Approach.” Statistics in Medicine 27 (10): 1693–1702. https://doi.org/10.1002/sim.3095.
_mover_confint
python
statsmodels/statsmodels
statsmodels/stats/_inference_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_inference_tools.py
BSD-3-Clause
def _check_nested_exog(small, large): """ Check if a larger exog nests a smaller exog Parameters ---------- small : ndarray exog from smaller model large : ndarray exog from larger model Returns ------- bool True if small is nested by large """ if small.shape[1] > large.shape[1]: return False coef = np.linalg.lstsq(large, small, rcond=None)[0] err = small - large @ coef return np.linalg.matrix_rank(np.c_[large, err]) == large.shape[1]
Check if a larger exog nests a smaller exog Parameters ---------- small : ndarray exog from smaller model large : ndarray exog from larger model Returns ------- bool True if small is nested by large
_check_nested_exog
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def compare_cox(results_x, results_z, store=False): """ Compute the Cox test for non-nested models Parameters ---------- results_x : Result instance result instance of first model results_z : Result instance result instance of second model store : bool, default False If true, then the intermediate results are returned. Returns ------- tstat : float t statistic for the test that including the fitted values of the first model in the second model has no effect. pvalue : float two-sided pvalue for the t statistic res_store : ResultsStore, optional Intermediate results. Returned if store is True. Notes ----- Tests of non-nested hypothesis might not provide unambiguous answers. The test should be performed in both directions and it is possible that both or neither test rejects. see [1]_ for more information. Formulas from [1]_, section 8.3.4 translated to code Matches results for Example 8.3 in Greene References ---------- .. [1] Greene, W. H. Econometric Analysis. New Jersey. Prentice Hall; 5th edition. (2002). """ if _check_nested_results(results_x, results_z): raise ValueError(NESTED_ERROR.format(test="Cox comparison")) x = results_x.model.exog z = results_z.model.exog nobs = results_x.model.endog.shape[0] sigma2_x = results_x.ssr / nobs sigma2_z = results_z.ssr / nobs yhat_x = results_x.fittedvalues res_dx = OLS(yhat_x, z).fit() err_zx = res_dx.resid res_xzx = OLS(err_zx, x).fit() err_xzx = res_xzx.resid sigma2_zx = sigma2_x + np.dot(err_zx.T, err_zx) / nobs c01 = nobs / 2. * (np.log(sigma2_z) - np.log(sigma2_zx)) v01 = sigma2_x * np.dot(err_xzx.T, err_xzx) / sigma2_zx ** 2 q = c01 / np.sqrt(v01) pval = 2 * stats.norm.sf(np.abs(q)) if store: res = ResultsStore() res.res_dx = res_dx res.res_xzx = res_xzx res.c01 = c01 res.v01 = v01 res.q = q res.pvalue = pval res.dist = stats.norm return q, pval, res return q, pval
Compute the Cox test for non-nested models Parameters ---------- results_x : Result instance result instance of first model results_z : Result instance result instance of second model store : bool, default False If true, then the intermediate results are returned. Returns ------- tstat : float t statistic for the test that including the fitted values of the first model in the second model has no effect. pvalue : float two-sided pvalue for the t statistic res_store : ResultsStore, optional Intermediate results. Returned if store is True. Notes ----- Tests of non-nested hypothesis might not provide unambiguous answers. The test should be performed in both directions and it is possible that both or neither test rejects. see [1]_ for more information. Formulas from [1]_, section 8.3.4 translated to code Matches results for Example 8.3 in Greene References ---------- .. [1] Greene, W. H. Econometric Analysis. New Jersey. Prentice Hall; 5th edition. (2002).
compare_cox
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def compare_j(results_x, results_z, store=False): """ Compute the J-test for non-nested models Parameters ---------- results_x : RegressionResults The result instance of first model. results_z : RegressionResults The result instance of second model. store : bool, default False If true, then the intermediate results are returned. Returns ------- tstat : float t statistic for the test that including the fitted values of the first model in the second model has no effect. pvalue : float two-sided pvalue for the t statistic res_store : ResultsStore, optional Intermediate results. Returned if store is True. Notes ----- From description in Greene, section 8.3.3. Matches results for Example 8.3, Greene. Tests of non-nested hypothesis might not provide unambiguous answers. The test should be performed in both directions and it is possible that both or neither test rejects. see Greene for more information. References ---------- .. [1] Greene, W. H. Econometric Analysis. New Jersey. Prentice Hall; 5th edition. (2002). """ # TODO: Allow cov to be specified if _check_nested_results(results_x, results_z): raise ValueError(NESTED_ERROR.format(test="J comparison")) y = results_x.model.endog z = results_z.model.exog yhat_x = results_x.fittedvalues res_zx = OLS(y, np.column_stack((yhat_x, z))).fit() tstat = res_zx.tvalues[0] pval = res_zx.pvalues[0] if store: res = ResultsStore() res.res_zx = res_zx res.dist = stats.t(res_zx.df_resid) res.teststat = tstat res.pvalue = pval return tstat, pval, res return tstat, pval
Compute the J-test for non-nested models Parameters ---------- results_x : RegressionResults The result instance of first model. results_z : RegressionResults The result instance of second model. store : bool, default False If true, then the intermediate results are returned. Returns ------- tstat : float t statistic for the test that including the fitted values of the first model in the second model has no effect. pvalue : float two-sided pvalue for the t statistic res_store : ResultsStore, optional Intermediate results. Returned if store is True. Notes ----- From description in Greene, section 8.3.3. Matches results for Example 8.3, Greene. Tests of non-nested hypothesis might not provide unambiguous answers. The test should be performed in both directions and it is possible that both or neither test rejects. see Greene for more information. References ---------- .. [1] Greene, W. H. Econometric Analysis. New Jersey. Prentice Hall; 5th edition. (2002).
compare_j
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def acorr_ljungbox(x, lags=None, boxpierce=False, model_df=0, period=None, return_df=True, auto_lag=False): """ Ljung-Box test of autocorrelation in residuals. Parameters ---------- x : array_like The data series. The data is demeaned before the test statistic is computed. lags : {int, array_like}, default None If lags is an integer then this is taken to be the largest lag that is included, the test result is reported for all smaller lag length. If lags is a list or array, then all lags are included up to the largest lag in the list, however only the tests for the lags in the list are reported. If lags is None, then the default maxlag is min(10, nobs // 5). The default number of lags changes if period is set. boxpierce : bool, default False If true, then additional to the results of the Ljung-Box test also the Box-Pierce test results are returned. model_df : int, default 0 Number of degrees of freedom consumed by the model. In an ARMA model, this value is usually p+q where p is the AR order and q is the MA order. This value is subtracted from the degrees-of-freedom used in the test so that the adjusted dof for the statistics are lags - model_df. If lags - model_df <= 0, then NaN is returned. period : int, default None The period of a Seasonal time series. Used to compute the max lag for seasonal data which uses min(2*period, nobs // 5) if set. If None, then the default rule is used to set the number of lags. When set, must be >= 2. auto_lag : bool, default False Flag indicating whether to automatically determine the optimal lag length based on threshold of maximum correlation value. Returns ------- DataFrame Frame with columns: * lb_stat - The Ljung-Box test statistic. * lb_pvalue - The p-value based on chi-square distribution. The p-value is computed as 1 - chi2.cdf(lb_stat, dof) where dof is lag - model_df. If lag - model_df <= 0, then NaN is returned for the pvalue. * bp_stat - The Box-Pierce test statistic. * bp_pvalue - The p-value based for Box-Pierce test on chi-square distribution. The p-value is computed as 1 - chi2.cdf(bp_stat, dof) where dof is lag - model_df. If lag - model_df <= 0, then NaN is returned for the pvalue. See Also -------- statsmodels.regression.linear_model.OLS.fit Regression model fitting. statsmodels.regression.linear_model.RegressionResults Results from linear regression models. statsmodels.stats.stattools.q_stat Ljung-Box test statistic computed from estimated autocorrelations. Notes ----- Ljung-Box and Box-Pierce statistic differ in their scaling of the autocorrelation function. Ljung-Box test is has better finite-sample properties. References ---------- .. [*] Green, W. "Econometric Analysis," 5th ed., Pearson, 2003. .. [*] J. Carlos Escanciano, Ignacio N. Lobato "An automatic Portmanteau test for serial correlation"., Volume 151, 2009. Examples -------- >>> import statsmodels.api as sm >>> data = sm.datasets.sunspots.load_pandas().data >>> res = sm.tsa.ARMA(data["SUNACTIVITY"], (1,1)).fit(disp=-1) >>> sm.stats.acorr_ljungbox(res.resid, lags=[10], return_df=True) lb_stat lb_pvalue 10 214.106992 1.827374e-40 """ # Avoid cyclic import from statsmodels.tsa.stattools._stattools import acf x = array_like(x, "x") period = int_like(period, "period", optional=True) model_df = int_like(model_df, "model_df", optional=False) if period is not None and period <= 1: raise ValueError("period must be >= 2") if model_df < 0: raise ValueError("model_df must be >= 0") nobs = x.shape[0] if auto_lag: maxlag = nobs - 1 # Compute sum of squared autocorrelations sacf = acf(x, nlags=maxlag, fft=False) if not boxpierce: q_sacf = (nobs * (nobs + 2) * np.cumsum(sacf[1:maxlag + 1] ** 2 / (nobs - np.arange(1, maxlag + 1)))) else: q_sacf = nobs * np.cumsum(sacf[1:maxlag + 1] ** 2) # obtain thresholds q = 2.4 threshold = np.sqrt(q * np.log(nobs)) threshold_metric = np.abs(sacf).max() * np.sqrt(nobs) # compute penalized sum of squared autocorrelations if (threshold_metric <= threshold): q_sacf = q_sacf - (np.arange(1, nobs) * np.log(nobs)) else: q_sacf = q_sacf - (2 * np.arange(1, nobs)) # note: np.argmax returns first (i.e., smallest) index of largest value lags = np.argmax(q_sacf) lags = max(1, lags) # optimal lag has to be at least 1 lags = int_like(lags, "lags") lags = np.arange(1, lags + 1) elif period is not None: lags = np.arange(1, min(nobs // 5, 2 * period) + 1, dtype=int) elif lags is None: lags = np.arange(1, min(nobs // 5, 10) + 1, dtype=int) elif not isinstance(lags, Iterable): lags = int_like(lags, "lags") lags = np.arange(1, lags + 1) lags = array_like(lags, "lags", dtype="int") maxlag = lags.max() # normalize by nobs not (nobs-nlags) # SS: unbiased=False is default now sacf = acf(x, nlags=maxlag, fft=False) sacf2 = sacf[1:maxlag + 1] ** 2 / (nobs - np.arange(1, maxlag + 1)) qljungbox = nobs * (nobs + 2) * np.cumsum(sacf2)[lags - 1] adj_lags = lags - model_df pval = np.full_like(qljungbox, np.nan) loc = adj_lags > 0 pval[loc] = stats.chi2.sf(qljungbox[loc], adj_lags[loc]) if not boxpierce: return pd.DataFrame({"lb_stat": qljungbox, "lb_pvalue": pval}, index=lags) qboxpierce = nobs * np.cumsum(sacf[1:maxlag + 1] ** 2)[lags - 1] pvalbp = np.full_like(qljungbox, np.nan) pvalbp[loc] = stats.chi2.sf(qboxpierce[loc], adj_lags[loc]) return pd.DataFrame({"lb_stat": qljungbox, "lb_pvalue": pval, "bp_stat": qboxpierce, "bp_pvalue": pvalbp}, index=lags)
Ljung-Box test of autocorrelation in residuals. Parameters ---------- x : array_like The data series. The data is demeaned before the test statistic is computed. lags : {int, array_like}, default None If lags is an integer then this is taken to be the largest lag that is included, the test result is reported for all smaller lag length. If lags is a list or array, then all lags are included up to the largest lag in the list, however only the tests for the lags in the list are reported. If lags is None, then the default maxlag is min(10, nobs // 5). The default number of lags changes if period is set. boxpierce : bool, default False If true, then additional to the results of the Ljung-Box test also the Box-Pierce test results are returned. model_df : int, default 0 Number of degrees of freedom consumed by the model. In an ARMA model, this value is usually p+q where p is the AR order and q is the MA order. This value is subtracted from the degrees-of-freedom used in the test so that the adjusted dof for the statistics are lags - model_df. If lags - model_df <= 0, then NaN is returned. period : int, default None The period of a Seasonal time series. Used to compute the max lag for seasonal data which uses min(2*period, nobs // 5) if set. If None, then the default rule is used to set the number of lags. When set, must be >= 2. auto_lag : bool, default False Flag indicating whether to automatically determine the optimal lag length based on threshold of maximum correlation value. Returns ------- DataFrame Frame with columns: * lb_stat - The Ljung-Box test statistic. * lb_pvalue - The p-value based on chi-square distribution. The p-value is computed as 1 - chi2.cdf(lb_stat, dof) where dof is lag - model_df. If lag - model_df <= 0, then NaN is returned for the pvalue. * bp_stat - The Box-Pierce test statistic. * bp_pvalue - The p-value based for Box-Pierce test on chi-square distribution. The p-value is computed as 1 - chi2.cdf(bp_stat, dof) where dof is lag - model_df. If lag - model_df <= 0, then NaN is returned for the pvalue. See Also -------- statsmodels.regression.linear_model.OLS.fit Regression model fitting. statsmodels.regression.linear_model.RegressionResults Results from linear regression models. statsmodels.stats.stattools.q_stat Ljung-Box test statistic computed from estimated autocorrelations. Notes ----- Ljung-Box and Box-Pierce statistic differ in their scaling of the autocorrelation function. Ljung-Box test is has better finite-sample properties. References ---------- .. [*] Green, W. "Econometric Analysis," 5th ed., Pearson, 2003. .. [*] J. Carlos Escanciano, Ignacio N. Lobato "An automatic Portmanteau test for serial correlation"., Volume 151, 2009. Examples -------- >>> import statsmodels.api as sm >>> data = sm.datasets.sunspots.load_pandas().data >>> res = sm.tsa.ARMA(data["SUNACTIVITY"], (1,1)).fit(disp=-1) >>> sm.stats.acorr_ljungbox(res.resid, lags=[10], return_df=True) lb_stat lb_pvalue 10 214.106992 1.827374e-40
acorr_ljungbox
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def acorr_lm(resid, nlags=None, store=False, *, period=None, ddof=0, cov_type="nonrobust", cov_kwds=None): """ Lagrange Multiplier tests for autocorrelation. This is a generic Lagrange Multiplier test for autocorrelation. Returns Engle's ARCH test if resid is the squared residual array. Breusch-Godfrey is a variation on this test with additional exogenous variables. Parameters ---------- resid : array_like Time series to test. nlags : int, default None Highest lag to use. store : bool, default False If true then the intermediate results are also returned. period : int, default none The period of a Seasonal time series. Used to compute the max lag for seasonal data which uses min(2*period, nobs // 5) if set. If None, then the default rule is used to set the number of lags. When set, must be >= 2. ddof : int, default 0 The number of degrees of freedom consumed by the model used to produce resid. The default value is 0. cov_type : str, default "nonrobust" Covariance type. The default is "nonrobust` which uses the classic OLS covariance estimator. Specify one of "HC0", "HC1", "HC2", "HC3" to use White's covariance estimator. All covariance types supported by ``OLS.fit`` are accepted. cov_kwds : dict, default None Dictionary of covariance options passed to ``OLS.fit``. See OLS.fit for more details. Returns ------- lm : float Lagrange multiplier test statistic. lmpval : float The p-value for Lagrange multiplier test. fval : float The f statistic of the F test, alternative version of the same test based on F test for the parameter restriction. fpval : float The pvalue of the F test. res_store : ResultsStore, optional Intermediate results. Only returned if store=True. See Also -------- het_arch Conditional heteroskedasticity testing. acorr_breusch_godfrey Breusch-Godfrey test for serial correlation. acorr_ljung_box Ljung-Box test for serial correlation. Notes ----- The test statistic is computed as (nobs - ddof) * r2 where r2 is the R-squared from a regression on the residual on nlags lags of the residual. """ resid = array_like(resid, "resid", ndim=1) cov_type = string_like(cov_type, "cov_type") cov_kwds = {} if cov_kwds is None else cov_kwds cov_kwds = dict_like(cov_kwds, "cov_kwds") nobs = resid.shape[0] if period is not None and nlags is None: maxlag = min(nobs // 5, 2 * period) elif nlags is None: maxlag = min(10, nobs // 5) else: maxlag = nlags xdall = lagmat(resid[:, None], maxlag, trim="both") nobs = xdall.shape[0] xdall = np.c_[np.ones((nobs, 1)), xdall] xshort = resid[-nobs:] res_store = ResultsStore() usedlag = maxlag resols = OLS(xshort, xdall[:, :usedlag + 1]).fit(cov_type=cov_type, cov_kwds=cov_kwds) fval = float(resols.fvalue) fpval = float(resols.f_pvalue) if cov_type == "nonrobust": lm = (nobs - ddof) * resols.rsquared lmpval = stats.chi2.sf(lm, usedlag) # Note: deg of freedom for LM test: nvars - constant = lags used else: r_matrix = np.hstack((np.zeros((usedlag, 1)), np.eye(usedlag))) test_stat = resols.wald_test(r_matrix, use_f=False, scalar=True) lm = float(test_stat.statistic) lmpval = float(test_stat.pvalue) if store: res_store.resols = resols res_store.usedlag = usedlag return lm, lmpval, fval, fpval, res_store else: return lm, lmpval, fval, fpval
Lagrange Multiplier tests for autocorrelation. This is a generic Lagrange Multiplier test for autocorrelation. Returns Engle's ARCH test if resid is the squared residual array. Breusch-Godfrey is a variation on this test with additional exogenous variables. Parameters ---------- resid : array_like Time series to test. nlags : int, default None Highest lag to use. store : bool, default False If true then the intermediate results are also returned. period : int, default none The period of a Seasonal time series. Used to compute the max lag for seasonal data which uses min(2*period, nobs // 5) if set. If None, then the default rule is used to set the number of lags. When set, must be >= 2. ddof : int, default 0 The number of degrees of freedom consumed by the model used to produce resid. The default value is 0. cov_type : str, default "nonrobust" Covariance type. The default is "nonrobust` which uses the classic OLS covariance estimator. Specify one of "HC0", "HC1", "HC2", "HC3" to use White's covariance estimator. All covariance types supported by ``OLS.fit`` are accepted. cov_kwds : dict, default None Dictionary of covariance options passed to ``OLS.fit``. See OLS.fit for more details. Returns ------- lm : float Lagrange multiplier test statistic. lmpval : float The p-value for Lagrange multiplier test. fval : float The f statistic of the F test, alternative version of the same test based on F test for the parameter restriction. fpval : float The pvalue of the F test. res_store : ResultsStore, optional Intermediate results. Only returned if store=True. See Also -------- het_arch Conditional heteroskedasticity testing. acorr_breusch_godfrey Breusch-Godfrey test for serial correlation. acorr_ljung_box Ljung-Box test for serial correlation. Notes ----- The test statistic is computed as (nobs - ddof) * r2 where r2 is the R-squared from a regression on the residual on nlags lags of the residual.
acorr_lm
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def het_arch(resid, nlags=None, store=False, ddof=0): """ Engle's Test for Autoregressive Conditional Heteroscedasticity (ARCH). Parameters ---------- resid : ndarray residuals from an estimation, or time series nlags : int, default None Highest lag to use. store : bool, default False If true then the intermediate results are also returned ddof : int, default 0 If the residuals are from a regression, or ARMA estimation, then there are recommendations to correct the degrees of freedom by the number of parameters that have been estimated, for example ddof=p+q for an ARMA(p,q). Returns ------- lm : float Lagrange multiplier test statistic lmpval : float p-value for Lagrange multiplier test fval : float fstatistic for F test, alternative version of the same test based on F test for the parameter restriction fpval : float pvalue for F test res_store : ResultsStore, optional Intermediate results. Returned if store is True. Notes ----- verified against R:FinTS::ArchTest """ return acorr_lm(resid ** 2, nlags=nlags, store=store, ddof=ddof)
Engle's Test for Autoregressive Conditional Heteroscedasticity (ARCH). Parameters ---------- resid : ndarray residuals from an estimation, or time series nlags : int, default None Highest lag to use. store : bool, default False If true then the intermediate results are also returned ddof : int, default 0 If the residuals are from a regression, or ARMA estimation, then there are recommendations to correct the degrees of freedom by the number of parameters that have been estimated, for example ddof=p+q for an ARMA(p,q). Returns ------- lm : float Lagrange multiplier test statistic lmpval : float p-value for Lagrange multiplier test fval : float fstatistic for F test, alternative version of the same test based on F test for the parameter restriction fpval : float pvalue for F test res_store : ResultsStore, optional Intermediate results. Returned if store is True. Notes ----- verified against R:FinTS::ArchTest
het_arch
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def acorr_breusch_godfrey(res, nlags=None, store=False): """ Breusch-Godfrey Lagrange Multiplier tests for residual autocorrelation. Parameters ---------- res : RegressionResults Estimation results for which the residuals are tested for serial correlation. nlags : int, optional Number of lags to include in the auxiliary regression. (nlags is highest lag). store : bool, default False If store is true, then an additional class instance that contains intermediate results is returned. Returns ------- lm : float Lagrange multiplier test statistic. lmpval : float The p-value for Lagrange multiplier test. fval : float The value of the f statistic for F test, alternative version of the same test based on F test for the parameter restriction. fpval : float The pvalue for F test. res_store : ResultsStore A class instance that holds intermediate results. Only returned if store=True. Notes ----- BG adds lags of residual to exog in the design matrix for the auxiliary regression with residuals as endog. See [1]_, section 12.7.1. References ---------- .. [1] Greene, W. H. Econometric Analysis. New Jersey. Prentice Hall; 5th edition. (2002). """ x = np.asarray(res.resid).squeeze() if x.ndim != 1: raise ValueError("Model resid must be a 1d array. Cannot be used on" " multivariate models.") exog_old = res.model.exog nobs = x.shape[0] if nlags is None: nlags = min(10, nobs // 5) x = np.concatenate((np.zeros(nlags), x)) xdall = lagmat(x[:, None], nlags, trim="both") nobs = xdall.shape[0] xdall = np.c_[np.ones((nobs, 1)), xdall] xshort = x[-nobs:] if exog_old is None: exog = xdall else: exog = np.column_stack((exog_old, xdall)) k_vars = exog.shape[1] resols = OLS(xshort, exog).fit() ft = resols.f_test(np.eye(nlags, k_vars, k_vars - nlags)) fval = ft.fvalue fpval = ft.pvalue fval = float(np.squeeze(fval)) fpval = float(np.squeeze(fpval)) lm = nobs * resols.rsquared lmpval = stats.chi2.sf(lm, nlags) # Note: degrees of freedom for LM test is nvars minus constant = usedlags if store: res_store = ResultsStore() res_store.resols = resols res_store.usedlag = nlags return lm, lmpval, fval, fpval, res_store else: return lm, lmpval, fval, fpval
Breusch-Godfrey Lagrange Multiplier tests for residual autocorrelation. Parameters ---------- res : RegressionResults Estimation results for which the residuals are tested for serial correlation. nlags : int, optional Number of lags to include in the auxiliary regression. (nlags is highest lag). store : bool, default False If store is true, then an additional class instance that contains intermediate results is returned. Returns ------- lm : float Lagrange multiplier test statistic. lmpval : float The p-value for Lagrange multiplier test. fval : float The value of the f statistic for F test, alternative version of the same test based on F test for the parameter restriction. fpval : float The pvalue for F test. res_store : ResultsStore A class instance that holds intermediate results. Only returned if store=True. Notes ----- BG adds lags of residual to exog in the design matrix for the auxiliary regression with residuals as endog. See [1]_, section 12.7.1. References ---------- .. [1] Greene, W. H. Econometric Analysis. New Jersey. Prentice Hall; 5th edition. (2002).
acorr_breusch_godfrey
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def _check_het_test(x: np.ndarray, test_name: str) -> None: """ Check validity of the exogenous regressors in a heteroskedasticity test Parameters ---------- x : ndarray The exogenous regressor array test_name : str The test name for the exception """ x_max = x.max(axis=0) if ( not np.any(((x_max - x.min(axis=0)) == 0) & (x_max != 0)) or x.shape[1] < 2 ): raise ValueError( f"{test_name} test requires exog to have at least " "two columns where one is a constant." )
Check validity of the exogenous regressors in a heteroskedasticity test Parameters ---------- x : ndarray The exogenous regressor array test_name : str The test name for the exception
_check_het_test
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def het_white(resid, exog): """ White's Lagrange Multiplier Test for Heteroscedasticity. Parameters ---------- resid : array_like The residuals. The squared residuals are used as the endogenous variable. exog : array_like The explanatory variables for the variance. Squares and interaction terms are automatically included in the auxiliary regression. Returns ------- lm : float The lagrange multiplier statistic. lm_pvalue :float The p-value of lagrange multiplier test. fvalue : float The f-statistic of the hypothesis that the error variance does not depend on x. This is an alternative test variant not the original LM test. f_pvalue : float The p-value for the f-statistic. Notes ----- Assumes x contains constant (for counting dof). question: does f-statistic make sense? constant ? References ---------- Greene section 11.4.1 5th edition p. 222. Test statistic reproduces Greene 5th, example 11.3. """ x = array_like(exog, "exog", ndim=2) y = array_like(resid, "resid", ndim=2, shape=(x.shape[0], 1)) _check_het_test(x, "White's heteroskedasticity") nobs, nvars0 = x.shape i0, i1 = np.triu_indices(nvars0) exog = x[:, i0] * x[:, i1] nobs, nvars = exog.shape assert nvars == nvars0 * (nvars0 - 1) / 2. + nvars0 resols = OLS(y ** 2, exog).fit() fval = resols.fvalue fpval = resols.f_pvalue lm = nobs * resols.rsquared # Note: degrees of freedom for LM test is nvars minus constant # degrees of freedom take possible reduced rank in exog into account # df_model checks the rank to determine df # extra calculation that can be removed: assert resols.df_model == np.linalg.matrix_rank(exog) - 1 lmpval = stats.chi2.sf(lm, resols.df_model) return lm, lmpval, fval, fpval
White's Lagrange Multiplier Test for Heteroscedasticity. Parameters ---------- resid : array_like The residuals. The squared residuals are used as the endogenous variable. exog : array_like The explanatory variables for the variance. Squares and interaction terms are automatically included in the auxiliary regression. Returns ------- lm : float The lagrange multiplier statistic. lm_pvalue :float The p-value of lagrange multiplier test. fvalue : float The f-statistic of the hypothesis that the error variance does not depend on x. This is an alternative test variant not the original LM test. f_pvalue : float The p-value for the f-statistic. Notes ----- Assumes x contains constant (for counting dof). question: does f-statistic make sense? constant ? References ---------- Greene section 11.4.1 5th edition p. 222. Test statistic reproduces Greene 5th, example 11.3.
het_white
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def het_goldfeldquandt(y, x, idx=None, split=None, drop=None, alternative="increasing", store=False): """ Goldfeld-Quandt homoskedasticity test. This test examines whether the residual variance is the same in 2 subsamples. Parameters ---------- y : array_like endogenous variable x : array_like exogenous variable, regressors idx : int, default None column index of variable according to which observations are sorted for the split split : {int, float}, default None If an integer, this is the index at which sample is split. If a float in 0<split<1 then split is interpreted as fraction of the observations in the first sample. If None, uses nobs//2. drop : {int, float}, default None If this is not None, then observation are dropped from the middle part of the sorted series. If 0<split<1 then split is interpreted as fraction of the number of observations to be dropped. Note: Currently, observations are dropped between split and split+drop, where split and drop are the indices (given by rounding if specified as fraction). The first sample is [0:split], the second sample is [split+drop:] alternative : {"increasing", "decreasing", "two-sided"} The default is increasing. This specifies the alternative for the p-value calculation. store : bool, default False Flag indicating to return the regression results Returns ------- fval : float value of the F-statistic pval : float p-value of the hypothesis that the variance in one subsample is larger than in the other subsample ordering : str The ordering used in the alternative. res_store : ResultsStore, optional Storage for the intermediate and final results that are calculated Notes ----- The Null hypothesis is that the variance in the two sub-samples are the same. The alternative hypothesis, can be increasing, i.e. the variance in the second sample is larger than in the first, or decreasing or two-sided. Results are identical R, but the drop option is defined differently. (sorting by idx not tested yet) """ x = np.asarray(x) y = np.asarray(y) # **2 nobs, nvars = x.shape if split is None: split = nobs // 2 elif (0 < split) and (split < 1): split = int(nobs * split) if drop is None: start2 = split elif (0 < drop) and (drop < 1): start2 = split + int(nobs * drop) else: start2 = split + drop if idx is not None: xsortind = np.argsort(x[:, idx]) y = y[xsortind] x = x[xsortind, :] resols1 = OLS(y[:split], x[:split]).fit() resols2 = OLS(y[start2:], x[start2:]).fit() fval = resols2.mse_resid / resols1.mse_resid # if fval>1: if alternative.lower() in ["i", "inc", "increasing"]: fpval = stats.f.sf(fval, resols1.df_resid, resols2.df_resid) ordering = "increasing" elif alternative.lower() in ["d", "dec", "decreasing"]: fpval = stats.f.sf(1. / fval, resols2.df_resid, resols1.df_resid) ordering = "decreasing" elif alternative.lower() in ["2", "2-sided", "two-sided"]: fpval_sm = stats.f.cdf(fval, resols2.df_resid, resols1.df_resid) fpval_la = stats.f.sf(fval, resols2.df_resid, resols1.df_resid) fpval = 2 * min(fpval_sm, fpval_la) ordering = "two-sided" else: raise ValueError("invalid alternative") if store: res = ResultsStore() res.__doc__ = "Test Results for Goldfeld-Quandt test of" \ "heterogeneity" res.fval = fval res.fpval = fpval res.df_fval = (resols2.df_resid, resols1.df_resid) res.resols1 = resols1 res.resols2 = resols2 res.ordering = ordering res.split = split res._str = """\ The Goldfeld-Quandt test for null hypothesis that the variance in the second subsample is {} than in the first subsample: F-statistic ={:8.4f} and p-value ={:8.4f}""".format(ordering, fval, fpval) return fval, fpval, ordering, res return fval, fpval, ordering
Goldfeld-Quandt homoskedasticity test. This test examines whether the residual variance is the same in 2 subsamples. Parameters ---------- y : array_like endogenous variable x : array_like exogenous variable, regressors idx : int, default None column index of variable according to which observations are sorted for the split split : {int, float}, default None If an integer, this is the index at which sample is split. If a float in 0<split<1 then split is interpreted as fraction of the observations in the first sample. If None, uses nobs//2. drop : {int, float}, default None If this is not None, then observation are dropped from the middle part of the sorted series. If 0<split<1 then split is interpreted as fraction of the number of observations to be dropped. Note: Currently, observations are dropped between split and split+drop, where split and drop are the indices (given by rounding if specified as fraction). The first sample is [0:split], the second sample is [split+drop:] alternative : {"increasing", "decreasing", "two-sided"} The default is increasing. This specifies the alternative for the p-value calculation. store : bool, default False Flag indicating to return the regression results Returns ------- fval : float value of the F-statistic pval : float p-value of the hypothesis that the variance in one subsample is larger than in the other subsample ordering : str The ordering used in the alternative. res_store : ResultsStore, optional Storage for the intermediate and final results that are calculated Notes ----- The Null hypothesis is that the variance in the two sub-samples are the same. The alternative hypothesis, can be increasing, i.e. the variance in the second sample is larger than in the first, or decreasing or two-sided. Results are identical R, but the drop option is defined differently. (sorting by idx not tested yet)
het_goldfeldquandt
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def linear_harvey_collier(res, order_by=None, skip=None): """ Harvey Collier test for linearity The Null hypothesis is that the regression is correctly modeled as linear. Parameters ---------- res : RegressionResults A results instance from a linear regression. order_by : array_like, default None Integer array specifying the order of the residuals. If not provided, the order of the residuals is not changed. If provided, must have the same number of observations as the endogenous variable. skip : int, default None The number of observations to use for initial OLS, if None then skip is set equal to the number of regressors (columns in exog). Returns ------- tvalue : float The test statistic, based on ttest_1sample. pvalue : float The pvalue of the test. See Also -------- statsmodels.stats.diadnostic.recursive_olsresiduals Recursive OLS residual calculation used in the test. Notes ----- This test is a t-test that the mean of the recursive ols residuals is zero. Calculating the recursive residuals might take some time for large samples. """ # I think this has different ddof than # B.H. Baltagi, Econometrics, 2011, chapter 8 # but it matches Gretl and R:lmtest, pvalue at decimal=13 rr = recursive_olsresiduals(res, skip=skip, alpha=0.95, order_by=order_by) return stats.ttest_1samp(rr[3][3:], 0)
Harvey Collier test for linearity The Null hypothesis is that the regression is correctly modeled as linear. Parameters ---------- res : RegressionResults A results instance from a linear regression. order_by : array_like, default None Integer array specifying the order of the residuals. If not provided, the order of the residuals is not changed. If provided, must have the same number of observations as the endogenous variable. skip : int, default None The number of observations to use for initial OLS, if None then skip is set equal to the number of regressors (columns in exog). Returns ------- tvalue : float The test statistic, based on ttest_1sample. pvalue : float The pvalue of the test. See Also -------- statsmodels.stats.diadnostic.recursive_olsresiduals Recursive OLS residual calculation used in the test. Notes ----- This test is a t-test that the mean of the recursive ols residuals is zero. Calculating the recursive residuals might take some time for large samples.
linear_harvey_collier
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def linear_rainbow(res, frac=0.5, order_by=None, use_distance=False, center=None): """ Rainbow test for linearity The null hypothesis is the fit of the model using full sample is the same as using a central subset. The alternative is that the fits are difference. The rainbow test has power against many different forms of nonlinearity. Parameters ---------- res : RegressionResults A results instance from a linear regression. frac : float, default 0.5 The fraction of the data to include in the center model. order_by : {ndarray, str, List[str]}, default None If an ndarray, the values in the array are used to sort the observations. If a string or a list of strings, these are interpreted as column name(s) which are then used to lexicographically sort the data. use_distance : bool, default False Flag indicating whether data should be ordered by the Mahalanobis distance to the center. center : {float, int}, default None If a float, the value must be in [0, 1] and the center is center * nobs of the ordered data. If an integer, must be in [0, nobs) and is interpreted as the observation of the ordered data to use. Returns ------- fstat : float The test statistic based on the F test. pvalue : float The pvalue of the test. Notes ----- This test assumes residuals are homoskedastic and may reject a correct linear specification if the residuals are heteroskedastic. """ if not isinstance(res, RegressionResultsWrapper): raise TypeError("res must be a results instance from a linear model.") frac = float_like(frac, "frac") use_distance = bool_like(use_distance, "use_distance") nobs = res.nobs endog = res.model.endog exog = res.model.exog if order_by is not None and use_distance: raise ValueError("order_by and use_distance cannot be simultaneously" "used.") if order_by is not None: if isinstance(order_by, np.ndarray): order_by = array_like(order_by, "order_by", ndim=1, dtype="int") else: if isinstance(order_by, str): order_by = [order_by] try: cols = res.model.data.orig_exog[order_by].copy() except (IndexError, KeyError): raise TypeError("order_by must contain valid column names " "from the exog data used to construct res," "and exog must be a pandas DataFrame.") name = "__index__" while name in cols: name += '_' cols[name] = np.arange(cols.shape[0]) cols = cols.sort_values(order_by) order_by = np.asarray(cols[name]) endog = endog[order_by] exog = exog[order_by] if use_distance: center = int(nobs) // 2 if center is None else center if isinstance(center, float): if not 0.0 <= center <= 1.0: raise ValueError("center must be in (0, 1) when a float.") center = int(center * (nobs-1)) else: center = int_like(center, "center") if not 0 < center < nobs - 1: raise ValueError("center must be in [0, nobs) when an int.") center_obs = exog[center:center+1] from scipy.spatial.distance import cdist try: err = exog - center_obs vi = np.linalg.inv(err.T @ err / nobs) except np.linalg.LinAlgError: err = exog - exog.mean(0) vi = np.linalg.inv(err.T @ err / nobs) dist = cdist(exog, center_obs, metric='mahalanobis', VI=vi) idx = np.argsort(dist.ravel()) endog = endog[idx] exog = exog[idx] lowidx = np.ceil(0.5 * (1 - frac) * nobs).astype(int) uppidx = np.floor(lowidx + frac * nobs).astype(int) if uppidx - lowidx < exog.shape[1]: raise ValueError("frac is too small to perform test. frac * nobs" "must be greater than the number of exogenous" "variables in the model.") mi_sl = slice(lowidx, uppidx) res_mi = OLS(endog[mi_sl], exog[mi_sl]).fit() nobs_mi = res_mi.model.endog.shape[0] ss_mi = res_mi.ssr ss = res.ssr fstat = (ss - ss_mi) / (nobs - nobs_mi) / ss_mi * res_mi.df_resid pval = stats.f.sf(fstat, nobs - nobs_mi, res_mi.df_resid) return fstat, pval
Rainbow test for linearity The null hypothesis is the fit of the model using full sample is the same as using a central subset. The alternative is that the fits are difference. The rainbow test has power against many different forms of nonlinearity. Parameters ---------- res : RegressionResults A results instance from a linear regression. frac : float, default 0.5 The fraction of the data to include in the center model. order_by : {ndarray, str, List[str]}, default None If an ndarray, the values in the array are used to sort the observations. If a string or a list of strings, these are interpreted as column name(s) which are then used to lexicographically sort the data. use_distance : bool, default False Flag indicating whether data should be ordered by the Mahalanobis distance to the center. center : {float, int}, default None If a float, the value must be in [0, 1] and the center is center * nobs of the ordered data. If an integer, must be in [0, nobs) and is interpreted as the observation of the ordered data to use. Returns ------- fstat : float The test statistic based on the F test. pvalue : float The pvalue of the test. Notes ----- This test assumes residuals are homoskedastic and may reject a correct linear specification if the residuals are heteroskedastic.
linear_rainbow
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def linear_lm(resid, exog, func=None): """ Lagrange multiplier test for linearity against functional alternative # TODO: Remove the restriction limitations: Assumes currently that the first column is integer. Currently it does not check whether the transformed variables contain NaNs, for example log of negative number. Parameters ---------- resid : ndarray residuals of a regression exog : ndarray exogenous variables for which linearity is tested func : callable, default None If func is None, then squares are used. func needs to take an array of exog and return an array of transformed variables. Returns ------- lm : float Lagrange multiplier test statistic lm_pval : float p-value of Lagrange multiplier tes ftest : ContrastResult instance the results from the F test variant of this test Notes ----- Written to match Gretl's linearity test. The test runs an auxiliary regression of the residuals on the combined original and transformed regressors. The Null hypothesis is that the linear specification is correct. """ if func is None: def func(x): return np.power(x, 2) exog = np.asarray(exog) exog_aux = np.column_stack((exog, func(exog[:, 1:]))) nobs, k_vars = exog.shape ls = OLS(resid, exog_aux).fit() ftest = ls.f_test(np.eye(k_vars - 1, k_vars * 2 - 1, k_vars)) lm = nobs * ls.rsquared lm_pval = stats.chi2.sf(lm, k_vars - 1) return lm, lm_pval, ftest
Lagrange multiplier test for linearity against functional alternative # TODO: Remove the restriction limitations: Assumes currently that the first column is integer. Currently it does not check whether the transformed variables contain NaNs, for example log of negative number. Parameters ---------- resid : ndarray residuals of a regression exog : ndarray exogenous variables for which linearity is tested func : callable, default None If func is None, then squares are used. func needs to take an array of exog and return an array of transformed variables. Returns ------- lm : float Lagrange multiplier test statistic lm_pval : float p-value of Lagrange multiplier tes ftest : ContrastResult instance the results from the F test variant of this test Notes ----- Written to match Gretl's linearity test. The test runs an auxiliary regression of the residuals on the combined original and transformed regressors. The Null hypothesis is that the linear specification is correct.
linear_lm
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def spec_white(resid, exog): """ White's Two-Moment Specification Test Parameters ---------- resid : array_like OLS residuals. exog : array_like OLS design matrix. Returns ------- stat : float The test statistic. pval : float A chi-square p-value for test statistic. dof : int The degrees of freedom. See Also -------- het_white White's test for heteroskedasticity. Notes ----- Implements the two-moment specification test described by White's Theorem 2 (1980, p. 823) which compares the standard OLS covariance estimator with White's heteroscedasticity-consistent estimator. The test statistic is shown to be chi-square distributed. Null hypothesis is homoscedastic and correctly specified. Assumes the OLS design matrix contains an intercept term and at least one variable. The intercept is removed to calculate the test statistic. Interaction terms (squares and crosses of OLS regressors) are added to the design matrix to calculate the test statistic. Degrees-of-freedom (full rank) = nvar + nvar * (nvar + 1) / 2 Linearly dependent columns are removed to avoid singular matrix error. References ---------- .. [*] White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity. Econometrica, 48: 817-838. """ x = array_like(exog, "exog", ndim=2) e = array_like(resid, "resid", ndim=1) if x.shape[1] < 2 or not np.any(np.ptp(x, 0) == 0.0): raise ValueError("White's specification test requires at least two" "columns where one is a constant.") # add interaction terms i0, i1 = np.triu_indices(x.shape[1]) exog = np.delete(x[:, i0] * x[:, i1], 0, 1) # collinearity check - see _fit_collinear atol = 1e-14 rtol = 1e-13 tol = atol + rtol * exog.var(0) r = np.linalg.qr(exog, mode="r") mask = np.abs(r.diagonal()) < np.sqrt(tol) exog = exog[:, np.where(~mask)[0]] # calculate test statistic sqe = e * e sqmndevs = sqe - np.mean(sqe) d = np.dot(exog.T, sqmndevs) devx = exog - np.mean(exog, axis=0) devx *= sqmndevs[:, None] b = devx.T.dot(devx) stat = d.dot(np.linalg.solve(b, d)) # chi-square test dof = devx.shape[1] pval = stats.chi2.sf(stat, dof) return stat, pval, dof
White's Two-Moment Specification Test Parameters ---------- resid : array_like OLS residuals. exog : array_like OLS design matrix. Returns ------- stat : float The test statistic. pval : float A chi-square p-value for test statistic. dof : int The degrees of freedom. See Also -------- het_white White's test for heteroskedasticity. Notes ----- Implements the two-moment specification test described by White's Theorem 2 (1980, p. 823) which compares the standard OLS covariance estimator with White's heteroscedasticity-consistent estimator. The test statistic is shown to be chi-square distributed. Null hypothesis is homoscedastic and correctly specified. Assumes the OLS design matrix contains an intercept term and at least one variable. The intercept is removed to calculate the test statistic. Interaction terms (squares and crosses of OLS regressors) are added to the design matrix to calculate the test statistic. Degrees-of-freedom (full rank) = nvar + nvar * (nvar + 1) / 2 Linearly dependent columns are removed to avoid singular matrix error. References ---------- .. [*] White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity. Econometrica, 48: 817-838.
spec_white
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def recursive_olsresiduals(res, skip=None, lamda=0.0, alpha=0.95, order_by=None): """ Calculate recursive ols with residuals and Cusum test statistic Parameters ---------- res : RegressionResults Results from estimation of a regression model. skip : int, default None The number of observations to use for initial OLS, if None then skip is set equal to the number of regressors (columns in exog). lamda : float, default 0.0 The weight for Ridge correction to initial (X'X)^{-1}. alpha : {0.90, 0.95, 0.99}, default 0.95 Confidence level of test, currently only two values supported, used for confidence interval in cusum graph. order_by : array_like, default None Integer array specifying the order of the residuals. If not provided, the order of the residuals is not changed. If provided, must have the same number of observations as the endogenous variable. Returns ------- rresid : ndarray The recursive ols residuals. rparams : ndarray The recursive ols parameter estimates. rypred : ndarray The recursive prediction of endogenous variable. rresid_standardized : ndarray The recursive residuals standardized so that N(0,sigma2) distributed, where sigma2 is the error variance. rresid_scaled : ndarray The recursive residuals normalize so that N(0,1) distributed. rcusum : ndarray The cumulative residuals for cusum test. rcusumci : ndarray The confidence interval for cusum test using a size of alpha. Notes ----- It produces same recursive residuals as other version. This version updates the inverse of the X'X matrix and does not require matrix inversion during updating. looks efficient but no timing Confidence interval in Greene and Brown, Durbin and Evans is the same as in Ploberger after a little bit of algebra. References ---------- jplv to check formulas, follows Harvey BigJudge 5.5.2b for formula for inverse(X'X) updating Greene section 7.5.2 Brown, R. L., J. Durbin, and J. M. Evans. “Techniques for Testing the Constancy of Regression Relationships over Time.” Journal of the Royal Statistical Society. Series B (Methodological) 37, no. 2 (1975): 149-192. """ if not isinstance(res, RegressionResultsWrapper): raise TypeError("res a regression results instance") y = res.model.endog x = res.model.exog order_by = array_like(order_by, "order_by", dtype="int", optional=True, ndim=1, shape=(y.shape[0],)) # intialize with skip observations if order_by is not None: x = x[order_by] y = y[order_by] nobs, nvars = x.shape if skip is None: skip = nvars rparams = np.nan * np.zeros((nobs, nvars)) rresid = np.nan * np.zeros(nobs) rypred = np.nan * np.zeros(nobs) rvarraw = np.nan * np.zeros(nobs) x0 = x[:skip] if np.linalg.matrix_rank(x0) < x0.shape[1]: err_msg = """\ "The initial regressor matrix, x[:skip], issingular. You must use a value of skip large enough to ensure that the first OLS estimator is well-defined. """ raise ValueError(err_msg) y0 = y[:skip] # add Ridge to start (not in jplv) xtxi = np.linalg.inv(np.dot(x0.T, x0) + lamda * np.eye(nvars)) xty = np.dot(x0.T, y0) # xi * y #np.dot(xi, y) beta = np.dot(xtxi, xty) rparams[skip - 1] = beta yipred = np.dot(x[skip - 1], beta) rypred[skip - 1] = yipred rresid[skip - 1] = y[skip - 1] - yipred rvarraw[skip - 1] = 1 + np.dot(x[skip - 1], np.dot(xtxi, x[skip - 1])) for i in range(skip, nobs): xi = x[i:i + 1, :] yi = y[i] # get prediction error with previous beta yipred = np.dot(xi, beta) rypred[i] = np.squeeze(yipred) residi = yi - yipred rresid[i] = np.squeeze(residi) # update beta and inverse(X'X) tmp = np.dot(xtxi, xi.T) ft = 1 + np.dot(xi, tmp) xtxi = xtxi - np.dot(tmp, tmp.T) / ft # BigJudge equ 5.5.15 beta = beta + (tmp * residi / ft).ravel() # BigJudge equ 5.5.14 rparams[i] = beta rvarraw[i] = np.squeeze(ft) rresid_scaled = rresid / np.sqrt(rvarraw) # N(0,sigma2) distributed nrr = nobs - skip # sigma2 = rresid_scaled[skip-1:].var(ddof=1) #var or sum of squares ? # Greene has var, jplv and Ploberger have sum of squares (Ass.:mean=0) # Gretl uses: by reverse engineering matching their numbers sigma2 = rresid_scaled[skip:].var(ddof=1) rresid_standardized = rresid_scaled / np.sqrt(sigma2) # N(0,1) distributed rcusum = rresid_standardized[skip - 1:].cumsum() # confidence interval points in Greene p136 looks strange. Cleared up # this assumes sum of independent standard normal, which does not take into # account that we make many tests at the same time if alpha == 0.90: a = 0.850 elif alpha == 0.95: a = 0.948 elif alpha == 0.99: a = 1.143 else: raise ValueError("alpha can only be 0.9, 0.95 or 0.99") # following taken from Ploberger, # crit = a * np.sqrt(nrr) rcusumci = (a * np.sqrt(nrr) + 2 * a * np.arange(0, nobs - skip) / np.sqrt( nrr)) * np.array([[-1.], [+1.]]) return (rresid, rparams, rypred, rresid_standardized, rresid_scaled, rcusum, rcusumci)
Calculate recursive ols with residuals and Cusum test statistic Parameters ---------- res : RegressionResults Results from estimation of a regression model. skip : int, default None The number of observations to use for initial OLS, if None then skip is set equal to the number of regressors (columns in exog). lamda : float, default 0.0 The weight for Ridge correction to initial (X'X)^{-1}. alpha : {0.90, 0.95, 0.99}, default 0.95 Confidence level of test, currently only two values supported, used for confidence interval in cusum graph. order_by : array_like, default None Integer array specifying the order of the residuals. If not provided, the order of the residuals is not changed. If provided, must have the same number of observations as the endogenous variable. Returns ------- rresid : ndarray The recursive ols residuals. rparams : ndarray The recursive ols parameter estimates. rypred : ndarray The recursive prediction of endogenous variable. rresid_standardized : ndarray The recursive residuals standardized so that N(0,sigma2) distributed, where sigma2 is the error variance. rresid_scaled : ndarray The recursive residuals normalize so that N(0,1) distributed. rcusum : ndarray The cumulative residuals for cusum test. rcusumci : ndarray The confidence interval for cusum test using a size of alpha. Notes ----- It produces same recursive residuals as other version. This version updates the inverse of the X'X matrix and does not require matrix inversion during updating. looks efficient but no timing Confidence interval in Greene and Brown, Durbin and Evans is the same as in Ploberger after a little bit of algebra. References ---------- jplv to check formulas, follows Harvey BigJudge 5.5.2b for formula for inverse(X'X) updating Greene section 7.5.2 Brown, R. L., J. Durbin, and J. M. Evans. “Techniques for Testing the Constancy of Regression Relationships over Time.” Journal of the Royal Statistical Society. Series B (Methodological) 37, no. 2 (1975): 149-192.
recursive_olsresiduals
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def breaks_hansen(olsresults): """ Test for model stability, breaks in parameters for ols, Hansen 1992 Parameters ---------- olsresults : RegressionResults Results from estimation of a regression model. Returns ------- teststat : float Hansen's test statistic. crit : ndarray The critical values at alpha=0.95 for different nvars. Notes ----- looks good in example, maybe not very powerful for small changes in parameters According to Greene, distribution of test statistics depends on nvar but not on nobs. Test statistic is verified against R:strucchange References ---------- Greene section 7.5.1, notation follows Greene """ x = olsresults.model.exog resid = array_like(olsresults.resid, "resid", shape=(x.shape[0], 1)) nobs, nvars = x.shape resid2 = resid ** 2 ft = np.c_[x * resid[:, None], (resid2 - resid2.mean())] score = ft.cumsum(0) f = nobs * (ft[:, :, None] * ft[:, None, :]).sum(0) s = (score[:, :, None] * score[:, None, :]).sum(0) h = np.trace(np.dot(np.linalg.inv(f), s)) crit95 = np.array([(2, 1.01), (6, 1.9), (15, 3.75), (19, 4.52)], dtype=[("nobs", int), ("crit", float)]) # TODO: get critical values from Bruce Hansen's 1992 paper return h, crit95
Test for model stability, breaks in parameters for ols, Hansen 1992 Parameters ---------- olsresults : RegressionResults Results from estimation of a regression model. Returns ------- teststat : float Hansen's test statistic. crit : ndarray The critical values at alpha=0.95 for different nvars. Notes ----- looks good in example, maybe not very powerful for small changes in parameters According to Greene, distribution of test statistics depends on nvar but not on nobs. Test statistic is verified against R:strucchange References ---------- Greene section 7.5.1, notation follows Greene
breaks_hansen
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def breaks_cusumolsresid(resid, ddof=0): """ Cusum test for parameter stability based on ols residuals. Parameters ---------- resid : ndarray An array of residuals from an OLS estimation. ddof : int The number of parameters in the OLS estimation, used as degrees of freedom correction for error variance. Returns ------- sup_b : float The test statistic, maximum of absolute value of scaled cumulative OLS residuals. pval : float Probability of observing the data under the null hypothesis of no structural change, based on asymptotic distribution which is a Brownian Bridge crit: list The tabulated critical values, for alpha = 1%, 5% and 10%. Notes ----- Tested against R:structchange. Not clear: Assumption 2 in Ploberger, Kramer assumes that exog x have asymptotically zero mean, x.mean(0) = [1, 0, 0, ..., 0] Is this really necessary? I do not see how it can affect the test statistic under the null. It does make a difference under the alternative. Also, the asymptotic distribution of test statistic depends on this. From examples it looks like there is little power for standard cusum if exog (other than constant) have mean zero. References ---------- Ploberger, Werner, and Walter Kramer. “The Cusum Test with OLS Residuals.” Econometrica 60, no. 2 (March 1992): 271-285. """ resid = np.asarray(resid).ravel() nobs = len(resid) nobssigma2 = (resid ** 2).sum() if ddof > 0: nobssigma2 = nobssigma2 / (nobs - ddof) * nobs # b is asymptotically a Brownian Bridge b = resid.cumsum() / np.sqrt(nobssigma2) # use T*sigma directly # asymptotically distributed as standard Brownian Bridge sup_b = np.abs(b).max() crit = [(1, 1.63), (5, 1.36), (10, 1.22)] # Note stats.kstwobign.isf(0.1) is distribution of sup.abs of Brownian # Bridge # >>> stats.kstwobign.isf([0.01,0.05,0.1]) # array([ 1.62762361, 1.35809864, 1.22384787]) pval = stats.kstwobign.sf(sup_b) return sup_b, pval, crit
Cusum test for parameter stability based on ols residuals. Parameters ---------- resid : ndarray An array of residuals from an OLS estimation. ddof : int The number of parameters in the OLS estimation, used as degrees of freedom correction for error variance. Returns ------- sup_b : float The test statistic, maximum of absolute value of scaled cumulative OLS residuals. pval : float Probability of observing the data under the null hypothesis of no structural change, based on asymptotic distribution which is a Brownian Bridge crit: list The tabulated critical values, for alpha = 1%, 5% and 10%. Notes ----- Tested against R:structchange. Not clear: Assumption 2 in Ploberger, Kramer assumes that exog x have asymptotically zero mean, x.mean(0) = [1, 0, 0, ..., 0] Is this really necessary? I do not see how it can affect the test statistic under the null. It does make a difference under the alternative. Also, the asymptotic distribution of test statistic depends on this. From examples it looks like there is little power for standard cusum if exog (other than constant) have mean zero. References ---------- Ploberger, Werner, and Walter Kramer. “The Cusum Test with OLS Residuals.” Econometrica 60, no. 2 (March 1992): 271-285.
breaks_cusumolsresid
python
statsmodels/statsmodels
statsmodels/stats/diagnostic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/diagnostic.py
BSD-3-Clause
def variance(self, decomp_type, n=5000, conf=0.99): """ A helper function to calculate the variance/std. Used to keep the decomposition functions cleaner """ if self.submitted_n is not None: n = self.submitted_n if self.submitted_conf is not None: conf = self.submitted_conf if self.submitted_weight is not None: submitted_weight = [ self.submitted_weight, 1 - self.submitted_weight, ] bi = self.bi bifurcate = self.bifurcate endow_eff_list = [] coef_eff_list = [] int_eff_list = [] exp_eff_list = [] unexp_eff_list = [] for _ in range(0, n): endog = np.column_stack((self.bi_col, self.endog)) exog = self.exog amount = len(endog) samples = np.random.randint(0, high=amount, size=amount) endog = endog[samples] exog = exog[samples] neumark = np.delete(exog, bifurcate, axis=1) exog_f = exog[np.where(exog[:, bifurcate] == bi[0])] exog_s = exog[np.where(exog[:, bifurcate] == bi[1])] endog_f = endog[np.where(endog[:, 0] == bi[0])] endog_s = endog[np.where(endog[:, 0] == bi[1])] exog_f = np.delete(exog_f, bifurcate, axis=1) exog_s = np.delete(exog_s, bifurcate, axis=1) endog_f = endog_f[:, 1] endog_s = endog_s[:, 1] endog = endog[:, 1] two_fold_type = self.two_fold_type if self.hasconst is False: exog_f = add_constant(exog_f, prepend=False) exog_s = add_constant(exog_s, prepend=False) exog = add_constant(exog, prepend=False) neumark = add_constant(neumark, prepend=False) _f_model = OLS(endog_f, exog_f).fit( cov_type=self.cov_type, cov_kwds=self.cov_kwds ) _s_model = OLS(endog_s, exog_s).fit( cov_type=self.cov_type, cov_kwds=self.cov_kwds ) exog_f_mean = np.mean(exog_f, axis=0) exog_s_mean = np.mean(exog_s, axis=0) if decomp_type == 3: endow_eff = (exog_f_mean - exog_s_mean) @ _s_model.params coef_eff = exog_s_mean @ (_f_model.params - _s_model.params) int_eff = (exog_f_mean - exog_s_mean) @ ( _f_model.params - _s_model.params ) endow_eff_list.append(endow_eff) coef_eff_list.append(coef_eff) int_eff_list.append(int_eff) elif decomp_type == 2: len_f = len(exog_f) len_s = len(exog_s) if two_fold_type == "cotton": t_params = (len_f / (len_f + len_s) * _f_model.params) + ( len_s / (len_f + len_s) * _s_model.params ) elif two_fold_type == "reimers": t_params = 0.5 * (_f_model.params + _s_model.params) elif two_fold_type == "self_submitted": t_params = ( submitted_weight[0] * _f_model.params + submitted_weight[1] * _s_model.params ) elif two_fold_type == "nuemark": _t_model = OLS(endog, neumark).fit( cov_type=self.cov_type, cov_kwds=self.cov_kwds ) t_params = _t_model.params else: _t_model = OLS(endog, exog).fit( cov_type=self.cov_type, cov_kwds=self.cov_kwds ) t_params = np.delete(_t_model.params, bifurcate) unexplained = (exog_f_mean @ (_f_model.params - t_params)) + ( exog_s_mean @ (t_params - _s_model.params) ) explained = (exog_f_mean - exog_s_mean) @ t_params unexp_eff_list.append(unexplained) exp_eff_list.append(explained) high, low = int(n * conf), int(n * (1 - conf)) if decomp_type == 3: return [ np.std(np.sort(endow_eff_list)[low:high]), np.std(np.sort(coef_eff_list)[low:high]), np.std(np.sort(int_eff_list)[low:high]), ] elif decomp_type == 2: return [ np.std(np.sort(unexp_eff_list)[low:high]), np.std(np.sort(exp_eff_list)[low:high]), ]
A helper function to calculate the variance/std. Used to keep the decomposition functions cleaner
variance
python
statsmodels/statsmodels
statsmodels/stats/oaxaca.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oaxaca.py
BSD-3-Clause
def three_fold(self, std=False, n=None, conf=None): """ Calculates the three-fold Oaxaca Blinder Decompositions Parameters ---------- std: boolean, optional If true, bootstrapped standard errors will be calculated. n: int, optional A amount of iterations to calculate the bootstrapped standard errors. This defaults to 5000. conf: float, optional This is the confidence required for the standard error calculation. Defaults to .99, but could be anything less than or equal to one. One is heavy discouraged, due to the extreme outliers inflating the variance. Returns ------- OaxacaResults A results container for the three-fold decomposition. """ self.submitted_n = n self.submitted_conf = conf self.submitted_weight = None std_val = None self.endow_eff = ( self.exog_f_mean - self.exog_s_mean ) @ self._s_model.params self.coef_eff = self.exog_s_mean @ ( self._f_model.params - self._s_model.params ) self.int_eff = (self.exog_f_mean - self.exog_s_mean) @ ( self._f_model.params - self._s_model.params ) if std is True: std_val = self.variance(3) return OaxacaResults( (self.endow_eff, self.coef_eff, self.int_eff, self.gap), 3, std_val=std_val, )
Calculates the three-fold Oaxaca Blinder Decompositions Parameters ---------- std: boolean, optional If true, bootstrapped standard errors will be calculated. n: int, optional A amount of iterations to calculate the bootstrapped standard errors. This defaults to 5000. conf: float, optional This is the confidence required for the standard error calculation. Defaults to .99, but could be anything less than or equal to one. One is heavy discouraged, due to the extreme outliers inflating the variance. Returns ------- OaxacaResults A results container for the three-fold decomposition.
three_fold
python
statsmodels/statsmodels
statsmodels/stats/oaxaca.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oaxaca.py
BSD-3-Clause
def two_fold( self, std=False, two_fold_type="pooled", submitted_weight=None, n=None, conf=None, ): """ Calculates the two-fold or pooled Oaxaca Blinder Decompositions Methods ------- std: boolean, optional If true, bootstrapped standard errors will be calculated. two_fold_type: string, optional This method allows for the specific calculation of the non-discriminatory model. There are four different types available at this time. pooled, cotton, reimers, self_submitted. Pooled is assumed and if a non-viable parameter is given, pooled will be ran. pooled - This type assumes that the pooled model's parameters (a normal regression) is the non-discriminatory model. This includes the indicator variable. This is generally the best idea. If you have economic justification for using others, then use others. nuemark - This is similar to the pooled type, but the regression is not done including the indicator variable. cotton - This type uses the adjusted in Cotton (1988), which accounts for the undervaluation of one group causing the overevalution of another. It uses the sample size weights for a linear combination of the two model parameters reimers - This type uses a linear combination of the two models with both parameters being 50% of the non-discriminatory model. self_submitted - This allows the user to submit their own weights. Please be sure to put the weight of the larger mean group only. This should be submitted in the submitted_weights variable. submitted_weight: int/float, required only for self_submitted, This is the submitted weight for the larger mean. If the weight for the larger mean is p, then the weight for the other mean is 1-p. Only submit the first value. n: int, optional A amount of iterations to calculate the bootstrapped standard errors. This defaults to 5000. conf: float, optional This is the confidence required for the standard error calculation. Defaults to .99, but could be anything less than or equal to one. One is heavy discouraged, due to the extreme outliers inflating the variance. Returns ------- OaxacaResults A results container for the two-fold decomposition. """ self.submitted_n = n self.submitted_conf = conf std_val = None self.two_fold_type = two_fold_type self.submitted_weight = submitted_weight if two_fold_type == "cotton": self.t_params = ( self.len_f / (self.len_f + self.len_s) * self._f_model.params ) + (self.len_s / (self.len_f + self.len_s) * self._s_model.params) elif two_fold_type == "reimers": self.t_params = 0.5 * (self._f_model.params + self._s_model.params) elif two_fold_type == "self_submitted": if submitted_weight is None: raise ValueError("Please submit weights") submitted_weight = [submitted_weight, 1 - submitted_weight] self.t_params = ( submitted_weight[0] * self._f_model.params + submitted_weight[1] * self._s_model.params ) elif two_fold_type == "nuemark": self._t_model = OLS(self.endog, self.neumark).fit( cov_type=self.cov_type, cov_kwds=self.cov_kwds ) self.t_params = self._t_model.params else: self._t_model = OLS(self.endog, self.exog).fit( cov_type=self.cov_type, cov_kwds=self.cov_kwds ) self.t_params = np.delete(self._t_model.params, self.bifurcate) self.unexplained = ( self.exog_f_mean @ (self._f_model.params - self.t_params) ) + (self.exog_s_mean @ (self.t_params - self._s_model.params)) self.explained = (self.exog_f_mean - self.exog_s_mean) @ self.t_params if std is True: std_val = self.variance(2) return OaxacaResults( (self.unexplained, self.explained, self.gap), 2, std_val=std_val )
Calculates the two-fold or pooled Oaxaca Blinder Decompositions Methods ------- std: boolean, optional If true, bootstrapped standard errors will be calculated. two_fold_type: string, optional This method allows for the specific calculation of the non-discriminatory model. There are four different types available at this time. pooled, cotton, reimers, self_submitted. Pooled is assumed and if a non-viable parameter is given, pooled will be ran. pooled - This type assumes that the pooled model's parameters (a normal regression) is the non-discriminatory model. This includes the indicator variable. This is generally the best idea. If you have economic justification for using others, then use others. nuemark - This is similar to the pooled type, but the regression is not done including the indicator variable. cotton - This type uses the adjusted in Cotton (1988), which accounts for the undervaluation of one group causing the overevalution of another. It uses the sample size weights for a linear combination of the two model parameters reimers - This type uses a linear combination of the two models with both parameters being 50% of the non-discriminatory model. self_submitted - This allows the user to submit their own weights. Please be sure to put the weight of the larger mean group only. This should be submitted in the submitted_weights variable. submitted_weight: int/float, required only for self_submitted, This is the submitted weight for the larger mean. If the weight for the larger mean is p, then the weight for the other mean is 1-p. Only submit the first value. n: int, optional A amount of iterations to calculate the bootstrapped standard errors. This defaults to 5000. conf: float, optional This is the confidence required for the standard error calculation. Defaults to .99, but could be anything less than or equal to one. One is heavy discouraged, due to the extreme outliers inflating the variance. Returns ------- OaxacaResults A results container for the two-fold decomposition.
two_fold
python
statsmodels/statsmodels
statsmodels/stats/oaxaca.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oaxaca.py
BSD-3-Clause
def summary(self): """ Print a summary table with the Oaxaca-Blinder effects """ if self.model_type == 2: if self.std is None: print( dedent( f"""\ Oaxaca-Blinder Two-fold Effects Unexplained Effect: {self.params[0]:.5f} Explained Effect: {self.params[1]:.5f} Gap: {self.params[2]:.5f}""" ) ) else: print( dedent( """\ Oaxaca-Blinder Two-fold Effects Unexplained Effect: {:.5f} Unexplained Standard Error: {:.5f} Explained Effect: {:.5f} Explained Standard Error: {:.5f} Gap: {:.5f}""".format( self.params[0], self.std[0], self.params[1], self.std[1], self.params[2], ) ) ) if self.model_type == 3: if self.std is None: print( dedent( f"""\ Oaxaca-Blinder Three-fold Effects Endowment Effect: {self.params[0]:.5f} Coefficient Effect: {self.params[1]:.5f} Interaction Effect: {self.params[2]:.5f} Gap: {self.params[3]:.5f}""" ) ) else: print( dedent( f"""\ Oaxaca-Blinder Three-fold Effects Endowment Effect: {self.params[0]:.5f} Endowment Standard Error: {self.std[0]:.5f} Coefficient Effect: {self.params[1]:.5f} Coefficient Standard Error: {self.std[1]:.5f} Interaction Effect: {self.params[2]:.5f} Interaction Standard Error: {self.std[2]:.5f} Gap: {self.params[3]:.5f}""" ) )
Print a summary table with the Oaxaca-Blinder effects
summary
python
statsmodels/statsmodels
statsmodels/stats/oaxaca.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/oaxaca.py
BSD-3-Clause
def trimboth(a, proportiontocut, axis=0): """ Slices off a proportion of items from both ends of an array. Slices off the passed proportion of items from both ends of the passed array (i.e., with `proportiontocut` = 0.1, slices leftmost 10% **and** rightmost 10% of scores). You must pre-sort the array if you want 'proper' trimming. Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut`). Parameters ---------- a : array_like Data to trim. proportiontocut : float or int Proportion of data to trim at each end. axis : int or None Axis along which the observations are trimmed. The default is to trim along axis=0. If axis is None then the array will be flattened before trimming. Returns ------- out : array-like Trimmed version of array `a`. Examples -------- >>> from scipy import stats >>> a = np.arange(20) >>> b = stats.trimboth(a, 0.1) >>> b.shape (16,) """ a = np.asarray(a) if axis is None: a = a.ravel() axis = 0 nobs = a.shape[axis] lowercut = int(proportiontocut * nobs) uppercut = nobs - lowercut if (lowercut >= uppercut): raise ValueError("Proportion too big.") sl = [slice(None)] * a.ndim sl[axis] = slice(lowercut, uppercut) return a[tuple(sl)]
Slices off a proportion of items from both ends of an array. Slices off the passed proportion of items from both ends of the passed array (i.e., with `proportiontocut` = 0.1, slices leftmost 10% **and** rightmost 10% of scores). You must pre-sort the array if you want 'proper' trimming. Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut`). Parameters ---------- a : array_like Data to trim. proportiontocut : float or int Proportion of data to trim at each end. axis : int or None Axis along which the observations are trimmed. The default is to trim along axis=0. If axis is None then the array will be flattened before trimming. Returns ------- out : array-like Trimmed version of array `a`. Examples -------- >>> from scipy import stats >>> a = np.arange(20) >>> b = stats.trimboth(a, 0.1) >>> b.shape (16,)
trimboth
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def trim_mean(a, proportiontocut, axis=0): """ Return mean of array after trimming observations from both tails. If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of scores. Slices off LESS if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut` ). Parameters ---------- a : array_like Input array proportiontocut : float Fraction to cut off at each tail of the sorted observations. axis : int or None Axis along which the trimmed means are computed. The default is axis=0. If axis is None then the trimmed mean will be computed for the flattened array. Returns ------- trim_mean : ndarray Mean of trimmed array. """ newa = trimboth(np.sort(a, axis), proportiontocut, axis=axis) return np.mean(newa, axis=axis)
Return mean of array after trimming observations from both tails. If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of scores. Slices off LESS if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut` ). Parameters ---------- a : array_like Input array proportiontocut : float Fraction to cut off at each tail of the sorted observations. axis : int or None Axis along which the trimmed means are computed. The default is axis=0. If axis is None then the trimmed mean will be computed for the flattened array. Returns ------- trim_mean : ndarray Mean of trimmed array.
trim_mean
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def data_trimmed(self): """numpy array of trimmed and sorted data """ # returns a view return self.data_sorted[self.sl]
numpy array of trimmed and sorted data
data_trimmed
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def data_winsorized(self): """winsorized data """ lb = np.expand_dims(self.lowerbound, self.axis) ub = np.expand_dims(self.upperbound, self.axis) return np.clip(self.data_sorted, lb, ub)
winsorized data
data_winsorized
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def mean_trimmed(self): """mean of trimmed data """ return np.mean(self.data_sorted[tuple(self.sl)], self.axis)
mean of trimmed data
mean_trimmed
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def mean_winsorized(self): """mean of winsorized data """ return np.mean(self.data_winsorized, self.axis)
mean of winsorized data
mean_winsorized
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def var_winsorized(self): """variance of winsorized data """ # hardcoded ddof = 1 return np.var(self.data_winsorized, ddof=1, axis=self.axis)
variance of winsorized data
var_winsorized
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def std_mean_trimmed(self): """standard error of trimmed mean """ se = np.sqrt(self.var_winsorized / self.nobs_reduced) # trimming creates correlation across trimmed observations # trimming is based on order statistics of the data # wilcox 2012, p.61 se *= np.sqrt(self.nobs / self.nobs_reduced) return se
standard error of trimmed mean
std_mean_trimmed
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def std_mean_winsorized(self): """standard error of winsorized mean """ # the following matches Wilcox, WRS2 std_ = np.sqrt(self.var_winsorized / self.nobs) std_ *= (self.nobs - 1) / (self.nobs_reduced - 1) # old version # tm = self # formula from an old SAS manual page, simplified # std_ = np.sqrt(tm.var_winsorized / (tm.nobs_reduced - 1) * # (tm.nobs - 1.) / tm.nobs) return std_
standard error of winsorized mean
std_mean_winsorized
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def ttest_mean(self, value=0, transform='trimmed', alternative='two-sided'): """ One sample t-test for trimmed or Winsorized mean Parameters ---------- value : float Value of the mean under the Null hypothesis transform : {'trimmed', 'winsorized'} Specified whether the mean test is based on trimmed or winsorized data. alternative : {'two-sided', 'larger', 'smaller'} Notes ----- p-value is based on the approximate t-distribution of the test statistic. The approximation is valid if the underlying distribution is symmetric. """ import statsmodels.stats.weightstats as smws df = self.nobs_reduced - 1 if transform == 'trimmed': mean_ = self.mean_trimmed std_ = self.std_mean_trimmed elif transform == 'winsorized': mean_ = self.mean_winsorized std_ = self.std_mean_winsorized else: raise ValueError("transform can only be 'trimmed' or 'winsorized'") res = smws._tstat_generic(mean_, 0, std_, df, alternative=alternative, diff=value) return res + (df,)
One sample t-test for trimmed or Winsorized mean Parameters ---------- value : float Value of the mean under the Null hypothesis transform : {'trimmed', 'winsorized'} Specified whether the mean test is based on trimmed or winsorized data. alternative : {'two-sided', 'larger', 'smaller'} Notes ----- p-value is based on the approximate t-distribution of the test statistic. The approximation is valid if the underlying distribution is symmetric.
ttest_mean
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def reset_fraction(self, frac): """create a TrimmedMean instance with a new trimming fraction This reuses the sorted array from the current instance. """ tm = TrimmedMean(self.data_sorted, frac, is_sorted=True, axis=self.axis) tm.data = self.data # TODO: this will not work if there is processing of meta-information # in __init__, # for example storing a pandas DataFrame or Series index return tm
create a TrimmedMean instance with a new trimming fraction This reuses the sorted array from the current instance.
reset_fraction
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def scale_transform(data, center='median', transform='abs', trim_frac=0.2, axis=0): """Transform data for variance comparison for Levene type tests Parameters ---------- data : array_like Observations for the data. center : "median", "mean", "trimmed" or float Statistic used for centering observations. If a float, then this value is used to center. Default is median. transform : 'abs', 'square', 'identity' or a callable The transform for the centered data. trim_frac : float in [0, 0.5) Fraction of observations that are trimmed on each side of the sorted observations. This is only used if center is `trimmed`. axis : int Axis along which the data are transformed when centering. Returns ------- res : ndarray transformed data in the same shape as the original data. """ x = np.asarray(data) # x is shorthand from earlier code if transform == 'abs': tfunc = np.abs elif transform == 'square': tfunc = lambda x: x * x # noqa elif transform == 'identity': tfunc = lambda x: x # noqa elif callable(transform): tfunc = transform else: raise ValueError('transform should be abs, square or exp') if center == 'median': res = tfunc(x - np.expand_dims(np.median(x, axis=axis), axis)) elif center == 'mean': res = tfunc(x - np.expand_dims(np.mean(x, axis=axis), axis)) elif center == 'trimmed': center = trim_mean(x, trim_frac, axis=axis) res = tfunc(x - np.expand_dims(center, axis)) elif isinstance(center, numbers.Number): res = tfunc(x - center) else: raise ValueError('center should be median, mean or trimmed') return res
Transform data for variance comparison for Levene type tests Parameters ---------- data : array_like Observations for the data. center : "median", "mean", "trimmed" or float Statistic used for centering observations. If a float, then this value is used to center. Default is median. transform : 'abs', 'square', 'identity' or a callable The transform for the centered data. trim_frac : float in [0, 0.5) Fraction of observations that are trimmed on each side of the sorted observations. This is only used if center is `trimmed`. axis : int Axis along which the data are transformed when centering. Returns ------- res : ndarray transformed data in the same shape as the original data.
scale_transform
python
statsmodels/statsmodels
statsmodels/stats/robust_compare.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/robust_compare.py
BSD-3-Clause
def _int_ifclose(x, dec=1, width=4): '''helper function for creating result string for int or float only dec=1 and width=4 is implemented Parameters ---------- x : int or float value to format dec : 1 number of decimals to print if x is not an integer width : 4 width of string Returns ------- xint : int or float x is converted to int if it is within 1e-14 of an integer x_string : str x formatted as string, either '%4d' or '%4.1f' ''' xint = int(round(x)) if np.max(np.abs(xint - x)) < 1e-14: return xint, '%4d' % xint else: return x, '%4.1f' % x
helper function for creating result string for int or float only dec=1 and width=4 is implemented Parameters ---------- x : int or float value to format dec : 1 number of decimals to print if x is not an integer width : 4 width of string Returns ------- xint : int or float x is converted to int if it is within 1e-14 of an integer x_string : str x formatted as string, either '%4d' or '%4.1f'
_int_ifclose
python
statsmodels/statsmodels
statsmodels/stats/inter_rater.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/inter_rater.py
BSD-3-Clause
def aggregate_raters(data, n_cat=None): '''convert raw data with shape (subject, rater) to (subject, cat_counts) brings data into correct format for fleiss_kappa bincount will raise exception if data cannot be converted to integer. Parameters ---------- data : array_like, 2-Dim data containing category assignment with subjects in rows and raters in columns. n_cat : None or int If None, then the data is converted to integer categories, 0,1,2,...,n_cat-1. Because of the relabeling only category levels with non-zero counts are included. If this is an integer, then the category levels in the data are already assumed to be in integers, 0,1,2,...,n_cat-1. In this case, the returned array may contain columns with zero count, if no subject has been categorized with this level. Returns ------- arr : nd_array, (n_rows, n_cat) Contains counts of raters that assigned a category level to individuals. Subjects are in rows, category levels in columns. categories : nd_array, (n_category_levels,) Contains the category levels. ''' data = np.asarray(data) n_rows = data.shape[0] if n_cat is None: #I could add int conversion (reverse_index) to np.unique cat_uni, cat_int = np.unique(data.ravel(), return_inverse=True) n_cat = len(cat_uni) data_ = cat_int.reshape(data.shape) else: cat_uni = np.arange(n_cat) #for return only, assumed cat levels data_ = data tt = np.zeros((n_rows, n_cat), int) for idx, row in enumerate(data_): ro = np.bincount(row) tt[idx, :len(ro)] = ro return tt, cat_uni
convert raw data with shape (subject, rater) to (subject, cat_counts) brings data into correct format for fleiss_kappa bincount will raise exception if data cannot be converted to integer. Parameters ---------- data : array_like, 2-Dim data containing category assignment with subjects in rows and raters in columns. n_cat : None or int If None, then the data is converted to integer categories, 0,1,2,...,n_cat-1. Because of the relabeling only category levels with non-zero counts are included. If this is an integer, then the category levels in the data are already assumed to be in integers, 0,1,2,...,n_cat-1. In this case, the returned array may contain columns with zero count, if no subject has been categorized with this level. Returns ------- arr : nd_array, (n_rows, n_cat) Contains counts of raters that assigned a category level to individuals. Subjects are in rows, category levels in columns. categories : nd_array, (n_category_levels,) Contains the category levels.
aggregate_raters
python
statsmodels/statsmodels
statsmodels/stats/inter_rater.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/inter_rater.py
BSD-3-Clause
def to_table(data, bins=None): '''convert raw data with shape (subject, rater) to (rater1, rater2) brings data into correct format for cohens_kappa Parameters ---------- data : array_like, 2-Dim data containing category assignment with subjects in rows and raters in columns. bins : None, int or tuple of array_like If None, then the data is converted to integer categories, 0,1,2,...,n_cat-1. Because of the relabeling only category levels with non-zero counts are included. If this is an integer, then the category levels in the data are already assumed to be in integers, 0,1,2,...,n_cat-1. In this case, the returned array may contain columns with zero count, if no subject has been categorized with this level. If bins are a tuple of two array_like, then the bins are directly used by ``numpy.histogramdd``. This is useful if we want to merge categories. Returns ------- arr : nd_array, (n_cat, n_cat) Contingency table that contains counts of category level with rater1 in rows and rater2 in columns. Notes ----- no NaN handling, delete rows with missing values This works also for more than two raters. In that case the dimension of the resulting contingency table is the same as the number of raters instead of 2-dimensional. ''' data = np.asarray(data) n_rows, n_cols = data.shape if bins is None: #I could add int conversion (reverse_index) to np.unique cat_uni, cat_int = np.unique(data.ravel(), return_inverse=True) n_cat = len(cat_uni) data_ = cat_int.reshape(data.shape) bins_ = np.arange(n_cat+1) - 0.5 #alternative implementation with double loop #tt = np.asarray([[(x == [i,j]).all(1).sum() for j in cat_uni] # for i in cat_uni] ) #other altervative: unique rows and bincount elif np.isscalar(bins): bins_ = np.arange(bins+1) - 0.5 data_ = data else: bins_ = bins data_ = data tt = np.histogramdd(data_, (bins_,)*n_cols) return tt[0], bins_
convert raw data with shape (subject, rater) to (rater1, rater2) brings data into correct format for cohens_kappa Parameters ---------- data : array_like, 2-Dim data containing category assignment with subjects in rows and raters in columns. bins : None, int or tuple of array_like If None, then the data is converted to integer categories, 0,1,2,...,n_cat-1. Because of the relabeling only category levels with non-zero counts are included. If this is an integer, then the category levels in the data are already assumed to be in integers, 0,1,2,...,n_cat-1. In this case, the returned array may contain columns with zero count, if no subject has been categorized with this level. If bins are a tuple of two array_like, then the bins are directly used by ``numpy.histogramdd``. This is useful if we want to merge categories. Returns ------- arr : nd_array, (n_cat, n_cat) Contingency table that contains counts of category level with rater1 in rows and rater2 in columns. Notes ----- no NaN handling, delete rows with missing values This works also for more than two raters. In that case the dimension of the resulting contingency table is the same as the number of raters instead of 2-dimensional.
to_table
python
statsmodels/statsmodels
statsmodels/stats/inter_rater.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/inter_rater.py
BSD-3-Clause
def fleiss_kappa(table, method='fleiss'): """Fleiss' and Randolph's kappa multi-rater agreement measure Parameters ---------- table : array_like, 2-D assumes subjects in rows, and categories in columns. Convert raw data into this format by using :func:`statsmodels.stats.inter_rater.aggregate_raters` method : str Method 'fleiss' returns Fleiss' kappa which uses the sample margin to define the chance outcome. Method 'randolph' or 'uniform' (only first 4 letters are needed) returns Randolph's (2005) multirater kappa which assumes a uniform distribution of the categories to define the chance outcome. Returns ------- kappa : float Fleiss's or Randolph's kappa statistic for inter rater agreement Notes ----- no variance or hypothesis tests yet Interrater agreement measures like Fleiss's kappa measure agreement relative to chance agreement. Different authors have proposed ways of defining these chance agreements. Fleiss' is based on the marginal sample distribution of categories, while Randolph uses a uniform distribution of categories as benchmark. Warrens (2010) showed that Randolph's kappa is always larger or equal to Fleiss' kappa. Under some commonly observed condition, Fleiss' and Randolph's kappa provide lower and upper bounds for two similar kappa_like measures by Light (1971) and Hubert (1977). References ---------- Wikipedia https://en.wikipedia.org/wiki/Fleiss%27_kappa Fleiss, Joseph L. 1971. "Measuring Nominal Scale Agreement among Many Raters." Psychological Bulletin 76 (5): 378-82. https://doi.org/10.1037/h0031619. Randolph, Justus J. 2005 "Free-Marginal Multirater Kappa (multirater K [free]): An Alternative to Fleiss' Fixed-Marginal Multirater Kappa." Presented at the Joensuu Learning and Instruction Symposium, vol. 2005 https://eric.ed.gov/?id=ED490661 Warrens, Matthijs J. 2010. "Inequalities between Multi-Rater Kappas." Advances in Data Analysis and Classification 4 (4): 271-86. https://doi.org/10.1007/s11634-010-0073-4. """ table = 1.0 * np.asarray(table) #avoid integer division n_sub, n_cat = table.shape n_total = table.sum() n_rater = table.sum(1) n_rat = n_rater.max() #assume fully ranked assert n_total == n_sub * n_rat #marginal frequency of categories p_cat = table.sum(0) / n_total table2 = table * table p_rat = (table2.sum(1) - n_rat) / (n_rat * (n_rat - 1.)) p_mean = p_rat.mean() if method == 'fleiss': p_mean_exp = (p_cat*p_cat).sum() elif method.startswith('rand') or method.startswith('unif'): p_mean_exp = 1 / n_cat kappa = (p_mean - p_mean_exp) / (1- p_mean_exp) return kappa
Fleiss' and Randolph's kappa multi-rater agreement measure Parameters ---------- table : array_like, 2-D assumes subjects in rows, and categories in columns. Convert raw data into this format by using :func:`statsmodels.stats.inter_rater.aggregate_raters` method : str Method 'fleiss' returns Fleiss' kappa which uses the sample margin to define the chance outcome. Method 'randolph' or 'uniform' (only first 4 letters are needed) returns Randolph's (2005) multirater kappa which assumes a uniform distribution of the categories to define the chance outcome. Returns ------- kappa : float Fleiss's or Randolph's kappa statistic for inter rater agreement Notes ----- no variance or hypothesis tests yet Interrater agreement measures like Fleiss's kappa measure agreement relative to chance agreement. Different authors have proposed ways of defining these chance agreements. Fleiss' is based on the marginal sample distribution of categories, while Randolph uses a uniform distribution of categories as benchmark. Warrens (2010) showed that Randolph's kappa is always larger or equal to Fleiss' kappa. Under some commonly observed condition, Fleiss' and Randolph's kappa provide lower and upper bounds for two similar kappa_like measures by Light (1971) and Hubert (1977). References ---------- Wikipedia https://en.wikipedia.org/wiki/Fleiss%27_kappa Fleiss, Joseph L. 1971. "Measuring Nominal Scale Agreement among Many Raters." Psychological Bulletin 76 (5): 378-82. https://doi.org/10.1037/h0031619. Randolph, Justus J. 2005 "Free-Marginal Multirater Kappa (multirater K [free]): An Alternative to Fleiss' Fixed-Marginal Multirater Kappa." Presented at the Joensuu Learning and Instruction Symposium, vol. 2005 https://eric.ed.gov/?id=ED490661 Warrens, Matthijs J. 2010. "Inequalities between Multi-Rater Kappas." Advances in Data Analysis and Classification 4 (4): 271-86. https://doi.org/10.1007/s11634-010-0073-4.
fleiss_kappa
python
statsmodels/statsmodels
statsmodels/stats/inter_rater.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/inter_rater.py
BSD-3-Clause
def cohens_kappa(table, weights=None, return_results=True, wt=None): '''Compute Cohen's kappa with variance and equal-zero test Parameters ---------- table : array_like, 2-Dim square array with results of two raters, one rater in rows, second rater in columns weights : array_like The interpretation of weights depends on the wt argument. If both are None, then the simple kappa is computed. see wt for the case when wt is not None If weights is two dimensional, then it is directly used as a weight matrix. For computing the variance of kappa, the maximum of the weights is assumed to be smaller or equal to one. TODO: fix conflicting definitions in the 2-Dim case for wt : {None, str} If wt and weights are None, then the simple kappa is computed. If wt is given, but weights is None, then the weights are set to be [0, 1, 2, ..., k]. If weights is a one-dimensional array, then it is used to construct the weight matrix given the following options. wt in ['linear', 'ca' or None] : use linear weights, Cicchetti-Allison actual weights are linear in the score "weights" difference wt in ['quadratic', 'fc'] : use linear weights, Fleiss-Cohen actual weights are squared in the score "weights" difference wt = 'toeplitz' : weight matrix is constructed as a toeplitz matrix from the one dimensional weights. return_results : bool If True (default), then an instance of KappaResults is returned. If False, then only kappa is computed and returned. Returns ------- results or kappa If return_results is True (default), then a results instance with all statistics is returned If return_results is False, then only kappa is calculated and returned. Notes ----- There are two conflicting definitions of the weight matrix, Wikipedia versus SAS manual. However, the computation are invariant to rescaling of the weights matrix, so there is no difference in the results. Weights for 'linear' and 'quadratic' are interpreted as scores for the categories, the weights in the computation are based on the pairwise difference between the scores. Weights for 'toeplitz' are a interpreted as weighted distance. The distance only depends on how many levels apart two entries in the table are but not on the levels themselves. example: weights = '0, 1, 2, 3' and wt is either linear or toeplitz means that the weighting only depends on the simple distance of levels. weights = '0, 0, 1, 1' and wt = 'linear' means that the first two levels are zero distance apart and the same for the last two levels. This is the sample as forming two aggregated levels by merging the first two and the last two levels, respectively. weights = [0, 1, 2, 3] and wt = 'quadratic' is the same as squaring these weights and using wt = 'toeplitz'. References ---------- Wikipedia SAS Manual ''' table = np.asarray(table, float) #avoid integer division agree = np.diag(table).sum() nobs = table.sum() probs = table / nobs freqs = probs #TODO: rename to use freqs instead of probs for observed probs_diag = np.diag(probs) freq_row = table.sum(1) / nobs freq_col = table.sum(0) / nobs prob_exp = freq_col * freq_row[:, None] assert np.allclose(prob_exp.sum(), 1) #print prob_exp.sum() agree_exp = np.diag(prob_exp).sum() #need for kappa_max if weights is None and wt is None: kind = 'Simple' kappa = (agree / nobs - agree_exp) / (1 - agree_exp) if return_results: #variance term_a = probs_diag * (1 - (freq_row + freq_col) * (1 - kappa))**2 term_a = term_a.sum() term_b = probs * (freq_col[:, None] + freq_row)**2 d_idx = np.arange(table.shape[0]) term_b[d_idx, d_idx] = 0 #set diagonal to zero term_b = (1 - kappa)**2 * term_b.sum() term_c = (kappa - agree_exp * (1-kappa))**2 var_kappa = (term_a + term_b - term_c) / (1 - agree_exp)**2 / nobs #term_c = freq_col * freq_row[:, None] * (freq_col + freq_row[:,None]) term_c = freq_col * freq_row * (freq_col + freq_row) var_kappa0 = (agree_exp + agree_exp**2 - term_c.sum()) var_kappa0 /= (1 - agree_exp)**2 * nobs else: if weights is None: weights = np.arange(table.shape[0]) #weights follows the Wikipedia definition, not the SAS, which is 1 - kind = 'Weighted' weights = np.asarray(weights, float) if weights.ndim == 1: if wt in ['ca', 'linear', None]: weights = np.abs(weights[:, None] - weights) / \ (weights[-1] - weights[0]) elif wt in ['fc', 'quadratic']: weights = (weights[:, None] - weights)**2 / \ (weights[-1] - weights[0])**2 elif wt == 'toeplitz': #assume toeplitz structure from scipy.linalg import toeplitz #weights = toeplitz(np.arange(table.shape[0])) weights = toeplitz(weights) else: raise ValueError('wt option is not known') else: rows, cols = table.shape if (table.shape != weights.shape): raise ValueError('weights are not square') #this is formula from Wikipedia kappa = 1 - (weights * table).sum() / nobs / (weights * prob_exp).sum() #TODO: add var_kappa for weighted version if return_results: var_kappa = np.nan var_kappa0 = np.nan #switch to SAS manual weights, problem if user specifies weights #w is negative in some examples, #but weights is scale invariant in examples and rough check of source w = 1. - weights w_row = (freq_col * w).sum(1) w_col = (freq_row[:, None] * w).sum(0) agree_wexp = (w * freq_col * freq_row[:, None]).sum() term_a = freqs * (w - (w_col + w_row[:, None]) * (1 - kappa))**2 fac = 1. / ((1 - agree_wexp)**2 * nobs) var_kappa = term_a.sum() - (kappa - agree_wexp * (1 - kappa))**2 var_kappa *= fac freqse = freq_col * freq_row[:, None] var_kappa0 = (freqse * (w - (w_col + w_row[:, None]))**2).sum() var_kappa0 -= agree_wexp**2 var_kappa0 *= fac kappa_max = (np.minimum(freq_row, freq_col).sum() - agree_exp) / \ (1 - agree_exp) if return_results: res = KappaResults( kind=kind, kappa=kappa, kappa_max=kappa_max, weights=weights, var_kappa=var_kappa, var_kappa0=var_kappa0) return res else: return kappa
Compute Cohen's kappa with variance and equal-zero test Parameters ---------- table : array_like, 2-Dim square array with results of two raters, one rater in rows, second rater in columns weights : array_like The interpretation of weights depends on the wt argument. If both are None, then the simple kappa is computed. see wt for the case when wt is not None If weights is two dimensional, then it is directly used as a weight matrix. For computing the variance of kappa, the maximum of the weights is assumed to be smaller or equal to one. TODO: fix conflicting definitions in the 2-Dim case for wt : {None, str} If wt and weights are None, then the simple kappa is computed. If wt is given, but weights is None, then the weights are set to be [0, 1, 2, ..., k]. If weights is a one-dimensional array, then it is used to construct the weight matrix given the following options. wt in ['linear', 'ca' or None] : use linear weights, Cicchetti-Allison actual weights are linear in the score "weights" difference wt in ['quadratic', 'fc'] : use linear weights, Fleiss-Cohen actual weights are squared in the score "weights" difference wt = 'toeplitz' : weight matrix is constructed as a toeplitz matrix from the one dimensional weights. return_results : bool If True (default), then an instance of KappaResults is returned. If False, then only kappa is computed and returned. Returns ------- results or kappa If return_results is True (default), then a results instance with all statistics is returned If return_results is False, then only kappa is calculated and returned. Notes ----- There are two conflicting definitions of the weight matrix, Wikipedia versus SAS manual. However, the computation are invariant to rescaling of the weights matrix, so there is no difference in the results. Weights for 'linear' and 'quadratic' are interpreted as scores for the categories, the weights in the computation are based on the pairwise difference between the scores. Weights for 'toeplitz' are a interpreted as weighted distance. The distance only depends on how many levels apart two entries in the table are but not on the levels themselves. example: weights = '0, 1, 2, 3' and wt is either linear or toeplitz means that the weighting only depends on the simple distance of levels. weights = '0, 0, 1, 1' and wt = 'linear' means that the first two levels are zero distance apart and the same for the last two levels. This is the sample as forming two aggregated levels by merging the first two and the last two levels, respectively. weights = [0, 1, 2, 3] and wt = 'quadratic' is the same as squaring these weights and using wt = 'toeplitz'. References ---------- Wikipedia SAS Manual
cohens_kappa
python
statsmodels/statsmodels
statsmodels/stats/inter_rater.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/inter_rater.py
BSD-3-Clause
def test_mvmean(data, mean_null=0, return_results=True): """Hotellings test for multivariate mean in one sample Parameters ---------- data : array_like data with observations in rows and variables in columns mean_null : array_like mean of the multivariate data under the null hypothesis return_results : bool If true, then a results instance is returned. If False, then only the test statistic and pvalue are returned. Returns ------- results : instance of a results class with attributes statistic, pvalue, t2 and df (statistic, pvalue) : tuple If return_results is false, then only the test statistic and the pvalue are returned. """ x = np.asarray(data) nobs, k_vars = x.shape mean = x.mean(0) cov = np.cov(x, rowvar=False, ddof=1) diff = mean - mean_null t2 = nobs * diff.dot(np.linalg.solve(cov, diff)) factor = (nobs - 1) * k_vars / (nobs - k_vars) statistic = t2 / factor df = (k_vars, nobs - k_vars) pvalue = stats.f.sf(statistic, df[0], df[1]) if return_results: res = HolderTuple(statistic=statistic, pvalue=pvalue, df=df, t2=t2, distr="F") return res else: return statistic, pvalue
Hotellings test for multivariate mean in one sample Parameters ---------- data : array_like data with observations in rows and variables in columns mean_null : array_like mean of the multivariate data under the null hypothesis return_results : bool If true, then a results instance is returned. If False, then only the test statistic and pvalue are returned. Returns ------- results : instance of a results class with attributes statistic, pvalue, t2 and df (statistic, pvalue) : tuple If return_results is false, then only the test statistic and the pvalue are returned.
test_mvmean
python
statsmodels/statsmodels
statsmodels/stats/multivariate.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multivariate.py
BSD-3-Clause
def test_mvmean_2indep(data1, data2): """Hotellings test for multivariate mean in two independent samples The null hypothesis is that both samples have the same mean. The alternative hypothesis is that means differ. Parameters ---------- data1 : array_like first sample data with observations in rows and variables in columns data2 : array_like second sample data with observations in rows and variables in columns Returns ------- results : instance of a results class with attributes statistic, pvalue, t2 and df """ x1 = array_like(data1, "x1", ndim=2) x2 = array_like(data2, "x2", ndim=2) nobs1, k_vars = x1.shape nobs2, k_vars2 = x2.shape if k_vars2 != k_vars: msg = "both samples need to have the same number of columns" raise ValueError(msg) mean1 = x1.mean(0) mean2 = x2.mean(0) cov1 = np.cov(x1, rowvar=False, ddof=1) cov2 = np.cov(x2, rowvar=False, ddof=1) nobs_t = nobs1 + nobs2 combined_cov = ((nobs1 - 1) * cov1 + (nobs2 - 1) * cov2) / (nobs_t - 2) diff = mean1 - mean2 t2 = (nobs1 * nobs2) / nobs_t * diff @ np.linalg.solve(combined_cov, diff) factor = ((nobs_t - 2) * k_vars) / (nobs_t - k_vars - 1) statistic = t2 / factor df = (k_vars, nobs_t - 1 - k_vars) pvalue = stats.f.sf(statistic, df[0], df[1]) return HolderTuple(statistic=statistic, pvalue=pvalue, df=df, t2=t2, distr="F")
Hotellings test for multivariate mean in two independent samples The null hypothesis is that both samples have the same mean. The alternative hypothesis is that means differ. Parameters ---------- data1 : array_like first sample data with observations in rows and variables in columns data2 : array_like second sample data with observations in rows and variables in columns Returns ------- results : instance of a results class with attributes statistic, pvalue, t2 and df
test_mvmean_2indep
python
statsmodels/statsmodels
statsmodels/stats/multivariate.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multivariate.py
BSD-3-Clause
def confint_mvmean(data, lin_transf=None, alpha=0.5, simult=False): """Confidence interval for linear transformation of a multivariate mean Either pointwise or simultaneous confidence intervals are returned. Parameters ---------- data : array_like data with observations in rows and variables in columns lin_transf : array_like or None The linear transformation or contrast matrix for transforming the vector of means. If this is None, then the identity matrix is used which specifies the means themselves. alpha : float in (0, 1) confidence level for the confidence interval, commonly used is alpha=0.05. simult : bool If ``simult`` is False (default), then the pointwise confidence interval is returned. Otherwise, a simultaneous confidence interval is returned. Warning: additional simultaneous confidence intervals might be added and the default for those might change. Returns ------- low : ndarray lower confidence bound on the linear transformed upp : ndarray upper confidence bound on the linear transformed values : ndarray mean or their linear transformation, center of the confidence region Notes ----- Pointwise confidence interval is based on Johnson and Wichern equation (5-21) page 224. Simultaneous confidence interval is based on Johnson and Wichern Result 5.3 page 225. This looks like Sheffe simultaneous confidence intervals. Bonferroni corrected simultaneous confidence interval might be added in future References ---------- Johnson, Richard A., and Dean W. Wichern. 2007. Applied Multivariate Statistical Analysis. 6th ed. Upper Saddle River, N.J: Pearson Prentice Hall. """ x = np.asarray(data) nobs, k_vars = x.shape if lin_transf is None: lin_transf = np.eye(k_vars) mean = x.mean(0) cov = np.cov(x, rowvar=False, ddof=0) ci = confint_mvmean_fromstats(mean, cov, nobs, lin_transf=lin_transf, alpha=alpha, simult=simult) return ci
Confidence interval for linear transformation of a multivariate mean Either pointwise or simultaneous confidence intervals are returned. Parameters ---------- data : array_like data with observations in rows and variables in columns lin_transf : array_like or None The linear transformation or contrast matrix for transforming the vector of means. If this is None, then the identity matrix is used which specifies the means themselves. alpha : float in (0, 1) confidence level for the confidence interval, commonly used is alpha=0.05. simult : bool If ``simult`` is False (default), then the pointwise confidence interval is returned. Otherwise, a simultaneous confidence interval is returned. Warning: additional simultaneous confidence intervals might be added and the default for those might change. Returns ------- low : ndarray lower confidence bound on the linear transformed upp : ndarray upper confidence bound on the linear transformed values : ndarray mean or their linear transformation, center of the confidence region Notes ----- Pointwise confidence interval is based on Johnson and Wichern equation (5-21) page 224. Simultaneous confidence interval is based on Johnson and Wichern Result 5.3 page 225. This looks like Sheffe simultaneous confidence intervals. Bonferroni corrected simultaneous confidence interval might be added in future References ---------- Johnson, Richard A., and Dean W. Wichern. 2007. Applied Multivariate Statistical Analysis. 6th ed. Upper Saddle River, N.J: Pearson Prentice Hall.
confint_mvmean
python
statsmodels/statsmodels
statsmodels/stats/multivariate.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multivariate.py
BSD-3-Clause
def confint_mvmean_fromstats(mean, cov, nobs, lin_transf=None, alpha=0.05, simult=False): """Confidence interval for linear transformation of a multivariate mean Either pointwise or simultaneous confidence intervals are returned. Data is provided in the form of summary statistics, mean, cov, nobs. Parameters ---------- mean : ndarray cov : ndarray nobs : int lin_transf : array_like or None The linear transformation or contrast matrix for transforming the vector of means. If this is None, then the identity matrix is used which specifies the means themselves. alpha : float in (0, 1) confidence level for the confidence interval, commonly used is alpha=0.05. simult : bool If simult is False (default), then pointwise confidence interval is returned. Otherwise, a simultaneous confidence interval is returned. Warning: additional simultaneous confidence intervals might be added and the default for those might change. Notes ----- Pointwise confidence interval is based on Johnson and Wichern equation (5-21) page 224. Simultaneous confidence interval is based on Johnson and Wichern Result 5.3 page 225. This looks like Sheffe simultaneous confidence intervals. Bonferroni corrected simultaneous confidence interval might be added in future References ---------- Johnson, Richard A., and Dean W. Wichern. 2007. Applied Multivariate Statistical Analysis. 6th ed. Upper Saddle River, N.J: Pearson Prentice Hall. """ mean = np.asarray(mean) cov = np.asarray(cov) c = np.atleast_2d(lin_transf) k_vars = len(mean) if simult is False: values = c.dot(mean) quad_form = (c * cov.dot(c.T).T).sum(1) df = nobs - 1 t_critval = stats.t.isf(alpha / 2, df) ci_diff = np.sqrt(quad_form / df) * t_critval low = values - ci_diff upp = values + ci_diff else: values = c.dot(mean) quad_form = (c * cov.dot(c.T).T).sum(1) factor = (nobs - 1) * k_vars / (nobs - k_vars) / nobs df = (k_vars, nobs - k_vars) f_critval = stats.f.isf(alpha, df[0], df[1]) ci_diff = np.sqrt(factor * quad_form * f_critval) low = values - ci_diff upp = values + ci_diff return low, upp, values # , (f_critval, factor, quad_form, df)
Confidence interval for linear transformation of a multivariate mean Either pointwise or simultaneous confidence intervals are returned. Data is provided in the form of summary statistics, mean, cov, nobs. Parameters ---------- mean : ndarray cov : ndarray nobs : int lin_transf : array_like or None The linear transformation or contrast matrix for transforming the vector of means. If this is None, then the identity matrix is used which specifies the means themselves. alpha : float in (0, 1) confidence level for the confidence interval, commonly used is alpha=0.05. simult : bool If simult is False (default), then pointwise confidence interval is returned. Otherwise, a simultaneous confidence interval is returned. Warning: additional simultaneous confidence intervals might be added and the default for those might change. Notes ----- Pointwise confidence interval is based on Johnson and Wichern equation (5-21) page 224. Simultaneous confidence interval is based on Johnson and Wichern Result 5.3 page 225. This looks like Sheffe simultaneous confidence intervals. Bonferroni corrected simultaneous confidence interval might be added in future References ---------- Johnson, Richard A., and Dean W. Wichern. 2007. Applied Multivariate Statistical Analysis. 6th ed. Upper Saddle River, N.J: Pearson Prentice Hall.
confint_mvmean_fromstats
python
statsmodels/statsmodels
statsmodels/stats/multivariate.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multivariate.py
BSD-3-Clause
def test_cov(cov, nobs, cov_null): """One sample hypothesis test for covariance equal to null covariance The Null hypothesis is that cov = cov_null, against the alternative that it is not equal to cov_null Parameters ---------- cov : array_like Covariance matrix of the data, estimated with denominator ``(N - 1)``, i.e. `ddof=1`. nobs : int number of observations used in the estimation of the covariance cov_null : nd_array covariance under the null hypothesis Returns ------- res : instance of HolderTuple results with ``statistic, pvalue`` and other attributes like ``df`` References ---------- Bartlett, M. S. 1954. “A Note on the Multiplying Factors for Various Χ2 Approximations.” Journal of the Royal Statistical Society. Series B (Methodological) 16 (2): 296–98. Rencher, Alvin C., and William F. Christensen. 2012. Methods of Multivariate Analysis: Rencher/Methods. Wiley Series in Probability and Statistics. Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9781118391686. StataCorp, L. P. Stata Multivariate Statistics: Reference Manual. Stata Press Publication. """ # using Stata formulas where cov_sample use nobs in denominator # Bartlett 1954 has fewer terms S = np.asarray(cov) * (nobs - 1) / nobs S0 = np.asarray(cov_null) k = cov.shape[0] n = nobs fact = nobs - 1. fact *= 1 - (2 * k + 1 - 2 / (k + 1)) / (6 * (n - 1) - 1) fact2 = _logdet(S0) - _logdet(n / (n - 1) * S) fact2 += np.trace(n / (n - 1) * np.linalg.solve(S0, S)) - k statistic = fact * fact2 df = k * (k + 1) / 2 pvalue = stats.chi2.sf(statistic, df) return HolderTuple(statistic=statistic, pvalue=pvalue, df=df, distr="chi2", null="equal value", cov_null=cov_null )
One sample hypothesis test for covariance equal to null covariance The Null hypothesis is that cov = cov_null, against the alternative that it is not equal to cov_null Parameters ---------- cov : array_like Covariance matrix of the data, estimated with denominator ``(N - 1)``, i.e. `ddof=1`. nobs : int number of observations used in the estimation of the covariance cov_null : nd_array covariance under the null hypothesis Returns ------- res : instance of HolderTuple results with ``statistic, pvalue`` and other attributes like ``df`` References ---------- Bartlett, M. S. 1954. “A Note on the Multiplying Factors for Various Χ2 Approximations.” Journal of the Royal Statistical Society. Series B (Methodological) 16 (2): 296–98. Rencher, Alvin C., and William F. Christensen. 2012. Methods of Multivariate Analysis: Rencher/Methods. Wiley Series in Probability and Statistics. Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9781118391686. StataCorp, L. P. Stata Multivariate Statistics: Reference Manual. Stata Press Publication.
test_cov
python
statsmodels/statsmodels
statsmodels/stats/multivariate.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multivariate.py
BSD-3-Clause
def _get_blocks(mat, block_len): """get diagonal blocks from matrix """ k = len(mat) idx = np.cumsum(block_len) if idx[-1] == k: idx = idx[:-1] elif idx[-1] > k: raise ValueError("sum of block_len larger than shape of mat") else: # allow one missing block that is the remainder pass idx_blocks = np.split(np.arange(k), idx) blocks = [] for ii in idx_blocks: blocks.append(mat[ii[:, None], ii]) return blocks, idx_blocks
get diagonal blocks from matrix
_get_blocks
python
statsmodels/statsmodels
statsmodels/stats/multivariate.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/multivariate.py
BSD-3-Clause
def gof_chisquare_discrete(distfn, arg, rvs, alpha, msg): '''perform chisquare test for random sample of a discrete distribution Parameters ---------- distname : str name of distribution function arg : sequence parameters of distribution alpha : float significance level, threshold for p-value Returns ------- result : bool 0 if test passes, 1 if test fails Notes ----- originally written for scipy.stats test suite, still needs to be checked for standalone usage, insufficient input checking may not run yet (after copy/paste) refactor: maybe a class, check returns, or separate binning from test results ''' # define parameters for test ## n=2000 n = len(rvs) nsupp = 20 wsupp = 1.0/nsupp ## distfn = getattr(stats, distname) ## np.random.seed(9765456) ## rvs = distfn.rvs(size=n,*arg) # construct intervals with minimum mass 1/nsupp # intervalls are left-half-open as in a cdf difference distsupport = lrange(max(distfn.a, -1000), min(distfn.b, 1000) + 1) last = 0 distsupp = [max(distfn.a, -1000)] distmass = [] for ii in distsupport: current = distfn.cdf(ii,*arg) if current - last >= wsupp-1e-14: distsupp.append(ii) distmass.append(current - last) last = current if current > (1-wsupp): break if distsupp[-1] < distfn.b: distsupp.append(distfn.b) distmass.append(1-last) distsupp = np.array(distsupp) distmass = np.array(distmass) # convert intervals to right-half-open as required by histogram histsupp = distsupp+1e-8 histsupp[0] = distfn.a # find sample frequencies and perform chisquare test #TODO: move to compatibility.py freq, hsupp = np.histogram(rvs,histsupp) # cdfs = distfn.cdf(distsupp,*arg) (chis,pval) = stats.chisquare(np.array(freq),n*distmass) return chis, pval, (pval > alpha), 'chisquare - test for %s' \ 'at arg = %s with pval = %s' % (msg,str(arg),str(pval))
perform chisquare test for random sample of a discrete distribution Parameters ---------- distname : str name of distribution function arg : sequence parameters of distribution alpha : float significance level, threshold for p-value Returns ------- result : bool 0 if test passes, 1 if test fails Notes ----- originally written for scipy.stats test suite, still needs to be checked for standalone usage, insufficient input checking may not run yet (after copy/paste) refactor: maybe a class, check returns, or separate binning from test results
gof_chisquare_discrete
python
statsmodels/statsmodels
statsmodels/stats/gof.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/gof.py
BSD-3-Clause
def gof_binning_discrete(rvs, distfn, arg, nsupp=20): '''get bins for chisquare type gof tests for a discrete distribution Parameters ---------- rvs : ndarray sample data distname : str name of distribution function arg : sequence parameters of distribution nsupp : int number of bins. The algorithm tries to find bins with equal weights. depending on the distribution, the actual number of bins can be smaller. Returns ------- freq : ndarray empirical frequencies for sample; not normalized, adds up to sample size expfreq : ndarray theoretical frequencies according to distribution histsupp : ndarray bin boundaries for histogram, (added 1e-8 for numerical robustness) Notes ----- The results can be used for a chisquare test :: (chis,pval) = stats.chisquare(freq, expfreq) originally written for scipy.stats test suite, still needs to be checked for standalone usage, insufficient input checking may not run yet (after copy/paste) refactor: maybe a class, check returns, or separate binning from test results todo : optimal number of bins ? (check easyfit), recommendation in literature at least 5 expected observations in each bin ''' # define parameters for test ## n=2000 n = len(rvs) wsupp = 1.0/nsupp ## distfn = getattr(stats, distname) ## np.random.seed(9765456) ## rvs = distfn.rvs(size=n,*arg) # construct intervals with minimum mass 1/nsupp # intervalls are left-half-open as in a cdf difference distsupport = lrange(max(distfn.a, -1000), min(distfn.b, 1000) + 1) last = 0 distsupp = [max(distfn.a, -1000)] distmass = [] for ii in distsupport: current = distfn.cdf(ii,*arg) if current - last >= wsupp-1e-14: distsupp.append(ii) distmass.append(current - last) last = current if current > (1-wsupp): break if distsupp[-1] < distfn.b: distsupp.append(distfn.b) distmass.append(1-last) distsupp = np.array(distsupp) distmass = np.array(distmass) # convert intervals to right-half-open as required by histogram histsupp = distsupp+1e-8 histsupp[0] = distfn.a # find sample frequencies and perform chisquare test freq,hsupp = np.histogram(rvs,histsupp) #freq,hsupp = np.histogram(rvs,histsupp,new=True) distfn.cdf(distsupp,*arg) return np.array(freq), n*distmass, histsupp
get bins for chisquare type gof tests for a discrete distribution Parameters ---------- rvs : ndarray sample data distname : str name of distribution function arg : sequence parameters of distribution nsupp : int number of bins. The algorithm tries to find bins with equal weights. depending on the distribution, the actual number of bins can be smaller. Returns ------- freq : ndarray empirical frequencies for sample; not normalized, adds up to sample size expfreq : ndarray theoretical frequencies according to distribution histsupp : ndarray bin boundaries for histogram, (added 1e-8 for numerical robustness) Notes ----- The results can be used for a chisquare test :: (chis,pval) = stats.chisquare(freq, expfreq) originally written for scipy.stats test suite, still needs to be checked for standalone usage, insufficient input checking may not run yet (after copy/paste) refactor: maybe a class, check returns, or separate binning from test results todo : optimal number of bins ? (check easyfit), recommendation in literature at least 5 expected observations in each bin
gof_binning_discrete
python
statsmodels/statsmodels
statsmodels/stats/gof.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/gof.py
BSD-3-Clause
def chisquare(f_obs, f_exp=None, value=0, ddof=0, return_basic=True): '''chisquare goodness-of-fit test The null hypothesis is that the distance between the expected distribution and the observed frequencies is ``value``. The alternative hypothesis is that the distance is larger than ``value``. ``value`` is normalized in terms of effect size. The standard chisquare test has the null hypothesis that ``value=0``, that is the distributions are the same. Notes ----- The case with value greater than zero is similar to an equivalence test, that the exact null hypothesis is replaced by an approximate hypothesis. However, TOST "reverses" null and alternative hypothesis, while here the alternative hypothesis is that the distance (divergence) is larger than a threshold. References ---------- McLaren, ... Drost,... See Also -------- powerdiscrepancy scipy.stats.chisquare ''' f_obs = np.asarray(f_obs) n_bins = len(f_obs) nobs = f_obs.sum(0) if f_exp is None: # uniform distribution f_exp = np.empty(n_bins, float) f_exp.fill(nobs / float(n_bins)) f_exp = np.asarray(f_exp, float) chisq = ((f_obs - f_exp)**2 / f_exp).sum(0) if value == 0: pvalue = stats.chi2.sf(chisq, n_bins - 1 - ddof) else: pvalue = stats.ncx2.sf(chisq, n_bins - 1 - ddof, value**2 * nobs) if return_basic: return chisq, pvalue else: return chisq, pvalue #TODO: replace with TestResults
chisquare goodness-of-fit test The null hypothesis is that the distance between the expected distribution and the observed frequencies is ``value``. The alternative hypothesis is that the distance is larger than ``value``. ``value`` is normalized in terms of effect size. The standard chisquare test has the null hypothesis that ``value=0``, that is the distributions are the same. Notes ----- The case with value greater than zero is similar to an equivalence test, that the exact null hypothesis is replaced by an approximate hypothesis. However, TOST "reverses" null and alternative hypothesis, while here the alternative hypothesis is that the distance (divergence) is larger than a threshold. References ---------- McLaren, ... Drost,... See Also -------- powerdiscrepancy scipy.stats.chisquare
chisquare
python
statsmodels/statsmodels
statsmodels/stats/gof.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/gof.py
BSD-3-Clause
def chisquare_power(effect_size, nobs, n_bins, alpha=0.05, ddof=0): '''power of chisquare goodness of fit test effect size is sqrt of chisquare statistic divided by nobs Parameters ---------- effect_size : float This is the deviation from the Null of the normalized chi_square statistic. This follows Cohen's definition (sqrt). nobs : int or float number of observations n_bins : int (or float) number of bins, or points in the discrete distribution alpha : float in (0,1) significance level of the test, default alpha=0.05 Returns ------- power : float power of the test at given significance level at effect size Notes ----- This function also works vectorized if all arguments broadcast. This can also be used to calculate the power for power divergence test. However, for the range of more extreme values of the power divergence parameter, this power is not a very good approximation for samples of small to medium size (Drost et al. 1989) References ---------- Drost, ... See Also -------- chisquare_effectsize statsmodels.stats.GofChisquarePower ''' crit = stats.chi2.isf(alpha, n_bins - 1 - ddof) power = stats.ncx2.sf(crit, n_bins - 1 - ddof, effect_size**2 * nobs) return power
power of chisquare goodness of fit test effect size is sqrt of chisquare statistic divided by nobs Parameters ---------- effect_size : float This is the deviation from the Null of the normalized chi_square statistic. This follows Cohen's definition (sqrt). nobs : int or float number of observations n_bins : int (or float) number of bins, or points in the discrete distribution alpha : float in (0,1) significance level of the test, default alpha=0.05 Returns ------- power : float power of the test at given significance level at effect size Notes ----- This function also works vectorized if all arguments broadcast. This can also be used to calculate the power for power divergence test. However, for the range of more extreme values of the power divergence parameter, this power is not a very good approximation for samples of small to medium size (Drost et al. 1989) References ---------- Drost, ... See Also -------- chisquare_effectsize statsmodels.stats.GofChisquarePower
chisquare_power
python
statsmodels/statsmodels
statsmodels/stats/gof.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/gof.py
BSD-3-Clause
def chisquare_effectsize(probs0, probs1, correction=None, cohen=True, axis=0): '''effect size for a chisquare goodness-of-fit test Parameters ---------- probs0 : array_like probabilities or cell frequencies under the Null hypothesis probs1 : array_like probabilities or cell frequencies under the Alternative hypothesis probs0 and probs1 need to have the same length in the ``axis`` dimension. and broadcast in the other dimensions Both probs0 and probs1 are normalized to add to one (in the ``axis`` dimension). correction : None or tuple If None, then the effect size is the chisquare statistic divide by the number of observations. If the correction is a tuple (nobs, df), then the effectsize is corrected to have less bias and a smaller variance. However, the correction can make the effectsize negative. In that case, the effectsize is set to zero. Pederson and Johnson (1990) as referenced in McLaren et all. (1994) cohen : bool If True, then the square root is returned as in the definition of the effect size by Cohen (1977), If False, then the original effect size is returned. axis : int If the probability arrays broadcast to more than 1 dimension, then this is the axis over which the sums are taken. Returns ------- effectsize : float effect size of chisquare test ''' probs0 = np.asarray(probs0, float) probs1 = np.asarray(probs1, float) probs0 = probs0 / probs0.sum(axis) probs1 = probs1 / probs1.sum(axis) d2 = ((probs1 - probs0)**2 / probs0).sum(axis) if correction is not None: nobs, df = correction diff = ((probs1 - probs0) / probs0).sum(axis) d2 = np.maximum((d2 * nobs - diff - df) / (nobs - 1.), 0) if cohen: return np.sqrt(d2) else: return d2
effect size for a chisquare goodness-of-fit test Parameters ---------- probs0 : array_like probabilities or cell frequencies under the Null hypothesis probs1 : array_like probabilities or cell frequencies under the Alternative hypothesis probs0 and probs1 need to have the same length in the ``axis`` dimension. and broadcast in the other dimensions Both probs0 and probs1 are normalized to add to one (in the ``axis`` dimension). correction : None or tuple If None, then the effect size is the chisquare statistic divide by the number of observations. If the correction is a tuple (nobs, df), then the effectsize is corrected to have less bias and a smaller variance. However, the correction can make the effectsize negative. In that case, the effectsize is set to zero. Pederson and Johnson (1990) as referenced in McLaren et all. (1994) cohen : bool If True, then the square root is returned as in the definition of the effect size by Cohen (1977), If False, then the original effect size is returned. axis : int If the probability arrays broadcast to more than 1 dimension, then this is the axis over which the sums are taken. Returns ------- effectsize : float effect size of chisquare test
chisquare_effectsize
python
statsmodels/statsmodels
statsmodels/stats/gof.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/gof.py
BSD-3-Clause
def pval_corrected(self, method=None): '''p-values corrected for multiple testing problem This uses the default p-value correction of the instance stored in ``self.multitest_method`` if method is None. ''' import statsmodels.stats.multitest as smt if method is None: method = self.multitest_method # TODO: breaks with method=None return smt.multipletests(self.pvals_raw, method=method)[1]
p-values corrected for multiple testing problem This uses the default p-value correction of the instance stored in ``self.multitest_method`` if method is None.
pval_corrected
python
statsmodels/statsmodels
statsmodels/stats/base.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/base.py
BSD-3-Clause
def pval_table(self): '''create a (n_levels, n_levels) array with corrected p_values this needs to improve, similar to R pairwise output ''' k = self.n_levels pvals_mat = np.zeros((k, k)) # if we do not assume we have all pairs pvals_mat[lzip(*self.all_pairs)] = self.pval_corrected() return pvals_mat
create a (n_levels, n_levels) array with corrected p_values this needs to improve, similar to R pairwise output
pval_table
python
statsmodels/statsmodels
statsmodels/stats/base.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/base.py
BSD-3-Clause
def summary(self): '''returns text summarizing the results uses the default pvalue correction of the instance stored in ``self.multitest_method`` ''' import statsmodels.stats.multitest as smt maxlevel = max(len(ss) for ss in self.all_pairs_names) text = ('Corrected p-values using %s p-value correction\n\n' % smt.multitest_methods_names[self.multitest_method]) text += 'Pairs' + (' ' * (maxlevel - 5 + 1)) + 'p-values\n' text += '\n'.join(f'{pairs} {pv:6.4g}' for (pairs, pv) in zip(self.all_pairs_names, self.pval_corrected())) return text
returns text summarizing the results uses the default pvalue correction of the instance stored in ``self.multitest_method``
summary
python
statsmodels/statsmodels
statsmodels/stats/base.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/base.py
BSD-3-Clause
def dispersion_poisson(results): """Score/LM type tests for Poisson variance assumptions .. deprecated:: 0.14 dispersion_poisson moved to discrete._diagnostic_count Null Hypothesis is H0: var(y) = E(y) and assuming E(y) is correctly specified H1: var(y) ~= E(y) The tests are based on the constrained model, i.e. the Poisson model. The tests differ in their assumed alternatives, and in their maintained assumptions. Parameters ---------- results : Poisson results instance This can be a results instance for either a discrete Poisson or a GLM with family Poisson. Returns ------- res : ndarray, shape (7, 2) each row contains the test statistic and p-value for one of the 7 tests computed here. description : 2-D list of strings Each test has two strings a descriptive name and a string for the alternative hypothesis. """ msg = ( 'dispersion_poisson here is deprecated, use the version in ' 'discrete._diagnostic_count' ) warnings.warn(msg, FutureWarning) from statsmodels.discrete._diagnostics_count import test_poisson_dispersion return test_poisson_dispersion(results, _old=True)
Score/LM type tests for Poisson variance assumptions .. deprecated:: 0.14 dispersion_poisson moved to discrete._diagnostic_count Null Hypothesis is H0: var(y) = E(y) and assuming E(y) is correctly specified H1: var(y) ~= E(y) The tests are based on the constrained model, i.e. the Poisson model. The tests differ in their assumed alternatives, and in their maintained assumptions. Parameters ---------- results : Poisson results instance This can be a results instance for either a discrete Poisson or a GLM with family Poisson. Returns ------- res : ndarray, shape (7, 2) each row contains the test statistic and p-value for one of the 7 tests computed here. description : 2-D list of strings Each test has two strings a descriptive name and a string for the alternative hypothesis.
dispersion_poisson
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause
def dispersion_poisson_generic(results, exog_new_test, exog_new_control=None, include_score=False, use_endog=True, cov_type='HC3', cov_kwds=None, use_t=False): """A variable addition test for the variance function .. deprecated:: 0.14 dispersion_poisson_generic moved to discrete._diagnostic_count This uses an artificial regression to calculate a variant of an LM or generalized score test for the specification of the variance assumption in a Poisson model. The performed test is a Wald test on the coefficients of the `exog_new_test`. Warning: insufficiently tested, especially for options """ msg = ( 'dispersion_poisson_generic here is deprecated, use the version in ' 'discrete._diagnostic_count' ) warnings.warn(msg, FutureWarning) from statsmodels.discrete._diagnostics_count import ( _test_poisson_dispersion_generic, ) res_test = _test_poisson_dispersion_generic( results, exog_new_test, exog_new_control= exog_new_control, include_score=include_score, use_endog=use_endog, cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t, ) return res_test
A variable addition test for the variance function .. deprecated:: 0.14 dispersion_poisson_generic moved to discrete._diagnostic_count This uses an artificial regression to calculate a variant of an LM or generalized score test for the specification of the variance assumption in a Poisson model. The performed test is a Wald test on the coefficients of the `exog_new_test`. Warning: insufficiently tested, especially for options
dispersion_poisson_generic
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause
def lm_test_glm(result, exog_extra, mean_deriv=None): '''score/lagrange multiplier test for GLM Wooldridge procedure for test of mean function in GLM Parameters ---------- results : GLMResults instance results instance with the constrained model exog_extra : ndarray or None additional exogenous variables for variable addition test This can be set to None if mean_deriv is provided. mean_deriv : None or ndarray Extra moment condition that correspond to the partial derivative of a mean function with respect to some parameters. Returns ------- test_results : Results instance The results instance has the following attributes which are score statistic and p-value for 3 versions of the score test. c1, pval1 : nonrobust score_test results c2, pval2 : score test results robust to over or under dispersion c3, pval3 : score test results fully robust to any heteroscedasticity The test results instance also has a simple summary method. Notes ----- TODO: add `df` to results and make df detection more robust This implements the auxiliary regression procedure of Wooldridge, implemented based on the presentation in chapter 8 in Handbook of Applied Econometrics 2. References ---------- Wooldridge, Jeffrey M. 1997. “Quasi-Likelihood Methods for Count Data.” Handbook of Applied Econometrics 2: 352–406. and other articles and text book by Wooldridge ''' if hasattr(result, '_result'): res = result._result else: res = result mod = result.model nobs = mod.endog.shape[0] #mean_func = mod.family.link.inverse dlinkinv = mod.family.link.inverse_deriv # derivative of mean function w.r.t. beta (linear params) def dm(x, linpred): return dlinkinv(linpred)[:,None] * x var_func = mod.family.variance x = result.model.exog x2 = exog_extra # test omitted try: lin_pred = res.predict(which="linear") except TypeError: # TODO: Standardized to which="linear" and remove linear kwarg lin_pred = res.predict(linear=True) dm_incl = dm(x, lin_pred) if x2 is not None: dm_excl = dm(x2, lin_pred) if mean_deriv is not None: # allow both and stack dm_excl = np.column_stack((dm_excl, mean_deriv)) elif mean_deriv is not None: dm_excl = mean_deriv else: raise ValueError('either exog_extra or mean_deriv have to be provided') # TODO check for rank or redundant, note OLS calculates the rank k_constraint = dm_excl.shape[1] fittedvalues = res.predict() # discrete has linpred instead of mean v = var_func(fittedvalues) std = np.sqrt(v) res_ols1 = OLS(res.resid_response / std, np.column_stack((dm_incl, dm_excl)) / std[:, None]).fit() # case: nonrobust assumes variance implied by distribution is correct c1 = res_ols1.ess pval1 = stats.chi2.sf(c1, k_constraint) #print c1, stats.chi2.sf(c1, 2) # case: robust to dispersion c2 = nobs * res_ols1.rsquared pval2 = stats.chi2.sf(c2, k_constraint) #print c2, stats.chi2.sf(c2, 2) # case: robust to heteroscedasticity from statsmodels.stats.multivariate_tools import partial_project pp = partial_project(dm_excl / std[:,None], dm_incl / std[:,None]) resid_p = res.resid_response / std res_ols3 = OLS(np.ones(nobs), pp.resid * resid_p[:,None]).fit() #c3 = nobs * res_ols3.rsquared # this is Wooldridge c3b = res_ols3.ess # simpler if endog is ones pval3 = stats.chi2.sf(c3b, k_constraint) tres = TestResults(c1=c1, pval1=pval1, c2=c2, pval2=pval2, c3=c3b, pval3=pval3) return tres
score/lagrange multiplier test for GLM Wooldridge procedure for test of mean function in GLM Parameters ---------- results : GLMResults instance results instance with the constrained model exog_extra : ndarray or None additional exogenous variables for variable addition test This can be set to None if mean_deriv is provided. mean_deriv : None or ndarray Extra moment condition that correspond to the partial derivative of a mean function with respect to some parameters. Returns ------- test_results : Results instance The results instance has the following attributes which are score statistic and p-value for 3 versions of the score test. c1, pval1 : nonrobust score_test results c2, pval2 : score test results robust to over or under dispersion c3, pval3 : score test results fully robust to any heteroscedasticity The test results instance also has a simple summary method. Notes ----- TODO: add `df` to results and make df detection more robust This implements the auxiliary regression procedure of Wooldridge, implemented based on the presentation in chapter 8 in Handbook of Applied Econometrics 2. References ---------- Wooldridge, Jeffrey M. 1997. “Quasi-Likelihood Methods for Count Data.” Handbook of Applied Econometrics 2: 352–406. and other articles and text book by Wooldridge
lm_test_glm
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause
def cm_test_robust(resid, resid_deriv, instruments, weights=1): '''score/lagrange multiplier of Wooldridge generic version of Wooldridge procedure for test of conditional moments Limitation: This version allows only for one unconditional moment restriction, i.e. resid is scalar for each observation. Another limitation is that it assumes independent observations, no correlation in residuals and weights cannot be replaced by cross-observation whitening. Parameters ---------- resid : ndarray, (nobs, ) conditional moment restriction, E(r | x, params) = 0 resid_deriv : ndarray, (nobs, k_params) derivative of conditional moment restriction with respect to parameters instruments : ndarray, (nobs, k_instruments) indicator variables of Wooldridge, multiplies the conditional momen restriction weights : ndarray This is a weights function as used in WLS. The moment restrictions are multiplied by weights. This corresponds to the inverse of the variance in a heteroskedastic model. Returns ------- test_results : Results instance ??? TODO Notes ----- This implements the auxiliary regression procedure of Wooldridge, implemented based on procedure 2.1 in Wooldridge 1990. Wooldridge allows for multivariate conditional moments (`resid`) TODO: check dimensions for multivariate case for extension References ---------- Wooldridge Wooldridge and more Wooldridge ''' # notation: Wooldridge uses too mamny Greek letters # instruments is capital lambda # resid is small phi # resid_deriv is capital phi # weights is C nobs = resid.shape[0] from statsmodels.stats.multivariate_tools import partial_project w_sqrt = np.sqrt(weights) if np.size(weights) > 1: w_sqrt = w_sqrt[:,None] pp = partial_project(instruments * w_sqrt, resid_deriv * w_sqrt) mom_resid = pp.resid moms_test = mom_resid * resid[:, None] * w_sqrt # we get this here in case we extend resid to be more than 1-D k_constraint = moms_test.shape[1] # use OPG variance as in Wooldridge 1990. This might generalize cov = moms_test.T.dot(moms_test) diff = moms_test.sum(0) # see Wooldridge last page in appendix stat = diff.dot(np.linalg.solve(cov, diff)) # for checking, this corresponds to nobs * rsquared of auxiliary regression stat2 = OLS(np.ones(nobs), moms_test).fit().ess pval = stats.chi2.sf(stat, k_constraint) return stat, pval, stat2
score/lagrange multiplier of Wooldridge generic version of Wooldridge procedure for test of conditional moments Limitation: This version allows only for one unconditional moment restriction, i.e. resid is scalar for each observation. Another limitation is that it assumes independent observations, no correlation in residuals and weights cannot be replaced by cross-observation whitening. Parameters ---------- resid : ndarray, (nobs, ) conditional moment restriction, E(r | x, params) = 0 resid_deriv : ndarray, (nobs, k_params) derivative of conditional moment restriction with respect to parameters instruments : ndarray, (nobs, k_instruments) indicator variables of Wooldridge, multiplies the conditional momen restriction weights : ndarray This is a weights function as used in WLS. The moment restrictions are multiplied by weights. This corresponds to the inverse of the variance in a heteroskedastic model. Returns ------- test_results : Results instance ??? TODO Notes ----- This implements the auxiliary regression procedure of Wooldridge, implemented based on procedure 2.1 in Wooldridge 1990. Wooldridge allows for multivariate conditional moments (`resid`) TODO: check dimensions for multivariate case for extension References ---------- Wooldridge Wooldridge and more Wooldridge
cm_test_robust
python
statsmodels/statsmodels
statsmodels/stats/_diagnostic_other.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/stats/_diagnostic_other.py
BSD-3-Clause