code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def whiten(self, x): """ whiten the data by linear transformation Parameters ---------- X : array_like, 1d or 2d Data to be whitened, if 2d then each row contains an independent sample of the multivariate random vector Returns ------- np.dot(x, self.cholcovinv.T) Notes ----- This only does rescaling, it does not subtract the mean, use standardize for this instead See Also -------- standardize : subtract mean and rescale to standardized random variable. """ x = np.asarray(x) if np.any(self.cov): #return np.dot(self.cholcovinv, x) return np.dot(x, self.cholcovinv.T) else: return x
whiten the data by linear transformation Parameters ---------- X : array_like, 1d or 2d Data to be whitened, if 2d then each row contains an independent sample of the multivariate random vector Returns ------- np.dot(x, self.cholcovinv.T) Notes ----- This only does rescaling, it does not subtract the mean, use standardize for this instead See Also -------- standardize : subtract mean and rescale to standardized random variable.
whiten
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/mv_normal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/mv_normal.py
BSD-3-Clause
def rvs(self, size=1): '''random variable Parameters ---------- size : int or tuple the number and shape of random variables to draw. Returns ------- rvs : ndarray the returned random variables with shape given by size and the dimension of the multivariate random vector as additional last dimension Notes ----- uses numpy.random.multivariate_normal directly ''' return np.random.multivariate_normal(self.mean, self.cov, size=size)
random variable Parameters ---------- size : int or tuple the number and shape of random variables to draw. Returns ------- rvs : ndarray the returned random variables with shape given by size and the dimension of the multivariate random vector as additional last dimension Notes ----- uses numpy.random.multivariate_normal directly
rvs
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/mv_normal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/mv_normal.py
BSD-3-Clause
def pdf(self, x): '''probability density function Parameters ---------- x : array_like can be 1d or 2d, if 2d, then each row is taken as independent multivariate random vector Returns ------- pdf : float or array probability density value of each random vector ''' return np.exp(self.logpdf(x))
probability density function Parameters ---------- x : array_like can be 1d or 2d, if 2d, then each row is taken as independent multivariate random vector Returns ------- pdf : float or array probability density value of each random vector
pdf
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/mv_normal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/mv_normal.py
BSD-3-Clause
def logpdf(self, x): '''logarithm of probability density function Parameters ---------- x : array_like can be 1d or 2d, if 2d, then each row is taken as independent multivariate random vector Returns ------- logpdf : float or array probability density value of each random vector this should be made to work with 2d x, with multivariate normal vector in each row and iid across rows does not work now because of dot in whiten ''' x = np.asarray(x) x_whitened = self.whiten(x - self.mean) SSR = np.sum(x_whitened**2, -1) llf = -SSR llf -= self.nvars * np.log(2. * np.pi) llf -= self.logdetcov llf *= 0.5 return llf
logarithm of probability density function Parameters ---------- x : array_like can be 1d or 2d, if 2d, then each row is taken as independent multivariate random vector Returns ------- logpdf : float or array probability density value of each random vector this should be made to work with 2d x, with multivariate normal vector in each row and iid across rows does not work now because of dot in whiten
logpdf
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/mv_normal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/mv_normal.py
BSD-3-Clause
def rvs(self, size=1): '''random variable Parameters ---------- size : int or tuple the number and shape of random variables to draw. Returns ------- rvs : ndarray the returned random variables with shape given by size and the dimension of the multivariate random vector as additional last dimension Notes ----- uses numpy.random.multivariate_normal directly ''' return np.random.multivariate_normal(self.mean, self.sigma, size=size)
random variable Parameters ---------- size : int or tuple the number and shape of random variables to draw. Returns ------- rvs : ndarray the returned random variables with shape given by size and the dimension of the multivariate random vector as additional last dimension Notes ----- uses numpy.random.multivariate_normal directly
rvs
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/mv_normal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/mv_normal.py
BSD-3-Clause
def logpdf(self, x): '''logarithm of probability density function Parameters ---------- x : array_like can be 1d or 2d, if 2d, then each row is taken as independent multivariate random vector Returns ------- logpdf : float or array probability density value of each random vector this should be made to work with 2d x, with multivariate normal vector in each row and iid across rows does not work now because of dot in whiten ''' x = np.asarray(x) x_whitened = self.whiten(x - self.mean) SSR = np.sum(x_whitened**2, -1) llf = -SSR llf -= self.nvars * np.log(2. * np.pi) llf -= self.logdetsigma llf *= 0.5 return llf
logarithm of probability density function Parameters ---------- x : array_like can be 1d or 2d, if 2d, then each row is taken as independent multivariate random vector Returns ------- logpdf : float or array probability density value of each random vector this should be made to work with 2d x, with multivariate normal vector in each row and iid across rows does not work now because of dot in whiten
logpdf
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/mv_normal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/mv_normal.py
BSD-3-Clause
def cdf(self, x, **kwds): '''cumulative distribution function Parameters ---------- x : array_like can be 1d or 2d, if 2d, then each row is taken as independent multivariate random vector kwds : dict contains options for the numerical calculation of the cdf Returns ------- cdf : float or array probability density value of each random vector ''' #lower = -np.inf * np.ones_like(x) #return mvstdnormcdf(lower, self.standardize(x), self.corr, **kwds) return mvnormcdf(x, self.mean, self.cov, **kwds)
cumulative distribution function Parameters ---------- x : array_like can be 1d or 2d, if 2d, then each row is taken as independent multivariate random vector kwds : dict contains options for the numerical calculation of the cdf Returns ------- cdf : float or array probability density value of each random vector
cdf
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/mv_normal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/mv_normal.py
BSD-3-Clause
def cov(self): '''covariance matrix''' return self.sigma
covariance matrix
cov
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/mv_normal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/mv_normal.py
BSD-3-Clause
def affine_transformed(self, shift, scale_matrix): '''return distribution of an affine transform for full rank scale_matrix only Parameters ---------- shift : array_like shift of mean scale_matrix : array_like linear transformation matrix Returns ------- mvt : instance of MVNormal instance of multivariate normal distribution given by affine transformation Notes ----- the affine transformation is defined by y = a + B x where a is shift, B is a scale matrix for the linear transformation Notes ----- This should also work to select marginal distributions, but not tested for this case yet. currently only tested because it's called by standardized ''' B = scale_matrix #tmp variable mean_new = np.dot(B, self.mean) + shift sigma_new = np.dot(np.dot(B, self.sigma), B.T) return MVNormal(mean_new, sigma_new)
return distribution of an affine transform for full rank scale_matrix only Parameters ---------- shift : array_like shift of mean scale_matrix : array_like linear transformation matrix Returns ------- mvt : instance of MVNormal instance of multivariate normal distribution given by affine transformation Notes ----- the affine transformation is defined by y = a + B x where a is shift, B is a scale matrix for the linear transformation Notes ----- This should also work to select marginal distributions, but not tested for this case yet. currently only tested because it's called by standardized
affine_transformed
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/mv_normal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/mv_normal.py
BSD-3-Clause
def __init__(self, mean, sigma, df): '''initialize instance Parameters ---------- mean : array_like parameter mu (might be renamed), for symmetric distributions this is the mean sigma : array_like, 2d dispersion matrix, covariance matrix in normal distribution, but only proportional to covariance matrix in t distribution args : list distribution specific arguments, e.g. df for t distribution kwds : dict currently not used ''' super().__init__(mean, sigma) self.extra_args = ['df'] #overwrites extra_args of super self.df = df
initialize instance Parameters ---------- mean : array_like parameter mu (might be renamed), for symmetric distributions this is the mean sigma : array_like, 2d dispersion matrix, covariance matrix in normal distribution, but only proportional to covariance matrix in t distribution args : list distribution specific arguments, e.g. df for t distribution kwds : dict currently not used
__init__
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/mv_normal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/mv_normal.py
BSD-3-Clause
def rvs(self, size=1): '''random variables with Student T distribution Parameters ---------- size : int or tuple the number and shape of random variables to draw. Returns ------- rvs : ndarray the returned random variables with shape given by size and the dimension of the multivariate random vector as additional last dimension - TODO: Not sure if this works for size tuples with len>1. Notes ----- generated as a chi-square mixture of multivariate normal random variables. does this require df>2 ? ''' from .multivariate import multivariate_t_rvs return multivariate_t_rvs(self.mean, self.sigma, df=self.df, n=size)
random variables with Student T distribution Parameters ---------- size : int or tuple the number and shape of random variables to draw. Returns ------- rvs : ndarray the returned random variables with shape given by size and the dimension of the multivariate random vector as additional last dimension - TODO: Not sure if this works for size tuples with len>1. Notes ----- generated as a chi-square mixture of multivariate normal random variables. does this require df>2 ?
rvs
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/mv_normal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/mv_normal.py
BSD-3-Clause
def logpdf(self, x): '''logarithm of probability density function Parameters ---------- x : array_like can be 1d or 2d, if 2d, then each row is taken as independent multivariate random vector Returns ------- logpdf : float or array probability density value of each random vector ''' x = np.asarray(x) df = self.df nvars = self.nvars x_whitened = self.whiten(x - self.mean) #should be float llf = - nvars * np_log(df * np_pi) llf -= self.logdetsigma llf -= (df + nvars) * np_log(1 + np.sum(x_whitened**2,-1) / df) llf *= 0.5 llf += sps_gamln((df + nvars) / 2.) - sps_gamln(df / 2.) return llf
logarithm of probability density function Parameters ---------- x : array_like can be 1d or 2d, if 2d, then each row is taken as independent multivariate random vector Returns ------- logpdf : float or array probability density value of each random vector
logpdf
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/mv_normal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/mv_normal.py
BSD-3-Clause
def cdf(self, x, **kwds): '''cumulative distribution function Parameters ---------- x : array_like can be 1d or 2d, if 2d, then each row is taken as independent multivariate random vector kwds : dict contains options for the numerical calculation of the cdf Returns ------- cdf : float or array probability density value of each random vector ''' lower = -np.inf * np.ones_like(x) #std_sigma = np.sqrt(np.diag(self.sigma)) upper = (x - self.mean)/self.std_sigma return mvstdtprob(lower, upper, self.corr, self.df, **kwds)
cumulative distribution function Parameters ---------- x : array_like can be 1d or 2d, if 2d, then each row is taken as independent multivariate random vector kwds : dict contains options for the numerical calculation of the cdf Returns ------- cdf : float or array probability density value of each random vector
cdf
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/mv_normal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/mv_normal.py
BSD-3-Clause
def cov(self): '''covariance matrix The covariance matrix for the t distribution does not exist for df<=2, and is equal to sigma * df/(df-2) for df>2 ''' if self.df <= 2: return np.nan * np.ones_like(self.sigma) else: return self.df / (self.df - 2.) * self.sigma
covariance matrix The covariance matrix for the t distribution does not exist for df<=2, and is equal to sigma * df/(df-2) for df>2
cov
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/mv_normal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/mv_normal.py
BSD-3-Clause
def affine_transformed(self, shift, scale_matrix): '''return distribution of a full rank affine transform for full rank scale_matrix only Parameters ---------- shift : array_like shift of mean scale_matrix : array_like linear transformation matrix Returns ------- mvt : instance of MVT instance of multivariate t distribution given by affine transformation Notes ----- This checks for eigvals<=0, so there are possible problems for cases with positive eigenvalues close to zero. see: http://www.statlect.com/mcdstu1.htm I'm not sure about general case, non-full rank transformation are not multivariate t distributed. y = a + B x where a is shift, B is full rank scale matrix with same dimension as sigma ''' #full rank method could also be in elliptical and called with super #after the rank check B = scale_matrix #tmp variable as shorthand if not B.shape == (self.nvars, self.nvars): if (np.linalg.eigvals(B) <= 0).any(): raise ValueError('affine transform has to be full rank') mean_new = np.dot(B, self.mean) + shift sigma_new = np.dot(np.dot(B, self.sigma), B.T) return MVT(mean_new, sigma_new, self.df)
return distribution of a full rank affine transform for full rank scale_matrix only Parameters ---------- shift : array_like shift of mean scale_matrix : array_like linear transformation matrix Returns ------- mvt : instance of MVT instance of multivariate t distribution given by affine transformation Notes ----- This checks for eigvals<=0, so there are possible problems for cases with positive eigenvalues close to zero. see: http://www.statlect.com/mcdstu1.htm I'm not sure about general case, non-full rank transformation are not multivariate t distributed. y = a + B x where a is shift, B is full rank scale matrix with same dimension as sigma
affine_transformed
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/mv_normal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/mv_normal.py
BSD-3-Clause
def mc2mvsk(args): '''convert central moments to mean, variance, skew, kurtosis ''' mc, mc2, mc3, mc4 = args skew = np.divide(mc3, mc2**1.5) kurt = np.divide(mc4, mc2**2.0) - 3.0 return (mc, mc2, skew, kurt)
convert central moments to mean, variance, skew, kurtosis
mc2mvsk
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/tests/check_moments.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/tests/check_moments.py
BSD-3-Clause
def mnc2mvsk(args): '''convert central moments to mean, variance, skew, kurtosis ''' #convert four non-central moments to central moments mnc, mnc2, mnc3, mnc4 = args mc = mnc mc2 = mnc2 - mnc*mnc mc3 = mnc3 - (3*mc*mc2+mc**3) # 3rd central moment mc4 = mnc4 - (4*mc*mc3+6*mc*mc*mc2+mc**4) return mc2mvsk((mc, mc2, mc3, mc4))
convert central moments to mean, variance, skew, kurtosis
mnc2mvsk
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/tests/check_moments.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/tests/check_moments.py
BSD-3-Clause
def nct_kurt_bug(): '''test for incorrect kurtosis of nct D. Hogben, R. S. Pinkham, M. B. Wilk: The Moments of the Non-Central t-DistributionAuthor(s): Biometrika, Vol. 48, No. 3/4 (Dec., 1961), pp. 465-468 ''' from numpy.testing import assert_almost_equal mvsk_10_1 = (1.08372, 1.325546, 0.39993, 1.2499424941142943) assert_almost_equal(stats.nct.stats(10, 1, moments='mvsk'), mvsk_10_1, decimal=6) c1=np.array([1.08372]) c2=np.array([.0755460, 1.25000]) c3 = np.array([.0297802, .580566]) np.array([0.0425458, 1.17491, 6.25]) #calculation for df=10, for arbitrary nc nc = 1 mc1 = c1.item() mc2 = (c2*nc**np.array([2,0])).sum() mc3 = (c3*nc**np.array([3,1])).sum() mc4 = np.array([0.0425458, 1.17491, 6.25]) mc2mvsk((mc1,mc2,mc3,mc4))
test for incorrect kurtosis of nct D. Hogben, R. S. Pinkham, M. B. Wilk: The Moments of the Non-Central t-DistributionAuthor(s): Biometrika, Vol. 48, No. 3/4 (Dec., 1961), pp. 465-468
nct_kurt_bug
python
statsmodels/statsmodels
statsmodels/sandbox/distributions/tests/check_moments.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/distributions/tests/check_moments.py
BSD-3-Clause
def calc_factors(self, x=None, keepdim=0, addconst=True): '''get factor decomposition of exogenous variables This uses principal component analysis to obtain the factors. The number of factors kept is the maximum that will be considered in the regression. ''' if x is None: x = self.exog else: x = np.asarray(x) xred, fact, evals, evecs = pca(x, keepdim=keepdim, normalize=1) self.exog_reduced = xred #self.factors = fact if addconst: self.factors = sm.add_constant(fact, prepend=True) self.hasconst = 1 #needs to be int else: self.factors = fact self.hasconst = 0 #needs to be int self.evals = evals self.evecs = evecs
get factor decomposition of exogenous variables This uses principal component analysis to obtain the factors. The number of factors kept is the maximum that will be considered in the regression.
calc_factors
python
statsmodels/statsmodels
statsmodels/sandbox/datarich/factormodels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/datarich/factormodels.py
BSD-3-Clause
def fit_find_nfact(self, maxfact=None, skip_crossval=True, cv_iter=None): '''estimate the model and selection criteria for up to maxfact factors The selection criteria that are calculated are AIC, BIC, and R2_adj. and additionally cross-validation prediction error sum of squares if `skip_crossval` is false. Cross-validation is not used by default because it can be time consuming to calculate. By default the cross-validation method is Leave-one-out on the full dataset. A different cross-validation sample can be specified as an argument to cv_iter. Results are attached in `results_find_nfact` ''' #print 'OLS on Factors' if not hasattr(self, 'factors'): self.calc_factors() hasconst = self.hasconst if maxfact is None: maxfact = self.factors.shape[1] - hasconst if (maxfact+hasconst) < 1: raise ValueError('nothing to do, number of factors (incl. constant) should ' + 'be at least 1') #temporary safety maxfact = min(maxfact, 10) y0 = self.endog results = [] #xred, fact, eva, eve = pca(x0, keepdim=0, normalize=1) for k in range(1, maxfact+hasconst): #k includes now the constnat #xred, fact, eva, eve = pca(x0, keepdim=k, normalize=1) # this is faster and same result fact = self.factors[:,:k] res = sm.OLS(y0, fact).fit() ## print 'k =', k ## print res.params ## print 'aic: ', res.aic ## print 'bic: ', res.bic ## print 'llf: ', res.llf ## print 'R2 ', res.rsquared ## print 'R2 adj', res.rsquared_adj if not skip_crossval: if cv_iter is None: cv_iter = LeaveOneOut(len(y0)) prederr2 = 0. for inidx, outidx in cv_iter: res_l1o = sm.OLS(y0[inidx], fact[inidx,:]).fit() #print data.endog[outidx], res.model.predict(data.exog[outidx,:]), prederr2 += (y0[outidx] - res_l1o.model.predict(res_l1o.params, fact[outidx,:]))**2. else: prederr2 = np.nan results.append([k, res.aic, res.bic, res.rsquared_adj, prederr2]) self.results_find_nfact = results = np.array(results) self.best_nfact = np.r_[(np.argmin(results[:,1:3],0), np.argmax(results[:,3],0), np.argmin(results[:,-1],0))]
estimate the model and selection criteria for up to maxfact factors The selection criteria that are calculated are AIC, BIC, and R2_adj. and additionally cross-validation prediction error sum of squares if `skip_crossval` is false. Cross-validation is not used by default because it can be time consuming to calculate. By default the cross-validation method is Leave-one-out on the full dataset. A different cross-validation sample can be specified as an argument to cv_iter. Results are attached in `results_find_nfact`
fit_find_nfact
python
statsmodels/statsmodels
statsmodels/sandbox/datarich/factormodels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/datarich/factormodels.py
BSD-3-Clause
def summary_find_nfact(self): '''provides a summary for the selection of the number of factors Returns ------- sumstr : str summary of the results for selecting the number of factors ''' if not hasattr(self, 'results_find_nfact'): self.fit_find_nfact() results = self.results_find_nfact sumstr = '' sumstr += '\n' + 'Best result for k, by AIC, BIC, R2_adj, L1O' # best = np.r_[(np.argmin(results[:,1:3],0), np.argmax(results[:,3],0), # np.argmin(results[:,-1],0))] sumstr += '\n' + ' '*19 + '%5d %4d %6d %5d' % tuple(self.best_nfact) from statsmodels.iolib.table import SimpleTable headers = 'k, AIC, BIC, R2_adj, L1O'.split(', ') numformat = ['%6d'] + ['%10.3f']*4 #'%10.4f' txt_fmt1 = dict(data_fmts = numformat) tabl = SimpleTable(results, headers, None, txt_fmt=txt_fmt1) sumstr += '\n' + "PCA regression on simulated data," sumstr += '\n' + "DGP: 2 factors and 4 explanatory variables" sumstr += '\n' + tabl.__str__() sumstr += '\n' + "Notes: k is number of components of PCA," sumstr += '\n' + " constant is added additionally" sumstr += '\n' + " k=0 means regression on constant only" sumstr += '\n' + " L1O: sum of squared prediction errors for leave-one-out" return sumstr
provides a summary for the selection of the number of factors Returns ------- sumstr : str summary of the results for selecting the number of factors
summary_find_nfact
python
statsmodels/statsmodels
statsmodels/sandbox/datarich/factormodels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/datarich/factormodels.py
BSD-3-Clause
def __repr__(self): """Provide something sane to print.""" repr = "Single Index Model \n" repr += "Number of variables: K = " + str(self.K) + "\n" repr += "Number of samples: nobs = " + str(self.nobs) + "\n" repr += "Variable types: " + self.var_type + "\n" repr += "BW selection method: cv_ls" + "\n" repr += "Estimator type: local constant" + "\n" return repr
Provide something sane to print.
__repr__
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernel_extras.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernel_extras.py
BSD-3-Clause
def _est_b_bw(self): """ Computes the (beta) coefficients and the bandwidths. Minimizes ``cv_loo`` with respect to ``b`` and ``bw``. """ params0 = np.random.uniform(size=(self.k_linear + self.K, )) b_bw = optimize.fmin(self.cv_loo, params0, disp=0) b = b_bw[0 : self.k_linear] bw = b_bw[self.k_linear:] #bw = self._set_bw_bounds(np.asarray(bw)) return b, bw
Computes the (beta) coefficients and the bandwidths. Minimizes ``cv_loo`` with respect to ``b`` and ``bw``.
_est_b_bw
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernel_extras.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernel_extras.py
BSD-3-Clause
def cv_loo(self, params): """ Similar to the cross validation leave-one-out estimator. Modified to reflect the linear components. Parameters ---------- params : array_like Vector consisting of the coefficients (b) and the bandwidths (bw). The first ``k_linear`` elements are the coefficients. Returns ------- L : float The value of the objective function References ---------- See p.254 in [1] """ params = np.asarray(params) b = params[0 : self.k_linear] bw = params[self.k_linear:] LOO_X = LeaveOneOut(self.exog) LOO_Y = LeaveOneOut(self.endog).__iter__() LOO_Z = LeaveOneOut(self.exog_nonparametric).__iter__() Xb = np.dot(self.exog, b)[:,None] L = 0 for ii, X_not_i in enumerate(LOO_X): Y = next(LOO_Y) Z = next(LOO_Z) Xb_j = np.dot(X_not_i, b)[:,None] Yx = Y - Xb_j G = self.func(bw, endog=Yx, exog=-Z, data_predict=-self.exog_nonparametric[ii, :])[0] lt = Xb[ii, :] #.sum() # linear term L += (self.endog[ii] - lt - G) ** 2 return L
Similar to the cross validation leave-one-out estimator. Modified to reflect the linear components. Parameters ---------- params : array_like Vector consisting of the coefficients (b) and the bandwidths (bw). The first ``k_linear`` elements are the coefficients. Returns ------- L : float The value of the objective function References ---------- See p.254 in [1]
cv_loo
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernel_extras.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernel_extras.py
BSD-3-Clause
def fit(self, exog_predict=None, exog_nonparametric_predict=None): """Computes fitted values and marginal effects""" if exog_predict is None: exog_predict = self.exog else: exog_predict = _adjust_shape(exog_predict, self.k_linear) if exog_nonparametric_predict is None: exog_nonparametric_predict = self.exog_nonparametric else: exog_nonparametric_predict = _adjust_shape(exog_nonparametric_predict, self.K) N_data_predict = np.shape(exog_nonparametric_predict)[0] mean = np.empty((N_data_predict,)) mfx = np.empty((N_data_predict, self.K)) Y = self.endog - np.dot(exog_predict, self.b)[:,None] for i in range(N_data_predict): mean_mfx = self.func(self.bw, Y, self.exog_nonparametric, data_predict=exog_nonparametric_predict[i, :]) mean[i] = mean_mfx[0] mfx_c = np.squeeze(mean_mfx[1]) mfx[i, :] = mfx_c return mean, mfx
Computes fitted values and marginal effects
fit
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernel_extras.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernel_extras.py
BSD-3-Clause
def __repr__(self): """Provide something sane to print.""" repr = "Semiparamatric Partially Linear Model \n" repr += "Number of variables: K = " + str(self.K) + "\n" repr += "Number of samples: N = " + str(self.nobs) + "\n" repr += "Variable types: " + self.var_type + "\n" repr += "BW selection method: cv_ls" + "\n" repr += "Estimator type: local constant" + "\n" return repr
Provide something sane to print.
__repr__
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernel_extras.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernel_extras.py
BSD-3-Clause
def inner_cont(polys, lower, upper, weight=None): '''inner product of continuous function (with weight=1) Parameters ---------- polys : list of callables polynomial instances lower : float lower integration limit upper : float upper integration limit weight : callable or None weighting function Returns ------- innp : ndarray symmetric 2d square array with innerproduct of all function pairs err : ndarray numerical error estimate from scipy.integrate.quad, same dimension as innp Examples -------- >>> from scipy.special import chebyt >>> polys = [chebyt(i) for i in range(4)] >>> r, e = inner_cont(polys, -1, 1) >>> r array([[ 2. , 0. , -0.66666667, 0. ], [ 0. , 0.66666667, 0. , -0.4 ], [-0.66666667, 0. , 0.93333333, 0. ], [ 0. , -0.4 , 0. , 0.97142857]]) ''' n_polys = len(polys) innerprod = np.empty((n_polys, n_polys)) innerprod.fill(np.nan) interr = np.zeros((n_polys, n_polys)) for i in range(n_polys): for j in range(i+1): p1 = polys[i] p2 = polys[j] if weight is not None: innp, err = integrate.quad(lambda x: p1(x)*p2(x)*weight(x), lower, upper) else: innp, err = integrate.quad(lambda x: p1(x)*p2(x), lower, upper) innerprod[i,j] = innp interr[i,j] = err if not i == j: innerprod[j,i] = innp interr[j,i] = err return innerprod, interr
inner product of continuous function (with weight=1) Parameters ---------- polys : list of callables polynomial instances lower : float lower integration limit upper : float upper integration limit weight : callable or None weighting function Returns ------- innp : ndarray symmetric 2d square array with innerproduct of all function pairs err : ndarray numerical error estimate from scipy.integrate.quad, same dimension as innp Examples -------- >>> from scipy.special import chebyt >>> polys = [chebyt(i) for i in range(4)] >>> r, e = inner_cont(polys, -1, 1) >>> r array([[ 2. , 0. , -0.66666667, 0. ], [ 0. , 0.66666667, 0. , -0.4 ], [-0.66666667, 0. , 0.93333333, 0. ], [ 0. , -0.4 , 0. , 0.97142857]])
inner_cont
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/densityorthopoly.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/densityorthopoly.py
BSD-3-Clause
def is_orthonormal_cont(polys, lower, upper, rtol=0, atol=1e-08): '''check whether functions are orthonormal Parameters ---------- polys : list of polynomials or function Returns ------- is_orthonormal : bool is False if the innerproducts are not close to 0 or 1 Notes ----- this stops as soon as the first deviation from orthonormality is found. Examples -------- >>> from scipy.special import chebyt >>> polys = [chebyt(i) for i in range(4)] >>> r, e = inner_cont(polys, -1, 1) >>> r array([[ 2. , 0. , -0.66666667, 0. ], [ 0. , 0.66666667, 0. , -0.4 ], [-0.66666667, 0. , 0.93333333, 0. ], [ 0. , -0.4 , 0. , 0.97142857]]) >>> is_orthonormal_cont(polys, -1, 1, atol=1e-6) False >>> polys = [ChebyTPoly(i) for i in range(4)] >>> r, e = inner_cont(polys, -1, 1) >>> r array([[ 1.00000000e+00, 0.00000000e+00, -9.31270888e-14, 0.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, -9.47850712e-15], [ -9.31270888e-14, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, -9.47850712e-15, 0.00000000e+00, 1.00000000e+00]]) >>> is_orthonormal_cont(polys, -1, 1, atol=1e-6) True ''' for i in range(len(polys)): for j in range(i+1): p1 = polys[i] p2 = polys[j] innerprod = integrate.quad(lambda x: p1(x)*p2(x), lower, upper)[0] #print i,j, innerprod if not np.allclose(innerprod, i==j, rtol=rtol, atol=atol): return False return True
check whether functions are orthonormal Parameters ---------- polys : list of polynomials or function Returns ------- is_orthonormal : bool is False if the innerproducts are not close to 0 or 1 Notes ----- this stops as soon as the first deviation from orthonormality is found. Examples -------- >>> from scipy.special import chebyt >>> polys = [chebyt(i) for i in range(4)] >>> r, e = inner_cont(polys, -1, 1) >>> r array([[ 2. , 0. , -0.66666667, 0. ], [ 0. , 0.66666667, 0. , -0.4 ], [-0.66666667, 0. , 0.93333333, 0. ], [ 0. , -0.4 , 0. , 0.97142857]]) >>> is_orthonormal_cont(polys, -1, 1, atol=1e-6) False >>> polys = [ChebyTPoly(i) for i in range(4)] >>> r, e = inner_cont(polys, -1, 1) >>> r array([[ 1.00000000e+00, 0.00000000e+00, -9.31270888e-14, 0.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, -9.47850712e-15], [ -9.31270888e-14, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, -9.47850712e-15, 0.00000000e+00, 1.00000000e+00]]) >>> is_orthonormal_cont(polys, -1, 1, atol=1e-6) True
is_orthonormal_cont
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/densityorthopoly.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/densityorthopoly.py
BSD-3-Clause
def fit(self, x, polybase=None, order=5, limits=None): '''estimate the orthogonal polynomial approximation to the density ''' if polybase is None: polys = self.polys[:order] else: self.polybase = polybase self.polys = polys = [polybase(i) for i in range(order)] #move to init ? if not hasattr(self, 'offsetfac'): self.offsetfac = polys[0].offsetfactor xmin, xmax = x.min(), x.max() if limits is None: self.offset = offset = (xmax - xmin) * self.offsetfac limits = self.limits = (xmin - offset, xmax + offset) interval_length = limits[1] - limits[0] xinterval = xmax - xmin # need to cover (half-)open intervalls self.shrink = 1. / interval_length #xinterval/interval_length offset = (interval_length - xinterval ) / 2. self.shift = xmin - offset self.x = x = self._transform(x) coeffs = [(p(x)).mean() for p in polys] self.coeffs = coeffs self.polys = polys self._verify() #verify that it is a proper density return self #coeffs, polys
estimate the orthogonal polynomial approximation to the density
fit
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/densityorthopoly.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/densityorthopoly.py
BSD-3-Clause
def __call__(self, xeval): '''alias for evaluate, except no order argument''' return self.evaluate(xeval)
alias for evaluate, except no order argument
__call__
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/densityorthopoly.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/densityorthopoly.py
BSD-3-Clause
def _verify(self): '''check for bona fide density correction currently only checks that density integrates to 1 ` non-negativity - NotImplementedYet ''' #watch out for circular/recursive usage #evaluate uses domain of data, we stay offset away from bounds intdomain = self.limits #self.polys[0].intdomain self._corfactor = 1./integrate.quad(self.evaluate, *intdomain)[0] #self._corshift = 0 #self._corfactor return self._corfactor
check for bona fide density correction currently only checks that density integrates to 1 ` non-negativity - NotImplementedYet
_verify
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/densityorthopoly.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/densityorthopoly.py
BSD-3-Clause
def _correction(self, x): '''bona fide density correction affine shift of density to make it into a proper density ''' if self._corfactor != 1: x *= self._corfactor if self._corshift != 0: x += self._corshift return x
bona fide density correction affine shift of density to make it into a proper density
_correction
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/densityorthopoly.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/densityorthopoly.py
BSD-3-Clause
def _transform(self, x): # limits=None): '''transform observation to the domain of the density uses shrink and shift attribute which are set in fit to stay ''' #use domain from first instance #class does not have domain self.polybase.domain[0] AttributeError domain = self.polys[0].domain ilen = (domain[1] - domain[0]) shift = self.shift - domain[0]/self.shrink/ilen shrink = self.shrink * ilen return (x - shift) * shrink
transform observation to the domain of the density uses shrink and shift attribute which are set in fit to stay
_transform
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/densityorthopoly.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/densityorthopoly.py
BSD-3-Clause
def getH(self): """Getter for kernel bandwidth, H""" return self._H
Getter for kernel bandwidth, H
getH
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def setH(self, value): """Setter for kernel bandwidth, H""" self._H = value
Setter for kernel bandwidth, H
setH
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def _kernweight(self, x ): """returns the kernel weight for the independent multivariate kernel""" if isinstance( self._kernels, CustomKernel ): ## Radial case #d = x.T * x #x is matrix, 2d, element wise sqrt looks wrong #d = np.sqrt( x.T * x ) x = np.asarray(x) #d = np.sqrt( (x * x).sum(-1) ) d = (x * x).sum(-1) return self._kernels( np.asarray(d) )
returns the kernel weight for the independent multivariate kernel
_kernweight
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def __call__(self, x): """ This simply returns the value of the kernel function at x Does the same as weight if the function is normalised """ return self._kernweight(x)
This simply returns the value of the kernel function at x Does the same as weight if the function is normalised
__call__
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def __init__(self, shape, h = 1.0, domain = None, norm = None): """ shape should be a function taking and returning numeric type. For sanity it should always return positive or zero but this is not enforced in case you want to do weird things. Bear in mind that the statistical tests etc. may not be valid for non-positive kernels. The bandwidth of the kernel is supplied as h. You may specify a domain as a list of 2 values [min, max], in which case kernel will be treated as zero outside these values. This will speed up calculation. You may also specify the normalisation constant for the supplied Kernel. If you do this number will be stored and used as the normalisation without calculation. It is recommended you do this if you know the constant, to speed up calculation. In particular if the shape function provided is already normalised you should provide norm = 1.0. Warning: I think several calculations assume that the kernel is normalized. No tests for non-normalized kernel. """ self._normconst = norm # a value or None, if None, then calculate self.domain = domain self.weights = None if callable(shape): self._shape = shape else: raise TypeError("shape must be a callable object/function") self._h = h self._L2Norm = None self._kernel_var = None self._normal_reference_constant = None self._order = None
shape should be a function taking and returning numeric type. For sanity it should always return positive or zero but this is not enforced in case you want to do weird things. Bear in mind that the statistical tests etc. may not be valid for non-positive kernels. The bandwidth of the kernel is supplied as h. You may specify a domain as a list of 2 values [min, max], in which case kernel will be treated as zero outside these values. This will speed up calculation. You may also specify the normalisation constant for the supplied Kernel. If you do this number will be stored and used as the normalisation without calculation. It is recommended you do this if you know the constant, to speed up calculation. In particular if the shape function provided is already normalised you should provide norm = 1.0. Warning: I think several calculations assume that the kernel is normalized. No tests for non-normalized kernel.
__init__
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def geth(self): """Getter for kernel bandwidth, h""" return self._h
Getter for kernel bandwidth, h
geth
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def seth(self, value): """Setter for kernel bandwidth, h""" self._h = value
Setter for kernel bandwidth, h
seth
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def isInDomain(xy): """Used for filter to check if point is in the domain""" u = (xy[0]-x)/self.h return np.all((u >= self.domain[0]) & (u <= self.domain[1]))
Used for filter to check if point is in the domain
in_domain.isInDomain
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def in_domain(self, xs, ys, x): """ Returns the filtered (xs, ys) based on the Kernel domain centred on x """ # Disable black-list functions: filter used for speed instead of # list-comprehension # pylint: disable-msg=W0141 def isInDomain(xy): """Used for filter to check if point is in the domain""" u = (xy[0]-x)/self.h return np.all((u >= self.domain[0]) & (u <= self.domain[1])) if self.domain is None: return (xs, ys) else: filtered = lfilter(isInDomain, lzip(xs, ys)) if len(filtered) > 0: xs, ys = lzip(*filtered) return (xs, ys) else: return ([], [])
Returns the filtered (xs, ys) based on the Kernel domain centred on x
in_domain
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def density(self, xs, x): """Returns the kernel density estimate for point x based on x-values xs """ xs = np.asarray(xs) n = len(xs) # before in_domain? if self.weights is not None: xs, weights = self.in_domain( xs, self.weights, x ) else: xs = self.in_domain( xs, xs, x )[0] xs = np.asarray(xs) #print 'len(xs)', len(xs), x if xs.ndim == 1: xs = xs[:,None] if len(xs)>0: h = self.h if self.weights is not None: w = 1 / h * np.sum(self((xs-x)/h).T * weights, axis=1) else: w = 1. / (h * n) * np.sum(self((xs-x)/h), axis=0) return w else: return np.nan
Returns the kernel density estimate for point x based on x-values xs
density
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def density_var(self, density, nobs): """approximate pointwise variance for kernel density not verified Parameters ---------- density : array_lie pdf of the kernel density nobs : int number of observations used in the KDE estimation Returns ------- kde_var : ndarray estimated variance of the density estimate Notes ----- This uses the asymptotic normal approximation to the distribution of the density estimate. """ return np.asarray(density) * self.L2Norm / self.h / nobs
approximate pointwise variance for kernel density not verified Parameters ---------- density : array_lie pdf of the kernel density nobs : int number of observations used in the KDE estimation Returns ------- kde_var : ndarray estimated variance of the density estimate Notes ----- This uses the asymptotic normal approximation to the distribution of the density estimate.
density_var
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def density_confint(self, density, nobs, alpha=0.05): """approximate pointwise confidence interval for kernel density The confidence interval is centered at the estimated density and ignores the bias of the density estimate. not verified Parameters ---------- density : array_lie pdf of the kernel density nobs : int number of observations used in the KDE estimation Returns ------- conf_int : ndarray estimated confidence interval of the density estimate, lower bound in first column and upper bound in second column Notes ----- This uses the asymptotic normal approximation to the distribution of the density estimate. The lower bound can be negative for density values close to zero. """ from scipy import stats crit = stats.norm.isf(alpha / 2.) density = np.asarray(density) half_width = crit * np.sqrt(self.density_var(density, nobs)) conf_int = np.column_stack((density - half_width, density + half_width)) return conf_int
approximate pointwise confidence interval for kernel density The confidence interval is centered at the estimated density and ignores the bias of the density estimate. not verified Parameters ---------- density : array_lie pdf of the kernel density nobs : int number of observations used in the KDE estimation Returns ------- conf_int : ndarray estimated confidence interval of the density estimate, lower bound in first column and upper bound in second column Notes ----- This uses the asymptotic normal approximation to the distribution of the density estimate. The lower bound can be negative for density values close to zero.
density_confint
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def smooth(self, xs, ys, x): """Returns the kernel smoothing estimate for point x based on x-values xs and y-values ys. Not expected to be called by the user. """ xs, ys = self.in_domain(xs, ys, x) if len(xs)>0: w = np.sum(self((xs-x)/self.h)) #TODO: change the below to broadcasting when shape is sorted v = np.sum([yy*self((xx-x)/self.h) for xx, yy in zip(xs, ys)]) return v / w else: return np.nan
Returns the kernel smoothing estimate for point x based on x-values xs and y-values ys. Not expected to be called by the user.
smooth
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def smoothvar(self, xs, ys, x): """Returns the kernel smoothing estimate of the variance at point x. """ xs, ys = self.in_domain(xs, ys, x) if len(xs) > 0: fittedvals = np.array([self.smooth(xs, ys, xx) for xx in xs]) sqresid = square( subtract(ys, fittedvals) ) w = np.sum(self((xs-x)/self.h)) v = np.sum([rr*self((xx-x)/self.h) for xx, rr in zip(xs, sqresid)]) return v / w else: return np.nan
Returns the kernel smoothing estimate of the variance at point x.
smoothvar
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def smoothconf(self, xs, ys, x, alpha=0.05): """Returns the kernel smoothing estimate with confidence 1sigma bounds """ xs, ys = self.in_domain(xs, ys, x) if len(xs) > 0: fittedvals = np.array([self.smooth(xs, ys, xx) for xx in xs]) #fittedvals = self.smooth(xs, ys, x) # x or xs in Haerdle sqresid = square( subtract(ys, fittedvals) ) w = np.sum(self((xs-x)/self.h)) #var = sqresid.sum() / (len(sqresid) - 0) # nonlocal var ? JP just trying v = np.sum([rr*self((xx-x)/self.h) for xx, rr in zip(xs, sqresid)]) var = v / w sd = np.sqrt(var) K = self.L2Norm yhat = self.smooth(xs, ys, x) from scipy import stats crit = stats.norm.isf(alpha / 2) err = crit * sd * np.sqrt(K) / np.sqrt(w * self.h * self.norm_const) return (yhat - err, yhat, yhat + err) else: return (np.nan, np.nan, np.nan)
Returns the kernel smoothing estimate with confidence 1sigma bounds
smoothconf
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def L2Norm(self): """Returns the integral of the square of the kernal from -inf to inf""" if self._L2Norm is None: def L2Func(x): return (self.norm_const * self._shape(x)) ** 2 if self.domain is None: self._L2Norm = scipy.integrate.quad(L2Func, -inf, inf)[0] else: self._L2Norm = scipy.integrate.quad(L2Func, self.domain[0], self.domain[1])[0] return self._L2Norm
Returns the integral of the square of the kernal from -inf to inf
L2Norm
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def norm_const(self): """ Normalising constant for kernel (integral from -inf to inf) """ if self._normconst is None: if self.domain is None: quadres = scipy.integrate.quad(self._shape, -inf, inf) else: quadres = scipy.integrate.quad(self._shape, self.domain[0], self.domain[1]) self._normconst = 1.0/(quadres[0]) return self._normconst
Normalising constant for kernel (integral from -inf to inf)
norm_const
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def kernel_var(self): """Returns the second moment of the kernel""" if self._kernel_var is None: def func(x): return x ** 2 * self.norm_const * self._shape(x) if self.domain is None: self._kernel_var = scipy.integrate.quad(func, -inf, inf)[0] else: self._kernel_var = scipy.integrate.quad(func, self.domain[0], self.domain[1])[0] return self._kernel_var
Returns the second moment of the kernel
kernel_var
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def normal_reference_constant(self): """ Constant used for silverman normal reference asymtotic bandwidth calculation. C = 2((pi^(1/2)*(nu!)^3 R(k))/(2nu(2nu)!kap_nu(k)^2))^(1/(2nu+1)) nu = kernel order kap_nu = nu'th moment of kernel R = kernel roughness (square of L^2 norm) Note: L2Norm property returns square of norm. """ nu = self._order if not nu == 2: msg = "Only implemented for second order kernels" raise NotImplementedError(msg) if self._normal_reference_constant is None: C = np.pi**(.5) * factorial(nu)**3 * self.L2Norm C /= (2 * nu * factorial(2 * nu) * self.moments(nu)**2) C = 2*C**(1.0/(2*nu+1)) self._normal_reference_constant = C return self._normal_reference_constant
Constant used for silverman normal reference asymtotic bandwidth calculation. C = 2((pi^(1/2)*(nu!)^3 R(k))/(2nu(2nu)!kap_nu(k)^2))^(1/(2nu+1)) nu = kernel order kap_nu = nu'th moment of kernel R = kernel roughness (square of L^2 norm) Note: L2Norm property returns square of norm.
normal_reference_constant
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def weight(self, x): """This returns the normalised weight at distance x""" return self.norm_const*self._shape(x)
This returns the normalised weight at distance x
weight
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def __call__(self, x): """ This simply returns the value of the kernel function at x Does the same as weight if the function is normalised """ return self._shape(x)
This simply returns the value of the kernel function at x Does the same as weight if the function is normalised
__call__
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def smooth(self, xs, ys, x): """Returns the kernel smoothing estimate for point x based on x-values xs and y-values ys. Not expected to be called by the user. Special implementation optimized for Biweight. """ xs, ys = self.in_domain(xs, ys, x) if len(xs) > 0: w = np.sum(square(subtract(1, square(divide(subtract(xs, x), self.h))))) v = np.sum(multiply(ys, square(subtract(1, square(divide( subtract(xs, x), self.h)))))) return v / w else: return np.nan
Returns the kernel smoothing estimate for point x based on x-values xs and y-values ys. Not expected to be called by the user. Special implementation optimized for Biweight.
smooth
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def smoothvar(self, xs, ys, x): """ Returns the kernel smoothing estimate of the variance at point x. """ xs, ys = self.in_domain(xs, ys, x) if len(xs) > 0: fittedvals = np.array([self.smooth(xs, ys, xx) for xx in xs]) rs = square(subtract(ys, fittedvals)) w = np.sum(square(subtract(1.0, square(divide(subtract(xs, x), self.h))))) v = np.sum(multiply(rs, square(subtract(1, square(divide( subtract(xs, x), self.h)))))) return v / w else: return np.nan
Returns the kernel smoothing estimate of the variance at point x.
smoothvar
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def smoothconf_(self, xs, ys, x): """Returns the kernel smoothing estimate with confidence 1sigma bounds """ xs, ys = self.in_domain(xs, ys, x) if len(xs) > 0: fittedvals = np.array([self.smooth(xs, ys, xx) for xx in xs]) rs = square(subtract(ys, fittedvals)) w = np.sum(square(subtract(1.0, square(divide(subtract(xs, x), self.h))))) v = np.sum(multiply(rs, square(subtract(1, square(divide( subtract(xs, x), self.h)))))) var = v / w sd = np.sqrt(var) K = self.L2Norm yhat = self.smooth(xs, ys, x) err = sd * K / np.sqrt(0.9375 * w * self.h) return (yhat - err, yhat, yhat + err) else: return (np.nan, np.nan, np.nan)
Returns the kernel smoothing estimate with confidence 1sigma bounds
smoothconf_
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def smooth(self, xs, ys, x): """Returns the kernel smoothing estimate for point x based on x-values xs and y-values ys. Not expected to be called by the user. Special implementation optimized for Gaussian. """ w = np.sum(exp(multiply(square(divide(subtract(xs, x), self.h)),-0.5))) v = np.sum(multiply(ys, exp(multiply(square(divide(subtract(xs, x), self.h)), -0.5)))) return v/w
Returns the kernel smoothing estimate for point x based on x-values xs and y-values ys. Not expected to be called by the user. Special implementation optimized for Gaussian.
smooth
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kernels.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kernels.py
BSD-3-Clause
def _compute_covariance_(self): '''not used''' self.inv_cov = np.linalg.inv(self.covariance) self._norm_factor = np.sqrt(np.linalg.det(2*np.pi*self.covariance)) * self.n
not used
_compute_covariance_
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/kdecovclass.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/kdecovclass.py
BSD-3-Clause
def predict(self, x): """ Returns the kernel smoothed prediction at x If x is a real number then a single value is returned. Otherwise an attempt is made to cast x to numpy.ndarray and an array of corresponding y-points is returned. """ if np.size(x) == 1: # if isinstance(x, numbers.Real): return self.Kernel.smooth(self.x, self.y, x) else: return np.array([self.Kernel.smooth(self.x, self.y, xx) for xx in np.array(x)])
Returns the kernel smoothed prediction at x If x is a real number then a single value is returned. Otherwise an attempt is made to cast x to numpy.ndarray and an array of corresponding y-points is returned.
predict
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/smoothers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/smoothers.py
BSD-3-Clause
def conf(self, x): """ Returns the fitted curve and 1-sigma upper and lower point-wise confidence. These bounds are based on variance only, and do not include the bias. If the bandwidth is much larger than the curvature of the underlying function then the bias could be large. x is the points on which you want to evaluate the fit and the errors. Alternatively if x is specified as a positive integer, then the fit and confidence bands points will be returned after every xth sample point - so they are closer together where the data is denser. """ if isinstance(x, int): sorted_x = np.sort(np.array(self.x)) confx = sorted_x[::x] conffit = self.conf(confx) return (confx, conffit) else: return np.array([self.Kernel.smoothconf(self.x, self.y, xx) for xx in x])
Returns the fitted curve and 1-sigma upper and lower point-wise confidence. These bounds are based on variance only, and do not include the bias. If the bandwidth is much larger than the curvature of the underlying function then the bias could be large. x is the points on which you want to evaluate the fit and the errors. Alternatively if x is specified as a positive integer, then the fit and confidence bands points will be returned after every xth sample point - so they are closer together where the data is denser.
conf
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/smoothers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/smoothers.py
BSD-3-Clause
def df_fit(self): '''alias of df_model for backwards compatibility ''' return self.df_model()
alias of df_model for backwards compatibility
df_fit
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/smoothers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/smoothers.py
BSD-3-Clause
def df_model(self): """ Degrees of freedom used in the fit. """ return self.order + 1
Degrees of freedom used in the fit.
df_model
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/smoothers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/smoothers.py
BSD-3-Clause
def smooth(self,*args, **kwds): '''alias for fit, for backwards compatibility, do we need it with different behavior than fit? ''' return self.fit(*args, **kwds)
alias for fit, for backwards compatibility, do we need it with different behavior than fit?
smooth
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/smoothers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/smoothers.py
BSD-3-Clause
def df_resid(self): """ Residual degrees of freedom from last fit. """ return self.N - self.order - 1
Residual degrees of freedom from last fit.
df_resid
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/smoothers.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/smoothers.py
BSD-3-Clause
def fg1(x): '''Fan and Gijbels example function 1 ''' return x + 2 * np.exp(-16 * x**2)
Fan and Gijbels example function 1
fg1
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/dgp_examples.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/dgp_examples.py
BSD-3-Clause
def fg1eu(x): '''Eubank similar to Fan and Gijbels example function 1 ''' return x + 0.5 * np.exp(-50 * (x - 0.5)**2)
Eubank similar to Fan and Gijbels example function 1
fg1eu
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/dgp_examples.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/dgp_examples.py
BSD-3-Clause
def fg2(x): '''Fan and Gijbels example function 2 ''' return np.sin(2 * x) + 2 * np.exp(-16 * x**2)
Fan and Gijbels example function 2
fg2
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/dgp_examples.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/dgp_examples.py
BSD-3-Clause
def func1(x): '''made up example with sin, square ''' return np.sin(x * 5) / x + 2. * x - 1. * x**2
made up example with sin, square
func1
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/dgp_examples.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/dgp_examples.py
BSD-3-Clause
def plot(self, scatter=True, ax=None): '''plot the mean function and optionally the scatter of the sample Parameters ---------- scatter : bool If true, then add scatterpoints of sample to plot. ax : None or matplotlib axis instance If None, then a matplotlib.pyplot figure is created, otherwise the given axis, ax, is used. Returns ------- Figure This is either the created figure instance or the one associated with ax if ax is given. ''' if ax is None: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1, 1, 1) if scatter: ax.plot(self.x, self.y, 'o', alpha=0.5) xx = np.linspace(self.x.min(), self.x.max(), 100) ax.plot(xx, self.func(xx), lw=2, color='b', label='dgp mean') return ax.figure
plot the mean function and optionally the scatter of the sample Parameters ---------- scatter : bool If true, then add scatterpoints of sample to plot. ax : None or matplotlib axis instance If None, then a matplotlib.pyplot figure is created, otherwise the given axis, ax, is used. Returns ------- Figure This is either the created figure instance or the one associated with ax if ax is given.
plot
python
statsmodels/statsmodels
statsmodels/sandbox/nonparametric/dgp_examples.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/nonparametric/dgp_examples.py
BSD-3-Clause
def mcarma22(niter=10, nsample=1000, ar=None, ma=None, sig=0.5): '''run Monte Carlo for ARMA(2,2) DGP parameters currently hard coded also sample size `nsample` was not a self contained function, used instances from outer scope now corrected ''' #nsample = 1000 #ar = [1.0, 0, 0] if ar is None: ar = [1.0, -0.55, -0.1] #ma = [1.0, 0, 0] if ma is None: ma = [1.0, 0.3, 0.2] results = [] results_bse = [] for _ in range(niter): y2 = arma_generate_sample(ar,ma,nsample+1000, sig)[-nsample:] y2 -= y2.mean() arest2 = Arma(y2) rhohat2a, cov_x2a, infodict, mesg, ier = arest2.fit((2,2)) results.append(rhohat2a) err2a = arest2.geterrors(rhohat2a) sige2a = np.sqrt(np.dot(err2a,err2a)/nsample) #print('sige2a', sige2a, #print('cov_x2a.shape', cov_x2a.shape #results_bse.append(sige2a * np.sqrt(np.diag(cov_x2a))) if cov_x2a is not None: results_bse.append(sige2a * np.sqrt(np.diag(cov_x2a))) else: results_bse.append(np.nan + np.zeros_like(rhohat2a)) return np.r_[ar[1:], ma[1:]], np.array(results), np.array(results_bse)
run Monte Carlo for ARMA(2,2) DGP parameters currently hard coded also sample size `nsample` was not a self contained function, used instances from outer scope now corrected
mcarma22
python
statsmodels/statsmodels
statsmodels/sandbox/mcevaluate/arma.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/mcevaluate/arma.py
BSD-3-Clause
def __init__(self, n): """ Leave-One-Out cross validation iterator: Provides train/test indexes to split data in train test sets Parameters ---------- n: int Total number of elements Examples -------- >>> from scikits.learn import cross_val >>> X = [[1, 2], [3, 4]] >>> y = [1, 2] >>> loo = cross_val.LeaveOneOut(2) >>> for train_index, test_index in loo: ... print "TRAIN:", train_index, "TEST:", test_index ... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y) ... print X_train, X_test, y_train, y_test TRAIN: [False True] TEST: [ True False] [[3 4]] [[1 2]] [2] [1] TRAIN: [ True False] TEST: [False True] [[1 2]] [[3 4]] [1] [2] """ self.n = n
Leave-One-Out cross validation iterator: Provides train/test indexes to split data in train test sets Parameters ---------- n: int Total number of elements Examples -------- >>> from scikits.learn import cross_val >>> X = [[1, 2], [3, 4]] >>> y = [1, 2] >>> loo = cross_val.LeaveOneOut(2) >>> for train_index, test_index in loo: ... print "TRAIN:", train_index, "TEST:", test_index ... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y) ... print X_train, X_test, y_train, y_test TRAIN: [False True] TEST: [ True False] [[3 4]] [[1 2]] [2] [1] TRAIN: [ True False] TEST: [False True] [[1 2]] [[3 4]] [1] [2]
__init__
python
statsmodels/statsmodels
statsmodels/sandbox/tools/cross_val.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/cross_val.py
BSD-3-Clause
def __init__(self, n, p): """ Leave-P-Out cross validation iterator: Provides train/test indexes to split data in train test sets Parameters ---------- n: int Total number of elements p: int Size test sets Examples -------- >>> from scikits.learn import cross_val >>> X = [[1, 2], [3, 4], [5, 6], [7, 8]] >>> y = [1, 2, 3, 4] >>> lpo = cross_val.LeavePOut(4, 2) >>> for train_index, test_index in lpo: ... print "TRAIN:", train_index, "TEST:", test_index ... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y) TRAIN: [False False True True] TEST: [ True True False False] TRAIN: [False True False True] TEST: [ True False True False] TRAIN: [False True True False] TEST: [ True False False True] TRAIN: [ True False False True] TEST: [False True True False] TRAIN: [ True False True False] TEST: [False True False True] TRAIN: [ True True False False] TEST: [False False True True] """ self.n = n self.p = p
Leave-P-Out cross validation iterator: Provides train/test indexes to split data in train test sets Parameters ---------- n: int Total number of elements p: int Size test sets Examples -------- >>> from scikits.learn import cross_val >>> X = [[1, 2], [3, 4], [5, 6], [7, 8]] >>> y = [1, 2, 3, 4] >>> lpo = cross_val.LeavePOut(4, 2) >>> for train_index, test_index in lpo: ... print "TRAIN:", train_index, "TEST:", test_index ... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y) TRAIN: [False False True True] TEST: [ True True False False] TRAIN: [False True False True] TEST: [ True False True False] TRAIN: [False True True False] TEST: [ True False False True] TRAIN: [ True False False True] TEST: [False True True False] TRAIN: [ True False True False] TEST: [False True False True] TRAIN: [ True True False False] TEST: [False False True True]
__init__
python
statsmodels/statsmodels
statsmodels/sandbox/tools/cross_val.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/cross_val.py
BSD-3-Clause
def __init__(self, n, k): """ K-Folds cross validation iterator: Provides train/test indexes to split data in train test sets Parameters ---------- n: int Total number of elements k: int number of folds Examples -------- >>> from scikits.learn import cross_val >>> X = [[1, 2], [3, 4], [1, 2], [3, 4]] >>> y = [1, 2, 3, 4] >>> kf = cross_val.KFold(4, k=2) >>> for train_index, test_index in kf: ... print "TRAIN:", train_index, "TEST:", test_index ... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y) TRAIN: [False False True True] TEST: [ True True False False] TRAIN: [ True True False False] TEST: [False False True True] Notes ----- All the folds have size trunc(n/k), the last one has the complementary """ assert k>0, ValueError('cannot have k below 1') assert k<n, ValueError('cannot have k=%d greater than %d'% (k, n)) self.n = n self.k = k
K-Folds cross validation iterator: Provides train/test indexes to split data in train test sets Parameters ---------- n: int Total number of elements k: int number of folds Examples -------- >>> from scikits.learn import cross_val >>> X = [[1, 2], [3, 4], [1, 2], [3, 4]] >>> y = [1, 2, 3, 4] >>> kf = cross_val.KFold(4, k=2) >>> for train_index, test_index in kf: ... print "TRAIN:", train_index, "TEST:", test_index ... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y) TRAIN: [False False True True] TEST: [ True True False False] TRAIN: [ True True False False] TEST: [False False True True] Notes ----- All the folds have size trunc(n/k), the last one has the complementary
__init__
python
statsmodels/statsmodels
statsmodels/sandbox/tools/cross_val.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/cross_val.py
BSD-3-Clause
def __init__(self, labels): """ Leave-One-Label_Out cross validation: Provides train/test indexes to split data in train test sets Parameters ---------- labels : list List of labels Examples -------- >>> from scikits.learn import cross_val >>> X = [[1, 2], [3, 4], [5, 6], [7, 8]] >>> y = [1, 2, 1, 2] >>> labels = [1, 1, 2, 2] >>> lol = cross_val.LeaveOneLabelOut(labels) >>> for train_index, test_index in lol: ... print "TRAIN:", train_index, "TEST:", test_index ... X_train, X_test, y_train, y_test = cross_val.split(train_index, \ test_index, X, y) ... print X_train, X_test, y_train, y_test TRAIN: [False False True True] TEST: [ True True False False] [[5 6] [7 8]] [[1 2] [3 4]] [1 2] [1 2] TRAIN: [ True True False False] TEST: [False False True True] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [1 2] """ self.labels = labels
Leave-One-Label_Out cross validation: Provides train/test indexes to split data in train test sets Parameters ---------- labels : list List of labels Examples -------- >>> from scikits.learn import cross_val >>> X = [[1, 2], [3, 4], [5, 6], [7, 8]] >>> y = [1, 2, 1, 2] >>> labels = [1, 1, 2, 2] >>> lol = cross_val.LeaveOneLabelOut(labels) >>> for train_index, test_index in lol: ... print "TRAIN:", train_index, "TEST:", test_index ... X_train, X_test, y_train, y_test = cross_val.split(train_index, \ test_index, X, y) ... print X_train, X_test, y_train, y_test TRAIN: [False False True True] TEST: [ True True False False] [[5 6] [7 8]] [[1 2] [3 4]] [1 2] [1 2] TRAIN: [ True True False False] TEST: [False False True True] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [1 2]
__init__
python
statsmodels/statsmodels
statsmodels/sandbox/tools/cross_val.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/cross_val.py
BSD-3-Clause
def split(train_indexes, test_indexes, *args): """ For each arg return a train and test subsets defined by indexes provided in train_indexes and test_indexes """ ret = [] for arg in args: arg = np.asanyarray(arg) arg_train = arg[train_indexes] arg_test = arg[test_indexes] ret.append(arg_train) ret.append(arg_test) return ret
For each arg return a train and test subsets defined by indexes provided in train_indexes and test_indexes
split
python
statsmodels/statsmodels
statsmodels/sandbox/tools/cross_val.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/cross_val.py
BSD-3-Clause
def __init__(self, n, k=1, start=None, kall=True, return_slice=True): """ KStepAhead cross validation iterator: Provides train/test indexes to split data in train test sets Parameters ---------- n: int Total number of elements k : int number of steps ahead start : int initial size of data for fitting kall : bool if true. all values for up to k-step ahead are included in the test index. If false, then only the k-th step ahead value is returnd Notes ----- I do not think this is really useful, because it can be done with a very simple loop instead. Useful as a plugin, but it could return slices instead for faster array access. Examples -------- >>> from scikits.learn import cross_val >>> X = [[1, 2], [3, 4]] >>> y = [1, 2] >>> loo = cross_val.LeaveOneOut(2) >>> for train_index, test_index in loo: ... print "TRAIN:", train_index, "TEST:", test_index ... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y) ... print X_train, X_test, y_train, y_test TRAIN: [False True] TEST: [ True False] [[3 4]] [[1 2]] [2] [1] TRAIN: [ True False] TEST: [False True] [[1 2]] [[3 4]] [1] [2] """ self.n = n self.k = k if start is None: start = int(np.trunc(n*0.25)) # pick something arbitrary self.start = start self.kall = kall self.return_slice = return_slice
KStepAhead cross validation iterator: Provides train/test indexes to split data in train test sets Parameters ---------- n: int Total number of elements k : int number of steps ahead start : int initial size of data for fitting kall : bool if true. all values for up to k-step ahead are included in the test index. If false, then only the k-th step ahead value is returnd Notes ----- I do not think this is really useful, because it can be done with a very simple loop instead. Useful as a plugin, but it could return slices instead for faster array access. Examples -------- >>> from scikits.learn import cross_val >>> X = [[1, 2], [3, 4]] >>> y = [1, 2] >>> loo = cross_val.LeaveOneOut(2) >>> for train_index, test_index in loo: ... print "TRAIN:", train_index, "TEST:", test_index ... X_train, X_test, y_train, y_test = cross_val.split(train_index, test_index, X, y) ... print X_train, X_test, y_train, y_test TRAIN: [False True] TEST: [ True False] [[3 4]] [[1 2]] [2] [1] TRAIN: [ True False] TEST: [False True] [[1 2]] [[3 4]] [1] [2]
__init__
python
statsmodels/statsmodels
statsmodels/sandbox/tools/cross_val.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/cross_val.py
BSD-3-Clause
def pca(data, keepdim=0, normalize=0, demean=True): '''principal components with eigenvector decomposition similar to princomp in matlab Parameters ---------- data : ndarray, 2d data with observations by rows and variables in columns keepdim : int number of eigenvectors to keep if keepdim is zero, then all eigenvectors are included normalize : bool if true, then eigenvectors are normalized by sqrt of eigenvalues demean : bool if true, then the column mean is subtracted from the data Returns ------- xreduced : ndarray, 2d, (nobs, nvars) projection of the data x on the kept eigenvectors factors : ndarray, 2d, (nobs, nfactors) factor matrix, given by np.dot(x, evecs) evals : ndarray, 2d, (nobs, nfactors) eigenvalues evecs : ndarray, 2d, (nobs, nfactors) eigenvectors, normalized if normalize is true Notes ----- See Also -------- pcasvd : principal component analysis using svd ''' x = np.array(data) #make copy so original does not change, maybe not necessary anymore if demean: m = x.mean(0) else: m = np.zeros(x.shape[1]) x -= m # Covariance matrix xcov = np.cov(x, rowvar=0) # Compute eigenvalues and sort into descending order evals, evecs = np.linalg.eig(xcov) indices = np.argsort(evals) indices = indices[::-1] evecs = evecs[:,indices] evals = evals[indices] if keepdim > 0 and keepdim < x.shape[1]: evecs = evecs[:,:keepdim] evals = evals[:keepdim] if normalize: #for i in range(shape(evecs)[1]): # evecs[:,i] / linalg.norm(evecs[:,i]) * sqrt(evals[i]) evecs = evecs/np.sqrt(evals) #np.sqrt(np.dot(evecs.T, evecs) * evals) # get factor matrix #x = np.dot(evecs.T, x.T) factors = np.dot(x, evecs) # get original data from reduced number of components #xreduced = np.dot(evecs.T, factors) + m #print x.shape, factors.shape, evecs.shape, m.shape xreduced = np.dot(factors, evecs.T) + m return xreduced, factors, evals, evecs
principal components with eigenvector decomposition similar to princomp in matlab Parameters ---------- data : ndarray, 2d data with observations by rows and variables in columns keepdim : int number of eigenvectors to keep if keepdim is zero, then all eigenvectors are included normalize : bool if true, then eigenvectors are normalized by sqrt of eigenvalues demean : bool if true, then the column mean is subtracted from the data Returns ------- xreduced : ndarray, 2d, (nobs, nvars) projection of the data x on the kept eigenvectors factors : ndarray, 2d, (nobs, nfactors) factor matrix, given by np.dot(x, evecs) evals : ndarray, 2d, (nobs, nfactors) eigenvalues evecs : ndarray, 2d, (nobs, nfactors) eigenvectors, normalized if normalize is true Notes ----- See Also -------- pcasvd : principal component analysis using svd
pca
python
statsmodels/statsmodels
statsmodels/sandbox/tools/tools_pca.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/tools_pca.py
BSD-3-Clause
def pcasvd(data, keepdim=0, demean=True): '''principal components with svd Parameters ---------- data : ndarray, 2d data with observations by rows and variables in columns keepdim : int number of eigenvectors to keep if keepdim is zero, then all eigenvectors are included demean : bool if true, then the column mean is subtracted from the data Returns ------- xreduced : ndarray, 2d, (nobs, nvars) projection of the data x on the kept eigenvectors factors : ndarray, 2d, (nobs, nfactors) factor matrix, given by np.dot(x, evecs) evals : ndarray, 2d, (nobs, nfactors) eigenvalues evecs : ndarray, 2d, (nobs, nfactors) eigenvectors, normalized if normalize is true See Also -------- pca : principal component analysis using eigenvector decomposition Notes ----- This does not have yet the normalize option of pca. ''' nobs, nvars = data.shape #print nobs, nvars, keepdim x = np.array(data) #make copy so original does not change if demean: m = x.mean(0) else: m = 0 ## if keepdim == 0: ## keepdim = nvars ## "print reassigning keepdim to max", keepdim x -= m U, s, v = np.linalg.svd(x.T, full_matrices=1) factors = np.dot(U.T, x.T).T #princomps if keepdim: xreduced = np.dot(factors[:,:keepdim], U[:,:keepdim].T) + m else: xreduced = data keepdim = nvars "print reassigning keepdim to max", keepdim # s = evals, U = evecs # no idea why denominator for s is with minus 1 evals = s**2/(x.shape[0]-1) #print keepdim return xreduced, factors[:,:keepdim], evals[:keepdim], U[:,:keepdim] #, v
principal components with svd Parameters ---------- data : ndarray, 2d data with observations by rows and variables in columns keepdim : int number of eigenvectors to keep if keepdim is zero, then all eigenvectors are included demean : bool if true, then the column mean is subtracted from the data Returns ------- xreduced : ndarray, 2d, (nobs, nvars) projection of the data x on the kept eigenvectors factors : ndarray, 2d, (nobs, nfactors) factor matrix, given by np.dot(x, evecs) evals : ndarray, 2d, (nobs, nfactors) eigenvalues evecs : ndarray, 2d, (nobs, nfactors) eigenvectors, normalized if normalize is true See Also -------- pca : principal component analysis using eigenvector decomposition Notes ----- This does not have yet the normalize option of pca.
pcasvd
python
statsmodels/statsmodels
statsmodels/sandbox/tools/tools_pca.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/tools_pca.py
BSD-3-Clause
def run(self, nrepl, statindices=None, dgpargs=[], statsargs=[]): '''run the actual Monte Carlo and save results Parameters ---------- nrepl : int number of Monte Carlo repetitions statindices : None or list of integers determines which values of the return of the statistic functions are stored in the Monte Carlo. Default None means the entire return. If statindices is a list of integers, then it will be used as index into the return. dgpargs : tuple optional parameters for the DGP statsargs : tuple optional parameters for the statistics function Returns ------- None, all results are attached ''' self.nrepl = nrepl self.statindices = statindices self.dgpargs = dgpargs self.statsargs = statsargs dgp = self.dgp statfun = self.statistic # name ? #introspect len of return of statfun, #possible problems with ndim>1, check ValueError mcres0 = statfun(dgp(*dgpargs), *statsargs) self.nreturn = nreturns = len(np.ravel(mcres0)) #single return statistic if statindices is None: #self.nreturn = nreturns = 1 mcres = np.zeros(nrepl) mcres[0] = mcres0 for ii in range(1, nrepl-1, nreturns): x = dgp(*dgpargs) #(1e-4+np.random.randn(nobs)).cumsum() #should I ravel? mcres[ii] = statfun(x, *statsargs) #more than one return statistic else: self.nreturn = nreturns = len(statindices) self.mcres = mcres = np.zeros((nrepl, nreturns)) mcres[0] = [mcres0[i] for i in statindices] for ii in range(1, nrepl-1): x = dgp(*dgpargs) #(1e-4+np.random.randn(nobs)).cumsum() ret = statfun(x, *statsargs) mcres[ii] = [ret[i] for i in statindices] self.mcres = mcres
run the actual Monte Carlo and save results Parameters ---------- nrepl : int number of Monte Carlo repetitions statindices : None or list of integers determines which values of the return of the statistic functions are stored in the Monte Carlo. Default None means the entire return. If statindices is a list of integers, then it will be used as index into the return. dgpargs : tuple optional parameters for the DGP statsargs : tuple optional parameters for the statistics function Returns ------- None, all results are attached
run
python
statsmodels/statsmodels
statsmodels/sandbox/tools/mctools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/mctools.py
BSD-3-Clause
def histogram(self, idx=None, critval=None): '''calculate histogram values does not do any plotting I do not remember what I wanted here, looks similar to the new cdf method, but this also does a binned pdf (self.histo) ''' if self.mcres.ndim == 2: if idx is not None: mcres = self.mcres[:,idx] else: raise ValueError('currently only 1 statistic at a time') else: mcres = self.mcres if critval is None: histo = np.histogram(mcres, bins=10) else: if not critval[0] == -np.inf: bins=np.r_[-np.inf, critval, np.inf] if not critval[0] == -np.inf: bins=np.r_[bins, np.inf] histo = np.histogram(mcres, bins=np.r_[-np.inf, critval, np.inf]) self.histo = histo self.cumhisto = np.cumsum(histo[0])*1./self.nrepl self.cumhistoreversed = np.cumsum(histo[0][::-1])[::-1]*1./self.nrepl return histo, self.cumhisto, self.cumhistoreversed
calculate histogram values does not do any plotting I do not remember what I wanted here, looks similar to the new cdf method, but this also does a binned pdf (self.histo)
histogram
python
statsmodels/statsmodels
statsmodels/sandbox/tools/mctools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/mctools.py
BSD-3-Clause
def quantiles(self, idx=None, frac=[0.01, 0.025, 0.05, 0.1, 0.975]): '''calculate quantiles of Monte Carlo results similar to ppf Parameters ---------- idx : None or list of integers List of indices into the Monte Carlo results (columns) that should be used in the calculation frac : array_like, float Defines which quantiles should be calculated. For example a frac of 0.1 finds the 10% quantile, x such that cdf(x)=0.1 Returns ------- frac : ndarray same values as input, TODO: I should drop this again ? quantiles : ndarray, (len(frac), len(idx)) the quantiles with frac in rows and idx variables in columns Notes ----- rename to ppf ? make frac required change sequence idx, frac ''' if self.mcres.ndim == 2: if idx is not None: self.mcres[:,idx] else: raise ValueError('currently only 1 statistic at a time') else: pass self.frac = frac = np.asarray(frac) mc_sorted = self.get_mc_sorted()[:,idx] return frac, mc_sorted[(self.nrepl*frac).astype(int)]
calculate quantiles of Monte Carlo results similar to ppf Parameters ---------- idx : None or list of integers List of indices into the Monte Carlo results (columns) that should be used in the calculation frac : array_like, float Defines which quantiles should be calculated. For example a frac of 0.1 finds the 10% quantile, x such that cdf(x)=0.1 Returns ------- frac : ndarray same values as input, TODO: I should drop this again ? quantiles : ndarray, (len(frac), len(idx)) the quantiles with frac in rows and idx variables in columns Notes ----- rename to ppf ? make frac required change sequence idx, frac
quantiles
python
statsmodels/statsmodels
statsmodels/sandbox/tools/mctools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/mctools.py
BSD-3-Clause
def cdf(self, x, idx=None): '''calculate cumulative probabilities of Monte Carlo results Parameters ---------- idx : None or list of integers List of indices into the Monte Carlo results (columns) that should be used in the calculation frac : array_like, float Defines which quantiles should be calculated. For example a frac of 0.1 finds the 10% quantile, x such that cdf(x)=0.1 Returns ------- x : ndarray same as input, TODO: I should drop this again ? probs : ndarray, (len(x), len(idx)) the quantiles with frac in rows and idx variables in columns ''' idx = np.atleast_1d(idx).tolist() #assure iterable, use list ? # if self.mcres.ndim == 2: # if not idx is None: # mcres = self.mcres[:,idx] # else: # raise ValueError('currently only 1 statistic at a time') # else: # mcres = self.mcres mc_sorted = self.get_mc_sorted() x = np.asarray(x) #TODO:autodetect or explicit option ? if x.ndim > 1 and x.shape[1]==len(idx): use_xi = True else: use_xi = False x_ = x #alias probs = [] for i,ix in enumerate(idx): if use_xi: x_ = x[:,i] probs.append(np.searchsorted(mc_sorted[:,ix], x_)/float(self.nrepl)) probs = np.asarray(probs).T return x, probs
calculate cumulative probabilities of Monte Carlo results Parameters ---------- idx : None or list of integers List of indices into the Monte Carlo results (columns) that should be used in the calculation frac : array_like, float Defines which quantiles should be calculated. For example a frac of 0.1 finds the 10% quantile, x such that cdf(x)=0.1 Returns ------- x : ndarray same as input, TODO: I should drop this again ? probs : ndarray, (len(x), len(idx)) the quantiles with frac in rows and idx variables in columns
cdf
python
statsmodels/statsmodels
statsmodels/sandbox/tools/mctools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/mctools.py
BSD-3-Clause
def plot_hist(self, idx, distpdf=None, bins=50, ax=None, kwds=None): '''plot the histogram against a reference distribution Parameters ---------- idx : None or list of integers List of indices into the Monte Carlo results (columns) that should be used in the calculation distpdf : callable probability density function of reference distribution bins : {int, array_like} used unchanged for matplotlibs hist call ax : TODO: not implemented yet kwds : None or tuple of dicts extra keyword options to the calls to the matplotlib functions, first dictionary is for his, second dictionary for plot of the reference distribution Returns ------- None ''' if kwds is None: kwds = ({},{}) if self.mcres.ndim == 2: if idx is not None: mcres = self.mcres[:,idx] else: raise ValueError('currently only 1 statistic at a time') else: mcres = self.mcres lsp = np.linspace(mcres.min(), mcres.max(), 100) import matplotlib.pyplot as plt #I do not want to figure this out now # if ax=None: # fig = plt.figure() # ax = fig.addaxis() plt.figure() plt.hist(mcres, bins=bins, normed=True, **kwds[0]) plt.plot(lsp, distpdf(lsp), 'r', **kwds[1])
plot the histogram against a reference distribution Parameters ---------- idx : None or list of integers List of indices into the Monte Carlo results (columns) that should be used in the calculation distpdf : callable probability density function of reference distribution bins : {int, array_like} used unchanged for matplotlibs hist call ax : TODO: not implemented yet kwds : None or tuple of dicts extra keyword options to the calls to the matplotlib functions, first dictionary is for his, second dictionary for plot of the reference distribution Returns ------- None
plot_hist
python
statsmodels/statsmodels
statsmodels/sandbox/tools/mctools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/mctools.py
BSD-3-Clause
def summary_quantiles(self, idx, distppf, frac=[0.01, 0.025, 0.05, 0.1, 0.975], varnames=None, title=None): '''summary table for quantiles (critical values) Parameters ---------- idx : None or list of integers List of indices into the Monte Carlo results (columns) that should be used in the calculation distppf : callable probability density function of reference distribution TODO: use `crit` values instead or additional, see summary_cdf frac : array_like, float probabilities for which varnames : None, or list of strings optional list of variable names, same length as idx Returns ------- table : instance of SimpleTable use `print(table` to see results ''' idx = np.atleast_1d(idx) #assure iterable, use list ? quant, mcq = self.quantiles(idx, frac=frac) #not sure whether this will work with single quantile #crit = stats.chi2([2,4]).ppf(np.atleast_2d(quant).T) crit = distppf(np.atleast_2d(quant).T) mml=[] for i, ix in enumerate(idx): #TODO: hardcoded 2 ? mml.extend([mcq[:,i], crit[:,i]]) #mmlar = np.column_stack(mml) mmlar = np.column_stack([quant] + mml) #print(mmlar.shape if title: title = title +' Quantiles (critical values)' else: title='Quantiles (critical values)' #TODO use stub instead if varnames is None: varnames = ['var%d' % i for i in range(mmlar.shape[1]//2)] headers = ['\nprob'] + [f'{i}\n{t}' for i in varnames for t in ['mc', 'dist']] return SimpleTable(mmlar, txt_fmt={'data_fmts': ["%#6.3f"]+["%#10.4f"]*(mmlar.shape[1]-1)}, title=title, headers=headers)
summary table for quantiles (critical values) Parameters ---------- idx : None or list of integers List of indices into the Monte Carlo results (columns) that should be used in the calculation distppf : callable probability density function of reference distribution TODO: use `crit` values instead or additional, see summary_cdf frac : array_like, float probabilities for which varnames : None, or list of strings optional list of variable names, same length as idx Returns ------- table : instance of SimpleTable use `print(table` to see results
summary_quantiles
python
statsmodels/statsmodels
statsmodels/sandbox/tools/mctools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/mctools.py
BSD-3-Clause
def summary_cdf(self, idx, frac, crit, varnames=None, title=None): '''summary table for cumulative density function Parameters ---------- idx : None or list of integers List of indices into the Monte Carlo results (columns) that should be used in the calculation frac : array_like, float probabilities for which crit : array_like values for which cdf is calculated varnames : None, or list of strings optional list of variable names, same length as idx Returns ------- table : instance of SimpleTable use `print(table` to see results ''' idx = np.atleast_1d(idx) #assure iterable, use list ? mml=[] #TODO:need broadcasting in cdf for i in range(len(idx)): #print(i, mc1.cdf(crit[:,i], [idx[i]])[1].ravel() mml.append(self.cdf(crit[:,i], [idx[i]])[1].ravel()) #mml = self.cdf(crit, idx)[1] #mmlar = np.column_stack(mml) #print(mml[0].shape, np.shape(frac) mmlar = np.column_stack([frac] + mml) #print(mmlar.shape if title: title = title +' Probabilites' else: title='Probabilities' #TODO use stub instead #headers = ['\nprob'] + ['var%d\n%s' % (i, t) for i in range(mmlar.shape[1]-1) for t in ['mc']] if varnames is None: varnames = ['var%d' % i for i in range(mmlar.shape[1]-1)] headers = ['prob'] + varnames return SimpleTable(mmlar, txt_fmt={'data_fmts': ["%#6.3f"]+["%#10.4f"]*(np.array(mml).shape[1]-1)}, title=title, headers=headers)
summary table for cumulative density function Parameters ---------- idx : None or list of integers List of indices into the Monte Carlo results (columns) that should be used in the calculation frac : array_like, float probabilities for which crit : array_like values for which cdf is calculated varnames : None, or list of strings optional list of variable names, same length as idx Returns ------- table : instance of SimpleTable use `print(table` to see results
summary_cdf
python
statsmodels/statsmodels
statsmodels/sandbox/tools/mctools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/tools/mctools.py
BSD-3-Clause
def contrast_allpairs(nm): '''contrast or restriction matrix for all pairs of nm variables Parameters ---------- nm : int Returns ------- contr : ndarray, 2d, (nm*(nm-1)/2, nm) contrast matrix for all pairwise comparisons ''' contr = [] for i in range(nm): for j in range(i+1, nm): contr_row = np.zeros(nm) contr_row[i] = 1 contr_row[j] = -1 contr.append(contr_row) return np.array(contr)
contrast or restriction matrix for all pairs of nm variables Parameters ---------- nm : int Returns ------- contr : ndarray, 2d, (nm*(nm-1)/2, nm) contrast matrix for all pairwise comparisons
contrast_allpairs
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause
def contrast_all_one(nm): '''contrast or restriction matrix for all against first comparison Parameters ---------- nm : int Returns ------- contr : ndarray, 2d, (nm-1, nm) contrast matrix for all against first comparisons ''' contr = np.column_stack((np.ones(nm-1), -np.eye(nm-1))) return contr
contrast or restriction matrix for all against first comparison Parameters ---------- nm : int Returns ------- contr : ndarray, 2d, (nm-1, nm) contrast matrix for all against first comparisons
contrast_all_one
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause
def contrast_diff_mean(nm): '''contrast or restriction matrix for all against mean comparison Parameters ---------- nm : int Returns ------- contr : ndarray, 2d, (nm-1, nm) contrast matrix for all against mean comparisons ''' return np.eye(nm) - np.ones((nm,nm))/nm
contrast or restriction matrix for all against mean comparison Parameters ---------- nm : int Returns ------- contr : ndarray, 2d, (nm-1, nm) contrast matrix for all against mean comparisons
contrast_diff_mean
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause
def contrast_product(names1, names2, intgroup1=None, intgroup2=None, pairs=False): '''build contrast matrices for products of two categorical variables this is an experimental script and should be converted to a class Parameters ---------- names1, names2 : lists of strings contains the list of level labels for each categorical variable intgroup1, intgroup2 : ndarrays TODO: this part not tested, finished yet categorical variable Notes ----- This creates a full rank matrix. It does not do all pairwise comparisons, parameterization is using contrast_all_one to get differences with first level. ? does contrast_all_pairs work as a plugin to get all pairs ? ''' n1 = len(names1) n2 = len(names2) names_prod = [f'{i}_{j}' for i in names1 for j in names2] ee1 = np.zeros((1,n1)) ee1[0,0] = 1 if not pairs: dd = np.r_[ee1, -contrast_all_one(n1)] else: dd = np.r_[ee1, -contrast_allpairs(n1)] contrast_prod = np.kron(dd[1:], np.eye(n2)) contrast_labels(contrast_prod, names_prod, reverse=True) names_contrast_prod = [''.join([f'{signstr(c, noplus=True)}{v}' for c,v in zip(row, names_prod)[::-1] if c != 0]) for row in contrast_prod] ee2 = np.zeros((1,n2)) ee2[0,0] = 1 #dd2 = np.r_[ee2, -contrast_all_one(n2)] if not pairs: dd2 = np.r_[ee2, -contrast_all_one(n2)] else: dd2 = np.r_[ee2, -contrast_allpairs(n2)] contrast_prod2 = np.kron(np.eye(n1), dd2[1:]) names_contrast_prod2 = [''.join([f'{signstr(c, noplus=True)}{v}' for c,v in zip(row, names_prod)[::-1] if c != 0]) for row in contrast_prod2] if (intgroup1 is not None) and (intgroup1 is not None): d1, _ = dummy_1d(intgroup1) d2, _ = dummy_1d(intgroup2) dummy = dummy_product(d1, d2) else: dummy = None return (names_prod, contrast_prod, names_contrast_prod, contrast_prod2, names_contrast_prod2, dummy)
build contrast matrices for products of two categorical variables this is an experimental script and should be converted to a class Parameters ---------- names1, names2 : lists of strings contains the list of level labels for each categorical variable intgroup1, intgroup2 : ndarrays TODO: this part not tested, finished yet categorical variable Notes ----- This creates a full rank matrix. It does not do all pairwise comparisons, parameterization is using contrast_all_one to get differences with first level. ? does contrast_all_pairs work as a plugin to get all pairs ?
contrast_product
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause
def dummy_1d(x, varname=None): '''dummy variable for id integer groups Parameters ---------- x : ndarray, 1d categorical variable, requires integers if varname is None varname : str name of the variable used in labels for category levels Returns ------- dummy : ndarray, 2d array of dummy variables, one column for each level of the category (full set) labels : list[str] labels for the columns, i.e. levels of each category Notes ----- use tools.categorical instead for more more options See Also -------- statsmodels.tools.categorical Examples -------- >>> x = np.array(['F', 'F', 'M', 'M', 'F', 'F', 'M', 'M', 'F', 'F', 'M', 'M'], dtype='|S1') >>> dummy_1d(x, varname='gender') (array([[1, 0], [1, 0], [0, 1], [0, 1], [1, 0], [1, 0], [0, 1], [0, 1], [1, 0], [1, 0], [0, 1], [0, 1]]), ['gender_F', 'gender_M']) ''' if varname is None: #assumes integer labels = ['level_%d' % i for i in range(x.max() + 1)] return (x[:,None]==np.arange(x.max()+1)).astype(int), labels else: grouplabels = np.unique(x) labels = [varname + '_%s' % str(i) for i in grouplabels] return (x[:,None]==grouplabels).astype(int), labels
dummy variable for id integer groups Parameters ---------- x : ndarray, 1d categorical variable, requires integers if varname is None varname : str name of the variable used in labels for category levels Returns ------- dummy : ndarray, 2d array of dummy variables, one column for each level of the category (full set) labels : list[str] labels for the columns, i.e. levels of each category Notes ----- use tools.categorical instead for more more options See Also -------- statsmodels.tools.categorical Examples -------- >>> x = np.array(['F', 'F', 'M', 'M', 'F', 'F', 'M', 'M', 'F', 'F', 'M', 'M'], dtype='|S1') >>> dummy_1d(x, varname='gender') (array([[1, 0], [1, 0], [0, 1], [0, 1], [1, 0], [1, 0], [0, 1], [0, 1], [1, 0], [1, 0], [0, 1], [0, 1]]), ['gender_F', 'gender_M'])
dummy_1d
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause
def dummy_product(d1, d2, method='full'): '''dummy variable from product of two dummy variables Parameters ---------- d1, d2 : ndarray two dummy variables, assumes full set for methods 'drop-last' and 'drop-first' method : {'full', 'drop-last', 'drop-first'} 'full' returns the full product, encoding of intersection of categories. The drop methods provide a difference dummy encoding: (constant, main effects, interaction effects). The first or last columns of the dummy variable (i.e. levels) are dropped to get full rank dummy matrix. Returns ------- dummy : ndarray dummy variable for product, see method ''' if method == 'full': dd = (d1[:,:,None]*d2[:,None,:]).reshape(d1.shape[0],-1) elif method == 'drop-last': #same as SAS transreg d12rl = dummy_product(d1[:,:-1], d2[:,:-1]) dd = np.column_stack((np.ones(d1.shape[0], int), d1[:,:-1], d2[:,:-1],d12rl)) #Note: dtype int should preserve dtype of d1 and d2 elif method == 'drop-first': d12r = dummy_product(d1[:,1:], d2[:,1:]) dd = np.column_stack((np.ones(d1.shape[0], int), d1[:,1:], d2[:,1:],d12r)) else: raise ValueError('method not recognized') return dd
dummy variable from product of two dummy variables Parameters ---------- d1, d2 : ndarray two dummy variables, assumes full set for methods 'drop-last' and 'drop-first' method : {'full', 'drop-last', 'drop-first'} 'full' returns the full product, encoding of intersection of categories. The drop methods provide a difference dummy encoding: (constant, main effects, interaction effects). The first or last columns of the dummy variable (i.e. levels) are dropped to get full rank dummy matrix. Returns ------- dummy : ndarray dummy variable for product, see method
dummy_product
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause
def dummy_limits(d): '''start and endpoints of groups in a sorted dummy variable array helper function for nested categories Examples -------- >>> d1 = np.array([[1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 0, 1], [0, 0, 1], [0, 0, 1], [0, 0, 1]]) >>> dummy_limits(d1) (array([0, 4, 8]), array([ 4, 8, 12])) get group slices from an array >>> [np.arange(d1.shape[0])[b:e] for b,e in zip(*dummy_limits(d1))] [array([0, 1, 2, 3]), array([4, 5, 6, 7]), array([ 8, 9, 10, 11])] >>> [np.arange(d1.shape[0])[b:e] for b,e in zip(*dummy_limits(d1))] [array([0, 1, 2, 3]), array([4, 5, 6, 7]), array([ 8, 9, 10, 11])] ''' nobs, nvars = d.shape start1, col1 = np.nonzero(np.diff(d,axis=0)==1) end1, col1_ = np.nonzero(np.diff(d,axis=0)==-1) cc = np.arange(nvars) #print(cc, np.r_[[0], col1], np.r_[col1_, [nvars-1]] if ((not (np.r_[[0], col1] == cc).all()) or (not (np.r_[col1_, [nvars-1]] == cc).all())): raise ValueError('dummy variable is not sorted') start = np.r_[[0], start1+1] end = np.r_[end1+1, [nobs]] return start, end
start and endpoints of groups in a sorted dummy variable array helper function for nested categories Examples -------- >>> d1 = np.array([[1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 0, 1], [0, 0, 1], [0, 0, 1], [0, 0, 1]]) >>> dummy_limits(d1) (array([0, 4, 8]), array([ 4, 8, 12])) get group slices from an array >>> [np.arange(d1.shape[0])[b:e] for b,e in zip(*dummy_limits(d1))] [array([0, 1, 2, 3]), array([4, 5, 6, 7]), array([ 8, 9, 10, 11])] >>> [np.arange(d1.shape[0])[b:e] for b,e in zip(*dummy_limits(d1))] [array([0, 1, 2, 3]), array([4, 5, 6, 7]), array([ 8, 9, 10, 11])]
dummy_limits
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause
def dummy_nested(d1, d2, method='full'): '''unfinished and incomplete mainly copy past dummy_product dummy variable from product of two dummy variables Parameters ---------- d1, d2 : ndarray two dummy variables, d2 is assumed to be nested in d1 Assumes full set for methods 'drop-last' and 'drop-first'. method : {'full', 'drop-last', 'drop-first'} 'full' returns the full product, which in this case is d2. The drop methods provide an effects encoding: (constant, main effects, subgroup effects). The first or last columns of the dummy variable (i.e. levels) are dropped to get full rank encoding. Returns ------- dummy : ndarray dummy variable for product, see method ''' if method == 'full': return d2 start1, end1 = dummy_limits(d1) start2, end2 = dummy_limits(d2) first = np.in1d(start2, start1) last = np.in1d(end2, end1) equal = (first == last) col_dropf = ~first*~equal col_dropl = ~last*~equal if method == 'drop-last': dd = np.column_stack((np.ones(d1.shape[0], int), d1[:,:-1], d2[:,col_dropl])) #Note: dtype int should preserve dtype of d1 and d2 elif method == 'drop-first': dd = np.column_stack((np.ones(d1.shape[0], int), d1[:,1:], d2[:,col_dropf])) else: raise ValueError('method not recognized') return dd, col_dropf, col_dropl
unfinished and incomplete mainly copy past dummy_product dummy variable from product of two dummy variables Parameters ---------- d1, d2 : ndarray two dummy variables, d2 is assumed to be nested in d1 Assumes full set for methods 'drop-last' and 'drop-first'. method : {'full', 'drop-last', 'drop-first'} 'full' returns the full product, which in this case is d2. The drop methods provide an effects encoding: (constant, main effects, subgroup effects). The first or last columns of the dummy variable (i.e. levels) are dropped to get full rank encoding. Returns ------- dummy : ndarray dummy variable for product, see method
dummy_nested
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause
def __init__(self, d1, d2): '''C such that d1 C = d2, with d1 = X, d2 = Z should be (x, z) in arguments ? ''' self.transf_matrix = np.linalg.lstsq(d1, d2, rcond=-1)[0] self.invtransf_matrix = np.linalg.lstsq(d2, d1, rcond=-1)[0]
C such that d1 C = d2, with d1 = X, d2 = Z should be (x, z) in arguments ?
__init__
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause
def dot_left(self, a): ''' b = C a ''' return np.dot(self.transf_matrix, a)
b = C a
dot_left
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause
def dot_right(self, x): ''' z = x C ''' return np.dot(x, self.transf_matrix)
z = x C
dot_right
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause
def inv_dot_left(self, b): ''' a = C^{-1} b ''' return np.dot(self.invtransf_matrix, b)
a = C^{-1} b
inv_dot_left
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause
def inv_dot_right(self, z): ''' x = z C^{-1} ''' return np.dot(z, self.invtransf_matrix)
x = z C^{-1}
inv_dot_right
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause
def groupmean_d(x, d): '''groupmeans using dummy variables Parameters ---------- x : array_like, ndim data array, tested for 1,2 and 3 dimensions d : ndarray, 1d dummy variable, needs to have the same length as x in axis 0. Returns ------- groupmeans : ndarray, ndim-1 means for each group along axis 0, the levels of the groups are the last axis Notes ----- This will be memory intensive if there are many levels in the categorical variable, i.e. many columns in the dummy variable. In this case it is recommended to use a more efficient version. ''' x = np.asarray(x) ## if x.ndim == 1: ## nvars = 1 ## else: nvars = x.ndim + 1 sli = [slice(None)] + [None]*(nvars-2) + [slice(None)] return (x[...,None] * d[sli]).sum(0)*1./d.sum(0)
groupmeans using dummy variables Parameters ---------- x : array_like, ndim data array, tested for 1,2 and 3 dimensions d : ndarray, 1d dummy variable, needs to have the same length as x in axis 0. Returns ------- groupmeans : ndarray, ndim-1 means for each group along axis 0, the levels of the groups are the last axis Notes ----- This will be memory intensive if there are many levels in the categorical variable, i.e. many columns in the dummy variable. In this case it is recommended to use a more efficient version.
groupmean_d
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause