code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def load():
"""
Load the strikes data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the strikes data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/strikes/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/strikes/data.py | BSD-3-Clause |
def load():
"""
Load the US macro data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
The macrodata Dataset instance does not contain endog and exog attributes.
"""
return load_pandas() | Load the US macro data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
The macrodata Dataset instance does not contain endog and exog attributes. | load | python | statsmodels/statsmodels | statsmodels/datasets/macrodata/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/macrodata/data.py | BSD-3-Clause |
def load_pandas():
"""
Load the cpunish data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
data = _get_data()
return du.process_pandas(data, endog_idx=0) | Load the cpunish data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load_pandas | python | statsmodels/statsmodels | statsmodels/datasets/cpunish/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/cpunish/data.py | BSD-3-Clause |
def load():
"""
Load the cpunish data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the cpunish data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/cpunish/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/cpunish/data.py | BSD-3-Clause |
def load():
"""
Load the data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/fair/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/fair/data.py | BSD-3-Clause |
def load():
"""
Loads the RAND HIE data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
endog - response variable, mdvis
exog - design
"""
return load_pandas() | Loads the RAND HIE data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
endog - response variable, mdvis
exog - design | load | python | statsmodels/statsmodels | statsmodels/datasets/randhie/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/randhie/data.py | BSD-3-Clause |
def load_pandas():
"""
Loads the RAND HIE data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
endog - response variable, mdvis
exog - design
"""
return du.process_pandas(_get_data(), endog_idx=0) | Loads the RAND HIE data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
endog - response variable, mdvis
exog - design | load_pandas | python | statsmodels/statsmodels | statsmodels/datasets/randhie/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/randhie/data.py | BSD-3-Clause |
def load():
"""
Load the data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/engel/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/engel/data.py | BSD-3-Clause |
def load():
"""
Load the EU Electrical Equipment manufacturing data into a Dataset class
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
The Dataset instance does not contain endog and exog attributes.
"""
return load_pandas() | Load the EU Electrical Equipment manufacturing data into a Dataset class
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
The Dataset instance does not contain endog and exog attributes. | load | python | statsmodels/statsmodels | statsmodels/datasets/elec_equip/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/elec_equip/data.py | BSD-3-Clause |
def load_pandas():
"""
Load the China smoking/lung cancer data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
raw_data = du.load_csv(__file__, 'china_smoking.csv')
data = raw_data.set_index('Location')
dset = du.Dataset(data=data, title="Smoking and lung cancer in Chinese regions")
dset.raw_data = raw_data
return dset | Load the China smoking/lung cancer data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load_pandas | python | statsmodels/statsmodels | statsmodels/datasets/china_smoking/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/china_smoking/data.py | BSD-3-Clause |
def load():
"""
Load the China smoking/lung cancer data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the China smoking/lung cancer data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/china_smoking/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/china_smoking/data.py | BSD-3-Clause |
def load_pandas():
"""Load the credit card data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
data = _get_data()
return du.process_pandas(data, endog_idx=0) | Load the credit card data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load_pandas | python | statsmodels/statsmodels | statsmodels/datasets/ccard/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/ccard/data.py | BSD-3-Clause |
def load():
"""Load the credit card data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the credit card data and returns a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/ccard/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/ccard/data.py | BSD-3-Clause |
def load():
"""
Load the statecrime data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the statecrime data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/statecrime/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/statecrime/data.py | BSD-3-Clause |
def load():
"""
Load the West German interest/inflation data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
The interest_inflation Dataset instance does not contain endog and exog
attributes.
"""
return load_pandas() | Load the West German interest/inflation data and return a Dataset class.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
Notes
-----
The interest_inflation Dataset instance does not contain endog and exog
attributes. | load | python | statsmodels/statsmodels | statsmodels/datasets/interest_inflation/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/interest_inflation/data.py | BSD-3-Clause |
def load():
"""
Load the Spector dataset and returns a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the Spector dataset and returns a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/spector/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/spector/data.py | BSD-3-Clause |
def load_pandas():
"""
Load the Spector dataset and returns a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
data = _get_data()
return du.process_pandas(data, endog_idx=3) | Load the Spector dataset and returns a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load_pandas | python | statsmodels/statsmodels | statsmodels/datasets/spector/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/spector/data.py | BSD-3-Clause |
def load():
"""
Load the data modechoice data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the data modechoice data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/modechoice/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/modechoice/data.py | BSD-3-Clause |
def load_pandas():
"""
Load the data modechoice data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
data = _get_data()
return du.process_pandas(data, endog_idx = 2, exog_idx=[3,4,5,6,7,8]) | Load the data modechoice data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load_pandas | python | statsmodels/statsmodels | statsmodels/datasets/modechoice/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/modechoice/data.py | BSD-3-Clause |
def load():
"""
Load the data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the data and return a Dataset class instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/co2/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/co2/data.py | BSD-3-Clause |
def load():
"""
Load the Scotvote data and returns a Dataset instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
return load_pandas() | Load the Scotvote data and returns a Dataset instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load | python | statsmodels/statsmodels | statsmodels/datasets/scotland/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/scotland/data.py | BSD-3-Clause |
def load_pandas():
"""
Load the Scotvote data and returns a Dataset instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information.
"""
data = _get_data()
return du.process_pandas(data, endog_idx=0) | Load the Scotvote data and returns a Dataset instance.
Returns
-------
Dataset
See DATASET_PROPOSAL.txt for more information. | load_pandas | python | statsmodels/statsmodels | statsmodels/datasets/scotland/data.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/datasets/scotland/data.py | BSD-3-Clause |
def _find_x12(x12path=None, prefer_x13=True):
"""
If x12path is not given, then either x13as[.exe] or x12a[.exe] must
be found on the PATH. Otherwise, the environmental variable X12PATH or
X13PATH must be defined. If prefer_x13 is True, only X13PATH is searched
for. If it is false, only X12PATH is searched for.
"""
global _binary_names
if x12path is not None and x12path.endswith(_binary_names):
# remove binary from path if path is not a directory
if not os.path.isdir(x12path):
x12path = os.path.dirname(x12path)
if not prefer_x13: # search for x12 first
_binary_names = _binary_names[::-1]
if x12path is None:
x12path = os.getenv("X12PATH", "")
if not x12path:
x12path = os.getenv("X13PATH", "")
elif x12path is None:
x12path = os.getenv("X13PATH", "")
if not x12path:
x12path = os.getenv("X12PATH", "")
for binary in _binary_names:
x12 = os.path.join(x12path, binary)
try:
subprocess.check_call(x12, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return x12
except OSError:
pass
else:
return False | If x12path is not given, then either x13as[.exe] or x12a[.exe] must
be found on the PATH. Otherwise, the environmental variable X12PATH or
X13PATH must be defined. If prefer_x13 is True, only X13PATH is searched
for. If it is false, only X12PATH is searched for. | _find_x12 | python | statsmodels/statsmodels | statsmodels/tsa/x13.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/x13.py | BSD-3-Clause |
def _clean_order(order):
"""
Takes something like (1 1 0)(0 1 1) and returns a arma order, sarma
order tuple. Also accepts (1 1 0) and return arma order and (0, 0, 0)
"""
order = re.findall(r"\([0-9 ]*?\)", order)
def clean(x):
return tuple(map(int, re.sub("[()]", "", x).split(" ")))
if len(order) > 1:
order, sorder = map(clean, order)
else:
order = clean(order[0])
sorder = (0, 0, 0)
return order, sorder | Takes something like (1 1 0)(0 1 1) and returns a arma order, sarma
order tuple. Also accepts (1 1 0) and return arma order and (0, 0, 0) | _clean_order | python | statsmodels/statsmodels | statsmodels/tsa/x13.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/x13.py | BSD-3-Clause |
def _convert_out_to_series(x, dates, name):
"""
Convert x to a DataFrame where x is a string in the format given by
x-13arima-seats output.
"""
from io import StringIO
from pandas import read_csv
out = read_csv(StringIO(x), skiprows=2, header=None, sep="\t", engine="python")
return out.set_index(dates).rename(columns={1: name})[name] | Convert x to a DataFrame where x is a string in the format given by
x-13arima-seats output. | _convert_out_to_series | python | statsmodels/statsmodels | statsmodels/tsa/x13.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/x13.py | BSD-3-Clause |
def x13_arima_analysis(
endog,
maxorder=(2, 1),
maxdiff=(2, 1),
diff=None,
exog=None,
log=None,
outlier=True,
trading=False,
forecast_periods=None,
retspec=False,
speconly=False,
start=None,
freq=None,
print_stdout=False,
x12path=None,
prefer_x13=True,
log_diagnostics=False,
tempdir=None,
):
"""
Perform x13-arima analysis for monthly or quarterly data.
Parameters
----------
endog : array_like, pandas.Series
The series to model. It is best to use a pandas object with a
DatetimeIndex or PeriodIndex. However, you can pass an array-like
object. If your object does not have a dates index then ``start`` and
``freq`` are not optional.
maxorder : tuple
The maximum order of the regular and seasonal ARMA polynomials to
examine during the model identification. The order for the regular
polynomial must be greater than zero and no larger than 4. The
order for the seasonal polynomial may be 1 or 2.
maxdiff : tuple
The maximum orders for regular and seasonal differencing in the
automatic differencing procedure. Acceptable inputs for regular
differencing are 1 and 2. The maximum order for seasonal differencing
is 1. If ``diff`` is specified then ``maxdiff`` should be None.
Otherwise, ``diff`` will be ignored. See also ``diff``.
diff : tuple
Fixes the orders of differencing for the regular and seasonal
differencing. Regular differencing may be 0, 1, or 2. Seasonal
differencing may be 0 or 1. ``maxdiff`` must be None, otherwise
``diff`` is ignored.
exog : array_like
Exogenous variables.
log : bool or None
If None, it is automatically determined whether to log the series or
not. If False, logs are not taken. If True, logs are taken.
outlier : bool
Whether or not outliers are tested for and corrected, if detected.
trading : bool
Whether or not trading day effects are tested for.
forecast_periods : int
Number of forecasts produced. The default is None.
retspec : bool
Whether to return the created specification file. Can be useful for
debugging.
speconly : bool
Whether to create the specification file and then return it without
performing the analysis. Can be useful for debugging.
start : str, datetime
Must be given if ``endog`` does not have date information in its index.
Anything accepted by pandas.DatetimeIndex for the start value.
freq : str
Must be givein if ``endog`` does not have date information in its
index. Anything accepted by pandas.DatetimeIndex for the freq value.
print_stdout : bool
The stdout from X12/X13 is suppressed. To print it out, set this
to True. Default is False.
x12path : str or None
The path to x12 or x13 binary. If None, the program will attempt
to find x13as or x12a on the PATH or by looking at X13PATH or
X12PATH depending on the value of prefer_x13.
prefer_x13 : bool
If True, will look for x13as first and will fallback to the X13PATH
environmental variable. If False, will look for x12a first and will
fallback to the X12PATH environmental variable. If x12path points
to the path for the X12/X13 binary, it does nothing.
log_diagnostics : bool
If True, returns D8 F-Test, M07, and Q diagnostics from the X13
savelog. Set to False by default.
tempdir : str
The path to where temporary files are created by the function.
If None, files are created in the default temporary file location.
Returns
-------
Bunch
A bunch object containing the listed attributes.
- results : str
The full output from the X12/X13 run.
- seasadj : pandas.Series
The final seasonally adjusted ``endog``.
- trend : pandas.Series
The trend-cycle component of ``endog``.
- irregular : pandas.Series
The final irregular component of ``endog``.
- stdout : str
The captured stdout produced by x12/x13.
- spec : str, optional
Returned if ``retspec`` is True. The only thing returned if
``speconly`` is True.
- x13_diagnostic : dict
Returns F-D8, M07, and Q metrics if True. Returns dict with no
metrics if False
Notes
-----
This works by creating a specification file, writing it to a temporary
directory, invoking X12/X13 in a subprocess, and reading the output
directory, invoking exog12/X13 in a subprocess, and reading the output
back in.
"""
x12path = _check_x12(x12path)
if not isinstance(endog, (pd.DataFrame, pd.Series)):
if start is None or freq is None:
raise ValueError(
"start and freq cannot be none if endog is not " "a pandas object"
)
idx = pd.date_range(start=start, periods=len(endog), freq=freq)
endog = pd.Series(endog, index=idx)
spec_obj = pandas_to_series_spec(endog)
spec = spec_obj.create_spec()
spec += f"transform{{function={_log_to_x12[log]}}}\n"
if outlier:
spec += "outlier{}\n"
options = _make_automdl_options(maxorder, maxdiff, diff)
spec += f"automdl{{{options}}}\n"
spec += _make_regression_options(trading, exog)
spec += _make_forecast_options(forecast_periods)
spec += "x11{ save=(d11 d12 d13) \n savelog=(fd8 m7 q)}"
if speconly:
return spec
# write it to a tempfile
# TODO: make this more robust - give the user some control?
ftempin = tempfile.NamedTemporaryFile(delete=False, suffix=".spc", dir=tempdir)
ftempout = tempfile.NamedTemporaryFile(delete=False, dir=tempdir)
try:
ftempin.write(spec.encode("utf8"))
ftempin.close()
ftempout.close()
# call x12 arima
p = run_spec(x12path, ftempin.name[:-4], ftempout.name)
p.wait()
stdout = p.stdout.read()
if print_stdout:
print(p.stdout.read())
# check for errors
errors = _open_and_read(ftempout.name + ".err")
_check_errors(errors)
# read in results
results = _open_and_read(ftempout.name + ".out")
seasadj = _open_and_read(ftempout.name + ".d11")
trend = _open_and_read(ftempout.name + ".d12")
irregular = _open_and_read(ftempout.name + ".d13")
if log_diagnostics:
# read f8d m7 and q diagnostics from log
x13_logs = _open_and_read(ftempout.name + ".log")
x13_diagnostic = {
"F-D8": float(re.search(r"D8 table\s*:\s*([\d.]+)", x13_logs).group(1)),
"M07": float(re.search(r"M07\s*:\s*([\d.]+)", x13_logs).group(1)),
"Q": float(re.search(r"Q\s*:\s*([\d.]+)", x13_logs).group(1))
}
else:
x13_diagnostic = {"F-D8": "Log diagnostics not retrieved.",
"M07": "Log diagnostics not retrieved.",
"Q": "Log diagnostics not retrieved."}
finally:
try: # sometimes this gives a permission denied error?
# not sure why. no process should have these open
os.remove(ftempin.name)
os.remove(ftempout.name)
except OSError:
if os.path.exists(ftempin.name):
warn(f"Failed to delete resource {ftempin.name}", IOWarning)
if os.path.exists(ftempout.name):
warn(f"Failed to delete resource {ftempout.name}", IOWarning)
seasadj = _convert_out_to_series(seasadj, endog.index, "seasadj")
trend = _convert_out_to_series(trend, endog.index, "trend")
irregular = _convert_out_to_series(irregular, endog.index, "irregular")
# NOTE: there is not likely anything in stdout that's not in results
# so may be safe to just suppress and remove it
if not retspec:
res = X13ArimaAnalysisResult(
observed=endog,
results=results,
seasadj=seasadj,
trend=trend,
irregular=irregular,
stdout=stdout,
x13_diagnostic=x13_diagnostic,
)
else:
res = X13ArimaAnalysisResult(
observed=endog,
results=results,
seasadj=seasadj,
trend=trend,
irregular=irregular,
stdout=stdout,
spec=spec,
x13_diagnostic=x13_diagnostic,
)
return res | Perform x13-arima analysis for monthly or quarterly data.
Parameters
----------
endog : array_like, pandas.Series
The series to model. It is best to use a pandas object with a
DatetimeIndex or PeriodIndex. However, you can pass an array-like
object. If your object does not have a dates index then ``start`` and
``freq`` are not optional.
maxorder : tuple
The maximum order of the regular and seasonal ARMA polynomials to
examine during the model identification. The order for the regular
polynomial must be greater than zero and no larger than 4. The
order for the seasonal polynomial may be 1 or 2.
maxdiff : tuple
The maximum orders for regular and seasonal differencing in the
automatic differencing procedure. Acceptable inputs for regular
differencing are 1 and 2. The maximum order for seasonal differencing
is 1. If ``diff`` is specified then ``maxdiff`` should be None.
Otherwise, ``diff`` will be ignored. See also ``diff``.
diff : tuple
Fixes the orders of differencing for the regular and seasonal
differencing. Regular differencing may be 0, 1, or 2. Seasonal
differencing may be 0 or 1. ``maxdiff`` must be None, otherwise
``diff`` is ignored.
exog : array_like
Exogenous variables.
log : bool or None
If None, it is automatically determined whether to log the series or
not. If False, logs are not taken. If True, logs are taken.
outlier : bool
Whether or not outliers are tested for and corrected, if detected.
trading : bool
Whether or not trading day effects are tested for.
forecast_periods : int
Number of forecasts produced. The default is None.
retspec : bool
Whether to return the created specification file. Can be useful for
debugging.
speconly : bool
Whether to create the specification file and then return it without
performing the analysis. Can be useful for debugging.
start : str, datetime
Must be given if ``endog`` does not have date information in its index.
Anything accepted by pandas.DatetimeIndex for the start value.
freq : str
Must be givein if ``endog`` does not have date information in its
index. Anything accepted by pandas.DatetimeIndex for the freq value.
print_stdout : bool
The stdout from X12/X13 is suppressed. To print it out, set this
to True. Default is False.
x12path : str or None
The path to x12 or x13 binary. If None, the program will attempt
to find x13as or x12a on the PATH or by looking at X13PATH or
X12PATH depending on the value of prefer_x13.
prefer_x13 : bool
If True, will look for x13as first and will fallback to the X13PATH
environmental variable. If False, will look for x12a first and will
fallback to the X12PATH environmental variable. If x12path points
to the path for the X12/X13 binary, it does nothing.
log_diagnostics : bool
If True, returns D8 F-Test, M07, and Q diagnostics from the X13
savelog. Set to False by default.
tempdir : str
The path to where temporary files are created by the function.
If None, files are created in the default temporary file location.
Returns
-------
Bunch
A bunch object containing the listed attributes.
- results : str
The full output from the X12/X13 run.
- seasadj : pandas.Series
The final seasonally adjusted ``endog``.
- trend : pandas.Series
The trend-cycle component of ``endog``.
- irregular : pandas.Series
The final irregular component of ``endog``.
- stdout : str
The captured stdout produced by x12/x13.
- spec : str, optional
Returned if ``retspec`` is True. The only thing returned if
``speconly`` is True.
- x13_diagnostic : dict
Returns F-D8, M07, and Q metrics if True. Returns dict with no
metrics if False
Notes
-----
This works by creating a specification file, writing it to a temporary
directory, invoking X12/X13 in a subprocess, and reading the output
directory, invoking exog12/X13 in a subprocess, and reading the output
back in. | x13_arima_analysis | python | statsmodels/statsmodels | statsmodels/tsa/x13.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/x13.py | BSD-3-Clause |
def x13_arima_select_order(
endog,
maxorder=(2, 1),
maxdiff=(2, 1),
diff=None,
exog=None,
log=None,
outlier=True,
trading=False,
forecast_periods=None,
start=None,
freq=None,
print_stdout=False,
x12path=None,
prefer_x13=True,
tempdir=None,
):
"""
Perform automatic seasonal ARIMA order identification using x12/x13 ARIMA.
Parameters
----------
endog : array_like, pandas.Series
The series to model. It is best to use a pandas object with a
DatetimeIndex or PeriodIndex. However, you can pass an array-like
object. If your object does not have a dates index then ``start`` and
``freq`` are not optional.
maxorder : tuple
The maximum order of the regular and seasonal ARMA polynomials to
examine during the model identification. The order for the regular
polynomial must be greater than zero and no larger than 4. The
order for the seasonal polynomial may be 1 or 2.
maxdiff : tuple
The maximum orders for regular and seasonal differencing in the
automatic differencing procedure. Acceptable inputs for regular
differencing are 1 and 2. The maximum order for seasonal differencing
is 1. If ``diff`` is specified then ``maxdiff`` should be None.
Otherwise, ``diff`` will be ignored. See also ``diff``.
diff : tuple
Fixes the orders of differencing for the regular and seasonal
differencing. Regular differencing may be 0, 1, or 2. Seasonal
differencing may be 0 or 1. ``maxdiff`` must be None, otherwise
``diff`` is ignored.
exog : array_like
Exogenous variables.
log : bool or None
If None, it is automatically determined whether to log the series or
not. If False, logs are not taken. If True, logs are taken.
outlier : bool
Whether or not outliers are tested for and corrected, if detected.
trading : bool
Whether or not trading day effects are tested for.
forecast_periods : int
Number of forecasts produced. The default is None.
start : str, datetime
Must be given if ``endog`` does not have date information in its index.
Anything accepted by pandas.DatetimeIndex for the start value.
freq : str
Must be givein if ``endog`` does not have date information in its
index. Anything accepted by pandas.DatetimeIndex for the freq value.
print_stdout : bool
The stdout from X12/X13 is suppressed. To print it out, set this
to True. Default is False.
x12path : str or None
The path to x12 or x13 binary. If None, the program will attempt
to find x13as or x12a on the PATH or by looking at X13PATH or X12PATH
depending on the value of prefer_x13.
prefer_x13 : bool
If True, will look for x13as first and will fallback to the X13PATH
environmental variable. If False, will look for x12a first and will
fallback to the X12PATH environmental variable. If x12path points
to the path for the X12/X13 binary, it does nothing.
tempdir : str
The path to where temporary files are created by the function.
If None, files are created in the default temporary file location.
Returns
-------
Bunch
A bunch object containing the listed attributes.
- order : tuple
The regular order.
- sorder : tuple
The seasonal order.
- include_mean : bool
Whether to include a mean or not.
- results : str
The full results from the X12/X13 analysis.
- stdout : str
The captured stdout from the X12/X13 analysis.
Notes
-----
This works by creating a specification file, writing it to a temporary
directory, invoking X12/X13 in a subprocess, and reading the output back
in.
"""
results = x13_arima_analysis(
endog,
x12path=x12path,
exog=exog,
log=log,
outlier=outlier,
trading=trading,
forecast_periods=forecast_periods,
maxorder=maxorder,
maxdiff=maxdiff,
diff=diff,
start=start,
freq=freq,
prefer_x13=prefer_x13,
tempdir=tempdir,
print_stdout=print_stdout,
)
model = re.search("(?<=Final automatic model choice : ).*", results.results)
order = model.group()
if re.search("Mean is not significant", results.results):
include_mean = False
elif re.search("Constant", results.results):
include_mean = True
else:
include_mean = False
order, sorder = _clean_order(order)
res = Bunch(
order=order,
sorder=sorder,
include_mean=include_mean,
results=results.results,
stdout=results.stdout,
)
return res | Perform automatic seasonal ARIMA order identification using x12/x13 ARIMA.
Parameters
----------
endog : array_like, pandas.Series
The series to model. It is best to use a pandas object with a
DatetimeIndex or PeriodIndex. However, you can pass an array-like
object. If your object does not have a dates index then ``start`` and
``freq`` are not optional.
maxorder : tuple
The maximum order of the regular and seasonal ARMA polynomials to
examine during the model identification. The order for the regular
polynomial must be greater than zero and no larger than 4. The
order for the seasonal polynomial may be 1 or 2.
maxdiff : tuple
The maximum orders for regular and seasonal differencing in the
automatic differencing procedure. Acceptable inputs for regular
differencing are 1 and 2. The maximum order for seasonal differencing
is 1. If ``diff`` is specified then ``maxdiff`` should be None.
Otherwise, ``diff`` will be ignored. See also ``diff``.
diff : tuple
Fixes the orders of differencing for the regular and seasonal
differencing. Regular differencing may be 0, 1, or 2. Seasonal
differencing may be 0 or 1. ``maxdiff`` must be None, otherwise
``diff`` is ignored.
exog : array_like
Exogenous variables.
log : bool or None
If None, it is automatically determined whether to log the series or
not. If False, logs are not taken. If True, logs are taken.
outlier : bool
Whether or not outliers are tested for and corrected, if detected.
trading : bool
Whether or not trading day effects are tested for.
forecast_periods : int
Number of forecasts produced. The default is None.
start : str, datetime
Must be given if ``endog`` does not have date information in its index.
Anything accepted by pandas.DatetimeIndex for the start value.
freq : str
Must be givein if ``endog`` does not have date information in its
index. Anything accepted by pandas.DatetimeIndex for the freq value.
print_stdout : bool
The stdout from X12/X13 is suppressed. To print it out, set this
to True. Default is False.
x12path : str or None
The path to x12 or x13 binary. If None, the program will attempt
to find x13as or x12a on the PATH or by looking at X13PATH or X12PATH
depending on the value of prefer_x13.
prefer_x13 : bool
If True, will look for x13as first and will fallback to the X13PATH
environmental variable. If False, will look for x12a first and will
fallback to the X12PATH environmental variable. If x12path points
to the path for the X12/X13 binary, it does nothing.
tempdir : str
The path to where temporary files are created by the function.
If None, files are created in the default temporary file location.
Returns
-------
Bunch
A bunch object containing the listed attributes.
- order : tuple
The regular order.
- sorder : tuple
The seasonal order.
- include_mean : bool
Whether to include a mean or not.
- results : str
The full results from the X12/X13 analysis.
- stdout : str
The captured stdout from the X12/X13 analysis.
Notes
-----
This works by creating a specification file, writing it to a temporary
directory, invoking X12/X13 in a subprocess, and reading the output back
in. | x13_arima_select_order | python | statsmodels/statsmodels | statsmodels/tsa/x13.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/x13.py | BSD-3-Clause |
def is_dummy(self) -> bool:
"""Flag indicating whether the values produced are dummy variables"""
return self._is_dummy | Flag indicating whether the values produced are dummy variables | is_dummy | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def in_sample(self, index: Sequence[Hashable]) -> pd.DataFrame:
"""
Produce deterministic trends for in-sample fitting.
Parameters
----------
index : index_like
An index-like object. If not an index, it is converted to an
index.
Returns
-------
DataFrame
A DataFrame containing the deterministic terms.
""" | Produce deterministic trends for in-sample fitting.
Parameters
----------
index : index_like
An index-like object. If not an index, it is converted to an
index.
Returns
-------
DataFrame
A DataFrame containing the deterministic terms. | in_sample | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def out_of_sample(
self,
steps: int,
index: Sequence[Hashable],
forecast_index: Optional[Sequence[Hashable]] = None,
) -> pd.DataFrame:
"""
Produce deterministic trends for out-of-sample forecasts
Parameters
----------
steps : int
The number of steps to forecast
index : index_like
An index-like object. If not an index, it is converted to an
index.
forecast_index : index_like
An Index or index-like object to use for the forecasts. If
provided must have steps elements.
Returns
-------
DataFrame
A DataFrame containing the deterministic terms.
""" | Produce deterministic trends for out-of-sample forecasts
Parameters
----------
steps : int
The number of steps to forecast
index : index_like
An index-like object. If not an index, it is converted to an
index.
forecast_index : index_like
An Index or index-like object to use for the forecasts. If
provided must have steps elements.
Returns
-------
DataFrame
A DataFrame containing the deterministic terms. | out_of_sample | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def __str__(self) -> str:
"""A meaningful string representation of the term""" | A meaningful string representation of the term | __str__ | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def _eq_attr(self) -> tuple[Hashable, ...]:
"""tuple of attributes that are used for equality comparison""" | tuple of attributes that are used for equality comparison | _eq_attr | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def _extend_index(
index: pd.Index,
steps: int,
forecast_index: Optional[Sequence[Hashable]] = None,
) -> pd.Index:
"""Extend the forecast index"""
if forecast_index is not None:
forecast_index = DeterministicTerm._index_like(forecast_index)
assert isinstance(forecast_index, pd.Index)
if forecast_index.shape[0] != steps:
raise ValueError(
"The number of values in forecast_index "
f"({forecast_index.shape[0]}) must match steps ({steps})."
)
return forecast_index
if isinstance(index, pd.PeriodIndex):
return pd.period_range(
index[-1] + 1, periods=steps, freq=index.freq
)
elif isinstance(index, pd.DatetimeIndex) and index.freq is not None:
next_obs = pd.date_range(index[-1], freq=index.freq, periods=2)[1]
return pd.date_range(next_obs, freq=index.freq, periods=steps)
elif isinstance(index, pd.RangeIndex):
assert isinstance(index, pd.RangeIndex)
try:
step = index.step
start = index.stop
except AttributeError:
# TODO: Remove after pandas min ver is 1.0.0+
step = index[-1] - index[-2] if len(index) > 1 else 1
start = index[-1] + step
stop = start + step * steps
return pd.RangeIndex(start, stop, step=step)
elif is_int_index(index) and np.all(np.diff(index) == 1):
idx_arr = np.arange(index[-1] + 1, index[-1] + steps + 1)
return pd.Index(idx_arr)
# default range index
import warnings
warnings.warn(
"Only PeriodIndexes, DatetimeIndexes with a frequency set, "
"RangesIndexes, and Index with a unit increment support "
"extending. The index is set will contain the position relative "
"to the data length.",
UserWarning,
stacklevel=2,
)
nobs = index.shape[0]
return pd.RangeIndex(nobs + 1, nobs + steps + 1) | Extend the forecast index | _extend_index | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def constant(self) -> bool:
"""Flag indicating that a constant is included"""
return self._constant | Flag indicating that a constant is included | constant | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def order(self) -> int:
"""Order of the time trend"""
return self._order | Order of the time trend | order | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def from_string(cls, trend: str) -> "TimeTrend":
"""
Create a TimeTrend from a string description.
Provided for compatibility with common string names.
Parameters
----------
trend : {"n", "c", "t", "ct", "ctt"}
The string representation of the time trend. The terms are:
* "n": No trend terms
* "c": A constant only
* "t": Linear time trend only
* "ct": A constant and a time trend
* "ctt": A constant, a time trend and a quadratic time trend
Returns
-------
TimeTrend
The TimeTrend instance.
"""
constant = trend.startswith("c")
order = 0
if "tt" in trend:
order = 2
elif "t" in trend:
order = 1
return cls(constant=constant, order=order) | Create a TimeTrend from a string description.
Provided for compatibility with common string names.
Parameters
----------
trend : {"n", "c", "t", "ct", "ctt"}
The string representation of the time trend. The terms are:
* "n": No trend terms
* "c": A constant only
* "t": Linear time trend only
* "ct": A constant and a time trend
* "ctt": A constant, a time trend and a quadratic time trend
Returns
-------
TimeTrend
The TimeTrend instance. | from_string | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def period(self) -> int:
"""The period of the seasonality"""
return self._period | The period of the seasonality | period | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def initial_period(self) -> int:
"""The seasonal index of the first observation"""
return self._initial_period | The seasonal index of the first observation | initial_period | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def from_index(
cls, index: Union[Sequence[Hashable], pd.DatetimeIndex, pd.PeriodIndex]
) -> "Seasonality":
"""
Construct a seasonality directly from an index using its frequency.
Parameters
----------
index : {DatetimeIndex, PeriodIndex}
An index with its frequency (`freq`) set.
Returns
-------
Seasonality
The initialized Seasonality instance.
"""
index = cls._index_like(index)
if isinstance(index, pd.PeriodIndex):
freq = index.freq
elif isinstance(index, pd.DatetimeIndex):
freq = index.freq if index.freq else index.inferred_freq
else:
raise TypeError("index must be a DatetimeIndex or PeriodIndex")
if freq is None:
raise ValueError("index must have a freq or inferred_freq set")
period = freq_to_period(freq)
return cls(period=period) | Construct a seasonality directly from an index using its frequency.
Parameters
----------
index : {DatetimeIndex, PeriodIndex}
An index with its frequency (`freq`) set.
Returns
-------
Seasonality
The initialized Seasonality instance. | from_index | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def order(self) -> int:
"""The order of the Fourier terms included"""
return self._order | The order of the Fourier terms included | order | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def period(self) -> float:
"""The period of the Fourier terms"""
return self._period | The period of the Fourier terms | period | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def freq(self) -> str:
"""The frequency of the deterministic terms"""
return self._freq.freqstr | The frequency of the deterministic terms | freq | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def freq(self) -> str:
"""The frequency of the deterministic terms"""
return self._freq.freqstr | The frequency of the deterministic terms | freq | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def period(self) -> str:
"""The full period"""
return self._period | The full period | period | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def base_period(self) -> Optional[str]:
"""The base period"""
return self._base_period | The base period | base_period | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def from_string(
cls,
freq: str,
trend: str,
base_period: Optional[Union[str, DateLike]] = None,
) -> "CalendarTimeTrend":
"""
Create a TimeTrend from a string description.
Provided for compatibility with common string names.
Parameters
----------
freq : str
A string convertible to a pandas frequency.
trend : {"n", "c", "t", "ct", "ctt"}
The string representation of the time trend. The terms are:
* "n": No trend terms
* "c": A constant only
* "t": Linear time trend only
* "ct": A constant and a time trend
* "ctt": A constant, a time trend and a quadratic time trend
base_period : {str, pd.Timestamp}, default None
The base period to use when computing the time stamps. This value
is treated as 1 and so all other time indices are defined as the
number of periods since or before this time stamp. If not
provided, defaults to pandas base period for a PeriodIndex.
Returns
-------
TimeTrend
The TimeTrend instance.
"""
constant = trend.startswith("c")
order = 0
if "tt" in trend:
order = 2
elif "t" in trend:
order = 1
return cls(freq, constant, order, base_period=base_period) | Create a TimeTrend from a string description.
Provided for compatibility with common string names.
Parameters
----------
freq : str
A string convertible to a pandas frequency.
trend : {"n", "c", "t", "ct", "ctt"}
The string representation of the time trend. The terms are:
* "n": No trend terms
* "c": A constant only
* "t": Linear time trend only
* "ct": A constant and a time trend
* "ctt": A constant, a time trend and a quadratic time trend
base_period : {str, pd.Timestamp}, default None
The base period to use when computing the time stamps. This value
is treated as 1 and so all other time indices are defined as the
number of periods since or before this time stamp. If not
provided, defaults to pandas base period for a PeriodIndex.
Returns
-------
TimeTrend
The TimeTrend instance. | from_string | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def __init__(
self,
index: Union[Sequence[Hashable], pd.Index],
*,
period: Optional[Union[float, int]] = None,
constant: bool = False,
order: int = 0,
seasonal: bool = False,
fourier: int = 0,
additional_terms: Sequence[DeterministicTerm] = (),
drop: bool = False,
):
if not isinstance(index, pd.Index):
index = pd.Index(index)
self._index = index
self._deterministic_terms: list[DeterministicTerm] = []
self._extendable = False
self._index_freq = None
self._validate_index()
period = float_like(period, "period", optional=True)
self._constant = constant = bool_like(constant, "constant")
self._order = required_int_like(order, "order")
self._seasonal = seasonal = bool_like(seasonal, "seasonal")
self._fourier = required_int_like(fourier, "fourier")
additional_terms = tuple(additional_terms)
self._cached_in_sample = None
self._drop = bool_like(drop, "drop")
self._additional_terms = additional_terms
if constant or order:
self._deterministic_terms.append(TimeTrend(constant, order))
if seasonal and fourier:
raise ValueError(
"""seasonal and fourier can be initialized through the \
constructor since these will be necessarily perfectly collinear. Instead, \
you can pass additional components using the additional_terms input."""
)
if (seasonal or fourier) and period is None:
if period is None:
self._period = period = freq_to_period(self._index_freq)
if seasonal:
period = required_int_like(period, "period")
self._deterministic_terms.append(Seasonality(period))
elif fourier:
period = float_like(period, "period")
assert period is not None
self._deterministic_terms.append(Fourier(period, order=fourier))
for term in additional_terms:
if not isinstance(term, DeterministicTerm):
raise TypeError(
"All additional terms must be instances of subsclasses "
"of DeterministicTerm"
)
if term not in self._deterministic_terms:
self._deterministic_terms.append(term)
else:
raise ValueError(
"One or more terms in additional_terms has been added "
"through the parameters of the constructor. Terms must "
"be unique."
)
self._period = period
self._retain_cols: Optional[list[Hashable]] = None | seasonal and fourier can be initialized through the \
constructor since these will be necessarily perfectly collinear. Instead, \
you can pass additional components using the additional_terms input. | __init__ | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def index(self) -> pd.Index:
"""The index of the process"""
return self._index | The index of the process | index | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def terms(self) -> list[DeterministicTerm]:
"""The deterministic terms included in the process"""
return self._deterministic_terms | The deterministic terms included in the process | terms | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def range(
self,
start: Union[IntLike, DateLike, str],
stop: Union[IntLike, DateLike, str],
) -> pd.DataFrame:
"""
Deterministic terms spanning a range of observations
Parameters
----------
start : {int, str, dt.datetime, pd.Timestamp, np.datetime64}
The first observation.
stop : {int, str, dt.datetime, pd.Timestamp, np.datetime64}
The final observation. Inclusive to match most prediction
function in statsmodels.
Returns
-------
DataFrame
A data frame of deterministic terms
"""
if not self._extendable:
raise TypeError(
"""The index in the deterministic process does not \
support extension. Only PeriodIndex, DatetimeIndex with a frequency, \
RangeIndex, and integral Indexes that start at 0 and have only unit \
differences can be extended when producing out-of-sample forecasts.
"""
)
if type(self._index) in (pd.RangeIndex,) or is_int_index(self._index):
start = required_int_like(start, "start")
stop = required_int_like(stop, "stop")
# Add 1 to ensure that the end point is inclusive
stop += 1
return self._range_from_range_index(start, stop)
if isinstance(start, (int, np.integer)):
start = self._int_to_timestamp(start, "start")
else:
start = pd.Timestamp(start)
if isinstance(stop, (int, np.integer)):
stop = self._int_to_timestamp(stop, "stop")
else:
stop = pd.Timestamp(stop)
return self._range_from_time_index(start, stop) | Deterministic terms spanning a range of observations
Parameters
----------
start : {int, str, dt.datetime, pd.Timestamp, np.datetime64}
The first observation.
stop : {int, str, dt.datetime, pd.Timestamp, np.datetime64}
The final observation. Inclusive to match most prediction
function in statsmodels.
Returns
-------
DataFrame
A data frame of deterministic terms | range | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def apply(self, index):
"""
Create an identical determinstic process with a different index
Parameters
----------
index : index_like
An index-like object. If not an index, it is converted to an
index.
Returns
-------
DeterministicProcess
The deterministic process applied to a different index
"""
return DeterministicProcess(
index,
period=self._period,
constant=self._constant,
order=self._order,
seasonal=self._seasonal,
fourier=self._fourier,
additional_terms=self._additional_terms,
drop=self._drop,
) | Create an identical determinstic process with a different index
Parameters
----------
index : index_like
An index-like object. If not an index, it is converted to an
index.
Returns
-------
DeterministicProcess
The deterministic process applied to a different index | apply | python | statsmodels/statsmodels | statsmodels/tsa/deterministic.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/deterministic.py | BSD-3-Clause |
def varfilter(x, a):
'''apply an autoregressive filter to a series x
Warning: I just found out that convolve does not work as I
thought, this likely does not work correctly for
nvars>3
x can be 2d, a can be 1d, 2d, or 3d
Parameters
----------
x : array_like
data array, 1d or 2d, if 2d then observations in rows
a : array_like
autoregressive filter coefficients, ar lag polynomial
see Notes
Returns
-------
y : ndarray, 2d
filtered array, number of columns determined by x and a
Notes
-----
In general form this uses the linear filter ::
y = a(L)x
where
x : nobs, nvars
a : nlags, nvars, npoly
Depending on the shape and dimension of a this uses different
Lag polynomial arrays
case 1 : a is 1d or (nlags,1)
one lag polynomial is applied to all variables (columns of x)
case 2 : a is 2d, (nlags, nvars)
each series is independently filtered with its own
lag polynomial, uses loop over nvar
case 3 : a is 3d, (nlags, nvars, npoly)
the ith column of the output array is given by the linear filter
defined by the 2d array a[:,:,i], i.e. ::
y[:,i] = a(.,.,i)(L) * x
y[t,i] = sum_p sum_j a(p,j,i)*x(t-p,j)
for p = 0,...nlags-1, j = 0,...nvars-1,
for all t >= nlags
Note: maybe convert to axis=1, Not
TODO: initial conditions
'''
x = np.asarray(x)
a = np.asarray(a)
if x.ndim == 1:
x = x[:,None]
if x.ndim > 2:
raise ValueError('x array has to be 1d or 2d')
nvar = x.shape[1]
nlags = a.shape[0]
ntrim = nlags//2
# for x is 2d with ncols >1
if a.ndim == 1:
# case: identical ar filter (lag polynomial)
return signal.convolve(x, a[:,None], mode='valid')
# alternative:
#return signal.lfilter(a,[1],x.astype(float),axis=0)
elif a.ndim == 2:
if min(a.shape) == 1:
# case: identical ar filter (lag polynomial)
return signal.convolve(x, a, mode='valid')
# case: independent ar
#(a bit like recserar in gauss, but no x yet)
#(no, reserar is inverse filter)
result = np.zeros((x.shape[0]-nlags+1, nvar))
for i in range(nvar):
# could also use np.convolve, but easier for swiching to fft
result[:,i] = signal.convolve(x[:,i], a[:,i], mode='valid')
return result
elif a.ndim == 3:
# case: vector autoregressive with lag matrices
# Note: we must have shape[1] == shape[2] == nvar
yf = signal.convolve(x[:,:,None], a)
yvalid = yf[ntrim:-ntrim, yf.shape[1]//2,:]
return yvalid | apply an autoregressive filter to a series x
Warning: I just found out that convolve does not work as I
thought, this likely does not work correctly for
nvars>3
x can be 2d, a can be 1d, 2d, or 3d
Parameters
----------
x : array_like
data array, 1d or 2d, if 2d then observations in rows
a : array_like
autoregressive filter coefficients, ar lag polynomial
see Notes
Returns
-------
y : ndarray, 2d
filtered array, number of columns determined by x and a
Notes
-----
In general form this uses the linear filter ::
y = a(L)x
where
x : nobs, nvars
a : nlags, nvars, npoly
Depending on the shape and dimension of a this uses different
Lag polynomial arrays
case 1 : a is 1d or (nlags,1)
one lag polynomial is applied to all variables (columns of x)
case 2 : a is 2d, (nlags, nvars)
each series is independently filtered with its own
lag polynomial, uses loop over nvar
case 3 : a is 3d, (nlags, nvars, npoly)
the ith column of the output array is given by the linear filter
defined by the 2d array a[:,:,i], i.e. ::
y[:,i] = a(.,.,i)(L) * x
y[t,i] = sum_p sum_j a(p,j,i)*x(t-p,j)
for p = 0,...nlags-1, j = 0,...nvars-1,
for all t >= nlags
Note: maybe convert to axis=1, Not
TODO: initial conditions | varfilter | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def varinversefilter(ar, nobs, version=1):
'''creates inverse ar filter (MA representation) recursively
The VAR lag polynomial is defined by ::
ar(L) y_t = u_t or
y_t = -ar_{-1}(L) y_{t-1} + u_t
the returned lagpolynomial is arinv(L)=ar^{-1}(L) in ::
y_t = arinv(L) u_t
Parameters
----------
ar : ndarray, (nlags,nvars,nvars)
matrix lagpolynomial, currently no exog
first row should be identity
Returns
-------
arinv : ndarray, (nobs,nvars,nvars)
Notes
-----
'''
nlags, nvars, nvarsex = ar.shape
if nvars != nvarsex:
print('exogenous variables not implemented not tested')
arinv = np.zeros((nobs+1, nvarsex, nvars))
arinv[0,:,:] = ar[0]
arinv[1:nlags,:,:] = -ar[1:]
if version == 1:
for i in range(2,nobs+1):
tmp = np.zeros((nvars,nvars))
for p in range(1,nlags):
tmp += np.dot(-ar[p],arinv[i-p,:,:])
arinv[i,:,:] = tmp
if version == 0:
for i in range(nlags+1,nobs+1):
print(ar[1:].shape, arinv[i-1:i-nlags:-1,:,:].shape)
#arinv[i,:,:] = np.dot(-ar[1:],arinv[i-1:i-nlags:-1,:,:])
#print(np.tensordot(-ar[1:],arinv[i-1:i-nlags:-1,:,:],axes=([2],[1])).shape
#arinv[i,:,:] = np.tensordot(-ar[1:],arinv[i-1:i-nlags:-1,:,:],axes=([2],[1]))
raise NotImplementedError('waiting for generalized ufuncs or something')
return arinv | creates inverse ar filter (MA representation) recursively
The VAR lag polynomial is defined by ::
ar(L) y_t = u_t or
y_t = -ar_{-1}(L) y_{t-1} + u_t
the returned lagpolynomial is arinv(L)=ar^{-1}(L) in ::
y_t = arinv(L) u_t
Parameters
----------
ar : ndarray, (nlags,nvars,nvars)
matrix lagpolynomial, currently no exog
first row should be identity
Returns
-------
arinv : ndarray, (nobs,nvars,nvars)
Notes
----- | varinversefilter | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def vargenerate(ar, u, initvalues=None):
'''generate an VAR process with errors u
similar to gauss
uses loop
Parameters
----------
ar : array (nlags,nvars,nvars)
matrix lagpolynomial
u : array (nobs,nvars)
exogenous variable, error term for VAR
Returns
-------
sar : array (1+nobs,nvars)
sample of var process, inverse filtered u
does not trim initial condition y_0 = 0
Examples
--------
# generate random sample of VAR
nobs, nvars = 10, 2
u = numpy.random.randn(nobs,nvars)
a21 = np.array([[[ 1. , 0. ],
[ 0. , 1. ]],
[[-0.8, 0. ],
[ 0., -0.6]]])
vargenerate(a21,u)
# Impulse Response to an initial shock to the first variable
imp = np.zeros((nobs, nvars))
imp[0,0] = 1
vargenerate(a21,imp)
'''
nlags, nvars, nvarsex = ar.shape
nlagsm1 = nlags - 1
nobs = u.shape[0]
if nvars != nvarsex:
print('exogenous variables not implemented not tested')
if u.shape[1] != nvars:
raise ValueError('u needs to have nvars columns')
if initvalues is None:
sar = np.zeros((nobs+nlagsm1, nvars))
start = nlagsm1
else:
start = max(nlagsm1, initvalues.shape[0])
sar = np.zeros((nobs+start, nvars))
sar[start-initvalues.shape[0]:start] = initvalues
#sar[nlagsm1:] = u
sar[start:] = u
#if version == 1:
for i in range(start,start+nobs):
for p in range(1,nlags):
sar[i] += np.dot(sar[i-p,:],-ar[p])
return sar | generate an VAR process with errors u
similar to gauss
uses loop
Parameters
----------
ar : array (nlags,nvars,nvars)
matrix lagpolynomial
u : array (nobs,nvars)
exogenous variable, error term for VAR
Returns
-------
sar : array (1+nobs,nvars)
sample of var process, inverse filtered u
does not trim initial condition y_0 = 0
Examples
--------
# generate random sample of VAR
nobs, nvars = 10, 2
u = numpy.random.randn(nobs,nvars)
a21 = np.array([[[ 1. , 0. ],
[ 0. , 1. ]],
[[-0.8, 0. ],
[ 0., -0.6]]])
vargenerate(a21,u)
# Impulse Response to an initial shock to the first variable
imp = np.zeros((nobs, nvars))
imp[0,0] = 1
vargenerate(a21,imp) | vargenerate | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def padone(x, front=0, back=0, axis=0, fillvalue=0):
'''pad with zeros along one axis, currently only axis=0
can be used sequentially to pad several axis
Examples
--------
>>> padone(np.ones((2,3)),1,3,axis=1)
array([[ 0., 1., 1., 1., 0., 0., 0.],
[ 0., 1., 1., 1., 0., 0., 0.]])
>>> padone(np.ones((2,3)),1,1, fillvalue=np.nan)
array([[ NaN, NaN, NaN],
[ 1., 1., 1.],
[ 1., 1., 1.],
[ NaN, NaN, NaN]])
'''
#primitive version
shape = np.array(x.shape)
shape[axis] += (front + back)
shapearr = np.array(x.shape)
out = np.empty(shape)
out.fill(fillvalue)
startind = np.zeros(x.ndim)
startind[axis] = front
endind = startind + shapearr
myslice = [slice(startind[k], endind[k]) for k in range(len(endind))]
#print(myslice
#print(out.shape
#print(out[tuple(myslice)].shape
out[tuple(myslice)] = x
return out | pad with zeros along one axis, currently only axis=0
can be used sequentially to pad several axis
Examples
--------
>>> padone(np.ones((2,3)),1,3,axis=1)
array([[ 0., 1., 1., 1., 0., 0., 0.],
[ 0., 1., 1., 1., 0., 0., 0.]])
>>> padone(np.ones((2,3)),1,1, fillvalue=np.nan)
array([[ NaN, NaN, NaN],
[ 1., 1., 1.],
[ 1., 1., 1.],
[ NaN, NaN, NaN]]) | padone | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def trimone(x, front=0, back=0, axis=0):
'''trim number of array elements along one axis
Examples
--------
>>> xp = padone(np.ones((2,3)),1,3,axis=1)
>>> xp
array([[ 0., 1., 1., 1., 0., 0., 0.],
[ 0., 1., 1., 1., 0., 0., 0.]])
>>> trimone(xp,1,3,1)
array([[ 1., 1., 1.],
[ 1., 1., 1.]])
'''
shape = np.array(x.shape)
shape[axis] -= (front + back)
#print(shape, front, back
startind = np.zeros(x.ndim)
startind[axis] = front
endind = startind + shape
myslice = [slice(startind[k], endind[k]) for k in range(len(endind))]
#print(myslice
#print(shape, endind
#print(x[tuple(myslice)].shape
return x[tuple(myslice)] | trim number of array elements along one axis
Examples
--------
>>> xp = padone(np.ones((2,3)),1,3,axis=1)
>>> xp
array([[ 0., 1., 1., 1., 0., 0., 0.],
[ 0., 1., 1., 1., 0., 0., 0.]])
>>> trimone(xp,1,3,1)
array([[ 1., 1., 1.],
[ 1., 1., 1.]]) | trimone | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def ar2full(ar):
'''make reduced lagpolynomial into a right side lagpoly array
'''
nlags, nvar,nvarex = ar.shape
return np.r_[np.eye(nvar,nvarex)[None,:,:],-ar] | make reduced lagpolynomial into a right side lagpoly array | ar2full | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def ar2lhs(ar):
'''convert full (rhs) lagpolynomial into a reduced, left side lagpoly array
this is mainly a reminder about the definition
'''
return -ar[1:] | convert full (rhs) lagpolynomial into a reduced, left side lagpoly array
this is mainly a reminder about the definition | ar2lhs | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def fit(self, nlags):
'''estimate parameters using ols
Parameters
----------
nlags : int
number of lags to include in regression, same for all variables
Returns
-------
None, but attaches
arhat : array (nlags, nvar, nvar)
full lag polynomial array
arlhs : array (nlags-1, nvar, nvar)
reduced lag polynomial for left hand side
other statistics as returned by linalg.lstsq : need to be completed
This currently assumes all parameters are estimated without restrictions.
In this case SUR is identical to OLS
estimation results are attached to the class instance
'''
self.nlags = nlags # without current period
nvars = self.nvars
#TODO: ar2s looks like a module variable, bug?
#lmat = lagmat(ar2s, nlags, trim='both', original='in')
lmat = lagmat(self.y, nlags, trim='both', original='in')
self.yred = lmat[:,:nvars]
self.xred = lmat[:,nvars:]
res = np.linalg.lstsq(self.xred, self.yred, rcond=-1)
self.estresults = res
self.arlhs = res[0].reshape(nlags, nvars, nvars)
self.arhat = ar2full(self.arlhs)
self.rss = res[1]
self.xredrank = res[2] | estimate parameters using ols
Parameters
----------
nlags : int
number of lags to include in regression, same for all variables
Returns
-------
None, but attaches
arhat : array (nlags, nvar, nvar)
full lag polynomial array
arlhs : array (nlags-1, nvar, nvar)
reduced lag polynomial for left hand side
other statistics as returned by linalg.lstsq : need to be completed
This currently assumes all parameters are estimated without restrictions.
In this case SUR is identical to OLS
estimation results are attached to the class instance | fit | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def predict(self):
'''calculate estimated timeseries (yhat) for sample
'''
if not hasattr(self, 'yhat'):
self.yhat = varfilter(self.y, self.arhat)
return self.yhat | calculate estimated timeseries (yhat) for sample | predict | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def covmat(self):
''' covariance matrix of estimate
# not sure it's correct, need to check orientation everywhere
# looks ok, display needs getting used to
>>> v.rss[None,None,:]*np.linalg.inv(np.dot(v.xred.T,v.xred))[:,:,None]
array([[[ 0.37247445, 0.32210609],
[ 0.1002642 , 0.08670584]],
[[ 0.1002642 , 0.08670584],
[ 0.45903637, 0.39696255]]])
>>>
>>> v.rss[0]*np.linalg.inv(np.dot(v.xred.T,v.xred))
array([[ 0.37247445, 0.1002642 ],
[ 0.1002642 , 0.45903637]])
>>> v.rss[1]*np.linalg.inv(np.dot(v.xred.T,v.xred))
array([[ 0.32210609, 0.08670584],
[ 0.08670584, 0.39696255]])
'''
#check if orientation is same as self.arhat
self.paramcov = (self.rss[None,None,:] *
np.linalg.inv(np.dot(self.xred.T, self.xred))[:,:,None]) | covariance matrix of estimate
# not sure it's correct, need to check orientation everywhere
# looks ok, display needs getting used to
>>> v.rss[None,None,:]*np.linalg.inv(np.dot(v.xred.T,v.xred))[:,:,None]
array([[[ 0.37247445, 0.32210609],
[ 0.1002642 , 0.08670584]],
[[ 0.1002642 , 0.08670584],
[ 0.45903637, 0.39696255]]])
>>>
>>> v.rss[0]*np.linalg.inv(np.dot(v.xred.T,v.xred))
array([[ 0.37247445, 0.1002642 ],
[ 0.1002642 , 0.45903637]])
>>> v.rss[1]*np.linalg.inv(np.dot(v.xred.T,v.xred))
array([[ 0.32210609, 0.08670584],
[ 0.08670584, 0.39696255]]) | covmat | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def forecast(self, horiz=1, u=None):
'''calculates forcast for horiz number of periods at end of sample
Parameters
----------
horiz : int (optional, default=1)
forecast horizon
u : array (horiz, nvars)
error term for forecast periods. If None, then u is zero.
Returns
-------
yforecast : array (nobs+horiz, nvars)
this includes the sample and the forecasts
'''
if u is None:
u = np.zeros((horiz, self.nvars))
return vargenerate(self.arhat, u, initvalues=self.y) | calculates forcast for horiz number of periods at end of sample
Parameters
----------
horiz : int (optional, default=1)
forecast horizon
u : array (horiz, nvars)
error term for forecast periods. If None, then u is zero.
Returns
-------
yforecast : array (nobs+horiz, nvars)
this includes the sample and the forecasts | forecast | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def vstack(self, a=None, name='ar'):
'''stack lagpolynomial vertically in 2d array
'''
if a is not None:
a = a
elif name == 'ar':
a = self.ar
elif name == 'ma':
a = self.ma
else:
raise ValueError('no array or name given')
return a.reshape(-1, self.nvarall) | stack lagpolynomial vertically in 2d array | vstack | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def hstack(self, a=None, name='ar'):
'''stack lagpolynomial horizontally in 2d array
'''
if a is not None:
a = a
elif name == 'ar':
a = self.ar
elif name == 'ma':
a = self.ma
else:
raise ValueError('no array or name given')
return a.swapaxes(1,2).reshape(-1, self.nvarall).T | stack lagpolynomial horizontally in 2d array | hstack | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def stacksquare(self, a=None, name='ar', orientation='vertical'):
'''stack lagpolynomial vertically in 2d square array with eye
'''
if a is not None:
a = a
elif name == 'ar':
a = self.ar
elif name == 'ma':
a = self.ma
else:
raise ValueError('no array or name given')
astacked = a.reshape(-1, self.nvarall)
lenpk, nvars = astacked.shape #[0]
amat = np.eye(lenpk, k=nvars)
amat[:,:nvars] = astacked
return amat | stack lagpolynomial vertically in 2d square array with eye | stacksquare | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def vstackarma_minus1(self):
'''stack ar and lagpolynomial vertically in 2d array
'''
a = np.concatenate((self.ar[1:], self.ma[1:]),0)
return a.reshape(-1, self.nvarall) | stack ar and lagpolynomial vertically in 2d array | vstackarma_minus1 | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def hstackarma_minus1(self):
'''stack ar and lagpolynomial vertically in 2d array
this is the Kalman Filter representation, I think
'''
a = np.concatenate((self.ar[1:], self.ma[1:]),0)
return a.swapaxes(1,2).reshape(-1, self.nvarall) | stack ar and lagpolynomial vertically in 2d array
this is the Kalman Filter representation, I think | hstackarma_minus1 | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def getisstationary(self, a=None):
'''check whether the auto-regressive lag-polynomial is stationary
Returns
-------
isstationary : bool
*attaches*
areigenvalues : complex array
eigenvalues sorted by absolute value
References
----------
formula taken from NAG manual
'''
if a is not None:
a = a
else:
if self.isstructured:
a = -self.reduceform(self.ar)[1:]
else:
a = -self.ar[1:]
amat = self.stacksquare(a)
ev = np.sort(np.linalg.eigvals(amat))[::-1]
self.areigenvalues = ev
return (np.abs(ev) < 1).all() | check whether the auto-regressive lag-polynomial is stationary
Returns
-------
isstationary : bool
*attaches*
areigenvalues : complex array
eigenvalues sorted by absolute value
References
----------
formula taken from NAG manual | getisstationary | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def getisinvertible(self, a=None):
'''check whether the auto-regressive lag-polynomial is stationary
Returns
-------
isinvertible : bool
*attaches*
maeigenvalues : complex array
eigenvalues sorted by absolute value
References
----------
formula taken from NAG manual
'''
if a is not None:
a = a
else:
if self.isindependent:
a = self.reduceform(self.ma)[1:]
else:
a = self.ma[1:]
if a.shape[0] == 0:
# no ma lags
self.maeigenvalues = np.array([], np.complex)
return True
amat = self.stacksquare(a)
ev = np.sort(np.linalg.eigvals(amat))[::-1]
self.maeigenvalues = ev
return (np.abs(ev) < 1).all() | check whether the auto-regressive lag-polynomial is stationary
Returns
-------
isinvertible : bool
*attaches*
maeigenvalues : complex array
eigenvalues sorted by absolute value
References
----------
formula taken from NAG manual | getisinvertible | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def reduceform(self, apoly):
'''
this assumes no exog, todo
'''
if apoly.ndim != 3:
raise ValueError('apoly needs to be 3d')
nlags, nvarsex, nvars = apoly.shape
a = np.empty_like(apoly)
try:
a0inv = np.linalg.inv(a[0,:nvars, :])
except np.linalg.LinAlgError:
raise ValueError('matrix not invertible',
'ask for implementation of pinv')
for lag in range(nlags):
a[lag] = np.dot(a0inv, apoly[lag])
return a | this assumes no exog, todo | reduceform | python | statsmodels/statsmodels | statsmodels/tsa/varma_process.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/varma_process.py | BSD-3-Clause |
def sumofsq(x: np.ndarray, axis: int = 0) -> float | np.ndarray:
"""Helper function to calculate sum of squares along first axis"""
return np.sum(x**2, axis=axis) | Helper function to calculate sum of squares along first axis | sumofsq | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def _get_period(data: pd.DatetimeIndex | pd.PeriodIndex, index_freq) -> int:
"""Shared helper to get period from frequenc or raise"""
if data.freq:
return freq_to_period(index_freq)
raise ValueError(
"freq cannot be inferred from endog and model includes seasonal "
"terms. The number of periods must be explicitly set when the "
"endog's index does not contain a frequency."
) | Shared helper to get period from frequenc or raise | _get_period | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def ar_lags(self) -> list[int] | None:
"""The autoregressive lags included in the model"""
lags = list(self._lags)
return None if not lags else lags | The autoregressive lags included in the model | ar_lags | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def hold_back(self) -> int | None:
"""The number of initial obs. excluded from the estimation sample."""
return self._hold_back | The number of initial obs. excluded from the estimation sample. | hold_back | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def trend(self) -> Literal["n", "c", "ct", "ctt"]:
"""The trend used in the model."""
return self._trend | The trend used in the model. | trend | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def seasonal(self) -> bool:
"""Flag indicating that the model contains a seasonal component."""
return self._seasonal | Flag indicating that the model contains a seasonal component. | seasonal | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def deterministic(self) -> DeterministicProcess | None:
"""The deterministic used to construct the model"""
return self._deterministics if self._user_deterministic else None | The deterministic used to construct the model | deterministic | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def period(self) -> int | None:
"""The period of the seasonal component."""
return self._period | The period of the seasonal component. | period | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def df_model(self) -> int:
"""The model degrees of freedom."""
return self._x.shape[1] | The model degrees of freedom. | df_model | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def exog_names(self) -> list[str] | None:
"""Names of exogenous variables included in model"""
return self._exog_names | Names of exogenous variables included in model | exog_names | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def initialize(self) -> None:
"""Initialize the model (no-op)."""
pass | Initialize the model (no-op). | initialize | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def fit(
self,
cov_type: str = "nonrobust",
cov_kwds: dict[str, Any] | None = None,
use_t: bool = False,
) -> AutoRegResultsWrapper:
"""
Estimate the model parameters.
Parameters
----------
cov_type : str
The covariance estimator to use. The most common choices are listed
below. Supports all covariance estimators that are available
in ``OLS.fit``.
* 'nonrobust' - The class OLS covariance estimator that assumes
homoskedasticity.
* 'HC0', 'HC1', 'HC2', 'HC3' - Variants of White's
(or Eiker-Huber-White) covariance estimator. `HC0` is the
standard implementation. The other make corrections to improve
the finite sample performance of the heteroskedasticity robust
covariance estimator.
* 'HAC' - Heteroskedasticity-autocorrelation robust covariance
estimation. Supports cov_kwds.
- `maxlags` integer (required) : number of lags to use.
- `kernel` callable or str (optional) : kernel
currently available kernels are ['bartlett', 'uniform'],
default is Bartlett.
- `use_correction` bool (optional) : If true, use small sample
correction.
cov_kwds : dict, optional
A dictionary of keyword arguments to pass to the covariance
estimator. `nonrobust` and `HC#` do not support cov_kwds.
use_t : bool, optional
A flag indicating that inference should use the Student's t
distribution that accounts for model degree of freedom. If False,
uses the normal distribution. If None, defers the choice to
the cov_type. It also removes degree of freedom corrections from
the covariance estimator when cov_type is 'nonrobust'.
Returns
-------
AutoRegResults
Estimation results.
See Also
--------
statsmodels.regression.linear_model.OLS
Ordinary Least Squares estimation.
statsmodels.regression.linear_model.RegressionResults
See ``get_robustcov_results`` for a detailed list of available
covariance estimators and options.
Notes
-----
Use ``OLS`` to estimate model parameters and to estimate parameter
covariance.
"""
# TODO: Determine correction for degree-of-freedom
# Special case parameterless model
if self._x.shape[1] == 0:
return AutoRegResultsWrapper(
AutoRegResults(self, np.empty(0), np.empty((0, 0)))
)
ols_mod = OLS(self._y, self._x)
ols_res = ols_mod.fit(
cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t
)
cov_params = ols_res.cov_params()
use_t = ols_res.use_t
if cov_type == "nonrobust" and not use_t:
nobs = self._y.shape[0]
k = self._x.shape[1]
scale = nobs / (nobs - k)
cov_params /= scale
res = AutoRegResults(
self,
ols_res.params,
cov_params,
ols_res.normalized_cov_params,
use_t=use_t,
)
return AutoRegResultsWrapper(res) | Estimate the model parameters.
Parameters
----------
cov_type : str
The covariance estimator to use. The most common choices are listed
below. Supports all covariance estimators that are available
in ``OLS.fit``.
* 'nonrobust' - The class OLS covariance estimator that assumes
homoskedasticity.
* 'HC0', 'HC1', 'HC2', 'HC3' - Variants of White's
(or Eiker-Huber-White) covariance estimator. `HC0` is the
standard implementation. The other make corrections to improve
the finite sample performance of the heteroskedasticity robust
covariance estimator.
* 'HAC' - Heteroskedasticity-autocorrelation robust covariance
estimation. Supports cov_kwds.
- `maxlags` integer (required) : number of lags to use.
- `kernel` callable or str (optional) : kernel
currently available kernels are ['bartlett', 'uniform'],
default is Bartlett.
- `use_correction` bool (optional) : If true, use small sample
correction.
cov_kwds : dict, optional
A dictionary of keyword arguments to pass to the covariance
estimator. `nonrobust` and `HC#` do not support cov_kwds.
use_t : bool, optional
A flag indicating that inference should use the Student's t
distribution that accounts for model degree of freedom. If False,
uses the normal distribution. If None, defers the choice to
the cov_type. It also removes degree of freedom corrections from
the covariance estimator when cov_type is 'nonrobust'.
Returns
-------
AutoRegResults
Estimation results.
See Also
--------
statsmodels.regression.linear_model.OLS
Ordinary Least Squares estimation.
statsmodels.regression.linear_model.RegressionResults
See ``get_robustcov_results`` for a detailed list of available
covariance estimators and options.
Notes
-----
Use ``OLS`` to estimate model parameters and to estimate parameter
covariance. | fit | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def loglike(self, params: ArrayLike) -> float:
"""
Log-likelihood of model.
Parameters
----------
params : ndarray
The model parameters used to compute the log-likelihood.
Returns
-------
float
The log-likelihood value.
"""
nobs = self.nobs
resid = self._resid(params)
ssr = resid @ resid
llf = -(nobs / 2) * (np.log(2 * np.pi) + np.log(ssr / nobs) + 1)
return llf | Log-likelihood of model.
Parameters
----------
params : ndarray
The model parameters used to compute the log-likelihood.
Returns
-------
float
The log-likelihood value. | loglike | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def score(self, params: ArrayLike) -> np.ndarray:
"""
Score vector of model.
The gradient of logL with respect to each parameter.
Parameters
----------
params : ndarray
The parameters to use when evaluating the Hessian.
Returns
-------
ndarray
The score vector evaluated at the parameters.
"""
resid = self._resid(params)
return self._x.T @ resid | Score vector of model.
The gradient of logL with respect to each parameter.
Parameters
----------
params : ndarray
The parameters to use when evaluating the Hessian.
Returns
-------
ndarray
The score vector evaluated at the parameters. | score | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def information(self, params: ArrayLike) -> np.ndarray:
"""
Fisher information matrix of model.
Returns -1 * Hessian of the log-likelihood evaluated at params.
Parameters
----------
params : ndarray
The model parameters.
Returns
-------
ndarray
The information matrix.
"""
resid = self._resid(params)
sigma2 = resid @ resid / self.nobs
return (self._x.T @ self._x) * (1 / sigma2) | Fisher information matrix of model.
Returns -1 * Hessian of the log-likelihood evaluated at params.
Parameters
----------
params : ndarray
The model parameters.
Returns
-------
ndarray
The information matrix. | information | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def hessian(self, params: ArrayLike) -> np.ndarray:
"""
The Hessian matrix of the model.
Parameters
----------
params : ndarray
The parameters to use when evaluating the Hessian.
Returns
-------
ndarray
The hessian evaluated at the parameters.
"""
return -self.information(params) | The Hessian matrix of the model.
Parameters
----------
params : ndarray
The parameters to use when evaluating the Hessian.
Returns
-------
ndarray
The hessian evaluated at the parameters. | hessian | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def _dynamic_predict(
self,
params: ArrayLike,
start: int,
end: int,
dynamic: int,
num_oos: int,
exog: Float64Array | None,
exog_oos: Float64Array | None,
) -> pd.Series:
"""
:param params:
:param start:
:param end:
:param dynamic:
:param num_oos:
:param exog:
:param exog_oos:
:return:
"""
reg = []
hold_back = self._hold_back
adj = 0
if start < hold_back:
# Adjust start and dynamic
adj = hold_back - start
start += adj
# New offset shifts, but must remain non-negative
dynamic = max(dynamic - adj, 0)
if (start - hold_back) <= self.nobs:
# _x is missing hold_back observations, which is why
# it is shifted by this amount
is_loc = slice(start - hold_back, end + 1 - hold_back)
x = self._x[is_loc]
if exog is not None:
x = x.copy()
# Replace final columns
x[:, -exog.shape[1] :] = exog[start : end + 1]
reg.append(x)
if num_oos > 0:
reg.append(self._setup_oos_forecast(num_oos, exog_oos))
_reg = np.vstack(reg)
det_col_idx = self._x.shape[1] - len(self._lags)
det_col_idx -= 0 if self.exog is None else self.exog.shape[1]
# Simple 1-step static forecasts for dynamic observations
forecasts = np.empty(_reg.shape[0])
forecasts[:dynamic] = _reg[:dynamic] @ params
for h in range(dynamic, _reg.shape[0]):
# Fill in regressor matrix
for j, lag in enumerate(self._lags):
fcast_loc = h - lag
if fcast_loc >= dynamic:
val = forecasts[fcast_loc]
else:
# If before the start of the forecasts, use actual values
val = self.endog[fcast_loc + start]
_reg[h, det_col_idx + j] = val
forecasts[h] = np.squeeze(_reg[h : h + 1] @ params)
return self._wrap_prediction(forecasts, start, end + 1 + num_oos, adj) | :param params:
:param start:
:param end:
:param dynamic:
:param num_oos:
:param exog:
:param exog_oos:
:return: | _dynamic_predict | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def _static_predict(
self,
params: Float64Array,
start: int,
end: int,
num_oos: int,
exog: Float64Array | None,
exog_oos: Float64Array | None,
) -> pd.Series:
"""
Path for static predictions
Parameters
----------
params : ndarray
The model parameters
start : int
Index of first observation
end : int
Index of last in-sample observation. Inclusive, so start:end+1
in slice notation.
num_oos : int
Number of out-of-sample observations, so that the returned size is
num_oos + (end - start + 1).
exog : {ndarray, DataFrame}
Array containing replacement exog values
exog_oos : {ndarray, DataFrame}
Containing forecast exog values
"""
hold_back = self._hold_back
nobs = self.endog.shape[0]
x = np.empty((0, self._x.shape[1]))
# Adjust start to reflect observations lost
adj = max(0, hold_back - start)
start += adj
if start <= nobs:
# Use existing regressors
is_loc = slice(start - hold_back, end + 1 - hold_back)
x = self._x[is_loc]
if exog is not None:
exog_a = np.asarray(exog)
x = x.copy()
# Replace final columns
x[:, -exog_a.shape[1] :] = exog_a[start : end + 1]
in_sample = x @ params
if num_oos == 0: # No out of sample
return self._wrap_prediction(in_sample, start, end + 1, adj)
out_of_sample = self._static_oos_predict(params, num_oos, exog_oos)
prediction = np.hstack((in_sample, out_of_sample))
return self._wrap_prediction(prediction, start, end + 1 + num_oos, adj) | Path for static predictions
Parameters
----------
params : ndarray
The model parameters
start : int
Index of first observation
end : int
Index of last in-sample observation. Inclusive, so start:end+1
in slice notation.
num_oos : int
Number of out-of-sample observations, so that the returned size is
num_oos + (end - start + 1).
exog : {ndarray, DataFrame}
Array containing replacement exog values
exog_oos : {ndarray, DataFrame}
Containing forecast exog values | _static_predict | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def predict(
self,
params: ArrayLike,
start: int | str | datetime.datetime | pd.Timestamp | None = None,
end: int | str | datetime.datetime | pd.Timestamp | None = None,
dynamic: bool | int = False,
exog: ArrayLike2D | None = None,
exog_oos: ArrayLike2D | None = None,
) -> pd.Series:
"""
In-sample prediction and out-of-sample forecasting.
Parameters
----------
params : array_like
The fitted model parameters.
start : int, str, or datetime, optional
Zero-indexed observation number at which to start forecasting,
i.e., the first forecast is start. Can also be a date string to
parse or a datetime type. Default is the the zeroth observation.
end : int, str, or datetime, optional
Zero-indexed observation number at which to end forecasting, i.e.,
the last forecast is end. Can also be a date string to
parse or a datetime type. However, if the dates index does not
have a fixed frequency, end must be an integer index if you
want out-of-sample prediction. Default is the last observation in
the sample. Unlike standard python slices, end is inclusive so
that all the predictions [start, start+1, ..., end-1, end] are
returned.
dynamic : {bool, int, str, datetime, Timestamp}, optional
Integer offset relative to `start` at which to begin dynamic
prediction. Prior to this observation, true endogenous values
will be used for prediction; starting with this observation and
continuing through the end of prediction, forecasted endogenous
values will be used instead. Datetime-like objects are not
interpreted as offsets. They are instead used to find the index
location of `dynamic` which is then used to to compute the offset.
exog : array_like
A replacement exogenous array. Must have the same shape as the
exogenous data array used when the model was created.
exog_oos : array_like
An array containing out-of-sample values of the exogenous variable.
Must has the same number of columns as the exog used when the
model was created, and at least as many rows as the number of
out-of-sample forecasts.
Returns
-------
predictions : {ndarray, Series}
Array of out of in-sample predictions and / or out-of-sample
forecasts.
"""
params, exog, exog_oos, start, end, num_oos = self._prepare_prediction(
params, exog, exog_oos, start, end
)
if self.exog is None and (exog is not None or exog_oos is not None):
raise ValueError(
"exog and exog_oos cannot be used when the model "
"does not contains exogenous regressors."
)
elif self.exog is not None:
if exog is not None and exog.shape != self.exog.shape:
msg = (
"The shape of exog {0} must match the shape of the "
"exog variable used to create the model {1}."
)
raise ValueError(msg.format(exog.shape, self.exog.shape))
if (
exog_oos is not None
and exog_oos.shape[1] != self.exog.shape[1]
):
msg = (
"The number of columns in exog_oos ({0}) must match "
"the number of columns in the exog variable used to "
"create the model ({1})."
)
raise ValueError(
msg.format(exog_oos.shape[1], self.exog.shape[1])
)
if num_oos > 0 and exog_oos is None:
raise ValueError(
"exog_oos must be provided when producing "
"out-of-sample forecasts."
)
elif exog_oos is not None and num_oos > exog_oos.shape[0]:
msg = (
"start and end indicate that {0} out-of-sample "
"predictions must be computed. exog_oos has {1} rows "
"but must have at least {0}."
)
raise ValueError(msg.format(num_oos, exog_oos.shape[0]))
if (isinstance(dynamic, bool) and not dynamic) or self._maxlag == 0:
# If model has no lags, static and dynamic are identical
return self._static_predict(
params, start, end, num_oos, exog, exog_oos
)
dynamic = self._parse_dynamic(dynamic, start)
return self._dynamic_predict(
params, start, end, dynamic, num_oos, exog, exog_oos
) | In-sample prediction and out-of-sample forecasting.
Parameters
----------
params : array_like
The fitted model parameters.
start : int, str, or datetime, optional
Zero-indexed observation number at which to start forecasting,
i.e., the first forecast is start. Can also be a date string to
parse or a datetime type. Default is the the zeroth observation.
end : int, str, or datetime, optional
Zero-indexed observation number at which to end forecasting, i.e.,
the last forecast is end. Can also be a date string to
parse or a datetime type. However, if the dates index does not
have a fixed frequency, end must be an integer index if you
want out-of-sample prediction. Default is the last observation in
the sample. Unlike standard python slices, end is inclusive so
that all the predictions [start, start+1, ..., end-1, end] are
returned.
dynamic : {bool, int, str, datetime, Timestamp}, optional
Integer offset relative to `start` at which to begin dynamic
prediction. Prior to this observation, true endogenous values
will be used for prediction; starting with this observation and
continuing through the end of prediction, forecasted endogenous
values will be used instead. Datetime-like objects are not
interpreted as offsets. They are instead used to find the index
location of `dynamic` which is then used to to compute the offset.
exog : array_like
A replacement exogenous array. Must have the same shape as the
exogenous data array used when the model was created.
exog_oos : array_like
An array containing out-of-sample values of the exogenous variable.
Must has the same number of columns as the exog used when the
model was created, and at least as many rows as the number of
out-of-sample forecasts.
Returns
-------
predictions : {ndarray, Series}
Array of out of in-sample predictions and / or out-of-sample
forecasts. | predict | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def initialize(self, model, params, **kwargs):
"""
Initialize (possibly re-initialize) a Results instance.
Parameters
----------
model : Model
The model instance.
params : ndarray
The model parameters.
**kwargs
Any additional keyword arguments required to initialize the model.
"""
self._params = params
self.model = model | Initialize (possibly re-initialize) a Results instance.
Parameters
----------
model : Model
The model instance.
params : ndarray
The model parameters.
**kwargs
Any additional keyword arguments required to initialize the model. | initialize | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def ar_lags(self):
"""The autoregressive lags included in the model"""
return self._ar_lags | The autoregressive lags included in the model | ar_lags | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def params(self):
"""The estimated parameters."""
return self._params | The estimated parameters. | params | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def df_model(self):
"""The degrees of freedom consumed by the model."""
return self._df_model | The degrees of freedom consumed by the model. | df_model | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def df_resid(self):
"""The remaining degrees of freedom in the residuals."""
return self.nobs - self._df_model | The remaining degrees of freedom in the residuals. | df_resid | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def nobs(self):
"""
The number of observations after adjusting for losses due to lags.
"""
return self._nobs | The number of observations after adjusting for losses due to lags. | nobs | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def bse(self): # allow user to specify?
"""
The standard errors of the estimated parameters.
If `method` is 'cmle', then the standard errors that are returned are
the OLS standard errors of the coefficients. If the `method` is 'mle'
then they are computed using the numerical Hessian.
"""
return np.sqrt(np.diag(self.cov_params())) | The standard errors of the estimated parameters.
If `method` is 'cmle', then the standard errors that are returned are
the OLS standard errors of the coefficients. If the `method` is 'mle'
then they are computed using the numerical Hessian. | bse | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def resid(self):
"""
The residuals of the model.
"""
model = self.model
endog = model.endog.squeeze()
return endog[self._hold_back :] - self.fittedvalues | The residuals of the model. | resid | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def _lag_repr(self):
"""Returns poly repr of an AR, (1 -phi1 L -phi2 L^2-...)"""
ar_lags = self._ar_lags if self._ar_lags is not None else []
k_ar = len(ar_lags)
ar_params = np.zeros(self._max_lag + 1)
ar_params[0] = 1
df_model = self._df_model
exog = self.model.exog
k_exog = exog.shape[1] if exog is not None else 0
params = self._params[df_model - k_ar - k_exog : df_model - k_exog]
for i, lag in enumerate(ar_lags):
ar_params[lag] = -params[i]
return ar_params | Returns poly repr of an AR, (1 -phi1 L -phi2 L^2-...) | _lag_repr | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def roots(self):
"""
The roots of the AR process.
The roots are the solution to
(1 - arparams[0]*z - arparams[1]*z**2 -...- arparams[p-1]*z**k_ar) = 0.
Stability requires that the roots in modulus lie outside the unit
circle.
"""
# TODO: Specific to AR
lag_repr = self._lag_repr()
if lag_repr.shape[0] == 1:
return np.empty(0)
return np.roots(lag_repr) ** -1 | The roots of the AR process.
The roots are the solution to
(1 - arparams[0]*z - arparams[1]*z**2 -...- arparams[p-1]*z**k_ar) = 0.
Stability requires that the roots in modulus lie outside the unit
circle. | roots | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
def fittedvalues(self):
"""
The in-sample predicted values of the fitted AR model.
The `k_ar` initial values are computed via the Kalman Filter if the
model is fit by `mle`.
"""
return self.model.predict(self.params)[self._hold_back :] | The in-sample predicted values of the fitted AR model.
The `k_ar` initial values are computed via the Kalman Filter if the
model is fit by `mle`. | fittedvalues | python | statsmodels/statsmodels | statsmodels/tsa/ar_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/ar_model.py | BSD-3-Clause |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.