code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def deriv2(self, p):
"""
Second derivative of the log-complement transform link function
Parameters
----------
p : array_like
Mean parameters
Returns
-------
g''(p) : ndarray
Second derivative of log-complement transform of x
Notes
-----
g''(x) = -(-1/(1 - x))^2
"""
p = self._clean(p)
return -1 * np.power(-1. / (1. - p), 2) | Second derivative of the log-complement transform link function
Parameters
----------
p : array_like
Mean parameters
Returns
-------
g''(p) : ndarray
Second derivative of log-complement transform of x
Notes
-----
g''(x) = -(-1/(1 - x))^2 | deriv2 | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def inverse_deriv(self, z):
"""
Derivative of the inverse of the log-complement transform link
function
Parameters
----------
z : ndarray
The inverse of the link function at `p`
Returns
-------
g^(-1)'(z) : ndarray
The value of the derivative of the inverse of the log-complement
function.
"""
return -np.exp(z) | Derivative of the inverse of the log-complement transform link
function
Parameters
----------
z : ndarray
The inverse of the link function at `p`
Returns
-------
g^(-1)'(z) : ndarray
The value of the derivative of the inverse of the log-complement
function. | inverse_deriv | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def inverse_deriv2(self, z):
"""
Second derivative of the inverse link function g^(-1)(z).
Parameters
----------
z : array_like
The inverse of the link function at `p`
Returns
-------
g^(-1)''(z) : ndarray
The value of the second derivative of the inverse of the
log-complement function.
"""
return -np.exp(z) | Second derivative of the inverse link function g^(-1)(z).
Parameters
----------
z : array_like
The inverse of the link function at `p`
Returns
-------
g^(-1)''(z) : ndarray
The value of the second derivative of the inverse of the
log-complement function. | inverse_deriv2 | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def __call__(self, p):
"""
CDF link function
Parameters
----------
p : array_like
Mean parameters
Returns
-------
z : ndarray
(ppf) inverse of CDF transform of p
Notes
-----
g(`p`) = `dbn`.ppf(`p`)
"""
p = self._clean(p)
return self.dbn.ppf(p) | CDF link function
Parameters
----------
p : array_like
Mean parameters
Returns
-------
z : ndarray
(ppf) inverse of CDF transform of p
Notes
-----
g(`p`) = `dbn`.ppf(`p`) | __call__ | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def inverse(self, z):
"""
The inverse of the CDF link
Parameters
----------
z : array_like
The value of the inverse of the link function at `p`
Returns
-------
p : ndarray
Mean probabilities. The value of the inverse of CDF link of `z`
Notes
-----
g^(-1)(`z`) = `dbn`.cdf(`z`)
"""
return self.dbn.cdf(z) | The inverse of the CDF link
Parameters
----------
z : array_like
The value of the inverse of the link function at `p`
Returns
-------
p : ndarray
Mean probabilities. The value of the inverse of CDF link of `z`
Notes
-----
g^(-1)(`z`) = `dbn`.cdf(`z`) | inverse | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def deriv(self, p):
"""
Derivative of CDF link
Parameters
----------
p : array_like
mean parameters
Returns
-------
g'(p) : ndarray
The derivative of CDF transform at `p`
Notes
-----
g'(`p`) = 1./ `dbn`.pdf(`dbn`.ppf(`p`))
"""
p = self._clean(p)
return 1. / self.dbn.pdf(self.dbn.ppf(p)) | Derivative of CDF link
Parameters
----------
p : array_like
mean parameters
Returns
-------
g'(p) : ndarray
The derivative of CDF transform at `p`
Notes
-----
g'(`p`) = 1./ `dbn`.pdf(`dbn`.ppf(`p`)) | deriv | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def deriv2(self, p):
"""
Second derivative of the link function g''(p)
implemented through numerical differentiation
"""
p = self._clean(p)
linpred = self.dbn.ppf(p)
return - self.inverse_deriv2(linpred) / self.dbn.pdf(linpred) ** 3 | Second derivative of the link function g''(p)
implemented through numerical differentiation | deriv2 | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def deriv2_numdiff(self, p):
"""
Second derivative of the link function g''(p)
implemented through numerical differentiation
"""
from statsmodels.tools.numdiff import _approx_fprime_scalar
p = np.atleast_1d(p)
# Note: special function for norm.ppf does not support complex
return _approx_fprime_scalar(p, self.deriv, centered=True) | Second derivative of the link function g''(p)
implemented through numerical differentiation | deriv2_numdiff | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def inverse_deriv(self, z):
"""
Derivative of the inverse link function
Parameters
----------
z : ndarray
The inverse of the link function at `p`
Returns
-------
g^(-1)'(z) : ndarray
The value of the derivative of the inverse of the logit function.
This is just the pdf in a CDFLink,
"""
return self.dbn.pdf(z) | Derivative of the inverse link function
Parameters
----------
z : ndarray
The inverse of the link function at `p`
Returns
-------
g^(-1)'(z) : ndarray
The value of the derivative of the inverse of the logit function.
This is just the pdf in a CDFLink, | inverse_deriv | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def inverse_deriv2(self, z):
"""
Second derivative of the inverse link function g^(-1)(z).
Parameters
----------
z : array_like
`z` is usually the linear predictor for a GLM or GEE model.
Returns
-------
g^(-1)''(z) : ndarray
The value of the second derivative of the inverse of the link
function
Notes
-----
This method should be overwritten by subclasses.
The inherited method is implemented through numerical differentiation.
"""
from statsmodels.tools.numdiff import _approx_fprime_scalar
z = np.atleast_1d(z)
# Note: special function for norm.ppf does not support complex
return _approx_fprime_scalar(z, self.inverse_deriv, centered=True) | Second derivative of the inverse link function g^(-1)(z).
Parameters
----------
z : array_like
`z` is usually the linear predictor for a GLM or GEE model.
Returns
-------
g^(-1)''(z) : ndarray
The value of the second derivative of the inverse of the link
function
Notes
-----
This method should be overwritten by subclasses.
The inherited method is implemented through numerical differentiation. | inverse_deriv2 | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def inverse_deriv2(self, z):
"""
Second derivative of the inverse link function
This is the derivative of the pdf in a CDFLink
"""
return - z * self.dbn.pdf(z) | Second derivative of the inverse link function
This is the derivative of the pdf in a CDFLink | inverse_deriv2 | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def deriv2(self, p):
"""
Second derivative of the link function g''(p)
"""
p = self._clean(p)
linpred = self.dbn.ppf(p)
return linpred / self.dbn.pdf(linpred) ** 2 | Second derivative of the link function g''(p) | deriv2 | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def deriv2(self, p):
"""
Second derivative of the Cauchy link function.
Parameters
----------
p : array_like
Probabilities
Returns
-------
g''(p) : ndarray
Value of the second derivative of Cauchy link function at `p`
"""
p = self._clean(p)
a = np.pi * (p - 0.5)
d2 = 2 * np.pi ** 2 * np.sin(a) / np.cos(a) ** 3
return d2 | Second derivative of the Cauchy link function.
Parameters
----------
p : array_like
Probabilities
Returns
-------
g''(p) : ndarray
Value of the second derivative of Cauchy link function at `p` | deriv2 | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def __call__(self, p):
"""
C-Log-Log transform link function
Parameters
----------
p : ndarray
Mean parameters
Returns
-------
z : ndarray
The CLogLog transform of `p`
Notes
-----
g(p) = log(-log(1-p))
"""
p = self._clean(p)
return np.log(-np.log(1 - p)) | C-Log-Log transform link function
Parameters
----------
p : ndarray
Mean parameters
Returns
-------
z : ndarray
The CLogLog transform of `p`
Notes
-----
g(p) = log(-log(1-p)) | __call__ | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def inverse(self, z):
"""
Inverse of C-Log-Log transform link function
Parameters
----------
z : array_like
The value of the inverse of the CLogLog link function at `p`
Returns
-------
p : ndarray
Mean parameters
Notes
-----
g^(-1)(`z`) = 1-exp(-exp(`z`))
"""
return 1 - np.exp(-np.exp(z)) | Inverse of C-Log-Log transform link function
Parameters
----------
z : array_like
The value of the inverse of the CLogLog link function at `p`
Returns
-------
p : ndarray
Mean parameters
Notes
-----
g^(-1)(`z`) = 1-exp(-exp(`z`)) | inverse | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def deriv(self, p):
"""
Derivative of C-Log-Log transform link function
Parameters
----------
p : array_like
Mean parameters
Returns
-------
g'(p) : ndarray
The derivative of the CLogLog transform link function
Notes
-----
g'(p) = - 1 / ((p-1)*log(1-p))
"""
p = self._clean(p)
return 1. / ((p - 1) * (np.log(1 - p))) | Derivative of C-Log-Log transform link function
Parameters
----------
p : array_like
Mean parameters
Returns
-------
g'(p) : ndarray
The derivative of the CLogLog transform link function
Notes
-----
g'(p) = - 1 / ((p-1)*log(1-p)) | deriv | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def deriv2(self, p):
"""
Second derivative of the C-Log-Log ink function
Parameters
----------
p : array_like
Mean parameters
Returns
-------
g''(p) : ndarray
The second derivative of the CLogLog link function
"""
p = self._clean(p)
fl = np.log(1 - p)
d2 = -1 / ((1 - p) ** 2 * fl)
d2 *= 1 + 1 / fl
return d2 | Second derivative of the C-Log-Log ink function
Parameters
----------
p : array_like
Mean parameters
Returns
-------
g''(p) : ndarray
The second derivative of the CLogLog link function | deriv2 | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def inverse_deriv(self, z):
"""
Derivative of the inverse of the C-Log-Log transform link function
Parameters
----------
z : array_like
The value of the inverse of the CLogLog link function at `p`
Returns
-------
g^(-1)'(z) : ndarray
The derivative of the inverse of the CLogLog link function
"""
return np.exp(z - np.exp(z)) | Derivative of the inverse of the C-Log-Log transform link function
Parameters
----------
z : array_like
The value of the inverse of the CLogLog link function at `p`
Returns
-------
g^(-1)'(z) : ndarray
The derivative of the inverse of the CLogLog link function | inverse_deriv | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def __call__(self, p):
"""
Log-Log transform link function
Parameters
----------
p : ndarray
Mean parameters
Returns
-------
z : ndarray
The LogLog transform of `p`
Notes
-----
g(p) = -log(-log(p))
"""
p = self._clean(p)
return -np.log(-np.log(p)) | Log-Log transform link function
Parameters
----------
p : ndarray
Mean parameters
Returns
-------
z : ndarray
The LogLog transform of `p`
Notes
-----
g(p) = -log(-log(p)) | __call__ | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def inverse(self, z):
"""
Inverse of Log-Log transform link function
Parameters
----------
z : array_like
The value of the inverse of the LogLog link function at `p`
Returns
-------
p : ndarray
Mean parameters
Notes
-----
g^(-1)(`z`) = exp(-exp(-`z`))
"""
return np.exp(-np.exp(-z)) | Inverse of Log-Log transform link function
Parameters
----------
z : array_like
The value of the inverse of the LogLog link function at `p`
Returns
-------
p : ndarray
Mean parameters
Notes
-----
g^(-1)(`z`) = exp(-exp(-`z`)) | inverse | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def deriv(self, p):
"""
Derivative of Log-Log transform link function
Parameters
----------
p : array_like
Mean parameters
Returns
-------
g'(p) : ndarray
The derivative of the LogLog transform link function
Notes
-----
g'(p) = - 1 /(p * log(p))
"""
p = self._clean(p)
return -1. / (p * (np.log(p))) | Derivative of Log-Log transform link function
Parameters
----------
p : array_like
Mean parameters
Returns
-------
g'(p) : ndarray
The derivative of the LogLog transform link function
Notes
-----
g'(p) = - 1 /(p * log(p)) | deriv | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def deriv2(self, p):
"""
Second derivative of the Log-Log link function
Parameters
----------
p : array_like
Mean parameters
Returns
-------
g''(p) : ndarray
The second derivative of the LogLog link function
"""
p = self._clean(p)
d2 = (1 + np.log(p)) / (p * (np.log(p))) ** 2
return d2 | Second derivative of the Log-Log link function
Parameters
----------
p : array_like
Mean parameters
Returns
-------
g''(p) : ndarray
The second derivative of the LogLog link function | deriv2 | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def inverse_deriv(self, z):
"""
Derivative of the inverse of the Log-Log transform link function
Parameters
----------
z : array_like
The value of the inverse of the LogLog link function at `p`
Returns
-------
g^(-1)'(z) : ndarray
The derivative of the inverse of the LogLog link function
"""
return np.exp(-np.exp(-z) - z) | Derivative of the inverse of the Log-Log transform link function
Parameters
----------
z : array_like
The value of the inverse of the LogLog link function at `p`
Returns
-------
g^(-1)'(z) : ndarray
The derivative of the inverse of the LogLog link function | inverse_deriv | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def inverse_deriv2(self, z):
"""
Second derivative of the inverse of the Log-Log transform link function
Parameters
----------
z : array_like
The value of the inverse of the LogLog link function at `p`
Returns
-------
g^(-1)''(z) : ndarray
The second derivative of the inverse of the LogLog link function
"""
return self.inverse_deriv(z) * (np.exp(-z) - 1) | Second derivative of the inverse of the Log-Log transform link function
Parameters
----------
z : array_like
The value of the inverse of the LogLog link function at `p`
Returns
-------
g^(-1)''(z) : ndarray
The second derivative of the inverse of the LogLog link function | inverse_deriv2 | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def __call__(self, p):
"""
Negative Binomial transform link function
Parameters
----------
p : array_like
Mean parameters
Returns
-------
z : ndarray
The negative binomial transform of `p`
Notes
-----
g(p) = log(p/(p + 1/alpha))
"""
p = self._clean(p)
return np.log(p / (p + 1 / self.alpha)) | Negative Binomial transform link function
Parameters
----------
p : array_like
Mean parameters
Returns
-------
z : ndarray
The negative binomial transform of `p`
Notes
-----
g(p) = log(p/(p + 1/alpha)) | __call__ | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def inverse(self, z):
"""
Inverse of the negative binomial transform
Parameters
----------
z : array_like
The value of the inverse of the negative binomial link at `p`.
Returns
-------
p : ndarray
Mean parameters
Notes
-----
g^(-1)(z) = exp(z)/(alpha*(1-exp(z)))
"""
return -1 / (self.alpha * (1 - np.exp(-z))) | Inverse of the negative binomial transform
Parameters
----------
z : array_like
The value of the inverse of the negative binomial link at `p`.
Returns
-------
p : ndarray
Mean parameters
Notes
-----
g^(-1)(z) = exp(z)/(alpha*(1-exp(z))) | inverse | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def deriv(self, p):
"""
Derivative of the negative binomial transform
Parameters
----------
p : array_like
Mean parameters
Returns
-------
g'(p) : ndarray
The derivative of the negative binomial transform link function
Notes
-----
g'(x) = 1/(x+alpha*x^2)
"""
return 1 / (p + self.alpha * p ** 2) | Derivative of the negative binomial transform
Parameters
----------
p : array_like
Mean parameters
Returns
-------
g'(p) : ndarray
The derivative of the negative binomial transform link function
Notes
-----
g'(x) = 1/(x+alpha*x^2) | deriv | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def deriv2(self, p):
"""
Second derivative of the negative binomial link function.
Parameters
----------
p : array_like
Mean parameters
Returns
-------
g''(p) : ndarray
The second derivative of the negative binomial transform link
function
Notes
-----
g''(x) = -(1+2*alpha*x)/(x+alpha*x^2)^2
"""
numer = -(1 + 2 * self.alpha * p)
denom = (p + self.alpha * p ** 2) ** 2
return numer / denom | Second derivative of the negative binomial link function.
Parameters
----------
p : array_like
Mean parameters
Returns
-------
g''(p) : ndarray
The second derivative of the negative binomial transform link
function
Notes
-----
g''(x) = -(1+2*alpha*x)/(x+alpha*x^2)^2 | deriv2 | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def inverse_deriv(self, z):
"""
Derivative of the inverse of the negative binomial transform
Parameters
----------
z : array_like
Usually the linear predictor for a GLM or GEE model
Returns
-------
g^(-1)'(z) : ndarray
The value of the derivative of the inverse of the negative
binomial link
"""
t = np.exp(z)
return t / (self.alpha * (1 - t) ** 2) | Derivative of the inverse of the negative binomial transform
Parameters
----------
z : array_like
Usually the linear predictor for a GLM or GEE model
Returns
-------
g^(-1)'(z) : ndarray
The value of the derivative of the inverse of the negative
binomial link | inverse_deriv | python | statsmodels/statsmodels | statsmodels/genmod/families/links.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py | BSD-3-Clause |
def __call__(self, mu):
"""
Default variance function
Parameters
----------
mu : array_like
mean parameters
Returns
-------
v : ndarray
ones(mu.shape)
"""
mu = np.asarray(mu)
return np.ones(mu.shape, np.float64) | Default variance function
Parameters
----------
mu : array_like
mean parameters
Returns
-------
v : ndarray
ones(mu.shape) | __call__ | python | statsmodels/statsmodels | statsmodels/genmod/families/varfuncs.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/varfuncs.py | BSD-3-Clause |
def deriv(self, mu):
"""
Derivative of the variance function v'(mu)
"""
return np.zeros_like(mu) | Derivative of the variance function v'(mu) | deriv | python | statsmodels/statsmodels | statsmodels/genmod/families/varfuncs.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/varfuncs.py | BSD-3-Clause |
def __call__(self, mu):
"""
Power variance function
Parameters
----------
mu : array_like
mean parameters
Returns
-------
variance : ndarray
numpy.fabs(mu)**self.power
"""
return np.power(np.fabs(mu), self.power) | Power variance function
Parameters
----------
mu : array_like
mean parameters
Returns
-------
variance : ndarray
numpy.fabs(mu)**self.power | __call__ | python | statsmodels/statsmodels | statsmodels/genmod/families/varfuncs.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/varfuncs.py | BSD-3-Clause |
def deriv(self, mu):
"""
Derivative of the variance function v'(mu)
May be undefined at zero.
"""
der = self.power * np.fabs(mu) ** (self.power - 1)
ii = np.flatnonzero(mu < 0)
der[ii] *= -1
return der | Derivative of the variance function v'(mu)
May be undefined at zero. | deriv | python | statsmodels/statsmodels | statsmodels/genmod/families/varfuncs.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/varfuncs.py | BSD-3-Clause |
def __call__(self, mu):
"""
Binomial variance function
Parameters
----------
mu : array_like
mean parameters
Returns
-------
variance : ndarray
variance = mu/n * (1 - mu/n) * self.n
"""
p = self._clean(mu / self.n)
return p * (1 - p) * self.n | Binomial variance function
Parameters
----------
mu : array_like
mean parameters
Returns
-------
variance : ndarray
variance = mu/n * (1 - mu/n) * self.n | __call__ | python | statsmodels/statsmodels | statsmodels/genmod/families/varfuncs.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/varfuncs.py | BSD-3-Clause |
def deriv(self, mu):
"""
Derivative of the variance function v'(mu)
"""
return 1 - 2*mu | Derivative of the variance function v'(mu) | deriv | python | statsmodels/statsmodels | statsmodels/genmod/families/varfuncs.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/varfuncs.py | BSD-3-Clause |
def __call__(self, mu):
"""
Negative binomial variance function
Parameters
----------
mu : array_like
mean parameters
Returns
-------
variance : ndarray
variance = mu + alpha*mu**2
"""
p = self._clean(mu)
return p + self.alpha*p**2 | Negative binomial variance function
Parameters
----------
mu : array_like
mean parameters
Returns
-------
variance : ndarray
variance = mu + alpha*mu**2 | __call__ | python | statsmodels/statsmodels | statsmodels/genmod/families/varfuncs.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/varfuncs.py | BSD-3-Clause |
def deriv(self, mu):
"""
Derivative of the negative binomial variance function.
"""
p = self._clean(mu)
return 1 + 2 * self.alpha * p | Derivative of the negative binomial variance function. | deriv | python | statsmodels/statsmodels | statsmodels/genmod/families/varfuncs.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/varfuncs.py | BSD-3-Clause |
def test_tweedie_loglike_obs(power):
"""Test that Tweedie loglike is normalized to 1."""
tweedie = Tweedie(var_power=power, eql=False)
mu = 2.0
scale = 2.9
def pdf(y):
return np.squeeze(
np.exp(
tweedie.loglike_obs(endog=y, mu=mu, scale=scale)
)
)
assert_allclose(pdf(0) + integrate.quad(pdf, 0, 1e2)[0], 1, atol=1e-4) | Test that Tweedie loglike is normalized to 1. | test_tweedie_loglike_obs | python | statsmodels/statsmodels | statsmodels/genmod/families/tests/test_family.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/tests/test_family.py | BSD-3-Clause |
def get_domainvalue(link):
"""
Get a value in the domain for a given family.
"""
z = -np.log(np.random.uniform(0, 1))
if isinstance(link, links.CLogLog): # prone to overflow
z = min(z, 3)
elif isinstance(link, links.LogLog):
z = max(z, -3)
elif isinstance(link, (links.NegativeBinomial, links.LogC)):
# domain is negative numbers
z = -z
return z | Get a value in the domain for a given family. | get_domainvalue | python | statsmodels/statsmodels | statsmodels/genmod/families/tests/test_link.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/tests/test_link.py | BSD-3-Clause |
def _check_data(data):
"""
Check if data is a DataFrame and issue a warning if it is not.
Parameters
----------
data : {dict, list, recarray, DataFrame}
The data used to create a formula.
Notes
-----
Warns if data is not a DataFrame.
"""
if not isinstance(data, pd.DataFrame):
warnings.warn(
f"Using {type(data).__name__} data structures with formula is "
"deprecated and will be removed in a future version of statsmodels. "
"DataFrames are the only supported data structure.",
DeprecationWarning,
) | Check if data is a DataFrame and issue a warning if it is not.
Parameters
----------
data : {dict, list, recarray, DataFrame}
The data used to create a formula.
Notes
-----
Warns if data is not a DataFrame. | _check_data | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def formula_engine(self) -> Literal["patsy", "formulaic"]:
"""
Get or set the formula engine
Returns
-------
str: {"patsy", "formulaic"}
The name of the formula engine.
"""
return self._formula_engine | Get or set the formula engine
Returns
-------
str: {"patsy", "formulaic"}
The name of the formula engine. | formula_engine | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def ordering(self):
"""
Get or set the ordering.
Returns
-------
{"degree", "sort", "none", "legacy"}
The name of the ordering. Only used if engine is formulaic.
"""
return self._ordering | Get or set the ordering.
Returns
-------
{"degree", "sort", "none", "legacy"}
The name of the ordering. Only used if engine is formulaic. | ordering | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def _get_engine(
engine: Literal["patsy", "formulaic"] | None = None,
) -> Literal["patsy", "formulaic"]:
"""
Check user engine selection or get the default engine to use.
Parameters
----------
engine : {"patsy", "formulaic"} or None
The formula engine to use. If None, the default engine, which appears
in the attribute statsmodels.formula.formula_options.engine, is used.
Returns
-------
engine : {"patsy", "formulaic"}
The selected engine
Raises
------
ValueError
If the selected engine is not available.
"""
# Patsy for now, to be changed to a user-settable variable before release
_engine: Literal["patsy", "formulaic"]
if engine is not None:
_engine = engine
else:
import statsmodels.formula
_engine = statsmodels.formula.options.formula_engine
assert _engine is not None
if _engine not in ("patsy", "formulaic"):
raise ValueError(
f"Unknown engine: {_engine}. Only patsy and formulaic are supported."
)
# Ensure selected engine is available
msg_base = " is not available. Please install patsy."
if _engine == "patsy" and not HAVE_PATSY:
raise ImportError(f"patsy {msg_base}.")
if _engine == "formulaic" and not HAVE_FORMULAIC:
raise ImportError(f"formulaic {msg_base}.")
return _engine | Check user engine selection or get the default engine to use.
Parameters
----------
engine : {"patsy", "formulaic"} or None
The formula engine to use. If None, the default engine, which appears
in the attribute statsmodels.formula.formula_options.engine, is used.
Returns
-------
engine : {"patsy", "formulaic"}
The selected engine
Raises
------
ValueError
If the selected engine is not available. | _get_engine | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def engine(self):
"""Get the formula engine."""
return self._engine | Get the formula engine. | engine | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def spec(self):
"""
Get the model specification. Only available after calling get_arrays.
"""
return self._spec | Get the model specification. Only available after calling get_arrays. | spec | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def factor_evaluation_error(self):
"""
Get the engine-specific error that may occur when evaluating a factor.
"""
if self._using_patsy:
return patsy.PatsyError
else:
return formulaic.errors.FactorEvaluationError | Get the engine-specific error that may occur when evaluating a factor. | factor_evaluation_error | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def formula_materializer_error(self):
"""
Get the engine-specific error that may occur when materializing a formula.
"""
if self._using_patsy:
return patsy.PatsyError
else:
return formulaic.errors.FormulaMaterializerNotFoundError | Get the engine-specific error that may occur when materializing a formula. | formula_materializer_error | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def missing_mask(self):
"""
Get a mask indicating if data are missing.
Returns
-------
ndarray
A boolean array indicating if data are missing. True if missing.
"""
return self._missing_mask | Get a mask indicating if data are missing.
Returns
-------
ndarray
A boolean array indicating if data are missing. True if missing. | missing_mask | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def intercept_term(self):
"""
Get the formula-engine-specific intercept term.
Returns
-------
Term
The intercept term.
"""
if self._using_patsy:
from patsy.desc import INTERCEPT
return INTERCEPT
else:
from formulaic.parser.types.factor import Factor
from formulaic.parser.types.term import Term
return Term((Factor("1"),)) | Get the formula-engine-specific intercept term.
Returns
-------
Term
The intercept term. | intercept_term | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def model_spec_type(self):
"""
Returns the engine-specific model specification type.
Returns
-------
{type[ModelSpect], type[DesignInto]}
The model specification type of formulaic is ModelSpec.
patsy uses DesignInfo.
"""
if self._using_patsy:
return patsy.design_info.DesignInfo
else:
return formulaic.model_spec.ModelSpec | Returns the engine-specific model specification type.
Returns
-------
{type[ModelSpect], type[DesignInto]}
The model specification type of formulaic is ModelSpec.
patsy uses DesignInfo. | model_spec_type | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def _legacy_orderer(
formula: str, data: pd.DataFrame, context: int | Mapping[str, Any]
) -> formulaic.Formula:
"""
Function to order a formulaic formula so when materialized it matches patsy.
Parameters
----------
formula : str
The string formula. If not a string, it is returned as is.
data : DataFrame
The data used to materialize the formula.
context
The context used to evaluate the formula.
Returns
-------
Formula
The ordered formula.
"""
if isinstance(formula, (formulaic.Formula, formulaic.ModelSpec)):
return formula
if isinstance(context, int):
context += 1
mm = formulaic.model_matrix(formula, data, context=context)
feature_flags = formulaic.parser.DefaultFormulaParser.FeatureFlags.TWOSIDED
parser = formulaic.parser.DefaultFormulaParser(feature_flags=feature_flags)
_formula = formulaic.Formula(formula, _parser=parser, _ordering="none")
if isinstance(mm, formulaic.ModelMatrices):
rhs = mm.rhs
rhs_formula = _formula.rhs
lhs_formula = _formula.lhs
else:
rhs = mm
rhs_formula = _formula
lhs_formula = None
include_intercept = any(
[(term.degree == 0 and str(term) == "1") for term in rhs_formula]
)
parser = formulaic.parser.DefaultFormulaParser(
feature_flags=feature_flags, include_intercept=include_intercept
)
original = list(parser.get_terms(str(rhs_formula)).root)
categorical_variables = list(rhs.model_spec.factor_contrasts.keys())
def all_cat(term):
return all([f in categorical_variables for f in term.factors])
def drop_terms(term_list, terms):
for term in terms:
term_list.remove(term)
intercept = [term for term in original if term.degree == 0]
drop_terms(original, intercept)
cats = sorted(
[term for term in original if all_cat(term)], key=lambda term: term.degree
)
drop_terms(original, cats)
conts = defaultdict(list)
for term in original:
cont = [
factor for factor in term.factors if factor not in categorical_variables
]
conts[tuple(sorted(cont))].append((term, term.degree))
final_conts = []
for key, value in conts.items():
tmp = sorted(value, key=lambda term_degree: term_degree[1])
final_conts.extend([value[0] for value in tmp])
if lhs_formula is not None:
return formulaic.Formula(
lhs=formulaic.Formula(lhs_formula, _ordering="none"),
rhs=formulaic.Formula(intercept + cats + final_conts, _ordering="none"),
_ordering="none",
)
else:
return formulaic.Formula(intercept + cats + final_conts, _ordering="none") | Function to order a formulaic formula so when materialized it matches patsy.
Parameters
----------
formula : str
The string formula. If not a string, it is returned as is.
data : DataFrame
The data used to materialize the formula.
context
The context used to evaluate the formula.
Returns
-------
Formula
The ordered formula. | _legacy_orderer | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def get_linear_constraints(
self, constraints: np.ndarray | str | Sequence[str], variable_names: list[str]
):
"""
Get the linear constraints from the constraints and variable names.
Parameters
----------
constraints : ndarray, str, list[str]
The constraints either as an array, a string, or a list of strings.
Single strings can be comma-separated so that multiple constraints
can be passed in this format.
variable_names : list[str]
The ordered list of variable names.
Returns
-------
LinearConstraintValues
The constraint matrix, constraint values, and variable names.
"""
if self._using_patsy:
from patsy.design_info import DesignInfo
lc = DesignInfo(variable_names).linear_constraint(constraints)
return LinearConstraintValues(
constraint_matrix=lc.coefs,
constraint_values=lc.constants,
variable_names=lc.variable_names,
)
else: # self._engine == "formulaic"
# Handle list of constraints, which is not supported by formulaic
if isinstance(constraints, list):
if len(constraints) == 0:
raise ValueError("Constraints must be non-empty")
if isinstance(constraints[0], str):
if not all(isinstance(c, str) for c in constraints):
raise ValueError(
"All constraints must be strings when passed as a list."
)
_constraints = ", ".join(str(v) for v in constraints)
else:
_constraints = np.array(constraints)
else:
_constraints = constraints
if isinstance(_constraints, tuple):
_constraints = (
_constraints[0],
np.atleast_1d(np.squeeze(_constraints[1])),
)
lc_f = formulaic.utils.constraints.LinearConstraints.from_spec(
_constraints, variable_names=list(variable_names)
)
return LinearConstraintValues(
constraint_matrix=lc_f.constraint_matrix,
constraint_values=np.atleast_2d(lc_f.constraint_values).T,
variable_names=lc_f.variable_names,
) | Get the linear constraints from the constraints and variable names.
Parameters
----------
constraints : ndarray, str, list[str]
The constraints either as an array, a string, or a list of strings.
Single strings can be comma-separated so that multiple constraints
can be passed in this format.
variable_names : list[str]
The ordered list of variable names.
Returns
-------
LinearConstraintValues
The constraint matrix, constraint values, and variable names. | get_linear_constraints | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def get_empty_eval_env(self):
"""
Get an empty evaluation environment.
Returns
-------
{EvalEnvironment, dict}
A formula-engine-dependent empty evaluation environment.
"""
if self._using_patsy:
from patsy.eval import EvalEnvironment
return EvalEnvironment({})
else:
return {} | Get an empty evaluation environment.
Returns
-------
{EvalEnvironment, dict}
A formula-engine-dependent empty evaluation environment. | get_empty_eval_env | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def remove_intercept(self, terms):
"""
Remove intercept from Patsy terms.
Parameters
----------
terms : list[Term]
A list of terms that might have an intercept
Returns
-------
list[Term]
The terms with the intercept removed, if present.
"""
intercept = self.intercept_term
if intercept in terms:
terms.remove(intercept)
return terms | Remove intercept from Patsy terms.
Parameters
----------
terms : list[Term]
A list of terms that might have an intercept
Returns
-------
list[Term]
The terms with the intercept removed, if present. | remove_intercept | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def has_intercept(self, spec):
"""
Check if the model specification has an intercept term.
Parameters
----------
spec
Returns
-------
bool
True if the model specification has an intercept term, False otherwise.
"""
return self.intercept_term in spec.terms | Check if the model specification has an intercept term.
Parameters
----------
spec
Returns
-------
bool
True if the model specification has an intercept term, False otherwise. | has_intercept | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def intercept_idx(self, spec):
"""
Returns boolean array index indicating which column holds the intercept.
Parameters
----------
spec
Returns
-------
ndarray
Boolean array index indicating which column holds the intercept.
"""
from numpy import array
intercept = self.intercept_term
return array([intercept == i for i in spec.terms]) | Returns boolean array index indicating which column holds the intercept.
Parameters
----------
spec
Returns
-------
ndarray
Boolean array index indicating which column holds the intercept. | intercept_idx | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def get_na_action(self, action: str = "drop", types: Sequence[Any] = _NoDefault):
"""
Get the NA action for the formula engine.
Parameters
----------
action
types
Returns
-------
NAAction | str
The formula-engine-specific NA action.
Notes
-----
types is ignored when using formulaic.
"""
types = ["None", "NaN"] if types is _NoDefault else types
if self._using_patsy:
return NAAction(on_NA=action, NA_types=types)
else:
return action | Get the NA action for the formula engine.
Parameters
----------
action
types
Returns
-------
NAAction | str
The formula-engine-specific NA action.
Notes
-----
types is ignored when using formulaic. | get_na_action | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def get_spec(self, formula):
"""
Get the model specification from a formula.
Parameters
----------
formula : str
The formula to parse.
Returns
-------
{ModelDesc, Formula}
The engine-specific model specification.
"""
if self._using_patsy:
return patsy.ModelDesc.from_formula(formula)
else:
return formulaic.Formula(formula) | Get the model specification from a formula.
Parameters
----------
formula : str
The formula to parse.
Returns
-------
{ModelDesc, Formula}
The engine-specific model specification. | get_spec | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def get_term_names(self, spec_or_frame):
"""
Get the term names from a model specification or DataFrame.
Parameters
----------
spec_or_frame
Returns
-------
"""
spec = self._ensure_spec(spec_or_frame)
if self._using_patsy:
return list(spec.term_names)
else:
return [str(term) for term in spec.terms] | Get the term names from a model specification or DataFrame.
Parameters
----------
spec_or_frame
Returns
------- | get_term_names | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def get_column_names(self, spec_or_frame):
"""
Returns a list of column names from a model specification or DataFrame.
Parameters
----------
spec_or_frame : {DataFrame, ModelSpec, DesignInfo
Returns
-------
list[str]
The column names.
"""
spec = self._ensure_spec(spec_or_frame)
return list(spec.column_names) | Returns a list of column names from a model specification or DataFrame.
Parameters
----------
spec_or_frame : {DataFrame, ModelSpec, DesignInfo
Returns
-------
list[str]
The column names. | get_column_names | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def get_term_name_slices(self, spec_or_frame):
"""
Get a dictionary containing the term names and their location in the formula.
Parameters
----------
spec_or_frame : {DataFrame, ModelSpec, DesignInfo}
The DataFrame with a model specification attached or the model
specification.
Returns
-------
dict[str, slice]
A dictionary mapping term names to location in the materialized formula.
"""
spec = self._ensure_spec(spec_or_frame)
if self._using_patsy:
return dict(spec.term_name_slices)
else:
return spec.term_slices | Get a dictionary containing the term names and their location in the formula.
Parameters
----------
spec_or_frame : {DataFrame, ModelSpec, DesignInfo}
The DataFrame with a model specification attached or the model
specification.
Returns
-------
dict[str, slice]
A dictionary mapping term names to location in the materialized formula. | get_term_name_slices | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def get_model_spec(self, frame, optional=False):
"""
Parameters
----------
frame : DataFrame
The frame to get the model specification from.
optional : bool
Whether to return None if the frame does not have a model specification.
Returns
-------
{ModelSpec, DesignInfo}
The engine-specific model specification
"""
if self._using_patsy:
if optional and not hasattr(frame, "design_info"):
return None
return frame.design_info
else:
if optional and not hasattr(frame, "model_spec"):
return None
return frame.model_spec | Parameters
----------
frame : DataFrame
The frame to get the model specification from.
optional : bool
Whether to return None if the frame does not have a model specification.
Returns
-------
{ModelSpec, DesignInfo}
The engine-specific model specification | get_model_spec | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def get_slice(self, model_spec, term):
"""
Parameters
----------
model_spec : {ModelSpec, DesignInfo}
The model specification.
term : Term
The model term.
Returns
-------
slice
The slice indicating the variables connected to a specific model term.
"""
if self._using_patsy:
return model_spec.slice(term)
else:
return model_spec.get_slice(term) | Parameters
----------
model_spec : {ModelSpec, DesignInfo}
The model specification.
term : Term
The model term.
Returns
-------
slice
The slice indicating the variables connected to a specific model term. | get_slice | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def get_term_name(self, term):
"""
Gets the string name of a term
Parameters
----------
term : Term
Returns
-------
str
The term's name.
"""
if self._using_patsy:
return term.name()
else:
return str(term) | Gets the string name of a term
Parameters
----------
term : Term
Returns
-------
str
The term's name. | get_term_name | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def get_description(self, spec_or_frame):
"""
Gets a string representation of the model specification.
Parameters
----------
spec_or_frame : {DataFrame, ModelSpec, DesignInfo
Returns
-------
str
The human-readable description of the model specification.,
"""
spec = self._ensure_spec(spec_or_frame)
if self._using_patsy:
return spec.describe()
else:
return str(spec.formula) | Gets a string representation of the model specification.
Parameters
----------
spec_or_frame : {DataFrame, ModelSpec, DesignInfo
Returns
-------
str
The human-readable description of the model specification., | get_description | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def get_factor_categories(self, factor, model_spec):
"""
Get the list of categories for a factor.
Parameters
----------
factor : {EvalFactor, Factor}
The factor to get the categories for.
model_spec : {ModelSpec, DesignInfo}
The model specification.
Returns
-------
tuple
The categories for the factor.
"""
if self._using_patsy:
return model_spec.factor_infos[factor].categories
else:
return tuple(model_spec.encoder_state[factor][1]["categories"]) | Get the list of categories for a factor.
Parameters
----------
factor : {EvalFactor, Factor}
The factor to get the categories for.
model_spec : {ModelSpec, DesignInfo}
The model specification.
Returns
-------
tuple
The categories for the factor. | get_factor_categories | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def get_contrast_matrix(self, term, factor, model_spec):
"""
Get the contrast matrix for a term and factor.
Parameters
----------
term : Term
Either a formulaic Term or a patsy Term.
factor : EvalFactor or Factor
Either a formulaic Factor or a patsy EvalFactor
model_spec : engine-specific model specification
Either a formulaic ModelSpec or a patsy DesignInfo.
Returns
-------
ndarray
The contract matrix to use for hypothesis testing.
"""
if self._using_patsy:
return model_spec.term_codings[term][0].contrast_matrices[factor].matrix
else:
cat = self.get_factor_categories(factor, model_spec)
reduced_rank = True
for ts in model_spec.structure:
if ts.term == term:
reduced_rank = len(ts.columns) != len(cat)
break
return np.asarray(
model_spec.factor_contrasts[factor].get_coding_matrix(
reduced_rank=reduced_rank
)
) | Get the contrast matrix for a term and factor.
Parameters
----------
term : Term
Either a formulaic Term or a patsy Term.
factor : EvalFactor or Factor
Either a formulaic Factor or a patsy EvalFactor
model_spec : engine-specific model specification
Either a formulaic ModelSpec or a patsy DesignInfo.
Returns
-------
ndarray
The contract matrix to use for hypothesis testing. | get_contrast_matrix | python | statsmodels/statsmodels | statsmodels/formula/_manager.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/_manager.py | BSD-3-Clause |
def handle_formula_data(Y, X, formula, depth=0, missing="drop"):
"""
Returns endog, exog, and the model specification from arrays and formula.
Parameters
----------
Y : array_like
Either endog (the LHS) of a model specification or all of the data.
Y must define __getitem__ for now.
X : array_like
Either exog or None. If all the data for the formula is provided in
Y then you must explicitly set X to None.
formula : str or patsy.model_desc
You can pass a handler by import formula_handler and adding a
key-value pair where the key is the formula object class and
the value is a function that returns endog, exog, formula object.
Returns
-------
endog : array_like
Should preserve the input type of Y,X.
exog : array_like
Should preserve the input type of Y,X. Could be None.
"""
# half ass attempt to handle other formula objects
if isinstance(formula, tuple(formula_handler.keys())):
return formula_handler[type(formula)]
na_action = FormulaManager().get_na_action(action=missing)
mgr = FormulaManager()
if X is not None:
result = mgr.get_matrices(
formula,
(Y, X),
eval_env=depth,
pandas=True,
na_action=na_action,
attach_spec=True,
)
else:
result = mgr.get_matrices(
formula,
Y,
eval_env=depth,
pandas=True,
na_action=na_action,
)
missing_mask = mgr.missing_mask
if not np.any(missing_mask):
missing_mask = None
if len(result) > 1: # have RHS design
model_spec = mgr.spec # detach it from DataFrame
else:
model_spec = None
# NOTE: is there ever a case where we'd need LHS's model_spec?
return result, missing_mask, model_spec | Returns endog, exog, and the model specification from arrays and formula.
Parameters
----------
Y : array_like
Either endog (the LHS) of a model specification or all of the data.
Y must define __getitem__ for now.
X : array_like
Either exog or None. If all the data for the formula is provided in
Y then you must explicitly set X to None.
formula : str or patsy.model_desc
You can pass a handler by import formula_handler and adding a
key-value pair where the key is the formula object class and
the value is a function that returns endog, exog, formula object.
Returns
-------
endog : array_like
Should preserve the input type of Y,X.
exog : array_like
Should preserve the input type of Y,X. Could be None. | handle_formula_data | python | statsmodels/statsmodels | statsmodels/formula/formulatools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/formulatools.py | BSD-3-Clause |
def advance_eval_env(kwargs):
"""
Adjusts the keyword arguments for from_formula to account for the patsy
eval environment being passed down once on the stack. Adjustments are
made in place.
Parameters
----------
kwargs : dict
The dictionary of keyword arguments passed to `from_formula`.
"""
eval_env = kwargs.get("eval_env", None)
if eval_env is None:
kwargs["eval_env"] = 2
elif eval_env == -1:
kwargs["eval_env"] = FormulaManager().get_empty_eval_env() | Adjusts the keyword arguments for from_formula to account for the patsy
eval environment being passed down once on the stack. Adjustments are
made in place.
Parameters
----------
kwargs : dict
The dictionary of keyword arguments passed to `from_formula`. | advance_eval_env | python | statsmodels/statsmodels | statsmodels/formula/formulatools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/formula/formulatools.py | BSD-3-Clause |
def webuse(data, baseurl='https://www.stata-press.com/data/r11/', as_df=True):
"""
Download and return an example dataset from Stata.
Parameters
----------
data : str
Name of dataset to fetch.
baseurl : str
The base URL to the stata datasets.
as_df : bool
Deprecated. Always returns a DataFrame
Returns
-------
dta : DataFrame
A DataFrame containing the Stata dataset.
Examples
--------
>>> dta = webuse('auto')
Notes
-----
Make sure baseurl has trailing forward slash. Does not do any
error checking in response URLs.
"""
url = urljoin(baseurl, data+'.dta')
return read_stata(url) | Download and return an example dataset from Stata.
Parameters
----------
data : str
Name of dataset to fetch.
baseurl : str
The base URL to the stata datasets.
as_df : bool
Deprecated. Always returns a DataFrame
Returns
-------
dta : DataFrame
A DataFrame containing the Stata dataset.
Examples
--------
>>> dta = webuse('auto')
Notes
-----
Make sure baseurl has trailing forward slash. Does not do any
error checking in response URLs. | webuse | python | statsmodels/statsmodels | statsmodels/datasets/utils.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/utils.py | BSD-3-Clause |
def _maybe_reset_index(data):
"""
All the Rdatasets have the integer row.labels from R if there is no
real index. Strip this for a zero-based index
"""
if data.index.equals(Index(lrange(1, len(data) + 1))):
data = data.reset_index(drop=True)
return data | All the Rdatasets have the integer row.labels from R if there is no
real index. Strip this for a zero-based index | _maybe_reset_index | python | statsmodels/statsmodels | statsmodels/datasets/utils.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/utils.py | BSD-3-Clause |
def _urlopen_cached(url, cache):
"""
Tries to load data from cache location otherwise downloads it. If it
downloads the data and cache is not None then it will put the downloaded
data in the cache path.
"""
from_cache = False
if cache is not None:
file_name = url.split("://")[-1].replace('/', ',')
file_name = file_name.split('.')
if len(file_name) > 1:
file_name[-2] += '-v2'
else:
file_name[0] += '-v2'
file_name = '.'.join(file_name) + ".zip"
cache_path = join(cache, file_name)
try:
data = _open_cache(cache_path)
from_cache = True
except Exception:
# Hit this if not in cache
pass
# not using the cache or did not find it in cache
if not from_cache:
data = urlopen(url, timeout=3).read()
if cache is not None: # then put it in the cache
_cache_it(data, cache_path)
return data, from_cache | Tries to load data from cache location otherwise downloads it. If it
downloads the data and cache is not None then it will put the downloaded
data in the cache path. | _urlopen_cached | python | statsmodels/statsmodels | statsmodels/datasets/utils.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/utils.py | BSD-3-Clause |
def get_rdataset(dataname, package="datasets", cache=False):
"""download and return R dataset
Parameters
----------
dataname : str
The name of the dataset you want to download
package : str
The package in which the dataset is found. The default is the core
'datasets' package.
cache : bool or str
If True, will download this data into the STATSMODELS_DATA folder.
The default location is a folder called statsmodels_data in the
user home folder. Otherwise, you can specify a path to a folder to
use for caching the data. If False, the data will not be cached.
Returns
-------
dataset : Dataset
A `statsmodels.data.utils.Dataset` instance. This objects has
attributes:
* data - A pandas DataFrame containing the data
* title - The dataset title
* package - The package from which the data came
* from_cache - Whether not cached data was retrieved
* __doc__ - The verbatim R documentation.
Notes
-----
If the R dataset has an integer index. This is reset to be zero-based.
Otherwise the index is preserved. The caching facilities are dumb. That
is, no download dates, e-tags, or otherwise identifying information
is checked to see if the data should be downloaded again or not. If the
dataset is in the cache, it's used.
"""
# NOTE: use raw github bc html site might not be most up to date
data_base_url = ("https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/"
"master/csv/"+package+"/")
docs_base_url = ("https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/"
"master/doc/"+package+"/rst/")
cache = _get_cache(cache)
data, from_cache = _get_data(data_base_url, dataname, cache)
data = read_csv(data, index_col=0)
data = _maybe_reset_index(data)
title = _get_dataset_meta(dataname, package, cache)
doc, _ = _get_data(docs_base_url, dataname, cache, "rst")
return Dataset(data=data, __doc__=doc.read(), package=package, title=title,
from_cache=from_cache) | download and return R dataset
Parameters
----------
dataname : str
The name of the dataset you want to download
package : str
The package in which the dataset is found. The default is the core
'datasets' package.
cache : bool or str
If True, will download this data into the STATSMODELS_DATA folder.
The default location is a folder called statsmodels_data in the
user home folder. Otherwise, you can specify a path to a folder to
use for caching the data. If False, the data will not be cached.
Returns
-------
dataset : Dataset
A `statsmodels.data.utils.Dataset` instance. This objects has
attributes:
* data - A pandas DataFrame containing the data
* title - The dataset title
* package - The package from which the data came
* from_cache - Whether not cached data was retrieved
* __doc__ - The verbatim R documentation.
Notes
-----
If the R dataset has an integer index. This is reset to be zero-based.
Otherwise the index is preserved. The caching facilities are dumb. That
is, no download dates, e-tags, or otherwise identifying information
is checked to see if the data should be downloaded again or not. If the
dataset is in the cache, it's used. | get_rdataset | python | statsmodels/statsmodels | statsmodels/datasets/utils.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/utils.py | BSD-3-Clause |
def get_data_home(data_home=None):
"""Return the path of the statsmodels data dir.
This folder is used by some large dataset loaders to avoid
downloading the data several times.
By default the data dir is set to a folder named 'statsmodels_data'
in the user home folder.
Alternatively, it can be set by the 'STATSMODELS_DATA' environment
variable or programatically by giving an explicit folder path. The
'~' symbol is expanded to the user home folder.
If the folder does not already exist, it is automatically created.
"""
if data_home is None:
data_home = environ.get('STATSMODELS_DATA',
join('~', 'statsmodels_data'))
data_home = expanduser(data_home)
if not exists(data_home):
makedirs(data_home)
return data_home | Return the path of the statsmodels data dir.
This folder is used by some large dataset loaders to avoid
downloading the data several times.
By default the data dir is set to a folder named 'statsmodels_data'
in the user home folder.
Alternatively, it can be set by the 'STATSMODELS_DATA' environment
variable or programatically by giving an explicit folder path. The
'~' symbol is expanded to the user home folder.
If the folder does not already exist, it is automatically created. | get_data_home | python | statsmodels/statsmodels | statsmodels/datasets/utils.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/utils.py | BSD-3-Clause |
def clear_data_home(data_home=None):
"""Delete all the content of the data home cache."""
data_home = get_data_home(data_home)
shutil.rmtree(data_home) | Delete all the content of the data home cache. | clear_data_home | python | statsmodels/statsmodels | statsmodels/datasets/utils.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/utils.py | BSD-3-Clause |
def check_internet(url=None):
"""Check if internet is available"""
url = "https://github.com" if url is None else url
try:
urlopen(url)
except URLError:
return False
return True | Check if internet is available | check_internet | python | statsmodels/statsmodels | statsmodels/datasets/utils.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/utils.py | BSD-3-Clause |
def strip_column_names(df):
"""
Remove leading and trailing single quotes
Parameters
----------
df : DataFrame
DataFrame to process
Returns
-------
df : DataFrame
DataFrame with stripped column names
Notes
-----
In-place modification
"""
columns = []
for c in df:
if c.startswith('\'') and c.endswith('\''):
c = c[1:-1]
elif c.startswith('\''):
c = c[1:]
elif c.endswith('\''):
c = c[:-1]
columns.append(c)
df.columns = columns
return df | Remove leading and trailing single quotes
Parameters
----------
df : DataFrame
DataFrame to process
Returns
-------
df : DataFrame
DataFrame with stripped column names
Notes
-----
In-place modification | strip_column_names | python | statsmodels/statsmodels | statsmodels/datasets/utils.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/utils.py | BSD-3-Clause |
def load_csv(base_file, csv_name, sep=',', convert_float=False):
"""Standard simple csv loader"""
filepath = dirname(abspath(base_file))
filename = join(filepath,csv_name)
engine = 'python' if sep != ',' else 'c'
float_precision = {}
if engine == 'c':
float_precision = {'float_precision': 'high'}
data = read_csv(filename, sep=sep, engine=engine, **float_precision)
if convert_float:
data = data.astype(float)
return data | Standard simple csv loader | load_csv | python | statsmodels/statsmodels | statsmodels/datasets/utils.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/utils.py | BSD-3-Clause |
def load():
"""
Load the data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/template_data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/template_data.py | BSD-3-Clause |
def load_pandas():
"""
Load the strikes data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
data = _get_data()
return du.process_pandas(data, endog_idx=0) | Load the strikes data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load_pandas | python | statsmodels/statsmodels | statsmodels/datasets/template_data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/template_data.py | BSD-3-Clause |
def load():
"""
Load the data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/heart/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/heart/data.py | BSD-3-Clause |
def load():
"""
Load the Nile data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the Nile data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/nile/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/nile/data.py | BSD-3-Clause |
def load():
"""Load the committee data and returns a data class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the committee data and returns a data class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/committee/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/committee/data.py | BSD-3-Clause |
def load():
"""
Load the US macro data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
The Dataset instance does not contain endog and exog attributes.
"""
return load_pandas() | Load the US macro data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
The Dataset instance does not contain endog and exog attributes. | load | python | statsmodels/statsmodels | statsmodels/datasets/danish_data/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/danish_data/data.py | BSD-3-Clause |
def load():
"""
Load the star98 data and returns a Dataset class instance.
Returns
-------
Load instance:
a class of the data with array attrbutes 'endog' and 'exog'
"""
return load_pandas() | Load the star98 data and returns a Dataset class instance.
Returns
-------
Load instance:
a class of the data with array attrbutes 'endog' and 'exog' | load | python | statsmodels/statsmodels | statsmodels/datasets/star98/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/star98/data.py | BSD-3-Clause |
def load():
"""
Loads the Grunfeld data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
raw_data has the firm variable expanded to dummy variables for each
firm (ie., there is no reference dummy)
"""
return load_pandas() | Loads the Grunfeld data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
raw_data has the firm variable expanded to dummy variables for each
firm (ie., there is no reference dummy) | load | python | statsmodels/statsmodels | statsmodels/datasets/grunfeld/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/grunfeld/data.py | BSD-3-Clause |
def load_pandas():
"""
Loads the Grunfeld data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
raw_data has the firm variable expanded to dummy variables for each
firm (ie., there is no reference dummy)
"""
data = _get_data()
data.year = data.year.astype(float)
raw_data = pd.get_dummies(data)
ds = du.process_pandas(data, endog_idx=0)
ds.raw_data = raw_data
return ds | Loads the Grunfeld data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
raw_data has the firm variable expanded to dummy variables for each
firm (ie., there is no reference dummy) | load_pandas | python | statsmodels/statsmodels | statsmodels/datasets/grunfeld/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/grunfeld/data.py | BSD-3-Clause |
def load():
"""
Load the data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/cancer/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/cancer/data.py | BSD-3-Clause |
def load_pandas():
"""Load the anes96 data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
data = _get_data()
return du.process_pandas(data, endog_idx=5, exog_idx=[10, 2, 6, 7, 8]) | Load the anes96 data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load_pandas | python | statsmodels/statsmodels | statsmodels/datasets/anes96/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/anes96/data.py | BSD-3-Clause |
def load():
"""Load the anes96 data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the anes96 data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/anes96/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/anes96/data.py | BSD-3-Clause |
def load():
"""
Load the stack loss data and returns a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the stack loss data and returns a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/stackloss/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/stackloss/data.py | BSD-3-Clause |
def load_pandas():
"""
Load the stack loss data and returns a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
data = _get_data()
return du.process_pandas(data, endog_idx=0) | Load the stack loss data and returns a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load_pandas | python | statsmodels/statsmodels | statsmodels/datasets/stackloss/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/stackloss/data.py | BSD-3-Clause |
def load():
"""
Load the yearly sunspot data and returns a data class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
This dataset only contains data for one variable, so the attributes
data, raw_data, and endog are all the same variable. There is no exog
attribute defined.
"""
return load_pandas() | Load the yearly sunspot data and returns a data class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
This dataset only contains data for one variable, so the attributes
data, raw_data, and endog are all the same variable. There is no exog
attribute defined. | load | python | statsmodels/statsmodels | statsmodels/datasets/sunspots/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/sunspots/data.py | BSD-3-Clause |
def load():
"""
Load the Longley data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the Longley data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/longley/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/longley/data.py | BSD-3-Clause |
def load_pandas():
"""
Load the Longley data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
data = _get_data()
return du.process_pandas(data, endog_idx=0) | Load the Longley data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load_pandas | python | statsmodels/statsmodels | statsmodels/datasets/longley/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/longley/data.py | BSD-3-Clause |
def load_pandas():
"""
Load the copper data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
data = _get_data()
return du.process_pandas(data, endog_idx=0) | Load the copper data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load_pandas | python | statsmodels/statsmodels | statsmodels/datasets/copper/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/copper/data.py | BSD-3-Clause |
def load():
"""
Load the copper data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the copper data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/copper/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/copper/data.py | BSD-3-Clause |
def load():
"""
Load the data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/fertility/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/fertility/data.py | BSD-3-Clause |
def load():
"""
Load the El Nino data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
The elnino Dataset instance does not contain endog and exog attributes.
"""
return load_pandas() | Load the El Nino data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
The elnino Dataset instance does not contain endog and exog attributes. | load | python | statsmodels/statsmodels | statsmodels/datasets/elnino/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/elnino/data.py | BSD-3-Clause |
def load_pandas():
"""
Load the strikes data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
data = _get_data()
return du.process_pandas(data, endog_idx=0) | Load the strikes data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load_pandas | python | statsmodels/statsmodels | statsmodels/datasets/strikes/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/strikes/data.py | BSD-3-Clause |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.