code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def r_nointer(self): '''contrast/restriction matrix for no interaction ''' nia = self.n_interaction R_nointer = np.hstack((np.zeros((nia, self.nvars-nia)), np.eye(nia))) #inter_direct = resols_full_dropf.tval[-nia:] R_nointer_transf = self.transform.inv_dot_right(R_nointer) self.R_nointer_transf = R_nointer_transf return R_nointer_transf
contrast/restriction matrix for no interaction
r_nointer
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause
def ttest_interaction(self): '''ttests for no-interaction terms are zero ''' #use self.r_nointer instead nia = self.n_interaction R_nointer = np.hstack((np.zeros((nia, self.nvars-nia)), np.eye(nia))) #inter_direct = resols_full_dropf.tval[-nia:] R_nointer_transf = self.transform.inv_dot_right(R_nointer) self.R_nointer_transf = R_nointer_transf t_res = self.resols.t_test(R_nointer_transf) return t_res
ttests for no-interaction terms are zero
ttest_interaction
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause
def ftest_interaction(self): '''ttests for no-interaction terms are zero ''' R_nointer_transf = self.r_nointer() return self.resols.f_test(R_nointer_transf)
ttests for no-interaction terms are zero
ftest_interaction
python
statsmodels/statsmodels
statsmodels/sandbox/stats/contrast_tools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/contrast_tools.py
BSD-3-Clause
def scoreatpercentile(data, percentile): """Return the score at the given percentile of the data. Example: >>> data = randn(100) >>> scoreatpercentile(data, 50) will return the median of sample `data`. """ per = np.array(percentile) cdf = empiricalcdf(data) interpolator = interpolate.interp1d(np.sort(cdf), np.sort(data)) return interpolator(per/100.)
Return the score at the given percentile of the data. Example: >>> data = randn(100) >>> scoreatpercentile(data, 50) will return the median of sample `data`.
scoreatpercentile
python
statsmodels/statsmodels
statsmodels/sandbox/stats/stats_dhuard.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/stats_dhuard.py
BSD-3-Clause
def percentileofscore(data, score): """Return the percentile-position of score relative to data. score: Array of scores at which the percentile is computed. Return percentiles (0-100). Example r = randn(50) x = linspace(-2,2,100) percentileofscore(r,x) Raise an error if the score is outside the range of data. """ cdf = empiricalcdf(data) interpolator = interpolate.interp1d(np.sort(data), np.sort(cdf)) return interpolator(score)*100.
Return the percentile-position of score relative to data. score: Array of scores at which the percentile is computed. Return percentiles (0-100). Example r = randn(50) x = linspace(-2,2,100) percentileofscore(r,x) Raise an error if the score is outside the range of data.
percentileofscore
python
statsmodels/statsmodels
statsmodels/sandbox/stats/stats_dhuard.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/stats_dhuard.py
BSD-3-Clause
def empiricalcdf(data, method='Hazen'): """Return the empirical cdf. Methods available: Hazen: (i-0.5)/N Weibull: i/(N+1) Chegodayev: (i-.3)/(N+.4) Cunnane: (i-.4)/(N+.2) Gringorten: (i-.44)/(N+.12) California: (i-1)/N Where i goes from 1 to N. """ i = np.argsort(np.argsort(data)) + 1. N = len(data) method = method.lower() if method == 'hazen': cdf = (i-0.5)/N elif method == 'weibull': cdf = i/(N+1.) elif method == 'california': cdf = (i-1.)/N elif method == 'chegodayev': cdf = (i-.3)/(N+.4) elif method == 'cunnane': cdf = (i-.4)/(N+.2) elif method == 'gringorten': cdf = (i-.44)/(N+.12) else: raise ValueError('Unknown method. Choose among Weibull, Hazen,' 'Chegodayev, Cunnane, Gringorten and California.') return cdf
Return the empirical cdf. Methods available: Hazen: (i-0.5)/N Weibull: i/(N+1) Chegodayev: (i-.3)/(N+.4) Cunnane: (i-.4)/(N+.2) Gringorten: (i-.44)/(N+.12) California: (i-1)/N Where i goes from 1 to N.
empiricalcdf
python
statsmodels/statsmodels
statsmodels/sandbox/stats/stats_dhuard.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/stats_dhuard.py
BSD-3-Clause
def empiricalcdf(self, data=None, method='Hazen'): """Return the empirical cdf. Methods available: Hazen: (i-0.5)/N Weibull: i/(N+1) Chegodayev: (i-.3)/(N+.4) Cunnane: (i-.4)/(N+.2) Gringorten: (i-.44)/(N+.12) California: (i-1)/N Where i goes from 1 to N. """ if data is None: data = self.data i = self.ranking else: i = np.argsort(np.argsort(data)) + 1. N = len(data) method = method.lower() if method == 'hazen': cdf = (i-0.5)/N elif method == 'weibull': cdf = i/(N+1.) elif method == 'california': cdf = (i-1.)/N elif method == 'chegodayev': cdf = (i-.3)/(N+.4) elif method == 'cunnane': cdf = (i-.4)/(N+.2) elif method == 'gringorten': cdf = (i-.44)/(N+.12) else: raise ValueError('Unknown method. Choose among Weibull, Hazen,' 'Chegodayev, Cunnane, Gringorten and California.') return cdf
Return the empirical cdf. Methods available: Hazen: (i-0.5)/N Weibull: i/(N+1) Chegodayev: (i-.3)/(N+.4) Cunnane: (i-.4)/(N+.2) Gringorten: (i-.44)/(N+.12) California: (i-1)/N Where i goes from 1 to N.
empiricalcdf
python
statsmodels/statsmodels
statsmodels/sandbox/stats/stats_dhuard.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/stats_dhuard.py
BSD-3-Clause
def cdf_emp(self, score): ''' this is score in dh ''' return self.cdfintp(score)
this is score in dh
cdf_emp
python
statsmodels/statsmodels
statsmodels/sandbox/stats/stats_dhuard.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/stats_dhuard.py
BSD-3-Clause
def ppf_emp(self, quantile): ''' this is score in dh ''' return self.ppfintp(quantile)
this is score in dh
ppf_emp
python
statsmodels/statsmodels
statsmodels/sandbox/stats/stats_dhuard.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/stats_dhuard.py
BSD-3-Clause
def optimize_binning(self, method='Freedman'): """Find the optimal number of bins and update the bin countaccordingly. Available methods : Freedman Scott """ nobs = len(self.data) if method=='Freedman': IQR = self.ppf_emp(0.75) - self.ppf_emp(0.25) # Interquantile range(75% -25%) width = 2* IQR* nobs**(-1./3) elif method=='Scott': width = 3.49 * np.std(self.data) * nobs**(-1./3) self.nbin = (np.ptp(self.binlimit)/width) return self.nbin
Find the optimal number of bins and update the bin countaccordingly. Available methods : Freedman Scott
optimize_binning
python
statsmodels/statsmodels
statsmodels/sandbox/stats/stats_dhuard.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/stats_dhuard.py
BSD-3-Clause
def get_tukeyQcrit(k, df, alpha=0.05): """ return critical values for Tukey's HSD (Q) Parameters ---------- k : int in {2, ..., 10} number of tests df : int degrees of freedom of error term alpha : {0.05, 0.01} type 1 error, 1-confidence level not enough error checking for limitations """ if alpha == 0.05: intp = interpolate.interp1d(crows, cv005[:, k - 2]) elif alpha == 0.01: intp = interpolate.interp1d(crows, cv001[:, k - 2]) else: raise ValueError("only implemented for alpha equal to 0.01 and 0.05") return intp(df)
return critical values for Tukey's HSD (Q) Parameters ---------- k : int in {2, ..., 10} number of tests df : int degrees of freedom of error term alpha : {0.05, 0.01} type 1 error, 1-confidence level not enough error checking for limitations
get_tukeyQcrit
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def get_tukeyQcrit2(k, df, alpha=0.05): """ return critical values for Tukey's HSD (Q) Parameters ---------- k : int in {2, ..., 10} number of tests df : int degrees of freedom of error term alpha : {0.05, 0.01} type 1 error, 1-confidence level not enough error checking for limitations """ return studentized_range.ppf(1 - alpha, k, df)
return critical values for Tukey's HSD (Q) Parameters ---------- k : int in {2, ..., 10} number of tests df : int degrees of freedom of error term alpha : {0.05, 0.01} type 1 error, 1-confidence level not enough error checking for limitations
get_tukeyQcrit2
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def get_tukey_pvalue(k, df, q): """ return adjusted p-values for Tukey's HSD Parameters ---------- k : int in {2, ..., 10} number of tests df : int degrees of freedom of error term q : scalar, array_like; q >= 0 quantile value of Studentized Range """ return studentized_range.sf(q, k, df)
return adjusted p-values for Tukey's HSD Parameters ---------- k : int in {2, ..., 10} number of tests df : int degrees of freedom of error term q : scalar, array_like; q >= 0 quantile value of Studentized Range
get_tukey_pvalue
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def Tukeythreegene2(genes): # Performing the Tukey HSD post-hoc test for three genes """gend is a list, ie [first, second, third]""" # qwb = xlrd.open_workbook('F:/Lab/bioinformatics/qcrittable.xls') # opening the workbook containing the q crit table # qwb.sheet_names() # qcrittable = qwb.sheet_by_name(u'Sheet1') means = [] stds = [] for gene in genes: means.append(np.mean(gene)) std.append(np.std(gene)) # noqa:F821 See GH#5756 # firstmean = np.mean(first) #means of the three arrays # secondmean = np.mean(second) # thirdmean = np.mean(third) # firststd = np.std(first) #standard deviations of the three arrays # secondstd = np.std(second) # thirdstd = np.std(third) stds2 = [] for std in stds: stds2.append(math.pow(std, 2))
gend is a list, ie [first, second, third]
Tukeythreegene2
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def maxzero(x): """find all up zero crossings and return the index of the highest Not used anymore >>> np.random.seed(12345) >>> x = np.random.randn(8) >>> x array([-0.20470766, 0.47894334, -0.51943872, -0.5557303 , 1.96578057, 1.39340583, 0.09290788, 0.28174615]) >>> maxzero(x) (4, array([1, 4])) no up-zero-crossing at end >>> np.random.seed(0) >>> x = np.random.randn(8) >>> x array([ 1.76405235, 0.40015721, 0.97873798, 2.2408932 , 1.86755799, -0.97727788, 0.95008842, -0.15135721]) >>> maxzero(x) (None, array([6])) """ x = np.asarray(x) cond1 = x[:-1] < 0 cond2 = x[1:] > 0 # allzeros = np.nonzero(np.sign(x[:-1])*np.sign(x[1:]) <= 0)[0] + 1 allzeros = np.nonzero((cond1 & cond2) | (x[1:] == 0))[0] + 1 if x[-1] >= 0: maxz = max(allzeros) else: maxz = None return maxz, allzeros
find all up zero crossings and return the index of the highest Not used anymore >>> np.random.seed(12345) >>> x = np.random.randn(8) >>> x array([-0.20470766, 0.47894334, -0.51943872, -0.5557303 , 1.96578057, 1.39340583, 0.09290788, 0.28174615]) >>> maxzero(x) (4, array([1, 4])) no up-zero-crossing at end >>> np.random.seed(0) >>> x = np.random.randn(8) >>> x array([ 1.76405235, 0.40015721, 0.97873798, 2.2408932 , 1.86755799, -0.97727788, 0.95008842, -0.15135721]) >>> maxzero(x) (None, array([6]))
maxzero
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def maxzerodown(x): """find all up zero crossings and return the index of the highest Not used anymore >>> np.random.seed(12345) >>> x = np.random.randn(8) >>> x array([-0.20470766, 0.47894334, -0.51943872, -0.5557303 , 1.96578057, 1.39340583, 0.09290788, 0.28174615]) >>> maxzero(x) (4, array([1, 4])) no up-zero-crossing at end >>> np.random.seed(0) >>> x = np.random.randn(8) >>> x array([ 1.76405235, 0.40015721, 0.97873798, 2.2408932 , 1.86755799, -0.97727788, 0.95008842, -0.15135721]) >>> maxzero(x) (None, array([6])) """ x = np.asarray(x) cond1 = x[:-1] > 0 cond2 = x[1:] < 0 # allzeros = np.nonzero(np.sign(x[:-1])*np.sign(x[1:]) <= 0)[0] + 1 allzeros = np.nonzero((cond1 & cond2) | (x[1:] == 0))[0] + 1 if x[-1] <= 0: maxz = max(allzeros) else: maxz = None return maxz, allzeros
find all up zero crossings and return the index of the highest Not used anymore >>> np.random.seed(12345) >>> x = np.random.randn(8) >>> x array([-0.20470766, 0.47894334, -0.51943872, -0.5557303 , 1.96578057, 1.39340583, 0.09290788, 0.28174615]) >>> maxzero(x) (4, array([1, 4])) no up-zero-crossing at end >>> np.random.seed(0) >>> x = np.random.randn(8) >>> x array([ 1.76405235, 0.40015721, 0.97873798, 2.2408932 , 1.86755799, -0.97727788, 0.95008842, -0.15135721]) >>> maxzero(x) (None, array([6]))
maxzerodown
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def rejectionline(n, alpha=0.5): """reference line for rejection in multiple tests Not used anymore from: section 3.2, page 60 """ t = np.arange(n) / float(n) frej = t / (t * (1 - alpha) + alpha) return frej
reference line for rejection in multiple tests Not used anymore from: section 3.2, page 60
rejectionline
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def fdrcorrection_bak(pvals, alpha=0.05, method="indep"): """Reject False discovery rate correction for pvalues Old version, to be deleted missing: methods that estimate fraction of true hypotheses """ from statsmodels.stats.multitest import _ecdf as ecdf pvals = np.asarray(pvals) pvals_sortind = np.argsort(pvals) pvals_sorted = pvals[pvals_sortind] pecdf = ecdf(pvals_sorted) if method in ["i", "indep", "p", "poscorr"]: rline = pvals_sorted / alpha elif method in ["n", "negcorr"]: cm = np.sum(1.0 / np.arange(1, len(pvals))) rline = pvals_sorted / alpha * cm elif method in ["g", "onegcorr"]: # what's this ? german diss rline = pvals_sorted / (pvals_sorted * (1 - alpha) + alpha) elif method in ["oth", "o2negcorr"]: # other invalid, cut-paste cm = np.sum(np.arange(len(pvals))) rline = pvals_sorted / alpha / cm else: raise ValueError("method not available") reject = pecdf >= rline if reject.any(): rejectmax = max(np.nonzero(reject)[0]) else: rejectmax = 0 reject[:rejectmax] = True return reject[pvals_sortind.argsort()]
Reject False discovery rate correction for pvalues Old version, to be deleted missing: methods that estimate fraction of true hypotheses
fdrcorrection_bak
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def mcfdr(nrepl=100, nobs=50, ntests=10, ntrue=6, mu=0.5, alpha=0.05, rho=0.0): """MonteCarlo to test fdrcorrection""" from statsmodels.stats.multitest import fdrcorrection as fdrcorrection0 # Unused result, commented out # ntests - ntrue locs = np.array([0.0] * ntrue + [mu] * (ntests - ntrue)) results = [] for i in range(nrepl): # rvs = locs + stats.norm.rvs(size=(nobs, ntests)) rvs = locs + randmvn(rho, size=(nobs, ntests)) tt, tpval = stats.ttest_1samp(rvs, 0) res = fdrcorrection_bak(np.abs(tpval), alpha=alpha, method="i") res0 = fdrcorrection0(np.abs(tpval), alpha=alpha) # res and res0 give the same results results.append( [np.sum(res[:ntrue]), np.sum(res[ntrue:])] + [np.sum(res0[:ntrue]), np.sum(res0[ntrue:])] + res.tolist() + np.sort(tpval).tolist() + [np.sum(tpval[:ntrue] < alpha), np.sum(tpval[ntrue:] < alpha)] + [ np.sum(tpval[:ntrue] < alpha / ntests), np.sum(tpval[ntrue:] < alpha / ntests), ] ) return np.array(results)
MonteCarlo to test fdrcorrection
mcfdr
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def randmvn(rho, size=(1, 2), standardize=False): """create random draws from equi-correlated multivariate normal distribution Parameters ---------- rho : float correlation coefficient size : tuple of int size is interpreted (nobs, nvars) where each row Returns ------- rvs : ndarray nobs by nvars where each row is a independent random draw of nvars- dimensional correlated rvs """ nobs, nvars = size if 0 < rho and rho < 1: rvs = np.random.randn(nobs, nvars + 1) rvs2 = rvs[:, :-1] * np.sqrt(1 - rho) + rvs[:, -1:] * np.sqrt(rho) elif rho == 0: rvs2 = np.random.randn(nobs, nvars) elif rho < 0: if rho < -1.0 / (nvars - 1): raise ValueError("rho has to be larger than -1./(nvars-1)") elif rho == -1.0 / (nvars - 1): rho = -1.0 / (nvars - 1 + 1e-10) # barely positive definite # use Cholesky A = rho * np.ones((nvars, nvars)) + (1 - rho) * np.eye(nvars) rvs2 = np.dot(np.random.randn(nobs, nvars), np.linalg.cholesky(A).T) if standardize: rvs2 = stats.zscore(rvs2) return rvs2
create random draws from equi-correlated multivariate normal distribution Parameters ---------- rho : float correlation coefficient size : tuple of int size is interpreted (nobs, nvars) where each row Returns ------- rvs : ndarray nobs by nvars where each row is a independent random draw of nvars- dimensional correlated rvs
randmvn
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def tiecorrect(xranks): """ should be equivalent of scipy.stats.tiecorrect """ # casting to int rounds down, but not relevant for this case rankbincount = np.bincount(np.asarray(xranks, dtype=int)) nties = rankbincount[rankbincount > 1] ntot = float(len(xranks)) tiecorrection = 1 - (nties**3 - nties).sum() / (ntot**3 - ntot) return tiecorrection
should be equivalent of scipy.stats.tiecorrect
tiecorrect
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def __init__(self, x, useranks=False, uni=None, intlab=None): """descriptive statistics by groups Parameters ---------- x : ndarray, 2d first column data, second column group labels useranks : bool if true, then use ranks as data corresponding to the scipy.stats.rankdata definition (start at 1, ties get mean) uni, intlab : arrays (optional) to avoid call to unique, these can be given as inputs """ self.x = np.asarray(x) if intlab is None: uni, intlab = np.unique(x[:, 1], return_inverse=True) elif uni is None: uni = np.unique(x[:, 1]) self.useranks = useranks self.uni = uni self.intlab = intlab self.groupnobs = np.bincount(intlab) # temporary until separated and made all lazy self.runbasic(useranks=useranks)
descriptive statistics by groups Parameters ---------- x : ndarray, 2d first column data, second column group labels useranks : bool if true, then use ranks as data corresponding to the scipy.stats.rankdata definition (start at 1, ties get mean) uni, intlab : arrays (optional) to avoid call to unique, these can be given as inputs
__init__
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def runbasic_old(self, useranks=False): """runbasic_old""" # check: refactoring screwed up case useranks=True # groupxsum = np.bincount(intlab, weights=X[:,0]) # groupxmean = groupxsum * 1.0 / groupnobs x = self.x if useranks: self.xx = x[:, 1].argsort().argsort() + 1 # rankraw else: self.xx = x[:, 0] self.groupsum = groupranksum = np.bincount(self.intlab, weights=self.xx) # print('groupranksum', groupranksum, groupranksum.shape, self.groupnobs.shape # start at 1 for stats.rankdata : self.groupmean = grouprankmean = groupranksum * 1.0 / self.groupnobs # + 1 self.groupmeanfilter = grouprankmean[self.intlab]
runbasic_old
runbasic_old
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def runbasic(self, useranks=False): """runbasic""" # check: refactoring screwed up case useranks=True # groupxsum = np.bincount(intlab, weights=X[:,0]) # groupxmean = groupxsum * 1.0 / groupnobs x = self.x if useranks: xuni, xintlab = np.unique(x[:, 0], return_inverse=True) ranksraw = x[:, 0].argsort().argsort() + 1 # rankraw self.xx = GroupsStats( np.column_stack([ranksraw, xintlab]), useranks=False ).groupmeanfilter else: self.xx = x[:, 0] self.groupsum = groupranksum = np.bincount(self.intlab, weights=self.xx) # print('groupranksum', groupranksum, groupranksum.shape, self.groupnobs.shape # start at 1 for stats.rankdata : self.groupmean = grouprankmean = groupranksum * 1.0 / self.groupnobs # + 1 self.groupmeanfilter = grouprankmean[self.intlab]
runbasic
runbasic
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def groupdemean(self): """groupdemean""" return self.xx - self.groupmeanfilter
groupdemean
groupdemean
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def groupsswithin(self): """groupsswithin""" xtmp = self.groupdemean() return np.bincount(self.intlab, weights=xtmp**2)
groupsswithin
groupsswithin
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def groupvarwithin(self): """groupvarwithin""" return self.groupsswithin() / (self.groupnobs - 1) # .sum()
groupvarwithin
groupvarwithin
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def summary(self): """Summary table that can be printed""" return self._results_table
Summary table that can be printed
summary
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def summary_frame(self): """Summary DataFrame The group columns are labeled as "group_t" and "group_c" with mean difference defined as treatment minus control. This should be less confusing than numeric labels group1 and group2. Returns ------- pandas.DataFrame Notes ----- The number of columns will likely increase in a future version of statsmodels. Do not use numeric indices for the DataFrame in order to be robust to the addition of columns. """ frame = pd.DataFrame({ "group_t": self.group_t, "group_c": self.group_c, "meandiff": self.meandiffs, "p-adj": self.pvalues, "lower": self.confint[:, 0], "upper": self.confint[:, 1], "reject": self.reject, }) return frame
Summary DataFrame The group columns are labeled as "group_t" and "group_c" with mean difference defined as treatment minus control. This should be less confusing than numeric labels group1 and group2. Returns ------- pandas.DataFrame Notes ----- The number of columns will likely increase in a future version of statsmodels. Do not use numeric indices for the DataFrame in order to be robust to the addition of columns.
summary_frame
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def _simultaneous_ci(self): """Compute simultaneous confidence intervals for comparison of means.""" q_crit_hsd = self._get_q_crit(hsd=True) self.halfwidths = simultaneous_ci( q_crit_hsd, self.variance, self._multicomp.groupstats.groupnobs, self._multicomp.pairindices, )
Compute simultaneous confidence intervals for comparison of means.
_simultaneous_ci
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def plot_simultaneous( self, comparison_name=None, ax=None, figsize=(10, 6), xlabel=None, ylabel=None ): """Plot a universal confidence interval of each group mean Visualize significant differences in a plot with one confidence interval per group instead of all pairwise confidence intervals. Parameters ---------- comparison_name : str, optional if provided, plot_intervals will color code all groups that are significantly different from the comparison_name red, and will color code insignificant groups gray. Otherwise, all intervals will just be plotted in black. ax : matplotlib axis, optional An axis handle on which to attach the plot. figsize : tuple, optional tuple for the size of the figure generated xlabel : str, optional Name to be displayed on x axis ylabel : str, optional Name to be displayed on y axis Returns ------- Figure handle to figure object containing interval plots Notes ----- Multiple comparison tests are nice, but lack a good way to be visualized. If you have, say, 6 groups, showing a graph of the means between each group will require 15 confidence intervals. Instead, we can visualize inter-group differences with a single interval for each group mean. Hochberg et al. [1] first proposed this idea and used Tukey's Q critical value to compute the interval widths. Unlike plotting the differences in the means and their respective confidence intervals, any two pairs can be compared for significance by looking for overlap. The derivation in Hochberg and Tamhane is under the equal variance assumption. We use the same computation in the case of unequal variances, however, with replacement of the common pooled variance by the unequal estimates of the whithin group variances. This provides a plot that looks more informative and plausible in the case where there are large differences in variances. In the equal sample size and equal variance case, the confidence intervals computed by the two methods, equal and unequal variance, are very close to each other in larger samples. References ---------- .. [*] Hochberg, Y., and A. C. Tamhane. Multiple Comparison Procedures. Hoboken, NJ: John Wiley & Sons, 1987. Examples -------- >>> from statsmodels.examples.try_tukey_hsd import cylinders, cyl_labels >>> from statsmodels.stats.multicomp import MultiComparison >>> cardata = MultiComparison(cylinders, cyl_labels) >>> results = cardata.tukeyhsd() >>> results.plot_simultaneous() <matplotlib.figure.Figure at 0x...> This example shows an example plot comparing significant differences in group means. Significant differences at the alpha=0.05 level can be identified by intervals that do not overlap (i.e. USA vs Japan, USA vs Germany). >>> results.plot_simultaneous(comparison_name="USA") <matplotlib.figure.Figure at 0x...> Optionally provide one of the group names to color code the plot to highlight group means different from comparison_name. """ fig, ax1 = utils.create_mpl_ax(ax) if figsize is not None: fig.set_size_inches(figsize) if getattr(self, "halfwidths", None) is None: self._simultaneous_ci() means = self._multicomp.groupstats.groupmean sigidx = [] nsigidx = [] minrange = [means[i] - self.halfwidths[i] for i in range(len(means))] maxrange = [means[i] + self.halfwidths[i] for i in range(len(means))] if comparison_name is None: ax1.errorbar( means, lrange(len(means)), xerr=self.halfwidths, marker="o", linestyle="None", color="k", ecolor="k", ) else: if comparison_name not in self.groupsunique: raise ValueError("comparison_name not found in group names.") midx = np.where(self.groupsunique == comparison_name)[0][0] for i in range(len(means)): if self.groupsunique[i] == comparison_name: continue if ( min(maxrange[i], maxrange[midx]) - max(minrange[i], minrange[midx]) < 0 ): sigidx.append(i) else: nsigidx.append(i) # Plot the main comparison ax1.errorbar( means[midx], midx, xerr=self.halfwidths[midx], marker="o", linestyle="None", color="b", ecolor="b", ) ax1.plot( [minrange[midx]] * 2, [-1, self._multicomp.ngroups], linestyle="--", color="0.7", ) ax1.plot( [maxrange[midx]] * 2, [-1, self._multicomp.ngroups], linestyle="--", color="0.7", ) # Plot those that are significantly different if len(sigidx) > 0: ax1.errorbar( means[sigidx], sigidx, xerr=self.halfwidths[sigidx], marker="o", linestyle="None", color="r", ecolor="r", ) # Plot those that are not significantly different if len(nsigidx) > 0: ax1.errorbar( means[nsigidx], nsigidx, xerr=self.halfwidths[nsigidx], marker="o", linestyle="None", color="0.5", ecolor="0.5", ) ax1.set_title("Multiple Comparisons Between All Pairs (Tukey)") r = np.max(maxrange) - np.min(minrange) ax1.set_ylim([-1, self._multicomp.ngroups]) ax1.set_xlim([np.min(minrange) - r / 10.0, np.max(maxrange) + r / 10.0]) ylbls = [""] + self.groupsunique.astype(str).tolist() + [""] ax1.set_yticks(np.arange(-1, len(means) + 1)) ax1.set_yticklabels(ylbls) ax1.set_xlabel(xlabel if xlabel is not None else "") ax1.set_ylabel(ylabel if ylabel is not None else "") return fig
Plot a universal confidence interval of each group mean Visualize significant differences in a plot with one confidence interval per group instead of all pairwise confidence intervals. Parameters ---------- comparison_name : str, optional if provided, plot_intervals will color code all groups that are significantly different from the comparison_name red, and will color code insignificant groups gray. Otherwise, all intervals will just be plotted in black. ax : matplotlib axis, optional An axis handle on which to attach the plot. figsize : tuple, optional tuple for the size of the figure generated xlabel : str, optional Name to be displayed on x axis ylabel : str, optional Name to be displayed on y axis Returns ------- Figure handle to figure object containing interval plots Notes ----- Multiple comparison tests are nice, but lack a good way to be visualized. If you have, say, 6 groups, showing a graph of the means between each group will require 15 confidence intervals. Instead, we can visualize inter-group differences with a single interval for each group mean. Hochberg et al. [1] first proposed this idea and used Tukey's Q critical value to compute the interval widths. Unlike plotting the differences in the means and their respective confidence intervals, any two pairs can be compared for significance by looking for overlap. The derivation in Hochberg and Tamhane is under the equal variance assumption. We use the same computation in the case of unequal variances, however, with replacement of the common pooled variance by the unequal estimates of the whithin group variances. This provides a plot that looks more informative and plausible in the case where there are large differences in variances. In the equal sample size and equal variance case, the confidence intervals computed by the two methods, equal and unequal variance, are very close to each other in larger samples. References ---------- .. [*] Hochberg, Y., and A. C. Tamhane. Multiple Comparison Procedures. Hoboken, NJ: John Wiley & Sons, 1987. Examples -------- >>> from statsmodels.examples.try_tukey_hsd import cylinders, cyl_labels >>> from statsmodels.stats.multicomp import MultiComparison >>> cardata = MultiComparison(cylinders, cyl_labels) >>> results = cardata.tukeyhsd() >>> results.plot_simultaneous() <matplotlib.figure.Figure at 0x...> This example shows an example plot comparing significant differences in group means. Significant differences at the alpha=0.05 level can be identified by intervals that do not overlap (i.e. USA vs Japan, USA vs Germany). >>> results.plot_simultaneous(comparison_name="USA") <matplotlib.figure.Figure at 0x...> Optionally provide one of the group names to color code the plot to highlight group means different from comparison_name.
plot_simultaneous
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def getranks(self): """convert data to rankdata and attach This creates rankdata as it is used for non-parametric tests, where in the case of ties the average rank is assigned. """ # bug: the next should use self.groupintlab instead of self.groups # update: looks fixed # self.ranks = GroupsStats(np.column_stack([self.data, self.groups]), self.ranks = GroupsStats( np.column_stack([self.data, self.groupintlab]), useranks=True ) self.rankdata = self.ranks.groupmeanfilter
convert data to rankdata and attach This creates rankdata as it is used for non-parametric tests, where in the case of ties the average rank is assigned.
getranks
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def kruskal(self, pairs=None, multimethod="T"): """ pairwise comparison for kruskal-wallis test This is just a reimplementation of scipy.stats.kruskal and does not yet use a multiple comparison correction. """ self.getranks() tot = self.nobs meanranks = self.ranks.groupmean groupnobs = self.ranks.groupnobs # simultaneous/separate treatment of multiple tests f = (tot * (tot + 1.0) / 12.0) / stats.tiecorrect(self.rankdata) # (xranks) print("MultiComparison.kruskal") for i, j in zip(*self.pairindices): # pdiff = np.abs(mrs[i] - mrs[j]) pdiff = np.abs(meanranks[i] - meanranks[j]) se = np.sqrt( f * np.sum(1.0 / groupnobs[[i, j]]) ) # np.array([8,8]))) #Fixme groupnobs[[i,j]] )) Q = pdiff / se # TODO : print(statments, fix print(i, j, pdiff, se, pdiff / se, pdiff / se > 2.6310) print(stats.norm.sf(Q) * 2) return stats.norm.sf(Q) * 2
pairwise comparison for kruskal-wallis test This is just a reimplementation of scipy.stats.kruskal and does not yet use a multiple comparison correction.
kruskal
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def allpairtest(self, testfunc, alpha=0.05, method="bonf", pvalidx=1): """run a pairwise test on all pairs with multiple test correction The statistical test given in testfunc is calculated for all pairs and the p-values are adjusted by methods in multipletests. The p-value correction is generic and based only on the p-values, and does not take any special structure of the hypotheses into account. Parameters ---------- testfunc : function A test function for two (independent) samples. It is assumed that the return value on position pvalidx is the p-value. alpha : float familywise error rate method : str This specifies the method for the p-value correction. Any method of multipletests is possible. pvalidx : int (default: 1) position of the p-value in the return of testfunc Returns ------- sumtab : SimpleTable instance summary table for printing errors: TODO: check if this is still wrong, I think it's fixed. results from multipletests are in different order pval_corrected can be larger than 1 ??? """ from statsmodels.stats.multitest import multipletests res = [] for i, j in zip(*self.pairindices): res.append(testfunc(self.datali[i], self.datali[j])) res = np.array(res) reject, pvals_corrected, alphacSidak, alphacBonf = multipletests( res[:, pvalidx], alpha=alpha, method=method ) # print(np.column_stack([res[:,0],res[:,1], reject, pvals_corrected]) i1, i2 = self.pairindices if pvals_corrected is None: resarr = np.array( lzip( self.groupsunique[i1], self.groupsunique[i2], np.round(res[:, 0], 4), np.round(res[:, 1], 4), reject, ), dtype=[ ("group1", object), ("group2", object), ("stat", float), ("pval", float), ("reject", np.bool_), ], ) else: resarr = np.array( lzip( self.groupsunique[i1], self.groupsunique[i2], np.round(res[:, 0], 4), np.round(res[:, 1], 4), np.round(pvals_corrected, 4), reject, ), dtype=[ ("group1", object), ("group2", object), ("stat", float), ("pval", float), ("pval_corr", float), ("reject", np.bool_), ], ) results_table = SimpleTable(resarr, headers=resarr.dtype.names) results_table.title = "Test Multiple Comparison %s \n%s%4.2f method=%s" % ( testfunc.__name__, "FWER=", alpha, method, ) + "\nalphacSidak=%4.2f, alphacBonf=%5.3f" % (alphacSidak, alphacBonf) return ( results_table, (res, reject, pvals_corrected, alphacSidak, alphacBonf), resarr, )
run a pairwise test on all pairs with multiple test correction The statistical test given in testfunc is calculated for all pairs and the p-values are adjusted by methods in multipletests. The p-value correction is generic and based only on the p-values, and does not take any special structure of the hypotheses into account. Parameters ---------- testfunc : function A test function for two (independent) samples. It is assumed that the return value on position pvalidx is the p-value. alpha : float familywise error rate method : str This specifies the method for the p-value correction. Any method of multipletests is possible. pvalidx : int (default: 1) position of the p-value in the return of testfunc Returns ------- sumtab : SimpleTable instance summary table for printing errors: TODO: check if this is still wrong, I think it's fixed. results from multipletests are in different order pval_corrected can be larger than 1 ???
allpairtest
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def tukeyhsd(self, alpha=0.05, use_var='equal'): """ Tukey's range test to compare means of all pairs of groups Parameters ---------- alpha : float, optional Value of FWER at which to calculate HSD. use_var : {"unequal", "equal"} If ``use_var`` is "equal", then the Tukey-hsd pvalues are returned. Tukey-hsd assumes that (within) variances are the same across groups. If ``use_var`` is "unequal", then the Games-Howell pvalues are returned. This uses Welch's t-test for unequal variances with Satterthwait's corrected degrees of freedom for each pairwise comparison. Returns ------- results : TukeyHSDResults instance A results class containing relevant data and some post-hoc calculations Notes ----- .. versionadded:: 0.15 ` The `use_var` keyword and option for Games-Howell test. """ self.groupstats = GroupsStats( np.column_stack([self.data, self.groupintlab]), useranks=False ) gmeans = self.groupstats.groupmean gnobs = self.groupstats.groupnobs if use_var == 'unequal': var_ = self.groupstats.groupvarwithin() elif use_var == 'equal': var_ = np.var(self.groupstats.groupdemean(), ddof=len(gmeans)) else: raise ValueError('use_var should be "unequal" or "equal"') # res contains: 0:(idx1, idx2), 1:reject, 2:meandiffs, 3: std_pairs, # 4:confint, 5:q_crit, 6:df_total, 7:reject2, 8: pvals res = tukeyhsd(gmeans, gnobs, var_, df=None, alpha=alpha, q_crit=None) resarr = np.array( lzip( self.groupsunique[res[0][0]], self.groupsunique[res[0][1]], np.round(res[2], 4), np.round(res[8], 4), np.round(res[4][:, 0], 4), np.round(res[4][:, 1], 4), res[1], ), dtype=[ ("group1", object), ("group2", object), ("meandiff", float), ("p-adj", float), ("lower", float), ("upper", float), ("reject", np.bool_), ], ) results_table = SimpleTable(resarr, headers=resarr.dtype.names) results_table.title = ( "Multiple Comparison of Means - Tukey HSD, " + "FWER=%4.2f" % alpha ) return TukeyHSDResults( self, # mc_object, attached as _multicomp results_table, res[5], # q_crit, positional reject=res[1], meandiffs=res[2], std_pairs=res[3], confint=res[4], df_total=res[6], reject2=res[7], variance=var_, pvalues=res[8], alpha=alpha, group_t=self.groupsunique[res[0][1]], group_c=self.groupsunique[res[0][0]], )
Tukey's range test to compare means of all pairs of groups Parameters ---------- alpha : float, optional Value of FWER at which to calculate HSD. use_var : {"unequal", "equal"} If ``use_var`` is "equal", then the Tukey-hsd pvalues are returned. Tukey-hsd assumes that (within) variances are the same across groups. If ``use_var`` is "unequal", then the Games-Howell pvalues are returned. This uses Welch's t-test for unequal variances with Satterthwait's corrected degrees of freedom for each pairwise comparison. Returns ------- results : TukeyHSDResults instance A results class containing relevant data and some post-hoc calculations Notes ----- .. versionadded:: 0.15 ` The `use_var` keyword and option for Games-Howell test.
tukeyhsd
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def rankdata(x): """rankdata, equivalent to scipy.stats.rankdata just a different implementation, I have not yet compared speed """ uni, intlab = np.unique(x[:, 0], return_inverse=True) groupnobs = np.bincount(intlab) # Unused result, commented out # groupxsum = np.bincount(intlab, weights=X[:, 0]) # groupxsum * 1.0 / groupnobs rankraw = x[:, 0].argsort().argsort() groupranksum = np.bincount(intlab, weights=rankraw) # start at 1 for stats.rankdata : grouprankmean = groupranksum * 1.0 / groupnobs + 1 return grouprankmean[intlab]
rankdata, equivalent to scipy.stats.rankdata just a different implementation, I have not yet compared speed
rankdata
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def compare_ordered(vals, alpha): """simple ordered sequential comparison of means vals : array_like means or rankmeans for independent groups incomplete, no return, not used yet """ vals = np.asarray(vals) sortind = np.argsort(vals) sortind.argsort() ntests = len(vals) # alphacSidak = 1 - np.power((1. - alphaf), 1./ntests) # alphacBonf = alphaf / float(ntests) v1, v2 = np.triu_indices(ntests, 1) # v1,v2 have wrong sequence for i in range(4): for j in range(4, i, -1): print(i, j)
simple ordered sequential comparison of means vals : array_like means or rankmeans for independent groups incomplete, no return, not used yet
compare_ordered
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def varcorrection_unbalanced(nobs_all, srange=False): """correction factor for variance with unequal sample sizes this is just a harmonic mean Parameters ---------- nobs_all : array_like The number of observations for each sample srange : bool if true, then the correction is divided by the number of samples for the variance of the studentized range statistic Returns ------- correction : float Correction factor for variance. Notes ----- variance correction factor is 1/k * sum_i 1/n_i where k is the number of samples and summation is over i=0,...,k-1. If all n_i are the same, then the correction factor is 1. This needs to be multiplied by the joint variance estimate, means square error, MSE. To obtain the correction factor for the standard deviation, square root needs to be taken. """ nobs_all = np.asarray(nobs_all) if not srange: return (1.0 / nobs_all).sum() else: return (1.0 / nobs_all).sum() / len(nobs_all)
correction factor for variance with unequal sample sizes this is just a harmonic mean Parameters ---------- nobs_all : array_like The number of observations for each sample srange : bool if true, then the correction is divided by the number of samples for the variance of the studentized range statistic Returns ------- correction : float Correction factor for variance. Notes ----- variance correction factor is 1/k * sum_i 1/n_i where k is the number of samples and summation is over i=0,...,k-1. If all n_i are the same, then the correction factor is 1. This needs to be multiplied by the joint variance estimate, means square error, MSE. To obtain the correction factor for the standard deviation, square root needs to be taken.
varcorrection_unbalanced
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def varcorrection_pairs_unbalanced(nobs_all, srange=False): """correction factor for variance with unequal sample sizes for all pairs this is just a harmonic mean Parameters ---------- nobs_all : array_like The number of observations for each sample srange : bool if true, then the correction is divided by 2 for the variance of the studentized range statistic Returns ------- correction : ndarray Correction factor for variance. Notes ----- variance correction factor is 1/k * sum_i 1/n_i where k is the number of samples and summation is over i=0,...,k-1. If all n_i are the same, then the correction factor is 1. This needs to be multiplies by the joint variance estimate, means square error, MSE. To obtain the correction factor for the standard deviation, square root needs to be taken. For the studentized range statistic, the resulting factor has to be divided by 2. """ # TODO: test and replace with broadcasting n1, n2 = np.meshgrid(nobs_all, nobs_all) if not srange: return 1.0 / n1 + 1.0 / n2 else: return (1.0 / n1 + 1.0 / n2) / 2.0
correction factor for variance with unequal sample sizes for all pairs this is just a harmonic mean Parameters ---------- nobs_all : array_like The number of observations for each sample srange : bool if true, then the correction is divided by 2 for the variance of the studentized range statistic Returns ------- correction : ndarray Correction factor for variance. Notes ----- variance correction factor is 1/k * sum_i 1/n_i where k is the number of samples and summation is over i=0,...,k-1. If all n_i are the same, then the correction factor is 1. This needs to be multiplies by the joint variance estimate, means square error, MSE. To obtain the correction factor for the standard deviation, square root needs to be taken. For the studentized range statistic, the resulting factor has to be divided by 2.
varcorrection_pairs_unbalanced
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def varcorrection_unequal(var_all, nobs_all, df_all): """return joint variance from samples with unequal variances and unequal sample sizes something is wrong Parameters ---------- var_all : array_like The variance for each sample nobs_all : array_like The number of observations for each sample df_all : array_like degrees of freedom for each sample Returns ------- varjoint : float joint variance. dfjoint : float joint Satterthwait's degrees of freedom Notes ----- (copy, paste not correct) variance is 1/k * sum_i 1/n_i where k is the number of samples and summation is over i=0,...,k-1. If all n_i are the same, then the correction factor is 1/n. This needs to be multiplies by the joint variance estimate, means square error, MSE. To obtain the correction factor for the standard deviation, square root needs to be taken. This is for variance of mean difference not of studentized range. """ var_all = np.asarray(var_all) var_over_n = var_all * 1.0 / nobs_all # avoid integer division varjoint = var_over_n.sum() dfjoint = varjoint**2 / (var_over_n**2 * df_all).sum() return varjoint, dfjoint
return joint variance from samples with unequal variances and unequal sample sizes something is wrong Parameters ---------- var_all : array_like The variance for each sample nobs_all : array_like The number of observations for each sample df_all : array_like degrees of freedom for each sample Returns ------- varjoint : float joint variance. dfjoint : float joint Satterthwait's degrees of freedom Notes ----- (copy, paste not correct) variance is 1/k * sum_i 1/n_i where k is the number of samples and summation is over i=0,...,k-1. If all n_i are the same, then the correction factor is 1/n. This needs to be multiplies by the joint variance estimate, means square error, MSE. To obtain the correction factor for the standard deviation, square root needs to be taken. This is for variance of mean difference not of studentized range.
varcorrection_unequal
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def varcorrection_pairs_unequal(var_all, nobs_all, df_all): """return joint variance from samples with unequal variances and unequal sample sizes for all pairs something is wrong Parameters ---------- var_all : array_like The variance for each sample nobs_all : array_like The number of observations for each sample df_all : array_like degrees of freedom for each sample Returns ------- varjoint : ndarray joint variance. dfjoint : ndarray joint Satterthwait's degrees of freedom Notes ----- (copy, paste not correct) variance is 1/k * sum_i 1/n_i where k is the number of samples and summation is over i=0,...,k-1. If all n_i are the same, then the correction factor is 1. This needs to be multiplies by the joint variance estimate, means square error, MSE. To obtain the correction factor for the standard deviation, square root needs to be taken. """ # TODO: test and replace with broadcasting v1, v2 = np.meshgrid(var_all, var_all) n1, n2 = np.meshgrid(nobs_all, nobs_all) df1, df2 = np.meshgrid(df_all, df_all) varjoint = v1 / n1 + v2 / n2 dfjoint = varjoint**2 / ((v1 / n1) ** 2 / df1 + (v2 / n2) ** 2 / df2) return varjoint, dfjoint
return joint variance from samples with unequal variances and unequal sample sizes for all pairs something is wrong Parameters ---------- var_all : array_like The variance for each sample nobs_all : array_like The number of observations for each sample df_all : array_like degrees of freedom for each sample Returns ------- varjoint : ndarray joint variance. dfjoint : ndarray joint Satterthwait's degrees of freedom Notes ----- (copy, paste not correct) variance is 1/k * sum_i 1/n_i where k is the number of samples and summation is over i=0,...,k-1. If all n_i are the same, then the correction factor is 1. This needs to be multiplies by the joint variance estimate, means square error, MSE. To obtain the correction factor for the standard deviation, square root needs to be taken.
varcorrection_pairs_unequal
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def tukeyhsd(mean_all, nobs_all, var_all, df=None, alpha=0.05, q_crit=None): """simultaneous Tukey HSD check: instead of sorting, I use absolute value of pairwise differences in means. That's irrelevant for the test, but maybe reporting actual differences would be better. CHANGED: meandiffs are with sign, studentized range uses abs q_crit added for testing TODO: error in variance calculation when nobs_all is scalar, missing 1/n """ mean_all = np.asarray(mean_all) # check if or when other ones need to be arrays n_means = len(mean_all) if df is None: df = nobs_all - 1 if np.size(df) == 1: # assumes balanced samples with df = n - 1, n_i = n df_total = n_means * df df = np.ones(n_means) * df else: df_total = np.sum(df) df_pairs_ = None if (np.size(nobs_all) == 1) and (np.size(var_all) == 1): # balanced sample sizes and homogenous variance var_pairs = 1.0 * var_all / nobs_all * np.ones((n_means, n_means)) elif np.size(var_all) == 1: # unequal sample sizes and homogenous variance var_pairs = var_all * varcorrection_pairs_unbalanced(nobs_all, srange=True) elif np.size(var_all) > 1: var_pairs, df_pairs_ = varcorrection_pairs_unequal(var_all, nobs_all, df) var_pairs /= 2. # check division by two for studentized range else: raise ValueError("not supposed to be here") # meandiffs_ = mean_all[:,None] - mean_all meandiffs_ = mean_all - mean_all[:, None] # reverse sign, check with R example std_pairs_ = np.sqrt(var_pairs) # select all pairs from upper triangle of matrix idx1, idx2 = np.triu_indices(n_means, 1) meandiffs = meandiffs_[idx1, idx2] std_pairs = std_pairs_[idx1, idx2] if df_pairs_ is not None: df_total = df_pairs_[idx1, idx2] st_range = np.abs(meandiffs) / std_pairs # studentized range statistic # df_total_ = np.maximum(df_total, 5) # TODO: smallest df in table if q_crit is None: q_crit = get_tukeyQcrit2(n_means, df_total, alpha=alpha) pvalues = get_tukey_pvalue(n_means, df_total, st_range) # we need pvalues to be atleast_1d for iteration. see #6132 pvalues = np.atleast_1d(pvalues) reject = st_range > q_crit crit_int = std_pairs * q_crit reject2 = np.abs(meandiffs) > crit_int confint = np.column_stack((meandiffs - crit_int, meandiffs + crit_int)) return ( (idx1, idx2), reject, meandiffs, std_pairs, confint, q_crit, df_total, reject2, pvalues, )
simultaneous Tukey HSD check: instead of sorting, I use absolute value of pairwise differences in means. That's irrelevant for the test, but maybe reporting actual differences would be better. CHANGED: meandiffs are with sign, studentized range uses abs q_crit added for testing TODO: error in variance calculation when nobs_all is scalar, missing 1/n
tukeyhsd
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def simultaneous_ci(q_crit, var, groupnobs, pairindices=None): """Compute simultaneous confidence intervals for comparison of means. q_crit value is generated from tukey hsd test. Variance is considered across all groups. Returned halfwidths can be thought of as uncertainty intervals around each group mean. They allow for simultaneous comparison of pairwise significance among any pairs (by checking for overlap) Parameters ---------- q_crit : float The Q critical value studentized range statistic from Tukey's HSD var : float The group variance groupnobs : array_like object Number of observations contained in each group. pairindices : tuple of lists, optional Indices corresponding to the upper triangle of matrix. Computed here if not supplied Returns ------- halfwidths : ndarray Half the width of each confidence interval for each group given in groupnobs See Also -------- MultiComparison : statistics class providing significance tests tukeyhsd : among other things, computes q_crit value References ---------- .. [*] Hochberg, Y., and A. C. Tamhane. Multiple Comparison Procedures. Hoboken, NJ: John Wiley & Sons, 1987.) """ # Set initial variables ng = len(groupnobs) if pairindices is None: pairindices = np.triu_indices(ng, 1) # Compute dij for all pairwise comparisons ala hochberg p. 95 gvar = var / groupnobs d12 = np.sqrt(gvar[pairindices[0]] + gvar[pairindices[1]]) # Create the full d matrix given all known dij vals d = np.zeros((ng, ng)) d[pairindices] = d12 d = d + d.conj().T # Compute the two global sums from hochberg eq 3.32 sum1 = np.sum(d12) sum2 = np.sum(d, axis=0) if ng > 2: w = ((ng - 1.0) * sum2 - sum1) / ((ng - 1.0) * (ng - 2.0)) else: w = sum1 * np.ones((2, 1)) / 2.0 return (q_crit / np.sqrt(2)) * w
Compute simultaneous confidence intervals for comparison of means. q_crit value is generated from tukey hsd test. Variance is considered across all groups. Returned halfwidths can be thought of as uncertainty intervals around each group mean. They allow for simultaneous comparison of pairwise significance among any pairs (by checking for overlap) Parameters ---------- q_crit : float The Q critical value studentized range statistic from Tukey's HSD var : float The group variance groupnobs : array_like object Number of observations contained in each group. pairindices : tuple of lists, optional Indices corresponding to the upper triangle of matrix. Computed here if not supplied Returns ------- halfwidths : ndarray Half the width of each confidence interval for each group given in groupnobs See Also -------- MultiComparison : statistics class providing significance tests tukeyhsd : among other things, computes q_crit value References ---------- .. [*] Hochberg, Y., and A. C. Tamhane. Multiple Comparison Procedures. Hoboken, NJ: John Wiley & Sons, 1987.)
simultaneous_ci
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def distance_st_range(mean_all, nobs_all, var_all, df=None, triu=False): """pairwise distance matrix, outsourced from tukeyhsd CHANGED: meandiffs are with sign, studentized range uses abs q_crit added for testing TODO: error in variance calculation when nobs_all is scalar, missing 1/n """ mean_all = np.asarray(mean_all) # check if or when other ones need to be arrays n_means = len(mean_all) if df is None: df = nobs_all - 1 if (np.size(nobs_all) == 1) and (np.size(var_all) == 1): # balanced sample sizes and homogenous variance var_pairs = 1.0 * var_all / nobs_all * np.ones((n_means, n_means)) elif np.size(var_all) == 1: # unequal sample sizes and homogenous variance var_pairs = var_all * varcorrection_pairs_unbalanced(nobs_all, srange=True) elif np.size(var_all) > 1: var_pairs, df_sum = varcorrection_pairs_unequal(var_all, nobs_all, df) var_pairs /= 2. # check division by two for studentized range else: raise ValueError("not supposed to be here") # meandiffs_ = mean_all[:,None] - mean_all meandiffs = mean_all - mean_all[:, None] # reverse sign, check with R example std_pairs = np.sqrt(var_pairs) idx1, idx2 = np.triu_indices(n_means, 1) if triu: # select all pairs from upper triangle of matrix meandiffs = meandiffs_[idx1, idx2] # noqa: F821 See GH#5756 std_pairs = std_pairs_[idx1, idx2] # noqa: F821 See GH#5756 st_range = np.abs(meandiffs) / std_pairs # studentized range statistic return st_range, meandiffs, std_pairs, (idx1, idx2) # return square arrays
pairwise distance matrix, outsourced from tukeyhsd CHANGED: meandiffs are with sign, studentized range uses abs q_crit added for testing TODO: error in variance calculation when nobs_all is scalar, missing 1/n
distance_st_range
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def contrast_allpairs(nm): """contrast or restriction matrix for all pairs of nm variables Parameters ---------- nm : int Returns ------- contr : ndarray, 2d, (nm*(nm-1)/2, nm) contrast matrix for all pairwise comparisons """ contr = [] for i in range(nm): for j in range(i + 1, nm): contr_row = np.zeros(nm) contr_row[i] = 1 contr_row[j] = -1 contr.append(contr_row) return np.array(contr)
contrast or restriction matrix for all pairs of nm variables Parameters ---------- nm : int Returns ------- contr : ndarray, 2d, (nm*(nm-1)/2, nm) contrast matrix for all pairwise comparisons
contrast_allpairs
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def contrast_all_one(nm): """contrast or restriction matrix for all against first comparison Parameters ---------- nm : int Returns ------- contr : ndarray, 2d, (nm-1, nm) contrast matrix for all against first comparisons """ contr = np.column_stack((np.ones(nm - 1), -np.eye(nm - 1))) return contr
contrast or restriction matrix for all against first comparison Parameters ---------- nm : int Returns ------- contr : ndarray, 2d, (nm-1, nm) contrast matrix for all against first comparisons
contrast_all_one
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def contrast_diff_mean(nm): """contrast or restriction matrix for all against mean comparison Parameters ---------- nm : int Returns ------- contr : ndarray, 2d, (nm-1, nm) contrast matrix for all against mean comparisons """ return np.eye(nm) - np.ones((nm, nm)) / nm
contrast or restriction matrix for all against mean comparison Parameters ---------- nm : int Returns ------- contr : ndarray, 2d, (nm-1, nm) contrast matrix for all against mean comparisons
contrast_diff_mean
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def tukey_pvalues(std_range, nm, df): """compute tukey p-values by numerical integration of multivariate-t distribution """ # corrected but very slow with warnings about integration # need to increase maxiter or similar # nm = len(std_range) contr = contrast_allpairs(nm) corr = np.dot(contr, contr.T) / 2.0 tstat = std_range / np.sqrt(2) * np.ones(corr.shape[0]) # need len of all pairs return multicontrast_pvalues(tstat, corr, df=df)
compute tukey p-values by numerical integration of multivariate-t distribution
tukey_pvalues
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def multicontrast_pvalues(tstat, tcorr, df=None, dist="t", alternative="two-sided"): """pvalues for simultaneous tests currently only for t distribution, normal distribution not added yet alternative is ignored """ from statsmodels.sandbox.distributions.multivariate import mvstdtprob if (df is None) and (dist == "t"): raise ValueError("df has to be specified for the t-distribution") tstat = np.asarray(tstat) ntests = len(tstat) cc = np.abs(tstat) pval_global = 1 - mvstdtprob(-cc, cc, tcorr, df) pvals = [] for ti in cc: ti * np.ones(ntests) pvals.append(1 - mvstdtprob(-cc, cc, tcorr, df)) return pval_global, np.asarray(pvals)
pvalues for simultaneous tests currently only for t distribution, normal distribution not added yet alternative is ignored
multicontrast_pvalues
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def get_crit(self, alpha): """ get_tukeyQcrit currently tukey Q, add others """ q_crit = get_tukeyQcrit(self.n_vals, self.df, alpha=alpha) return q_crit * np.ones(self.n_vals)
get_tukeyQcrit currently tukey Q, add others
get_crit
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def get_distance_matrix(self): """studentized range statistic""" # make into property, decorate dres = distance_st_range(self.vals, self.nobs_all, self.var_all, df=self.df) self.distance_matrix = dres[0]
studentized range statistic
get_distance_matrix
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def iter_subsets(self, indices): """Iterate substeps""" for ii in range(len(indices)): idxsub = copy.copy(indices) idxsub.pop(ii) yield idxsub
Iterate substeps
iter_subsets
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def check_set(self, indices): """check whether pairwise distances of indices satisfy condition""" indtup = tuple(indices) if indtup in self.cache_result: return self.cache_result[indtup] else: set_distance_matrix = self.distance_matrix[ np.asarray(indices)[:, None], indices ] n_elements = len(indices) if np.any(set_distance_matrix > self.crit[n_elements - 1]): res = True else: res = False self.cache_result[indtup] = res return res
check whether pairwise distances of indices satisfy condition
check_set
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def stepdown(self, indices): """stepdown""" print(indices) if self.check_set(indices): # larger than critical distance if len(indices) > 2: # step down into subsets if more than 2 elements for subs in self.iter_subsets(indices): self.stepdown(subs) else: self.rejected.append(tuple(indices)) else: self.accepted.append(tuple(indices)) return indices
stepdown
stepdown
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def run(self, alpha): """main function to run the test, could be done in __call__ instead this could have all the initialization code """ self.cache_result = {} self.crit = self.get_crit(alpha) # decide where to set alpha, moved to run self.accepted = [] # store accepted sets, not unique self.rejected = [] self.get_distance_matrix() self.stepdown(lrange(self.n_vals)) return list(set(self.accepted)), list(set(sd.rejected))
main function to run the test, could be done in __call__ instead this could have all the initialization code
run
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def subsets(vals, indices_): """recursive function for constructing homogeneous subset registers rejected and subsetli in outer scope """ i, j = (indices_[0], indices_[-1]) if vals[-1] - vals[0] > dcrit[i, j]: rejected.append((indices_[0], indices_[-1])) return [ subsets(vals[:-1], indices_[:-1]), subsets(vals[1:], indices_[1:]), (indices_[0], indices_[-1]), ] else: subsetsli.append(tuple(indices_)) return indices_
recursive function for constructing homogeneous subset registers rejected and subsetli in outer scope
homogeneous_subsets.subsets
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def homogeneous_subsets(vals, dcrit): """recursively check all pairs of vals for minimum distance step down method as in Newman-Keuls and Ryan procedures. This is not a closed procedure since not all partitions are checked. Parameters ---------- vals : array_like values that are pairwise compared dcrit : array_like or float critical distance for rejecting, either float, or 2-dimensional array with distances on the upper triangle. Returns ------- rejs : list of pairs list of pair-indices with (strictly) larger than critical difference nrejs : list of pairs list of pair-indices with smaller than critical difference lli : list of tuples list of subsets with smaller than critical difference res : tree result of all comparisons (for checking) this follows description in SPSS notes on Post-Hoc Tests Because of the recursive structure, some comparisons are made several times, but only unique pairs or sets are returned. Examples -------- >>> m = [0, 2, 2.5, 3, 6, 8, 9, 9.5,10 ] >>> rej, nrej, ssli, res = homogeneous_subsets(m, 2) >>> set_partition(ssli) ([(5, 6, 7, 8), (1, 2, 3), (4,)], [0]) >>> [np.array(m)[list(pp)] for pp in set_partition(ssli)[0]] [array([ 8. , 9. , 9.5, 10. ]), array([ 2. , 2.5, 3. ]), array([ 6.])] """ nvals = len(vals) indices_ = lrange(nvals) rejected = [] subsetsli = [] if np.size(dcrit) == 1: dcrit = dcrit * np.ones((nvals, nvals)) # example numbers for experimenting def subsets(vals, indices_): """recursive function for constructing homogeneous subset registers rejected and subsetli in outer scope """ i, j = (indices_[0], indices_[-1]) if vals[-1] - vals[0] > dcrit[i, j]: rejected.append((indices_[0], indices_[-1])) return [ subsets(vals[:-1], indices_[:-1]), subsets(vals[1:], indices_[1:]), (indices_[0], indices_[-1]), ] else: subsetsli.append(tuple(indices_)) return indices_ res = subsets(vals, indices_) all_pairs = [(i, j) for i in range(nvals) for j in range(nvals - 1, i, -1)] rejs = set(rejected) not_rejected = list(set(all_pairs) - rejs) return list(rejs), not_rejected, list(set(subsetsli)), res
recursively check all pairs of vals for minimum distance step down method as in Newman-Keuls and Ryan procedures. This is not a closed procedure since not all partitions are checked. Parameters ---------- vals : array_like values that are pairwise compared dcrit : array_like or float critical distance for rejecting, either float, or 2-dimensional array with distances on the upper triangle. Returns ------- rejs : list of pairs list of pair-indices with (strictly) larger than critical difference nrejs : list of pairs list of pair-indices with smaller than critical difference lli : list of tuples list of subsets with smaller than critical difference res : tree result of all comparisons (for checking) this follows description in SPSS notes on Post-Hoc Tests Because of the recursive structure, some comparisons are made several times, but only unique pairs or sets are returned. Examples -------- >>> m = [0, 2, 2.5, 3, 6, 8, 9, 9.5,10 ] >>> rej, nrej, ssli, res = homogeneous_subsets(m, 2) >>> set_partition(ssli) ([(5, 6, 7, 8), (1, 2, 3), (4,)], [0]) >>> [np.array(m)[list(pp)] for pp in set_partition(ssli)[0]] [array([ 8. , 9. , 9.5, 10. ]), array([ 2. , 2.5, 3. ]), array([ 6.])]
homogeneous_subsets
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def set_partition(ssli): """extract a partition from a list of tuples this should be correctly called select largest disjoint sets. Begun and Gabriel 1981 do not seem to be bothered by sets of accepted hypothesis with joint elements, e.g. maximal_accepted_sets = { {1,2,3}, {2,3,4} } This creates a set partition from a list of sets given as tuples. It tries to find the partition with the largest sets. That is, sets are included after being sorted by length. If the list does not include the singletons, then it will be only a partial partition. Missing items are singletons (I think). Examples -------- >>> li [(5, 6, 7, 8), (1, 2, 3), (4, 5), (0, 1)] >>> set_partition(li) ([(5, 6, 7, 8), (1, 2, 3)], [0, 4]) """ part = [] for s in sorted(list(set(ssli)), key=len)[::-1]: # print(s, s_ = set(s).copy() if not any(set(s_).intersection(set(t)) for t in part): # print('inside:', s part.append(s) # else: print(part missing = list({i for ll in ssli for i in ll} - {i for ll in part for i in ll}) return part, missing
extract a partition from a list of tuples this should be correctly called select largest disjoint sets. Begun and Gabriel 1981 do not seem to be bothered by sets of accepted hypothesis with joint elements, e.g. maximal_accepted_sets = { {1,2,3}, {2,3,4} } This creates a set partition from a list of sets given as tuples. It tries to find the partition with the largest sets. That is, sets are included after being sorted by length. If the list does not include the singletons, then it will be only a partial partition. Missing items are singletons (I think). Examples -------- >>> li [(5, 6, 7, 8), (1, 2, 3), (4, 5), (0, 1)] >>> set_partition(li) ([(5, 6, 7, 8), (1, 2, 3)], [0, 4])
set_partition
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def set_remove_subs(ssli): """remove sets that are subsets of another set from a list of tuples Parameters ---------- ssli : list of tuples each tuple is considered as a set Returns ------- part : list of tuples new list with subset tuples removed, it is sorted by set-length of tuples. The list contains original tuples, duplicate elements are not removed. Examples -------- >>> set_remove_subs([(0, 1), (1, 2), (1, 2, 3), (0,)]) [(1, 2, 3), (0, 1)] >>> set_remove_subs([(0, 1), (1, 2), (1,1, 1, 2, 3), (0,)]) [(1, 1, 1, 2, 3), (0, 1)] """ # TODO: maybe convert all tuples to sets immediately, but I do not need the extra efficiency part = [] for s in sorted(list(set(ssli)), key=lambda x: len(set(x)))[::-1]: # print(s, # s_ = set(s).copy() if not any(set(s).issubset(set(t)) for t in part): # print('inside:', s part.append(s) # else: print(part ## missing = list(set(i for ll in ssli for i in ll) ## - set(i for ll in part for i in ll)) return part
remove sets that are subsets of another set from a list of tuples Parameters ---------- ssli : list of tuples each tuple is considered as a set Returns ------- part : list of tuples new list with subset tuples removed, it is sorted by set-length of tuples. The list contains original tuples, duplicate elements are not removed. Examples -------- >>> set_remove_subs([(0, 1), (1, 2), (1, 2, 3), (0,)]) [(1, 2, 3), (0, 1)] >>> set_remove_subs([(0, 1), (1, 2), (1,1, 1, 2, 3), (0,)]) [(1, 1, 1, 2, 3), (0, 1)]
set_remove_subs
python
statsmodels/statsmodels
statsmodels/sandbox/stats/multicomp.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/multicomp.py
BSD-3-Clause
def scoreatpercentile(data, per, limit=(), alphap=.4, betap=.4, axis=0, masknan=None): """Calculate the score at the given 'per' percentile of the sequence a. For example, the score at per=50 is the median. This function is a shortcut to mquantile """ per = np.asarray(per, float) if (per < 0).any() or (per > 100.).any(): raise ValueError("The percentile should be between 0. and 100. !"\ " (got %s)" % per) return quantiles(data, prob=[per/100.], alphap=alphap, betap=betap, limit=limit, axis=axis, masknan=masknan).squeeze()
Calculate the score at the given 'per' percentile of the sequence a. For example, the score at per=50 is the median. This function is a shortcut to mquantile
scoreatpercentile
python
statsmodels/statsmodels
statsmodels/sandbox/stats/stats_mstats_short.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/stats_mstats_short.py
BSD-3-Clause
def plotting_positions(data, alpha=0.4, beta=0.4, axis=0, masknan=False): """Returns the plotting positions (or empirical percentile points) for the data. Plotting positions are defined as (i-alpha)/(n+1-alpha-beta), where: - i is the rank order statistics (starting at 1) - n is the number of unmasked values along the given axis - alpha and beta are two parameters. Typical values for alpha and beta are: - (0,1) : *p(k) = k/n* : linear interpolation of cdf (R, type 4) - (.5,.5) : *p(k) = (k-1/2.)/n* : piecewise linear function (R, type 5) (Bliss 1967: "Rankit") - (0,0) : *p(k) = k/(n+1)* : Weibull (R type 6), (Van der Waerden 1952) - (1,1) : *p(k) = (k-1)/(n-1)*. In this case, p(k) = mode[F(x[k])]. That's R default (R type 7) - (1/3,1/3): *p(k) = (k-1/3)/(n+1/3)*. Then p(k) ~ median[F(x[k])]. The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8), (Tukey 1962) - (3/8,3/8): *p(k) = (k-3/8)/(n+1/4)*. The resulting quantile estimates are approximately unbiased if x is normally distributed (R type 9) (Blom 1958) - (.4,.4) : approximately quantile unbiased (Cunnane) - (.35,.35): APL, used with PWM Parameters ---------- x : sequence Input data, as a sequence or array of dimension at most 2. prob : sequence List of quantiles to compute. alpha : {0.4, float} optional Plotting positions parameter. beta : {0.4, float} optional Plotting positions parameter. Notes ----- I think the adjustments assume that there are no ties in order to be a reasonable approximation to a continuous density function. TODO: check this References ---------- unknown, dates to original papers from Beasley, Erickson, Allison 2009 Behav Genet """ if isinstance(data, np.ma.MaskedArray): if axis is None or data.ndim == 1: return stats.mstats.plotting_positions(data, alpha=alpha, beta=beta) else: return ma.apply_along_axis(stats.mstats.plotting_positions, axis, data, alpha=alpha, beta=beta) if masknan: nanmask = np.isnan(data) if nanmask.any(): marr = ma.array(data, mask=nanmask) #code duplication: if axis is None or data.ndim == 1: marr = stats.mstats.plotting_positions(marr, alpha=alpha, beta=beta) else: marr = ma.apply_along_axis(stats.mstats.plotting_positions, axis, marr, alpha=alpha, beta=beta) return ma.filled(marr, fill_value=np.nan) data = np.asarray(data) if data.size == 1: # use helper function instead data = np.atleast_1d(data) axis = 0 if axis is None: data = data.ravel() axis = 0 n = data.shape[axis] if data.ndim == 1: plpos = np.empty(data.shape, dtype=float) plpos[data.argsort()] = (np.arange(1,n+1) - alpha)/(n+1.-alpha-beta) else: #nd assignment instead of second argsort does not look easy plpos = (data.argsort(axis).argsort(axis) + 1. - alpha)/(n+1.-alpha-beta) return plpos
Returns the plotting positions (or empirical percentile points) for the data. Plotting positions are defined as (i-alpha)/(n+1-alpha-beta), where: - i is the rank order statistics (starting at 1) - n is the number of unmasked values along the given axis - alpha and beta are two parameters. Typical values for alpha and beta are: - (0,1) : *p(k) = k/n* : linear interpolation of cdf (R, type 4) - (.5,.5) : *p(k) = (k-1/2.)/n* : piecewise linear function (R, type 5) (Bliss 1967: "Rankit") - (0,0) : *p(k) = k/(n+1)* : Weibull (R type 6), (Van der Waerden 1952) - (1,1) : *p(k) = (k-1)/(n-1)*. In this case, p(k) = mode[F(x[k])]. That's R default (R type 7) - (1/3,1/3): *p(k) = (k-1/3)/(n+1/3)*. Then p(k) ~ median[F(x[k])]. The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8), (Tukey 1962) - (3/8,3/8): *p(k) = (k-3/8)/(n+1/4)*. The resulting quantile estimates are approximately unbiased if x is normally distributed (R type 9) (Blom 1958) - (.4,.4) : approximately quantile unbiased (Cunnane) - (.35,.35): APL, used with PWM Parameters ---------- x : sequence Input data, as a sequence or array of dimension at most 2. prob : sequence List of quantiles to compute. alpha : {0.4, float} optional Plotting positions parameter. beta : {0.4, float} optional Plotting positions parameter. Notes ----- I think the adjustments assume that there are no ties in order to be a reasonable approximation to a continuous density function. TODO: check this References ---------- unknown, dates to original papers from Beasley, Erickson, Allison 2009 Behav Genet
plotting_positions
python
statsmodels/statsmodels
statsmodels/sandbox/stats/stats_mstats_short.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/stats_mstats_short.py
BSD-3-Clause
def plotting_positions_w1d(data, weights=None, alpha=0.4, beta=0.4, method='notnormed'): '''Weighted plotting positions (or empirical percentile points) for the data. observations are weighted and the plotting positions are defined as (ws-alpha)/(n-alpha-beta), where: - ws is the weighted rank order statistics or cumulative weighted sum, normalized to n if method is "normed" - n is the number of values along the given axis if method is "normed" and total weight otherwise - alpha and beta are two parameters. wtd.quantile in R package Hmisc seems to use the "notnormed" version. notnormed coincides with unweighted segment in example, drop "normed" version ? See Also -------- plotting_positions : unweighted version that works also with more than one dimension and has other options ''' x = np.atleast_1d(data) if x.ndim > 1: raise ValueError('currently implemented only for 1d') if weights is None: weights = np.ones(x.shape) else: weights = np.array(weights, float, copy=False, ndmin=1) #atleast_1d(weights) if weights.shape != x.shape: raise ValueError('if weights is given, it needs to be the same' 'shape as data') n = len(x) xargsort = x.argsort() ws = weights[xargsort].cumsum() res = np.empty(x.shape) if method == 'normed': res[xargsort] = (1.*ws/ws[-1]*n-alpha)/(n+1.-alpha-beta) else: res[xargsort] = (1.*ws-alpha)/(ws[-1]+1.-alpha-beta) return res
Weighted plotting positions (or empirical percentile points) for the data. observations are weighted and the plotting positions are defined as (ws-alpha)/(n-alpha-beta), where: - ws is the weighted rank order statistics or cumulative weighted sum, normalized to n if method is "normed" - n is the number of values along the given axis if method is "normed" and total weight otherwise - alpha and beta are two parameters. wtd.quantile in R package Hmisc seems to use the "notnormed" version. notnormed coincides with unweighted segment in example, drop "normed" version ? See Also -------- plotting_positions : unweighted version that works also with more than one dimension and has other options
plotting_positions_w1d
python
statsmodels/statsmodels
statsmodels/sandbox/stats/stats_mstats_short.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/stats_mstats_short.py
BSD-3-Clause
def edf_normal_inverse_transformed(x, alpha=3./8, beta=3./8, axis=0): '''rank based normal inverse transformed cdf ''' from scipy import stats ranks = plotting_positions(x, alpha=alpha, beta=alpha, axis=0, masknan=False) ranks_transf = stats.norm.ppf(ranks) return ranks_transf
rank based normal inverse transformed cdf
edf_normal_inverse_transformed
python
statsmodels/statsmodels
statsmodels/sandbox/stats/stats_mstats_short.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/stats_mstats_short.py
BSD-3-Clause
def runs_test(self, correction=True): '''basic version of runs test Parameters ---------- correction : bool Following the SAS manual, for samplesize below 50, the test statistic is corrected by 0.5. This can be turned off with correction=False, and was included to match R, tseries, which does not use any correction. pvalue based on normal distribution, with integer correction ''' self.npo = npo = (self.runs_pos).sum() self.nne = nne = (self.runs_neg).sum() #n_r = self.n_runs n = npo + nne npn = npo * nne rmean = 2. * npn / n + 1 rvar = 2. * npn * (2.*npn - n) / n**2. / (n-1.) rstd = np.sqrt(rvar) rdemean = self.n_runs - rmean if n >= 50 or not correction: z = rdemean else: if rdemean > 0.5: z = rdemean - 0.5 elif rdemean < 0.5: z = rdemean + 0.5 else: z = 0. z /= rstd pval = 2 * stats.norm.sf(np.abs(z)) return z, pval
basic version of runs test Parameters ---------- correction : bool Following the SAS manual, for samplesize below 50, the test statistic is corrected by 0.5. This can be turned off with correction=False, and was included to match R, tseries, which does not use any correction. pvalue based on normal distribution, with integer correction
runs_test
python
statsmodels/statsmodels
statsmodels/sandbox/stats/runs.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/runs.py
BSD-3-Clause
def runstest_1samp(x, cutoff='mean', correction=True): '''use runs test on binary discretized data above/below cutoff Parameters ---------- x : array_like data, numeric cutoff : {'mean', 'median'} or number This specifies the cutoff to split the data into large and small values. correction : bool Following the SAS manual, for samplesize below 50, the test statistic is corrected by 0.5. This can be turned off with correction=False, and was included to match R, tseries, which does not use any correction. Returns ------- z_stat : float test statistic, asymptotically normally distributed p-value : float p-value, reject the null hypothesis if it is below an type 1 error level, alpha . ''' x = array_like(x, "x") if cutoff == 'mean': cutoff = np.mean(x) elif cutoff == 'median': cutoff = np.median(x) else: cutoff = float(cutoff) xindicator = (x >= cutoff).astype(int) return Runs(xindicator).runs_test(correction=correction)
use runs test on binary discretized data above/below cutoff Parameters ---------- x : array_like data, numeric cutoff : {'mean', 'median'} or number This specifies the cutoff to split the data into large and small values. correction : bool Following the SAS manual, for samplesize below 50, the test statistic is corrected by 0.5. This can be turned off with correction=False, and was included to match R, tseries, which does not use any correction. Returns ------- z_stat : float test statistic, asymptotically normally distributed p-value : float p-value, reject the null hypothesis if it is below an type 1 error level, alpha .
runstest_1samp
python
statsmodels/statsmodels
statsmodels/sandbox/stats/runs.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/runs.py
BSD-3-Clause
def runstest_2samp(x, y=None, groups=None, correction=True): '''Wald-Wolfowitz runstest for two samples This tests whether two samples come from the same distribution. Parameters ---------- x : array_like data, numeric, contains either one group, if y is also given, or both groups, if additionally a group indicator is provided y : array_like (optional) data, numeric groups : array_like group labels or indicator the data for both groups is given in a single 1-dimensional array, x. If group labels are not [0,1], then correction : bool Following the SAS manual, for samplesize below 50, the test statistic is corrected by 0.5. This can be turned off with correction=False, and was included to match R, tseries, which does not use any correction. Returns ------- z_stat : float test statistic, asymptotically normally distributed p-value : float p-value, reject the null hypothesis if it is below an type 1 error level, alpha . Notes ----- Wald-Wolfowitz runs test. If there are ties, then then the test statistic and p-value that is reported, is based on the higher p-value between sorting all tied observations of the same group This test is intended for continuous distributions SAS has treatment for ties, but not clear, and sounds more complicated (minimum and maximum possible runs prevent use of argsort) (maybe it's not so difficult, idea: add small positive noise to first one, run test, then to the other, run test, take max(?) p-value - DONE This gives not the minimum and maximum of the number of runs, but should be close. Not true, this is close to minimum but far away from maximum. maximum number of runs would use alternating groups in the ties.) Maybe adding random noise would be the better approach. SAS has exact distribution for sample size <=30, does not look standard but should be easy to add. currently two-sided test only This has not been verified against a reference implementation. In a short Monte Carlo simulation where both samples are normally distribute, the test seems to be correctly sized for larger number of observations (30 or larger), but conservative (i.e. reject less often than nominal) with a sample size of 10 in each group. See Also -------- runs_test_1samp Runs RunsProb ''' x = np.asarray(x) if y is not None: y = np.asarray(y) groups = np.concatenate((np.zeros(len(x)), np.ones(len(y)))) # note reassigning x x = np.concatenate((x, y)) gruni = np.arange(2) elif groups is not None: gruni = np.unique(groups) if gruni.size != 2: # pylint: disable=E1103 raise ValueError('not exactly two groups specified') #require groups to be numeric ??? else: raise ValueError('either y or groups is necessary') xargsort = np.argsort(x) #check for ties x_sorted = x[xargsort] x_diff = np.diff(x_sorted) # used for detecting and handling ties if x_diff.min() == 0: print('ties detected') #replace with warning x_mindiff = x_diff[x_diff > 0].min() eps = x_mindiff/2. xx = x.copy() #do not change original, just in case xx[groups==gruni[0]] += eps xargsort = np.argsort(xx) xindicator = groups[xargsort] z0, p0 = Runs(xindicator).runs_test(correction=correction) xx[groups==gruni[0]] -= eps #restore xx = x xx[groups==gruni[1]] += eps xargsort = np.argsort(xx) xindicator = groups[xargsort] z1, p1 = Runs(xindicator).runs_test(correction=correction) idx = np.argmax([p0,p1]) return [z0, z1][idx], [p0, p1][idx] else: xindicator = groups[xargsort] return Runs(xindicator).runs_test(correction=correction)
Wald-Wolfowitz runstest for two samples This tests whether two samples come from the same distribution. Parameters ---------- x : array_like data, numeric, contains either one group, if y is also given, or both groups, if additionally a group indicator is provided y : array_like (optional) data, numeric groups : array_like group labels or indicator the data for both groups is given in a single 1-dimensional array, x. If group labels are not [0,1], then correction : bool Following the SAS manual, for samplesize below 50, the test statistic is corrected by 0.5. This can be turned off with correction=False, and was included to match R, tseries, which does not use any correction. Returns ------- z_stat : float test statistic, asymptotically normally distributed p-value : float p-value, reject the null hypothesis if it is below an type 1 error level, alpha . Notes ----- Wald-Wolfowitz runs test. If there are ties, then then the test statistic and p-value that is reported, is based on the higher p-value between sorting all tied observations of the same group This test is intended for continuous distributions SAS has treatment for ties, but not clear, and sounds more complicated (minimum and maximum possible runs prevent use of argsort) (maybe it's not so difficult, idea: add small positive noise to first one, run test, then to the other, run test, take max(?) p-value - DONE This gives not the minimum and maximum of the number of runs, but should be close. Not true, this is close to minimum but far away from maximum. maximum number of runs would use alternating groups in the ties.) Maybe adding random noise would be the better approach. SAS has exact distribution for sample size <=30, does not look standard but should be easy to add. currently two-sided test only This has not been verified against a reference implementation. In a short Monte Carlo simulation where both samples are normally distribute, the test seems to be correctly sized for larger number of observations (30 or larger), but conservative (i.e. reject less often than nominal) with a sample size of 10 in each group. See Also -------- runs_test_1samp Runs RunsProb
runstest_2samp
python
statsmodels/statsmodels
statsmodels/sandbox/stats/runs.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/runs.py
BSD-3-Clause
def pdf(self, x, k, n, p): '''distribution of success runs of length k or more Parameters ---------- x : float count of runs of length n k : int length of runs n : int total number of observations or trials p : float probability of success in each Bernoulli trial Returns ------- pdf : float probability that x runs of length of k are observed Notes ----- not yet vectorized References ---------- Muselli 1996, theorem 3 ''' q = 1-p m = np.arange(x, (n+1)//(k+1)+1)[:,None] terms = (-1)**(m-x) * comb(m, x) * p**(m*k) * q**(m-1) \ * (comb(n - m*k, m - 1) + q * comb(n - m*k, m)) return terms.sum(0)
distribution of success runs of length k or more Parameters ---------- x : float count of runs of length n k : int length of runs n : int total number of observations or trials p : float probability of success in each Bernoulli trial Returns ------- pdf : float probability that x runs of length of k are observed Notes ----- not yet vectorized References ---------- Muselli 1996, theorem 3
pdf
python
statsmodels/statsmodels
statsmodels/sandbox/stats/runs.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/runs.py
BSD-3-Clause
def median_test_ksample(x, groups): '''chisquare test for equality of median/location This tests whether all groups have the same fraction of observations above the median. Parameters ---------- x : array_like data values stacked for all groups groups : array_like group labels or indicator Returns ------- stat : float test statistic pvalue : float pvalue from the chisquare distribution others ???? currently some test output, table and expected ''' x = np.asarray(x) gruni = np.unique(groups) xli = [x[groups==group] for group in gruni] xmedian = np.median(x) counts_larger = np.array([(xg > xmedian).sum() for xg in xli]) counts = np.array([len(xg) for xg in xli]) counts_smaller = counts - counts_larger nobs = counts.sum() n_larger = (x > xmedian).sum() n_smaller = nobs - n_larger table = np.vstack((counts_smaller, counts_larger)) #the following should be replaced by chisquare_contingency table expected = np.vstack((counts * 1. / nobs * n_smaller, counts * 1. / nobs * n_larger)) if (expected < 5).any(): print('Warning: There are cells with less than 5 expected' \ 'observations. The chisquare distribution might not be a good' \ 'approximation for the true distribution.') #check ddof return stats.chisquare(table.ravel(), expected.ravel(), ddof=1), table, expected
chisquare test for equality of median/location This tests whether all groups have the same fraction of observations above the median. Parameters ---------- x : array_like data values stacked for all groups groups : array_like group labels or indicator Returns ------- stat : float test statistic pvalue : float pvalue from the chisquare distribution others ???? currently some test output, table and expected
median_test_ksample
python
statsmodels/statsmodels
statsmodels/sandbox/stats/runs.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/runs.py
BSD-3-Clause
def cochrans_q(x): '''Cochran's Q test for identical effect of k treatments Cochran's Q is a k-sample extension of the McNemar test. If there are only two treatments, then Cochran's Q test and McNemar test are equivalent. Test that the probability of success is the same for each treatment. The alternative is that at least two treatments have a different probability of success. Parameters ---------- x : array_like, 2d (N,k) data with N cases and k variables Returns ------- q_stat : float test statistic pvalue : float pvalue from the chisquare distribution Notes ----- In Wikipedia terminology, rows are blocks and columns are treatments. The number of rows N, should be large for the chisquare distribution to be a good approximation. The Null hypothesis of the test is that all treatments have the same effect. References ---------- https://en.wikipedia.org/wiki/Cochran_test SAS Manual for NPAR TESTS ''' warnings.warn("Deprecated, use stats.cochrans_q instead", FutureWarning) x = np.asarray(x) gruni = np.unique(x) N, k = x.shape count_row_success = (x==gruni[-1]).sum(1, float) count_col_success = (x==gruni[-1]).sum(0, float) count_row_ss = count_row_success.sum() count_col_ss = count_col_success.sum() assert count_row_ss == count_col_ss #just a calculation check #this is SAS manual q_stat = (k-1) * (k * np.sum(count_col_success**2) - count_col_ss**2) \ / (k * count_row_ss - np.sum(count_row_success**2)) #Note: the denominator looks just like k times the variance of the #columns #Wikipedia uses a different, but equivalent expression ## q_stat = (k-1) * (k * np.sum(count_row_success**2) - count_row_ss**2) \ ## / (k * count_col_ss - np.sum(count_col_success**2)) return q_stat, stats.chi2.sf(q_stat, k-1)
Cochran's Q test for identical effect of k treatments Cochran's Q is a k-sample extension of the McNemar test. If there are only two treatments, then Cochran's Q test and McNemar test are equivalent. Test that the probability of success is the same for each treatment. The alternative is that at least two treatments have a different probability of success. Parameters ---------- x : array_like, 2d (N,k) data with N cases and k variables Returns ------- q_stat : float test statistic pvalue : float pvalue from the chisquare distribution Notes ----- In Wikipedia terminology, rows are blocks and columns are treatments. The number of rows N, should be large for the chisquare distribution to be a good approximation. The Null hypothesis of the test is that all treatments have the same effect. References ---------- https://en.wikipedia.org/wiki/Cochran_test SAS Manual for NPAR TESTS
cochrans_q
python
statsmodels/statsmodels
statsmodels/sandbox/stats/runs.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/runs.py
BSD-3-Clause
def mcnemar(x, y=None, exact=True, correction=True): '''McNemar test Parameters ---------- x, y : array_like two paired data samples. If y is None, then x can be a 2 by 2 contingency table. x and y can have more than one dimension, then the results are calculated under the assumption that axis zero contains the observation for the samples. exact : bool If exact is true, then the binomial distribution will be used. If exact is false, then the chisquare distribution will be used, which is the approximation to the distribution of the test statistic for large sample sizes. correction : bool If true, then a continuity correction is used for the chisquare distribution (if exact is false.) Returns ------- stat : float or int, array The test statistic is the chisquare statistic if exact is false. If the exact binomial distribution is used, then this contains the min(n1, n2), where n1, n2 are cases that are zero in one sample but one in the other sample. pvalue : float or array p-value of the null hypothesis of equal effects. Notes ----- This is a special case of Cochran's Q test. The results when the chisquare distribution is used are identical, except for continuity correction. ''' warnings.warn("Deprecated, use stats.TableSymmetry instead", FutureWarning) x = np.asarray(x) if y is None and x.shape[0] == x.shape[1]: if x.shape[0] != 2: raise ValueError('table needs to be 2 by 2') n1, n2 = x[1, 0], x[0, 1] else: # I'm not checking here whether x and y are binary, # is not this also paired sign test n1 = np.sum(x < y, 0) n2 = np.sum(x > y, 0) if exact: stat = np.minimum(n1, n2) # binom is symmetric with p=0.5 pval = stats.binom.cdf(stat, n1 + n2, 0.5) * 2 pval = np.minimum(pval, 1) # limit to 1 if n1==n2 else: corr = int(correction) # convert bool to 0 or 1 stat = (np.abs(n1 - n2) - corr)**2 / (1. * (n1 + n2)) df = 1 pval = stats.chi2.sf(stat, df) return stat, pval
McNemar test Parameters ---------- x, y : array_like two paired data samples. If y is None, then x can be a 2 by 2 contingency table. x and y can have more than one dimension, then the results are calculated under the assumption that axis zero contains the observation for the samples. exact : bool If exact is true, then the binomial distribution will be used. If exact is false, then the chisquare distribution will be used, which is the approximation to the distribution of the test statistic for large sample sizes. correction : bool If true, then a continuity correction is used for the chisquare distribution (if exact is false.) Returns ------- stat : float or int, array The test statistic is the chisquare statistic if exact is false. If the exact binomial distribution is used, then this contains the min(n1, n2), where n1, n2 are cases that are zero in one sample but one in the other sample. pvalue : float or array p-value of the null hypothesis of equal effects. Notes ----- This is a special case of Cochran's Q test. The results when the chisquare distribution is used are identical, except for continuity correction.
mcnemar
python
statsmodels/statsmodels
statsmodels/sandbox/stats/runs.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/runs.py
BSD-3-Clause
def symmetry_bowker(table): '''Test for symmetry of a (k, k) square contingency table This is an extension of the McNemar test to test the Null hypothesis that the contingency table is symmetric around the main diagonal, that is n_{i, j} = n_{j, i} for all i, j Parameters ---------- table : array_like, 2d, (k, k) a square contingency table that contains the count for k categories in rows and columns. Returns ------- statistic : float chisquare test statistic p-value : float p-value of the test statistic based on chisquare distribution df : int degrees of freedom of the chisquare distribution Notes ----- Implementation is based on the SAS documentation, R includes it in `mcnemar.test` if the table is not 2 by 2. The pvalue is based on the chisquare distribution which requires that the sample size is not very small to be a good approximation of the true distribution. For 2x2 contingency tables exact distribution can be obtained with `mcnemar` See Also -------- mcnemar ''' warnings.warn("Deprecated, use stats.TableSymmetry instead", FutureWarning) table = np.asarray(table) k, k2 = table.shape if k != k2: raise ValueError('table needs to be square') #low_idx = np.tril_indices(k, -1) # this does not have Fortran order upp_idx = np.triu_indices(k, 1) tril = table.T[upp_idx] # lower triangle in column order triu = table[upp_idx] # upper triangle in row order stat = ((tril - triu)**2 / (tril + triu + 1e-20)).sum() df = k * (k-1) / 2. pval = stats.chi2.sf(stat, df) return stat, pval, df
Test for symmetry of a (k, k) square contingency table This is an extension of the McNemar test to test the Null hypothesis that the contingency table is symmetric around the main diagonal, that is n_{i, j} = n_{j, i} for all i, j Parameters ---------- table : array_like, 2d, (k, k) a square contingency table that contains the count for k categories in rows and columns. Returns ------- statistic : float chisquare test statistic p-value : float p-value of the test statistic based on chisquare distribution df : int degrees of freedom of the chisquare distribution Notes ----- Implementation is based on the SAS documentation, R includes it in `mcnemar.test` if the table is not 2 by 2. The pvalue is based on the chisquare distribution which requires that the sample size is not very small to be a good approximation of the true distribution. For 2x2 contingency tables exact distribution can be obtained with `mcnemar` See Also -------- mcnemar
symmetry_bowker
python
statsmodels/statsmodels
statsmodels/sandbox/stats/runs.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/stats/runs.py
BSD-3-Clause
def corr_equi(k_vars, rho): '''create equicorrelated correlation matrix with rho on off diagonal Parameters ---------- k_vars : int number of variables, correlation matrix will be (k_vars, k_vars) rho : float correlation between any two random variables Returns ------- corr : ndarray (k_vars, k_vars) correlation matrix ''' corr = np.empty((k_vars, k_vars)) corr.fill(rho) corr[np.diag_indices_from(corr)] = 1 return corr
create equicorrelated correlation matrix with rho on off diagonal Parameters ---------- k_vars : int number of variables, correlation matrix will be (k_vars, k_vars) rho : float correlation between any two random variables Returns ------- corr : ndarray (k_vars, k_vars) correlation matrix
corr_equi
python
statsmodels/statsmodels
statsmodels/sandbox/panel/correlation_structures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/correlation_structures.py
BSD-3-Clause
def corr_ar(k_vars, ar): '''create autoregressive correlation matrix This might be MA, not AR, process if used for residual process - check Parameters ---------- ar : array_like, 1d AR lag-polynomial including 1 for lag 0 ''' from scipy.linalg import toeplitz if len(ar) < k_vars: ar_ = np.zeros(k_vars) ar_[:len(ar)] = ar ar = ar_ return toeplitz(ar)
create autoregressive correlation matrix This might be MA, not AR, process if used for residual process - check Parameters ---------- ar : array_like, 1d AR lag-polynomial including 1 for lag 0
corr_ar
python
statsmodels/statsmodels
statsmodels/sandbox/panel/correlation_structures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/correlation_structures.py
BSD-3-Clause
def corr_arma(k_vars, ar, ma): '''create arma correlation matrix converts arma to autoregressive lag-polynomial with k_var lags ar and arma might need to be switched for generating residual process Parameters ---------- ar : array_like, 1d AR lag-polynomial including 1 for lag 0 ma : array_like, 1d MA lag-polynomial ''' from scipy.linalg import toeplitz from statsmodels.tsa.arima_process import arma2ar # TODO: flesh out the comment below about a bug in arma2ar ar = arma2ar(ar, ma, lags=k_vars)[:k_vars] # bug in arma2ar return toeplitz(ar)
create arma correlation matrix converts arma to autoregressive lag-polynomial with k_var lags ar and arma might need to be switched for generating residual process Parameters ---------- ar : array_like, 1d AR lag-polynomial including 1 for lag 0 ma : array_like, 1d MA lag-polynomial
corr_arma
python
statsmodels/statsmodels
statsmodels/sandbox/panel/correlation_structures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/correlation_structures.py
BSD-3-Clause
def corr2cov(corr, std): '''convert correlation matrix to covariance matrix Parameters ---------- corr : ndarray, (k_vars, k_vars) correlation matrix std : ndarray, (k_vars,) or scalar standard deviation for the vector of random variables. If scalar, then it is assumed that all variables have the same scale given by std. ''' if np.size(std) == 1: std = std*np.ones(corr.shape[0]) cov = corr * std[:, None] * std[None, :] # same as outer product return cov
convert correlation matrix to covariance matrix Parameters ---------- corr : ndarray, (k_vars, k_vars) correlation matrix std : ndarray, (k_vars,) or scalar standard deviation for the vector of random variables. If scalar, then it is assumed that all variables have the same scale given by std.
corr2cov
python
statsmodels/statsmodels
statsmodels/sandbox/panel/correlation_structures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/correlation_structures.py
BSD-3-Clause
def whiten_ar(x, ar_coefs, order): """ Whiten a series of columns according to an AR(p) covariance structure. This drops the initial conditions (Cochran-Orcut ?) Uses loop, so for short ar polynomials only, use lfilter otherwise This needs to improve, option on method, full additional to conditional Parameters ---------- x : array_like, (nobs,) or (nobs, k_vars) The data to be whitened along axis 0 ar_coefs : ndarray coefficients of AR lag- polynomial, TODO: ar or ar_coefs? order : int Returns ------- x_new : ndarray transformed array """ rho = ar_coefs x = np.array(x, np.float64) _x = x.copy() # TODO: dimension handling is not DRY # I think previous code worked for 2d because of single index rows in np if x.ndim == 2: rho = rho[:, None] for i in range(order): _x[(i+1):] = _x[(i+1):] - rho[i] * x[0:-(i+1)] return _x[order:]
Whiten a series of columns according to an AR(p) covariance structure. This drops the initial conditions (Cochran-Orcut ?) Uses loop, so for short ar polynomials only, use lfilter otherwise This needs to improve, option on method, full additional to conditional Parameters ---------- x : array_like, (nobs,) or (nobs, k_vars) The data to be whitened along axis 0 ar_coefs : ndarray coefficients of AR lag- polynomial, TODO: ar or ar_coefs? order : int Returns ------- x_new : ndarray transformed array
whiten_ar
python
statsmodels/statsmodels
statsmodels/sandbox/panel/correlation_structures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/correlation_structures.py
BSD-3-Clause
def yule_walker_acov(acov, order=1, method="unbiased", df=None, inv=False): """ Estimate AR(p) parameters from acovf using Yule-Walker equation. Parameters ---------- acov : array_like, 1d auto-covariance order : int, optional The order of the autoregressive process. Default is 1. inv : bool If inv is True the inverse of R is also returned. Default is False. Returns ------- rho : ndarray The estimated autoregressive coefficients sigma TODO Rinv : ndarray inverse of the Toepliz matrix """ return yule_walker(acov, order=order, method=method, df=df, inv=inv, demean=False)
Estimate AR(p) parameters from acovf using Yule-Walker equation. Parameters ---------- acov : array_like, 1d auto-covariance order : int, optional The order of the autoregressive process. Default is 1. inv : bool If inv is True the inverse of R is also returned. Default is False. Returns ------- rho : ndarray The estimated autoregressive coefficients sigma TODO Rinv : ndarray inverse of the Toepliz matrix
yule_walker_acov
python
statsmodels/statsmodels
statsmodels/sandbox/panel/correlation_structures.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/correlation_structures.py
BSD-3-Clause
def generate_panel(self): ''' generate endog for a random panel dataset with within correlation ''' if self.y_true is None: self.get_y_true() nobs_i = self.nobs_i n_groups = self.n_groups use_balanced = True if use_balanced: #much faster for balanced case noise = self.random_state.multivariate_normal(np.zeros(nobs_i), self.cov, size=n_groups).ravel() #need to add self.group_means noise += np.repeat(self.group_means, nobs_i) else: noise = np.empty(self.nobs, np.float64) noise.fill(np.nan) for ii in range(self.n_groups): #print ii, idx, idxupp = self.group_indices[ii:ii+2] #print idx, idxupp mean_i = self.group_means[ii] noise[idx:idxupp] = self.random_state.multivariate_normal( mean_i * np.ones(self.nobs_i), self.cov) endog = self.y_true + noise return endog
generate endog for a random panel dataset with within correlation
generate_panel
python
statsmodels/statsmodels
statsmodels/sandbox/panel/random_panel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/random_panel.py
BSD-3-Clause
def sum_outer_product_loop(x, group_iter): '''sum outerproduct dot(x_i, x_i.T) over individuals loop version ''' mom = 0 for g in group_iter(): x_g = x[g] #print 'x_g.shape', x_g.shape mom += np.outer(x_g, x_g) return mom
sum outerproduct dot(x_i, x_i.T) over individuals loop version
sum_outer_product_loop
python
statsmodels/statsmodels
statsmodels/sandbox/panel/panel_short.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/panel_short.py
BSD-3-Clause
def sum_outer_product_balanced(x, n_groups): '''sum outerproduct dot(x_i, x_i.T) over individuals where x_i is (nobs_i, 1), and result is (nobs_i, nobs_i) reshape-dot version, for x.ndim=1 only ''' xrs = x.reshape(-1, n_groups, order='F') return np.dot(xrs, xrs.T) #should be (nobs_i, nobs_i)
sum outerproduct dot(x_i, x_i.T) over individuals where x_i is (nobs_i, 1), and result is (nobs_i, nobs_i) reshape-dot version, for x.ndim=1 only
sum_outer_product_balanced
python
statsmodels/statsmodels
statsmodels/sandbox/panel/panel_short.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/panel_short.py
BSD-3-Clause
def whiten_individuals_loop(x, transform, group_iter): '''apply linear transform for each individual loop version ''' #Note: figure out dimension of transformed variable #so we can pre-allocate x_new = [] for g in group_iter(): x_g = x[g] x_new.append(np.dot(transform, x_g)) return np.concatenate(x_new) #np.vstack(x_new) #or np.array(x_new) #check shape
apply linear transform for each individual loop version
whiten_individuals_loop
python
statsmodels/statsmodels
statsmodels/sandbox/panel/panel_short.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/panel_short.py
BSD-3-Clause
def fit_iterative(self, maxiter=3): """ Perform an iterative two-step procedure to estimate the GLS model. Parameters ---------- maxiter : int, optional the number of iterations Notes ----- maxiter=1: returns the estimated based on given weights maxiter=2: performs a second estimation with the updated weights, this is 2-step estimation maxiter>2: iteratively estimate and update the weights TODO: possible extension stop iteration if change in parameter estimates is smaller than x_tol Repeated calls to fit_iterative, will do one redundant pinv_wexog calculation. Calling fit_iterative(maxiter) once does not do any redundant recalculations (whitening or calculating pinv_wexog). """ #Note: in contrast to GLSHet, we do not have an auxiliary regression here # might be needed if there is more structure in cov_i #because we only have the loop we are not attaching the ols_pooled #initial estimate anymore compared to original version if maxiter < 1: raise ValueError('maxiter needs to be at least 1') import collections self.history = collections.defaultdict(list) #not really necessary for i in range(maxiter): #pinv_wexog is cached, delete it to force recalculation if hasattr(self, 'pinv_wexog'): del self.pinv_wexog #fit with current cov, GLS, i.e. OLS on whitened endog, exog results = self.fit() self.history['self_params'].append(results.params) if not i == maxiter-1: #skip for last iteration, could break instead #print 'ols', self.results_old = results #store previous results for debugging #get cov from residuals of previous regression sigma_i = self.get_within_cov(results.resid) self.cholsigmainv_i = np.linalg.cholesky(np.linalg.pinv(sigma_i)).T #calculate new whitened endog and exog self.initialize() #note results is the wrapper, results._results is the results instance #results._results.results_residual_regression = res_resid return results
Perform an iterative two-step procedure to estimate the GLS model. Parameters ---------- maxiter : int, optional the number of iterations Notes ----- maxiter=1: returns the estimated based on given weights maxiter=2: performs a second estimation with the updated weights, this is 2-step estimation maxiter>2: iteratively estimate and update the weights TODO: possible extension stop iteration if change in parameter estimates is smaller than x_tol Repeated calls to fit_iterative, will do one redundant pinv_wexog calculation. Calling fit_iterative(maxiter) once does not do any redundant recalculations (whitening or calculating pinv_wexog).
fit_iterative
python
statsmodels/statsmodels
statsmodels/sandbox/panel/panel_short.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/panel_short.py
BSD-3-Clause
def _compute_S(self, D, sigma): """covariance of observations (nobs_i, nobs_i) (JP check) Display (3.3) from Laird, Lange, Stram (see help(Unit)) """ self.S = (np.identity(self.n) * sigma**2 + np.dot(self.Z, np.dot(D, self.Z.T)))
covariance of observations (nobs_i, nobs_i) (JP check) Display (3.3) from Laird, Lange, Stram (see help(Unit))
_compute_S
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def _compute_W(self): """inverse covariance of observations (nobs_i, nobs_i) (JP check) Display (3.2) from Laird, Lange, Stram (see help(Unit)) """ self.W = L.inv(self.S)
inverse covariance of observations (nobs_i, nobs_i) (JP check) Display (3.2) from Laird, Lange, Stram (see help(Unit))
_compute_W
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def compute_P(self, Sinv): """projection matrix (nobs_i, nobs_i) (M in regression ?) (JP check, guessing) Display (3.10) from Laird, Lange, Stram (see help(Unit)) W - W X Sinv X' W' """ t = np.dot(self.W, self.X) self.P = self.W - np.dot(np.dot(t, Sinv), t.T)
projection matrix (nobs_i, nobs_i) (M in regression ?) (JP check, guessing) Display (3.10) from Laird, Lange, Stram (see help(Unit)) W - W X Sinv X' W'
compute_P
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def _compute_r(self, alpha): """residual after removing fixed effects Display (3.5) from Laird, Lange, Stram (see help(Unit)) """ self.r = self.Y - np.dot(self.X, alpha)
residual after removing fixed effects Display (3.5) from Laird, Lange, Stram (see help(Unit))
_compute_r
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def _compute_b(self, D): """coefficients for random effects/coefficients Display (3.4) from Laird, Lange, Stram (see help(Unit)) D Z' W r """ self.b = np.dot(D, np.dot(np.dot(self.Z.T, self.W), self.r))
coefficients for random effects/coefficients Display (3.4) from Laird, Lange, Stram (see help(Unit)) D Z' W r
_compute_b
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def fit(self, a, D, sigma): """ Compute unit specific parameters in Laird, Lange, Stram (see help(Unit)). Displays (3.2)-(3.5). """ self._compute_S(D, sigma) #random effect plus error covariance self._compute_W() #inv(S) self._compute_r(a) #residual after removing fixed effects/exogs self._compute_b(D) #? coefficients on random exog, Z ?
Compute unit specific parameters in Laird, Lange, Stram (see help(Unit)). Displays (3.2)-(3.5).
fit
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def compute_xtwy(self): """ Utility function to compute X^tWY (transposed ?) for Unit instance. """ return np.dot(np.dot(self.W, self.Y), self.X) #is this transposed ?
Utility function to compute X^tWY (transposed ?) for Unit instance.
compute_xtwy
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def compute_xtwx(self): """ Utility function to compute X^tWX for Unit instance. """ return np.dot(np.dot(self.X.T, self.W), self.X)
Utility function to compute X^tWX for Unit instance.
compute_xtwx
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def cov_random(self, D, Sinv=None): """ Approximate covariance of estimates of random effects. Just after Display (3.10) in Laird, Lange, Stram (see help(Unit)). D - D' Z' P Z D Notes ----- In example where the mean of the random coefficient is not zero, this is not a covariance but a non-centered moment. (proof by example) """ if Sinv is not None: self.compute_P(Sinv) t = np.dot(self.Z, D) return D - np.dot(np.dot(t.T, self.P), t)
Approximate covariance of estimates of random effects. Just after Display (3.10) in Laird, Lange, Stram (see help(Unit)). D - D' Z' P Z D Notes ----- In example where the mean of the random coefficient is not zero, this is not a covariance but a non-centered moment. (proof by example)
cov_random
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def logL(self, a, ML=False): """ Individual contributions to the log-likelihood, tries to return REML contribution by default though this requires estimated fixed effect a to be passed as an argument. no constant with pi included a is not used if ML=true (should be a=None in signature) If ML is false, then the residuals are calculated for the given fixed effects parameters a. """ if ML: return (np.log(L.det(self.W)) - (self.r * np.dot(self.W, self.r)).sum()) / 2. else: if a is None: raise ValueError('need fixed effect a for REML contribution to log-likelihood') r = self.Y - np.dot(self.X, a) return (np.log(L.det(self.W)) - (r * np.dot(self.W, r)).sum()) / 2.
Individual contributions to the log-likelihood, tries to return REML contribution by default though this requires estimated fixed effect a to be passed as an argument. no constant with pi included a is not used if ML=true (should be a=None in signature) If ML is false, then the residuals are calculated for the given fixed effects parameters a.
logL
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def deviance(self, ML=False): '''deviance defined as 2 times the negative loglikelihood ''' return - 2 * self.logL(ML=ML)
deviance defined as 2 times the negative loglikelihood
deviance
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def _compute_a(self): """fixed effects parameters Display (3.1) of Laird, Lange, Stram (see help(Mixed)). """ for unit in self.units: unit.fit(self.a, self.D, self.sigma) S = sum([unit.compute_xtwx() for unit in self.units]) Y = sum([unit.compute_xtwy() for unit in self.units]) self.Sinv = L.pinv(S) self.a = np.dot(self.Sinv, Y)
fixed effects parameters Display (3.1) of Laird, Lange, Stram (see help(Mixed)).
_compute_a
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def _compute_sigma(self, ML=False): """ Estimate sigma. If ML is True, return the ML estimate of sigma, else return the REML estimate. If ML, this is (3.6) in Laird, Lange, Stram (see help(Mixed)), otherwise it corresponds to (3.8). sigma is the standard deviation of the noise (residual) """ sigmasq = 0. for unit in self.units: if ML: W = unit.W else: unit.compute_P(self.Sinv) W = unit.P t = unit.r - np.dot(unit.Z, unit.b) sigmasq += np.power(t, 2).sum() sigmasq += self.sigma**2 * np.trace(np.identity(unit.n) - self.sigma**2 * W) self.sigma = np.sqrt(sigmasq / self.N)
Estimate sigma. If ML is True, return the ML estimate of sigma, else return the REML estimate. If ML, this is (3.6) in Laird, Lange, Stram (see help(Mixed)), otherwise it corresponds to (3.8). sigma is the standard deviation of the noise (residual)
_compute_sigma
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def _compute_D(self, ML=False): """ Estimate random effects covariance D. If ML is True, return the ML estimate of sigma, else return the REML estimate. If ML, this is (3.7) in Laird, Lange, Stram (see help(Mixed)), otherwise it corresponds to (3.9). """ D = 0. for unit in self.units: if ML: W = unit.W else: unit.compute_P(self.Sinv) W = unit.P D += np.multiply.outer(unit.b, unit.b) t = np.dot(unit.Z, self.D) D += self.D - np.dot(np.dot(t.T, W), t) self.D = D / self.m
Estimate random effects covariance D. If ML is True, return the ML estimate of sigma, else return the REML estimate. If ML, this is (3.7) in Laird, Lange, Stram (see help(Mixed)), otherwise it corresponds to (3.9).
_compute_D
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def cov_fixed(self): """ Approximate covariance of estimates of fixed effects. Just after Display (3.10) in Laird, Lange, Stram (see help(Mixed)). """ return self.Sinv
Approximate covariance of estimates of fixed effects. Just after Display (3.10) in Laird, Lange, Stram (see help(Mixed)).
cov_fixed
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def cov_random(self): """ Estimate random effects covariance D. If ML is True, return the ML estimate of sigma, else return the REML estimate. see _compute_D, alias for self.D """ return self.D
Estimate random effects covariance D. If ML is True, return the ML estimate of sigma, else return the REML estimate. see _compute_D, alias for self.D
cov_random
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def params(self): ''' estimated coefficients for exogeneous variables or fixed effects see _compute_a, alias for self.a ''' return self.a
estimated coefficients for exogeneous variables or fixed effects see _compute_a, alias for self.a
params
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause
def params_random_units(self): '''random coefficients for each unit ''' return np.array([unit.b for unit in self.units])
random coefficients for each unit
params_random_units
python
statsmodels/statsmodels
statsmodels/sandbox/panel/mixed.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/sandbox/panel/mixed.py
BSD-3-Clause