code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def cov_params(self): ''' estimated covariance for coefficients for exogeneous variables or fixed effects see cov_fixed, and Sinv in _compute_a ''' return self.cov_fixed()
estimated covariance for coefficients for exogeneous variables or fixed effects see cov_fixed, and Sinv in _compute_a
cov_params
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def bse(self): ''' standard errors of estimated coefficients for exogeneous variables (fixed) ''' return np.sqrt(np.diag(self.cov_params()))
standard errors of estimated coefficients for exogeneous variables (fixed)
bse
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def deviance(self, ML=False): '''deviance defined as 2 times the negative loglikelihood ''' return -2 * self.logL(ML=ML)
deviance defined as 2 times the negative loglikelihood
deviance
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def logL(self, ML=False): """ Return log-likelihood, REML by default. """ #I do not know what the difference between REML and ML is here. logL = 0. for unit in self.units: logL += unit.logL(a=self.a, ML=ML) if not ML: logL += np.log(L.det(self.Sinv)) / 2 return logL
Return log-likelihood, REML by default.
logL
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def cont(self, ML=False, rtol=1.0e-05, params_rtol=1e-5, params_atol=1e-4): '''convergence check for iterative estimation ''' self.dev, old = self.deviance(ML=ML), self.dev #self.history.append(np.hstack((self.dev, self.a))) self.history['llf'].append(self.dev) self.history['params'].append(self.a.copy()) self.history['D'].append(self.D.copy()) if np.fabs((self.dev - old) / self.dev) < rtol: #why is there times `*`? #print np.fabs((self.dev - old)), self.dev, old self.termination = 'llf' return False #break if parameters converged #TODO: check termination conditions, OR or AND if np.all(np.abs(self.a - self._a_old) < (params_rtol * self.a + params_atol)): self.termination = 'params' return False self._a_old = self.a.copy() return True
convergence check for iterative estimation
cont
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def plot_random_univariate(self, bins=None, use_loc=True): '''create plot of marginal distribution of random effects Parameters ---------- bins : int or bin edges option for bins in matplotlibs hist method. Current default is not very sophisticated. All distributions use the same setting for bins. use_loc : bool If True, then the distribution with mean given by the fixed effect is used. Returns ------- Figure figure with subplots Notes ----- What can make this fancier? Bin edges will not make sense if loc or scale differ across random effect distributions. ''' #outsource this import matplotlib.pyplot as plt from scipy.stats import norm as normal fig = plt.figure() k = self.model.k_exog_re if k > 3: rows, cols = int(np.ceil(k * 0.5)), 2 else: rows, cols = k, 1 if bins is None: #bins = self.model.n_units // 20 #TODO: just roughly, check #bins = np.sqrt(self.model.n_units) bins = 5 + 2 * self.model.n_units**(1./3.) if use_loc: loc = self.mean_random() else: loc = [0]*k scale = self.std_random() for ii in range(k): ax = fig.add_subplot(rows, cols, ii) freq, bins_, _ = ax.hist(loc[ii] + self.params_random_units[:,ii], bins=bins, normed=True) points = np.linspace(bins_[0], bins_[-1], 200) #ax.plot(points, normal.pdf(points, loc=loc, scale=scale)) #loc of sample is approx. zero, with Z appended to X #alternative, add fixed to mean ax.set_title('Random Effect %d Marginal Distribution' % ii) ax.plot(points, normal.pdf(points, loc=loc[ii], scale=scale[ii]), 'r') return fig
create plot of marginal distribution of random effects Parameters ---------- bins : int or bin edges option for bins in matplotlibs hist method. Current default is not very sophisticated. All distributions use the same setting for bins. use_loc : bool If True, then the distribution with mean given by the fixed effect is used. Returns ------- Figure figure with subplots Notes ----- What can make this fancier? Bin edges will not make sense if loc or scale differ across random effect distributions.
plot_random_univariate
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def plot_scatter_pairs(self, idx1, idx2, title=None, ax=None): '''create scatter plot of two random effects Parameters ---------- idx1, idx2 : int indices of the two random effects to display, corresponding to columns of exog_re title : None or string If None, then a default title is added ax : None or matplotlib axis instance If None, then a figure with one axis is created and returned. If ax is not None, then the scatter plot is created on it, and this axis instance is returned. Returns ------- ax_or_fig : axis or figure instance see ax parameter Notes ----- Still needs ellipse from estimated parameters ''' import matplotlib.pyplot as plt if ax is None: fig = plt.figure() ax = fig.add_subplot(1,1,1) ax_or_fig = fig re1 = self.params_random_units[:,idx1] re2 = self.params_random_units[:,idx2] ax.plot(re1, re2, 'o', alpha=0.75) if title is None: title = 'Random Effects %d and %d' % (idx1, idx2) ax.set_title(title) ax_or_fig = ax return ax_or_fig
create scatter plot of two random effects Parameters ---------- idx1, idx2 : int indices of the two random effects to display, corresponding to columns of exog_re title : None or string If None, then a default title is added ax : None or matplotlib axis instance If None, then a figure with one axis is created and returned. If ax is not None, then the scatter plot is created on it, and this axis instance is returned. Returns ------- ax_or_fig : axis or figure instance see ax parameter Notes ----- Still needs ellipse from estimated parameters
plot_scatter_pairs
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def kernel(d1, d2, r=None, weights=None): '''general product kernel hardcoded split for the example: cat1 is continuous (time), other categories are discrete weights is e.g. Bartlett for cat1 r is (0,1) indicator vector for boolean weights 1{d1_i == d2_i} returns boolean if no continuous weights are used ''' diff = d1 - d2 if (weights is None) or (r[0] == 0): #time is irrelevant or treated as categorical return np.all((r * diff) == 0) #return bool else: #time uses continuous kernel, all other categorical return weights[diff] * np.all((r[1:] * diff[1:]) == 0)
general product kernel hardcoded split for the example: cat1 is continuous (time), other categories are discrete weights is e.g. Bartlett for cat1 r is (0,1) indicator vector for boolean weights 1{d1_i == d2_i} returns boolean if no continuous weights are used
kernel
python
statsmodels/statsmodels
statsmodels/sandbox/panel/sandwich_covariance_generic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/sandwich_covariance_generic.py
BSD-3-Clause
def aggregate_cov(x, d, r=None, weights=None): '''sum of outer procuct over groups and time selected by r This is for a generic reference implementation, it uses a nobs-nobs double loop. Parameters ---------- x : ndarray, (nobs,) or (nobs, k_vars) data, for robust standard error calculation, this is array of x_i * u_i d : ndarray, (nobs, n_groups) integer group labels, each column contains group (or time) indices r : ndarray, (n_groups,) indicator for which groups to include. If r[i] is zero, then this group is ignored. If r[i] is not zero, then the cluster robust standard errors include this group. weights : ndarray weights if the first group dimension uses a HAC kernel Returns ------- cov : ndarray (k_vars, k_vars) or scalar covariance matrix aggregates over group kernels count : int number of terms added in sum, mainly returned for cross-checking Notes ----- This uses `kernel` to calculate the weighted distance between two observations. ''' nobs = x.shape[0] #either 1d or 2d with obs in rows #next is not needed yet # if x.ndim == 2: # kvars = x.shape[1] # else: # kvars = 1 count = 0 #count non-zero pairs for cross checking, not needed res = 0 * np.outer(x[0], x[0]) #get output shape for ii in range(nobs): for jj in range(nobs): w = kernel(d[ii], d[jj], r=r, weights=weights) if w: #true or non-zero res += w * np.outer(x[0], x[0]) count *= 1 return res, count
sum of outer procuct over groups and time selected by r This is for a generic reference implementation, it uses a nobs-nobs double loop. Parameters ---------- x : ndarray, (nobs,) or (nobs, k_vars) data, for robust standard error calculation, this is array of x_i * u_i d : ndarray, (nobs, n_groups) integer group labels, each column contains group (or time) indices r : ndarray, (n_groups,) indicator for which groups to include. If r[i] is zero, then this group is ignored. If r[i] is not zero, then the cluster robust standard errors include this group. weights : ndarray weights if the first group dimension uses a HAC kernel Returns ------- cov : ndarray (k_vars, k_vars) or scalar covariance matrix aggregates over group kernels count : int number of terms added in sum, mainly returned for cross-checking Notes ----- This uses `kernel` to calculate the weighted distance between two observations.
aggregate_cov
python
statsmodels/statsmodels
statsmodels/sandbox/panel/sandwich_covariance_generic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/sandwich_covariance_generic.py
BSD-3-Clause
def S_all_hac(x, d, nlags=1): '''HAC independent of categorical group membership ''' r = np.zeros(d.shape[1]) r[0] = 1 weights = weights_bartlett(nlags) return aggregate_cov(x, d, r=r, weights=weights)
HAC independent of categorical group membership
S_all_hac
python
statsmodels/statsmodels
statsmodels/sandbox/panel/sandwich_covariance_generic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/sandwich_covariance_generic.py
BSD-3-Clause
def S_within_hac(x, d, nlags=1, groupidx=1): '''HAC for observations within a categorical group ''' r = np.zeros(d.shape[1]) r[0] = 1 r[groupidx] = 1 weights = weights_bartlett(nlags) return aggregate_cov(x, d, r=r, weights=weights)
HAC for observations within a categorical group
S_within_hac
python
statsmodels/statsmodels
statsmodels/sandbox/panel/sandwich_covariance_generic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/sandwich_covariance_generic.py
BSD-3-Clause
def S_white(x, d): '''simple white heteroscedasticity robust covariance note: calculating this way is very inefficient, just for cross-checking ''' r = np.ones(d.shape[1]) #only points on diagonal return aggregate_cov(x, d, r=r, weights=None)
simple white heteroscedasticity robust covariance note: calculating this way is very inefficient, just for cross-checking
S_white
python
statsmodels/statsmodels
statsmodels/sandbox/panel/sandwich_covariance_generic.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/sandwich_covariance_generic.py
BSD-3-Clause
def group(X): """ Returns unique numeric values for groups without sorting. Examples -------- >>> X = np.array(['a','a','b','c','b','c']) >>> group(X) >>> g array([ 0., 0., 1., 2., 1., 2.]) """ uniq_dict = {} group = np.zeros(len(X)) for i in range(len(X)): if X[i] not in uniq_dict: uniq_dict.update({X[i] : len(uniq_dict)}) group[i] = uniq_dict[X[i]] return group
Returns unique numeric values for groups without sorting. Examples -------- >>> X = np.array(['a','a','b','c','b','c']) >>> group(X) >>> g array([ 0., 0., 1., 2., 1., 2.])
group
python
statsmodels/statsmodels
statsmodels/sandbox/panel/panelmod.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/panelmod.py
BSD-3-Clause
def repanel_cov(groups, sigmas): '''calculate error covariance matrix for random effects model Parameters ---------- groups : ndarray, (nobs, nre) or (nobs,) array of group/category observations sigma : ndarray, (nre+1,) array of standard deviations of random effects, last element is the standard deviation of the idiosyncratic error Returns ------- omega : ndarray, (nobs, nobs) covariance matrix of error omegainv : ndarray, (nobs, nobs) inverse covariance matrix of error omegainvsqrt : ndarray, (nobs, nobs) squareroot inverse covariance matrix of error such that omega = omegainvsqrt * omegainvsqrt.T Notes ----- This does not use sparse matrices and constructs nobs by nobs matrices. Also, omegainvsqrt is not sparse, i.e. elements are non-zero ''' if groups.ndim == 1: groups = groups[:,None] nobs, nre = groups.shape omega = sigmas[-1]*np.eye(nobs) for igr in range(nre): group = groups[:,igr:igr+1] groupuniq = np.unique(group) dummygr = sigmas[igr] * (group == groupuniq).astype(float) omega += np.dot(dummygr, dummygr.T) ev, evec = np.linalg.eigh(omega) #eig does not work omegainv = np.dot(evec, (1/ev * evec).T) omegainvhalf = evec/np.sqrt(ev) return omega, omegainv, omegainvhalf
calculate error covariance matrix for random effects model Parameters ---------- groups : ndarray, (nobs, nre) or (nobs,) array of group/category observations sigma : ndarray, (nre+1,) array of standard deviations of random effects, last element is the standard deviation of the idiosyncratic error Returns ------- omega : ndarray, (nobs, nobs) covariance matrix of error omegainv : ndarray, (nobs, nobs) inverse covariance matrix of error omegainvsqrt : ndarray, (nobs, nobs) squareroot inverse covariance matrix of error such that omega = omegainvsqrt * omegainvsqrt.T Notes ----- This does not use sparse matrices and constructs nobs by nobs matrices. Also, omegainvsqrt is not sparse, i.e. elements are non-zero
repanel_cov
python
statsmodels/statsmodels
statsmodels/sandbox/panel/panelmod.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/panelmod.py
BSD-3-Clause
def initialize(self, endog, exog, panel, time, xtnames, equation): """ Initialize plain array model. See PanelModel """ #TODO: for now, we are going assume a constant, and then make the first #panel the base, add a flag for this.... # get names names = equation.split(" ") self.endog_name = names[0] exog_names = names[1:] # this makes the order matter in the array self.panel_name = xtnames[0] self.time_name = xtnames[1] novar = exog.var(0) == 0 if True in novar: cons_index = np.where(novar == 1)[0][0] # constant col. num exog_names.insert(cons_index, 'cons') self._cons_index = novar # used again in fit_fixed self.exog_names = exog_names self.endog = np.squeeze(np.asarray(endog)) exog = np.asarray(exog) self.exog = exog self.panel = np.asarray(panel) self.time = np.asarray(time) self.paneluniq = np.unique(panel) self.timeuniq = np.unique(time)
Initialize plain array model. See PanelModel
initialize
python
statsmodels/statsmodels
statsmodels/sandbox/panel/panelmod.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/panelmod.py
BSD-3-Clause
def _group_mean(self, X, index='oneway', counts=False, dummies=False): """ Get group means of X by time or by panel. index default is panel """ if index == 'oneway': Y = self.panel uniq = self.paneluniq elif index == 'time': Y = self.time uniq = self.timeuniq else: raise ValueError("index %s not understood" % index) print(Y, uniq, uniq[:,None], len(Y), len(uniq), len(uniq[:,None]), index) #TODO: use sparse matrices dummy = (Y == uniq[:,None]).astype(float) if X.ndim > 1: mean = np.dot(dummy,X)/dummy.sum(1)[:,None] else: mean = np.dot(dummy,X)/dummy.sum(1) if counts is False and dummies is False: return mean elif counts is True and dummies is False: return mean, dummy.sum(1) elif counts is True and dummies is True: return mean, dummy.sum(1), dummy elif counts is False and dummies is True: return mean, dummy
Get group means of X by time or by panel. index default is panel
_group_mean
python
statsmodels/statsmodels
statsmodels/sandbox/panel/panelmod.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/panelmod.py
BSD-3-Clause
def fit(self, model=None, method=None, effects='oneway'): """ method : LSDV, demeaned, MLE, GLS, BE, FE, optional model : between fixed random pooled [gmm] effects : oneway time twoway femethod : demeaned (only one implemented) WLS remethod : swar - amemiya nerlove walhus Notes ----- This is unfinished. None of the method arguments work yet. Only oneway effects should work. """ if method: # get rid of this with default method = method.lower() model = model.lower() if method and method not in ["lsdv", "demeaned", "mle", "gls", "be", "fe"]: # get rid of if method with default raise ValueError("%s not a valid method" % method) # if method == "lsdv": # self.fit_lsdv(model) if model == 'pooled': return GLS(self.endog, self.exog).fit() if model == 'between': return self._fit_btwn(method, effects) if model == 'fixed': return self._fit_fixed(method, effects)
method : LSDV, demeaned, MLE, GLS, BE, FE, optional model : between fixed random pooled [gmm] effects : oneway time twoway femethod : demeaned (only one implemented) WLS remethod : swar - amemiya nerlove walhus Notes ----- This is unfinished. None of the method arguments work yet. Only oneway effects should work.
fit
python
statsmodels/statsmodels
statsmodels/sandbox/panel/panelmod.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/panelmod.py
BSD-3-Clause
def arfilter(x, a): '''apply an autoregressive filter to a series x x can be 2d, a can be 1d, 2d, or 3d Parameters ---------- x : array_like data array, 1d or 2d, if 2d then observations in rows a : array_like autoregressive filter coefficients, ar lag polynomial see Notes Returns ------- y : ndarray, 2d filtered array, number of columns determined by x and a Notes ----- In general form this uses the linear filter :: y = a(L)x where x : nobs, nvars a : nlags, nvars, npoly Depending on the shape and dimension of a this uses different Lag polynomial arrays case 1 : a is 1d or (nlags,1) one lag polynomial is applied to all variables (columns of x) case 2 : a is 2d, (nlags, nvars) each series is independently filtered with its own lag polynomial, uses loop over nvar case 3 : a is 3d, (nlags, nvars, npoly) the ith column of the output array is given by the linear filter defined by the 2d array a[:,:,i], i.e. :: y[:,i] = a(.,.,i)(L) * x y[t,i] = sum_p sum_j a(p,j,i)*x(t-p,j) for p = 0,...nlags-1, j = 0,...nvars-1, for all t >= nlags Note: maybe convert to axis=1, Not TODO: initial conditions ''' x = np.asarray(x) a = np.asarray(a) if x.ndim == 1: x = x[:,None] if x.ndim > 2: raise ValueError('x array has to be 1d or 2d') nvar = x.shape[1] nlags = a.shape[0] ntrim = nlags//2 # for x is 2d with ncols >1 if a.ndim == 1: # case: identical ar filter (lag polynomial) return signal.convolve(x, a[:,None], mode='valid') # alternative: #return signal.lfilter(a,[1],x.astype(float),axis=0) elif a.ndim == 2: if min(a.shape) == 1: # case: identical ar filter (lag polynomial) return signal.convolve(x, a, mode='valid') # case: independent ar #(a bit like recserar in gauss, but no x yet) result = np.zeros((x.shape[0]-nlags+1, nvar)) for i in range(nvar): # could also use np.convolve, but easier for swiching to fft result[:,i] = signal.convolve(x[:,i], a[:,i], mode='valid') return result elif a.ndim == 3: # case: vector autoregressive with lag matrices # #not necessary: # if np.any(a.shape[1:] != nvar): # raise ValueError('if 3d shape of a has to be (nobs,nvar,nvar)') yf = signal.convolve(x[:,:,None], a) yvalid = yf[ntrim:-ntrim, yf.shape[1]//2,:] return yvalid
apply an autoregressive filter to a series x x can be 2d, a can be 1d, 2d, or 3d Parameters ---------- x : array_like data array, 1d or 2d, if 2d then observations in rows a : array_like autoregressive filter coefficients, ar lag polynomial see Notes Returns ------- y : ndarray, 2d filtered array, number of columns determined by x and a Notes ----- In general form this uses the linear filter :: y = a(L)x where x : nobs, nvars a : nlags, nvars, npoly Depending on the shape and dimension of a this uses different Lag polynomial arrays case 1 : a is 1d or (nlags,1) one lag polynomial is applied to all variables (columns of x) case 2 : a is 2d, (nlags, nvars) each series is independently filtered with its own lag polynomial, uses loop over nvar case 3 : a is 3d, (nlags, nvars, npoly) the ith column of the output array is given by the linear filter defined by the 2d array a[:,:,i], i.e. :: y[:,i] = a(.,.,i)(L) * x y[t,i] = sum_p sum_j a(p,j,i)*x(t-p,j) for p = 0,...nlags-1, j = 0,...nvars-1, for all t >= nlags Note: maybe convert to axis=1, Not TODO: initial conditions
arfilter
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/try_var_convolve.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/try_var_convolve.py
BSD-3-Clause
def VAR(x,B, const=0): ''' multivariate linear filter Parameters ---------- x: (TxK) array columns are variables, rows are observations for time period B: (PxKxK) array b_t-1 is bottom "row", b_t-P is top "row" when printing B(:,:,0) is lag polynomial matrix for variable 1 B(:,:,k) is lag polynomial matrix for variable k B(p,:,k) is pth lag for variable k B[p,:,:].T corresponds to A_p in Wikipedia const : float or array (not tested) constant added to autoregression Returns ------- xhat: (TxK) array filtered, predicted values of x array Notes ----- xhat(t,i) = sum{_p}sum{_k} { x(t-P:t,:) .* B(:,:,i) } for all i = 0,K-1, for all t=p..T xhat does not include the forecasting observation, xhat(T+1), xhat is 1 row shorter than signal.correlate References ---------- https://en.wikipedia.org/wiki/Vector_Autoregression https://en.wikipedia.org/wiki/General_matrix_notation_of_a_VAR(p) ''' p = B.shape[0] T = x.shape[0] xhat = np.zeros(x.shape) for t in range(p,T): #[p+2]:# ## print(p,T) ## print(x[t-p:t,:,np.newaxis].shape) ## print(B.shape) #print(x[t-p:t,:,np.newaxis]) xhat[t,:] = const + (x[t-p:t,:,np.newaxis]*B).sum(axis=1).sum(axis=0) return xhat
multivariate linear filter Parameters ---------- x: (TxK) array columns are variables, rows are observations for time period B: (PxKxK) array b_t-1 is bottom "row", b_t-P is top "row" when printing B(:,:,0) is lag polynomial matrix for variable 1 B(:,:,k) is lag polynomial matrix for variable k B(p,:,k) is pth lag for variable k B[p,:,:].T corresponds to A_p in Wikipedia const : float or array (not tested) constant added to autoregression Returns ------- xhat: (TxK) array filtered, predicted values of x array Notes ----- xhat(t,i) = sum{_p}sum{_k} { x(t-P:t,:) .* B(:,:,i) } for all i = 0,K-1, for all t=p..T xhat does not include the forecasting observation, xhat(T+1), xhat is 1 row shorter than signal.correlate References ---------- https://en.wikipedia.org/wiki/Vector_Autoregression https://en.wikipedia.org/wiki/General_matrix_notation_of_a_VAR(p)
VAR
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/varma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/varma.py
BSD-3-Clause
def VARMA(x,B,C, const=0): ''' multivariate linear filter x (TxK) B (PxKxK) xhat(t,i) = sum{_p}sum{_k} { x(t-P:t,:) .* B(:,:,i) } + sum{_q}sum{_k} { e(t-Q:t,:) .* C(:,:,i) }for all i = 0,K-1 ''' P = B.shape[0] Q = C.shape[0] T = x.shape[0] xhat = np.zeros(x.shape) e = np.zeros(x.shape) start = max(P,Q) for t in range(start,T): #[p+2]:# ## print(p,T ## print(x[t-p:t,:,np.newaxis].shape ## print(B.shape #print(x[t-p:t,:,np.newaxis] xhat[t,:] = const + (x[t-P:t,:,np.newaxis]*B).sum(axis=1).sum(axis=0) + \ (e[t-Q:t,:,np.newaxis]*C).sum(axis=1).sum(axis=0) e[t,:] = x[t,:] - xhat[t,:] return xhat, e
multivariate linear filter x (TxK) B (PxKxK) xhat(t,i) = sum{_p}sum{_k} { x(t-P:t,:) .* B(:,:,i) } + sum{_q}sum{_k} { e(t-Q:t,:) .* C(:,:,i) }for all i = 0,K-1
VARMA
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/varma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/varma.py
BSD-3-Clause
def padarr(self, arr, maxlag, atend=True): '''pad 1d array with zeros at end to have length maxlag function that is a method, no self used Parameters ---------- arr : array_like, 1d array that will be padded with zeros maxlag : int length of array after padding atend : bool If True (default), then the zeros are added to the end, otherwise to the front of the array Returns ------- arrp : ndarray zero-padded array Notes ----- This is mainly written to extend coefficient arrays for the lag-polynomials. It returns a copy. ''' if atend: return np.r_[arr, np.zeros(maxlag-len(arr))] else: return np.r_[np.zeros(maxlag-len(arr)), arr]
pad 1d array with zeros at end to have length maxlag function that is a method, no self used Parameters ---------- arr : array_like, 1d array that will be padded with zeros maxlag : int length of array after padding atend : bool If True (default), then the zeros are added to the end, otherwise to the front of the array Returns ------- arrp : ndarray zero-padded array Notes ----- This is mainly written to extend coefficient arrays for the lag-polynomials. It returns a copy.
padarr
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def pad(self, maxlag): '''construct AR and MA polynomials that are zero-padded to a common length Parameters ---------- maxlag : int new length of lag-polynomials Returns ------- ar : ndarray extended AR polynomial coefficients ma : ndarray extended AR polynomial coefficients ''' arpad = np.r_[self.ar, np.zeros(maxlag-self.nar)] mapad = np.r_[self.ma, np.zeros(maxlag-self.nma)] return arpad, mapad
construct AR and MA polynomials that are zero-padded to a common length Parameters ---------- maxlag : int new length of lag-polynomials Returns ------- ar : ndarray extended AR polynomial coefficients ma : ndarray extended AR polynomial coefficients
pad
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def fftar(self, n=None): '''Fourier transform of AR polynomial, zero-padded at end to n Parameters ---------- n : int length of array after zero-padding Returns ------- fftar : ndarray fft of zero-padded ar polynomial ''' if n is None: n = len(self.ar) return fft.fft(self.padarr(self.ar, n))
Fourier transform of AR polynomial, zero-padded at end to n Parameters ---------- n : int length of array after zero-padding Returns ------- fftar : ndarray fft of zero-padded ar polynomial
fftar
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def fftma(self, n): '''Fourier transform of MA polynomial, zero-padded at end to n Parameters ---------- n : int length of array after zero-padding Returns ------- fftar : ndarray fft of zero-padded ar polynomial ''' if n is None: n = len(self.ar) return fft.fft(self.padarr(self.ma, n))
Fourier transform of MA polynomial, zero-padded at end to n Parameters ---------- n : int length of array after zero-padding Returns ------- fftar : ndarray fft of zero-padded ar polynomial
fftma
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def fftarma(self, n=None): '''Fourier transform of ARMA polynomial, zero-padded at end to n The Fourier transform of the ARMA process is calculated as the ratio of the fft of the MA polynomial divided by the fft of the AR polynomial. Parameters ---------- n : int length of array after zero-padding Returns ------- fftarma : ndarray fft of zero-padded arma polynomial ''' if n is None: n = self.nobs return (self.fftma(n) / self.fftar(n))
Fourier transform of ARMA polynomial, zero-padded at end to n The Fourier transform of the ARMA process is calculated as the ratio of the fft of the MA polynomial divided by the fft of the AR polynomial. Parameters ---------- n : int length of array after zero-padding Returns ------- fftarma : ndarray fft of zero-padded arma polynomial
fftarma
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def spd(self, npos): '''raw spectral density, returns Fourier transform n is number of points in positive spectrum, the actual number of points is twice as large. different from other spd methods with fft ''' n = npos w = fft.fftfreq(2*n) * 2 * np.pi hw = self.fftarma(2*n) #not sure, need to check normalization #return (hw*hw.conj()).real[n//2-1:] * 0.5 / np.pi #does not show in plot return (hw*hw.conj()).real * 0.5 / np.pi, w
raw spectral density, returns Fourier transform n is number of points in positive spectrum, the actual number of points is twice as large. different from other spd methods with fft
spd
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def spdshift(self, n): '''power spectral density using fftshift currently returns two-sided according to fft frequencies, use first half ''' #size = s1+s2-1 mapadded = self.padarr(self.ma, n) arpadded = self.padarr(self.ar, n) hw = fft.fft(fft.fftshift(mapadded)) / fft.fft(fft.fftshift(arpadded)) #return np.abs(spd)[n//2-1:] w = fft.fftfreq(n) * 2 * np.pi slice(n//2-1, None, None) #return (hw*hw.conj()).real[wslice], w[wslice] return (hw*hw.conj()).real, w
power spectral density using fftshift currently returns two-sided according to fft frequencies, use first half
spdshift
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def spddirect(self, n): '''power spectral density using padding to length n done by fft currently returns two-sided according to fft frequencies, use first half ''' #size = s1+s2-1 #abs looks wrong hw = fft.fft(self.ma, n) / fft.fft(self.ar, n) w = fft.fftfreq(n) * 2 * np.pi return (np.abs(hw)**2) * 0.5/np.pi, w
power spectral density using padding to length n done by fft currently returns two-sided according to fft frequencies, use first half
spddirect
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def _spddirect2(self, n): '''this looks bad, maybe with an fftshift ''' #size = s1+s2-1 hw = (fft.fft(np.r_[self.ma[::-1],self.ma], n) / fft.fft(np.r_[self.ar[::-1],self.ar], n)) return (hw*hw.conj()) #.real[n//2-1:]
this looks bad, maybe with an fftshift
_spddirect2
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def spdroots(self, w): '''spectral density for frequency using polynomial roots builds two arrays (number of roots, number of frequencies) ''' return self._spdroots(self.arroots, self.maroots, w)
spectral density for frequency using polynomial roots builds two arrays (number of roots, number of frequencies)
spdroots
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def _spdroots(self, arroots, maroots, w): '''spectral density for frequency using polynomial roots builds two arrays (number of roots, number of frequencies) Parameters ---------- arroots : ndarray roots of ar (denominator) lag-polynomial maroots : ndarray roots of ma (numerator) lag-polynomial w : array_like frequencies for which spd is calculated Notes ----- this should go into a function ''' w = np.atleast_2d(w).T cosw = np.cos(w) #Greene 5th edt. p626, section 20.2.7.a. maroots = 1./maroots arroots = 1./arroots num = 1 + maroots**2 - 2* maroots * cosw den = 1 + arroots**2 - 2* arroots * cosw #print 'num.shape, den.shape', num.shape, den.shape hw = 0.5 / np.pi * num.prod(-1) / den.prod(-1) #or use expsumlog return np.squeeze(hw), w.squeeze()
spectral density for frequency using polynomial roots builds two arrays (number of roots, number of frequencies) Parameters ---------- arroots : ndarray roots of ar (denominator) lag-polynomial maroots : ndarray roots of ma (numerator) lag-polynomial w : array_like frequencies for which spd is calculated Notes ----- this should go into a function
_spdroots
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def spdpoly(self, w, nma=50): '''spectral density from MA polynomial representation for ARMA process References ---------- Cochrane, section 8.3.3 ''' mpoly = np.polynomial.Polynomial(self.arma2ma(nma)) hw = mpoly(np.exp(1j * w)) spd = np.real_if_close(hw * hw.conj() * 0.5/np.pi) return spd, w
spectral density from MA polynomial representation for ARMA process References ---------- Cochrane, section 8.3.3
spdpoly
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def filter(self, x): ''' filter a timeseries with the ARMA filter padding with zero is missing, in example I needed the padding to get initial conditions identical to direct filter Initial filtered observations differ from filter2 and signal.lfilter, but at end they are the same. See Also -------- tsa.filters.fftconvolve ''' n = x.shape[0] if n == self.fftarma: fftarma = self.fftarma else: fftarma = self.fftma(n) / self.fftar(n) tmpfft = fftarma * fft.fft(x) return fft.ifft(tmpfft)
filter a timeseries with the ARMA filter padding with zero is missing, in example I needed the padding to get initial conditions identical to direct filter Initial filtered observations differ from filter2 and signal.lfilter, but at end they are the same. See Also -------- tsa.filters.fftconvolve
filter
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def filter2(self, x, pad=0): '''filter a time series using fftconvolve3 with ARMA filter padding of x currently works only if x is 1d in example it produces same observations at beginning as lfilter even without padding. TODO: this returns 1 additional observation at the end ''' from statsmodels.tsa.filters import fftconvolve3 if not pad: pass elif pad == 'auto': #just guessing how much padding x = self.padarr(x, x.shape[0] + 2*(self.nma+self.nar), atend=False) else: x = self.padarr(x, x.shape[0] + int(pad), atend=False) return fftconvolve3(x, self.ma, self.ar)
filter a time series using fftconvolve3 with ARMA filter padding of x currently works only if x is 1d in example it produces same observations at beginning as lfilter even without padding. TODO: this returns 1 additional observation at the end
filter2
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def acf2spdfreq(self, acovf, nfreq=100, w=None): ''' not really a method just for comparison, not efficient for large n or long acf this is also similarly use in tsa.stattools.periodogram with window ''' if w is None: w = np.linspace(0, np.pi, nfreq)[:, None] nac = len(acovf) hw = 0.5 / np.pi * (acovf[0] + 2 * (acovf[1:] * np.cos(w*np.arange(1,nac))).sum(1)) return hw
not really a method just for comparison, not efficient for large n or long acf this is also similarly use in tsa.stattools.periodogram with window
acf2spdfreq
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def invpowerspd(self, n): '''autocovariance from spectral density scaling is correct, but n needs to be large for numerical accuracy maybe padding with zero in fft would be faster without slicing it returns 2-sided autocovariance with fftshift >>> ArmaFft([1, -0.5], [1., 0.4], 40).invpowerspd(2**8)[:10] array([ 2.08 , 1.44 , 0.72 , 0.36 , 0.18 , 0.09 , 0.045 , 0.0225 , 0.01125 , 0.005625]) >>> ArmaFft([1, -0.5], [1., 0.4], 40).acovf(10) array([ 2.08 , 1.44 , 0.72 , 0.36 , 0.18 , 0.09 , 0.045 , 0.0225 , 0.01125 , 0.005625]) ''' hw = self.fftarma(n) return np.real_if_close(fft.ifft(hw*hw.conj()), tol=200)[:n]
autocovariance from spectral density scaling is correct, but n needs to be large for numerical accuracy maybe padding with zero in fft would be faster without slicing it returns 2-sided autocovariance with fftshift >>> ArmaFft([1, -0.5], [1., 0.4], 40).invpowerspd(2**8)[:10] array([ 2.08 , 1.44 , 0.72 , 0.36 , 0.18 , 0.09 , 0.045 , 0.0225 , 0.01125 , 0.005625]) >>> ArmaFft([1, -0.5], [1., 0.4], 40).acovf(10) array([ 2.08 , 1.44 , 0.72 , 0.36 , 0.18 , 0.09 , 0.045 , 0.0225 , 0.01125 , 0.005625])
invpowerspd
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def spdmapoly(self, w, twosided=False): '''ma only, need division for ar, use LagPolynomial ''' if w is None: w = np.linspace(0, np.pi, nfreq) return 0.5 / np.pi * self.mapoly(np.exp(w*1j))
ma only, need division for ar, use LagPolynomial
spdmapoly
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def plot4(self, fig=None, nobs=100, nacf=20, nfreq=100): """Plot results""" rvs = self.generate_sample(nsample=100, burnin=500) acf = self.acf(nacf)[:nacf] #TODO: check return length pacf = self.pacf(nacf) w = np.linspace(0, np.pi, nfreq) spdr, wr = self.spdroots(w) if fig is None: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(2,2,1) ax.plot(rvs) ax.set_title(f'Random Sample \nar={self.ar}, ma={self.ma}') ax = fig.add_subplot(2,2,2) ax.plot(acf) ax.set_title(f'Autocorrelation \nar={self.ar}, ma={self.ma!r}s') ax = fig.add_subplot(2,2,3) ax.plot(wr, spdr) ax.set_title(f'Power Spectrum \nar={self.ar}, ma={self.ma}') ax = fig.add_subplot(2,2,4) ax.plot(pacf) ax.set_title(f'Partial Autocorrelation \nar={self.ar}, ma={self.ma}') return fig
Plot results
plot4
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/fftarma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/fftarma.py
BSD-3-Clause
def movorder(x, order = 'med', windsize=3, lag='lagged'): '''moving order statistics Parameters ---------- x : ndarray time series data order : float or 'med', 'min', 'max' which order statistic to calculate windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- filtered array ''' #if windsize is even should it raise ValueError if lag == 'lagged': lead = windsize//2 elif lag == 'centered': lead = 0 elif lag == 'leading': lead = -windsize//2 +1 else: raise ValueError if np.isfinite(order): #if np.isnumber(order): ord = order # note: ord is a builtin function elif order == 'med': ord = (windsize - 1)/2 elif order == 'min': ord = 0 elif order == 'max': ord = windsize - 1 else: raise ValueError #return signal.order_filter(x,np.ones(windsize),ord)[:-lead] xext = expandarr(x, windsize) #np.r_[np.ones(windsize)*x[0],x,np.ones(windsize)*x[-1]] return signal.order_filter(xext,np.ones(windsize),ord)[windsize-lead:-(windsize+lead)]
moving order statistics Parameters ---------- x : ndarray time series data order : float or 'med', 'min', 'max' which order statistic to calculate windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- filtered array
movorder
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/movstat.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/movstat.py
BSD-3-Clause
def check_movorder(): '''graphical test for movorder''' import matplotlib.pylab as plt x = np.arange(1,10) xo = movorder(x, order='max') assert_array_equal(xo, x) x = np.arange(10,1,-1) xo = movorder(x, order='min') assert_array_equal(xo, x) assert_array_equal(movorder(x, order='min', lag='centered')[:-1], x[1:]) tt = np.linspace(0,2*np.pi,15) x = np.sin(tt) + 1 xo = movorder(x, order='max') plt.figure() plt.plot(tt,x,'.-',tt,xo,'.-') plt.title('moving max lagged') xo = movorder(x, order='max', lag='centered') plt.figure() plt.plot(tt,x,'.-',tt,xo,'.-') plt.title('moving max centered') xo = movorder(x, order='max', lag='leading') plt.figure() plt.plot(tt,x,'.-',tt,xo,'.-') plt.title('moving max leading')
graphical test for movorder
check_movorder
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/movstat.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/movstat.py
BSD-3-Clause
def movmean(x, windowsize=3, lag='lagged'): '''moving window mean Parameters ---------- x : ndarray time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : ndarray moving mean, with same shape as x Notes ----- for leading and lagging the data array x is extended by the closest value of the array ''' return movmoment(x, 1, windowsize=windowsize, lag=lag)
moving window mean Parameters ---------- x : ndarray time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : ndarray moving mean, with same shape as x Notes ----- for leading and lagging the data array x is extended by the closest value of the array
movmean
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/movstat.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/movstat.py
BSD-3-Clause
def movvar(x, windowsize=3, lag='lagged'): '''moving window variance Parameters ---------- x : ndarray time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : ndarray moving variance, with same shape as x ''' m1 = movmoment(x, 1, windowsize=windowsize, lag=lag) m2 = movmoment(x, 2, windowsize=windowsize, lag=lag) return m2 - m1*m1
moving window variance Parameters ---------- x : ndarray time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : ndarray moving variance, with same shape as x
movvar
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/movstat.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/movstat.py
BSD-3-Clause
def movmoment(x, k, windowsize=3, lag='lagged'): '''non-central moment Parameters ---------- x : ndarray time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : ndarray k-th moving non-central moment, with same shape as x Notes ----- If data x is 2d, then moving moment is calculated for each column. ''' windsize = windowsize #if windsize is even should it raise ValueError if lag == 'lagged': #lead = -0 + windsize #windsize//2 lead = -0# + (windsize-1) + windsize//2 sl = slice((windsize-1) or None, -2*(windsize-1) or None) elif lag == 'centered': lead = -windsize//2 #0#-1 #+ #(windsize-1) sl = slice((windsize-1)+windsize//2 or None, -(windsize-1)-windsize//2 or None) elif lag == 'leading': #lead = -windsize +1#+1 #+ (windsize-1)#//2 +1 lead = -windsize +2 #-windsize//2 +1 sl = slice(2*(windsize-1)+1+lead or None, -(2*(windsize-1)+lead)+1 or None) else: raise ValueError avgkern = (np.ones(windowsize)/float(windowsize)) xext = expandarr(x, windsize-1) #Note: expandarr increases the array size by 2*(windsize-1) #sl = slice(2*(windsize-1)+1+lead or None, -(2*(windsize-1)+lead)+1 or None) print(sl) if xext.ndim == 1: return np.correlate(xext**k, avgkern, 'full')[sl] #return np.correlate(xext**k, avgkern, 'same')[windsize-lead:-(windsize+lead)] else: print(xext.shape) print(avgkern[:,None].shape) # try first with 2d along columns, possibly ndim with axis return signal.correlate(xext**k, avgkern[:,None], 'full')[sl,:]
non-central moment Parameters ---------- x : ndarray time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : ndarray k-th moving non-central moment, with same shape as x Notes ----- If data x is 2d, then moving moment is calculated for each column.
movmoment
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/movstat.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/movstat.py
BSD-3-Clause
def simulateW(self, nobs=100, T=1, dt=None, nrepl=1): '''generate sample of Wiener Process ''' dt = T*1.0/nobs t = np.linspace(dt, 1, nobs) dW = np.sqrt(dt)*np.random.normal(size=(nrepl, nobs)) W = np.cumsum(dW,1) self.dW = dW return W, t
generate sample of Wiener Process
simulateW
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/diffusion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/diffusion.py
BSD-3-Clause
def expectedsim(self, func, nobs=100, T=1, dt=None, nrepl=1): '''get expectation of a function of a Wiener Process by simulation initially test example from ''' W, t = self.simulateW(nobs=nobs, T=T, dt=dt, nrepl=nrepl) U = func(t, W) Umean = U.mean(0) return U, Umean, t
get expectation of a function of a Wiener Process by simulation initially test example from
expectedsim
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/diffusion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/diffusion.py
BSD-3-Clause
def simEM(self, xzero=None, nobs=100, T=1, dt=None, nrepl=1, Tratio=4): ''' from Higham 2001 TODO: reverse parameterization to start with final nobs and DT TODO: check if I can skip the loop using my way from exactprocess problem might be Winc (reshape into 3d and sum) TODO: (later) check memory efficiency for large simulations ''' #TODO: reverse parameterization to start with final nobs and DT nobs = nobs * Tratio # simple way to change parameter # maybe wrong parameterization, # drift too large, variance too small ? which dt/Dt # _drift, _sig independent of dt is wrong if xzero is None: xzero = self.xzero dW = self.dW L = nobs/Tratio # L EM steps of size Dt = R*dt Xem = np.zeros((nrepl,L)) # preallocate for efficiency Xtemp = xzero Xem[:,0] = xzero for j in np.arange(1,L): #Winc = np.sum(dW[:,Tratio*(j-1)+1:Tratio*j],1) Winc = np.sum(dW[:,np.arange(Tratio*(j-1)+1,Tratio*j)],1) #Xtemp = Xtemp + Dt*lamda*Xtemp + mu*Xtemp*Winc; Xtemp = Xtemp + self._drift(x=Xtemp) + self._sig(x=Xtemp) * Winc #Dt*lamda*Xtemp + mu*Xtemp*Winc; Xem[:,j] = Xtemp return Xem
from Higham 2001 TODO: reverse parameterization to start with final nobs and DT TODO: check if I can skip the loop using my way from exactprocess problem might be Winc (reshape into 3d and sum) TODO: (later) check memory efficiency for large simulations
simEM
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/diffusion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/diffusion.py
BSD-3-Clause
def exactprocess(self, xzero, nobs, ddt=1., nrepl=2): '''ddt : discrete delta t should be the same as an AR(1) not tested yet ''' np.linspace(ddt, nobs*ddt, nobs) #expnt = np.exp(-self.lambd * t) expddt = np.exp(-self.lambd * ddt) normrvs = np.random.normal(size=(nrepl,nobs)) #do I need lfilter here AR(1) ? if mean reverting lag-coeff<1 #lfilter does not handle 2d arrays, it does? inc = self._exactconst(expddt) + self._exactstd(expddt) * normrvs return signal.lfilter([1.], [1.,-expddt], inc)
ddt : discrete delta t should be the same as an AR(1) not tested yet
exactprocess
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/diffusion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/diffusion.py
BSD-3-Clause
def exactprocess(self, nobs, xzero=None, ddt=1., nrepl=2): '''ddt : discrete delta t not tested yet ''' if xzero is None: xzero = self.xzero np.linspace(ddt, nobs*ddt, nobs) normrvs = np.random.normal(size=(nrepl,nobs)) inc = self._drift + self._sigma * np.sqrt(ddt) * normrvs #return signal.lfilter([1.], [1.,-1], inc) return xzero + np.cumsum(inc,1)
ddt : discrete delta t not tested yet
exactprocess
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/diffusion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/diffusion.py
BSD-3-Clause
def exactprocess(self, xzero, nobs, ddt=1., nrepl=2): '''ddt : discrete delta t should be the same as an AR(1) not tested yet # after writing this I saw the same use of lfilter in sitmo ''' t = np.linspace(ddt, nobs*ddt, nobs) np.exp(-self.lambd * t) expddt = np.exp(-self.lambd * ddt) normrvs = np.random.normal(size=(nrepl,nobs)) #do I need lfilter here AR(1) ? lfilter does not handle 2d arrays, it does? from scipy import signal #xzero * expnt inc = ( self.mu * (1-expddt) + self.sigma * np.sqrt((1-expddt*expddt)/2./self.lambd) * normrvs ) return signal.lfilter([1.], [1.,-expddt], inc)
ddt : discrete delta t should be the same as an AR(1) not tested yet # after writing this I saw the same use of lfilter in sitmo
exactprocess
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/diffusion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/diffusion.py
BSD-3-Clause
def fitls(self, data, dt): '''assumes data is 1d, univariate time series formula from sitmo ''' # brute force, no parameter estimation errors nobs = len(data)-1 exog = np.column_stack((np.ones(nobs), data[:-1])) parest, res, rank, sing = np.linalg.lstsq(exog, data[1:], rcond=-1) const, slope = parest errvar = res/(nobs-2.) lambd = -np.log(slope)/dt sigma = np.sqrt(-errvar * 2.*np.log(slope)/ (1-slope**2)/dt) mu = const / (1-slope) return mu, lambd, sigma
assumes data is 1d, univariate time series formula from sitmo
fitls
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/diffusion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/diffusion.py
BSD-3-Clause
def exactprocess(self, xzero, nobs, ddt=1., nrepl=2): '''uses exact solution for log of process ''' np.log(xzero) lnx = super(self.__class__, self).exactprocess(xzero, nobs, ddt=ddt, nrepl=nrepl) return np.exp(lnx)
uses exact solution for log of process
exactprocess
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/diffusion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/diffusion.py
BSD-3-Clause
def fitls(self, data, dt): '''assumes data is 1d, univariate time series formula from sitmo ''' # brute force, no parameter estimation errors nobs = len(data)-1 exog = np.column_stack((np.ones(nobs),np.log(data[:-1]))) parest, res, rank, sing = np.linalg.lstsq(exog, np.log(data[1:]), rcond=-1) const, slope = parest errvar = res/(nobs-2.) #check denominator estimate, of sigma too low kappa = -np.log(slope)/dt sigma = np.sqrt(errvar * kappa / (1-np.exp(-2*kappa*dt))) mu = const / (1-np.exp(-kappa*dt)) + sigma**2/2./kappa if np.shape(mu)== (1,): mu = mu[0] # TODO: how to remove scalar array ? if np.shape(sigma)== (1,): sigma = sigma[0] #mu, kappa are good, sigma too small return mu, kappa, sigma
assumes data is 1d, univariate time series formula from sitmo
fitls
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/diffusion.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/diffusion.py
BSD-3-Clause
def acovf_explicit(ar, ma, nobs): '''add correlation of MA representation explicitely ''' ir = arma_impulse_response(ar, ma) acovfexpl = [np.dot(ir[:nobs-t], ir[t:nobs]) for t in range(10)] return acovfexpl
add correlation of MA representation explicitely
acovf_explicit
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/example_arma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/example_arma.py
BSD-3-Clause
def autocorr(s, axis=-1): """Returns the autocorrelation of signal s at all lags. Adheres to the definition r(k) = E{s(n)s*(n-k)} where E{} is the expectation operator. """ N = s.shape[axis] S = np.fft.fft(s, n=2*N-1, axis=axis) sxx = np.fft.ifft(S*S.conjugate(), axis=axis).real[:N] return sxx/N
Returns the autocorrelation of signal s at all lags. Adheres to the definition r(k) = E{s(n)s*(n-k)} where E{} is the expectation operator.
autocorr
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/example_arma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/example_arma.py
BSD-3-Clause
def norm_corr(x,y,mode = 'valid'): """Returns the correlation between two ndarrays, by calling np.correlate in 'same' mode and normalizing the result by the std of the arrays and by their lengths. This results in a correlation = 1 for an auto-correlation""" return ( np.correlate(x,y,mode) / (np.std(x)*np.std(y)*(x.shape[-1])) )
Returns the correlation between two ndarrays, by calling np.correlate in 'same' mode and normalizing the result by the std of the arrays and by their lengths. This results in a correlation = 1 for an auto-correlation
norm_corr
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/example_arma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/example_arma.py
BSD-3-Clause
def pltxcorr(self, x, y, normed=True, detrend=detrend_none, usevlines=True, maxlags=10, **kwargs): """ call signature:: def xcorr(self, x, y, normed=True, detrend=detrend_none, usevlines=True, maxlags=10, **kwargs): Plot the cross correlation between *x* and *y*. If *normed* = *True*, normalize the data by the cross correlation at 0-th lag. *x* and y are detrended by the *detrend* callable (default no normalization). *x* and *y* must be equal length. Data are plotted as ``plot(lags, c, **kwargs)`` Return value is a tuple (*lags*, *c*, *line*) where: - *lags* are a length ``2*maxlags+1`` lag vector - *c* is the ``2*maxlags+1`` auto correlation vector - *line* is a :class:`~matplotlib.lines.Line2D` instance returned by :func:`~matplotlib.pyplot.plot`. The default *linestyle* is *None* and the default *marker* is 'o', though these can be overridden with keyword args. The cross correlation is performed with :func:`numpy.correlate` with *mode* = 2. If *usevlines* is *True*: :func:`~matplotlib.pyplot.vlines` rather than :func:`~matplotlib.pyplot.plot` is used to draw vertical lines from the origin to the xcorr. Otherwise the plotstyle is determined by the kwargs, which are :class:`~matplotlib.lines.Line2D` properties. The return value is a tuple (*lags*, *c*, *linecol*, *b*) where *linecol* is the :class:`matplotlib.collections.LineCollection` instance and *b* is the *x*-axis. *maxlags* is a positive integer detailing the number of lags to show. The default value of *None* will return all ``(2*len(x)-1)`` lags. **Example:** :func:`~matplotlib.pyplot.xcorr` above, and :func:`~matplotlib.pyplot.acorr` below. **Example:** .. plot:: mpl_examples/pylab_examples/xcorr_demo.py """ Nx = len(x) if Nx!=len(y): raise ValueError('x and y must be equal length') x = detrend(np.asarray(x)) y = detrend(np.asarray(y)) c = np.correlate(x, y, mode=2) if normed: c /= np.sqrt(np.dot(x, x) * np.dot(y, y)) if maxlags is None: maxlags = Nx - 1 if maxlags >= Nx or maxlags < 1: raise ValueError('maxlags must be None or strictly ' 'positive < %d' % Nx) lags = np.arange(-maxlags,maxlags+1) c = c[Nx-1-maxlags:Nx+maxlags] if usevlines: a = self.vlines(lags, [0], c, **kwargs) b = self.axhline(**kwargs) kwargs.setdefault('marker', 'o') kwargs.setdefault('linestyle', 'None') self.plot(lags, c, **kwargs) else: kwargs.setdefault('marker', 'o') kwargs.setdefault('linestyle', 'None') a, = self.plot(lags, c, **kwargs) b = None return lags, c, a, b
call signature:: def xcorr(self, x, y, normed=True, detrend=detrend_none, usevlines=True, maxlags=10, **kwargs): Plot the cross correlation between *x* and *y*. If *normed* = *True*, normalize the data by the cross correlation at 0-th lag. *x* and y are detrended by the *detrend* callable (default no normalization). *x* and *y* must be equal length. Data are plotted as ``plot(lags, c, **kwargs)`` Return value is a tuple (*lags*, *c*, *line*) where: - *lags* are a length ``2*maxlags+1`` lag vector - *c* is the ``2*maxlags+1`` auto correlation vector - *line* is a :class:`~matplotlib.lines.Line2D` instance returned by :func:`~matplotlib.pyplot.plot`. The default *linestyle* is *None* and the default *marker* is 'o', though these can be overridden with keyword args. The cross correlation is performed with :func:`numpy.correlate` with *mode* = 2. If *usevlines* is *True*: :func:`~matplotlib.pyplot.vlines` rather than :func:`~matplotlib.pyplot.plot` is used to draw vertical lines from the origin to the xcorr. Otherwise the plotstyle is determined by the kwargs, which are :class:`~matplotlib.lines.Line2D` properties. The return value is a tuple (*lags*, *c*, *linecol*, *b*) where *linecol* is the :class:`matplotlib.collections.LineCollection` instance and *b* is the *x*-axis. *maxlags* is a positive integer detailing the number of lags to show. The default value of *None* will return all ``(2*len(x)-1)`` lags. **Example:** :func:`~matplotlib.pyplot.xcorr` above, and :func:`~matplotlib.pyplot.acorr` below. **Example:** .. plot:: mpl_examples/pylab_examples/xcorr_demo.py
pltxcorr
python
statsmodels/statsmodels
statsmodels/sandbox/tsa/example_arma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tsa/example_arma.py
BSD-3-Clause
def _ll_nb1(y, X, beta, alph): '''Negative Binomial regression (type 1 likelihood)''' ll = _ll_nbp(y, X, beta, alph, Q=1) return ll
Negative Binomial regression (type 1 likelihood)
_ll_nb1
python
statsmodels/statsmodels
statsmodels/sandbox/examples/example_nbin.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/examples/example_nbin.py
BSD-3-Clause
def _ll_nb2(y, X, beta, alph): '''Negative Binomial regression (type 2 likelihood)''' ll = _ll_nbp(y, X, beta, alph, Q=0) return ll
Negative Binomial regression (type 2 likelihood)
_ll_nb2
python
statsmodels/statsmodels
statsmodels/sandbox/examples/example_nbin.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/examples/example_nbin.py
BSD-3-Clause
def _ll_geom(y, X, beta): '''Geometric regression''' ll = _ll_nbp(y, X, beta, alph=1, Q=0) return ll
Geometric regression
_ll_geom
python
statsmodels/statsmodels
statsmodels/sandbox/examples/example_nbin.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/examples/example_nbin.py
BSD-3-Clause
def print_results2(res): groupind = res.groups #res.fitjoint() #not really necessary, because called by ftest_summary ft = res.ftest_summary() #print ft[0] #skip because table is nicer templ = \ '''Table of F-tests for overall or pairwise equality of coefficients' %(tab)s Notes: p-values are not corrected for many tests (no Bonferroni correction) * : reject at 5%% uncorrected confidence level Null hypothesis: all or pairwise coefficient are the same' Alternative hypothesis: all coefficients are different' Comparison with stats.f_oneway %(statsfow)s Likelihood Ratio Test %(lrtest)s Null model: pooled all coefficients are the same across groups,' Alternative model: all coefficients are allowed to be different' not verified but looks close to f-test result' OLS parameters by group from individual, separate ols regressions' %(olsbg)s for group in sorted(res.olsbygroup): r = res.olsbygroup[group] print group, r.params Check for heteroscedasticity, ' variance and standard deviation for individual regressions' %(grh)s variance ', res.sigmabygroup standard dev', np.sqrt(res.sigmabygroup) ''' from statsmodels.iolib import SimpleTable resvals = {} resvals['tab'] = str(SimpleTable([([f'{row[0]!r}'] + list(row[1]) + ['*']*(row[1][1]>0.5).item() ) for row in ft[1]], headers=['pair', 'F-statistic','p-value','df_denom', 'df_num'])) resvals['statsfow'] = str(stats.f_oneway(*[y[groupind==gr] for gr in res.unique])) #resvals['lrtest'] = str(res.lr_test()) resvals['lrtest'] = str(SimpleTable([res.lr_test()], headers=['likelihood ratio', 'p-value', 'df'] )) resvals['olsbg'] = str(SimpleTable([[group] + res.olsbygroup[group].params.tolist() for group in sorted(res.olsbygroup)])) resvals['grh'] = str(SimpleTable(np.vstack([res.sigmabygroup, np.sqrt(res.sigmabygroup)]), headers=res.unique.tolist())) return templ % resvals
Table of F-tests for overall or pairwise equality of coefficients' %(tab)s Notes: p-values are not corrected for many tests (no Bonferroni correction) * : reject at 5%% uncorrected confidence level Null hypothesis: all or pairwise coefficient are the same' Alternative hypothesis: all coefficients are different' Comparison with stats.f_oneway %(statsfow)s Likelihood Ratio Test %(lrtest)s Null model: pooled all coefficients are the same across groups,' Alternative model: all coefficients are allowed to be different' not verified but looks close to f-test result' OLS parameters by group from individual, separate ols regressions' %(olsbg)s for group in sorted(res.olsbygroup): r = res.olsbygroup[group] print group, r.params Check for heteroscedasticity, ' variance and standard deviation for individual regressions' %(grh)s variance ', res.sigmabygroup standard dev', np.sqrt(res.sigmabygroup)
print_results2
python
statsmodels/statsmodels
statsmodels/sandbox/examples/ex_onewaygls.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/examples/ex_onewaygls.py
BSD-3-Clause
def loglike_ar1(x, rho): '''loglikelihood of AR(1) process, as a test case sigma_u partially hard coded Greene chapter 12 eq. (12-31) ''' x = np.asarray(x) u = np.r_[x[0], x[1:] - rho * x[:-1]] sigma_u2 = 2*(1-rho**2) loglik = 0.5*(-(u**2).sum(0) / sigma_u2 + np.log(1-rho**2) - x.shape[0] * (np.log(2*np.pi) + np.log(sigma_u2))) return loglik
loglikelihood of AR(1) process, as a test case sigma_u partially hard coded Greene chapter 12 eq. (12-31)
loglike_ar1
python
statsmodels/statsmodels
statsmodels/sandbox/archive/linalg_covmat.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/archive/linalg_covmat.py
BSD-3-Clause
def ar2transform(x, arcoefs): ''' (Greene eq 12-30) ''' a1, a2 = arcoefs y = np.zeros_like(x) y[0] = np.sqrt((1+a2) * ((1-a2)**2 - a1**2) / (1-a2)) * x[0] y[1] = np.sqrt(1-a2**2) * x[2] - a1 * np.sqrt(1-a1**2)/(1-a2) * x[1] #TODO:wrong index in x y[2:] = x[2:] - a1 * x[1:-1] - a2 * x[:-2] return y
(Greene eq 12-30)
ar2transform
python
statsmodels/statsmodels
statsmodels/sandbox/archive/linalg_covmat.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/archive/linalg_covmat.py
BSD-3-Clause
def mvn_loglike(x, sigma): '''loglike multivariate normal assumes x is 1d, (nobs,) and sigma is 2d (nobs, nobs) brute force from formula no checking of correct inputs use of inv and log-det should be replace with something more efficient ''' #see numpy thread #Sturla: sqmahal = (cx*cho_solve(cho_factor(S),cx.T).T).sum(axis=1) sigmainv = linalg.inv(sigma) logdetsigma = np.log(np.linalg.det(sigma)) nobs = len(x) llf = - np.dot(x, np.dot(sigmainv, x)) llf -= nobs * np.log(2 * np.pi) llf -= logdetsigma llf *= 0.5 return llf
loglike multivariate normal assumes x is 1d, (nobs,) and sigma is 2d (nobs, nobs) brute force from formula no checking of correct inputs use of inv and log-det should be replace with something more efficient
mvn_loglike
python
statsmodels/statsmodels
statsmodels/sandbox/archive/linalg_covmat.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/archive/linalg_covmat.py
BSD-3-Clause
def mvn_nloglike_obs(x, sigma): '''loglike multivariate normal assumes x is 1d, (nobs,) and sigma is 2d (nobs, nobs) brute force from formula no checking of correct inputs use of inv and log-det should be replace with something more efficient ''' #see numpy thread #Sturla: sqmahal = (cx*cho_solve(cho_factor(S),cx.T).T).sum(axis=1) #Still wasteful to calculate pinv first sigmainv = linalg.inv(sigma) cholsigmainv = linalg.cholesky(sigmainv) #2 * np.sum(np.log(np.diagonal(np.linalg.cholesky(A)))) #Dag mailinglist # logdet not needed ??? #logdetsigma = 2 * np.sum(np.log(np.diagonal(cholsigmainv))) x_whitened = np.dot(cholsigmainv, x) #sigmainv = linalg.cholesky(sigma) np.log(np.linalg.det(sigma)) sigma2 = 1. # error variance is included in sigma llike = 0.5 * (np.log(sigma2) - 2.* np.log(np.diagonal(cholsigmainv)) + (x_whitened**2)/sigma2 + np.log(2*np.pi)) return llike, (x_whitened**2)
loglike multivariate normal assumes x is 1d, (nobs,) and sigma is 2d (nobs, nobs) brute force from formula no checking of correct inputs use of inv and log-det should be replace with something more efficient
mvn_nloglike_obs
python
statsmodels/statsmodels
statsmodels/sandbox/archive/linalg_covmat.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/archive/linalg_covmat.py
BSD-3-Clause
def yt_minv_y(self, y): '''xSigmainvx does not use stored cholesky yet ''' return np.dot(x,linalg.cho_solve(linalg.cho_factor(self.m),x))
xSigmainvx does not use stored cholesky yet
yt_minv_y
python
statsmodels/statsmodels
statsmodels/sandbox/archive/linalg_decomp_1.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/archive/linalg_decomp_1.py
BSD-3-Clause
def tiny2zero(x, eps = 1e-15): '''replace abs values smaller than eps by zero, makes copy ''' mask = np.abs(x.copy()) < eps x[mask] = 0 return x
replace abs values smaller than eps by zero, makes copy
tiny2zero
python
statsmodels/statsmodels
statsmodels/sandbox/archive/linalg_decomp_1.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/archive/linalg_decomp_1.py
BSD-3-Clause
def acovf_fft(x, demean=True): '''autocovariance function with call to fftconvolve, biased Parameters ---------- x : array_like timeseries, signal demean : bool If true, then demean time series Returns ------- acovf : ndarray autocovariance for data, same length as x might work for nd in parallel with time along axis 0 ''' from scipy import signal x = np.asarray(x) if demean: x = x - x.mean() signal.fftconvolve(x,x[::-1])[len(x)-1:len(x)+10]/x.shape[0]
autocovariance function with call to fftconvolve, biased Parameters ---------- x : array_like timeseries, signal demean : bool If true, then demean time series Returns ------- acovf : ndarray autocovariance for data, same length as x might work for nd in parallel with time along axis 0
acovf_fft
python
statsmodels/statsmodels
statsmodels/sandbox/archive/tsa.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/archive/tsa.py
BSD-3-Clause
def _opt_wtd_nuis_regress(self, test_vals): """ A function that is optimized over nuisance parameters to conduct a hypothesis test for the parameters of interest Parameters ---------- params: 1d array The regression coefficients of the model. This includes the nuisance and parameters of interests. Returns ------- llr : float -2 times the log likelihood of the nuisance parameters and the hypothesized value of the parameter(s) of interest. """ test_params = test_vals.reshape(self.model.nvar, 1) est_vect = self.model.uncens_exog * (self.model.uncens_endog - np.dot(self.model.uncens_exog, test_params)) eta_star = self._modif_newton(np.zeros(self.model.nvar), est_vect, self.model._fit_weights) denom = np.sum(self.model._fit_weights) + np.dot(eta_star, est_vect.T) self.new_weights = self.model._fit_weights / denom return -1 * np.sum(np.log(self.new_weights))
A function that is optimized over nuisance parameters to conduct a hypothesis test for the parameters of interest Parameters ---------- params: 1d array The regression coefficients of the model. This includes the nuisance and parameters of interests. Returns ------- llr : float -2 times the log likelihood of the nuisance parameters and the hypothesized value of the parameter(s) of interest.
_opt_wtd_nuis_regress
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def _EM_test(self, nuisance_params, params=None, param_nums=None, b0_vals=None, F=None, survidx=None, uncens_nobs=None, numcensbelow=None, km=None, uncensored=None, censored=None, maxiter=None, ftol=None): """ Uses EM algorithm to compute the maximum likelihood of a test Parameters ---------- nuisance_params : ndarray Vector of values to be used as nuisance params. maxiter : int Number of iterations in the EM algorithm for a parameter vector Returns ------- -2 ''*'' log likelihood ratio at hypothesized values and nuisance params Notes ----- Optional parameters are provided by the test_beta function. """ iters = 0 params[param_nums] = b0_vals nuis_param_index = np.int_(np.delete(np.arange(self.model.nvar), param_nums)) params[nuis_param_index] = nuisance_params to_test = params.reshape(self.model.nvar, 1) opt_res = np.inf diff = np.inf while iters < maxiter and diff > ftol: F = F.flatten() death = np.cumsum(F[::-1]) survivalprob = death[::-1] surv_point_mat = np.dot(F.reshape(-1, 1), 1. / survivalprob[survidx].reshape(1, - 1)) surv_point_mat = add_constant(surv_point_mat) summed_wts = np.cumsum(surv_point_mat, axis=1) wts = summed_wts[np.int_(np.arange(uncens_nobs)), numcensbelow[uncensored]] # ^E step # See Zhou 2005, section 3. self.model._fit_weights = wts new_opt_res = self._opt_wtd_nuis_regress(to_test) # ^ Uncensored weights' contribution to likelihood value. F = self.new_weights # ^ M step diff = np.abs(new_opt_res - opt_res) opt_res = new_opt_res iters = iters + 1 death = np.cumsum(F.flatten()[::-1]) survivalprob = death[::-1] llike = -opt_res + np.sum(np.log(survivalprob[survidx])) wtd_km = km.flatten() / np.sum(km) survivalmax = np.cumsum(wtd_km[::-1])[::-1] llikemax = np.sum(np.log(wtd_km[uncensored])) + \ np.sum(np.log(survivalmax[censored])) if iters == maxiter: warnings.warn('The EM reached the maximum number of iterations', IterationLimitWarning) return -2 * (llike - llikemax)
Uses EM algorithm to compute the maximum likelihood of a test Parameters ---------- nuisance_params : ndarray Vector of values to be used as nuisance params. maxiter : int Number of iterations in the EM algorithm for a parameter vector Returns ------- -2 ''*'' log likelihood ratio at hypothesized values and nuisance params Notes ----- Optional parameters are provided by the test_beta function.
_EM_test
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def _ci_limits_beta(self, b0, param_num=None): """ Returns the difference between the log likelihood for a parameter and some critical value. Parameters ---------- b0: float Value of a regression parameter param_num : int Parameter index of b0 """ return self.test_beta([b0], [param_num])[0] - self.r0
Returns the difference between the log likelihood for a parameter and some critical value. Parameters ---------- b0: float Value of a regression parameter param_num : int Parameter index of b0
_ci_limits_beta
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def _is_tied(self, endog, censors): """ Indicated if an observation takes the same value as the next ordered observation. Parameters ---------- endog : ndarray Models endogenous variable censors : ndarray arrat indicating a censored array Returns ------- indic_ties : ndarray ties[i]=1 if endog[i]==endog[i+1] and censors[i]=censors[i+1] """ nobs = int(self.nobs) endog_idx = endog[np.arange(nobs - 1)] == ( endog[np.arange(nobs - 1) + 1]) censors_idx = censors[np.arange(nobs - 1)] == ( censors[np.arange(nobs - 1) + 1]) indic_ties = endog_idx * censors_idx # Both true return np.int_(indic_ties)
Indicated if an observation takes the same value as the next ordered observation. Parameters ---------- endog : ndarray Models endogenous variable censors : ndarray arrat indicating a censored array Returns ------- indic_ties : ndarray ties[i]=1 if endog[i]==endog[i+1] and censors[i]=censors[i+1]
_is_tied
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def _km_w_ties(self, tie_indic, untied_km): """ Computes KM estimator value at each observation, taking into acocunt ties in the data. Parameters ---------- tie_indic: 1d array Indicates if the i'th observation is the same as the ith +1 untied_km: 1d array Km estimates at each observation assuming no ties. """ # TODO: Vectorize, even though it is only 1 pass through for any # function call num_same = 1 idx_nums = [] for obs_num in np.arange(int(self.nobs - 1))[::-1]: if tie_indic[obs_num] == 1: idx_nums.append(obs_num) num_same = num_same + 1 untied_km[obs_num] = untied_km[obs_num + 1] elif tie_indic[obs_num] == 0 and num_same > 1: idx_nums.append(max(idx_nums) + 1) idx_nums = np.asarray(idx_nums) untied_km[idx_nums] = untied_km[idx_nums] num_same = 1 idx_nums = [] return untied_km.reshape(self.nobs, 1)
Computes KM estimator value at each observation, taking into acocunt ties in the data. Parameters ---------- tie_indic: 1d array Indicates if the i'th observation is the same as the ith +1 untied_km: 1d array Km estimates at each observation assuming no ties.
_km_w_ties
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def _make_km(self, endog, censors): """ Computes the Kaplan-Meier estimate for the weights in the AFT model Parameters ---------- endog: nx1 array Array of response variables censors: nx1 array Censor-indicating variable Returns ------- Kaplan Meier estimate for each observation Notes ----- This function makes calls to _is_tied and km_w_ties to handle ties in the data.If a censored observation and an uncensored observation has the same value, it is assumed that the uncensored happened first. """ nobs = self.nobs num = (nobs - (np.arange(nobs) + 1.)) denom = (nobs - (np.arange(nobs) + 1.) + 1.) km = (num / denom).reshape(nobs, 1) km = km ** np.abs(censors - 1.) km = np.cumprod(km) # If no ties, this is kaplan-meier tied = self._is_tied(endog, censors) wtd_km = self._km_w_ties(tied, km) return (censors / wtd_km).reshape(nobs, 1)
Computes the Kaplan-Meier estimate for the weights in the AFT model Parameters ---------- endog: nx1 array Array of response variables censors: nx1 array Censor-indicating variable Returns ------- Kaplan Meier estimate for each observation Notes ----- This function makes calls to _is_tied and km_w_ties to handle ties in the data.If a censored observation and an uncensored observation has the same value, it is assumed that the uncensored happened first.
_make_km
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def fit(self): """ Fits an AFT model and returns results instance Parameters ---------- None Returns ------- Results instance. Notes ----- To avoid dividing by zero, max(endog) is assumed to be uncensored. """ return AFTResults(self)
Fits an AFT model and returns results instance Parameters ---------- None Returns ------- Results instance. Notes ----- To avoid dividing by zero, max(endog) is assumed to be uncensored.
fit
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def params(self): """ Fits an AFT model and returns parameters. Parameters ---------- None Returns ------- Fitted params Notes ----- To avoid dividing by zero, max(endog) is assumed to be uncensored. """ self.model.modif_censors = np.copy(self.model.censors) self.model.modif_censors[-1] = 1 wts = self.model._make_km(self.model.endog, self.model.modif_censors) res = WLS(self.model.endog, self.model.exog, wts).fit() params = res.params return params
Fits an AFT model and returns parameters. Parameters ---------- None Returns ------- Fitted params Notes ----- To avoid dividing by zero, max(endog) is assumed to be uncensored.
params
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def test_beta(self, b0_vals, param_nums, ftol=10 ** - 5, maxiter=30, print_weights=1): """ Returns the profile log likelihood for regression parameters 'param_num' at 'b0_vals.' Parameters ---------- b0_vals : list The value of parameters to be tested param_num : list Which parameters to be tested maxiter : int, optional How many iterations to use in the EM algorithm. Default is 30 ftol : float, optional The function tolerance for the EM optimization. Default is 10''**''-5 print_weights : bool If true, returns the weights tate maximize the profile log likelihood. Default is False Returns ------- test_results : tuple The log-likelihood and p-pvalue of the test. Notes ----- The function will warn if the EM reaches the maxiter. However, when optimizing over nuisance parameters, it is possible to reach a maximum number of inner iterations for a specific value for the nuisance parameters while the resultsof the function are still valid. This usually occurs when the optimization over the nuisance parameters selects parameter values that yield a log-likihood ratio close to infinity. Examples -------- >>> import statsmodels.api as sm >>> import numpy as np # Test parameter is .05 in one regressor no intercept model >>> data=sm.datasets.heart.load() >>> y = np.log10(data.endog) >>> x = data.exog >>> cens = data.censors >>> model = sm.emplike.emplikeAFT(y, x, cens) >>> res=model.test_beta([0], [0]) >>> res (1.4657739632606308, 0.22601365256959183) #Test slope is 0 in model with intercept >>> data=sm.datasets.heart.load() >>> y = np.log10(data.endog) >>> x = data.exog >>> cens = data.censors >>> model = sm.emplike.emplikeAFT(y, sm.add_constant(x), cens) >>> res = model.test_beta([0], [1]) >>> res (4.623487775078047, 0.031537049752572731) """ censors = self.model.censors endog = self.model.endog exog = self.model.exog uncensored = (censors == 1).flatten() censored = (censors == 0).flatten() uncens_endog = endog[uncensored] uncens_exog = exog[uncensored, :] reg_model = OLS(uncens_endog, uncens_exog).fit() llr, pval, new_weights = reg_model.el_test(b0_vals, param_nums, return_weights=True) # Needs to be changed km = self.model._make_km(endog, censors).flatten() # when merged uncens_nobs = self.model.uncens_nobs F = np.asarray(new_weights).reshape(uncens_nobs) # Step 0 ^ params = self.params() survidx = np.where(censors == 0) survidx = survidx[0] - np.arange(len(survidx[0])) numcensbelow = np.int_(np.cumsum(1 - censors)) if len(param_nums) == len(params): llr = self._EM_test([], F=F, params=params, param_nums=param_nums, b0_vals=b0_vals, survidx=survidx, uncens_nobs=uncens_nobs, numcensbelow=numcensbelow, km=km, uncensored=uncensored, censored=censored, ftol=ftol, maxiter=25) return llr, chi2.sf(llr, self.model.nvar) else: x0 = np.delete(params, param_nums) try: res = optimize.fmin(self._EM_test, x0, (params, param_nums, b0_vals, F, survidx, uncens_nobs, numcensbelow, km, uncensored, censored, maxiter, ftol), full_output=1, disp=0) llr = res[1] return llr, chi2.sf(llr, len(param_nums)) except np.linalg.LinAlgError: return np.inf, 0
Returns the profile log likelihood for regression parameters 'param_num' at 'b0_vals.' Parameters ---------- b0_vals : list The value of parameters to be tested param_num : list Which parameters to be tested maxiter : int, optional How many iterations to use in the EM algorithm. Default is 30 ftol : float, optional The function tolerance for the EM optimization. Default is 10''**''-5 print_weights : bool If true, returns the weights tate maximize the profile log likelihood. Default is False Returns ------- test_results : tuple The log-likelihood and p-pvalue of the test. Notes ----- The function will warn if the EM reaches the maxiter. However, when optimizing over nuisance parameters, it is possible to reach a maximum number of inner iterations for a specific value for the nuisance parameters while the resultsof the function are still valid. This usually occurs when the optimization over the nuisance parameters selects parameter values that yield a log-likihood ratio close to infinity. Examples -------- >>> import statsmodels.api as sm >>> import numpy as np # Test parameter is .05 in one regressor no intercept model >>> data=sm.datasets.heart.load() >>> y = np.log10(data.endog) >>> x = data.exog >>> cens = data.censors >>> model = sm.emplike.emplikeAFT(y, x, cens) >>> res=model.test_beta([0], [0]) >>> res (1.4657739632606308, 0.22601365256959183) #Test slope is 0 in model with intercept >>> data=sm.datasets.heart.load() >>> y = np.log10(data.endog) >>> x = data.exog >>> cens = data.censors >>> model = sm.emplike.emplikeAFT(y, sm.add_constant(x), cens) >>> res = model.test_beta([0], [1]) >>> res (4.623487775078047, 0.031537049752572731)
test_beta
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def ci_beta(self, param_num, beta_high, beta_low, sig=.05): """ Returns the confidence interval for a regression parameter in the AFT model. Parameters ---------- param_num : int Parameter number of interest beta_high : float Upper bound for the confidence interval beta_low : float Lower bound for the confidence interval sig : float, optional Significance level. Default is .05 Notes ----- If the function returns f(a) and f(b) must have different signs, consider widening the search area by adjusting beta_low and beta_high. Also note that this process is computational intensive. There are 4 levels of optimization/solving. From outer to inner: 1) Solving so that llr-critical value = 0 2) maximizing over nuisance parameters 3) Using EM at each value of nuisamce parameters 4) Using the _modified_Newton optimizer at each iteration of the EM algorithm. Also, for very unlikely nuisance parameters, it is possible for the EM algorithm to not converge. This is not an indicator that the solver did not find the correct solution. It just means for a specific iteration of the nuisance parameters, the optimizer was unable to converge. If the user desires to verify the success of the optimization, it is recommended to test the limits using test_beta. """ params = self.params() self.r0 = chi2.ppf(1 - sig, 1) ll = optimize.brentq(self._ci_limits_beta, beta_low, params[param_num], (param_num)) ul = optimize.brentq(self._ci_limits_beta, params[param_num], beta_high, (param_num)) return ll, ul
Returns the confidence interval for a regression parameter in the AFT model. Parameters ---------- param_num : int Parameter number of interest beta_high : float Upper bound for the confidence interval beta_low : float Lower bound for the confidence interval sig : float, optional Significance level. Default is .05 Notes ----- If the function returns f(a) and f(b) must have different signs, consider widening the search area by adjusting beta_low and beta_high. Also note that this process is computational intensive. There are 4 levels of optimization/solving. From outer to inner: 1) Solving so that llr-critical value = 0 2) maximizing over nuisance parameters 3) Using EM at each value of nuisamce parameters 4) Using the _modified_Newton optimizer at each iteration of the EM algorithm. Also, for very unlikely nuisance parameters, it is possible for the EM algorithm to not converge. This is not an indicator that the solver did not find the correct solution. It just means for a specific iteration of the nuisance parameters, the optimizer was unable to converge. If the user desires to verify the success of the optimization, it is recommended to test the limits using test_beta.
ci_beta
python
statsmodels/statsmodels
statsmodels/emplike/aft_el.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/aft_el.py
BSD-3-Clause
def fit(self): """ Fits the model and provides regression results. Returns ------- Results : class Empirical likelihood regression class. """ exog_with = add_constant(self.exog, prepend=True) restricted_model = OLS(self.endog, exog_with) restricted_fit = restricted_model.fit() restricted_el = restricted_fit.el_test( np.array([0]), np.array([0]), ret_params=1) params = np.squeeze(restricted_el[3]) beta_hat_llr = restricted_el[0] llf = np.sum(np.log(restricted_el[2])) return OriginResults(restricted_model, params, beta_hat_llr, llf)
Fits the model and provides regression results. Returns ------- Results : class Empirical likelihood regression class.
fit
python
statsmodels/statsmodels
statsmodels/emplike/originregress.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/originregress.py
BSD-3-Clause
def el_test(self, b0_vals, param_nums, method='nm', stochastic_exog=1, return_weights=0): """ Returns the llr and p-value for a hypothesized parameter value for a regression that goes through the origin. Parameters ---------- b0_vals : 1darray The hypothesized value to be tested. param_num : 1darray Which parameters to test. Note this uses python indexing but the '0' parameter refers to the intercept term, which is assumed 0. Therefore, param_num should be > 0. return_weights : bool If true, returns the weights that optimize the likelihood ratio at b0_vals. Default is False. method : str Can either be 'nm' for Nelder-Mead or 'powell' for Powell. The optimization method that optimizes over nuisance parameters. Default is 'nm'. stochastic_exog : bool When TRUE, the exogenous variables are assumed to be stochastic. When the regressors are nonstochastic, moment conditions are placed on the exogenous variables. Confidence intervals for stochastic regressors are at least as large as non-stochastic regressors. Default is TRUE. Returns ------- res : tuple pvalue and likelihood ratio. """ b0_vals = np.hstack((0, b0_vals)) param_nums = np.hstack((0, param_nums)) test_res = self.model.fit().el_test(b0_vals, param_nums, method=method, stochastic_exog=stochastic_exog, return_weights=return_weights) llr_test = test_res[0] llr_res = llr_test - self.llr pval = chi2.sf(llr_res, self.model.exog.shape[1] - 1) if return_weights: return llr_res, pval, test_res[2] else: return llr_res, pval
Returns the llr and p-value for a hypothesized parameter value for a regression that goes through the origin. Parameters ---------- b0_vals : 1darray The hypothesized value to be tested. param_num : 1darray Which parameters to test. Note this uses python indexing but the '0' parameter refers to the intercept term, which is assumed 0. Therefore, param_num should be > 0. return_weights : bool If true, returns the weights that optimize the likelihood ratio at b0_vals. Default is False. method : str Can either be 'nm' for Nelder-Mead or 'powell' for Powell. The optimization method that optimizes over nuisance parameters. Default is 'nm'. stochastic_exog : bool When TRUE, the exogenous variables are assumed to be stochastic. When the regressors are nonstochastic, moment conditions are placed on the exogenous variables. Confidence intervals for stochastic regressors are at least as large as non-stochastic regressors. Default is TRUE. Returns ------- res : tuple pvalue and likelihood ratio.
el_test
python
statsmodels/statsmodels
statsmodels/emplike/originregress.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/originregress.py
BSD-3-Clause
def conf_int_el(self, param_num, upper_bound=None, lower_bound=None, sig=.05, method='nm', stochastic_exog=True): """ Returns the confidence interval for a regression parameter when the regression is forced through the origin. Parameters ---------- param_num : int The parameter number to be tested. Note this uses python indexing but the '0' parameter refers to the intercept term. upper_bound : float The maximum value the upper confidence limit can be. The closer this is to the confidence limit, the quicker the computation. Default is .00001 confidence limit under normality. lower_bound : float The minimum value the lower confidence limit can be. Default is .00001 confidence limit under normality. sig : float, optional The significance level. Default .05. method : str, optional Algorithm to optimize of nuisance params. Can be 'nm' or 'powell'. Default is 'nm'. stochastic_exog : bool Default is True. Returns ------- ci: tuple The confidence interval for the parameter 'param_num'. """ r0 = chi2.ppf(1 - sig, 1) param_num = np.array([param_num]) if upper_bound is None: ci = np.asarray(self.model.fit().conf_int(.0001)) upper_bound = (np.squeeze(ci[param_num])[1]) if lower_bound is None: ci = np.asarray(self.model.fit().conf_int(.0001)) lower_bound = (np.squeeze(ci[param_num])[0]) def f(b0): b0 = np.array([b0]) val = self.el_test( b0, param_num, method=method, stochastic_exog=stochastic_exog ) return val[0] - r0 _param = np.squeeze(self.params[param_num]) lowerl = optimize.brentq(f, np.squeeze(lower_bound), _param) upperl = optimize.brentq(f, _param, np.squeeze(upper_bound)) return (lowerl, upperl)
Returns the confidence interval for a regression parameter when the regression is forced through the origin. Parameters ---------- param_num : int The parameter number to be tested. Note this uses python indexing but the '0' parameter refers to the intercept term. upper_bound : float The maximum value the upper confidence limit can be. The closer this is to the confidence limit, the quicker the computation. Default is .00001 confidence limit under normality. lower_bound : float The minimum value the lower confidence limit can be. Default is .00001 confidence limit under normality. sig : float, optional The significance level. Default .05. method : str, optional Algorithm to optimize of nuisance params. Can be 'nm' or 'powell'. Default is 'nm'. stochastic_exog : bool Default is True. Returns ------- ci: tuple The confidence interval for the parameter 'param_num'.
conf_int_el
python
statsmodels/statsmodels
statsmodels/emplike/originregress.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/originregress.py
BSD-3-Clause
def _opt_common_mu(self, mu): """ Optimizes the likelihood under the null hypothesis that all groups have mean mu. Parameters ---------- mu : float The common mean. Returns ------- llr : float -2 times the llr ratio, which is the test statistic. """ nobs = self.nobs endog = self.endog num_groups = self.num_groups endog_asarray = np.zeros((nobs, num_groups)) obs_num = 0 for arr_num in range(len(endog)): new_obs_num = obs_num + len(endog[arr_num]) endog_asarray[obs_num: new_obs_num, arr_num] = endog[arr_num] - \ mu obs_num = new_obs_num est_vect = endog_asarray wts = np.ones(est_vect.shape[0]) * (1. / (est_vect.shape[0])) eta_star = self._modif_newton(np.zeros(num_groups), est_vect, wts) denom = 1. + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr
Optimizes the likelihood under the null hypothesis that all groups have mean mu. Parameters ---------- mu : float The common mean. Returns ------- llr : float -2 times the llr ratio, which is the test statistic.
_opt_common_mu
python
statsmodels/statsmodels
statsmodels/emplike/elanova.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/elanova.py
BSD-3-Clause
def compute_ANOVA(self, mu=None, mu_start=0, return_weights=0): """ Returns -2 log likelihood, the pvalue and the maximum likelihood estimate for a common mean. Parameters ---------- mu : float If a mu is specified, ANOVA is conducted with mu as the common mean. Otherwise, the common mean is the maximum empirical likelihood estimate of the common mean. Default is None. mu_start : float Starting value for commean mean if specific mu is not specified. Default = 0. return_weights : bool if TRUE, returns the weights on observations that maximize the likelihood. Default is FALSE. Returns ------- res: tuple The log-likelihood, p-value and estimate for the common mean. """ if mu is not None: llr = self._opt_common_mu(mu) pval = 1 - chi2.cdf(llr, self.num_groups - 1) if return_weights: return llr, pval, mu, self.new_weights else: return llr, pval, mu else: res = optimize.fmin_powell(self._opt_common_mu, mu_start, full_output=1, disp=False) llr = res[1] mu_common = float(np.squeeze(res[0])) pval = 1 - chi2.cdf(llr, self.num_groups - 1) if return_weights: return llr, pval, mu_common, self.new_weights else: return llr, pval, mu_common
Returns -2 log likelihood, the pvalue and the maximum likelihood estimate for a common mean. Parameters ---------- mu : float If a mu is specified, ANOVA is conducted with mu as the common mean. Otherwise, the common mean is the maximum empirical likelihood estimate of the common mean. Default is None. mu_start : float Starting value for commean mean if specific mu is not specified. Default = 0. return_weights : bool if TRUE, returns the weights on observations that maximize the likelihood. Default is FALSE. Returns ------- res: tuple The log-likelihood, p-value and estimate for the common mean.
compute_ANOVA
python
statsmodels/statsmodels
statsmodels/emplike/elanova.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/elanova.py
BSD-3-Clause
def _opt_nuis_regress(self, nuisance_params, param_nums=None, endog=None, exog=None, nobs=None, nvar=None, params=None, b0_vals=None, stochastic_exog=None): """ A function that is optimized over nuisance parameters to conduct a hypothesis test for the parameters of interest. Parameters ---------- nuisance_params: 1darray Parameters to be optimized over. Returns ------- llr : float -2 x the log-likelihood of the nuisance parameters and the hypothesized value of the parameter(s) of interest. """ params[param_nums] = b0_vals nuis_param_index = np.int_(np.delete(np.arange(nvar), param_nums)) params[nuis_param_index] = nuisance_params new_params = params.reshape(nvar, 1) self.new_params = new_params est_vect = exog * \ (endog - np.squeeze(np.dot(exog, new_params))).reshape(int(nobs), 1) if not stochastic_exog: exog_means = np.mean(exog, axis=0)[1:] exog_mom2 = (np.sum(exog * exog, axis=0))[1:]\ / nobs mean_est_vect = exog[:, 1:] - exog_means mom2_est_vect = (exog * exog)[:, 1:] - exog_mom2 regressor_est_vect = np.concatenate((mean_est_vect, mom2_est_vect), axis=1) est_vect = np.concatenate((est_vect, regressor_est_vect), axis=1) wts = np.ones(int(nobs)) * (1. / nobs) x0 = np.zeros(est_vect.shape[1]).reshape(-1, 1) try: eta_star = self._modif_newton(x0, est_vect, wts) denom = 1. + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom # the following commented out code is to verify weights # see open issue #1845 #self.new_weights /= self.new_weights.sum() #if not np.allclose(self.new_weights.sum(), 1., rtol=0, atol=1e-10): # raise RuntimeError('weights do not sum to 1') llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr except np.linalg.LinAlgError: return np.inf
A function that is optimized over nuisance parameters to conduct a hypothesis test for the parameters of interest. Parameters ---------- nuisance_params: 1darray Parameters to be optimized over. Returns ------- llr : float -2 x the log-likelihood of the nuisance parameters and the hypothesized value of the parameter(s) of interest.
_opt_nuis_regress
python
statsmodels/statsmodels
statsmodels/emplike/elregress.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/elregress.py
BSD-3-Clause
def DescStat(endog): """ Returns an instance to conduct inference on descriptive statistics via empirical likelihood. See DescStatUV and DescStatMV for more information. Parameters ---------- endog : ndarray Array of data Returns : DescStat instance If k=1, the function returns a univariate instance, DescStatUV. If k>1, the function returns a multivariate instance, DescStatMV. """ if endog.ndim == 1: endog = endog.reshape(len(endog), 1) if endog.shape[1] == 1: return DescStatUV(endog) if endog.shape[1] > 1: return DescStatMV(endog)
Returns an instance to conduct inference on descriptive statistics via empirical likelihood. See DescStatUV and DescStatMV for more information. Parameters ---------- endog : ndarray Array of data Returns : DescStat instance If k=1, the function returns a univariate instance, DescStatUV. If k>1, the function returns a multivariate instance, DescStatMV.
DescStat
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _log_star(self, eta, est_vect, weights, nobs): """ Transforms the log of observation probabilities in terms of the Lagrange multiplier to the log 'star' of the probabilities. Parameters ---------- eta : float Lagrange multiplier est_vect : ndarray (n,k) Estimating equations vector wts : nx1 array Observation weights Returns ------ data_star : ndarray The weighted logstar of the estimting equations Notes ----- This function is only a placeholder for the _fit_Newton. The function value is not used in optimization and the optimal value is disregarded when computing the log likelihood ratio. """ data_star = np.log(weights) + (np.sum(weights) +\ np.dot(est_vect, eta)) idx = data_star < 1. / nobs not_idx = ~idx nx = nobs * data_star[idx] data_star[idx] = np.log(1. / nobs) - 1.5 + nx * (2. - nx / 2) data_star[not_idx] = np.log(data_star[not_idx]) return data_star
Transforms the log of observation probabilities in terms of the Lagrange multiplier to the log 'star' of the probabilities. Parameters ---------- eta : float Lagrange multiplier est_vect : ndarray (n,k) Estimating equations vector wts : nx1 array Observation weights Returns ------ data_star : ndarray The weighted logstar of the estimting equations Notes ----- This function is only a placeholder for the _fit_Newton. The function value is not used in optimization and the optimal value is disregarded when computing the log likelihood ratio.
_log_star
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _hess(self, eta, est_vect, weights, nobs): """ Calculates the hessian of a weighted empirical likelihood problem. Parameters ---------- eta : ndarray, (1,m) Lagrange multiplier in the profile likelihood maximization est_vect : ndarray (n,k) Estimating equations vector weights : 1darray Observation weights Returns ------- hess : m x m array Weighted hessian used in _wtd_modif_newton """ #eta = np.squeeze(eta) data_star_doub_prime = np.sum(weights) + np.dot(est_vect, eta) idx = data_star_doub_prime < 1. / nobs not_idx = ~idx data_star_doub_prime[idx] = - nobs ** 2 data_star_doub_prime[not_idx] = - (data_star_doub_prime[not_idx]) ** -2 wtd_dsdp = weights * data_star_doub_prime return np.dot(est_vect.T, wtd_dsdp[:, None] * est_vect)
Calculates the hessian of a weighted empirical likelihood problem. Parameters ---------- eta : ndarray, (1,m) Lagrange multiplier in the profile likelihood maximization est_vect : ndarray (n,k) Estimating equations vector weights : 1darray Observation weights Returns ------- hess : m x m array Weighted hessian used in _wtd_modif_newton
_hess
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _grad(self, eta, est_vect, weights, nobs): """ Calculates the gradient of a weighted empirical likelihood problem Parameters ---------- eta : ndarray, (1,m) Lagrange multiplier in the profile likelihood maximization est_vect : ndarray, (n,k) Estimating equations vector weights : 1darray Observation weights Returns ------- gradient : ndarray (m,1) The gradient used in _wtd_modif_newton """ #eta = np.squeeze(eta) data_star_prime = np.sum(weights) + np.dot(est_vect, eta) idx = data_star_prime < 1. / nobs not_idx = ~idx data_star_prime[idx] = nobs * (2 - nobs * data_star_prime[idx]) data_star_prime[not_idx] = 1. / data_star_prime[not_idx] return np.dot(weights * data_star_prime, est_vect)
Calculates the gradient of a weighted empirical likelihood problem Parameters ---------- eta : ndarray, (1,m) Lagrange multiplier in the profile likelihood maximization est_vect : ndarray, (n,k) Estimating equations vector weights : 1darray Observation weights Returns ------- gradient : ndarray (m,1) The gradient used in _wtd_modif_newton
_grad
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _modif_newton(self, eta, est_vect, weights): """ Modified Newton's method for maximizing the log 'star' equation. This function calls _fit_newton to find the optimal values of eta. Parameters ---------- eta : ndarray, (1,m) Lagrange multiplier in the profile likelihood maximization est_vect : ndarray, (n,k) Estimating equations vector weights : 1darray Observation weights Returns ------- params : 1xm array Lagrange multiplier that maximizes the log-likelihood """ nobs = len(est_vect) def f(x0): return -np.sum(self._log_star(x0, est_vect, weights, nobs)) def grad(x0): return -self._grad(x0, est_vect, weights, nobs) def hess(x0): return -self._hess(x0, est_vect, weights, nobs) kwds = {'tol': 1e-8} eta = eta.squeeze() res = _fit_newton(f, grad, eta, (), kwds, hess=hess, maxiter=50, \ disp=0) return res[0]
Modified Newton's method for maximizing the log 'star' equation. This function calls _fit_newton to find the optimal values of eta. Parameters ---------- eta : ndarray, (1,m) Lagrange multiplier in the profile likelihood maximization est_vect : ndarray, (n,k) Estimating equations vector weights : 1darray Observation weights Returns ------- params : 1xm array Lagrange multiplier that maximizes the log-likelihood
_modif_newton
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _find_eta(self, eta): """ Finding the root of sum(xi-h0)/(1+eta(xi-mu)) solves for eta when computing ELR for univariate mean. Parameters ---------- eta : float Lagrange multiplier in the empirical likelihood maximization Returns ------- llr : float n times the log likelihood value for a given value of eta """ return np.sum((self.endog - self.mu0) / \ (1. + eta * (self.endog - self.mu0)))
Finding the root of sum(xi-h0)/(1+eta(xi-mu)) solves for eta when computing ELR for univariate mean. Parameters ---------- eta : float Lagrange multiplier in the empirical likelihood maximization Returns ------- llr : float n times the log likelihood value for a given value of eta
_find_eta
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _ci_limits_mu(self, mu): """ Calculates the difference between the log likelihood of mu_test and a specified critical value. Parameters ---------- mu : float Hypothesized value of the mean. Returns ------- diff : float The difference between the log likelihood value of mu0 and a specified value. """ return self.test_mean(mu)[0] - self.r0
Calculates the difference between the log likelihood of mu_test and a specified critical value. Parameters ---------- mu : float Hypothesized value of the mean. Returns ------- diff : float The difference between the log likelihood value of mu0 and a specified value.
_ci_limits_mu
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _find_gamma(self, gamma): """ Finds gamma that satisfies sum(log(n * w(gamma))) - log(r0) = 0 Used for confidence intervals for the mean Parameters ---------- gamma : float Lagrange multiplier when computing confidence interval Returns ------- diff : float The difference between the log-liklihood when the Lagrange multiplier is gamma and a pre-specified value """ denom = np.sum((self.endog - gamma) ** -1) new_weights = (self.endog - gamma) ** -1 / denom return -2 * np.sum(np.log(self.nobs * new_weights)) - \ self.r0
Finds gamma that satisfies sum(log(n * w(gamma))) - log(r0) = 0 Used for confidence intervals for the mean Parameters ---------- gamma : float Lagrange multiplier when computing confidence interval Returns ------- diff : float The difference between the log-liklihood when the Lagrange multiplier is gamma and a pre-specified value
_find_gamma
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _opt_var(self, nuisance_mu, pval=False): """ This is the function to be optimized over a nuisance mean parameter to determine the likelihood ratio for the variance Parameters ---------- nuisance_mu : float Value of a nuisance mean parameter Returns ------- llr : float Log likelihood of a pre-specified variance holding the nuisance parameter constant """ endog = self.endog nobs = self.nobs sig_data = ((endog - nuisance_mu) ** 2 \ - self.sig2_0) mu_data = (endog - nuisance_mu) est_vect = np.column_stack((mu_data, sig_data)) eta_star = self._modif_newton(np.array([1. / nobs, 1. / nobs]), est_vect, np.ones(nobs) * (1. / nobs)) denom = 1 + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) if pval: # Used for contour plotting return chi2.sf(-2 * llr, 1) return -2 * llr
This is the function to be optimized over a nuisance mean parameter to determine the likelihood ratio for the variance Parameters ---------- nuisance_mu : float Value of a nuisance mean parameter Returns ------- llr : float Log likelihood of a pre-specified variance holding the nuisance parameter constant
_opt_var
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _ci_limits_var(self, var): """ Used to determine the confidence intervals for the variance. It calls test_var and when called by an optimizer, finds the value of sig2_0 that is chi2.ppf(significance-level) Parameters ---------- var_test : float Hypothesized value of the variance Returns ------- diff : float The difference between the log likelihood ratio at var_test and a pre-specified value. """ return self.test_var(var)[0] - self.r0
Used to determine the confidence intervals for the variance. It calls test_var and when called by an optimizer, finds the value of sig2_0 that is chi2.ppf(significance-level) Parameters ---------- var_test : float Hypothesized value of the variance Returns ------- diff : float The difference between the log likelihood ratio at var_test and a pre-specified value.
_ci_limits_var
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _opt_skew(self, nuis_params): """ Called by test_skew. This function is optimized over nuisance parameters mu and sigma Parameters ---------- nuis_params : 1darray An array with a nuisance mean and variance parameter Returns ------- llr : float The log likelihood ratio of a pre-specified skewness holding the nuisance parameters constant. """ endog = self.endog nobs = self.nobs mu_data = endog - nuis_params[0] sig_data = ((endog - nuis_params[0]) ** 2) - nuis_params[1] skew_data = (((endog - nuis_params[0]) ** 3) / (nuis_params[1] ** 1.5)) - self.skew0 est_vect = np.column_stack((mu_data, sig_data, skew_data)) eta_star = self._modif_newton(np.array([1. / nobs, 1. / nobs, 1. / nobs]), est_vect, np.ones(nobs) * (1. / nobs)) denom = 1. + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr
Called by test_skew. This function is optimized over nuisance parameters mu and sigma Parameters ---------- nuis_params : 1darray An array with a nuisance mean and variance parameter Returns ------- llr : float The log likelihood ratio of a pre-specified skewness holding the nuisance parameters constant.
_opt_skew
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _opt_kurt(self, nuis_params): """ Called by test_kurt. This function is optimized over nuisance parameters mu and sigma Parameters ---------- nuis_params : 1darray An array with a nuisance mean and variance parameter Returns ------- llr : float The log likelihood ratio of a pre-speified kurtosis holding the nuisance parameters constant """ endog = self.endog nobs = self.nobs mu_data = endog - nuis_params[0] sig_data = ((endog - nuis_params[0]) ** 2) - nuis_params[1] kurt_data = ((((endog - nuis_params[0]) ** 4) / \ (nuis_params[1] ** 2)) - 3) - self.kurt0 est_vect = np.column_stack((mu_data, sig_data, kurt_data)) eta_star = self._modif_newton(np.array([1. / nobs, 1. / nobs, 1. / nobs]), est_vect, np.ones(nobs) * (1. / nobs)) denom = 1 + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr
Called by test_kurt. This function is optimized over nuisance parameters mu and sigma Parameters ---------- nuis_params : 1darray An array with a nuisance mean and variance parameter Returns ------- llr : float The log likelihood ratio of a pre-speified kurtosis holding the nuisance parameters constant
_opt_kurt
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _opt_skew_kurt(self, nuis_params): """ Called by test_joint_skew_kurt. This function is optimized over nuisance parameters mu and sigma Parameters ---------- nuis_params : 1darray An array with a nuisance mean and variance parameter Returns ------ llr : float The log likelihood ratio of a pre-speified skewness and kurtosis holding the nuisance parameters constant. """ endog = self.endog nobs = self.nobs mu_data = endog - nuis_params[0] sig_data = ((endog - nuis_params[0]) ** 2) - nuis_params[1] skew_data = (((endog - nuis_params[0]) ** 3) / \ (nuis_params[1] ** 1.5)) - self.skew0 kurt_data = ((((endog - nuis_params[0]) ** 4) / \ (nuis_params[1] ** 2)) - 3) - self.kurt0 est_vect = np.column_stack((mu_data, sig_data, skew_data, kurt_data)) eta_star = self._modif_newton(np.array([1. / nobs, 1. / nobs, 1. / nobs, 1. / nobs]), est_vect, np.ones(nobs) * (1. / nobs)) denom = 1. + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr
Called by test_joint_skew_kurt. This function is optimized over nuisance parameters mu and sigma Parameters ---------- nuis_params : 1darray An array with a nuisance mean and variance parameter Returns ------ llr : float The log likelihood ratio of a pre-speified skewness and kurtosis holding the nuisance parameters constant.
_opt_skew_kurt
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _ci_limits_skew(self, skew): """ Parameters ---------- skew0 : float Hypothesized value of skewness Returns ------- diff : float The difference between the log likelihood ratio at skew and a pre-specified value. """ return self.test_skew(skew)[0] - self.r0
Parameters ---------- skew0 : float Hypothesized value of skewness Returns ------- diff : float The difference between the log likelihood ratio at skew and a pre-specified value.
_ci_limits_skew
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _ci_limits_kurt(self, kurt): """ Parameters ---------- skew0 : float Hypothesized value of kurtosis Returns ------- diff : float The difference between the log likelihood ratio at kurt and a pre-specified value. """ return self.test_kurt(kurt)[0] - self.r0
Parameters ---------- skew0 : float Hypothesized value of kurtosis Returns ------- diff : float The difference between the log likelihood ratio at kurt and a pre-specified value.
_ci_limits_kurt
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def _opt_correl(self, nuis_params, corr0, endog, nobs, x0, weights0): """ Parameters ---------- nuis_params : 1darray Array containing two nuisance means and two nuisance variances Returns ------- llr : float The log-likelihood of the correlation coefficient holding nuisance parameters constant """ mu1_data, mu2_data = (endog - nuis_params[::2]).T sig1_data = mu1_data ** 2 - nuis_params[1] sig2_data = mu2_data ** 2 - nuis_params[3] correl_data = ((mu1_data * mu2_data) - corr0 * (nuis_params[1] * nuis_params[3]) ** .5) est_vect = np.column_stack((mu1_data, sig1_data, mu2_data, sig2_data, correl_data)) eta_star = self._modif_newton(x0, est_vect, weights0) denom = 1. + np.dot(est_vect, eta_star) self.new_weights = 1. / nobs * 1. / denom llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr
Parameters ---------- nuis_params : 1darray Array containing two nuisance means and two nuisance variances Returns ------- llr : float The log-likelihood of the correlation coefficient holding nuisance parameters constant
_opt_correl
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause
def test_mean(self, mu0, return_weights=False): """ Returns - 2 x log-likelihood ratio, p-value and weights for a hypothesis test of the mean. Parameters ---------- mu0 : float Mean value to be tested return_weights : bool If return_weights is True the function returns the weights of the observations under the null hypothesis. Default is False Returns ------- test_results : tuple The log-likelihood ratio and p-value of mu0 """ self.mu0 = mu0 endog = self.endog nobs = self.nobs eta_min = (1. - (1. / nobs)) / (self.mu0 - max(endog)) eta_max = (1. - (1. / nobs)) / (self.mu0 - min(endog)) eta_star = optimize.brentq(self._find_eta, eta_min, eta_max) new_weights = (1. / nobs) * 1. / (1. + eta_star * (endog - self.mu0)) llr = -2 * np.sum(np.log(nobs * new_weights)) if return_weights: return llr, chi2.sf(llr, 1), new_weights else: return llr, chi2.sf(llr, 1)
Returns - 2 x log-likelihood ratio, p-value and weights for a hypothesis test of the mean. Parameters ---------- mu0 : float Mean value to be tested return_weights : bool If return_weights is True the function returns the weights of the observations under the null hypothesis. Default is False Returns ------- test_results : tuple The log-likelihood ratio and p-value of mu0
test_mean
python
statsmodels/statsmodels
statsmodels/emplike/descriptive.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/emplike/descriptive.py
BSD-3-Clause