code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def __init__(
self,
env_constructors: Sequence[EnvConstructor],
auto_reset: bool,
seed: int = 42,
):
"""The environments can be different but must use the same action and
observation spaces.
Args:
env_constructors (Sequence[EnvConstructor]): List of callables that create environments.
auto_reset (bool): Automatically resets an environment when episode ends.
seed (int, optional): Seed for the first environment. Defaults to 42.
Raises:
TypeError: If any environment constructor is not callable.
ValueError: If the action or observation spaces do not match.
"""
if len(env_constructors) > mp.cpu_count():
warnings.warn(
f"Simulation might slow down, as the requested number of parallel "
f"environments ({len(env_constructors)}) exceed the number of available "
f"CPUs ({mp.cpu_count()}).",
ResourceWarning,
)
if any([not callable(ctor) for ctor in env_constructors]):
raise TypeError(
f"Found non-callable `env_constructors`. Expected `env_constructors` of type "
f"`Sequence[Callable[[int], gym.Env]]`, but got {env_constructors})."
)
self._num_envs = len(env_constructors)
self._polling_period = 0.1
self._closed = False
# Fork is not a thread safe method.
forkserver_available = "forkserver" in mp.get_all_start_methods()
start_method = "forkserver" if forkserver_available else "spawn"
mp_ctx = mp.get_context(start_method)
self._parent_pipes = []
self._processes = []
for idx, env_constructor in enumerate(env_constructors):
cur_seed = seed + idx
parent_pipe, child_pipe = mp_ctx.Pipe()
process = mp_ctx.Process(
target=_worker,
name=f"Worker-<{type(self).__name__}>-<{idx}>",
args=(
cloudpickle.dumps(env_constructor),
cur_seed,
auto_reset,
child_pipe,
self._polling_period,
),
)
self._parent_pipes.append(parent_pipe)
self._processes.append(process)
# Daemonic subprocesses quit when parent process quits. However, daemonic
# processes cannot spawn children. Hence, `process.daemon` is set to False.
process.daemon = False
process.start()
child_pipe.close()
self._wait_start()
self._single_observation_space, self._single_action_space = self._get_spaces() | The environments can be different but must use the same action and
observation spaces.
Args:
env_constructors (Sequence[EnvConstructor]): List of callables that create environments.
auto_reset (bool): Automatically resets an environment when episode ends.
seed (int, optional): Seed for the first environment. Defaults to 42.
Raises:
TypeError: If any environment constructor is not callable.
ValueError: If the action or observation spaces do not match. | __init__ | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/parallel_env.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/parallel_env.py | MIT |
def batch_size(self) -> int:
"""The number of environments."""
return self._num_envs | The number of environments. | batch_size | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/parallel_env.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/parallel_env.py | MIT |
def observation_space(self) -> gym.Space:
"""The environment's observation space in gym representation."""
return self._single_observation_space | The environment's observation space in gym representation. | observation_space | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/parallel_env.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/parallel_env.py | MIT |
def action_space(self) -> gym.Space:
"""The environment's action space in gym representation."""
return self._single_action_space | The environment's action space in gym representation. | action_space | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/parallel_env.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/parallel_env.py | MIT |
def seed(self) -> Sequence[int]:
"""Retrieves the seed used in each environment.
Returns:
Sequence[int]: Seed of each environment.
"""
seeds = self._call(_Message.SEED, [None] * self._num_envs)
return seeds | Retrieves the seed used in each environment.
Returns:
Sequence[int]: Seed of each environment. | seed | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/parallel_env.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/parallel_env.py | MIT |
def reset(self) -> Tuple[Sequence[Dict[str, Any]], Sequence[Dict[str, Any]]]:
"""Reset all environments.
Returns:
Tuple[Sequence[Dict[str, Any]], Sequence[Dict[str, Any]]]: A batch of
observations and infos from the vectorized environment.
"""
# since the return is [(obs0, infos0), ...] they need to be zipped to form.
# [(obs0, ...), (infos0, ...)]
observations, infos = zip(*self._call(_Message.RESET, [None] * self._num_envs))
return observations, infos | Reset all environments.
Returns:
Tuple[Sequence[Dict[str, Any]], Sequence[Dict[str, Any]]]: A batch of
observations and infos from the vectorized environment. | reset | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/parallel_env.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/parallel_env.py | MIT |
def close(self, terminate=False):
"""Sends a close message to all external processes.
Args:
terminate (bool, optional): If `True`, then the `close` operation is
forced and all processes are terminated. Defaults to False.
"""
if terminate:
for process in self._processes:
if process.is_alive():
process.terminate()
else:
for pipe in self._parent_pipes:
try:
pipe.send((_Message.CLOSE, None))
pipe.close()
except IOError:
# The connection was already closed.
pass
for process in self._processes:
if process.is_alive():
process.join()
self._closed = True | Sends a close message to all external processes.
Args:
terminate (bool, optional): If `True`, then the `close` operation is
forced and all processes are terminated. Defaults to False. | close | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/parallel_env.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/parallel_env.py | MIT |
def _worker(
env_constructor: bytes,
seed: int,
auto_reset: bool,
pipe: mp.connection.Connection,
polling_period: float = 0.1,
):
"""Process to build and run an environment. Using a pipe to
communicate with parent, the process receives action, steps
the environment, and returns the observations.
Args:
env_constructor (bytes): Cloudpickled callable which constructs the environment.
seed (int): Seed for the environment.
auto_reset (bool): If True, auto resets environment when episode ends.
pipe (mp.connection.Connection): Child's end of the pipe.
polling_period (float, optional): Time to wait for keyboard interrupts. Defaults to 0.1.
Raises:
KeyError: If unknown message type is received.
"""
env = cloudpickle.loads(env_constructor)(seed=seed)
pipe.send((_Message.RESULT, None))
try:
while True:
if not pipe.poll(polling_period):
continue
message, payload = pipe.recv()
if message == _Message.SEED:
env_seed = env.seed
pipe.send((_Message.RESULT, env_seed))
elif message == _Message.ACCESS:
result = getattr(env, payload, None)
pipe.send((_Message.RESULT, result))
elif message == _Message.RESET:
observation, info = env.reset()
pipe.send((_Message.RESULT, (observation, info)))
elif message == _Message.STEP:
observation, reward, terminated, truncated, info = env.step(payload)
if terminated["__all__"] and auto_reset:
# Final observation can be obtained from `info` as follows:
# `final_obs = info[agent_id]["env_obs"]`
observation, _ = env.reset()
pipe.send(
(
_Message.RESULT,
(observation, reward, terminated, truncated, info),
)
)
elif message == _Message.CLOSE:
break
else:
raise KeyError(
f"Expected message from {_Message.__members__}, but got unknown message `{message}`."
)
except (Exception, KeyboardInterrupt):
etype, evalue, tb = sys.exc_info()
if etype == KeyboardInterrupt:
stacktrace = "".join(traceback.format_exception(etype, evalue, None))
else:
stacktrace = "".join(traceback.format_exception(etype, evalue, tb))
payload = (mp.current_process().name, stacktrace)
pipe.send((_Message.EXCEPTION, payload))
finally:
env.close()
pipe.close() | Process to build and run an environment. Using a pipe to
communicate with parent, the process receives action, steps
the environment, and returns the observations.
Args:
env_constructor (bytes): Cloudpickled callable which constructs the environment.
seed (int): Seed for the environment.
auto_reset (bool): If True, auto resets environment when episode ends.
pipe (mp.connection.Connection): Child's end of the pipe.
polling_period (float, optional): Time to wait for keyboard interrupts. Defaults to 0.1.
Raises:
KeyError: If unknown message type is received. | _worker | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/parallel_env.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/parallel_env.py | MIT |
def add_dataclass(first: T, second: T) -> T:
"""Sums the fields of two `dataclass` objects.
Args:
first (T): First `dataclass` object.
second (T): Second `dataclass` object.
Returns:
T: New summed `dataclass` object.
"""
assert type(first) is type(second)
new = {}
for field in fields(first):
new[field.name] = getattr(first, field.name) + getattr(second, field.name)
output = first.__class__(**new)
return output | Sums the fields of two `dataclass` objects.
Args:
first (T): First `dataclass` object.
second (T): Second `dataclass` object.
Returns:
T: New summed `dataclass` object. | add_dataclass | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/utils.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/utils.py | MIT |
def op_dataclass(
first: T,
second: Union[int, float],
op: Callable[[Union[int, float], Union[int, float]], float],
) -> T:
"""Performs operation `op` on the fields of the source `dataclass` object.
Args:
first (T): The source `dataclass` object.
second (Union[int, float]): Value input for the operator.
op (Callable[[Union[int, float], Union[int, float]], float]): Operation to be performed.
Returns:
T: A new `dataclass` object with operation performed on all of its fields.
"""
new = {}
for field in fields(first):
new[field.name] = op(getattr(first, field.name), second)
output = first.__class__(**new)
return output | Performs operation `op` on the fields of the source `dataclass` object.
Args:
first (T): The source `dataclass` object.
second (Union[int, float]): Value input for the operator.
op (Callable[[Union[int, float], Union[int, float]], float]): Operation to be performed.
Returns:
T: A new `dataclass` object with operation performed on all of its fields. | op_dataclass | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/utils.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/utils.py | MIT |
def divide(value: Union[int, float], divider: Union[int, float]) -> float:
"""Division operation.
Args:
value (Union[int, float]): Numerator
divider (Union[int, float]): Denominator
Returns:
float: Numerator / Denominator
"""
return float(value / divider) | Division operation.
Args:
value (Union[int, float]): Numerator
divider (Union[int, float]): Denominator
Returns:
float: Numerator / Denominator | divide | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/utils.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/utils.py | MIT |
def multiply(value: Union[int, float], multiplier: Union[int, float]) -> float:
"""Multiplication operation.
Args:
value (Union[int, float]): Value
multiplier (Union[int, float]): Multiplier
Returns:
float: Value x Multiplier
"""
return float(value * multiplier) | Multiplication operation.
Args:
value (Union[int, float]): Value
multiplier (Union[int, float]): Multiplier
Returns:
float: Value x Multiplier | multiply | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/utils.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/utils.py | MIT |
def nearest_waypoint(
matrix: np.ma.MaskedArray, points: np.ndarray, radius: float = 1
) -> Tuple[Tuple[int, int], Optional[int]]:
"""
Returns
(i) the `matrix` index of the nearest waypoint to the ego, which has a nearby `point`.
(ii) the `points` index which is nearby the nearest waypoint to the ego.
Nearby is defined as a point within `radius` of a waypoint.
Args:
matrix (np.ma.MaskedArray): Waypoints matrix.
points (np.ndarray): Points matrix.
radius (float, optional): Nearby radius. Defaults to 2.
Returns:
Tuple[Tuple[int, int], Optional[int]] : `matrix` index of shape (a,b) and scalar `point` index.
"""
cur_point_index = ((np.int32(1e10), np.int32(1e10)), None)
if points.shape == (0,):
return cur_point_index
assert len(matrix.shape) == 3
assert matrix.shape[2] == 3
assert len(points.shape) == 2
assert points.shape[1] == 3
points_expanded = np.expand_dims(points, (1, 2))
diff = matrix - points_expanded
dist = np.linalg.norm(diff, axis=-1)
dist_masked = np.ma.MaskedArray(dist, diff.mask[..., 0])
for ii in range(points.shape[0]):
index = np.argmin(dist_masked[ii])
index_unravel = np.unravel_index(index, dist_masked[ii].shape)
min_dist = dist_masked[ii][index_unravel]
if min_dist <= radius and index_unravel[1] < cur_point_index[0][1]:
cur_point_index = (index_unravel, ii)
return cur_point_index | Returns
(i) the `matrix` index of the nearest waypoint to the ego, which has a nearby `point`.
(ii) the `points` index which is nearby the nearest waypoint to the ego.
Nearby is defined as a point within `radius` of a waypoint.
Args:
matrix (np.ma.MaskedArray): Waypoints matrix.
points (np.ndarray): Points matrix.
radius (float, optional): Nearby radius. Defaults to 2.
Returns:
Tuple[Tuple[int, int], Optional[int]] : `matrix` index of shape (a,b) and scalar `point` index. | nearest_waypoint | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/utils.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/utils.py | MIT |
def __init__(self, size: int):
"""
Args:
size (int): Size of the sliding window.
"""
self._values = deque(maxlen=size)
self._max_candidates = deque(maxlen=size)
self._size = size
self._time = -1 | Args:
size (int): Size of the sliding window. | __init__ | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/utils.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/utils.py | MIT |
def move(self, x: Union[int, float]):
"""Moves the sliding window one step to the right by appending the new
element x and discarding the oldest element on the left.
Args:
x (Union[int,float]): New element input to the sliding window.
"""
self._time += 1
# When values deque is full, remove head element of max_candidates deque
# if it matches head element of values deque.
if len(self._values) == self._size:
if self._values[0][0] == self._max_candidates[0][0]:
self._max_candidates.popleft()
# Append x to values deque.
self._values.append((self._time, x))
# Remove elements from max_candidates deque's tail which are less than x.
while self._max_candidates and self._max_candidates[-1][1] < x:
self._max_candidates.pop()
# Append x to max_candidates deque.
self._max_candidates.append((self._time, x)) | Moves the sliding window one step to the right by appending the new
element x and discarding the oldest element on the left.
Args:
x (Union[int,float]): New element input to the sliding window. | move | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/utils.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/utils.py | MIT |
def max(self):
"""Returns the maximum element within the sliding window."""
return self._max_candidates[0][1] | Returns the maximum element within the sliding window. | max | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/utils.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/utils.py | MIT |
def display(self):
"""Print the contents of the sliding window."""
print("[", end="")
for i in self._values:
print(i, end=" ")
print("]") | Print the contents of the sliding window. | display | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/utils.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/utils.py | MIT |
def params(self) -> Params:
"""Return parameters to configure and initialize cost functions.
Returns:
Params: Cost function parameters.
"""
raise NotImplementedError | Return parameters to configure and initialize cost functions.
Returns:
Params: Cost function parameters. | params | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/formula.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/formula.py | MIT |
def score(self, records: Dict[str, Dict[str, Record]]) -> Score:
"""Computes sub-component scores and one total combined score named
"Overall" on the wrapped environment.
Args:
records (Dict[str, Dict[str, Record]]): Records.
Returns:
"Overall" score and other sub-component scores.
"""
raise NotImplementedError | Computes sub-component scores and one total combined score named
"Overall" on the wrapped environment.
Args:
records (Dict[str, Dict[str, Record]]): Records.
Returns:
"Overall" score and other sub-component scores. | score | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/formula.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/formula.py | MIT |
def params(self) -> Params:
"""Return parameters to configure and initialize cost functions.
Returns:
Params: Cost function parameters.
"""
return Params() | Return parameters to configure and initialize cost functions.
Returns:
Params: Cost function parameters. | params | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/formula.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/formula.py | MIT |
def score(self, records: Dict[str, Dict[str, Record]]) -> Score:
"""Computes sub-component scores and one total combined score named
"Overall" on the wrapped environment.
Args:
records (Dict[str, Dict[str, Record]]): Records.
Returns:
Score: "Overall" score and other sub-component scores.
"""
agent_weight = agent_weights(records=records)
agent_score = agent_scores(records=records, func=costs_to_score)
return weighted_score(scores=agent_score, weights=agent_weight) | Computes sub-component scores and one total combined score named
"Overall" on the wrapped environment.
Args:
records (Dict[str, Dict[str, Record]]): Records.
Returns:
Score: "Overall" score and other sub-component scores. | score | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/formula.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/formula.py | MIT |
def agent_weights(records: Dict[str, Dict[str, Record]]) -> Dict[str, Dict[str, float]]:
"""Retrieves weight for each agent in every scenario.
Args:
records (Dict[str, Dict[str, Record]]): Records.
Returns:
Dict[str,Dict[str,float]]: Weight for each agent in every scenario.
"""
weights = {}
for scen, agents in records.items():
weights[scen] = dict(
map(lambda i: (i[0], i[1].metadata.difficulty), agents.items())
)
return weights | Retrieves weight for each agent in every scenario.
Args:
records (Dict[str, Dict[str, Record]]): Records.
Returns:
Dict[str,Dict[str,float]]: Weight for each agent in every scenario. | agent_weights | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/formula.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/formula.py | MIT |
def agent_scores(
records: Dict[str, Dict[str, Record]], func: Callable[[Costs], Score]
) -> Dict[str, Dict[str, Score]]:
"""Computes score for each agent in every scenario.
Args:
records (Dict[str, Dict[str, Record]]): Records.
func (Callable[[Costs],Score]): Function which computes Score given Costs.
Returns:
Dict[str,Dict[str,Score]]: Score for each agent in every scenario.
"""
scores = {}
for scen, agents in records.items():
scores[scen] = dict(map(lambda i: (i[0], func(i[1].costs)), agents.items()))
return scores | Computes score for each agent in every scenario.
Args:
records (Dict[str, Dict[str, Record]]): Records.
func (Callable[[Costs],Score]): Function which computes Score given Costs.
Returns:
Dict[str,Dict[str,Score]]: Score for each agent in every scenario. | agent_scores | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/formula.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/formula.py | MIT |
def weighted_score(
scores: Dict[str, Dict[str, Score]], weights: Dict[str, Dict[str, float]]
) -> Score:
"""Computes single overall weighted score using `weights`.
Args:
scores (Dict[str,Dict[str,Score]]): Score for each agent in every scenario.
weights (Dict[str,Dict[str,float]]): Weight for each agent in every scenario.
Returns:
Score: Weighted score.
"""
cumulative_score = {}
total_weight = 0
for scen, agent in scores.items():
for agent_name, agent_score in agent.items():
current_score = dict(
map(
lambda i: (i[0], i[1] * weights[scen][agent_name]),
agent_score.items(),
)
)
cumulative_score = {
score_name: score_val + cumulative_score.get(score_name, 0)
for score_name, score_val in current_score.items()
}
total_weight += weights[scen][agent_name]
return Score({key: val / total_weight for key, val in cumulative_score.items()}) | Computes single overall weighted score using `weights`.
Args:
scores (Dict[str,Dict[str,Score]]): Score for each agent in every scenario.
weights (Dict[str,Dict[str,float]]): Weight for each agent in every scenario.
Returns:
Score: Weighted score. | weighted_score | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/formula.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/formula.py | MIT |
def costs_to_score(costs: Costs) -> Score:
"""Compute score from costs.
+-------------------+--------+-----------------------------------------------------------+
| | Range | Remarks |
+===================+========+===========================================================+
| Overall | [0, 1] | Total score. The higher, the better. |
+-------------------+--------+-----------------------------------------------------------+
| DistToDestination | [0, 1] | Remaining distance to destination. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| Time | [0, 1] | Time taken to complete scenario. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| HumannessError | [0, 1] | Humanness indicator. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| RuleViolation | [0, 1] | Traffic rules compliance. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
Args:
costs (Costs): Costs.
Returns:
Score: Score.
"""
dist_to_destination = costs.dist_to_destination
humanness_error = _score_humanness_error(costs=costs)
rule_violation = score_rule_violation(costs=costs)
time = costs.steps
overall = (
0.25 * (1 - dist_to_destination)
+ 0.25 * (1 - time)
+ 0.25 * (1 - humanness_error)
+ 0.25 * (1 - rule_violation)
)
return Score(
{
"overall": overall,
"dist_to_destination": dist_to_destination,
"time": time,
"humanness_error": humanness_error,
"rule_violation": rule_violation,
}
) | Compute score from costs.
+-------------------+--------+-----------------------------------------------------------+
| | Range | Remarks |
+===================+========+===========================================================+
| Overall | [0, 1] | Total score. The higher, the better. |
+-------------------+--------+-----------------------------------------------------------+
| DistToDestination | [0, 1] | Remaining distance to destination. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| Time | [0, 1] | Time taken to complete scenario. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| HumannessError | [0, 1] | Humanness indicator. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| RuleViolation | [0, 1] | Traffic rules compliance. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
Args:
costs (Costs): Costs.
Returns:
Score: Score. | costs_to_score | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/formula.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/formula.py | MIT |
def score_rule_violation(costs: Costs) -> float:
"""Default rule violation scoring formula.
Args:
costs (Costs): Costs.
Returns:
float: Rule violation score.
"""
rule_violation = np.array([costs.speed_limit, costs.wrong_way])
rule_violation = np.mean(rule_violation, dtype=float)
return rule_violation | Default rule violation scoring formula.
Args:
costs (Costs): Costs.
Returns:
float: Rule violation score. | score_rule_violation | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/formula.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/formula.py | MIT |
def _jerk_linear() -> Callable[[RoadMap, VehicleIndex, Done, Observation], Costs]:
mean = 0
step = 0
jerk_linear_max = np.linalg.norm(np.array([0.9, 0.9, 0])) # Units: m/s^3
"""
Maximum comfortable linear jerk as presented in:
Bae, Il and et. al., "Self-Driving like a Human driver instead of a
Robocar: Personalized comfortable driving experience for autonomous vehicles",
Machine Learning for Autonomous Driving Workshop at the 33rd Conference on
Neural Information Processing Systems, NeurIPS 2019, Vancouver, Canada.
"""
def func(
road_map: RoadMap, vehicle_index: VehicleIndex, done: Done, obs: Observation
) -> Costs:
nonlocal mean, step, jerk_linear_max
jerk_linear = np.linalg.norm(obs.ego_vehicle_state.linear_jerk)
j_l = min(jerk_linear / jerk_linear_max, 1)
mean, step = running_mean(prev_mean=mean, prev_step=step, new_val=j_l)
return Costs(jerk_linear=mean)
return func | Maximum comfortable linear jerk as presented in:
Bae, Il and et. al., "Self-Driving like a Human driver instead of a
Robocar: Personalized comfortable driving experience for autonomous vehicles",
Machine Learning for Autonomous Driving Workshop at the 33rd Conference on
Neural Information Processing Systems, NeurIPS 2019, Vancouver, Canada. | _jerk_linear | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/costs.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/costs.py | MIT |
def make_cost_funcs(params: Params, **kwargs) -> CostFuncs:
"""
Returns a dictionary of active cost functions to be computed as specified
by the corresponding `active` field in `params`. Cost functions are
initialized using `kwargs`, if any are provided.
Args:
params (Params): Parameters to configure individual cost functions.
kwargs (Dict[str, Dict[str,Any]]): If any, used to initialize
the appropriate cost functions.
Returns:
CostFuncs: Dictionary of active cost functions to be computed.
"""
cost_funcs = CostFuncs({})
for field in CostFuncsBase.__dataclass_fields__:
if getattr(params, field).active:
func = getattr(CostFuncsBase, field)
args = kwargs.get(field, {})
cost_funcs[field] = func(**args)
return cost_funcs | Returns a dictionary of active cost functions to be computed as specified
by the corresponding `active` field in `params`. Cost functions are
initialized using `kwargs`, if any are provided.
Args:
params (Params): Parameters to configure individual cost functions.
kwargs (Dict[str, Dict[str,Any]]): If any, used to initialize
the appropriate cost functions.
Returns:
CostFuncs: Dictionary of active cost functions to be computed. | make_cost_funcs | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/costs.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/costs.py | MIT |
def get_dist(
road_map: RoadMap, point_a: Point, point_b: Point, tolerate: bool = False
) -> Tuple[float, RoadMap.Route]:
"""
Computes the shortest route distance from point_a to point_b in the road
map. Both points should lie on a road in the road map. Key assumption about
the road map: Any two given points on the road map have valid routes in
both directions.
Args:
road_map: Scenario road map.
point_a: A point, in world-map coordinates, which lies on a road.
point_b: A point, in world-map coordinates, which lies on a road.
tolerate: If False, raises an error when distance is negative due to
route being computed in reverse direction from point_b to point_a.
Defaults to False.
Returns:
float: Shortest road distance between two points in the road map.
RoadMap.Route: Planned route between point_a and point_b.
"""
mission = NavigationMission(
start=Start(
position=point_a.as_np_array,
heading=Heading(0),
from_front_bumper=False,
),
goal=PositionalGoal(
position=point_b,
radius=2,
),
)
plan = Plan(road_map=road_map, mission=mission, find_route=False)
plan.create_route(mission=mission, start_lane_radius=3, end_lane_radius=0.5)
assert isinstance(plan.route, RoadMap.Route)
from_route_point = RoadMap.Route.RoutePoint(pt=point_a)
to_route_point = RoadMap.Route.RoutePoint(pt=point_b)
dist_tot = plan.route.distance_between(start=from_route_point, end=to_route_point)
if dist_tot == None:
raise CostError("Unable to find road on route near given points.")
elif dist_tot < 0 and not tolerate:
raise CostError(
"Route computed in reverse direction from point_b to "
f"point_a resulting in negative distance: {dist_tot}."
)
return dist_tot, plan.route | Computes the shortest route distance from point_a to point_b in the road
map. Both points should lie on a road in the road map. Key assumption about
the road map: Any two given points on the road map have valid routes in
both directions.
Args:
road_map: Scenario road map.
point_a: A point, in world-map coordinates, which lies on a road.
point_b: A point, in world-map coordinates, which lies on a road.
tolerate: If False, raises an error when distance is negative due to
route being computed in reverse direction from point_b to point_a.
Defaults to False.
Returns:
float: Shortest road distance between two points in the road map.
RoadMap.Route: Planned route between point_a and point_b. | get_dist | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/costs.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/costs.py | MIT |
def on_route(
road_map: RoadMap, route: RoadMap.Route, point: Point, radius: float = 7
) -> Tuple[bool, Optional[RoadMap.Lane], Optional[Point], Optional[float]]:
"""
Computes whether `point` is within the search `radius` distance from any
lane in the `route`.
Args:
road_map (RoadMap): Road map.
route (RoadMap.Route): Route consisting of a set of roads.
point (smarts.core.coordinates.Point): A world-coordinate point.
radius (float): Search radius.
Returns:
Tuple[bool, Optional[RoadMap.Lane], Optional[smarts.core.coordinates.Point], Optional[float]]:
True if `point` is nearby any road in `route`, else False. If true,
additionally returns the (i) nearest lane in route, (ii) its
nearest lane center point, and (iii) displacement between `point`
and lane center point.
"""
lanes = road_map.nearest_lanes(
point=point,
radius=radius,
include_junctions=True,
)
route_roads = route.roads
for lane, _ in lanes:
if lane.road in route_roads:
offset = lane.offset_along_lane(world_point=point)
lane_point = lane.from_lane_coord(RefLinePoint(s=offset))
displacement = np.linalg.norm(lane_point.as_np_array - point.as_np_array)
return True, lane, lane_point, displacement
return False, None, None, None | Computes whether `point` is within the search `radius` distance from any
lane in the `route`.
Args:
road_map (RoadMap): Road map.
route (RoadMap.Route): Route consisting of a set of roads.
point (smarts.core.coordinates.Point): A world-coordinate point.
radius (float): Search radius.
Returns:
Tuple[bool, Optional[RoadMap.Lane], Optional[smarts.core.coordinates.Point], Optional[float]]:
True if `point` is nearby any road in `route`, else False. If true,
additionally returns the (i) nearest lane in route, (ii) its
nearest lane center point, and (iii) displacement between `point`
and lane center point. | on_route | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/costs.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/costs.py | MIT |
def step(self, action: Dict[str, Any]):
"""Steps the environment by one step."""
result = super().step(action)
obs, _, terminated, truncated, info = result
# Only count steps in which an ego agent is present.
if len(obs) == 0:
return result
dones = {}
if isinstance(terminated, dict):
# Caters to environments which use (i) ObservationOptions.multi_agent,
# (ii) ObservationOptions.unformatted, and (iii) ObservationOptions.default .
dones = {k: v or truncated[k] for k, v in terminated.items()}
elif isinstance(terminated, bool):
# Caters to environments which use (i) ObservationOptions.full .
if terminated or truncated:
dones["__all__"] = True
else:
dones["__all__"] = False
dones.update({a: d["done"] for a, d in info.items()})
if isinstance(next(iter(obs.values())), dict):
# Caters to environments which use (i) ObservationOptions.multi_agent,
# (ii) ObservationOptions.full, and (iii) ObservationOptions.default .
active_agents = [
agent_id for agent_id, agent_obs in obs.items() if agent_obs["active"]
]
else:
# Caters to environments which uses (i) ObservationOptions.unformatted .
active_agents = list(obs.keys())
for agent_name in active_agents:
base_obs: Observation = info[agent_name]["env_obs"]
self._steps[agent_name] += 1
# Compute all cost functions.
costs = Costs()
for _, cost_func in self._cost_funcs[agent_name].items():
new_costs = cost_func(
self._road_map,
self._vehicle_index,
Done(dones[agent_name]),
base_obs,
)
if dones[agent_name]:
costs = add_dataclass(new_costs, costs)
if dones[agent_name] == False:
# Skip the rest, if agent is not done yet.
continue
self._done_agents.add(agent_name)
# Only these termination reasons are considered by the current metrics.
if not (
base_obs.events.reached_goal
or len(base_obs.events.collisions)
or base_obs.events.off_road
or base_obs.events.reached_max_episode_steps
or base_obs.events.interest_done
):
raise MetricsError(
"Expected reached_goal, collisions, off_road, "
"max_episode_steps, or interest_done, to be true "
f"on agent done, but got events: {base_obs.events}."
)
# Update stored counts and costs.
counts = Counts(
episodes=1,
steps=self._steps[agent_name],
goals=base_obs.events.reached_goal,
)
self._records_sum[self._scen_name][agent_name].counts = add_dataclass(
counts, self._records_sum[self._scen_name][agent_name].counts
)
self._records_sum[self._scen_name][agent_name].costs = add_dataclass(
costs, self._records_sum[self._scen_name][agent_name].costs
)
if dones["__all__"] is True:
assert (
self._done_agents == self._cur_agents
), f'done["__all__"]==True but not all agents are done. Current agents = {self._cur_agents}. Agents done = {self._done_agents}.'
return result | Steps the environment by one step. | step | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/metrics.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/metrics.py | MIT |
def reset(self, **kwargs):
"""Resets the environment."""
result = super().reset(**kwargs)
self._cur_agents = set(self.env.agent_interfaces.keys())
self._steps = dict.fromkeys(self._cur_agents, 0)
self._done_agents = set()
self._scen = self.env.smarts.scenario
self._scen_name = self.env.smarts.scenario.name
self._road_map = self.env.smarts.scenario.road_map
self._vehicle_index = self.env.smarts.vehicle_index
self._cost_funcs = {}
_check_scen(scenario=self._scen, agent_interfaces=self.env.agent_interfaces)
# Get the actor of interest, if any is present in the current scenario.
interest_actors = self.env.smarts.cached_frame.interest_actors().keys()
if len(interest_actors) == 0:
interest_actor = None
elif len(interest_actors) == 1:
interest_actor = next(iter(interest_actors))
else:
raise MetricsError(
f"Expected <=1 actor of interest, but got {len(interest_actors)} "
"actors of interest."
)
# fmt: off
# Refresh the cost functions for every episode.
for agent_name in self._cur_agents:
cost_funcs_kwargs = {}
if self._params.dist_to_destination.active:
interest_criteria = self.env.agent_interfaces[agent_name].done_criteria.interest
if interest_criteria == None:
end_pos = self._scen.missions[agent_name].goal.position
dist_tot, route = get_dist(
road_map=self._road_map,
point_a=self._scen.missions[agent_name].start.point,
point_b=end_pos,
)
elif isinstance(interest_criteria, InterestDoneCriteria) and (interest_actor is not None):
end_pos, dist_tot, route = _get_end_and_dist(
interest_actor=interest_actor,
vehicle_index=self._vehicle_index,
traffic_sims=self.env.smarts.traffic_sims,
scenario=self._scen,
road_map=self._road_map,
)
cost_funcs_kwargs.update(
{
"vehicle_gap": {
"num_agents": len(self._cur_agents),
"actor": interest_actor,
}
}
)
else:
raise MetricsError(
"Unsupported configuration for distance-to-destination cost function."
)
cur_on_route, cur_route_lane, cur_route_lane_point, cur_route_displacement = on_route(
road_map=self._road_map, route=route, point=self._scen.missions[agent_name].start.point
)
assert cur_on_route, f"{agent_name} does not start nearby the desired route."
cost_funcs_kwargs.update({
"dist_to_destination": {
"end_pos": end_pos,
"dist_tot": dist_tot,
"route": route,
"prev_route_lane": cur_route_lane,
"prev_route_lane_point": cur_route_lane_point,
"prev_route_displacement": cur_route_displacement,
}
})
max_episode_steps = self._scen.metadata.get("scenario_duration",0) / self.env.smarts.fixed_timestep_sec
max_episode_steps = max_episode_steps or self.env.agent_interfaces[agent_name].max_episode_steps
cost_funcs_kwargs.update({
"dist_to_obstacles": {
"ignore": self._params.dist_to_obstacles.ignore
},
"steps": {
"max_episode_steps": max_episode_steps
},
})
self._cost_funcs[agent_name] = make_cost_funcs(
params=self._params, **cost_funcs_kwargs
)
# Create new entry in records_sum for new scenarios.
if self._scen_name not in self._records_sum.keys():
self._records_sum[self._scen_name] = {
agent_name: Record(
costs=Costs(),
counts=Counts(),
metadata=Metadata(difficulty=self._scen.metadata.get("scenario_difficulty",1)),
)
for agent_name in self._cur_agents
}
return result | Resets the environment. | reset | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/metrics.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/metrics.py | MIT |
def records(self) -> Dict[str, Dict[str, Record]]:
"""
Fine grained performance metric for each agent in each scenario.
.. code-block:: bash
$ env.records()
$ {
scen1: {
agent1: Record(costs, counts, metadata),
agent2: Record(costs, counts, metadata),
},
scen2: {
agent1: Record(costs, counts, metadata),
},
}
Returns:
Dict[str, Dict[str, Record]]: Performance record in a nested
dictionary for each agent in each scenario.
"""
records = {}
for scen, agents in self._records_sum.items():
records[scen] = {}
for agent, data in agents.items():
data_copy = copy.deepcopy(data)
records[scen][agent] = Record(
costs=op_dataclass(
data_copy.costs, data_copy.counts.episodes, divide
),
counts=data_copy.counts,
metadata=data_copy.metadata,
)
return records | Fine grained performance metric for each agent in each scenario.
.. code-block:: bash
$ env.records()
$ {
scen1: {
agent1: Record(costs, counts, metadata),
agent2: Record(costs, counts, metadata),
},
scen2: {
agent1: Record(costs, counts, metadata),
},
}
Returns:
Dict[str, Dict[str, Record]]: Performance record in a nested
dictionary for each agent in each scenario. | records | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/metrics.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/metrics.py | MIT |
def score(self) -> Score:
"""
Computes score according to environment specific formula from the
Formula class.
Returns:
Dict[str, float]: Contains key-value pairs denoting score
components.
"""
return self._formula.score(records=self.records()) | Computes score according to environment specific formula from the
Formula class.
Returns:
Dict[str, float]: Contains key-value pairs denoting score
components. | score | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/metrics.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/metrics.py | MIT |
def _get_end_and_dist(
interest_actor: str,
vehicle_index: VehicleIndex,
traffic_sims: List[TrafficProvider],
scenario: Scenario,
road_map: RoadMap,
) -> Tuple[Point, float, RoadMap.Route]:
"""Computes the end point and route distance for a given vehicle of interest.
Args:
interest_actor (str): Name of vehicle of interest.
vehicle_index (VehicleIndex): Index of all vehicles currently present.
traffic_sims (List[TrafficProvider]): List of traffic providers.
scenario (Scenario): Current scenario.
road_map (RoadMap): Underlying road map.
Returns:
Tuple[Point, float, RoadMap.Route]: End point, route distance, and planned route.
"""
# Check if the interest vehicle is a social agent.
interest_social_missions = [
mission for name, mission in scenario.missions.items() if interest_actor in name
]
# Check if the actor of interest is a traffic vehicle.
interest_traffic_sims = [
traffic_sim
for traffic_sim in traffic_sims
if traffic_sim.manages_actor(interest_actor)
]
if len(interest_social_missions) + len(interest_traffic_sims) != 1:
raise MetricsError(
"Social agents and traffic providers contain zero or "
"more than one actor of interest."
)
if len(interest_social_missions) == 1:
interest_social_mission = interest_social_missions[0]
goal = interest_social_mission.goal
assert isinstance(goal, PositionalGoal)
end_pos = goal.position
dist_tot, route = get_dist(
road_map=road_map,
point_a=interest_social_mission.start.point,
point_b=end_pos,
)
else:
interest_traffic_sim = interest_traffic_sims[0]
end_pos, dist_tot, route = _get_traffic_end_and_dist(
vehicle_name=interest_actor,
vehicle_index=vehicle_index,
traffic_sim=interest_traffic_sim,
road_map=road_map,
)
return end_pos, dist_tot, route | Computes the end point and route distance for a given vehicle of interest.
Args:
interest_actor (str): Name of vehicle of interest.
vehicle_index (VehicleIndex): Index of all vehicles currently present.
traffic_sims (List[TrafficProvider]): List of traffic providers.
scenario (Scenario): Current scenario.
road_map (RoadMap): Underlying road map.
Returns:
Tuple[Point, float, RoadMap.Route]: End point, route distance, and planned route. | _get_end_and_dist | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/metrics.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/metrics.py | MIT |
def _get_traffic_end_and_dist(
vehicle_name: str,
vehicle_index: VehicleIndex,
traffic_sim: TrafficProvider,
road_map: RoadMap,
) -> Tuple[Point, float, RoadMap.Route]:
"""Computes the end point and route distance of a (i) SUMO traffic,
(ii) SMARTS traffic, or (iii) history traffic vehicle
specified by `vehicle_name`.
Args:
vehicle_name (str): Name of vehicle.
vehicle_index (VehicleIndex): Index of all vehicles currently present.
traffic_sim (TrafficProvider): Traffic provider.
road_map (RoadMap): Underlying road map.
Returns:
Tuple[Point, float, RoadMap.Route]: End point, route distance, and planned route.
"""
if isinstance(traffic_sim, (SumoTrafficSimulation, LocalTrafficProvider)):
start_pos = Point(*vehicle_index.vehicle_position(vehicle_name))
dest_road = traffic_sim.vehicle_dest_road(vehicle_name)
end_pos = (
road_map.road_by_id(dest_road)
.lane_at_index(0)
.from_lane_coord(RefLinePoint(s=np.inf))
)
dist_tot, route = get_dist(
road_map=road_map, point_a=start_pos, point_b=end_pos
)
return end_pos, dist_tot, route
elif isinstance(traffic_sim, TrafficHistoryProvider):
history = traffic_sim.vehicle_history_window(vehicle_id=vehicle_name)
start_pos = Point(x=history.start_position_x, y=history.start_position_y)
end_pos = Point(x=history.end_position_x, y=history.end_position_y)
# TODO : Plan.create_route() creates the shortest route which is
# sufficient in simple maps, but it may or may not match the actual
# roads traversed by the history vehicle in complex maps. Ideally we
# should use the actual road ids traversed by the history vehicle to
# compute the distance.
dist_tot, route = get_dist(
road_map=road_map, point_a=start_pos, point_b=end_pos
)
return end_pos, dist_tot, route
else:
raise MetricsError(f"Unsupported traffic provider {traffic_sim.source_str}.") | Computes the end point and route distance of a (i) SUMO traffic,
(ii) SMARTS traffic, or (iii) history traffic vehicle
specified by `vehicle_name`.
Args:
vehicle_name (str): Name of vehicle.
vehicle_index (VehicleIndex): Index of all vehicles currently present.
traffic_sim (TrafficProvider): Traffic provider.
road_map (RoadMap): Underlying road map.
Returns:
Tuple[Point, float, RoadMap.Route]: End point, route distance, and planned route. | _get_traffic_end_and_dist | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/metrics.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/metrics.py | MIT |
def __getattr__(self, name: str):
"""Returns an attribute with ``name``, unless ``name`` is a restricted
attribute or starts with an underscore."""
if name == "_np_random":
raise AttributeError(
"Can't access `_np_random` of a wrapper, use `self.unwrapped._np_random` or `self.np_random`."
)
elif name.startswith("_") or name in [
"smarts",
]:
raise AttributeError(f"accessing private attribute '{name}' is prohibited")
return getattr(self.env, name) | Returns an attribute with ``name``, unless ``name`` is a restricted
attribute or starts with an underscore. | __getattr__ | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/metrics.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/metrics.py | MIT |
def _check_env(agent_interfaces: Dict[str, AgentInterface], params: Params):
"""Checks environment suitability to compute performance metrics.
Args:
agent_interfaces (Dict[str,AgentInterface]): Agent interfaces.
params (Params): Metric parameters.
Raises:
AttributeError: If any required agent interface is disabled or
is ill defined.
"""
def check_intrfc(agent_intrfc: AgentInterface):
intrfc = {
"accelerometer": bool(agent_intrfc.accelerometer),
"max_episode_steps": bool(agent_intrfc.max_episode_steps),
"neighborhood_vehicle_states": bool(agent_intrfc.neighborhood_vehicles),
"waypoint_paths": bool(agent_intrfc.waypoints),
"done_criteria.collision": agent_intrfc.done_criteria.collision,
"done_criteria.off_road": agent_intrfc.done_criteria.off_road,
}
return intrfc
for agent_name, agent_interface in agent_interfaces.items():
intrfc = check_intrfc(agent_interface)
if not all(intrfc.values()):
raise AttributeError(
(
"Enable {0}'s disabled interface to "
"compute its metrics. Current interface is "
"{1}."
).format(agent_name, intrfc)
)
interest_criteria = agent_interface.done_criteria.interest
if (
params.dist_to_destination.active
and isinstance(interest_criteria, InterestDoneCriteria)
) and not (
len(interest_criteria.actors_filter) == 0
and interest_criteria.include_scenario_marked == True
):
raise AttributeError(
(
"InterestDoneCriteria with none or multiple actors of "
"interest is currently not supported when "
"dist_to_destination cost function is enabled. Current "
"interface is {0}:{1}."
).format(agent_name, interest_criteria)
) | Checks environment suitability to compute performance metrics.
Args:
agent_interfaces (Dict[str,AgentInterface]): Agent interfaces.
params (Params): Metric parameters.
Raises:
AttributeError: If any required agent interface is disabled or
is ill defined. | _check_env | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/metrics.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/metrics.py | MIT |
def _check_scen(scenario: Scenario, agent_interfaces: Dict[str, AgentInterface]):
"""Checks scenario suitability to compute performance metrics.
Args:
scen (Scenario): A ``smarts.core.scenario.Scenario`` class.
agent_interfaces (Dict[str,AgentInterface]): Agent interfaces.
Raises:
MetricsError: If (i) scenario difficulty is not properly normalized,
or (ii) any agent's goal is improperly configured.
"""
difficulty = scenario.metadata.get("scenario_difficulty", None)
if not ((difficulty is None) or (0 < difficulty <= 1)):
raise MetricsError(
"Expected scenario difficulty to be normalized within (0,1], but "
f"got difficulty={difficulty}."
)
goal_types = {
agent_name: type(agent_mission.goal)
for agent_name, agent_mission in scenario.missions.items()
}
aoi = scenario.metadata.get("actor_of_interest_re_filter", None)
for agent_name, agent_interface in agent_interfaces.items():
interest_criteria = agent_interface.done_criteria.interest
if not (
(goal_types[agent_name] == PositionalGoal and interest_criteria is None)
or (
goal_types[agent_name] == EndlessGoal
and isinstance(interest_criteria, InterestDoneCriteria)
and aoi != None
)
):
raise MetricsError(
"{0} has an unsupported goal type {1} and interest done criteria {2} "
"combination.".format(
agent_name, goal_types[agent_name], interest_criteria
)
) | Checks scenario suitability to compute performance metrics.
Args:
scen (Scenario): A ``smarts.core.scenario.Scenario`` class.
agent_interfaces (Dict[str,AgentInterface]): Agent interfaces.
Raises:
MetricsError: If (i) scenario difficulty is not properly normalized,
or (ii) any agent's goal is improperly configured. | _check_scen | python | huawei-noah/SMARTS | smarts/env/gymnasium/wrappers/metric/metrics.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/gymnasium/wrappers/metric/metrics.py | MIT |
def reset(self, **kwargs):
"""
Reset the gym environment and restart recording.
"""
observations = super().reset(**kwargs)
if self.recording == False:
self.start_recording()
return observations | Reset the gym environment and restart recording. | reset | python | huawei-noah/SMARTS | smarts/env/wrappers/recorder_wrapper.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/wrappers/recorder_wrapper.py | MIT |
def start_recording(self):
"""
Start the gif recorder and capture the first frame.
"""
if self.gif_recorder is None:
self.gif_recorder = GifRecorder(self.video_name_folder, self.env)
image = super().render(mode="rgb_array")
self.gif_recorder.capture_frame(self.next_frame_id(), image)
self.recording = True | Start the gif recorder and capture the first frame. | start_recording | python | huawei-noah/SMARTS | smarts/env/wrappers/recorder_wrapper.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/wrappers/recorder_wrapper.py | MIT |
def stop_recording(self):
"""
Stop recording.
"""
self.recording = False | Stop recording. | stop_recording | python | huawei-noah/SMARTS | smarts/env/wrappers/recorder_wrapper.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/wrappers/recorder_wrapper.py | MIT |
def step(self, action):
"""
Step the environment using the action and record the next frame.
"""
observations, rewards, dones, infos = super().step(action)
if self.recording == True:
image = super().render(mode="rgb_array")
self.gif_recorder.capture_frame(self.next_frame_id(), image)
return observations, rewards, dones, infos | Step the environment using the action and record the next frame. | step | python | huawei-noah/SMARTS | smarts/env/wrappers/recorder_wrapper.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/wrappers/recorder_wrapper.py | MIT |
def next_frame_id(self):
"""
Get the id for next frame.
"""
self.current_frame += 1
return self.current_frame | Get the id for next frame. | next_frame_id | python | huawei-noah/SMARTS | smarts/env/wrappers/recorder_wrapper.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/wrappers/recorder_wrapper.py | MIT |
def close(self):
"""
Close the recorder by deleting the image folder and generate the gif file.
"""
if self.gif_recorder is not None:
self.gif_recorder.generate_gif()
self.gif_recorder.close_recorder()
self.gif_recorder = None
self.recording = False | Close the recorder by deleting the image folder and generate the gif file. | close | python | huawei-noah/SMARTS | smarts/env/wrappers/recorder_wrapper.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/wrappers/recorder_wrapper.py | MIT |
def capture_frame(self, step_num: int, image: np.ndarray):
"""
Create image according to the ``"rgb_array"`` and store it with step number in the destination folder
"""
with ImageClip(image) as image_clip:
image_clip.save_frame(
f"{self.frame_folder}/{self._video_name}_{step_num}.jpeg"
) | Create image according to the ``"rgb_array"`` and store it with step number in the destination folder | capture_frame | python | huawei-noah/SMARTS | smarts/env/wrappers/gif_recorder.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/wrappers/gif_recorder.py | MIT |
def generate_gif(self):
"""
Use the images in the same folder to create a gif file.
"""
with ImageSequenceClip(self.frame_folder, fps=10) as clip:
clip.write_gif(f"{self._video_root_path}/{self._video_name}.gif")
clip.close() | Use the images in the same folder to create a gif file. | generate_gif | python | huawei-noah/SMARTS | smarts/env/wrappers/gif_recorder.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/wrappers/gif_recorder.py | MIT |
def close_recorder(self):
"""
close the recorder by deleting the image folder.
"""
shutil.rmtree(self.frame_folder, ignore_errors=True) | close the recorder by deleting the image folder. | close_recorder | python | huawei-noah/SMARTS | smarts/env/wrappers/gif_recorder.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/wrappers/gif_recorder.py | MIT |
def flatten_obs(sim_obs):
"""Convert the observation into tuples of observations (for purposes of flattening boids)."""
obs = []
for agent_id, agent_obs in sim_obs.items():
if agent_obs is None:
continue
elif isinstance(agent_obs, dict): # is_boid_agent
for vehicle_id, vehicle_obs in agent_obs.items():
obs.append((vehicle_id, vehicle_obs))
else:
obs.append((agent_id, agent_obs))
return obs | Convert the observation into tuples of observations (for purposes of flattening boids). | flatten_obs | python | huawei-noah/SMARTS | smarts/env/wrappers/utils/rendering.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/wrappers/utils/rendering.py | MIT |
def vis_sim_obs(sim_obs) -> Dict[str, np.ndarray]:
"""Convert the observations into format for mp4 video output."""
vis_images = defaultdict(list)
for agent_id, agent_obs in flatten_obs(sim_obs):
drivable_area = getattr(agent_obs, "drivable_area_grid_map", None)
if drivable_area is not None:
image = drivable_area.data
image = image[:, :, [0, 0, 0]]
image = image.astype(np.uint8)
vis_images[f"{agent_id}-DrivableAreaGridMap"].append(image)
ogm = getattr(agent_obs, "occupancy_grid_map", None)
if ogm is not None:
image: np.ndarray = ogm.data
image = image[:, :, [0, 0, 0]]
image = image.astype(np.uint8)
vis_images[f"{agent_id}-OGM"].append(image)
rgb = getattr(agent_obs, "top_down_rgb", None)
if rgb is not None:
image = rgb.data
image = image.astype(np.uint8)
vis_images[f"{agent_id}-Top-Down-RGB"].append(image)
return {key: np.array(images) for key, images in vis_images.items()} | Convert the observations into format for mp4 video output. | vis_sim_obs | python | huawei-noah/SMARTS | smarts/env/wrappers/utils/rendering.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/wrappers/utils/rendering.py | MIT |
def show_notebook_videos(path="videos", height="400px", split_html=""):
"""Render a video in a python display. Usually for jupyter notebooks."""
if not isnotebook():
return
from IPython import display as ipythondisplay
html = []
for mp4 in Path(path).glob("*.mp4"):
video_b64 = base64.b64encode(mp4.read_bytes())
html.append(
"""<video alt="{}" autoplay
loop controls style="height: {};">
<source src="data:video/mp4;base64,{}" type="video/mp4" />
</video>""".format(
mp4, height, video_b64.decode("ascii")
)
)
ipythondisplay.display(ipythondisplay.HTML(data=split_html.join(html))) | Render a video in a python display. Usually for jupyter notebooks. | show_notebook_videos | python | huawei-noah/SMARTS | smarts/env/wrappers/utils/rendering.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/wrappers/utils/rendering.py | MIT |
def step(self, obs, rewards, dones, infos):
"""Record a step."""
single_env_obs = obs
if self.is_vector_env:
# For now only render one environment
single_env_obs = obs[0]
self._record_for_render(single_env_obs) | Record a step. | step | python | huawei-noah/SMARTS | smarts/env/utils/record.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/record.py | MIT |
def render(self, mode="rgb_array", **kwargs):
"""Render the given camera image in this environment."""
if len(self._image_frame) > 0:
return self._image_frame | Render the given camera image in this environment. | render | python | huawei-noah/SMARTS | smarts/env/utils/record.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/record.py | MIT |
def reset(self, obs) -> Any:
"""Record the reset of the environment."""
self._record_for_render(obs)
return obs | Record the reset of the environment. | reset | python | huawei-noah/SMARTS | smarts/env/utils/record.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/record.py | MIT |
def format(self, obs: Observation):
"""Selects and formats the given observation to get a value that matches the space attribute."""
raise NotImplementedError() | Selects and formats the given observation to get a value that matches the space attribute. | format | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def active(self, agent_interface: AgentInterface) -> bool:
"""If this formatting is active and should be included in the output."""
raise NotImplementedError() | If this formatting is active and should be included in the output. | active | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def name(self):
"""The name that should represent this observation space in hierarchy."""
raise NotImplementedError() | The name that should represent this observation space in hierarchy. | name | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def space(self):
"""The observation space this should format the smarts observation to match."""
raise NotImplementedError() | The observation space this should format the smarts observation to match. | space | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def __call__(self, agent_interface: AgentInterface) -> "BaseSpaceFormat":
"""The observation space this should format the smarts observation to match."""
raise NotImplementedError() | The observation space this should format the smarts observation to match. | __call__ | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def format(self, obs: Observation):
"""Selects and formats the given observation to get a value that matches the :attr:`space`."""
return self._formatting_func(obs) | Selects and formats the given observation to get a value that matches the :attr:`space`. | format | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def active(self, agent_interface: AgentInterface) -> bool:
"""If this formatting is active and should be included in the output."""
return self._active_func(agent_interface) | If this formatting is active and should be included in the output. | active | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def name(self):
"""The name that should represent this observation space in hierarchy."""
return self._name | The name that should represent this observation space in hierarchy. | name | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def space(self):
"""The observation space this should format the smarts observation to match."""
return self._space | The observation space this should format the smarts observation to match. | space | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def format(self, obs: Observation):
"""Selects and formats the given observation to get a value that matches the :attr:`space`."""
return self._formatting_func(obs, self._agent_interface) | Selects and formats the given observation to get a value that matches the :attr:`space`. | format | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def active(self, agent_interface: AgentInterface) -> bool:
"""If this formatting is active and should be included in the output."""
return self._active_func(agent_interface) | If this formatting is active and should be included in the output. | active | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def name(self):
"""The name that should represent this observation space in hierarchy."""
return self._name | The name that should represent this observation space in hierarchy. | name | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def space(self):
"""The observation space this should format the smarts observation to match."""
assert (
self._agent_interface is not None
), "Agent interface must be applied to call this method."
return self._space_func(self._agent_interface) | The observation space this should format the smarts observation to match. | space | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def active(self, agent_interface: AgentInterface) -> bool:
"""If this formatting is active and should be included in the output."""
return self._active_func(agent_interface) | If this formatting is active and should be included in the output. | active | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def name(self):
"""The name that should represent this observation space in hierarchy."""
return self._name | The name that should represent this observation space in hierarchy. | name | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def format(self, observations: Dict[str, Observation]):
"""Formats smarts observations fixed sized containers."""
if self.observation_options == ObservationOptions.unformatted:
return observations
# TODO MTA: Parallelize the conversion if possible
active_obs = {
agent_id: self._space_formats[agent_id].format(obs)
for agent_id, obs in observations.items()
}
out_obs = active_obs
if self.observation_options == ObservationOptions.full:
missing_ids = set(self._space_formats.keys()) - set(active_obs.keys())
padded_obs = {
agent_id: space_format.space.sample()
for agent_id, space_format in self._space_formats.items()
if agent_id in missing_ids
}
for obs in padded_obs.values():
obs["active"] = np.int64(False)
out_obs.update(padded_obs)
return out_obs | Formats smarts observations fixed sized containers. | format | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def space(self):
"""The observation space this should format the smarts observations to match."""
if self.observation_options is ObservationOptions.unformatted:
return None
return gym.spaces.Dict(
{
agent_id: space_format.space
for agent_id, space_format in self._space_formats.items()
}
) | The observation space this should format the smarts observations to match. | space | python | huawei-noah/SMARTS | smarts/env/utils/observation_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/observation_conversion.py | MIT |
def get_scenario_specs(scenario: str):
"""Returns the appropriate scenario specification.
Args:
scenario (str): Scenario
Returns:
Dict[str, Any]: A parameter dictionary.
"""
if os.path.isdir(scenario):
import re
regexp_agent = re.compile(r"agents_\d+")
regexp_num = re.compile(r"\d+")
matches_agent = regexp_agent.search(scenario)
if not matches_agent:
raise Exception(
f"Scenario path should match regexp of 'agents_\\d+', but got {scenario}"
)
num_agent = regexp_num.search(matches_agent.group(0))
return {
"scenario": str(scenario),
"num_agent": int(num_agent.group(0)),
}
else:
raise Exception(f"Unknown scenario {scenario}.") | Returns the appropriate scenario specification.
Args:
scenario (str): Scenario
Returns:
Dict[str, Any]: A parameter dictionary. | get_scenario_specs | python | huawei-noah/SMARTS | smarts/env/utils/scenario.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/scenario.py | MIT |
def get_formatters() -> Dict[ActionSpaceType, FormattingGroup]:
"""Get the currently available formatting groups for converting actions from `gym` space
standard to SMARTS accepted observations.
Returns:
Dict[ActionSpaceType, Any]: The currently available formatting groups.
"""
return {
ActionSpaceType.ActuatorDynamic: FormattingGroup(
space=_actuator_dynamic_space,
),
ActionSpaceType.Continuous: FormattingGroup(
space=_continuous_space,
),
ActionSpaceType.Direct: FormattingGroup(
space=_direct_space,
),
ActionSpaceType.Empty: FormattingGroup(
space=gym.spaces.Tuple(spaces=()),
formatting_func=lambda a: None,
),
ActionSpaceType.Lane: FormattingGroup(
space=_lane_space,
formatting_func=_format_lane_space,
),
ActionSpaceType.LaneWithContinuousSpeed: FormattingGroup(
space=_lane_with_continuous_speed_space,
),
ActionSpaceType.MPC: FormattingGroup(
space=_mpc_space,
),
ActionSpaceType.MultiTargetPose: FormattingGroup(
space=_multi_target_pose_space,
),
ActionSpaceType.RelativeTargetPose: FormattingGroup(
space=_relative_target_pose_space,
),
ActionSpaceType.TargetPose: FormattingGroup(
space=_target_pose_space,
),
ActionSpaceType.Trajectory: FormattingGroup(
space=_trajectory_space,
),
ActionSpaceType.TrajectoryWithTime: FormattingGroup(
space=_trajectory_with_time_space,
),
} | Get the currently available formatting groups for converting actions from `gym` space
standard to SMARTS accepted observations.
Returns:
Dict[ActionSpaceType, Any]: The currently available formatting groups. | get_formatters | python | huawei-noah/SMARTS | smarts/env/utils/action_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/action_conversion.py | MIT |
def format(self, actions: Dict[str, Any]):
"""Format the action to a form that SMARTS can use.
Args:
actions (Dict[str, Any]): The actions to format.
Returns:
(Observation, Dict[str, Any]): The formatted actions.
"""
if self.action_options == ActionOptions.unformatted:
return actions
out_actions = {}
formatting_groups = get_formatters()
for agent_id, action in actions.items():
agent_interface = self._agent_interfaces[agent_id]
format_ = formatting_groups[agent_interface.action]
space: gym.Space = self.space[agent_id]
assert space is format_.space
dtype = action.dtype if isinstance(action, np.ndarray) else None
assert space.contains(
action
), f"Action {action} of type `{type(action)}` & {dtype} does not match space {space}!"
formatted_action = format_.formatting_func(action)
out_actions[agent_id] = formatted_action
if self.action_options == ActionOptions.full:
assert actions.keys() == self.space.spaces.keys()
return out_actions | Format the action to a form that SMARTS can use.
Args:
actions (Dict[str, Any]): The actions to format.
Returns:
(Observation, Dict[str, Any]): The formatted actions. | format | python | huawei-noah/SMARTS | smarts/env/utils/action_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/action_conversion.py | MIT |
def supported(action_type: ActionSpaceType):
"""Test if the action is in the supported int
Args:
action_type (ActionSpaceType): The action type to check.
Returns:
bool: If the action type is supported by the formatter.
"""
return action_type in get_formatters() | Test if the action is in the supported int
Args:
action_type (ActionSpaceType): The action type to check.
Returns:
bool: If the action type is supported by the formatter. | supported | python | huawei-noah/SMARTS | smarts/env/utils/action_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/action_conversion.py | MIT |
def space(self) -> gym.spaces.Dict:
"""The action space given the current configuration.
Returns:
gym.spaces.Dict: A description of the action space that this formatter requires.
"""
if self.action_options is ActionOptions.unformatted:
return None
return gym.spaces.Dict(
{
agent_id: get_formatters()[agent_interface.action].space
for agent_id, agent_interface in self._agent_interfaces.items()
}
) | The action space given the current configuration.
Returns:
gym.spaces.Dict: A description of the action space that this formatter requires. | space | python | huawei-noah/SMARTS | smarts/env/utils/action_conversion.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/env/utils/action_conversion.py | MIT |
def auto_install_requirements(benchmark_spec: Dict[str, Any]):
"""Install dependencies as specified by the configuration given."""
# TODO MTA: add configuration to configuration file
requirements: List[str] = benchmark_spec.get("requirements", [])
if len(requirements) > 0:
subprocess.check_call(
[
sys.executable,
"-m",
"pip",
"install",
*requirements,
]
) | Install dependencies as specified by the configuration given. | auto_install_requirements | python | huawei-noah/SMARTS | smarts/benchmark/__init__.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/benchmark/__init__.py | MIT |
def run_benchmark(
benchmark_name: str,
benchmark_version: Optional[float],
agent_locator: str,
benchmark_listing: pathlib.Path,
debug_log: bool = False,
auto_install: bool = False,
):
"""Runs a benchmark with the given configuration. Use `scl benchmark list` to see the available
benchmarks.
Args:
benchmark_name(str): The name of the benchmark to run.
benchmark_version(float|None): The version of the benchmark.
agent_locator(str): Locator string for the registered agent.
benchmark_listing(pathlib.Path): A configuration file that lists benchmark metadata and must list
the target benchmark.
debug_log: Debug to `stdout`.
"""
from smarts.core.utils.resources import load_yaml_config_with_substitution
listing_dict = load_yaml_config_with_substitution(benchmark_listing)
benchmarks = listing_dict["benchmarks"]
try:
benchmark_group = benchmarks[benchmark_name]
except KeyError as err:
raise RuntimeError(
f"`{benchmark_name}` not found in config `{BENCHMARK_LISTING_FILE}`."
) from err
benchmark_spec = _benchmark_at_version(benchmark_group, benchmark_version)
if auto_install:
auto_install_requirements(benchmark_spec)
module, _, name = benchmark_spec["entrypoint"].rpartition(".")
entrypoint = _get_entrypoint(module, name)
entrypoint(
**benchmark_spec.get("params", {}),
agent_locator=agent_locator,
debug_log=debug_log,
) | Runs a benchmark with the given configuration. Use `scl benchmark list` to see the available
benchmarks.
Args:
benchmark_name(str): The name of the benchmark to run.
benchmark_version(float|None): The version of the benchmark.
agent_locator(str): Locator string for the registered agent.
benchmark_listing(pathlib.Path): A configuration file that lists benchmark metadata and must list
the target benchmark.
debug_log: Debug to `stdout`. | run_benchmark | python | huawei-noah/SMARTS | smarts/benchmark/__init__.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/benchmark/__init__.py | MIT |
def list_benchmarks(benchmark_listing):
"""Lists details of the currently available benchmarks."""
from smarts.core.utils.resources import load_yaml_config_with_substitution
return load_yaml_config_with_substitution(pathlib.Path(benchmark_listing)) | Lists details of the currently available benchmarks. | list_benchmarks | python | huawei-noah/SMARTS | smarts/benchmark/__init__.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/benchmark/__init__.py | MIT |
def test_e10_drive(get_benchmark_args):
"""Tests Driving SMARTS 2023.1 and 2023.2 benchmarks using `examples/e10_drive` model."""
from contrib_policy.policy import Policy
agent_locator = "examples.e10_drive.inference:contrib-agent-v0"
action = 1
with mock.patch.object(Policy, "_get_model", _get_model(action)):
benchmark(benchmark_args=get_benchmark_args, agent_locator=agent_locator) | Tests Driving SMARTS 2023.1 and 2023.2 benchmarks using `examples/e10_drive` model. | test_e10_drive | python | huawei-noah/SMARTS | smarts/benchmark/tests/test_benchmark_runner.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/benchmark/tests/test_benchmark_runner.py | MIT |
def test_e11_platoon(get_benchmark_args):
"""Tests Driving SMARTS 2023.3 benchmark using `examples/e11_platoon` model."""
from contrib_policy.policy import Policy
agent_locator = "examples.e11_platoon.inference:contrib-agent-v0"
action = 2
with mock.patch.object(Policy, "_get_model", _get_model(action)):
benchmark(benchmark_args=get_benchmark_args, agent_locator=agent_locator) | Tests Driving SMARTS 2023.3 benchmark using `examples/e11_platoon` model. | test_e11_platoon | python | huawei-noah/SMARTS | smarts/benchmark/tests/test_benchmark_runner.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/benchmark/tests/test_benchmark_runner.py | MIT |
def benchmark(benchmark_args, agent_locator) -> Tuple[Dict, Dict]:
"""Runs the benchmark using the following:
Args:
benchmark_args(dict): Arguments configuring the benchmark.
agent_locator(str): Locator string for the registered agent.
debug_log(bool): Whether the benchmark should log to `stdout`.
"""
print(f"\n\n<-- Starting `{benchmark_args['name']}` benchmark -->\n")
message = benchmark_args.get("message")
if message is not None:
print(message)
debug = benchmark_args.get("debug", {})
iterator = _serial_task_iterator if debug.get("serial") else _parallel_task_iterator
root_dir = Path(__file__).resolve().parents[3]
metric_formula_default = (
root_dir / "smarts" / "env" / "gymnasium" / "wrappers" / "metric" / "formula.py"
)
weighted_scores, agent_scores = {}, {}
for env_name, env_config in benchmark_args["envs"].items():
metric_formula = (
root_dir / x
if (x := env_config.get("metric_formula", None)) != None
else metric_formula_default
)
env_args = {}
for scenario in env_config["scenarios"]:
kwargs = dict(benchmark_args.get("shared_env_kwargs", {}))
kwargs.update(env_config.get("kwargs", {}))
env_args[f"{env_name}-{scenario}"] = dict(
env=env_config.get("loc") or env_config["locator"],
scenario=str(root_dir / scenario),
kwargs=kwargs,
metric_formula=metric_formula,
)
records_cumulative: Dict[str, Dict[str, Record]] = {}
for _, records in iterator(
env_args=env_args,
benchmark_args=benchmark_args,
agent_locator=agent_locator,
):
records_cumulative.update(records)
weighted_score = _get_weighted_score(
records=records_cumulative, metric_formula=metric_formula
)
weighted_scores[env_name] = weighted_score
print("\n\nOverall Weighted Score:\n")
print(json.dumps(weighted_score, indent=2))
agent_score = _get_agent_score(
records=records_cumulative, metric_formula=metric_formula
)
agent_scores[env_name] = agent_score
print("\n\nIndividual Agent Score:\n")
print(json.dumps(agent_score, indent=2))
print("\n<-- Evaluation complete -->\n")
return weighted_scores, agent_scores | Runs the benchmark using the following:
Args:
benchmark_args(dict): Arguments configuring the benchmark.
agent_locator(str): Locator string for the registered agent.
debug_log(bool): Whether the benchmark should log to `stdout`. | benchmark | python | huawei-noah/SMARTS | smarts/benchmark/entrypoints/benchmark_runner_v0.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/benchmark/entrypoints/benchmark_runner_v0.py | MIT |
def benchmark_from_configs(benchmark_config, agent_locator, debug_log=False):
"""Runs a benchmark given the following.
Args:
benchmark_config (str): The file path to the benchmark configuration.
agent_locator (str): Locator string for the registered agent.
debug_log (bool): Deprecated. Whether the benchmark should log to `stdout`.
"""
benchmark_args = load_config(benchmark_config)
benchmark(
benchmark_args=benchmark_args["benchmark"],
agent_locator=agent_locator,
) | Runs a benchmark given the following.
Args:
benchmark_config (str): The file path to the benchmark configuration.
agent_locator (str): Locator string for the registered agent.
debug_log (bool): Deprecated. Whether the benchmark should log to `stdout`. | benchmark_from_configs | python | huawei-noah/SMARTS | smarts/benchmark/entrypoints/benchmark_runner_v0.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/benchmark/entrypoints/benchmark_runner_v0.py | MIT |
def load_config(path: Path) -> Optional[Dict[str, Any]]:
"""Load in a benchmark configuration."""
if isinstance(path, (str,)):
path = Path(path)
return _load_config(path) | Load in a benchmark configuration. | load_config | python | huawei-noah/SMARTS | smarts/benchmark/driving_smarts/__init__.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/benchmark/driving_smarts/__init__.py | MIT |
def params(self) -> Params:
"""Return parameters to configure and initialize cost functions.
Returns:
Params: Cost function parameters.
"""
params = Params(
collisions=Collisions(active=False),
comfort=Comfort(active=True),
dist_to_destination=DistToDestination(active=True),
dist_to_obstacles=DistToObstacles(active=False),
jerk_linear=JerkLinear(active=False),
lane_center_offset=LaneCenterOffset(active=True),
off_road=OffRoad(active=False),
speed_limit=SpeedLimit(active=True),
steps=Steps(active=False),
vehicle_gap=VehicleGap(active=True),
wrong_way=WrongWay(active=True),
)
return params | Return parameters to configure and initialize cost functions.
Returns:
Params: Cost function parameters. | params | python | huawei-noah/SMARTS | smarts/benchmark/driving_smarts/v2023/metric_formula_platoon.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/benchmark/driving_smarts/v2023/metric_formula_platoon.py | MIT |
def score(self, records: Dict[str, Dict[str, Record]]) -> Score:
"""
Computes several sub-component scores and one total combined score named
"Overall" on the wrapped environment.
Args:
records (Dict[str, Dict[str, Record]]): Records.
Returns:
Score: "Overall" score and other sub-component scores.
"""
agent_weight = agent_weights(records=records)
agent_score = agent_scores(records=records, func=costs_to_score)
return weighted_score(scores=agent_score, weights=agent_weight) | Computes several sub-component scores and one total combined score named
"Overall" on the wrapped environment.
Args:
records (Dict[str, Dict[str, Record]]): Records.
Returns:
Score: "Overall" score and other sub-component scores. | score | python | huawei-noah/SMARTS | smarts/benchmark/driving_smarts/v2023/metric_formula_platoon.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/benchmark/driving_smarts/v2023/metric_formula_platoon.py | MIT |
def costs_to_score(costs: Costs) -> Score:
"""Compute score from costs.
+-------------------+--------+-----------------------------------------------------------+
| | Range | Remarks |
+===================+========+===========================================================+
| Overall | [0, 1] | Total score. The higher, the better. |
+-------------------+--------+-----------------------------------------------------------+
| DistToDestination | [0, 1] | Remaining distance to destination. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| VehicleGap | [0, 1] | Gap between vehicles in a convoy. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| HumannessError | [0, 1] | Humanness indicator. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| RuleViolation | [0, 1] | Traffic rules compliance. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
Args:
costs (Costs): Costs.
Returns:
Score: Score.
"""
dist_to_destination = costs.dist_to_destination
humanness_error = _score_humanness_error(costs=costs)
rule_violation = score_rule_violation(costs=costs)
vehicle_gap = costs.vehicle_gap
overall = (
0.25 * (1 - dist_to_destination)
+ 0.25 * (1 - vehicle_gap)
+ 0.25 * (1 - humanness_error)
+ 0.25 * (1 - rule_violation)
)
return Score(
{
"overall": overall,
"dist_to_destination": dist_to_destination,
"vehicle_gap": vehicle_gap,
"humanness_error": humanness_error,
"rule_violation": rule_violation,
}
) | Compute score from costs.
+-------------------+--------+-----------------------------------------------------------+
| | Range | Remarks |
+===================+========+===========================================================+
| Overall | [0, 1] | Total score. The higher, the better. |
+-------------------+--------+-----------------------------------------------------------+
| DistToDestination | [0, 1] | Remaining distance to destination. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| VehicleGap | [0, 1] | Gap between vehicles in a convoy. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| HumannessError | [0, 1] | Humanness indicator. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| RuleViolation | [0, 1] | Traffic rules compliance. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
Args:
costs (Costs): Costs.
Returns:
Score: Score. | costs_to_score | python | huawei-noah/SMARTS | smarts/benchmark/driving_smarts/v2023/metric_formula_platoon.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/benchmark/driving_smarts/v2023/metric_formula_platoon.py | MIT |
def params(self) -> Params:
"""Return parameters to configure and initialize cost functions.
Returns:
Params: Cost function parameters.
"""
params = Params(
collisions=Collisions(active=False),
comfort=Comfort(active=True),
dist_to_destination=DistToDestination(active=True),
dist_to_obstacles=DistToObstacles(active=False),
jerk_linear=JerkLinear(active=False),
lane_center_offset=LaneCenterOffset(active=True),
off_road=OffRoad(active=False),
speed_limit=SpeedLimit(active=True),
steps=Steps(active=True),
vehicle_gap=VehicleGap(active=False),
wrong_way=WrongWay(active=True),
)
return params | Return parameters to configure and initialize cost functions.
Returns:
Params: Cost function parameters. | params | python | huawei-noah/SMARTS | smarts/benchmark/driving_smarts/v2023/metric_formula_drive.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/benchmark/driving_smarts/v2023/metric_formula_drive.py | MIT |
def score(self, records: Dict[str, Dict[str, Record]]) -> Score:
"""
Computes several sub-component scores and one total combined score named
"Overall" on the wrapped environment.
Args:
records (Dict[str, Dict[str, Record]]): Records.
Returns:
Score: "Overall" score and other sub-component scores.
"""
agent_weight = agent_weights(records=records)
agent_score = agent_scores(records=records, func=costs_to_score)
return weighted_score(scores=agent_score, weights=agent_weight) | Computes several sub-component scores and one total combined score named
"Overall" on the wrapped environment.
Args:
records (Dict[str, Dict[str, Record]]): Records.
Returns:
Score: "Overall" score and other sub-component scores. | score | python | huawei-noah/SMARTS | smarts/benchmark/driving_smarts/v2023/metric_formula_drive.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/benchmark/driving_smarts/v2023/metric_formula_drive.py | MIT |
def costs_to_score(costs: Costs) -> Score:
"""Compute score from costs.
+-------------------+--------+-----------------------------------------------------------+
| | Range | Remarks |
+===================+========+===========================================================+
| Overall | [0, 1] | Total score. The higher, the better. |
+-------------------+--------+-----------------------------------------------------------+
| DistToDestination | [0, 1] | Remaining distance to destination. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| Time | [0, 1] | Time taken to complete scenario. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| HumannessError | [0, 1] | Humanness indicator. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| RuleViolation | [0, 1] | Traffic rules compliance. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
Args:
costs (Costs): Costs.
Returns:
Score: Score.
"""
dist_to_destination = costs.dist_to_destination
humanness_error = _score_humanness_error(costs=costs)
rule_violation = score_rule_violation(costs=costs)
time = costs.steps
overall = (
0.25 * (1 - dist_to_destination)
+ 0.25 * (1 - time)
+ 0.25 * (1 - humanness_error)
+ 0.25 * (1 - rule_violation)
)
return Score(
{
"overall": overall,
"dist_to_destination": dist_to_destination,
"time": time,
"humanness_error": humanness_error,
"rule_violation": rule_violation,
}
) | Compute score from costs.
+-------------------+--------+-----------------------------------------------------------+
| | Range | Remarks |
+===================+========+===========================================================+
| Overall | [0, 1] | Total score. The higher, the better. |
+-------------------+--------+-----------------------------------------------------------+
| DistToDestination | [0, 1] | Remaining distance to destination. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| Time | [0, 1] | Time taken to complete scenario. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| HumannessError | [0, 1] | Humanness indicator. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
| RuleViolation | [0, 1] | Traffic rules compliance. The lower, the better. |
+-------------------+--------+-----------------------------------------------------------+
Args:
costs (Costs): Costs.
Returns:
Score: Score. | costs_to_score | python | huawei-noah/SMARTS | smarts/benchmark/driving_smarts/v2023/metric_formula_drive.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/benchmark/driving_smarts/v2023/metric_formula_drive.py | MIT |
def build_agent(self) -> Agent:
"""Construct an Agent from the AgentSpec configuration."""
if self.agent_builder is None:
raise ValueError("Can't build agent, no agent builder was supplied")
if not callable(self.agent_builder):
raise ValueError(
f"""agent_builder: {self.agent_builder} is not callable
Use a combination of agent_params and agent_builder to define how to build your agent, ie.
AgentSpec(
agent_params={{"input_dimensions": 12}},
agent_builder=MyAgent # we are not instantiating the agent, just passing the class reference
)
"""
)
if self.agent_params is None:
# no args to agent builder
return self.agent_builder()
elif isinstance(self.agent_params, (list, tuple)):
# a list or tuple is treated as positional arguments
return self.agent_builder(*self.agent_params)
elif isinstance(self.agent_params, dict):
# dictionaries, as keyword arguments
fas = inspect.getfullargspec(self.agent_builder)
if fas[2] is not None:
return self.agent_builder(**self.agent_params)
else:
return self.agent_builder(
**{
k: self.agent_params[k]
for k in self.agent_params.keys() & set(fas[0])
}
)
else:
# otherwise, the agent params are sent as is to the builder
return self.agent_builder(self.agent_params) | Construct an Agent from the AgentSpec configuration. | build_agent | python | huawei-noah/SMARTS | smarts/zoo/agent_spec.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/zoo/agent_spec.py | MIT |
def entry_point(speed=10, **kwargs):
"""An example entrypoint for a simple agent.
This can have any number of arguments similar to the gym environment standard.
"""
return AgentSpec(
AgentInterface(
action=ActionSpaceType.RelativeTargetPose,
),
agent_builder=RandomRelativeTargetPoseAgent,
agent_params=dict(speed=speed),
) | An example entrypoint for a simple agent.
This can have any number of arguments similar to the gym environment standard. | entry_point | python | huawei-noah/SMARTS | smarts/zoo/__init__.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/zoo/__init__.py | MIT |
def register(locator: str, entry_point, **kwargs):
"""Register an AgentSpec with the zoo.
In order to load a registered AgentSpec it needs to be reachable from a
directory contained in the PYTHONPATH.
Args:
locator:
A string in the format of 'locator-name'
entry_point:
A callable that returns an AgentSpec or an AgentSpec object
For example:
.. code-block:: python
register(
locator="motion-planner-agent-v0",
entry_point=lambda **kwargs: AgentSpec(
interface=AgentInterface(waypoint_paths=True, action=ActionSpaceType.TargetPose),
agent_builder=MotionPlannerAgent,
),
)
"""
agent_registry.register(name=locator, entry_point=entry_point, **kwargs) | Register an AgentSpec with the zoo.
In order to load a registered AgentSpec it needs to be reachable from a
directory contained in the PYTHONPATH.
Args:
locator:
A string in the format of 'locator-name'
entry_point:
A callable that returns an AgentSpec or an AgentSpec object
For example:
.. code-block:: python
register(
locator="motion-planner-agent-v0",
entry_point=lambda **kwargs: AgentSpec(
interface=AgentInterface(waypoint_paths=True, action=ActionSpaceType.TargetPose),
agent_builder=MotionPlannerAgent,
),
) | register | python | huawei-noah/SMARTS | smarts/zoo/registry.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/zoo/registry.py | MIT |
def make(locator: str, **kwargs):
"""Create an AgentSpec from the given locator.
In order to load a registered AgentSpec it needs to be reachable from a
directory contained in the PYTHONPATH.
Args:
locator:
A string in the format of 'path.to.file:locator-name' where the path
is in the form `{PYTHONPATH}[n]/path/to/file.py`
kwargs:
Additional arguments to be passed to the constructed class.
Returns:
AgentSpec: The agent specifications needed to instantiate and configure an agent.
"""
from smarts.zoo.agent_spec import AgentSpec
agent_spec = agent_registry.make(locator, **kwargs)
assert isinstance(
agent_spec, AgentSpec
), f"Expected make to produce an instance of AgentSpec, got: {agent_spec}"
return agent_spec | Create an AgentSpec from the given locator.
In order to load a registered AgentSpec it needs to be reachable from a
directory contained in the PYTHONPATH.
Args:
locator:
A string in the format of 'path.to.file:locator-name' where the path
is in the form `{PYTHONPATH}[n]/path/to/file.py`
kwargs:
Additional arguments to be passed to the constructed class.
Returns:
AgentSpec: The agent specifications needed to instantiate and configure an agent. | make | python | huawei-noah/SMARTS | smarts/zoo/registry.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/zoo/registry.py | MIT |
def make_agent(locator: str, **kwargs):
"""Create an Agent from the given agent spec locator.
In order to load a registered AgentSpec it needs to be reachable from a
directory contained in the PYTHONPATH.
Args:
locator:
A string in the format of 'path.to.file:locator-name' where the path
is in the form `{PYTHONPATH}[n]/path/to/file.py`
kwargs:
Additional arguments to be passed to the constructed class.
Returns:
Tuple[Agent, AgentInterface]: The agent and its interface.
"""
agent_spec = make(locator, **kwargs)
return agent_spec.build_agent(), agent_spec.interface | Create an Agent from the given agent spec locator.
In order to load a registered AgentSpec it needs to be reachable from a
directory contained in the PYTHONPATH.
Args:
locator:
A string in the format of 'path.to.file:locator-name' where the path
is in the form `{PYTHONPATH}[n]/path/to/file.py`
kwargs:
Additional arguments to be passed to the constructed class.
Returns:
Tuple[Agent, AgentInterface]: The agent and its interface. | make_agent | python | huawei-noah/SMARTS | smarts/zoo/registry.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/zoo/registry.py | MIT |
def send(self, obs):
"""Send an observation to the Visdom server."""
try:
self._visdom_obs_queue.put(obs, block=False)
except Exception:
self._log.debug("Dropped Visdom frame instead of blocking") | Send an observation to the Visdom server. | send | python | huawei-noah/SMARTS | smarts/visdom/visdom_client.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/visdom/visdom_client.py | MIT |
def teardown(self):
"""Clean up unmanaged resources."""
if not self._visdom_obs_queue:
return
self._visdom_obs_queue.put(QueueDone()) | Clean up unmanaged resources. | teardown | python | huawei-noah/SMARTS | smarts/visdom/visdom_client.py | https://github.com/huawei-noah/SMARTS/blob/master/smarts/visdom/visdom_client.py | MIT |
def default(cls):
"""Give a new default filter."""
return cls(defaultdict(_default_override), defaultdict(_default_override)) | Give a new default filter. | default | python | huawei-noah/SMARTS | envision/client_config.py | https://github.com/huawei-noah/SMARTS/blob/master/envision/client_config.py | MIT |
def format_actor_id(actor_id: str, vehicle_id: str, is_multi: bool):
"""A conversion utility to ensure that an actor id conforms to envision's actor id standard.
Args:
actor_id: The base id of the actor.
vehicle_id: The vehicle id of the vehicle the actor associates with.
is_multi: If an actor associates with multiple vehicles.
Returns:
An envision compliant actor id.
"""
if is_multi:
return f"{actor_id}-{{{vehicle_id[:4]}}}"
return actor_id | A conversion utility to ensure that an actor id conforms to envision's actor id standard.
Args:
actor_id: The base id of the actor.
vehicle_id: The vehicle id of the vehicle the actor associates with.
is_multi: If an actor associates with multiple vehicles.
Returns:
An envision compliant actor id. | format_actor_id | python | huawei-noah/SMARTS | envision/etypes.py | https://github.com/huawei-noah/SMARTS/blob/master/envision/etypes.py | MIT |
def reset(self):
"""Returns this context back to blank."""
self._current_id = 0
self._mapping = {}
self.removed = [] | Returns this context back to blank. | reset | python | huawei-noah/SMARTS | envision/data_formatter.py | https://github.com/huawei-noah/SMARTS/blob/master/envision/data_formatter.py | MIT |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.