code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def _equally_spaced_path( path: Sequence[LinkedLanePoint], point: Point, lp_spacing: float, ) -> List[Waypoint]: """given a list of LanePoints starting near point, return corresponding Waypoints that may not be evenly spaced (due to lane change) but start at point. """ continuous_variables = [ "positions_x", "positions_y", "headings", "lane_width", "speed_limit", "lane_offset", ] discrete_variables = ["lane_id", "lane_index"] ref_lanepoints_coordinates = { parameter: [] for parameter in (continuous_variables + discrete_variables) } for idx, lanepoint in enumerate(path): if lanepoint.is_inferred and 0 < idx < len(path) - 1: continue ref_lanepoints_coordinates["positions_x"].append( lanepoint.lp.pose.position[0] ) ref_lanepoints_coordinates["positions_y"].append( lanepoint.lp.pose.position[1] ) ref_lanepoints_coordinates["headings"].append( lanepoint.lp.pose.heading.as_bullet ) ref_lanepoints_coordinates["lane_id"].append(lanepoint.lp.lane.lane_id) ref_lanepoints_coordinates["lane_index"].append(lanepoint.lp.lane.index) ref_lanepoints_coordinates["lane_width"].append(lanepoint.lp.lane_width) ref_lanepoints_coordinates["lane_offset"].append( lanepoint.lp.lane.offset_along_lane(lanepoint.lp.pose.point) ) ref_lanepoints_coordinates["speed_limit"].append( lanepoint.lp.lane.speed_limit ) ref_lanepoints_coordinates["headings"] = inplace_unwrap( ref_lanepoints_coordinates["headings"] ) first_lp_heading = ref_lanepoints_coordinates["headings"][0] lp_position = path[0].lp.pose.point.as_np_array[:2] vehicle_pos = point.as_np_array[:2] heading_vec = radians_to_vec(first_lp_heading) projected_distant_lp_vehicle = np.inner( (vehicle_pos - lp_position), heading_vec ) ref_lanepoints_coordinates["positions_x"][0] = ( lp_position[0] + projected_distant_lp_vehicle * heading_vec[0] ) ref_lanepoints_coordinates["positions_y"][0] = ( lp_position[1] + projected_distant_lp_vehicle * heading_vec[1] ) cumulative_path_dist = np.cumsum( np.sqrt( np.ediff1d(ref_lanepoints_coordinates["positions_x"], to_begin=0) ** 2 + np.ediff1d(ref_lanepoints_coordinates["positions_y"], to_begin=0) ** 2 ) ) if len(cumulative_path_dist) <= lp_spacing: lp = path[0].lp return [ Waypoint( pos=lp.pose.position[:2], heading=lp.pose.heading, lane_width=lp.lane.width_at_offset(0)[0], speed_limit=lp.lane.speed_limit, lane_id=lp.lane.lane_id, lane_index=lp.lane.index, lane_offset=lp.lane.offset_along_lane(lp.pose.point), ) ] evenly_spaced_cumulative_path_dist = np.linspace( 0, cumulative_path_dist[-1], len(path) ) evenly_spaced_coordinates = {} for variable in continuous_variables: evenly_spaced_coordinates[variable] = np.interp( evenly_spaced_cumulative_path_dist, cumulative_path_dist, ref_lanepoints_coordinates[variable], ) for variable in discrete_variables: ref_coordinates = ref_lanepoints_coordinates[variable] evenly_spaced_coordinates[variable] = [] jdx = 0 for idx in range(len(path)): while ( jdx + 1 < len(cumulative_path_dist) and evenly_spaced_cumulative_path_dist[idx] > cumulative_path_dist[jdx + 1] ): jdx += 1 evenly_spaced_coordinates[variable].append(ref_coordinates[jdx]) evenly_spaced_coordinates[variable].append(ref_coordinates[-1]) waypoint_path = [] for idx in range(len(path)): waypoint_path.append( Waypoint( pos=np.array( [ evenly_spaced_coordinates["positions_x"][idx], evenly_spaced_coordinates["positions_y"][idx], ] ), heading=Heading(evenly_spaced_coordinates["headings"][idx]), lane_width=evenly_spaced_coordinates["lane_width"][idx], speed_limit=evenly_spaced_coordinates["speed_limit"][idx], lane_id=evenly_spaced_coordinates["lane_id"][idx], lane_index=evenly_spaced_coordinates["lane_index"][idx], lane_offset=evenly_spaced_coordinates["lane_offset"][idx], ) ) return waypoint_path
given a list of LanePoints starting near point, return corresponding Waypoints that may not be evenly spaced (due to lane change) but start at point.
_equally_spaced_path
python
huawei-noah/SMARTS
smarts/core/argoverse_map.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/argoverse_map.py
MIT
def _waypoints_starting_at_lanepoint( self, lanepoint: LinkedLanePoint, lookahead: int, filter_road_ids: tuple, point: Point, ) -> List[List[Waypoint]]: """computes equally-spaced Waypoints for all lane paths starting at lanepoint up to lookahead waypoints ahead, constrained to filter_road_ids if specified.""" # The following acts sort of like lru_cache(1), but it allows # for lookahead to be <= to the cached value... cache_paths = self._waypoints_cache.query( lookahead, point, filter_road_ids, lanepoint ) if cache_paths: return cache_paths lanepoint_paths = self._lanepoints.paths_starting_at_lanepoint( lanepoint, lookahead, filter_road_ids ) result = [ ArgoverseMap._equally_spaced_path( path, point, self._map_spec.lanepoint_spacing, ) for path in lanepoint_paths ] self._waypoints_cache.update( lookahead, point, filter_road_ids, lanepoint, result ) return result
computes equally-spaced Waypoints for all lane paths starting at lanepoint up to lookahead waypoints ahead, constrained to filter_road_ids if specified.
_waypoints_starting_at_lanepoint
python
huawei-noah/SMARTS
smarts/core/argoverse_map.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/argoverse_map.py
MIT
def ready(self, sim_time: float): """If the trap is ready to capture a vehicle.""" return self.activation_time < sim_time or math.isclose( self.activation_time, sim_time )
If the trap is ready to capture a vehicle.
ready
python
huawei-noah/SMARTS
smarts/core/trap_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/trap_manager.py
MIT
def patience_expired(self, sim_time: float): """If the trap has expired and should no longer capture a vehicle.""" expiry_time = self.activation_time + self.patience return expiry_time < sim_time and not math.isclose(expiry_time, sim_time)
If the trap has expired and should no longer capture a vehicle.
patience_expired
python
huawei-noah/SMARTS
smarts/core/trap_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/trap_manager.py
MIT
def includes(self, vehicle_id: str): """Returns if the given actor should be considered for capture.""" for prefix in self.entry_tactic.exclusion_prefixes: if vehicle_id.startswith(prefix): return False return True
Returns if the given actor should be considered for capture.
includes
python
huawei-noah/SMARTS
smarts/core/trap_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/trap_manager.py
MIT
def init_traps(self, road_map, missions, sim: SMARTS): """Set up the traps used to capture actors.""" self._traps.clear() cancelled_agents: Set[str] = set() for agent_id, mission in missions.items(): added, expired = self.add_trap_for_agent( agent_id, mission, road_map, sim.elapsed_sim_time, reject_expired=True ) if expired and not added: cancelled_agents.add(agent_id) if len(cancelled_agents) > 0: sim.agent_manager.teardown_ego_agents(cancelled_agents)
Set up the traps used to capture actors.
init_traps
python
huawei-noah/SMARTS
smarts/core/trap_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/trap_manager.py
MIT
def add_trap_for_agent( self, agent_id: str, mission: NavigationMission, road_map: RoadMap, sim_time: float, reject_expired: bool = False, ) -> Tuple[bool, bool]: """Add a new trap to capture an actor for the given agent. :param agent_id: The agent to associate to this trap. :type agent_id: str :param mission: The mission to assign to the agent and vehicle. :type mission: smarts.core.plan.NavigationMission :param road_map: The road map to provide information to about the map. :type road_map: RoadMap :param sim_time: The current simulator time. :type sim_time: float :param reject_expired: If traps should be ignored if their patience would already be expired on creation :type reject_expired: bool :return: If the trap was added and if the trap is already expired. :rtype: Tuple[bool, bool] """ if mission is None: mission = NavigationMission.random_endless_mission(road_map) if not mission.entry_tactic: mission = replace(mission, entry_tactic=default_entry_tactic()) if not isinstance(mission.entry_tactic, TrapEntryTactic): return False, False entry_tactic: TrapEntryTactic = ( mission.entry_tactic ) # pytype: disable=annotation-type-mismatch # Do not add trap if simulation time is specified and patience already expired patience_expired = mission.start_time + entry_tactic.wait_to_hijack_limit_s if reject_expired and patience_expired < sim_time: self._log.warning( f"Trap skipped for `{agent_id}` scheduled to start between " + f"`{mission.start_time}` and `{patience_expired}` because simulation skipped to " f"simulation time `{sim_time}`" ) return False, True plan = Plan(road_map, mission) trap = self._mission2trap(road_map, plan.mission) self._traps[agent_id] = trap return True, False
Add a new trap to capture an actor for the given agent. :param agent_id: The agent to associate to this trap. :type agent_id: str :param mission: The mission to assign to the agent and vehicle. :type mission: smarts.core.plan.NavigationMission :param road_map: The road map to provide information to about the map. :type road_map: RoadMap :param sim_time: The current simulator time. :type sim_time: float :param reject_expired: If traps should be ignored if their patience would already be expired on creation :type reject_expired: bool :return: If the trap was added and if the trap is already expired. :rtype: Tuple[bool, bool]
add_trap_for_agent
python
huawei-noah/SMARTS
smarts/core/trap_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/trap_manager.py
MIT
def remove_traps(self, used_traps): """Remove the given used traps.""" for agent_id, _ in used_traps: del self._traps[agent_id]
Remove the given used traps.
remove_traps
python
huawei-noah/SMARTS
smarts/core/trap_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/trap_manager.py
MIT
def reset_traps(self, used_traps): """Reset all used traps.""" self._log.warning( "Please update usage: ", exc_info=DeprecationWarning( "`TrapManager.reset_traps(..)` method has been deprecated in favor of `remove_traps(..)`." ), ) self.remove_traps(used_traps)
Reset all used traps.
reset_traps
python
huawei-noah/SMARTS
smarts/core/trap_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/trap_manager.py
MIT
def step(self, sim: SMARTS): """Run vehicle hijacking and update agent and actor states.""" capture_by_agent_id: Dict[str, _CaptureState] = defaultdict( lambda: _CaptureState( ready_state=ConditionState.FALSE, trap=None, default=True, ) ) # An optimization to short circuit if there are no pending agents. if not ( sim.agent_manager.pending_agent_ids | sim.agent_manager.pending_social_agent_ids ): return social_vehicle_ids: List[str] = [ v_id for v_id in sim.vehicle_index.social_vehicle_ids() if not sim.vehicle_index.vehicle_is_shadowed(v_id) ] vehicles: Dict[str, Vehicle] = { v_id: sim.vehicle_index.vehicle_by_id(v_id) for v_id in social_vehicle_ids } vehicle_comp = [ (v.position[:2], max(v.chassis.dimensions.as_lwh[:2]), v) for v in vehicles.values() ] pending_agent_ids = ( sim.agent_manager.pending_agent_ids | sim.agent_manager.pending_social_agent_ids ) # Pending agents is currently used to avoid for agent_id in pending_agent_ids: trap = self._traps.get(agent_id) if trap is None: continue # Skip the capturing process if history traffic is used if trap.mission.vehicle_spec is not None: continue if not trap.ready(sim.elapsed_sim_time): capture_by_agent_id[agent_id] = _CaptureState( ConditionState.BEFORE, trap ) continue if ( trap.patience_expired(sim.elapsed_sim_time) and sim.elapsed_sim_time > sim.fixed_timestep_sec ): capture_by_agent_id[agent_id] = _CaptureState( ConditionState.EXPIRED, trap, updated_mission=trap.mission ) continue sim_eval_kwargs = ActorCaptureManager._gen_simulation_condition_kwargs( sim, trap.entry_tactic.condition.requires ) mission_eval_kwargs = ActorCaptureManager._gen_mission_condition_kwargs( agent_id, trap.mission, trap.entry_tactic.condition.requires ) trap_condition = trap.entry_tactic.condition.evaluate( **sim_eval_kwargs, **mission_eval_kwargs ) if not trap_condition: capture_by_agent_id[agent_id] = _CaptureState(trap_condition, trap) continue # Order vehicle ids by distance. sorted_vehicle_ids = sorted( list(social_vehicle_ids), key=lambda v: squared_dist( vehicles[v].position[:2], trap.mission.start.position[:2] ), ) for vehicle_id in sorted_vehicle_ids: if not trap.includes(vehicle_id): continue vehicle: Vehicle = vehicles[vehicle_id] point = vehicle.pose.point.as_shapely if not point.within(trap.geometry): continue capture_by_agent_id[agent_id] = _CaptureState( ready_state=trap_condition, trap=trap, updated_mission=replace( trap.mission, start=Start(vehicle.position[:2], vehicle.pose.heading), ), vehicle_id=vehicle_id, ) social_vehicle_ids.remove(vehicle_id) break else: capture_by_agent_id[agent_id] = _CaptureState( ready_state=trap_condition, trap=trap, ) used_traps = [] for agent_id in pending_agent_ids: capture = capture_by_agent_id[agent_id] if capture.default: continue if capture.trap is None: continue if not capture.trap.ready(sim.elapsed_sim_time): continue vehicle: Optional[Vehicle] = None if capture.ready_state and capture.vehicle_id is not None: vehicle = self._take_existing_vehicle( sim, capture.vehicle_id, agent_id, capture.updated_mission, social=agent_id in sim.agent_manager.pending_social_agent_ids, ) elif ConditionState.EXPIRED in capture.ready_state: # Make sure there is not a vehicle in the same location mission = capture.updated_mission or capture.trap.mission if mission.vehicle_spec is None: nv_dims = Vehicle.agent_vehicle_dims(mission) new_veh_maxd = max(nv_dims.as_lwh[:2]) overlapping = False for pos, largest_dimension, _ in vehicle_comp: if ( squared_dist(pos, mission.start.position[:2]) <= (0.5 * (largest_dimension + new_veh_maxd)) ** 2 ): overlapping = True break if overlapping: continue vehicle = TrapManager._make_new_vehicle( sim, agent_id, mission, capture.trap.default_entry_speed, social=agent_id in sim.agent_manager.pending_social_agent_ids, ) else: continue if vehicle is None: continue used_traps.append((agent_id, capture.trap)) self.remove_traps(used_traps)
Run vehicle hijacking and update agent and actor states.
step
python
huawei-noah/SMARTS
smarts/core/trap_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/trap_manager.py
MIT
def traps(self) -> Dict[str, Trap]: """The traps in this manager.""" return self._traps
The traps in this manager.
traps
python
huawei-noah/SMARTS
smarts/core/trap_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/trap_manager.py
MIT
def reset(self, scenario: smarts.core.scenario.Scenario, sim: SMARTS): """ :param scenario: The scenario to initialize from. :type scenario: smarts.core.scenario.Scenario :param sim: The simulation this is associated to. :type scenario: smarts.core.smarts.SMARTS """ self.init_traps(scenario.road_map, scenario.missions, sim)
:param scenario: The scenario to initialize from. :type scenario: smarts.core.scenario.Scenario :param sim: The simulation this is associated to. :type scenario: smarts.core.smarts.SMARTS
reset
python
huawei-noah/SMARTS
smarts/core/trap_manager.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/trap_manager.py
MIT
def from_function(cls, agent_function: Callable[[Any], Any]) -> "Agent": """A utility function to create an agent from a lambda or other callable object. .. code-block:: python keep_lane_agent = Agent.from_function(lambda obs: "keep_lane") """ return FunctionAgent(agent_function)
A utility function to create an agent from a lambda or other callable object. .. code-block:: python keep_lane_agent = Agent.from_function(lambda obs: "keep_lane")
from_function
python
huawei-noah/SMARTS
smarts/core/agent.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent.py
MIT
def act(self, obs, **configs): """The agent action. See documentation on observations, `AgentSpec`, and `AgentInterface`. Expects an adapted observation and returns a raw action. """ raise NotImplementedError
The agent action. See documentation on observations, `AgentSpec`, and `AgentInterface`. Expects an adapted observation and returns a raw action.
act
python
huawei-noah/SMARTS
smarts/core/agent.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent.py
MIT
def deprecated_agent_spec(*args, **kwargs): """Deprecated version of AgentSpec, see smarts.zoo.agent_spec""" from smarts.zoo.agent_spec import AgentSpec as AgentSpecAlias warnings.warn( "The AgentSpec class has moved to the following module: smarts.zoo.agent_spec. Calling it from this module will be deprecated.", DeprecationWarning, ) return AgentSpecAlias(*args, **kwargs)
Deprecated version of AgentSpec, see smarts.zoo.agent_spec
deprecated_agent_spec
python
huawei-noah/SMARTS
smarts/core/agent.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agent.py
MIT
def pairwise(iterable): """Generates pairs of neighboring elements. >>> list(pairwise('ABCDEFG')) [('A', 'B'), ('B', 'C'), ('C', 'D'), ('D', 'E'), ('E', 'F'), ('F', 'G')] """ a, b = itertools.tee(iterable) next(b, None) return zip(a, b)
Generates pairs of neighboring elements. >>> list(pairwise('ABCDEFG')) [('A', 'B'), ('B', 'C'), ('C', 'D'), ('D', 'E'), ('E', 'F'), ('F', 'G')]
pairwise
python
huawei-noah/SMARTS
smarts/core/sumo_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sumo_road_network.py
MIT
def nearest_roads(self, point: Point, radius: float): """Finds the nearest roads to the given point within the given radius.""" x = point[0] y = point[1] r = radius edges: List[sumolib.net.edge.Edge] = sorted( self._graph.getEdges(), key=lambda e: e.getID() ) if self._rtree_roads is None: self._rtree_roads = self._init_rtree(edges) near_roads: List[RoadMap.Road] = [] for i in self._rtree_roads.intersection((x - r, y - r, x + r, y + r)): near_roads.append(self.road_by_id(edges[i].getID())) return near_roads
Finds the nearest roads to the given point within the given radius.
nearest_roads
python
huawei-noah/SMARTS
smarts/core/sumo_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sumo_road_network.py
MIT
def shifted_net_file_path(cls, net_file_path): """The path of the modified map file after coordinate normalization.""" net_file_folder = os.path.dirname(net_file_path) return os.path.join(net_file_folder, cls.shifted_net_file_name)
The path of the modified map file after coordinate normalization.
shifted_net_file_path
python
huawei-noah/SMARTS
smarts/core/sumo_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sumo_road_network.py
MIT
def from_spec(cls, map_spec: MapSpec): """Generate a road network from the given map specification.""" net_file = SumoRoadNetwork._map_path(map_spec) import multiprocessing junction_check_proc = multiprocessing.Process( target=cls._check_junctions, args=(net_file,), daemon=True ) try: junction_check_proc.start() except AssertionError: cls._check_junctions(net_file) # Connections to internal lanes are implicit. If `withInternal=True` is # set internal junctions and the connections from internal lanes are # loaded into the network graph. # pytype: disable=module-attr G = sumolib.net.readNet(net_file, withInternal=True) # pytype: enable=module-attr if not cls._check_net_origin(G.getBoundary()): shifted_net_file = cls.shifted_net_file_path(net_file) if os.path.isfile(shifted_net_file) or ( map_spec.shift_to_origin and cls._shift_coordinates(net_file, shifted_net_file) ): # pytype: disable=module-attr G = sumolib.net.readNet(shifted_net_file, withInternal=True) # pytype: enable=module-attr assert cls._check_net_origin(G.getBoundary()) net_file = shifted_net_file # keep track of having shifted the graph by # injecting state into the network graph. # this is needed because some maps have been pre-shifted, # and will already have a locationOffset, but for those # the offset should not be used (because all their other # coordinates are relative to the origin). G._shifted_by_smarts = True if junction_check_proc.is_alive(): junction_check_proc.join(5) return cls(G, net_file, map_spec)
Generate a road network from the given map specification.
from_spec
python
huawei-noah/SMARTS
smarts/core/sumo_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sumo_road_network.py
MIT
def source(self) -> str: """This is the `.net.xml` file that corresponds with our possibly-offset coordinates.""" return self._net_file
This is the `.net.xml` file that corresponds with our possibly-offset coordinates.
source
python
huawei-noah/SMARTS
smarts/core/sumo_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sumo_road_network.py
MIT
def get_distance( self, point: Point, radius: float, get_offset=..., perpendicular: bool = False, ) -> Union[float, Tuple[float, Optional[float]]]: """Get the distance on the lane from the given point within the given radius. Specifying to get the offset returns the offset value. """ x = point[0] y = point[1] r = radius self._ensure_rtree() dist = math.inf INVALID_DISTANCE = -1 INVALID_INDEX = -1 found_index = INVALID_INDEX for i in self._rtree_lane_fragments.intersection( (x - r, y - r, x + r, y + r) ): d = sumolib.geomhelper.distancePointToLine( point, self._lane_shape_for_rtree[i], self._lane_shape_for_rtree[i + 1], perpendicular=perpendicular, ) if d == INVALID_DISTANCE and i != 0 and dist == math.inf: # distance to inner corner dist = min( sumolib.geomhelper.distance( point, self._lane_shape_for_rtree[i] ), sumolib.geomhelper.distance( point, self._lane_shape_for_rtree[i + 1] ), ) found_index = i elif d != INVALID_DISTANCE and (dist is None or d < dist): dist = d found_index = i if get_offset is not ...: if get_offset is False: return dist, None offset = 0.0 if found_index != INVALID_INDEX: offset = self._segment_offset(found_index) offset += sumolib.geomhelper.lineOffsetWithMinimumDistanceToPoint( point, self._lane_shape_for_rtree[found_index], self._lane_shape_for_rtree[found_index + 1], False, ) assert isinstance(offset, float) return dist, offset return dist
Get the distance on the lane from the given point within the given radius. Specifying to get the offset returns the offset value.
get_distance
python
huawei-noah/SMARTS
smarts/core/sumo_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sumo_road_network.py
MIT
def _waypoint_paths_at( self, point: Point, lookahead: int, filter_road_ids: Optional[Sequence[str]] = None, ) -> List[List[Waypoint]]: """Waypoints on this lane leading on from the given point.""" closest_linked_lp = ( self._map._lanepoints.closest_linked_lanepoint_on_lane_to_point( point, self._lane_id ) ) return self._map._waypoints_starting_at_lanepoint( closest_linked_lp, lookahead, tuple(filter_road_ids) if filter_road_ids else (), point, )
Waypoints on this lane leading on from the given point.
_waypoint_paths_at
python
huawei-noah/SMARTS
smarts/core/sumo_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sumo_road_network.py
MIT
def _edges_at_point(self, point: Point) -> Tuple[Point, Point]: """Get the boundary points perpendicular to the center of the lane closest to the given world coordinate. Args: point: A world coordinate point. Returns: A pair of points indicating the left boundary and right boundary of the lane. """ offset = self.offset_along_lane(point) width, _ = self.width_at_offset(offset) left_edge = RefLinePoint(s=offset, t=width / 2) right_edge = RefLinePoint(s=offset, t=-width / 2) return self.from_lane_coord(left_edge), self.from_lane_coord(right_edge)
Get the boundary points perpendicular to the center of the lane closest to the given world coordinate. Args: point: A world coordinate point. Returns: A pair of points indicating the left boundary and right boundary of the lane.
_edges_at_point
python
huawei-noah/SMARTS
smarts/core/sumo_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sumo_road_network.py
MIT
def _edges_at_point(self, point: Point) -> Tuple[Point, Point]: """Get the boundary points perpendicular to the center of the road closest to the given world coordinate. Args: point: A world coordinate point. Returns: A pair of points indicating the left boundary and right boundary of the road. """ lanes = self.lanes _, right_edge = lanes[0]._edges_at_point(point) left_edge, _ = lanes[-1]._edges_at_point(point) return left_edge, right_edge
Get the boundary points perpendicular to the center of the road closest to the given world coordinate. Args: point: A world coordinate point. Returns: A pair of points indicating the left boundary and right boundary of the road.
_edges_at_point
python
huawei-noah/SMARTS
smarts/core/sumo_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sumo_road_network.py
MIT
def random_route( self, max_route_len: int = 10, starting_road: Optional["SumoRoadNetwork.Road"] = None, only_drivable: bool = True, ) -> RoadMap.Route: """Generate a random route.""" assert not starting_road or not only_drivable or starting_road.is_drivable next_edges = ( [starting_road._sumo_edge] if starting_road else self._graph.getEdges(False) ) route_roads = [] cur_edge = None while next_edges and len(route_roads) < max_route_len: choice = random.choice(next_edges) if cur_edge: # include internal connection edges as well (TAI: don't count these towards max_route_len?) connection_roads = set() for cnxn in cur_edge.getConnections(choice): via_lane_id = cnxn.getViaLaneID() if via_lane_id: via_road = self.lane_by_id(via_lane_id).road if via_road not in connection_roads: route_roads.append(via_road) connection_roads.add(via_road) cur_edge = choice rroad = self.road_by_id(cur_edge.getID()) assert rroad.is_drivable route_roads.append(rroad) next_edges = list(cur_edge.getOutgoing().keys()) return SumoRoadNetwork.Route(road_map=self, roads=route_roads)
Generate a random route.
random_route
python
huawei-noah/SMARTS
smarts/core/sumo_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sumo_road_network.py
MIT
def _waypoint_paths_along_route( self, point: Point, lookahead: int, route: Sequence[str] ) -> List[List[Waypoint]]: """finds the closest lane to vehicle's position that is on its route, then gets waypoint paths from all lanes in its edge there.""" assert len(route) > 0, f"Expected at least 1 road in the route, got: {route}" closest_llp_on_each_route_road = [ self._lanepoints.closest_linked_lanepoint_on_road(point, road) for road in route ] closest_linked_lp = min( closest_llp_on_each_route_road, key=lambda l_lp: np.linalg.norm( vec_2d(l_lp.lp.pose.position) - vec_2d(point) ), ) closest_lane = closest_linked_lp.lp.lane waypoint_paths = [] for lane in closest_lane.road.lanes: waypoint_paths += lane._waypoint_paths_at(point, lookahead, route) return sorted(waypoint_paths, key=lambda p: p[0].lane_index)
finds the closest lane to vehicle's position that is on its route, then gets waypoint paths from all lanes in its edge there.
_waypoint_paths_along_route
python
huawei-noah/SMARTS
smarts/core/sumo_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sumo_road_network.py
MIT
def get_edge_in_junction( self, start_edge_id, start_lane_index, end_edge_id, end_lane_index ) -> str: """Returns the id of the edge between the start and end edge. Can be used for any edge but is mainly useful for junctions. """ start_edge = self._graph.getEdge(start_edge_id) start_lane = start_edge.getLane(start_lane_index) end_edge = self._graph.getEdge(end_edge_id) end_lane = end_edge.getLane(end_lane_index) connection = start_lane.getConnection(end_lane) # If there is no connection between, try and do the best if connection is None: # The first id is good enough since we just need to determine the junction edge id connection = start_edge.getConnections(end_edge)[0] connection_lane_id = connection.getViaLaneID() connection_lane = self._graph.getLane(connection_lane_id) return connection_lane.getEdge().getID()
Returns the id of the edge between the start and end edge. Can be used for any edge but is mainly useful for junctions.
get_edge_in_junction
python
huawei-noah/SMARTS
smarts/core/sumo_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sumo_road_network.py
MIT
def update( self, lookahead: int, point: Point, filter_road_ids: tuple, llp, paths: List[List[Waypoint]], ): """Update the current cache if not already cached.""" if not self._match(lookahead, point, filter_road_ids): self.lookahead = lookahead self.point = point self.filter_road_ids = filter_road_ids self._starts = {} self._starts[llp.lp.lane.lane_id] = paths
Update the current cache if not already cached.
update
python
huawei-noah/SMARTS
smarts/core/sumo_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sumo_road_network.py
MIT
def query( self, lookahead: int, point: Point, filter_road_ids: tuple, llp, ) -> Optional[List[List[Waypoint]]]: """Attempt to find previously cached waypoints""" if self._match(lookahead, point, filter_road_ids): hit = self._starts.get(llp.lp.lane.lane_id, None) if hit: # consider just returning all of them (not slicing)? return [path[: (lookahead + 1)] for path in hit] return None
Attempt to find previously cached waypoints
query
python
huawei-noah/SMARTS
smarts/core/sumo_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sumo_road_network.py
MIT
def _waypoints_starting_at_lanepoint( self, lanepoint: LinkedLanePoint, lookahead: int, filter_road_ids: tuple, point: Point, ) -> List[List[Waypoint]]: """computes equally-spaced Waypoints for all lane paths starting at lanepoint up to lookahead waypoints ahead, constrained to filter_road_ids if specified.""" # The following acts sort of like lru_cache(1), but it allows # for lookahead to be <= to the cached value... cache_paths = self._waypoints_cache.query( lookahead, point, filter_road_ids, lanepoint ) if cache_paths: return cache_paths lanepoint_paths = self._lanepoints.paths_starting_at_lanepoint( lanepoint, lookahead, filter_road_ids ) result = [ SumoRoadNetwork._equally_spaced_path( path, point, self._map_spec.lanepoint_spacing ) for path in lanepoint_paths ] self._waypoints_cache.update( lookahead, point, filter_road_ids, lanepoint, result ) return result
computes equally-spaced Waypoints for all lane paths starting at lanepoint up to lookahead waypoints ahead, constrained to filter_road_ids if specified.
_waypoints_starting_at_lanepoint
python
huawei-noah/SMARTS
smarts/core/sumo_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sumo_road_network.py
MIT
def _equally_spaced_path( path: Sequence[LinkedLanePoint], point: Point, lp_spacing: float, ) -> List[Waypoint]: """given a list of LanePoints starting near point, that may not be evenly spaced, returns the same number of Waypoints that are evenly spaced and start at point. """ continuous_variables = [ "positions_x", "positions_y", "headings", "lane_width", "speed_limit", "lane_offset", ] discrete_variables = ["lane_id", "lane_index"] ref_lanepoints_coordinates = { parameter: [] for parameter in (continuous_variables + discrete_variables) } for idx, lanepoint in enumerate(path): if lanepoint.is_inferred and 0 < idx < len(path) - 1: continue ref_lanepoints_coordinates["positions_x"].append( lanepoint.lp.pose.position[0] ) ref_lanepoints_coordinates["positions_y"].append( lanepoint.lp.pose.position[1] ) ref_lanepoints_coordinates["headings"].append( lanepoint.lp.pose.heading.as_bullet ) ref_lanepoints_coordinates["lane_id"].append(lanepoint.lp.lane.lane_id) ref_lanepoints_coordinates["lane_index"].append(lanepoint.lp.lane.index) lane_offset = lanepoint.lp.lane.offset_along_lane(lanepoint.lp.pose.point) ref_lanepoints_coordinates["lane_width"].append( lanepoint.lp.lane.width_at_offset(lane_offset)[0] ) ref_lanepoints_coordinates["lane_offset"].append(lane_offset) ref_lanepoints_coordinates["speed_limit"].append( lanepoint.lp.lane.speed_limit ) ref_lanepoints_coordinates["headings"] = inplace_unwrap( ref_lanepoints_coordinates["headings"] ) first_lp_heading = ref_lanepoints_coordinates["headings"][0] lp_position = path[0].lp.pose.point.as_np_array[:2] vehicle_pos = point.as_np_array[:2] heading_vec = np.array(radians_to_vec(first_lp_heading)) projected_distant_lp_vehicle = np.inner( (vehicle_pos - lp_position), heading_vec ) ref_lanepoints_coordinates["positions_x"][0] = ( lp_position[0] + projected_distant_lp_vehicle * heading_vec[0] ) ref_lanepoints_coordinates["positions_y"][0] = ( lp_position[1] + projected_distant_lp_vehicle * heading_vec[1] ) # To ensure that the distance between waypoints are equal, we used # interpolation approach inspired by: # https://stackoverflow.com/a/51515357 cumulative_path_dist = np.cumsum( np.sqrt( np.ediff1d(ref_lanepoints_coordinates["positions_x"], to_begin=0) ** 2 + np.ediff1d(ref_lanepoints_coordinates["positions_y"], to_begin=0) ** 2 ) ) if len(cumulative_path_dist) <= lp_spacing: lp = path[0].lp lane_offset = lp.lane.offset_along_lane(lp.pose.point) return [ Waypoint( pos=lp.pose.as_position2d(), heading=lp.pose.heading, lane_width=lp.lane.width_at_offset(lane_offset)[0], speed_limit=lp.lane.speed_limit, lane_id=lp.lane.lane_id, lane_index=lp.lane.index, lane_offset=lane_offset, ) ] evenly_spaced_cumulative_path_dist = np.linspace( 0, cumulative_path_dist[-1], len(path) ) evenly_spaced_coordinates = {} for variable in continuous_variables: evenly_spaced_coordinates[variable] = np.interp( evenly_spaced_cumulative_path_dist, cumulative_path_dist, ref_lanepoints_coordinates[variable], ) for variable in discrete_variables: ref_coordinates = ref_lanepoints_coordinates[variable] evenly_spaced_coordinates[variable] = [] jdx = 0 for idx in range(len(path)): while ( jdx + 1 < len(cumulative_path_dist) and evenly_spaced_cumulative_path_dist[idx] > cumulative_path_dist[jdx + 1] ): jdx += 1 evenly_spaced_coordinates[variable].append(ref_coordinates[jdx]) evenly_spaced_coordinates[variable].append(ref_coordinates[-1]) equally_spaced_path = [] for idx in range(len(path)): equally_spaced_path.append( Waypoint( pos=np.array( [ evenly_spaced_coordinates["positions_x"][idx], evenly_spaced_coordinates["positions_y"][idx], ] ), heading=Heading(evenly_spaced_coordinates["headings"][idx]), lane_width=evenly_spaced_coordinates["lane_width"][idx], speed_limit=evenly_spaced_coordinates["speed_limit"][idx], lane_id=evenly_spaced_coordinates["lane_id"][idx], lane_index=evenly_spaced_coordinates["lane_index"][idx], lane_offset=evenly_spaced_coordinates["lane_offset"][idx], ) ) return equally_spaced_path
given a list of LanePoints starting near point, that may not be evenly spaced, returns the same number of Waypoints that are evenly spaced and start at point.
_equally_spaced_path
python
huawei-noah/SMARTS
smarts/core/sumo_road_network.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/sumo_road_network.py
MIT
def act(self, obs): """Call the agent's act function asynchronously and return a Future.""" act_future = futures.Future() act_future.set_result(self._agent.act(obs)) return act_future
Call the agent's act function asynchronously and return a Future.
act
python
huawei-noah/SMARTS
smarts/core/local_agent.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_agent.py
MIT
def start(self, agent_spec: AgentSpec): """Send the AgentSpec to the agent runner.""" self._agent_spec = agent_spec self._agent = self._agent_spec.build_agent()
Send the AgentSpec to the agent runner.
start
python
huawei-noah/SMARTS
smarts/core/local_agent.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/local_agent.py
MIT
def get_scenario_list(scenarios_or_scenarios_dirs: Sequence[str]) -> Sequence[str]: """Find all specific scenario directories in the directory trees of the initial scenario directory. """ scenario_roots = [] for root in scenarios_or_scenarios_dirs: if Scenario.is_valid_scenario(root): # This is the single scenario mode, only training against a single scenario scenario_roots.append(root) else: scenario_roots.extend(Scenario.discover_scenarios(root)) return scenario_roots
Find all specific scenario directories in the directory trees of the initial scenario directory.
get_scenario_list
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def scenario_variations( scenarios_or_scenarios_dirs: Sequence[str], agents_to_be_briefed: Sequence[str], shuffle_scenarios: bool = True, circular: bool = True, ) -> Generator["Scenario", None, None]: """Generate a cycle of scenario configurations. Args: scenarios_or_scenarios_dirs (Sequence[str]): A sequence of either the scenario to run (see scenarios/ for some samples you can use) OR a directory of scenarios to sample from. agents_to_be_briefed: Agent IDs that will be assigned a mission ("briefed" on a mission). Returns: A generator that serves up Scenarios. """ scenario_roots = Scenario.get_scenario_list(scenarios_or_scenarios_dirs) if shuffle_scenarios: np.random.shuffle(scenario_roots) if circular: scenario_roots = cycle(scenario_roots) return Scenario.variations_for_all_scenario_roots( scenario_roots, agents_to_be_briefed, shuffle_scenarios )
Generate a cycle of scenario configurations. Args: scenarios_or_scenarios_dirs (Sequence[str]): A sequence of either the scenario to run (see scenarios/ for some samples you can use) OR a directory of scenarios to sample from. agents_to_be_briefed: Agent IDs that will be assigned a mission ("briefed" on a mission). Returns: A generator that serves up Scenarios.
scenario_variations
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def variations_for_all_scenario_roots( scenario_roots, agents_to_be_briefed, shuffle_scenarios=True ) -> Generator["Scenario", None, None]: """Convert scenario roots to concrete scenarios. Args: scenario_roots: Scenario directories containing scenario resource files. agents_to_be_briefed: Agent IDs that will be assigned a mission ("briefed" on a mission). shuffle_scenarios: Return scenarios in a pseudo-random order. Returns: A generator that serves up Scenarios. """ for scenario_root in scenario_roots: surface_patches = Scenario.discover_friction_map(scenario_root) agent_missions = Scenario.discover_agent_missions( scenario_root, agents_to_be_briefed ) social_agent_infos = Scenario._discover_social_agents_info(scenario_root) social_agents = [ { agent_id: (agent.to_agent_spec(), (agent, mission)) for agent_id, ( agent, mission, ) in per_episode_social_agent_infos.items() } for per_episode_social_agent_infos in social_agent_infos ] # `or [None]` so that product(...) will not return an empty result # but insted a [(..., `None`), ...]. agent_missions = agent_missions or [None] if len(agents_to_be_briefed) > len(agent_missions): warnings.warn( f"Scenario `{scenario_root}` has {len(agent_missions)} missions and" f" but there are {len(agents_to_be_briefed)} agents to assign" " missions to. The missions will be padded with random missions." ) mission_agent_groups = combination_pairs_with_unique_indices( agents_to_be_briefed, agent_missions ) social_agents = social_agents or [None] traffic_histories = Scenario.discover_traffic_histories(scenario_root) or [ None ] traffic = Scenario.discover_traffic(scenario_root) or [[]] roll_traffic = 0 roll_social_agents = 0 roll_traffic_histories = 0 if shuffle_scenarios: roll_traffic = random.randint(0, len(traffic)) roll_social_agents = random.randint(0, len(social_agents)) roll_traffic_histories = 0 # random.randint(0, len(traffic_histories)) for ( concrete_traffic, concrete_agent_missions, concrete_social_agents, concrete_traffic_history, ) in product( np.roll(traffic, roll_traffic, 0), mission_agent_groups, np.roll(social_agents, roll_social_agents, 0), np.roll(traffic_histories, roll_traffic_histories, 0), ): concrete_social_agent_missions = { agent_id: mission for agent_id, (_, (_, mission)) in ( concrete_social_agents or {} ).items() } # Filter out mission concrete_social_agents = { agent_id: (_agent_spec, social_agent) for agent_id, (_agent_spec, (social_agent, _)) in ( concrete_social_agents or {} ).items() } yield Scenario( scenario_root, traffic_specs=concrete_traffic, missions={ **{a_id: mission for a_id, mission in concrete_agent_missions}, **concrete_social_agent_missions, }, social_agents=concrete_social_agents, surface_patches=surface_patches, traffic_history=concrete_traffic_history, )
Convert scenario roots to concrete scenarios. Args: scenario_roots: Scenario directories containing scenario resource files. agents_to_be_briefed: Agent IDs that will be assigned a mission ("briefed" on a mission). shuffle_scenarios: Return scenarios in a pseudo-random order. Returns: A generator that serves up Scenarios.
variations_for_all_scenario_roots
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def discover_agent_missions_count(scenario_root): """Retrieve the agent missions from the given scenario directory.""" missions_file = os.path.join(scenario_root, "build", "missions.pkl") if os.path.exists(missions_file): with open(missions_file, "rb") as f: return len(pickle.load(f)) return 0
Retrieve the agent missions from the given scenario directory.
discover_agent_missions_count
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def discover_agent_missions(scenario_root, agents_to_be_briefed): """Returns a sequence of {agent_id: mission} mappings. If no missions are discovered we generate random ones. If there is only one agent to be briefed we return a list of `{agent_id: mission}` cycling through each mission. If there are multiple agents to be briefed we assume that each one is intended to get its own mission and that `len(agents_to_be_briefed) == len(missions)`. In this case a list of one dictionary is returned. """ road_map, _ = Scenario.build_map(scenario_root) missions = [] missions_file = os.path.join(scenario_root, "build", "missions.pkl") if os.path.exists(missions_file): with open(missions_file, "rb") as f: missions = pickle.load(f) missions = [ Scenario._extract_mission(actor_and_mission.mission, road_map) for actor_and_mission in missions ] if not missions: missions = [None for _ in range(len(agents_to_be_briefed))] return missions
Returns a sequence of {agent_id: mission} mappings. If no missions are discovered we generate random ones. If there is only one agent to be briefed we return a list of `{agent_id: mission}` cycling through each mission. If there are multiple agents to be briefed we assume that each one is intended to get its own mission and that `len(agents_to_be_briefed) == len(missions)`. In this case a list of one dictionary is returned.
discover_agent_missions
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def discover_friction_map(scenario_root) -> List[Dict[str, Any]]: """Returns the list of surface patches parameters defined in scenario file. Each element of the list contains the parameters of the specified surface patch. """ surface_patches = [] friction_map_file = os.path.join(scenario_root, "build", "friction_map.pkl") if os.path.exists(friction_map_file): with open(friction_map_file, "rb") as f: map_surface_patches = pickle.load(f) for surface_patch in map_surface_patches: surface_patches.append( { "zone": surface_patch.zone, "begin_time": surface_patch.begin_time, "end_time": surface_patch.end_time, "friction coefficient": surface_patch.friction_coefficient, } ) return surface_patches
Returns the list of surface patches parameters defined in scenario file. Each element of the list contains the parameters of the specified surface patch.
discover_friction_map
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def _discover_social_agents_info( scenario: Union[str, Scenario], ) -> Sequence[Dict[str, Tuple[SocialAgent, NavigationMission]]]: """Loops through the social agent mission pickles, instantiating corresponding implementations for the given types. The output is a list of {agent_id: (mission, locator)}, where each dictionary corresponds to the social agents to run for a given concrete Scenario (which translates to "per episode" when swapping). """ scenario_root = ( scenario.root_filepath if isinstance(scenario, Scenario) else scenario ) road_map, _ = Scenario.build_map(scenario_root) social_agents_path = os.path.join(scenario_root, "build", "social_agents") if not os.path.exists(social_agents_path): return [] # [ ( missions_file, agent_actor, Mission ) ] agent_bucketer = [] # like dict.setdefault def setdefault(l: list, index: int, default): while len(l) < index + 1: l.append([]) return l[index] file_match = os.path.join(social_agents_path, "*.pkl") for missions_file_path in glob.glob(file_match): with open(missions_file_path, "rb") as missions_file: count = 0 missions = pickle.load(missions_file) for mission_and_actor in missions: # Each pickle file will contain a list of actor/mission pairs. The pairs # will most likely be generated in an M:N fashion # (i.e. A1: M1, A1: M2, A2: M1, A2: M2). The desired behavior is to have # a single pair per concrete Scenario (which would translate to # "per episode" when swapping) assert isinstance( mission_and_actor.actor, sstudio_types.SocialAgentActor ) actor = mission_and_actor.actor extracted_mission = Scenario._extract_mission( mission_and_actor.mission, road_map ) namespace = os.path.basename(missions_file_path) namespace = os.path.splitext(namespace)[0] setdefault(agent_bucketer, count, []).append( ( SocialAgent( id=SocialAgentId.new(actor.name, group=namespace), actor_name=actor.name, is_boid=False, is_boid_keep_alive=False, agent_locator=actor.agent_locator, policy_kwargs=actor.policy_kwargs, initial_speed=actor.initial_speed, ), extracted_mission, ) ) count += 1 social_agents_info = [] for l in agent_bucketer: social_agents_info.append( {agent.id: (agent, mission) for agent, mission in l} ) return social_agents_info
Loops through the social agent mission pickles, instantiating corresponding implementations for the given types. The output is a list of {agent_id: (mission, locator)}, where each dictionary corresponds to the social agents to run for a given concrete Scenario (which translates to "per episode" when swapping).
_discover_social_agents_info
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def discover_scenarios(scenario_or_scenarios_dir): """Retrieve all specific scenarios in the directory tree of the given scenario directory. Args: scenario_or_scenario_dir: A directory that either immediately contains a scenario or the root of a directory tree that contains multiple scenarios. Returns: All specific scenarios. """ if Scenario.is_valid_scenario(scenario_or_scenarios_dir): # This is the single scenario mode, only training against a single scenario scenario = scenario_or_scenarios_dir discovered_scenarios = [scenario] else: # Find all valid scenarios in the given scenarios directory discovered_scenarios = [] for scenario_file in os.listdir(scenario_or_scenarios_dir): scenario_root = os.path.join(scenario_or_scenarios_dir, scenario_file) if Scenario.is_valid_scenario(scenario_root): discovered_scenarios.append(scenario_root) assert ( len(discovered_scenarios) > 0 ), f"No valid scenarios found in {scenario_or_scenarios_dir}" return discovered_scenarios
Retrieve all specific scenarios in the directory tree of the given scenario directory. Args: scenario_or_scenario_dir: A directory that either immediately contains a scenario or the root of a directory tree that contains multiple scenarios. Returns: All specific scenarios.
discover_scenarios
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def build_map(scenario_root: str) -> Tuple[Optional[RoadMap], Optional[str]]: """Builds a road map from the given scenario's resources.""" # XXX: using a map builder_fn supplied by users is a security risk # as SMARTS will be executing the code "as is". We are currently # trusting our users to not try to sabotage their own simulations. # In the future, this may need to be revisited if SMARTS is ever # shared in a multi-user mode. map_spec = Scenario.discover_map(scenario_root) return map_spec.builder_fn(map_spec)
Builds a road map from the given scenario's resources.
build_map
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def discover_map( scenario_root: str, lanepoint_spacing: Optional[float] = None, default_lane_width: Optional[float] = None, shift_to_origin: bool = False, ) -> MapSpec: """Generates the map specification from the given scenario's file resources. Args: scenarios_root: A specific scenario to run (e.g. scenarios/sumo/loop) lanepoint_spacing: The distance between lane-points that represent a lane's geometry. default_lane_width: The default width of a lane from its center if it does not have a specific width. shift_to_origin: Shifts the map location to near the simulation origin so that the map contains (0, 0). Returns: A new map spec. """ path = os.path.join(scenario_root, "build", "map", "map_spec.pkl") if not os.path.exists(path): # Use our default map builder if none specified by scenario... return MapSpec( scenario_root, lanepoint_spacing, default_lane_width, shift_to_origin, ) with open(path, "rb") as f: road_map = cloudpickle.load(f) return road_map
Generates the map specification from the given scenario's file resources. Args: scenarios_root: A specific scenario to run (e.g. scenarios/sumo/loop) lanepoint_spacing: The distance between lane-points that represent a lane's geometry. default_lane_width: The default width of a lane from its center if it does not have a specific width. shift_to_origin: Shifts the map location to near the simulation origin so that the map contains (0, 0). Returns: A new map spec.
discover_map
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def discover_routes(scenario_root): """Discover the route files in the given scenario. >>> Scenario.discover_routes("scenarios/sumo/intersections/2lane") ['all.rou.xml', 'horizontal.rou.xml', 'turns.rou.xml', 'unprotected_left.rou.xml', 'vertical.rou.xml'] >>> Scenario.discover_routes("scenarios/sumo/loop") # loop does not have any routes ['basic.rou.xml'] """ warnings.warn( "Scenario.discover_routes() has been deprecated in favor of Scenario.discover_traffic(). Please update your code.", category=DeprecationWarning, ) return sorted( [ os.path.basename(r) for r in glob.glob( os.path.join(scenario_root, "build", "traffic", "*.rou.xml") ) ] )
Discover the route files in the given scenario. >>> Scenario.discover_routes("scenarios/sumo/intersections/2lane") ['all.rou.xml', 'horizontal.rou.xml', 'turns.rou.xml', 'unprotected_left.rou.xml', 'vertical.rou.xml'] >>> Scenario.discover_routes("scenarios/sumo/loop") # loop does not have any routes ['basic.rou.xml']
discover_routes
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def discover_traffic(scenario_root: str) -> List[Optional[List[str]]]: """Discover the traffic spec files in the given scenario.""" traffic_path = os.path.join(scenario_root, "build", "traffic") # combine any SMARTS and SUMO traffic together... sumo_traffic = glob.glob(os.path.join(traffic_path, "*.rou.xml")) smarts_traffic = glob.glob(os.path.join(traffic_path, "*.smarts.xml")) if sumo_traffic and not smarts_traffic: return [[ts] for ts in sumo_traffic] elif not sumo_traffic and smarts_traffic: return [[ts] for ts in smarts_traffic] return [list(ts) for ts in product(sumo_traffic, smarts_traffic)]
Discover the traffic spec files in the given scenario.
discover_traffic
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def set_ego_missions(self, ego_missions: Dict[str, NavigationMission]): """Replaces the ego missions within the scenario. Args: ego_missions: Ego agent ids mapped to missions. """ self._missions = ego_missions
Replaces the ego missions within the scenario. Args: ego_missions: Ego agent ids mapped to missions.
set_ego_missions
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def get_vehicle_start_at_time( self, vehicle_id: str, start_time: float ) -> Tuple[Start, float]: """Returns a Start object that can be used to create a Mission for a vehicle from a traffic history dataset starting at its location at start_time. Also returns its speed at that time.""" pphs = self._traffic_history.vehicle_pose_at_time(vehicle_id, start_time) assert pphs pos_x, pos_y, heading, speed = pphs # missions start from front bumper, but pos is center of vehicle veh_dims = self._traffic_history.vehicle_dims(vehicle_id) hhx, hhy = radians_to_vec(heading) * (0.5 * veh_dims.length) return ( Start( np.array([pos_x + hhx, pos_y + hhy]), Heading(heading), from_front_bumper=True, ), speed, )
Returns a Start object that can be used to create a Mission for a vehicle from a traffic history dataset starting at its location at start_time. Also returns its speed at that time.
get_vehicle_start_at_time
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def get_vehicle_goal(self, vehicle_id: str) -> Point: """Get the final position for a history vehicle.""" final_exit_time = self._traffic_history.vehicle_final_exit_time(vehicle_id) final_pose = self._traffic_history.vehicle_pose_at_time( vehicle_id, final_exit_time ) assert final_pose final_pos_x, final_pos_y, _, _ = final_pose return Point(final_pos_x, final_pos_y)
Get the final position for a history vehicle.
get_vehicle_goal
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def discover_missions_of_traffic_histories(self) -> Dict[str, NavigationMission]: """Retrieves the missions of traffic history vehicles.""" vehicle_missions = {} for row in self._traffic_history.first_seen_times(): v_id = str(row[0]) start_time = float(row[1]) start, speed = self.get_vehicle_start_at_time(v_id, start_time) entry_tactic = default_entry_tactic(speed) veh_config_type = self._traffic_history.vehicle_config_type(v_id) veh_dims = self._traffic_history.vehicle_dims(v_id) vehicle_missions[v_id] = NavigationMission( start=start, entry_tactic=entry_tactic, goal=TraverseGoal(self.road_map), start_time=start_time, vehicle_spec=VehicleSpec( veh_id=v_id, veh_config_type=veh_config_type, dimensions=veh_dims, ), ) return vehicle_missions
Retrieves the missions of traffic history vehicles.
discover_missions_of_traffic_histories
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def create_dynamic_traffic_history_mission( self, vehicle_id: str, trigger_time: float, positional_radius: int ) -> Tuple[NavigationMission, NavigationMission]: """Builds missions out of the given vehicle information. Args: vehicle_id: The id of a vehicle in the traffic history dataset. trigger_time: The time that this mission should become active. positional_radius: The goal radius for the positional goal. Returns: (smarts.core.plan.NavigationMission, smarts.core.plan.NavigationMission): A positional mission that follows the initial original vehicle's travel as well as a traverse style mission which is done when the vehicle leaves the map. """ start, speed = self.get_vehicle_start_at_time(vehicle_id, trigger_time) veh_goal = self.get_vehicle_goal(vehicle_id) entry_tactic = default_entry_tactic(speed) # create a positional mission and a traverse mission positional_mission = NavigationMission( start=start, entry_tactic=entry_tactic, goal=PositionalGoal(veh_goal, radius=positional_radius), ) traverse_mission = NavigationMission( start=start, entry_tactic=entry_tactic, goal=TraverseGoal(self._road_map), ) return positional_mission, traverse_mission
Builds missions out of the given vehicle information. Args: vehicle_id: The id of a vehicle in the traffic history dataset. trigger_time: The time that this mission should become active. positional_radius: The goal radius for the positional goal. Returns: (smarts.core.plan.NavigationMission, smarts.core.plan.NavigationMission): A positional mission that follows the initial original vehicle's travel as well as a traverse style mission which is done when the vehicle leaves the map.
create_dynamic_traffic_history_mission
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def history_missions_for_window( self, exists_at_or_after: float, ends_before: float, minimum_vehicle_window: float, filter: Optional[ Callable[ [Iterable[VehicleWindow]], Iterable[VehicleWindow], ] ] = None, ) -> Sequence[NavigationMission]: """Discovers vehicle missions for the given window of time. :param exists_at_or_after: The starting time of any vehicles to query for. :type exists_at_or_after: float :param ends_before: The last point in time a vehicle should be in the simulation. Vehicles ending after that time are not considered. :type ends_before: float :param minimum_vehicle_window: The minimum time that a vehicle must be in the simulation to be considered for a mission. :type minimum_vehicle_window: float :param filter: A filter in the form of ``(func(Sequence[TrafficHistoryVehicleWindow]) -> Sequence[TrafficHistoryVehicleWindow])``, which passes in traffic vehicle information and then should be used purely to filter the sequence down. :return: A set of missions derived from the traffic history. :rtype: List[smarts.core.plan.NavigationMission] """ vehicle_windows = self._traffic_history.vehicle_windows_in_range( exists_at_or_after, ends_before, minimum_vehicle_window ) def _gen_mission(vw: TrafficHistory.TrafficHistoryVehicleWindow): assert isinstance( vw, TrafficHistory.TrafficHistoryVehicleWindow ), "`filter(..)` likely returns malformed data." v_id = str(vw.vehicle_id) start_time = float(vw.start_time) start = Start( np.array(vw.axle_start_position), Heading(vw.start_heading), ) entry_tactic = default_entry_tactic(vw.start_speed) veh_config_type = vw.vehicle_type veh_dims = vw.dimensions vehicle_mission = NavigationMission( start=start, entry_tactic=entry_tactic, goal=TraverseGoal(self.road_map), start_time=start_time, vehicle_spec=VehicleSpec( veh_id=v_id, veh_config_type=veh_config_type, dimensions=veh_dims, ), ) return vehicle_mission if filter is not None: vehicle_windows = filter(vehicle_windows) return [_gen_mission(vw) for vw in vehicle_windows]
Discovers vehicle missions for the given window of time. :param exists_at_or_after: The starting time of any vehicles to query for. :type exists_at_or_after: float :param ends_before: The last point in time a vehicle should be in the simulation. Vehicles ending after that time are not considered. :type ends_before: float :param minimum_vehicle_window: The minimum time that a vehicle must be in the simulation to be considered for a mission. :type minimum_vehicle_window: float :param filter: A filter in the form of ``(func(Sequence[TrafficHistoryVehicleWindow]) -> Sequence[TrafficHistoryVehicleWindow])``, which passes in traffic vehicle information and then should be used purely to filter the sequence down. :return: A set of missions derived from the traffic history. :rtype: List[smarts.core.plan.NavigationMission]
history_missions_for_window
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def discover_traffic_histories(scenario_root: str): """Finds all existing traffic history files in the specific scenario.""" build_dir = Path(scenario_root) / "build" return [ entry for entry in os.scandir(str(build_dir)) if entry.is_file() and entry.path.endswith(".shf") ]
Finds all existing traffic history files in the specific scenario.
discover_traffic_histories
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def _extract_mission(mission, road_map): """Takes a sstudio.sstypes.(Mission, EndlessMission, etc.) and converts it to the corresponding SMARTS mission types. """ def resolve_offset(offset: Union[str, float], lane_length: float): # epsilon to ensure we are within this edge and not the subsequent one epsilon = 1e-6 lane_length -= epsilon if offset == "base": return epsilon elif offset == "max": return lane_length elif offset == "random": return random.uniform(epsilon, lane_length) else: return float(offset) def to_position_and_heading( road_id: str, lane_index: int, offset: Union[str, float], road_map: RoadMap ): road = road_map.road_by_id(road_id) lane = road.lane_at_index(lane_index) offset = resolve_offset(offset, lane.length) position = lane.from_lane_coord(RefLinePoint(s=offset)) lane_vector = lane.vector_at_offset(offset) heading = vec_to_radians(lane_vector[:2]) return position, Heading(heading) def to_scenario_via( vias: Tuple[SSVia, ...], road_map: RoadMap ) -> Tuple[Via, ...]: s_vias = [] for via in vias: road = road_map.road_by_id(via.road_id) lane = road.lane_at_index(via.lane_index) lane_width, _ = lane.width_at_offset(via.lane_offset) hit_distance = ( via.hit_distance if via.hit_distance > 0 else lane_width / 2 ) via_position = lane.from_lane_coord(RefLinePoint(via.lane_offset)) s_vias.append( Via( lane_id=lane.lane_id, lane_index=via.lane_index, road_id=via.road_id, position=tuple(via_position[:2]), hit_distance=hit_distance, required_speed=via.required_speed, ) ) return tuple(s_vias) # XXX: For now we discard the route and just take the start and end to form our missions. # In the future, we could create a Plan object here too when there's a route specified. if isinstance(mission, sstudio_types.Mission): position, heading = to_position_and_heading( *mission.route.begin, road_map, ) start = Start(position, heading) position, _ = to_position_and_heading( *mission.route.end, road_map, ) goal = PositionalGoal(position, radius=2) entry_tactic = mission.entry_tactic start_time = Scenario._extract_mission_start_time(mission, entry_tactic) return NavigationMission( start=start, route_vias=mission.route.via, goal=goal, start_time=start_time, entry_tactic=entry_tactic, via=to_scenario_via(mission.via, road_map), ) elif isinstance(mission, sstudio_types.EndlessMission): position, heading = to_position_and_heading( *mission.begin, road_map, ) start = Start(position, heading) entry_tactic = mission.entry_tactic start_time = Scenario._extract_mission_start_time(mission, entry_tactic) return NavigationMission( start=start, goal=EndlessGoal(), start_time=start_time, entry_tactic=entry_tactic, via=to_scenario_via(mission.via, road_map), ) elif isinstance(mission, sstudio_types.LapMission): start_road_id, start_lane, start_road_offset = mission.route.begin end_road_id, end_lane, end_road_offset = mission.route.end travel_road = road_map.road_by_id(start_road_id) if start_road_id == end_road_id: travel_road = travel_road.outgoing_roads[0] end_road = road_map.road_by_id(end_road_id) via_roads = [road_map.road_by_id(r) for r in mission.route.via] route = road_map.generate_routes(travel_road, end_road, via_roads, 1)[0] start_position, start_heading = to_position_and_heading( *mission.route.begin, road_map, ) end_position, _ = to_position_and_heading( *mission.route.end, road_map, ) entry_tactic = mission.entry_tactic start_time = Scenario._extract_mission_start_time(mission, entry_tactic) return LapMission( start=Start(start_position, start_heading), goal=PositionalGoal(end_position, radius=2), route_vias=mission.route.via, start_time=start_time, entry_tactic=entry_tactic, via=to_scenario_via(mission.via, road_map), num_laps=mission.num_laps, route_length=route.road_length, ) raise RuntimeError( f"sstudio mission={mission} is an invalid type={type(mission)}" )
Takes a sstudio.sstypes.(Mission, EndlessMission, etc.) and converts it to the corresponding SMARTS mission types.
_extract_mission
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def is_valid_scenario(scenario_root) -> bool: """Checks if the scenario_root directory matches our expected scenario structure >>> Scenario.is_valid_scenario("scenarios/sumo/loop") True >>> Scenario.is_valid_scenario("scenarios/non_existant") False """ # just make sure we can load the map try: road_map, _ = Scenario.build_map(scenario_root) except FileNotFoundError: return False return road_map is not None
Checks if the scenario_root directory matches our expected scenario structure >>> Scenario.is_valid_scenario("scenarios/sumo/loop") True >>> Scenario.is_valid_scenario("scenarios/non_existant") False
is_valid_scenario
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def next(scenario_iterator, log_id="") -> "Scenario": """Utility to override specific attributes from a scenario iterator""" scenario = next(scenario_iterator) scenario._log_id = log_id return scenario
Utility to override specific attributes from a scenario iterator
next
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def name(self) -> str: """The name of the scenario.""" return os.path.normpath(self._root)
The name of the scenario.
name
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def root_filepath(self) -> str: """The root directory of the scenario.""" return self._root
The root directory of the scenario.
root_filepath
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def surface_patches(self): """A list of surface areas with dynamics implications (e.g. icy road.)""" return self._surface_patches
A list of surface areas with dynamics implications (e.g. icy road.)
surface_patches
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def road_map_hash(self): """A hash value of this road map.""" return self._road_map_hash
A hash value of this road map.
road_map_hash
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def plane_filepath(self) -> str: """The ground plane.""" return os.path.join(self._root, "plane.urdf")
The ground plane.
plane_filepath
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def vehicle_filepath(self) -> Optional[str]: """The file-path of the vehicle's physics model.""" warnings.warn( "tire_parameters_filepath is no longer in use. Please update your code.", category=DeprecationWarning, ) if not os.path.isdir(self._root): return None for fname in os.listdir(self._root): if fname.endswith("vehicle.urdf"): return os.path.join(self._root, fname) return None
The file-path of the vehicle's physics model.
vehicle_filepath
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def tire_parameters_filepath(self) -> str: """The path of the tire model's parameters.""" warnings.warn( "tire_parameters_filepath is no longer in use. Please update your code.", category=DeprecationWarning, ) return os.path.join(self._root, "tire_parameters.yaml")
The path of the tire model's parameters.
tire_parameters_filepath
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def controller_parameters_filepath(self) -> str: """The path of the vehicle controller parameters.""" warnings.warn( "controller_parameters_filepath is no longer in use. Please update your code.", category=DeprecationWarning, ) return os.path.join(self._root, "controller_parameters.yaml")
The path of the vehicle controller parameters.
controller_parameters_filepath
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def vehicle_definitions_filepath(self) -> str: """The path to the default list of vehicle definitions.""" return os.path.join(self._root, "vehicle_definitions_list.yaml")
The path to the default list of vehicle definitions.
vehicle_definitions_filepath
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def traffic_specs(self) -> Sequence[str]: """The traffic spec file names to use for this scenario.""" return self._traffic_specs
The traffic spec file names to use for this scenario.
traffic_specs
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def route(self) -> Optional[str]: """The traffic route file name.""" warnings.warn( "Scenario route property has been deprecated in favor of traffic_specs. Please update your code.", category=DeprecationWarning, ) assert len(self._traffic_specs) <= 1 return ( os.path.basename(self._traffic_specs[0]) if len(self._traffic_specs) == 1 else None )
The traffic route file name.
route
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def route_files_enabled(self): """If there is a traffic route file.""" warnings.warn( "Scenario route_file_enabled property has been deprecated in favor of traffic_specs. Please update your code.", category=DeprecationWarning, ) return bool(self._traffic_specs)
If there is a traffic route file.
route_files_enabled
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def route_filepath(self): """The file-path to the traffic route file.""" warnings.warn( "Scenario route_filepath property has been deprecated in favor of traffic_specs. Please update your code.", category=DeprecationWarning, ) assert len(self._traffic_specs) == 1 return self._traffic_specs[0]
The file-path to the traffic route file.
route_filepath
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def map_glb_filepath(self): """The map geometry file-path.""" return os.path.join(self._root, "build", "map", "map.glb")
The map geometry file-path.
map_glb_filepath
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def map_glb_metadata(self): """The metadata for the current map `.glb` file.""" metadata = self.map_glb_meta_for_file(self.map_glb_filepath) return metadata
The metadata for the current map `.glb` file.
map_glb_metadata
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def map_glb_meta_for_file(filepath): """The map metadata given a file.""" scene = trimesh.load(filepath) return scene.metadata
The map metadata given a file.
map_glb_meta_for_file
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def unique_sumo_log_file(self): """A unique logging file for SUMO logging.""" return os.path.join(self._log_dir, f"sumo-{str(uuid.uuid4())[:8]}")
A unique logging file for SUMO logging.
unique_sumo_log_file
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def road_map(self) -> RoadMap: """The road map of the scenario.""" return self._road_map
The road map of the scenario.
road_map
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def map_spec(self) -> Optional[MapSpec]: """The map spec for the road map used in this scenario.""" return self.road_map.map_spec
The map spec for the road map used in this scenario.
map_spec
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def supports_sumo_traffic(self) -> bool: """Returns True if this scenario uses a Sumo road network.""" from smarts.core.sumo_road_network import SumoRoadNetwork return isinstance(self._road_map, SumoRoadNetwork)
Returns True if this scenario uses a Sumo road network.
supports_sumo_traffic
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def any_support_sumo_traffic(scenarios: Sequence[str]) -> bool: """Determines if any of the given scenarios support Sumo traffic simulation.""" from smarts.core.default_map_builder import MapType, find_mapfile_in_dir for scenario_root in Scenario.get_scenario_list(scenarios): map_type, _ = find_mapfile_in_dir(scenario_root) if map_type == MapType.Sumo: return True return False
Determines if any of the given scenarios support Sumo traffic simulation.
any_support_sumo_traffic
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def all_support_sumo_traffic(scenarios: Sequence[str]) -> bool: """Determines if all given scenarios support Sumo traffic simulation.""" from smarts.core.sumo_road_network import SumoRoadNetwork for scenario_root in Scenario.get_scenario_list(scenarios): try: road_map, _ = Scenario.build_map(scenario_root) except FileNotFoundError: raise FileNotFoundError( f"Unable to find network file in map_source={scenario_root}." ) if not isinstance(road_map, SumoRoadNetwork): return False return True
Determines if all given scenarios support Sumo traffic simulation.
all_support_sumo_traffic
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def missions(self) -> Dict[str, NavigationMission]: """Agent missions contained within this scenario.""" return self._missions
Agent missions contained within this scenario.
missions
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def social_agents(self) -> Dict[str, Tuple[Any, SocialAgent]]: """Managed social agents within this scenario.""" return self._social_agents
Managed social agents within this scenario.
social_agents
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def bubbles(self): """Bubbles within this scenario.""" return self._bubbles
Bubbles within this scenario.
bubbles
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def mission(self, agent_id) -> Optional[NavigationMission]: """Get the mission assigned to the given agent.""" return self._missions.get(agent_id, None)
Get the mission assigned to the given agent.
mission
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def traffic_history(self) -> Optional[TrafficHistory]: """Traffic history contained within this scenario.""" return self._traffic_history
Traffic history contained within this scenario.
traffic_history
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def scenario_hash(self) -> str: """A hash of the scenario.""" return self._scenario_hash
A hash of the scenario.
scenario_hash
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def metadata(self) -> Dict: """Scenario metadata values. Returns: Dict: The values. """ return self._metadata or {}
Scenario metadata values. Returns: Dict: The values.
metadata
python
huawei-noah/SMARTS
smarts/core/scenario.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/scenario.py
MIT
def perform_agent_actions(self, agent_actions: Dict[str, Any]): """Applies any actions specified by agents controlling the actors managed by this provider via appropriate controllers (to their chassis if vehicles). Args: agent_actions: a dictionary from each agent_id to its actions for this step. """ self._remove_actors_without_actions(agent_actions) agents_without_actors = agent_actions.keys() - self._my_agent_actors.keys() if agents_without_actors: warnings.warn( "actions specified for an agent without an actor: %s." % agents_without_actors, ) agent_manager = self._agent_manager sensor_manager = self._sensor_manager vehicle_index = self._vehicle_index sim = self._sim() assert sim for agent_id, vehicle_states in self._my_agent_actors.items(): action = agent_actions.get(agent_id) if action is None or len(action) == 0: self._log.info("no actions for agent_id=%s", agent_id) continue if agent_id in agents_without_actors: continue agent_interface = agent_manager.agent_interface_for_agent_id(agent_id) is_boid_agent = agent_manager.is_boid_agent(agent_id) for vs in vehicle_states: vehicle = vehicle_index.vehicle_by_id(vs.actor_id) vehicle_action = action[vehicle.id] if is_boid_agent else action controller_state = vehicle_index.controller_state_for_vehicle_id( vehicle.id ) sensor_state = sensor_manager.sensor_state_for_actor_id(vehicle.id) Controllers.perform_action( sim, agent_id, vehicle, vehicle_action, controller_state, sensor_state, agent_interface.action, )
Applies any actions specified by agents controlling the actors managed by this provider via appropriate controllers (to their chassis if vehicles). Args: agent_actions: a dictionary from each agent_id to its actions for this step.
perform_agent_actions
python
huawei-noah/SMARTS
smarts/core/agents_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agents_provider.py
MIT
def actor_ids(self) -> Iterable[str]: """The set of actors that this provider manages. Returns: Iterable[str]: The actors this provider manages. """ return set(vs.actor_id for vss in self._my_agent_actors.values() for vs in vss)
The set of actors that this provider manages. Returns: Iterable[str]: The actors this provider manages.
actor_ids
python
huawei-noah/SMARTS
smarts/core/agents_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/agents_provider.py
MIT
def start_time(self): """The start time of the traffic playback""" return self._start_time_offset
The start time of the traffic playback
start_time
python
huawei-noah/SMARTS
smarts/core/traffic_history_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/traffic_history_provider.py
MIT
def done_this_step(self): """The vehicles that are to be removed this step.""" return self._this_step_dones
The vehicles that are to be removed this step.
done_this_step
python
huawei-noah/SMARTS
smarts/core/traffic_history_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/traffic_history_provider.py
MIT
def setup(self, scenario) -> ProviderState: """Initialize this provider with the given scenario.""" if "history_vehicle_ids" in self.__dict__: # clear the cached_property del self.__dict__["history_vehicle_ids"] self._scenario = scenario self._histories = scenario.traffic_history if self._histories: self._histories.connect_for_multiple_queries() self._reset_scenario_state() self._is_setup = True return ProviderState()
Initialize this provider with the given scenario.
setup
python
huawei-noah/SMARTS
smarts/core/traffic_history_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/traffic_history_provider.py
MIT
def set_replaced_ids(self, actor_ids: Iterable[str]): """Replace the given vehicles, excluding them from control by this provider.""" self._replaced_actor_ids.update(self._get_base_id(a_id) for a_id in actor_ids)
Replace the given vehicles, excluding them from control by this provider.
set_replaced_ids
python
huawei-noah/SMARTS
smarts/core/traffic_history_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/traffic_history_provider.py
MIT
def history_vehicle_ids(self) -> Set[str]: """Actor IDs for all history vehicles.""" if not self._histories: return set() return { self._dbid_to_actor_id(hvid) for hvid in self._histories.all_vehicle_ids() }
Actor IDs for all history vehicles.
history_vehicle_ids
python
huawei-noah/SMARTS
smarts/core/traffic_history_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/traffic_history_provider.py
MIT
def vehicle_history_window( self, vehicle_id: str ) -> TrafficHistory.TrafficHistoryVehicleWindow: """Retrieves vehicle history in the specified time window. Args: vehicle_id (str): Id of vehicle of interest. Raises: ValueError: If `vehicle_id` is not present in traffic history. Returns: TrafficHistory.TrafficHistoryVehicleWindow: Vehicle history in the specified time window. """ if vehicle_id in self.history_vehicle_ids: vehicle_id = vehicle_id[len(self._vehicle_id_prefix) :] else: raise ValueError( f"Vehicle id {vehicle_id} is not present in traffic history." ) return self._histories.vehicle_window_by_id(vehicle_id=vehicle_id)
Retrieves vehicle history in the specified time window. Args: vehicle_id (str): Id of vehicle of interest. Raises: ValueError: If `vehicle_id` is not present in traffic history. Returns: TrafficHistory.TrafficHistoryVehicleWindow: Vehicle history in the specified time window.
vehicle_history_window
python
huawei-noah/SMARTS
smarts/core/traffic_history_provider.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/traffic_history_provider.py
MIT
def point(self) -> Point: """The coordinate of this starting location.""" return Point.from_np_array(self.position)
The coordinate of this starting location.
point
python
huawei-noah/SMARTS
smarts/core/plan.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/plan.py
MIT
def from_pose(cls, pose: Pose): """Convert to a starting location from a pose.""" return cls( position=pose.as_position2d(), heading=pose.heading, from_front_bumper=False, )
Convert to a starting location from a pose.
from_pose
python
huawei-noah/SMARTS
smarts/core/plan.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/plan.py
MIT
def is_specific(self) -> bool: """If the goal is reachable at a specific position.""" return False
If the goal is reachable at a specific position.
is_specific
python
huawei-noah/SMARTS
smarts/core/plan.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/plan.py
MIT
def is_reached(self, vehicle_state) -> bool: """If the goal has been completed.""" return False
If the goal has been completed.
is_reached
python
huawei-noah/SMARTS
smarts/core/plan.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/plan.py
MIT
def from_road( cls, road_id: str, road_map: RoadMap, lane_index: int = 0, lane_offset: Optional[float] = None, radius: float = 1, ): """Generate the goal ending at the specified road lane.""" road = road_map.road_by_id(road_id) lane = road.lane_at_index(lane_index) if lane_offset is None: # Default to the midpoint safely ensuring we are on the lane and not # bordering another lane_offset = lane.length * 0.5 position = lane.from_lane_coord(RefLinePoint(lane_offset)) return cls(position=position, radius=radius)
Generate the goal ending at the specified road lane.
from_road
python
huawei-noah/SMARTS
smarts/core/plan.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/plan.py
MIT
def default_entry_tactic(default_entry_speed: Optional[float] = None) -> EntryTactic: """The default tactic the simulation will use to acquire an actor for an agent.""" return TrapEntryTactic( start_time=MISSING, wait_to_hijack_limit_s=0, exclusion_prefixes=tuple(), zone=None, default_entry_speed=default_entry_speed, )
The default tactic the simulation will use to acquire an actor for an agent.
default_entry_tactic
python
huawei-noah/SMARTS
smarts/core/plan.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/plan.py
MIT
def requires_route(self) -> bool: """If the mission requires a route to be generated.""" return self.goal.is_specific()
If the mission requires a route to be generated.
requires_route
python
huawei-noah/SMARTS
smarts/core/plan.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/plan.py
MIT
def is_complete(self, vehicle_state, distance_travelled: float) -> bool: """If the mission has been completed successfully.""" return self.goal.is_reached(vehicle_state)
If the mission has been completed successfully.
is_complete
python
huawei-noah/SMARTS
smarts/core/plan.py
https://github.com/huawei-noah/SMARTS/blob/master/smarts/core/plan.py
MIT