code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def agent_interfaces(self) -> Dict[str, AgentInterface]: """A list of all agent to agent interface mappings.""" return self._agent_interfaces
A list of all agent to agent interface mappings.
agent_interfaces
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def agent_interface_for_agent_id(self, agent_id: str) -> AgentInterface: """Get the agent interface of a specific agent.""" return self._agent_interfaces[agent_id]
Get the agent interface of a specific agent.
agent_interface_for_agent_id
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def pending_agent_ids(self) -> Set[str]: """The IDs of agents that are waiting to enter the simulation""" return self._pending_agent_ids
The IDs of agents that are waiting to enter the simulation
pending_agent_ids
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def pending_social_agent_ids(self) -> Set[str]: """The IDs of social agents that are waiting to enter the simulation""" return self._pending_social_agent_ids
The IDs of social agents that are waiting to enter the simulation
pending_social_agent_ids
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def active_agents(self) -> Set[str]: """A list of all active agents in the simulation (agents that have a vehicle.)""" return self.agent_ids - self.pending_agent_ids
A list of all active agents in the simulation (agents that have a vehicle.)
active_agents
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def shadowing_agent_ids(self) -> Set[str]: """Get all agents that currently observe, but not control, a vehicle.""" return self._vehicle_index.shadower_ids()
Get all agents that currently observe, but not control, a vehicle.
shadowing_agent_ids
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def is_ego(self, agent_id: str) -> bool: """Test if the agent is an ego agent.""" return agent_id in self.ego_agent_ids
Test if the agent is an ego agent.
is_ego
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def remove_pending_agent_ids(self, agent_ids: Set[str]): """Remove an agent from the group of agents waiting to enter the simulation.""" assert agent_ids.issubset(self.agent_ids) self._pending_agent_ids -= agent_ids
Remove an agent from the group of agents waiting to enter the simulation.
remove_pending_agent_ids
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def agent_for_vehicle(self, vehicle_id: str) -> str: """Get the controlling agent for the given vehicle.""" return self._vehicle_index.owner_id_from_vehicle_id(vehicle_id)
Get the controlling agent for the given vehicle.
agent_for_vehicle
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def agent_has_vehicle(self, agent_id: str) -> bool: """Test if an agent has an actor associated with it.""" return len(self.vehicles_for_agent(agent_id)) > 0
Test if an agent has an actor associated with it.
agent_has_vehicle
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def vehicles_for_agent(self, agent_id: str) -> List[str]: """Get the vehicles associated with an agent.""" return self._vehicle_index.vehicle_ids_by_owner_id( agent_id, include_shadowers=True )
Get the vehicles associated with an agent.
vehicles_for_agent
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def fetch_agent_actions(self, ego_agent_actions: Dict[str, Any]) -> Dict[str, Any]: """Retrieve available social agent actions.""" try: social_agent_actions = { agent_id: ( self._remote_social_agents_action[agent_id].result() if self._remote_social_agents_action.get(agent_id, None) else None ) for agent_id, remote_agent in self._remote_social_agents.items() } except Exception as e: self._log.error( "Resolving the remote agent's action (a Future object) generated exception." ) raise e agents_without_actions = [ agent_id for (agent_id, action) in social_agent_actions.items() if action is None ] if len(agents_without_actions) > 0: self._log.debug( f"social_agents=({', '.join(agents_without_actions)}) returned no action" ) social_agent_actions = ( self._filter_social_agent_actions_for_controlled_vehicles( social_agent_actions ) ) return {**ego_agent_actions, **social_agent_actions}
Retrieve available social agent actions.
fetch_agent_actions
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def _filter_social_agent_actions_for_controlled_vehicles( self, social_agent_actions ): """Some agents may not be controlling a vehicle, such as when a vehicle is in the airlock, where the agent is observing and running its policy, but the returned action should not be executed on the vehicle until it is hijacked by the agent. """ vehicle_ids_controlled_by_agents = self._vehicle_index.agent_vehicle_ids() controlling_agent_ids = set( [ self._vehicle_index.owner_id_from_vehicle_id(v_id) for v_id in vehicle_ids_controlled_by_agents ] ) social_agent_actions = { agent_id: social_agent_actions[agent_id] for agent_id in social_agent_actions if agent_id in controlling_agent_ids } # Handle boids where some vehicles are hijacked and some have not yet been for agent_id, actions in social_agent_actions.items(): if self.is_boid_agent(agent_id): controlled_vehicle_ids = self._vehicle_index.vehicle_ids_by_owner_id( agent_id, include_shadowers=False ) social_agent_actions[agent_id] = { vehicle_id: vehicle_action for vehicle_id, vehicle_action in actions.items() if vehicle_id in controlled_vehicle_ids } return social_agent_actions
Some agents may not be controlling a vehicle, such as when a vehicle is in the airlock, where the agent is observing and running its policy, but the returned action should not be executed on the vehicle until it is hijacked by the agent.
_filter_social_agent_actions_for_controlled_vehicles
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def add_social_agent_observations_callback( self, callback: Callable[[Any], None], callback_id: str ): """Subscribe a callback to observe social agents.""" self._social_agent_observation_callbacks[callback_id] = callback
Subscribe a callback to observe social agents.
add_social_agent_observations_callback
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def remove_social_agent_observations_callback(self, callback_id: str): """Remove a subscription to social agents.""" del self._social_agent_observation_callbacks[callback_id]
Remove a subscription to social agents.
remove_social_agent_observations_callback
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def reserve_social_agent_action(self, agent_id: str, action: Any): """Override a current social agent action.""" self._reserved_social_agent_actions[agent_id] = action
Override a current social agent action.
reserve_social_agent_action
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def send_observations_to_social_agents(self, observations: Dict[str, Observation]): """Forwards observations to managed social agents.""" # TODO: Don't send observations (or receive actions) from agents that have done # vehicles. self._send_observations_to_social_agents(observations)
Forwards observations to managed social agents.
send_observations_to_social_agents
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def switch_initial_agents(self, agent_interfaces: Dict[str, AgentInterface]): """Replaces the initial agent interfaces with a new group. This comes into effect on next reset.""" self._initial_interfaces = agent_interfaces
Replaces the initial agent interfaces with a new group. This comes into effect on next reset.
switch_initial_agents
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def setup_agents(self): """Initializes all agents.""" self.init_ego_agents() self._setup_social_agents() self._start_keep_alive_boid_agents()
Initializes all agents.
setup_agents
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def add_ego_agent( self, agent_id: str, agent_interface: AgentInterface, for_trap: bool = True ): """Adds an ego agent to the manager.""" if for_trap: self.pending_agent_ids.add(agent_id) self._ego_agent_ids.add(agent_id) self.agent_interfaces[agent_id] = agent_interface
Adds an ego agent to the manager.
add_ego_agent
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def init_ego_agents(self): """Initialize all ego agents.""" for agent_id, agent_interface in self._initial_interfaces.items(): self.add_ego_agent(agent_id, agent_interface)
Initialize all ego agents.
init_ego_agents
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def _setup_social_agents(self): """Initialize all social agents.""" sim = self._sim() assert sim social_agents = sim.scenario.social_agents self._pending_social_agent_ids.update(social_agents.keys())
Initialize all social agents.
_setup_social_agents
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def _start_keep_alive_boid_agents(self): """Configures and adds boid agents to the sim.""" sim = self._sim() assert sim for bubble in filter( lambda b: b.is_boid and b.keep_alive and isinstance(b.actor, SocialAgentActor), sim.scenario.bubbles, ): actor = bubble.actor agent_id = BubbleManager._make_boid_social_agent_id(actor) social_agent = make_social_agent( locator=actor.agent_locator, **actor.policy_kwargs, ) actor = bubble.actor social_agent_data_model = SocialAgent( id=SocialAgentId.new(actor.name), actor_name=actor.name, is_boid=True, is_boid_keep_alive=True, agent_locator=actor.agent_locator, policy_kwargs=actor.policy_kwargs, initial_speed=actor.initial_speed, ) self.start_social_agent(agent_id, social_agent, social_agent_data_model)
Configures and adds boid agents to the sim.
_start_keep_alive_boid_agents
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def add_and_emit_social_agent( self, agent_id: str, agent_spec, agent_model: SocialAgent ): """Generates an entirely new social agent and emits a vehicle for it immediately. Args: agent_id (str): The agent id for the new agent. agent_spec (AgentSpec): The agent spec of the new agent agent_model (SocialAgent): The agent configuration of the new vehicle. Returns: bool: If the agent is added. False if the agent id is already reserved by a pending ego agent or current social/ego agent. """ if agent_id in self.agent_ids or agent_id in self.pending_agent_ids: return False self._setup_agent_buffer() remote_agent = self._agent_buffer.acquire_agent() self._add_agent( agent_id=agent_id, agent_interface=agent_spec.interface, agent_model=agent_model, trainable=False, boid=False, ) if agent_id in self._pending_social_agent_ids: self._pending_social_agent_ids.remove(agent_id) remote_agent.start(agent_spec=agent_spec) self._remote_social_agents[agent_id] = remote_agent self._agent_interfaces[agent_id] = agent_spec.interface self._social_agent_ids.add(agent_id) self._social_agent_data_models[agent_id] = agent_model return True
Generates an entirely new social agent and emits a vehicle for it immediately. Args: agent_id (str): The agent id for the new agent. agent_spec (AgentSpec): The agent spec of the new agent agent_model (SocialAgent): The agent configuration of the new vehicle. Returns: bool: If the agent is added. False if the agent id is already reserved by a pending ego agent or current social/ego agent.
add_and_emit_social_agent
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def start_social_agent(self, agent_id, social_agent, agent_model): """Starts a managed social agent.""" self._setup_agent_buffer() remote_agent = self._agent_buffer.acquire_agent() remote_agent.start(social_agent) self._remote_social_agents[agent_id] = remote_agent self._agent_interfaces[agent_id] = social_agent.interface self._social_agent_ids.add(agent_id) self._social_agent_data_models[agent_id] = agent_model
Starts a managed social agent.
start_social_agent
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def teardown_ego_agents(self, filter_ids: Optional[Set] = None): """Tears down all given ego agents passed through the filter. Args: filter_ids (Optional[Set[str]], optional): The whitelist of agent ids. If `None`, all ids are white-listed. """ ids_ = self._teardown_agents_by_ids(self._ego_agent_ids, filter_ids) self._ego_agent_ids -= ids_ return ids_
Tears down all given ego agents passed through the filter. Args: filter_ids (Optional[Set[str]], optional): The whitelist of agent ids. If `None`, all ids are white-listed.
teardown_ego_agents
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def teardown_social_agents(self, filter_ids: Optional[Set] = None): """Tears down all given social agents passed through the filter. Args: filter_ids (Optional[Set[str]], optional): The whitelist of agent ids. If `None`, all ids are white-listed. """ ids_ = self._teardown_agents_by_ids(self._social_agent_ids, filter_ids) for id_ in ids_: self._remote_social_agents[id_].terminate() del self._remote_social_agents[id_] del self._social_agent_data_models[id_] self._social_agent_ids -= ids_ return ids_
Tears down all given social agents passed through the filter. Args: filter_ids (Optional[Set[str]], optional): The whitelist of agent ids. If `None`, all ids are white-listed.
teardown_social_agents
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def reset_agents( self, observations: Dict[str, Observation] ) -> Dict[str, Observation]: """Reset agents, feeding in an initial observation.""" self._send_observations_to_social_agents(observations) # Observations contain those for social agents; filter them out return self._filter_for_active_ego(observations)
Reset agents, feeding in an initial observation.
reset_agents
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def agent_name(self, agent_id: str) -> str: """Get the resolved agent name.""" if agent_id not in self._social_agent_data_models: return "" return self._social_agent_data_models[agent_id].actor_name
Get the resolved agent name.
agent_name
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def is_boid_agent(self, agent_id: str) -> bool: """Check if an agent is a boid agent""" if agent_id not in self._social_agent_data_models: return False return self._social_agent_data_models[agent_id].is_boid
Check if an agent is a boid agent
is_boid_agent
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def is_boid_keep_alive_agent(self, agent_id: str) -> bool: """Check if this is a persistent boid agent""" if agent_id not in self._social_agent_data_models: return False return self._social_agent_data_models[agent_id].is_boid_keep_alive
Check if this is a persistent boid agent
is_boid_keep_alive_agent
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def is_boid_done(self, agent_id: str) -> bool: """Check if this boid agent should not disappear yet.""" if self.is_boid_keep_alive_agent(agent_id): return False if self.agent_has_vehicle(agent_id): return False return True
Check if this boid agent should not disappear yet.
is_boid_done
python
huawei-noah/SMARTS
smarts/core/agent_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent_manager.py
MIT
def _convert_truthy(t: str) -> bool: """Convert value to a boolean. This should only allow ([Tt]rue)|([Ff]alse)|[\\d]. This is necessary because bool("false") == True. Args: t (str): The value to convert. Returns: bool: The truth value. """ # ast literal_eval will parse python literals int, str, e.t.c. out = ast.literal_eval(t.strip().title()) assert isinstance(out, (bool, int)) return bool(out)
Convert value to a boolean. This should only allow ([Tt]rue)|([Ff]alse)|[\\d]. This is necessary because bool("false") == True. Args: t (str): The value to convert. Returns: bool: The truth value.
_convert_truthy
python
huawei-noah/SMARTS
smarts/core/configuration.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/configuration.py
MIT
def environment_prefix(self): """The prefix that environment variables configuration is provided with.""" return self._environment_prefix
The prefix that environment variables configuration is provided with.
environment_prefix
python
huawei-noah/SMARTS
smarts/core/configuration.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/configuration.py
MIT
def get_setting( self, section: str, option: str, default: Any = _UNSET, cast: Callable[[Any], Any] = _passthrough_cast, ) -> Optional[Any]: """Finds the given configuration checking the following in order: environment variable, configuration file, and default. Args: section (str): The grouping that the configuration option is under. option (str): The specific configuration option. default (Any, optional): The default if the requested configuration option is not found. Defaults to _UNSET. cast (Callable, optional): A function that takes a string and returns the desired type. Defaults to str. Returns: Optional[str]: The value of the configuration. Raises: KeyError: If the configuration option is not found in the configuration file and no default is provided. configparser.NoSectionError: If the section in the configuration file is not found and no default is provided. """ env_variable = self._environment_variable_format_string.format( section.upper(), option.upper() ) setting = os.getenv(env_variable) if cast is bool: # This is necessary because bool("false") == True. cast = _convert_truthy if setting is not None: return cast(setting) try: value = self._config[section][option] except (configparser.NoSectionError, KeyError) as exc: if default is _UNSET: if (value := _config_defaults.get((section, option), _UNSET)) != _UNSET: return value raise EnvironmentError( f"Setting `${env_variable}` cannot be found in environment or configuration." ) from exc return default return cast(value)
Finds the given configuration checking the following in order: environment variable, configuration file, and default. Args: section (str): The grouping that the configuration option is under. option (str): The specific configuration option. default (Any, optional): The default if the requested configuration option is not found. Defaults to _UNSET. cast (Callable, optional): A function that takes a string and returns the desired type. Defaults to str. Returns: Optional[str]: The value of the configuration. Raises: KeyError: If the configuration option is not found in the configuration file and no default is provided. configparser.NoSectionError: If the section in the configuration file is not found and no default is provided.
get_setting
python
huawei-noah/SMARTS
smarts/core/configuration.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/configuration.py
MIT
def substitute_settings(self, input: str, source: Optional[str] = "") -> str: """Given a string, substitutes in configuration settings if they exist.""" m: List[str] = self.env_variable_substitution_pattern.findall(input) if not m: return input output = input for val in set(m): if self.environment_prefix: environment_prefix, _, setting = val.partition("_") if environment_prefix != self.environment_prefix: warnings.warn( f"Unable to substitute environment variable `{val}` from `{source}`" ) continue else: setting = val section, _, option_name = setting.lower().partition("_") env_value = self(section, option_name) output = output.replace(f"${{{val}}}", env_value) return output
Given a string, substitutes in configuration settings if they exist.
substitute_settings
python
huawei-noah/SMARTS
smarts/core/configuration.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/configuration.py
MIT
def step(self, sim_frame: SimulationFrame, renderer: RendererBase): """Update sensor values based on the new simulation state.""" self._sensor_resolver.step(sim_frame, self._sensor_states.values()) for sensor in self._sensors.values(): sensor.step(sim_frame=sim_frame, renderer=renderer)
Update sensor values based on the new simulation state.
step
python
huawei-noah/SMARTS
smarts/core/sensor_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sensor_manager.py
MIT
def observe( self, sim_frame: SimulationFrame, sim_local_constants: SimulationLocalConstants, agent_ids: Set[str], renderer_ref: RendererBase, physics_ref: bc.BulletClient, ) -> Tuple[Dict[str, Observation], Dict[str, bool]]: """Runs observations and updates the sensor states. Args: sim_frame (SimulationFrame): The current state from the simulation. sim_local_constants (SimulationLocalConstants): The values that should stay the same for a simulation over a reset. agent_ids (Set[str]): The agent ids to process. renderer_ref (RendererBase): The renderer (if any) that should be used. physics_ref: The physics client. """ observations, dones, updated_sensors = self._sensor_resolver.observe( sim_frame, sim_local_constants, agent_ids, renderer_ref, physics_ref, ) for actor_id, sensors in updated_sensors.items(): for sensor_name, sensor in sensors.items(): self._sensors[ SensorManager._actor_and_sensor_name_to_sensor_id( sensor_name, actor_id ) ] = sensor return observations, dones
Runs observations and updates the sensor states. Args: sim_frame (SimulationFrame): The current state from the simulation. sim_local_constants (SimulationLocalConstants): The values that should stay the same for a simulation over a reset. agent_ids (Set[str]): The agent ids to process. renderer_ref (RendererBase): The renderer (if any) that should be used. physics_ref: The physics client.
observe
python
huawei-noah/SMARTS
smarts/core/sensor_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sensor_manager.py
MIT
def observe_batch( self, sim_frame: SimulationFrame, sim_local_constants: SimulationLocalConstants, interface: AgentInterface, sensor_states: Dict[str, SensorState], vehicles: Dict[str, Vehicle], renderer: RendererBase, bullet_client: bc.BulletClient, ) -> Tuple[Dict[str, Observation], Dict[str, bool]]: """Operates all sensors on a batch of vehicles for a single agent.""" # TODO: Replace this with a more efficient implementation that _actually_ # does batching assert sensor_states.keys() == vehicles.keys() observations, dones = {}, {} for vehicle_id, vehicle in vehicles.items(): sensor_state = sensor_states[vehicle_id] ( observations[vehicle_id], dones[vehicle_id], updated_sensors, ) = Sensors.observe_vehicle( sim_frame, sim_local_constants, interface, sensor_state, vehicle, renderer, bullet_client, ) for sensor_name, sensor in updated_sensors.items(): self._sensors[ SensorManager._actor_and_sensor_name_to_sensor_id( sensor_name, vehicle_id ) ] = sensor return observations, dones
Operates all sensors on a batch of vehicles for a single agent.
observe_batch
python
huawei-noah/SMARTS
smarts/core/sensor_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sensor_manager.py
MIT
def teardown(self, renderer: RendererBase): """Tear down the current sensors and clean up any internal resources.""" self._logger.info("++ Sensors and sensor states reset. ++") for sensor in self._sensors.values(): sensor.teardown(renderer=renderer) self._sensors = {} self._sensor_states = {} self._sensors_by_actor_id = {} self._sensor_references.clear() self._scheduled_sensors.clear()
Tear down the current sensors and clean up any internal resources.
teardown
python
huawei-noah/SMARTS
smarts/core/sensor_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sensor_manager.py
MIT
def add_sensor_state(self, actor_id: str, sensor_state: SensorState): """Add a sensor state associated with a given actor.""" self._logger.debug("Sensor state added for actor '%s'.", actor_id) self._sensor_states[actor_id] = sensor_state
Add a sensor state associated with a given actor.
add_sensor_state
python
huawei-noah/SMARTS
smarts/core/sensor_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sensor_manager.py
MIT
def remove_sensor_state_by_actor_id(self, actor_id: str): """Add a sensor state associated with a given actor.""" self._logger.debug("Sensor state removed for actor '%s'.", actor_id) return self._sensor_states.pop(actor_id, None)
Add a sensor state associated with a given actor.
remove_sensor_state_by_actor_id
python
huawei-noah/SMARTS
smarts/core/sensor_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sensor_manager.py
MIT
def remove_actor_sensors_by_actor_id( self, actor_id: str, schedule_teardown: bool = True ) -> Iterable[Tuple[Sensor, int]]: """Remove association of an actor to sensors. If the sensor is no longer associated an actor, the sensor is scheduled to be removed.""" sensor_states = self._sensor_states.get(actor_id) if not sensor_states: self._logger.warning( "Attempted to remove sensors from actor with no sensors: '%s'.", actor_id, ) return [] self.remove_sensor_state_by_actor_id(actor_id) sensors_by_actor = self._sensors_by_actor_id.get(actor_id) if not sensors_by_actor: return [] self._logger.debug("Target sensor removal for actor '%s'.", actor_id) discarded_sensors = [] for sensor_id in sensors_by_actor: self._actors_by_sensor_id[sensor_id].remove(actor_id) self._sensor_references.subtract([sensor_id]) references = self._sensor_references[sensor_id] discarded_sensors.append((self._sensors[sensor_id], references)) if references < 1: self._disassociate_sensor(sensor_id, schedule_teardown) del self._sensors_by_actor_id[actor_id] return discarded_sensors
Remove association of an actor to sensors. If the sensor is no longer associated an actor, the sensor is scheduled to be removed.
remove_actor_sensors_by_actor_id
python
huawei-noah/SMARTS
smarts/core/sensor_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sensor_manager.py
MIT
def remove_sensor( self, sensor_id: str, schedule_teardown: bool = False ) -> Optional[Sensor]: """Remove a sensor by its id. Removes any associations it has with actors.""" self._logger.debug("Target removal of sensor '%s'.", sensor_id) sensor = self._sensors.get(sensor_id) if not sensor: return None self._disassociate_sensor(sensor_id, schedule_teardown) return sensor
Remove a sensor by its id. Removes any associations it has with actors.
remove_sensor
python
huawei-noah/SMARTS
smarts/core/sensor_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sensor_manager.py
MIT
def sensor_state_exists(self, actor_id: str) -> bool: """Determines if a actor has a sensor state associated with it.""" return actor_id in self._sensor_states
Determines if a actor has a sensor state associated with it.
sensor_state_exists
python
huawei-noah/SMARTS
smarts/core/sensor_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sensor_manager.py
MIT
def sensor_states_items(self) -> Iterator[Tuple[str, SensorState]]: """Gets all actor to sensor state associations.""" return map(lambda x: x, self._sensor_states.items())
Gets all actor to sensor state associations.
sensor_states_items
python
huawei-noah/SMARTS
smarts/core/sensor_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sensor_manager.py
MIT
def sensors_for_actor_id(self, actor_id: str) -> List[Sensor]: """Gets all sensors associated with the given actor.""" return [ self._sensors[s_id] for s_id in self._sensors_by_actor_id.get(actor_id, set()) ]
Gets all sensors associated with the given actor.
sensors_for_actor_id
python
huawei-noah/SMARTS
smarts/core/sensor_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sensor_manager.py
MIT
def sensors_for_actor_ids( self, actor_ids: Set[str] ) -> Dict[str, Dict[str, Sensor]]: """Gets all sensors for the given actors.""" return { actor_id: { SensorManager._actor_sid_to_sname(s_id): self._sensors[s_id] for s_id in self._sensors_by_actor_id.get(actor_id, set()) } for actor_id in actor_ids }
Gets all sensors for the given actors.
sensors_for_actor_ids
python
huawei-noah/SMARTS
smarts/core/sensor_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sensor_manager.py
MIT
def sensor_state_for_actor_id(self, actor_id: str) -> Optional[SensorState]: """Gets the sensor state for the given actor.""" return self._sensor_states.get(actor_id)
Gets the sensor state for the given actor.
sensor_state_for_actor_id
python
huawei-noah/SMARTS
smarts/core/sensor_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sensor_manager.py
MIT
def add_sensor_for_actor(self, actor_id: str, name: str, sensor: Sensor) -> str: """Adds a sensor association for a specific actor.""" # TAI: Allow multiple sensors of the same type on the same actor s_id = SensorManager._actor_and_sensor_name_to_sensor_id(name, actor_id) actor_sensors = self._sensors_by_actor_id.setdefault(actor_id, set()) if s_id in actor_sensors: self._logger.warning( "Duplicate sensor attempted to add to actor `%s`: `%s`", actor_id, s_id ) return s_id actor_sensors.add(s_id) actors = self._actors_by_sensor_id.setdefault(s_id, set()) actors.add(actor_id) return self.add_sensor(s_id, sensor)
Adds a sensor association for a specific actor.
add_sensor_for_actor
python
huawei-noah/SMARTS
smarts/core/sensor_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sensor_manager.py
MIT
def add_sensor(self, sensor_id, sensor: Sensor) -> str: """Adds a sensor to the sensor manager.""" self._logger.info("Added sensor '%s' to sensor manager.", sensor_id) assert sensor_id not in self._sensors self._sensors[sensor_id] = sensor self._sensor_references.update([sensor_id]) return sensor_id
Adds a sensor to the sensor manager.
add_sensor
python
huawei-noah/SMARTS
smarts/core/sensor_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sensor_manager.py
MIT
def clean_up_sensors_for_actors( self, current_actor_ids: Set[str], renderer: RendererBase ): """Cleans up sensors that are attached to non-existing actors.""" # This is not good enough by itself since actors can keep alive sensors that are not in use by an agent old_actor_ids = set(self._sensor_states) missing_actors = old_actor_ids - current_actor_ids for aid in missing_actors: self.remove_actor_sensors_by_actor_id(aid) for sensor_id, sensor in self._scheduled_sensors: self._logger.info("Sensor '%s' destroyed.", sensor_id) sensor.teardown(renderer=renderer) self._scheduled_sensors.clear()
Cleans up sensors that are attached to non-existing actors.
clean_up_sensors_for_actors
python
huawei-noah/SMARTS
smarts/core/sensor_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sensor_manager.py
MIT
def wait_for_ram_image(self, img_format: str, retries=100): """Attempt to acquire a graphics buffer.""" # Rarely, we see dropped frames where an image is not available # for our observation calculations. # # We've seen this happen fairly reliable when we are initializing # a multi-agent + multi-instance simulation. # # To deal with this, we can try to force a render and block until # we are fairly certain we have an image in ram to return to the user raise NotImplementedError
Attempt to acquire a graphics buffer.
wait_for_ram_image
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def update(self, *args, **kwargs): """Update the location of the camera. Args: pose: The pose of the camera target. height: The height of the camera above the camera target. """ raise NotImplementedError
Update the location of the camera. Args: pose: The pose of the camera target. height: The height of the camera above the camera target.
update
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def image_dimensions(self) -> Tuple[int, int]: """The dimensions of the output camera image.""" raise NotImplementedError
The dimensions of the output camera image.
image_dimensions
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def position(self) -> Tuple[float, float, float]: """The position of the camera.""" raise NotImplementedError
The position of the camera.
position
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def heading(self) -> float: """The heading of this camera.""" raise NotImplementedError
The heading of this camera.
heading
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def teardown(self): """Clean up internal resources.""" raise NotImplementedError
Clean up internal resources.
teardown
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def id(self): """The id of the simulation rendered.""" raise NotImplementedError
The id of the simulation rendered.
id
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def is_setup(self) -> bool: """If the renderer has been fully initialized.""" raise NotImplementedError
If the renderer has been fully initialized.
is_setup
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def log(self) -> logging.Logger: """The rendering logger.""" raise NotImplementedError
The rendering logger.
log
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def remove_buffer(self, buffer): """Remove the rendering buffer.""" raise NotImplementedError
Remove the rendering buffer.
remove_buffer
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def setup(self, scenario): """Initialize this renderer.""" raise NotImplementedError
Initialize this renderer.
setup
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def render(self): """Render the scene graph of the simulation.""" raise NotImplementedError
Render the scene graph of the simulation.
render
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def reset(self): """Reset the render back to initialized state.""" raise NotImplementedError
Reset the render back to initialized state.
reset
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def step(self): """provided for non-SMARTS uses; normally not used by SMARTS.""" raise NotImplementedError
provided for non-SMARTS uses; normally not used by SMARTS.
step
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def sync(self, sim_frame): """Update the current state of the vehicles within the renderer.""" raise NotImplementedError
Update the current state of the vehicles within the renderer.
sync
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def teardown(self): """Clean up internal resources.""" raise NotImplementedError
Clean up internal resources.
teardown
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def destroy(self): """Destroy the renderer. Cleans up all remaining renderer resources.""" raise NotImplementedError
Destroy the renderer. Cleans up all remaining renderer resources.
destroy
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def create_vehicle_node(self, glb_model: str, vid: str, color, pose: Pose): """Create a vehicle node.""" raise NotImplementedError
Create a vehicle node.
create_vehicle_node
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def begin_rendering_vehicle(self, vid: str, is_agent: bool): """Add the vehicle node to the scene graph""" raise NotImplementedError
Add the vehicle node to the scene graph
begin_rendering_vehicle
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def update_vehicle_node(self, vid: str, pose: Pose): """Move the specified vehicle node.""" raise NotImplementedError
Move the specified vehicle node.
update_vehicle_node
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def remove_vehicle_node(self, vid: str): """Remove a vehicle node""" raise NotImplementedError
Remove a vehicle node
remove_vehicle_node
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def camera_for_id(self, camera_id) -> OffscreenCamera: """Get a camera by its id.""" raise NotImplementedError
Get a camera by its id.
camera_for_id
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def build_offscreen_camera( self, name: str, mask: int, width: int, height: int, resolution: float, ) -> None: """Generates a new off-screen camera.""" raise NotImplementedError
Generates a new off-screen camera.
build_offscreen_camera
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def build_shader_step( self, name: str, fshader_path: Union[str, Path], dependencies: Collection[ Union[ShaderStepCameraDependency, ShaderStepVariableDependency] ], priority: int, height: int, width: int, ) -> None: """Generates a new shader camera.""" raise NotImplementedError
Generates a new shader camera.
build_shader_step
python
huawei-noah/SMARTS
smarts/core/renderer_base.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/renderer_base.py
MIT
def signal_state_to_color(state: SignalLightState) -> SceneColors: """Maps a signal state to a color.""" if state == SignalLightState.STOP: return SceneColors.SignalStop elif state == SignalLightState.CAUTION: return SceneColors.SignalCaution elif state == SignalLightState.GO: return SceneColors.SignalGo else: return SceneColors.SignalUnknown
Maps a signal state to a color.
signal_state_to_color
python
huawei-noah/SMARTS
smarts/core/signals.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/signals.py
MIT
def actors_alive_done(self): """Deprecated. Use interest_done.""" warnings.warn("Use interest_done.", category=DeprecationWarning) return self.interest_done
Deprecated. Use interest_done.
actors_alive_done
python
huawei-noah/SMARTS
smarts/core/events.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/events.py
MIT
def refline_to_linear_segments(self, s_start: float, s_end: float) -> List[float]: """Get segment offsets between the given offsets.""" s_vals = [] geom_start = 0 for geom in self.refline._geometries: geom_end = geom_start + geom.length if type(geom) == LineGeometry: s_vals.extend([geom_start, geom_end]) else: s_vals.extend( get_linear_segments_for_range( geom_start, geom_end, self.segment_size ) ) geom_start += geom.length return [s for s in s_vals if s_start <= s <= s_end]
Get segment offsets between the given offsets.
refline_to_linear_segments
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def get_lane_offset(self, s: float) -> float: """Get the lane offset for this boundary at a given s value.""" if len(self.lane_offsets) == 0: return 0 if s < self.lane_offsets[0].start_pos: return 0 i = bisect((KeyWrapper(self.lane_offsets, key=lambda x: x.start_pos)), s) - 1 poly = CubicPolynomial.from_list(self.lane_offsets[i].polynomial_coefficients) ds = s - self.lane_offsets[i].start_pos offset = poly.eval(ds) return offset
Get the lane offset for this boundary at a given s value.
get_lane_offset
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def lane_width_at_offset(self, offset: float) -> LaneWidthElement: """Get the lane width at the given offset.""" i = ( bisect((KeyWrapper(self.lane_widths, key=lambda x: x.start_offset)), offset) - 1 ) return self.lane_widths[i]
Get the lane width at the given offset.
lane_width_at_offset
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def calc_t(self, s: float, section_s_start: float, lane_idx: int) -> float: """Used to evaluate lane boundary shape.""" # Find the lateral shift of lane reference line with road reference line (known as laneOffset in OpenDRIVE) lane_offset = self.get_lane_offset(s) if not self.inner: return np.sign(lane_idx) * lane_offset width = self.lane_width_at_offset(s - section_s_start) poly = CubicPolynomial.from_list(width.polynomial_coefficients) return poly.eval(s - section_s_start - width.start_offset) + self.inner.calc_t( s, section_s_start, lane_idx )
Used to evaluate lane boundary shape.
calc_t
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def to_linear_segments(self, s_start: float, s_end: float) -> List[float]: """Convert from lane boundary shape to linear segments.""" if self.inner: inner_s_vals = self.inner.to_linear_segments(s_start, s_end) else: if self.lane_offsets: return get_linear_segments_for_range(s_start, s_end, self.segment_size) return self.refline_to_linear_segments(s_start, s_end) outer_s_vals: List[float] = [] curr_s_start = s_start for width in self.lane_widths: poly = CubicPolynomial.from_list(width.polynomial_coefficients) if poly.c == 0 and poly.d == 0: # Special case - only 2 vertices required outer_s_vals.extend([curr_s_start, curr_s_start + width.length]) else: outer_s_vals.extend( get_linear_segments_for_range( curr_s_start, curr_s_start + width.length, self.segment_size ) ) curr_s_start += width.length return sorted(set(inner_s_vals + outer_s_vals))
Convert from lane boundary shape to linear segments.
to_linear_segments
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def from_spec( cls, map_spec: MapSpec, ): """Generate a road network from the given specification.""" if map_spec.shift_to_origin: logger = logging.getLogger(cls.__name__) logger.warning( "OpenDrive road networks do not yet support the 'shift_to_origin' option." ) xodr_file = OpenDriveRoadNetwork._map_path(map_spec) od_map = cls(xodr_file, map_spec) return od_map
Generate a road network from the given specification.
from_spec
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def source(self) -> str: """This is the `.xodr` file of the OpenDRIVE map.""" return self._xodr_file
This is the `.xodr` file of the OpenDRIVE map.
source
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def lane_polygon(self) -> List[Tuple[float, float]]: """A list of polygons that describe the shape of the lane.""" return self._lane_polygon
A list of polygons that describe the shape of the lane.
lane_polygon
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def bounding_box(self) -> BoundingBox: """Get the minimal axis aligned bounding box that contains all geometry in this lane.""" # XXX: This shoudn't be public. x_coordinates, y_coordinates = zip(*self.lane_polygon) self._bounding_box = BoundingBox( min_pt=Point(x=min(x_coordinates), y=min(y_coordinates)), max_pt=Point(x=max(x_coordinates), y=max(y_coordinates)), ) return self._bounding_box
Get the minimal axis aligned bounding box that contains all geometry in this lane.
bounding_box
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def _edges_at_point( self, point: Point ) -> Tuple[Optional[Point], Optional[Point]]: """Get the boundary points perpendicular to the center of the lane closest to the given world coordinate. Args: point: A world coordinate point. Returns: A pair of points indicating the left boundary and right boundary of the lane. """ from .shape import offset_along_shape, position_at_shape_offset reference_line_vertices_len = int((len(self._lane_polygon) - 1) / 2) # left_edge left_edge_shape = [ Point(x, y) for x, y in self._lane_polygon[:reference_line_vertices_len] ] left_offset = offset_along_shape(point, left_edge_shape) left_edge = position_at_shape_offset(left_edge_shape, left_offset) # right_edge right_edge_shape = [ Point(x, y) for x, y in self._lane_polygon[ reference_line_vertices_len : len(self._lane_polygon) - 1 ] ] right_offset = offset_along_shape(point, right_edge_shape) right_edge = position_at_shape_offset(right_edge_shape, right_offset) return left_edge, right_edge
Get the boundary points perpendicular to the center of the lane closest to the given world coordinate. Args: point: A world coordinate point. Returns: A pair of points indicating the left boundary and right boundary of the lane.
_edges_at_point
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def bounding_box(self) -> Optional[BoundingBox]: """Get the minimal axis aligned bounding box that contains all road geometry.""" return self._bounding_box
Get the minimal axis aligned bounding box that contains all road geometry.
bounding_box
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def _edges_at_point(self, point: Point) -> Tuple[Point, Point]: """Get the boundary points perpendicular to the center of the road closest to the given world coordinate. Args: point: A world coordinate point. Returns: A pair of points indicating the left boundary and right boundary of the road. """ # left and right edge follow the lane reference line system or direction of that road leftmost_lane = self.lane_at_index(self._total_lanes - 1) rightmost_lane = self.lane_at_index(0) _, right_edge = rightmost_lane._edges_at_point(point) left_edge, _ = leftmost_lane._edges_at_point(point) return left_edge, right_edge
Get the boundary points perpendicular to the center of the road closest to the given world coordinate. Args: point: A world coordinate point. Returns: A pair of points indicating the left boundary and right boundary of the road.
_edges_at_point
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def update( self, lookahead: int, point: Point, filter_road_ids: tuple, llp, paths: List[List[Waypoint]], ): """Update the current cache if not already cached.""" if not self._match(lookahead, point, filter_road_ids): self.lookahead = lookahead self.point = point self.filter_road_ids = filter_road_ids self._starts = {} self._starts[llp.lp.lane.index] = paths
Update the current cache if not already cached.
update
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def query( self, lookahead: int, point: Point, filter_road_ids: tuple, llp, ) -> Optional[List[List[Waypoint]]]: """Attempt to find previously cached waypoints""" if self._match(lookahead, point, filter_road_ids): hit = self._starts.get(llp.lp.lane.index, None) if hit: # consider just returning all of them (not slicing)? return [path[: (lookahead + 1)] for path in hit] return None
Attempt to find previously cached waypoints
query
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def _waypoint_paths_along_route( self, point: Point, lookahead: int, route: Sequence[str] ) -> List[List[Waypoint]]: """finds the closest lane to vehicle's position that is on its route, then gets waypoint paths from all lanes in its road there.""" assert len(route) > 0, f"Expected at least 1 road in the route, got: {route}" closest_llp_on_each_route_road = [ self._lanepoints.closest_linked_lanepoint_on_road(point, road) for road in route ] closest_linked_lp = min( closest_llp_on_each_route_road, key=lambda l_lp: np.linalg.norm( vec_2d(l_lp.lp.pose.position) - vec_2d(point) ), ) closest_lane = closest_linked_lp.lp.lane waypoint_paths = [] for lane in closest_lane.road.lanes: if closest_lane.road.road_id != route[-1] and all( out_lane.road.road_id not in route for out_lane in lane.outgoing_lanes ): continue waypoint_paths += lane._waypoint_paths_at(point, lookahead, route) return sorted(waypoint_paths, key=len, reverse=True)
finds the closest lane to vehicle's position that is on its route, then gets waypoint paths from all lanes in its road there.
_waypoint_paths_along_route
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def _equally_spaced_path( self, path: Sequence[LinkedLanePoint], point: Point, lp_spacing: float, width_threshold=None, ) -> List[Waypoint]: """given a list of LanePoints starting near point, return corresponding Waypoints that may not be evenly spaced (due to lane change) but start at point. """ continuous_variables = [ "positions_x", "positions_y", "headings", "lane_width", "speed_limit", "lane_offset", ] discrete_variables = ["lane_id", "lane_index"] ref_lanepoints_coordinates = { parameter: [] for parameter in (continuous_variables + discrete_variables) } curr_lane_id = None skip_lanepoints = False index_skipped = [] for idx, lanepoint in enumerate(path): if lanepoint.is_inferred and 0 < idx < len(path) - 1: continue if curr_lane_id is None: curr_lane_id = lanepoint.lp.lane.lane_id # Compute the lane offset for the lanepoint position position = Point( x=lanepoint.lp.pose.position[0], y=lanepoint.lp.pose.position[1], z=0.0 ) lane_coord = lanepoint.lp.lane.to_lane_coord(position) # Skip one-third of lanepoints for next lanes not outgoing to previous lane if skip_lanepoints: if lane_coord.s > (lanepoint.lp.lane.length / 3): skip_lanepoints = False else: index_skipped.append(idx) continue if lanepoint.lp.lane.lane_id != curr_lane_id: previous_lane = self._lanes[curr_lane_id] curr_lane_id = lanepoint.lp.lane.lane_id # if the current lane is not outgoing to previous lane, start skipping one third of its lanepoints if lanepoint.lp.lane not in previous_lane.outgoing_lanes: skip_lanepoints = True index_skipped.append(idx) continue # Compute the lane's width at lanepoint's position width_at_offset = lanepoint.lp.lane_width if idx != 0 and width_threshold and width_at_offset < width_threshold: index_skipped.append(idx) continue ref_lanepoints_coordinates["positions_x"].append( lanepoint.lp.pose.position[0] ) ref_lanepoints_coordinates["positions_y"].append( lanepoint.lp.pose.position[1] ) ref_lanepoints_coordinates["headings"].append( lanepoint.lp.pose.heading.as_bullet ) ref_lanepoints_coordinates["lane_id"].append(lanepoint.lp.lane.lane_id) ref_lanepoints_coordinates["lane_index"].append(lanepoint.lp.lane.index) ref_lanepoints_coordinates["lane_width"].append(width_at_offset) ref_lanepoints_coordinates["lane_offset"].append( lanepoint.lp.lane.offset_along_lane(lanepoint.lp.pose.point) ) ref_lanepoints_coordinates["speed_limit"].append( lanepoint.lp.lane.speed_limit ) ref_lanepoints_coordinates["headings"] = inplace_unwrap( ref_lanepoints_coordinates["headings"] ) first_lp_heading = ref_lanepoints_coordinates["headings"][0] lp_position = path[0].lp.pose.point.as_np_array[:2] vehicle_pos = point.as_np_array[:2] heading_vec = radians_to_vec(first_lp_heading) projected_distant_lp_vehicle = np.inner( (vehicle_pos - lp_position), heading_vec ) ref_lanepoints_coordinates["positions_x"][0] = ( lp_position[0] + projected_distant_lp_vehicle * heading_vec[0] ) ref_lanepoints_coordinates["positions_y"][0] = ( lp_position[1] + projected_distant_lp_vehicle * heading_vec[1] ) cumulative_path_dist = np.cumsum( np.sqrt( np.ediff1d(ref_lanepoints_coordinates["positions_x"], to_begin=0) ** 2 + np.ediff1d(ref_lanepoints_coordinates["positions_y"], to_begin=0) ** 2 ) ) if len(cumulative_path_dist) <= lp_spacing: lp = path[0].lp lp_position = Point(x=lp.pose.position[0], y=lp.pose.position[1], z=0.0) lp_lane_coord = lp.lane.to_lane_coord(lp_position) return [ Waypoint( pos=lp.pose.as_position2d(), heading=lp.pose.heading, lane_width=lp.lane.width_at_offset(lp_lane_coord.s)[0], speed_limit=lp.lane.speed_limit, lane_id=lp.lane.lane_id, lane_index=lp.lane.index, lane_offset=lp.lane.offset_along_lane(lp.pose.point), ) ] evenly_spaced_cumulative_path_dist = np.linspace( 0, cumulative_path_dist[-1], len(path) ) evenly_spaced_coordinates = {} for variable in continuous_variables: evenly_spaced_coordinates[variable] = np.interp( evenly_spaced_cumulative_path_dist, cumulative_path_dist, ref_lanepoints_coordinates[variable], ) for variable in discrete_variables: ref_coordinates = ref_lanepoints_coordinates[variable] evenly_spaced_coordinates[variable] = [] jdx = 0 for idx in range(len(path)): if idx in index_skipped: position = Point( x=evenly_spaced_coordinates["positions_x"][idx], y=evenly_spaced_coordinates["positions_y"][idx], z=0.0, ) nearest_lane = self.nearest_lane(position) if nearest_lane: if variable == "lane_id": evenly_spaced_coordinates[variable].append( nearest_lane.lane_id ) else: evenly_spaced_coordinates[variable].append( nearest_lane.index ) else: while ( jdx + 1 < len(cumulative_path_dist) and evenly_spaced_cumulative_path_dist[idx] > cumulative_path_dist[jdx + 1] ): jdx += 1 evenly_spaced_coordinates[variable].append(ref_coordinates[jdx]) evenly_spaced_coordinates[variable].append(ref_coordinates[-1]) waypoint_path = [] for idx in range(len(path)): waypoint_path.append( Waypoint( pos=np.array( [ evenly_spaced_coordinates["positions_x"][idx], evenly_spaced_coordinates["positions_y"][idx], ] ), heading=Heading(evenly_spaced_coordinates["headings"][idx]), lane_width=evenly_spaced_coordinates["lane_width"][idx], speed_limit=evenly_spaced_coordinates["speed_limit"][idx], lane_id=evenly_spaced_coordinates["lane_id"][idx], lane_index=evenly_spaced_coordinates["lane_index"][idx], lane_offset=evenly_spaced_coordinates["lane_offset"][idx], ) ) return waypoint_path
given a list of LanePoints starting near point, return corresponding Waypoints that may not be evenly spaced (due to lane change) but start at point.
_equally_spaced_path
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def _waypoints_starting_at_lanepoint( self, lanepoint: LinkedLanePoint, lookahead: int, filter_road_ids: tuple, point: Point, ) -> List[List[Waypoint]]: """computes equally-spaced Waypoints for all lane paths starting at lanepoint up to lookahead waypoints ahead, constrained to filter_road_ids if specified.""" # The following acts sort of like lru_cache(1), but it allows # for lookahead to be <= to the cached value... cache_paths = self._waypoints_cache.query( lookahead, point, filter_road_ids, lanepoint ) if cache_paths: return cache_paths lanepoint_paths = self._lanepoints.paths_starting_at_lanepoint( lanepoint, lookahead, filter_road_ids ) result = [ self._equally_spaced_path( path, point, self._map_spec.lanepoint_spacing, self._default_lane_width / 2, ) for path in lanepoint_paths ] self._waypoints_cache.update( lookahead, point, filter_road_ids, lanepoint, result ) return result
computes equally-spaced Waypoints for all lane paths starting at lanepoint up to lookahead waypoints ahead, constrained to filter_road_ids if specified.
_waypoints_starting_at_lanepoint
python
huawei-noah/SMARTS
smarts/core/opendrive_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/opendrive_road_network.py
MIT
def _step(self, agent_actions, time_delta_since_last_step: Optional[float] = None): """Steps through the simulation while applying the given agent actions. Returns the observations, rewards, done, and infos signals. """ # Due to a limitation of our traffic simulator(SUMO) interface(TRACI), we can # only observe traffic state of the previous simulation step. # # To compensate for this, we: # # 0. Advance the simulation clock # 1. Fetch social agent actions # 2. Step all providers and harmonize state # 3. Step bubble manager # 4. Calculate observation and reward # 5. Send observations to social agents # 6. Clear done agents # 7. Perform visualization # # In this way, observations and reward are computed with data that is # consistently with one step of latency and the agent will observe consistent # data. # 0. Advance the simulation clock. # It's been this long since our last step. self._last_dt = time_delta_since_last_step or self._fixed_timestep_sec or 0.1 self._elapsed_sim_time = self._rounder(self._elapsed_sim_time + self._last_dt) # 1. Fetch agent actions with timeit("Fetching agent actions", self._log.debug): all_agent_actions = self._agent_manager.fetch_agent_actions(agent_actions) # 2. Step all providers and harmonize state with timeit("Stepping all providers and harmonizing state", self._log.debug): provider_state = self._step_providers(all_agent_actions) with timeit("Checking if all agents are active", self._log.debug): self._check_if_acting_on_active_agents(agent_actions) # 3. Step bubble manager and trap manager with timeit("Syncing vehicle index", self._log.debug): self._vehicle_index.sync() with timeit("Stepping through bubble manager", self._log.debug): self._bubble_manager.step(self) with timeit("Stepping through actor capture managers", self._log.debug): for actor_capture_manager in self._actor_capture_managers: actor_capture_manager.step(self) # 4. Calculate observation and reward # We pre-compute vehicle_states here because we *think* the users will # want these during their observation/reward computations. # This is a hack to give us some short term perf wins. Longer term we # need to expose better support for batched computations with timeit("Syncing provider state", self._log.debug): self._sync_smarts_and_provider_actor_states(provider_state) self._sensor_manager.clean_up_sensors_for_actors( set(v.actor_id for v in self._vehicle_states), renderer=self.renderer_ref, ) # Reset frame state try: del self.cached_frame except AttributeError: pass self.cached_frame # Agents with timeit("Stepping through sensors", self._log.debug): self._sensor_manager.step(self.cached_frame, self.renderer_ref) if self.renderer_ref: # runs through the render pipeline (for camera-based sensors) # MUST perform this after _sensor_manager.step() above, and before observe() below, # so that all updates are ready before rendering happens per with timeit("Syncing the renderer", self._log.debug): self.renderer_ref.sync(self.cached_frame) # TODO OBSERVATIONS: this needs to happen between the base and rendered observations # with timeit("Running through the render pipeline", self._log.debug): # self.renderer_ref.render() # TODO OBSERVATIONS: Need to split the observation generation with timeit("Calculating observations and rewards", self._log.debug): observations, rewards, scores, dones = self._agent_manager.observe() with timeit("Filtering response for ego", self._log.debug): response_for_ego = self._agent_manager.filter_response_for_ego( (observations, rewards, scores, dones) ) # 5. Send observations to social agents with timeit("Sending observations to social agents", self._log.debug): self._agent_manager.send_observations_to_social_agents(observations) # 6. Clear done agents with timeit("Clearing done agents", self._log.debug): self._teardown_done_agents_and_vehicles(dones) # 7. Perform visualization with timeit("Trying to emit the envision state", self._log.debug): self._try_emit_envision_state(provider_state, observations, scores) with timeit("Trying to emit the visdom observations", self._log.debug): self._try_emit_visdom_obs(observations) observations, rewards, scores, dones = response_for_ego extras = dict(scores=scores) self._step_count += 1 return observations, rewards, dones, extras
Steps through the simulation while applying the given agent actions. Returns the observations, rewards, done, and infos signals.
_step
python
huawei-noah/SMARTS
smarts/core/smarts.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/smarts.py
MIT
def reset( self, scenario: Scenario, start_time: float = 0.0 ) -> Dict[str, Observation]: """Reset the simulation, reinitialize with the specified scenario. Then progress the simulation up to the first time an agent returns an observation, or `start_time` if there are no agents in the simulation. Args: scenario (smarts.core.scenario.Scenario): The scenario to reset the simulation with. start_time (float): The initial amount of simulation time to skip. This has implications on all time dependent systems. .. note:: SMARTS simulates a step and then updates vehicle control. If you want a vehicle to enter at exactly ``0.3`` with a step of ``0.1`` it means the simulation should start at ``start_time==0.2``. Returns: Dict[str, Observation]. This observation is as follows... - If no agents: the initial simulation observation at `start_time` - If agents: the first step of the simulation with an agent observation """ tries = config()("core", "reset_retries", cast=int) + 1 first_exception = None for _ in range(tries): try: self._resetting = True return self._reset(scenario, start_time) except Exception as err: if not first_exception: first_exception = err finally: self._resetting = False self._log.error("Failed to successfully reset after %i tries.", tries) raise first_exception
Reset the simulation, reinitialize with the specified scenario. Then progress the simulation up to the first time an agent returns an observation, or `start_time` if there are no agents in the simulation. Args: scenario (smarts.core.scenario.Scenario): The scenario to reset the simulation with. start_time (float): The initial amount of simulation time to skip. This has implications on all time dependent systems. .. note:: SMARTS simulates a step and then updates vehicle control. If you want a vehicle to enter at exactly ``0.3`` with a step of ``0.1`` it means the simulation should start at ``start_time==0.2``. Returns: Dict[str, Observation]. This observation is as follows... - If no agents: the initial simulation observation at `start_time` - If agents: the first step of the simulation with an agent observation
reset
python
huawei-noah/SMARTS
smarts/core/smarts.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/smarts.py
MIT
def setup(self, scenario: Scenario): """Setup the next scenario.""" self._check_valid() self._scenario = scenario self._setup_bullet_client(self._bullet_client) provider_state = self._setup_providers(self._scenario) self._vehicle_index.load_vehicle_definitions_list( scenario.vehicle_definitions_filepath ) self._agent_manager.setup_agents() self._bubble_manager = BubbleManager(scenario.bubbles, scenario.road_map) for actor_capture_manager in self._actor_capture_managers: actor_capture_manager.reset(scenario, self) if self._renderer or any( a.requires_rendering for a in self._agent_manager.agent_interfaces.values() ): self.renderer.setup(scenario) self._harmonize_providers(provider_state) self._last_provider_state = provider_state self._is_setup = True
Setup the next scenario.
setup
python
huawei-noah/SMARTS
smarts/core/smarts.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/smarts.py
MIT
def add_provider( self, provider: Provider, recovery_flags: ProviderRecoveryFlags = ProviderRecoveryFlags.EXPERIMENT_REQUIRED, ): """Add a provider to the simulation. A provider is a co-simulator conformed to a common interface. """ self._check_valid() assert isinstance(provider, Provider) provider.recovery_flags = recovery_flags self._provider_suite.insert(provider) if isinstance(provider, TrafficProvider): provider.set_manager(self)
Add a provider to the simulation. A provider is a co-simulator conformed to a common interface.
add_provider
python
huawei-noah/SMARTS
smarts/core/smarts.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/smarts.py
MIT
def remove_provider(self, requested_type_or_provider: Union[type, Provider]): """Remove a provider from the simulation. Args: requested_type (type | Provider): The type of the provider to remove or provider to remove. Returns: Optional[Provider]: The provider that was removed. """ self._check_valid() out_provider = None if isinstance(requested_type_or_provider, type): out_provider = self._provider_suite.remove_by_type( requested_type_or_provider ) elif isinstance(requested_type_or_provider, Provider): out_provider = self._provider_suite.remove(requested_type_or_provider) return out_provider
Remove a provider from the simulation. Args: requested_type (type | Provider): The type of the provider to remove or provider to remove. Returns: Optional[Provider]: The provider that was removed.
remove_provider
python
huawei-noah/SMARTS
smarts/core/smarts.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/smarts.py
MIT