code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def load_config():
"""Load config file."""
parent_dir = Path(__file__).resolve().parent
config_file = yaml.safe_load((parent_dir / "config.yaml").read_text())
config = ObjDict(config_file["smarts"])
return config | Load config file. | load_config | python | huawei-noah/SMARTS | examples/e11_platoon/train/run.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/e11_platoon/train/run.py | MIT |
def empty_parser(program: Optional[str] = None):
"""This factory method returns an empty `argparse.ArgumentParser` with primitive
configuration.
You can extend it with more `parser.add_argument(...)` calls or obtain the
arguments via `parser.parse_args()`.
"""
if not program:
from pathlib import Path
program = Path(__file__).stem
parser = argparse.ArgumentParser(program)
return parser | This factory method returns an empty `argparse.ArgumentParser` with primitive
configuration.
You can extend it with more `parser.add_argument(...)` calls or obtain the
arguments via `parser.parse_args()`. | empty_parser | python | huawei-noah/SMARTS | examples/tools/argument_parser.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/tools/argument_parser.py | MIT |
def minimal_argument_parser(program: Optional[str] = None):
"""This factory method returns a minimal `argparse.ArgumentParser` with the
minimum subset of arguments that should be supported.
You can extend it with more `parser.add_argument(...)` calls or obtain the
arguments via `parser.parse_args()`.
"""
if not program:
from pathlib import Path
program = Path(__file__).stem
parser = argparse.ArgumentParser(program)
parser.add_argument(
"scenarios",
help="A list of scenarios. Each element can be either the scenario to"
"run or a directory of scenarios to sample from. See `scenarios/`"
"folder for some samples you can use.",
type=str,
nargs="*",
)
parser.add_argument(
"--episodes",
help="The number of episodes to run the simulation for.",
type=int,
default=10,
)
parser.add_argument(
"--headless", help="Run the simulation in headless mode.", action="store_true"
)
parser.add_argument(
"--max_episode_steps",
help="Maximum number of steps to run each episode for.",
type=int,
default=100,
)
return parser | This factory method returns a minimal `argparse.ArgumentParser` with the
minimum subset of arguments that should be supported.
You can extend it with more `parser.add_argument(...)` calls or obtain the
arguments via `parser.parse_args()`. | minimal_argument_parser | python | huawei-noah/SMARTS | examples/tools/argument_parser.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/tools/argument_parser.py | MIT |
def default_argument_parser(program: Optional[str] = None):
"""This factory method returns a vanilla `argparse.ArgumentParser` with a
slightly broader subset of arguments that should be supported.
You can extend it with more `parser.add_argument(...)` calls or obtain the
arguments via `parser.parse_args()`.
"""
parser = minimal_argument_parser(program=program)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument(
"--sim_name",
help="Simulation name.",
type=str,
default=None,
)
parser.add_argument(
"--sumo_port", help="Run SUMO with a specified port.", type=int, default=None
)
return parser | This factory method returns a vanilla `argparse.ArgumentParser` with a
slightly broader subset of arguments that should be supported.
You can extend it with more `parser.add_argument(...)` calls or obtain the
arguments via `parser.parse_args()`. | default_argument_parser | python | huawei-noah/SMARTS | examples/tools/argument_parser.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/tools/argument_parser.py | MIT |
def format(self, action: int, prev_heading: float):
"""Adapts the action input to the wrapped environment.
Note: Users should not directly call this method.
"""
wrapped_act = self._wrapper(action, prev_heading)
return wrapped_act | Adapts the action input to the wrapped environment.
Note: Users should not directly call this method. | format | python | huawei-noah/SMARTS | examples/e10_drive/inference/contrib_policy/format_action.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/e10_drive/inference/contrib_policy/format_action.py | MIT |
def filter(self, obs: Dict[str, Any]) -> Dict[str, Any]:
"""Adapts the environment's observation."""
# fmt: off
# Ego's heading with respect to the map's coordinate system.
# Note: All angles returned by smarts is with respect to the map's coordinate system.
# On the map, angle is zero at positive y axis, and increases anti-clockwise.
ego_heading = (obs["ego_vehicle_state"]["heading"] + np.pi) % (2 * np.pi) - np.pi
ego_pos = obs["ego_vehicle_state"]["position"]
# Get rgb image, remove road, and replace other egos (if any) as background vehicles
rgb = obs["top_down_rgb"]
h, w, _ = rgb.shape
rgb_noroad = replace_rgb_image_color(rgb=rgb, old_color=[self._road_color, self._lane_divider_color, self._edge_divider_color], new_color=self._no_color)
rgb_ego = replace_rgb_image_color(rgb=rgb_noroad, old_color=[self._ego_color], new_color=self._traffic_color, mask=self._rgb_mask)
# Superimpose waypoints onto rgb image
wps = obs["waypoint_paths"]["position"][0:11, 3:, 0:3]
for path in wps[:]:
wps_valid = points_to_pixels(
points=path,
center_position=ego_pos,
heading=ego_heading,
width=w,
height=h,
resolution=self._res,
)
for point in wps_valid:
img_x, img_y = point[0], point[1]
if all(rgb_ego[img_y, img_x, :] == self._no_color):
rgb_ego[img_y, img_x, :] = self._wps_color
# Superimpose goal position onto rgb image
if not all((goal:=obs["ego_vehicle_state"]["mission"]["goal_position"]) == np.zeros((3,))):
goal_pixel = points_to_pixels(
points=np.expand_dims(goal,axis=0),
center_position=ego_pos,
heading=ego_heading,
width=w,
height=h,
resolution=self._res,
)
if len(goal_pixel) != 0:
img_x, img_y = goal_pixel[0][0], goal_pixel[0][1]
if all(rgb_ego[img_y, img_x, :] == self._no_color) or all(rgb_ego[img_y, img_x, :] == self._wps_color):
rgb_ego[
max(img_y-self._blur_radius,0):min(img_y+self._blur_radius,h),
max(img_x-self._blur_radius,0):min(img_x+self._blur_radius,w),
:,
] = self._goal_color
# Crop image
rgb_ego = rgb_ego[self._crop[2]:h-self._crop[3],self._crop[0]:w-self._crop[1],:]
# Channel first rgb
rgb_ego = rgb_ego.transpose(2, 0, 1)
filtered_obs = np.uint8(rgb_ego)
return filtered_obs | Adapts the environment's observation. | filter | python | huawei-noah/SMARTS | examples/e10_drive/inference/contrib_policy/filter_obs.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/e10_drive/inference/contrib_policy/filter_obs.py | MIT |
def __init__(self, num_stack, top_down_rgb, crop, action_space_type):
"""All policy initialization matters, including loading of model, is
performed here. To be implemented by the user.
"""
from contrib_policy import network
from contrib_policy.filter_obs import FilterObs
from contrib_policy.format_action import FormatAction
from contrib_policy.frame_stack import FrameStack
from contrib_policy.make_dict import MakeDict
self._model = self._get_model()
self._filter_obs = FilterObs(top_down_rgb=top_down_rgb, crop=crop)
self._frame_stack = FrameStack(
input_space=self._filter_obs.observation_space,
num_stack=num_stack,
stack_axis=0,
)
self._frame_stack.reset()
self._make_dict = MakeDict(input_space=self._frame_stack.observation_space)
self.observation_space = self._make_dict.observation_space
self._format_action = FormatAction(action_space_type=action_space_type)
self.action_space = self._format_action.action_space | All policy initialization matters, including loading of model, is
performed here. To be implemented by the user. | __init__ | python | huawei-noah/SMARTS | examples/e10_drive/inference/contrib_policy/policy.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/e10_drive/inference/contrib_policy/policy.py | MIT |
def act(self, obs):
"""Mandatory act function to be implemented by user."""
processed_obs = self._process(obs)
action, _ = self._model.predict(observation=processed_obs, deterministic=True)
formatted_action = self._format_action.format(
action=int(action), prev_heading=obs["ego_vehicle_state"]["heading"]
)
return formatted_action | Mandatory act function to be implemented by user. | act | python | huawei-noah/SMARTS | examples/e10_drive/inference/contrib_policy/policy.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/e10_drive/inference/contrib_policy/policy.py | MIT |
def __init__(self, input_space: gym.Space, num_stack: int = 3, stack_axis: int = 0):
"""
Args:
num_stack (int, optional): Number of frames to be stacked. Defaults to 3.
stack_axis (int, optional): An int specifying the dimension over
which to stack each observation.
"""
assert num_stack > 1, f"Expected num_stack > 1, but got {num_stack}."
self._num_stack = num_stack
self._frames = deque(maxlen=self._num_stack)
assert stack_axis >= 0 and stack_axis < len(input_space.shape)
self._stack_axis = stack_axis
dim_multiplier = np.ones_like(input_space.shape)
dim_multiplier[stack_axis] = num_stack
shape = dim_multiplier * input_space.shape
self.observation_space = gym.spaces.Box(
low=0,
high=255,
shape=shape,
dtype=np.uint8,
) | Args:
num_stack (int, optional): Number of frames to be stacked. Defaults to 3.
stack_axis (int, optional): An int specifying the dimension over
which to stack each observation. | __init__ | python | huawei-noah/SMARTS | examples/e10_drive/inference/contrib_policy/frame_stack.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/e10_drive/inference/contrib_policy/frame_stack.py | MIT |
def _stack(self, obs: np.ndarray) -> np.ndarray:
"""Update and return frames stack with given latest single frame."""
self._frames.appendleft(obs)
while len(self._frames) < self._num_stack:
self._frames.appendleft(obs)
frames_seq = tuple(self._frames)
new_frames = copy.deepcopy(frames_seq)
return np.concatenate(new_frames, axis=self._stack_axis) | Update and return frames stack with given latest single frame. | _stack | python | huawei-noah/SMARTS | examples/e10_drive/inference/contrib_policy/frame_stack.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/e10_drive/inference/contrib_policy/frame_stack.py | MIT |
def stack(self, obs: np.ndarray) -> np.ndarray:
"""Stacks the latest obs with num_stack-1 past obs.
Args:
obs (np.ndarray): Numpy array input.
Returns:
np.ndarray: Stacked observation.
"""
return self._stack(obs) | Stacks the latest obs with num_stack-1 past obs.
Args:
obs (np.ndarray): Numpy array input.
Returns:
np.ndarray: Stacked observation. | stack | python | huawei-noah/SMARTS | examples/e10_drive/inference/contrib_policy/frame_stack.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/e10_drive/inference/contrib_policy/frame_stack.py | MIT |
def reset(self):
"""Resets the stacked obs."""
self._frames.clear() | Resets the stacked obs. | reset | python | huawei-noah/SMARTS | examples/e10_drive/inference/contrib_policy/frame_stack.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/e10_drive/inference/contrib_policy/frame_stack.py | MIT |
def make(self, obs: np.ndarray) -> Dict[str, np.ndarray]:
"""converts input into a dict.
Args:
obs (np.ndarray): Numpy array input.
Returns:
dict[str, np.ndarray]: A dictionary with key (string) corresponding
to input obs (np.ndarray).
"""
return {"rgb": obs} | converts input into a dict.
Args:
obs (np.ndarray): Numpy array input.
Returns:
dict[str, np.ndarray]: A dictionary with key (string) corresponding
to input obs (np.ndarray). | make | python | huawei-noah/SMARTS | examples/e10_drive/inference/contrib_policy/make_dict.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/e10_drive/inference/contrib_policy/make_dict.py | MIT |
def __init__(self, env: gym.Env, crop: Tuple[int, int, int, int]):
"""Constructor for the Reward wrapper."""
super().__init__(env)
self._total_dist = {}
self._crop = crop | Constructor for the Reward wrapper. | __init__ | python | huawei-noah/SMARTS | examples/e10_drive/train/reward.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/e10_drive/train/reward.py | MIT |
def step(self, action):
"""Adapts the wrapped environment's step.
Note: Users should not directly call this method.
"""
obs, reward, terminated, truncated, info = self.env.step(action)
wrapped_reward = self._reward(obs, reward)
for agent_id, agent_obs in obs.items():
# Accumulate total distance travelled
self._total_dist[agent_id] = (
self._total_dist.get(agent_id, 0) + agent_obs["distance_travelled"]
)
# If agent is done
if terminated[agent_id] == True:
if agent_obs["events"]["reached_goal"]:
print(f"{agent_id}: Hooray! Reached goal.")
elif agent_obs["events"]["reached_max_episode_steps"]:
print(f"{agent_id}: Reached max episode steps.")
elif (
agent_obs["events"]["collisions"]
| agent_obs["events"]["off_road"]
| agent_obs["events"]["off_route"]
| agent_obs["events"]["wrong_way"]
):
pass
else:
print("Events: ", agent_obs["events"])
raise Exception("Episode ended for unknown reason.")
print(
f"{agent_id}: Steps = {agent_obs['steps_completed']} "
f"{agent_id}: Dist = {self._total_dist[agent_id]:.2f}"
)
return obs, wrapped_reward, terminated, truncated, info | Adapts the wrapped environment's step.
Note: Users should not directly call this method. | step | python | huawei-noah/SMARTS | examples/e10_drive/train/reward.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/e10_drive/train/reward.py | MIT |
def step(self, action):
"""Uses the :meth:`step` of the :attr:`env` that can be overwritten to change the returned data."""
formatted_action = self._format_action.format(
action=action, prev_heading=self._prev_heading
)
obs, reward, terminated, truncated, info = self.env.step(formatted_action)
self._prev_heading = obs["ego_vehicle_state"]["heading"]
obs = self._process(obs)
return obs, reward, terminated, truncated, info | Uses the :meth:`step` of the :attr:`env` that can be overwritten to change the returned data. | step | python | huawei-noah/SMARTS | examples/e10_drive/train/preprocess.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/e10_drive/train/preprocess.py | MIT |
def reset(self, *, seed=None, options=None):
"""Uses the :meth:`reset` of the :attr:`env` that can be overwritten to change the returned data."""
self._frame_stack.reset()
obs, info = self.env.reset(seed=seed, options=options)
self._prev_heading = obs["ego_vehicle_state"]["heading"]
obs = self._process(obs)
return obs, info | Uses the :meth:`reset` of the :attr:`env` that can be overwritten to change the returned data. | reset | python | huawei-noah/SMARTS | examples/e10_drive/train/preprocess.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/e10_drive/train/preprocess.py | MIT |
def load_config():
"""Load config file."""
parent_dir = Path(__file__).resolve().parent
config_file = yaml.safe_load((parent_dir / "config.yaml").read_text())
config = ObjDict(config_file["smarts"])
return config | Load config file. | load_config | python | huawei-noah/SMARTS | examples/e10_drive/train/run.py | https://github.com/huawei-noah/SMARTS/blob/master/examples/e10_drive/train/run.py | MIT |
def mlp_permutation_spec(num_hidden_layers: int) -> PermutationSpec:
"""We assume that one permutation cannot appear in two axes of the same weight array."""
assert num_hidden_layers >= 1
return permutation_spec_from_axes_to_perm({
"Dense_0/kernel": (None, "P_0"),
**{f"Dense_{i}/kernel": (f"P_{i-1}", f"P_{i}")
for i in range(1, num_hidden_layers)},
**{f"Dense_{i}/bias": (f"P_{i}", )
for i in range(num_hidden_layers)},
f"Dense_{num_hidden_layers}/kernel": (f"P_{num_hidden_layers-1}", None),
f"Dense_{num_hidden_layers}/bias": (None, ),
}) | We assume that one permutation cannot appear in two axes of the same weight array. | mlp_permutation_spec | python | samuela/git-re-basin | src/weight_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/weight_matching.py | MIT |
def get_permuted_param(ps: PermutationSpec, perm, k: str, params, except_axis=None):
"""Get parameter `k` from `params`, with the permutations applied."""
w = params[k]
for axis, p in enumerate(ps.axes_to_perm[k]):
# Skip the axis we're trying to permute.
if axis == except_axis:
continue
# None indicates that there is no permutation relevant to that axis.
if p is not None:
w = jnp.take(w, perm[p], axis=axis)
return w | Get parameter `k` from `params`, with the permutations applied. | get_permuted_param | python | samuela/git-re-basin | src/weight_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/weight_matching.py | MIT |
def apply_permutation(ps: PermutationSpec, perm, params):
"""Apply a `perm` to `params`."""
return {k: get_permuted_param(ps, perm, k, params) for k in params.keys()} | Apply a `perm` to `params`. | apply_permutation | python | samuela/git-re-basin | src/weight_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/weight_matching.py | MIT |
def weight_matching(rng,
ps: PermutationSpec,
params_a,
params_b,
max_iter=100,
init_perm=None,
silent=False):
"""Find a permutation of `params_b` to make them match `params_a`."""
perm_sizes = {p: params_a[axes[0][0]].shape[axes[0][1]] for p, axes in ps.perm_to_axes.items()}
perm = {p: jnp.arange(n) for p, n in perm_sizes.items()} if init_perm is None else init_perm
perm_names = list(perm.keys())
for iteration in range(max_iter):
progress = False
for p_ix in random.permutation(rngmix(rng, iteration), len(perm_names)):
p = perm_names[p_ix]
n = perm_sizes[p]
A = jnp.zeros((n, n))
for wk, axis in ps.perm_to_axes[p]:
w_a = params_a[wk]
w_b = get_permuted_param(ps, perm, wk, params_b, except_axis=axis)
w_a = jnp.moveaxis(w_a, axis, 0).reshape((n, -1))
w_b = jnp.moveaxis(w_b, axis, 0).reshape((n, -1))
A += w_a @ w_b.T
ri, ci = linear_sum_assignment(A, maximize=True)
assert (ri == jnp.arange(len(ri))).all()
oldL = jnp.vdot(A, jnp.eye(n)[perm[p]])
newL = jnp.vdot(A, jnp.eye(n)[ci, :])
if not silent: print(f"{iteration}/{p}: {newL - oldL}")
progress = progress or newL > oldL + 1e-12
perm[p] = jnp.array(ci)
if not progress:
break
return perm | Find a permutation of `params_b` to make them match `params_a`. | weight_matching | python | samuela/git-re-basin | src/weight_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/weight_matching.py | MIT |
def test_weight_matching():
"""If we just have a single hidden layer then it should converge after just one step."""
ps = mlp_permutation_spec(num_hidden_layers=1)
rng = random.PRNGKey(123)
num_hidden = 10
shapes = {
"Dense_0/kernel": (2, num_hidden),
"Dense_0/bias": (num_hidden, ),
"Dense_1/kernel": (num_hidden, 3),
"Dense_1/bias": (3, )
}
params_a = {k: random.normal(rngmix(rng, f"a-{k}"), shape) for k, shape in shapes.items()}
params_b = {k: random.normal(rngmix(rng, f"b-{k}"), shape) for k, shape in shapes.items()}
perm = weight_matching(rng, ps, params_a, params_b)
print(perm) | If we just have a single hidden layer then it should converge after just one step. | test_weight_matching | python | samuela/git-re-basin | src/weight_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/weight_matching.py | MIT |
def load_datasets():
"""Return the training and test datasets, unbatched."""
# See https://www.tensorflow.org/datasets/overview#as_batched_tftensor_batch_size-1.
train_ds_images_u8, train_ds_labels = tfds.as_numpy(
tfds.load("mnist", split="train", batch_size=-1, as_supervised=True))
test_ds_images_u8, test_ds_labels = tfds.as_numpy(
tfds.load("mnist", split="test", batch_size=-1, as_supervised=True))
train_ds = {"images_u8": train_ds_images_u8, "labels": train_ds_labels}
test_ds = {"images_u8": test_ds_images_u8, "labels": test_ds_labels}
return train_ds, test_ds | Return the training and test datasets, unbatched. | load_datasets | python | samuela/git-re-basin | src/mnist_mlp_train.py | https://github.com/samuela/git-re-basin/blob/master/src/mnist_mlp_train.py | MIT |
def match_filters(paramsA, paramsB):
"""Permute the parameters of paramsB to match paramsA as closely as possible.
Returns the permutation to apply to the weights of paramsB in order to align
as best as possible with paramsA along with the permuted paramsB."""
paf = flatten_params(paramsA)
pbf = flatten_params(paramsB)
perm = {}
pbf_new = {**pbf}
num_layers = max(int(kmatch("Dense_*/**", k).group(1)) for k in paf.keys())
# range is [0, num_layers), so we're safe here since we don't want to be
# reordering the output of the last layer.
for layer in range(num_layers):
# Maximize since we're dealing with similarities, not distances.
# Note that it's critically important to use `pbf_new` here, not `pbf`!
ri, ci = linear_sum_assignment(cosine_similarity(paf[f"Dense_{layer}/kernel"].T,
pbf_new[f"Dense_{layer}/kernel"].T),
maximize=True)
assert (ri == jnp.arange(len(ri))).all()
perm[f"Dense_{layer}"] = ci
pbf_new[f"Dense_{layer}/kernel"] = pbf_new[f"Dense_{layer}/kernel"][:, ci]
pbf_new[f"Dense_{layer}/bias"] = pbf_new[f"Dense_{layer}/bias"][ci]
pbf_new[f"Dense_{layer+1}/kernel"] = pbf_new[f"Dense_{layer+1}/kernel"][ci, :]
return perm, unflatten_params(pbf_new) | Permute the parameters of paramsB to match paramsA as closely as possible.
Returns the permutation to apply to the weights of paramsB in order to align
as best as possible with paramsA along with the permuted paramsB. | match_filters | python | samuela/git-re-basin | src/mnist_mlp_cosine_similarity_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/mnist_mlp_cosine_similarity_matching.py | MIT |
def get_intermediates(params, images_u8):
"""Calculate intermediate activations for all layers in flax's format."""
images_f32 = vmap(stuff["normalize_transform"])(None, images_u8)
_, state = model.apply({"params": params},
images_f32,
capture_intermediates=lambda mdl, _: isinstance(mdl, nn.Dense),
mutable=["intermediates"])
return state["intermediates"] | Calculate intermediate activations for all layers in flax's format. | get_intermediates | python | samuela/git-re-basin | src/mnist_mlp_activation_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/mnist_mlp_activation_matching.py | MIT |
def normalize_activations(intermediates):
"""Simplify the activation dict format and flatten everything to be (batch_size, channels)."""
def dense(i: int):
k = f"Dense_{i}"
# The activations are (batch_size, num_units) so we don't need to reshape.
act = intermediates[k]["__call__"][0]
act = nn.relu(act)
return act
return {f"Dense_{i}": dense(i) for i in range(num_mlp_layers)} | Simplify the activation dict format and flatten everything to be (batch_size, channels). | normalize_activations | python | samuela/git-re-basin | src/mnist_mlp_activation_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/mnist_mlp_activation_matching.py | MIT |
def conv_norm_conv(pf, l1, l2, perm):
"""Permute the output channels of Conv_{l1} and the input channels of
Conv_{l2}."""
return {
**pf, f"Conv_{l1}/kernel": pf[f"Conv_{l1}/kernel"][:, :, :, perm],
f"Conv_{l1}/bias": pf[f"Conv_{l1}/bias"][perm],
f"LayerNorm_{l1}/scale": pf[f"LayerNorm_{l1}/scale"][perm],
f"LayerNorm_{l1}/bias": pf[f"LayerNorm_{l1}/bias"][perm],
f"Conv_{l2}/kernel": pf[f"Conv_{l2}/kernel"][:, :, perm, :]
} | Permute the output channels of Conv_{l1} and the input channels of
Conv_{l2}. | vgg16_permutify.conv_norm_conv | python | samuela/git-re-basin | src/cifar10_vgg_ste.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_ste.py | MIT |
def dense_dense(pf, l1, l2, perm):
"""Permute the output channels of Dense_{l1} and the input channels of Dense_{l2}."""
return {
**pf, f"Dense_{l1}/kernel": pf[f"Dense_{l1}/kernel"][:, perm],
f"Dense_{l1}/bias": pf[f"Dense_{l1}/bias"][perm],
f"Dense_{l2}/kernel": pf[f"Dense_{l2}/kernel"][perm, :]
} | Permute the output channels of Dense_{l1} and the input channels of Dense_{l2}. | vgg16_permutify.dense_dense | python | samuela/git-re-basin | src/cifar10_vgg_ste.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_ste.py | MIT |
def conv_norm_flatten_dense(pf, l1, l2, perm):
"""Permute the output channels of Conv_{l1} and the input channels of Dense_{l2}."""
# Note that the flatten is kind of a no-op since the flatten is (batch, 1, 1, 512) -> (batch, 512)
return {
**pf, f"Conv_{l1}/kernel": pf[f"Conv_{l1}/kernel"][:, :, :, perm],
f"Conv_{l1}/bias": pf[f"Conv_{l1}/bias"][perm],
f"LayerNorm_{l1}/scale": pf[f"LayerNorm_{l1}/scale"][perm],
f"LayerNorm_{l1}/bias": pf[f"LayerNorm_{l1}/bias"][perm],
f"Dense_{l2}/kernel": pf[f"Dense_{l2}/kernel"][perm, :]
} | Permute the output channels of Conv_{l1} and the input channels of Dense_{l2}. | vgg16_permutify.conv_norm_flatten_dense | python | samuela/git-re-basin | src/cifar10_vgg_ste.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_ste.py | MIT |
def vgg16_permutify(permutation, params):
"""Permute the parameters of `params` based on `permutation`."""
# conv kernel shape: (width, height, in_channel, out_channel)
# dense kernel shape: (in, out)
# VGG16: Conv0-Conv12 flatten Dense0-Dense2
def conv_norm_conv(pf, l1, l2, perm):
"""Permute the output channels of Conv_{l1} and the input channels of
Conv_{l2}."""
return {
**pf, f"Conv_{l1}/kernel": pf[f"Conv_{l1}/kernel"][:, :, :, perm],
f"Conv_{l1}/bias": pf[f"Conv_{l1}/bias"][perm],
f"LayerNorm_{l1}/scale": pf[f"LayerNorm_{l1}/scale"][perm],
f"LayerNorm_{l1}/bias": pf[f"LayerNorm_{l1}/bias"][perm],
f"Conv_{l2}/kernel": pf[f"Conv_{l2}/kernel"][:, :, perm, :]
}
def dense_dense(pf, l1, l2, perm):
"""Permute the output channels of Dense_{l1} and the input channels of Dense_{l2}."""
return {
**pf, f"Dense_{l1}/kernel": pf[f"Dense_{l1}/kernel"][:, perm],
f"Dense_{l1}/bias": pf[f"Dense_{l1}/bias"][perm],
f"Dense_{l2}/kernel": pf[f"Dense_{l2}/kernel"][perm, :]
}
def conv_norm_flatten_dense(pf, l1, l2, perm):
"""Permute the output channels of Conv_{l1} and the input channels of Dense_{l2}."""
# Note that the flatten is kind of a no-op since the flatten is (batch, 1, 1, 512) -> (batch, 512)
return {
**pf, f"Conv_{l1}/kernel": pf[f"Conv_{l1}/kernel"][:, :, :, perm],
f"Conv_{l1}/bias": pf[f"Conv_{l1}/bias"][perm],
f"LayerNorm_{l1}/scale": pf[f"LayerNorm_{l1}/scale"][perm],
f"LayerNorm_{l1}/bias": pf[f"LayerNorm_{l1}/bias"][perm],
f"Dense_{l2}/kernel": pf[f"Dense_{l2}/kernel"][perm, :]
}
params_flat_new = {**flatten_params(params)}
# Backbone conv layers
for layer in range(12):
params_flat_new = conv_norm_conv(params_flat_new, layer, layer + 1,
permutation[f"Conv_{layer}"])
# Conv_12 flatten Dense_0
params_flat_new = conv_norm_flatten_dense(params_flat_new, 12, 0, permutation["Conv_12"])
# (Dense_0, Dense_1) and (Dense_1, Dense_2)
params_flat_new = dense_dense(params_flat_new, 0, 1, permutation["Dense_0"])
params_flat_new = dense_dense(params_flat_new, 1, 2, permutation["Dense_1"])
return unflatten_params(params_flat_new) | Permute the parameters of `params` based on `permutation`. | vgg16_permutify | python | samuela/git-re-basin | src/cifar10_vgg_ste.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_ste.py | MIT |
def get_permuted_param(ps: PermutationSpec, perm, k: str, params, except_axis=None):
"""Get parameter `k` from `params`, with the permutations applied."""
w = params[k]
for axis, p in enumerate(ps.axes_to_perm[k]):
# Skip the axis we're trying to permute.
if axis == except_axis:
continue
# None indicates that there is no permutation relevant to that axis.
if p is not None:
w = jnp.take(w, perm[p], axis=axis)
return w | Get parameter `k` from `params`, with the permutations applied. | get_permuted_param | python | samuela/git-re-basin | src/cifar10_vgg_ste.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_ste.py | MIT |
def apply_permutation(ps: PermutationSpec, perm, params):
"""Apply a `perm` to `params`."""
return {k: get_permuted_param(ps, perm, k, params) for k in params.keys()} | Apply a `perm` to `params`. | apply_permutation | python | samuela/git-re-basin | src/cifar10_vgg_ste.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_ste.py | MIT |
def weight_matching(rng, ps: PermutationSpec, params_a, params_b, max_iter=100, init_perm=None):
"""Find a permutation of `params_b` to make them match `params_a`."""
perm_sizes = {p: params_a[axes[0][0]].shape[axes[0][1]] for p, axes in ps.perm_to_axes.items()}
perm = {p: jnp.arange(n) for p, n in perm_sizes.items()} if init_perm is None else init_perm
perm_names = list(perm.keys())
for iteration in range(max_iter):
progress = False
for p_ix in random.permutation(rngmix(rng, iteration), len(perm_names)):
p = perm_names[p_ix]
n = perm_sizes[p]
A = jnp.zeros((n, n))
for wk, axis in ps.perm_to_axes[p]:
w_a = params_a[wk]
w_b = get_permuted_param(ps, perm, wk, params_b, except_axis=axis)
w_a = jnp.moveaxis(w_a, axis, 0).reshape((n, -1))
w_b = jnp.moveaxis(w_b, axis, 0).reshape((n, -1))
A += w_a @ w_b.T
ri, ci = linear_sum_assignment(A, maximize=True)
assert (ri == jnp.arange(len(ri))).all()
oldL = jnp.vdot(A, jnp.eye(n)[perm[p]])
newL = jnp.vdot(A, jnp.eye(n)[ci, :])
print(f"{iteration}/{p}: {newL - oldL}")
progress = progress or newL > oldL + 1e-12
perm[p] = jnp.array(ci)
if not progress:
break
return perm | Find a permutation of `params_b` to make them match `params_a`. | weight_matching | python | samuela/git-re-basin | src/cifar10_vgg_ste.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_ste.py | MIT |
def permutation_matrix(ixs):
"""Convert a permutation array, eg. [2, 3, 0, 1], to a permutation matrix."""
# This is confusing, but indexing the columns onto the rows is actually the correct thing to do
return jnp.eye(len(ixs), dtype=jnp.bool_)[ixs, :] | Convert a permutation array, eg. [2, 3, 0, 1], to a permutation matrix. | main.permutation_matrix | python | samuela/git-re-basin | src/cifar10_vgg_ste.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_ste.py | MIT |
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model-a", type=str, required=True)
parser.add_argument("--model-b", type=str, required=True)
parser.add_argument("--test", action="store_true", help="Run in smoke-test mode")
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument("--width-multiplier", type=int, required=True)
args = parser.parse_args()
with wandb.init(
project="git-re-basin",
entity="skainswo",
tags=["cifar10", "vgg16", "straight-through-estimator"],
# See https://github.com/wandb/client/issues/3672.
mode="online",
job_type="analysis",
) as wandb_run:
config = wandb.config
config.ec2_instance_type = ec2_get_instance_type()
config.model_a = args.model_a
config.model_b = args.model_b
config.test = args.test
config.seed = args.seed
config.width_multiplier = args.width_multiplier
config.num_epochs = 100
config.batch_size = 500
config.learning_rate = 1e-3
# This is the epoch that we pull the model A/B params from.
config.load_epoch = 99
# model = VGG16Wide()
model = make_vgg_width_ablation(config.width_multiplier)
def load_model(filepath):
with open(filepath, "rb") as fh:
return from_bytes(
init_train_state(random.PRNGKey(0),
model,
learning_rate=0.1,
num_epochs=100,
batch_size=100,
num_train_examples=50_000), fh.read())
artifact_a = Path(wandb_run.use_artifact(f"cifar10-vgg-weights:{config.model_a}").download())
artifact_b = Path(wandb_run.use_artifact(f"cifar10-vgg-weights:{config.model_b}").download())
model_a = load_model(artifact_a / f"checkpoint{config.load_epoch}")
model_b = load_model(artifact_b / f"checkpoint{config.load_epoch}")
stuff = make_stuff(model)
train_ds, test_ds = load_cifar10()
num_train_examples = train_ds["images_u8"].shape[0]
num_test_examples = test_ds["images_u8"].shape[0]
assert num_train_examples % config.batch_size == 0
assert num_test_examples % config.batch_size == 0
# 1000 is the largest batch size feasible on p3.2xlarge.
with timeblock("test evaluation"):
test_loss_a, test_accuracy_a = stuff["dataset_loss_and_accuracy"](model_a.params, test_ds,
1000)
test_loss_b, test_accuracy_b = stuff["dataset_loss_and_accuracy"](model_b.params, test_ds,
1000)
with timeblock("train evaluation"):
train_loss_a, train_accuracy_a = stuff["dataset_loss_and_accuracy"](model_a.params, train_ds,
1000)
train_loss_b, train_accuracy_b = stuff["dataset_loss_and_accuracy"](model_b.params, train_ds,
1000)
print({
"train_loss_a": train_loss_a,
"train_accuracy_a": train_accuracy_a,
"train_loss_b": train_loss_b,
"train_accuracy_b": train_accuracy_b,
"test_loss_a": test_loss_a,
"test_accuracy_a": test_accuracy_a,
"test_loss_b": test_loss_b,
"test_accuracy_b": test_accuracy_b,
})
baseline_train_loss = 0.5 * (train_loss_a + train_loss_b)
def lsa(A):
ri, ci = linear_sum_assignment(A, maximize=True)
assert (ri == jnp.arange(len(ri))).all()
return ci
def permutation_matrix(ixs):
"""Convert a permutation array, eg. [2, 3, 0, 1], to a permutation matrix."""
# This is confusing, but indexing the columns onto the rows is actually the correct thing to do
return jnp.eye(len(ixs), dtype=jnp.bool_)[ixs, :]
@jit
def batch_eval(permute_params, hardened_permute_params, images_u8, labels):
model_b_permuted_params = permute_params_apply(permute_params, hardened_permute_params,
model_b.params)
interp_params = tree_map(lambda a, b: 0.5 * (a + b), model_a.params, model_b_permuted_params)
l, info = stuff["batch_eval"](interp_params, images_u8, labels)
# Makes life easier to know when we're winning. stop_gradient shouldn't be
# necessary but I'm paranoid.
l -= stop_gradient(baseline_train_loss)
return l, {**info, "accuracy": info["num_correct"] / config.batch_size}
@jit
def step(train_state, hardened_permute_params, images_u8, labels):
(l, metrics), g = value_and_grad(batch_eval,
has_aux=True)(train_state.params, hardened_permute_params,
images_u8, labels)
train_state = train_state.apply_gradients(grads=g)
# Project onto Birkhoff polytope.
train_state = train_state.replace(
params=tree_map(sinkhorn_knopp_projection, train_state.params))
return train_state, {**metrics, "loss": l}
rng = random.PRNGKey(args.seed)
tx = optax.sgd(learning_rate=config.learning_rate, momentum=0.9)
# tx = optax.radam(learning_rate=config.learning_rate)
# Start from the weight matching solution
# permutation_spec = vgg16_permutation_spec()
# init_perm = weight_matching(rngmix(rng, "weight_matching"), permutation_spec,
# flatten_params(model_a.params), flatten_params(model_b.params))
# init_pp = {k: permutation_matrix(v) for k, v in init_perm.items()}
# init_pp = tree_map(lambda x, y: x.T + 0.01 * y, init_pp,
# permute_params_init(rngmix(rng, "init"), model_a.params))
# Start randomly
init_pp = permute_params_init(rngmix(rng, "init"), model_a.params)
train_state = TrainState.create(apply_fn=None, params=init_pp, tx=tx)
artifact = wandb.Artifact("model_b_permutation",
type="permutation",
metadata={
"dataset": "cifar10",
"model": "vgg16"
})
for epoch in tqdm(range(config.num_epochs)):
train_data_perm = random.permutation(rngmix(rng, f"epoch-{epoch}"),
num_train_examples).reshape((-1, config.batch_size))
for i in tqdm(range(num_train_examples // config.batch_size)):
# STE projection
# hardened_pp = {k: permutation_matrix(lsa(v)) for k, v in train_state.params.items()}
# No STE projection
hardened_pp = train_state.params
train_state, metrics = step(train_state, hardened_pp,
train_ds["images_u8"][train_data_perm[i]],
train_ds["labels"][train_data_perm[i]])
wandb_run.log(metrics)
if not jnp.isfinite(metrics["loss"]):
raise ValueError(f"Loss is not finite: {metrics['loss']}")
with artifact.new_file(f"permutation-epoch{epoch}.pkl", mode="wb") as f:
pickle.dump({k: jnp.argsort(lsa(v)) for k, v in train_state.params.items()}, f)
wandb_run.log_artifact(artifact)
final_permutation = {k: jnp.argsort(lsa(v)) for k, v in train_state.params.items()}
### plotting
lambdas = jnp.linspace(0, 1, num=25)
train_loss_interp_naive = []
test_loss_interp_naive = []
train_acc_interp_naive = []
test_acc_interp_naive = []
for lam in tqdm(lambdas):
naive_p = tree_map(lambda a, b: (1 - lam) * a + lam * b, model_a.params, model_b.params)
train_loss, train_acc = stuff["dataset_loss_and_accuracy"](naive_p, train_ds, 1000)
test_loss, test_acc = stuff["dataset_loss_and_accuracy"](naive_p, test_ds, 1000)
train_loss_interp_naive.append(train_loss)
test_loss_interp_naive.append(test_loss)
train_acc_interp_naive.append(train_acc)
test_acc_interp_naive.append(test_acc)
model_b_clever = vgg16_permutify(final_permutation, model_b.params)
train_loss_interp_clever = []
test_loss_interp_clever = []
train_acc_interp_clever = []
test_acc_interp_clever = []
for lam in tqdm(lambdas):
clever_p = tree_map(lambda a, b: (1 - lam) * a + lam * b, model_a.params, model_b_clever)
train_loss, train_acc = stuff["dataset_loss_and_accuracy"](clever_p, train_ds, 1000)
test_loss, test_acc = stuff["dataset_loss_and_accuracy"](clever_p, test_ds, 1000)
train_loss_interp_clever.append(train_loss)
test_loss_interp_clever.append(test_loss)
train_acc_interp_clever.append(train_acc)
test_acc_interp_clever.append(test_acc)
assert len(lambdas) == len(train_loss_interp_naive)
assert len(lambdas) == len(test_loss_interp_naive)
assert len(lambdas) == len(train_acc_interp_naive)
assert len(lambdas) == len(test_acc_interp_naive)
assert len(lambdas) == len(train_loss_interp_clever)
assert len(lambdas) == len(test_loss_interp_clever)
assert len(lambdas) == len(train_acc_interp_clever)
assert len(lambdas) == len(test_acc_interp_clever)
print("Plotting...")
fig = plot_interp_loss(config.load_epoch, lambdas, train_loss_interp_naive,
test_loss_interp_naive, train_loss_interp_clever,
test_loss_interp_clever)
plt.savefig(f"cifar10_vgg16_ste_interp_loss_epoch{config.load_epoch}.png", dpi=300)
wandb_run.log({"interp_loss_fig": wandb.Image(fig)}, commit=False)
plt.close(fig)
fig = plot_interp_acc(config.load_epoch, lambdas, train_acc_interp_naive, test_acc_interp_naive,
train_acc_interp_clever, test_acc_interp_clever)
plt.savefig(f"cifar10_vgg16_ste_interp_accuracy_epoch{config.load_epoch}.png", dpi=300)
wandb_run.log({"interp_acc_fig": wandb.Image(fig)}, commit=False)
plt.close(fig)
wandb_run.log({}, commit=True) | Convert a permutation array, eg. [2, 3, 0, 1], to a permutation matrix. | main | python | samuela/git-re-basin | src/cifar10_vgg_ste.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_ste.py | MIT |
def load_cifar10():
"""Return the training and test datasets, as jnp.array's."""
train_ds_images_u8, train_ds_labels = tfds.as_numpy(
tfds.load("cifar10", split="train", batch_size=-1, as_supervised=True))
test_ds_images_u8, test_ds_labels = tfds.as_numpy(
tfds.load("cifar10", split="test", batch_size=-1, as_supervised=True))
train_ds = {"images_u8": train_ds_images_u8, "labels": train_ds_labels}
test_ds = {"images_u8": test_ds_images_u8, "labels": test_ds_labels}
return train_ds, test_ds | Return the training and test datasets, as jnp.array's. | load_cifar10 | python | samuela/git-re-basin | src/datasets.py | https://github.com/samuela/git-re-basin/blob/master/src/datasets.py | MIT |
def _split_cifar(train_ds, label_split: int):
"""Split a CIFAR-ish dataset into two biased subsets."""
assert train_ds["images_u8"].shape[0] == 50_000
assert train_ds["labels"].shape[0] == 50_000
# We randomly permute the training data, just in case there's some kind of
# non-iid ordering coming out of tfds.
perm = np.random.default_rng(123).permutation(50_000)
train_images_u8 = train_ds["images_u8"][perm, :, :, :]
train_labels = train_ds["labels"][perm]
# This just so happens to be a clean 25000/25000 split.
lt_images_u8 = train_images_u8[train_labels < label_split]
lt_labels = train_labels[train_labels < label_split]
gte_images_u8 = train_images_u8[train_labels >= label_split]
gte_labels = train_labels[train_labels >= label_split]
s1 = {
"images_u8": np.concatenate((lt_images_u8[:5000], gte_images_u8[5000:]), axis=0),
"labels": np.concatenate((lt_labels[:5000], gte_labels[5000:]), axis=0)
}
s2 = {
"images_u8": np.concatenate((gte_images_u8[:5000], lt_images_u8[5000:]), axis=0),
"labels": np.concatenate((gte_labels[:5000], lt_labels[5000:]), axis=0)
}
return s1, s2 | Split a CIFAR-ish dataset into two biased subsets. | _split_cifar | python | samuela/git-re-basin | src/datasets.py | https://github.com/samuela/git-re-basin/blob/master/src/datasets.py | MIT |
def conv_conv(paf, pbf, l1, l2):
"""Permute the output channels of Conv_{l1} and the input channels of Conv_{l2}."""
k1 = paf[f"params/Conv_{l1}/kernel"]
k2 = pbf[f"params/Conv_{l1}/kernel"]
assert k1.shape == k2.shape
ri, ci = linear_sum_assignment(cosine_similarity(
jnp.reshape(jnp.moveaxis(k1, -1, 0), (k1.shape[-1], -1)),
jnp.reshape(jnp.moveaxis(k2, -1, 0), (k2.shape[-1], -1))),
maximize=True)
assert (ri == jnp.arange(len(ri))).all()
return {
**pbf, f"params/Conv_{l1}/kernel": pbf[f"params/Conv_{l1}/kernel"][:, :, :, ci],
f"params/Conv_{l1}/bias": pbf[f"params/Conv_{l1}/bias"][ci],
f"params/Conv_{l2}/kernel": pbf[f"params/Conv_{l2}/kernel"][:, :, ci, :]
} | Permute the output channels of Conv_{l1} and the input channels of Conv_{l2}. | permutify.conv_conv | python | samuela/git-re-basin | src/mnist_convnet_plot.py | https://github.com/samuela/git-re-basin/blob/master/src/mnist_convnet_plot.py | MIT |
def dense_dense(paf, pbf, l1, l2):
"""Permute the output channels of Dense_{l1} and the input channels of Dense_{l2}."""
k1 = paf[f"params/Dense_{l1}/kernel"]
k2 = pbf[f"params/Dense_{l1}/kernel"]
assert k1.shape == k2.shape
ri, ci = linear_sum_assignment(cosine_similarity(k1.T, k2.T), maximize=True)
assert (ri == jnp.arange(len(ri))).all()
return {
**pbf, f"params/Dense_{l1}/kernel": pbf[f"params/Dense_{l1}/kernel"][:, ci],
f"params/Dense_{l1}/bias": pbf[f"params/Dense_{l1}/bias"][ci],
f"params/Dense_{l2}/kernel": pbf[f"params/Dense_{l2}/kernel"][ci, :]
} | Permute the output channels of Dense_{l1} and the input channels of Dense_{l2}. | permutify.dense_dense | python | samuela/git-re-basin | src/mnist_convnet_plot.py | https://github.com/samuela/git-re-basin/blob/master/src/mnist_convnet_plot.py | MIT |
def permutify(paramsA, paramsB):
"""Permute the parameters of paramsB to match paramsA as closely as possible.
Returns the permuted version of paramsB. Only works on sequences of Dense
layers for now."""
paf = flatten_params(paramsA)
pbf = flatten_params(paramsB)
# conv kernel shape: (width, height, in_channel, out_channel)
# dense kernel shape: (in, out)
# {in:fixed Conv_0 Conv_1 any:mean:fixed Dense_0 Dense_1 fixed:out}
def conv_conv(paf, pbf, l1, l2):
"""Permute the output channels of Conv_{l1} and the input channels of Conv_{l2}."""
k1 = paf[f"params/Conv_{l1}/kernel"]
k2 = pbf[f"params/Conv_{l1}/kernel"]
assert k1.shape == k2.shape
ri, ci = linear_sum_assignment(cosine_similarity(
jnp.reshape(jnp.moveaxis(k1, -1, 0), (k1.shape[-1], -1)),
jnp.reshape(jnp.moveaxis(k2, -1, 0), (k2.shape[-1], -1))),
maximize=True)
assert (ri == jnp.arange(len(ri))).all()
return {
**pbf, f"params/Conv_{l1}/kernel": pbf[f"params/Conv_{l1}/kernel"][:, :, :, ci],
f"params/Conv_{l1}/bias": pbf[f"params/Conv_{l1}/bias"][ci],
f"params/Conv_{l2}/kernel": pbf[f"params/Conv_{l2}/kernel"][:, :, ci, :]
}
def dense_dense(paf, pbf, l1, l2):
"""Permute the output channels of Dense_{l1} and the input channels of Dense_{l2}."""
k1 = paf[f"params/Dense_{l1}/kernel"]
k2 = pbf[f"params/Dense_{l1}/kernel"]
assert k1.shape == k2.shape
ri, ci = linear_sum_assignment(cosine_similarity(k1.T, k2.T), maximize=True)
assert (ri == jnp.arange(len(ri))).all()
return {
**pbf, f"params/Dense_{l1}/kernel": pbf[f"params/Dense_{l1}/kernel"][:, ci],
f"params/Dense_{l1}/bias": pbf[f"params/Dense_{l1}/bias"][ci],
f"params/Dense_{l2}/kernel": pbf[f"params/Dense_{l2}/kernel"][ci, :]
}
pbf_new = {**pbf}
# (Conv_0, Conv_1)
pbf_new = conv_conv(paf, pbf_new, 0, 1)
# (Conv_1, Conv_2)
pbf_new = conv_conv(paf, pbf_new, 1, 2)
# (Dense_0, Dense_1)
pbf_new = dense_dense(paf, pbf_new, 0, 1)
return unflatten_params(pbf_new) | Permute the parameters of paramsB to match paramsA as closely as possible.
Returns the permuted version of paramsB. Only works on sequences of Dense
layers for now. | permutify | python | samuela/git-re-basin | src/mnist_convnet_plot.py | https://github.com/samuela/git-re-basin/blob/master/src/mnist_convnet_plot.py | MIT |
def permutation_matrix(ixs):
"""Convert a permutation array, eg. [2, 3, 0, 1], to a permutation matrix."""
# This is confusing, but indexing the columns onto the rows is actually the correct thing to do
return jnp.eye(len(ixs), dtype=jnp.bool_)[ixs, :] | Convert a permutation array, eg. [2, 3, 0, 1], to a permutation matrix. | main.permutation_matrix | python | samuela/git-re-basin | src/mnist_mlp_ste.py | https://github.com/samuela/git-re-basin/blob/master/src/mnist_mlp_ste.py | MIT |
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model-a", type=str, required=True)
parser.add_argument("--model-b", type=str, required=True)
parser.add_argument("--test", action="store_true", help="Run in smoke-test mode")
parser.add_argument("--seed", type=int, default=0, help="Random seed")
args = parser.parse_args()
with wandb.init(
project="git-re-basin",
entity="skainswo",
tags=["mnist", "mlp", "straight-through-estimator"],
# See https://github.com/wandb/client/issues/3672.
mode="online",
job_type="analysis",
) as wandb_run:
config = wandb.config
config.ec2_instance_type = ec2_get_instance_type()
config.model_a = args.model_a
config.model_b = args.model_b
config.test = args.test
config.seed = args.seed
config.num_epochs = 10
config.batch_size = 1000
config.learning_rate = 1e-2
# This is the epoch that we pull the model A/B params from.
config.load_epoch = 49
model = MLPModel()
def load_model(filepath):
with open(filepath, "rb") as fh:
return from_bytes(init_train_state(random.PRNGKey(0), -1, model), fh.read())
artifact_a = Path(wandb_run.use_artifact(f"mnist-mlp-weights:{config.model_a}").download())
artifact_b = Path(wandb_run.use_artifact(f"mnist-mlp-weights:{config.model_b}").download())
model_a = load_model(artifact_a / f"checkpoint{config.load_epoch}")
model_b = load_model(artifact_b / f"checkpoint{config.load_epoch}")
stuff = make_stuff(model)
train_ds, test_ds = load_datasets(smoke_test_mode=config.test)
num_train_examples = train_ds["images_u8"].shape[0]
num_test_examples = test_ds["images_u8"].shape[0]
assert num_train_examples % config.batch_size == 0
assert num_test_examples % config.batch_size == 0
train_loss_a, train_accuracy_a = stuff["dataset_loss_and_accuracy"](model_a.params, train_ds,
10_000)
train_loss_b, train_accuracy_b = stuff["dataset_loss_and_accuracy"](model_b.params, train_ds,
10_000)
test_loss_a, test_accuracy_a = stuff["dataset_loss_and_accuracy"](model_a.params, test_ds,
10_000)
test_loss_b, test_accuracy_b = stuff["dataset_loss_and_accuracy"](model_b.params, test_ds,
10_000)
print({
"train_loss_a": train_loss_a,
"train_accuracy_a": train_accuracy_a,
"train_loss_b": train_loss_b,
"train_accuracy_b": train_accuracy_b,
"test_loss_a": test_loss_a,
"test_accuracy_a": test_accuracy_a,
"test_loss_b": test_loss_b,
"test_accuracy_b": test_accuracy_b,
})
baseline_train_loss = 0.5 * (train_loss_a + train_loss_b)
def lsa(A):
ri, ci = linear_sum_assignment(A, maximize=True)
assert (ri == jnp.arange(len(ri))).all()
return ci
def permutation_matrix(ixs):
"""Convert a permutation array, eg. [2, 3, 0, 1], to a permutation matrix."""
# This is confusing, but indexing the columns onto the rows is actually the correct thing to do
return jnp.eye(len(ixs), dtype=jnp.bool_)[ixs, :]
@jit
def batch_eval(permute_params, hardened_permute_params, images_u8, labels):
model_b_permuted_params = permute_params_apply(permute_params, hardened_permute_params,
model_b.params)
interp_params = tree_map(lambda a, b: 0.5 * (a + b), model_a.params, model_b_permuted_params)
l, num_correct = stuff["batch_eval"](interp_params, images_u8, labels)
# Makes life easier to know when we're winning. stop_gradient shouldn't be
# necessary but I'm paranoid.
l -= stop_gradient(baseline_train_loss)
return l, {"num_correct": num_correct, "accuracy": num_correct / config.batch_size}
@jit
def step(train_state, hardened_permute_params, images_u8, labels):
(l, metrics), g = value_and_grad(batch_eval,
has_aux=True)(train_state.params, hardened_permute_params,
images_u8, labels)
train_state = train_state.apply_gradients(grads=g)
# Project onto Birkhoff polytope.
train_state = train_state.replace(
params=tree_map(sinkhorn_knopp_projection, train_state.params))
return train_state, {**metrics, "loss": l}
rng = random.PRNGKey(config.seed)
tx = optax.sgd(learning_rate=config.learning_rate, momentum=0.9)
train_state = TrainState.create(apply_fn=None,
params=permute_params_init(rngmix(rng, "init")),
tx=tx)
for epoch in tqdm(range(config.num_epochs)):
train_data_perm = random.permutation(rngmix(rng, f"epoch-{epoch}"),
num_train_examples).reshape((-1, config.batch_size))
for i in range(num_train_examples // config.batch_size):
hardened_pp = {k: permutation_matrix(lsa(v)) for k, v in train_state.params.items()}
train_state, metrics = step(train_state, hardened_pp,
train_ds["images_u8"][train_data_perm[i]],
train_ds["labels"][train_data_perm[i]])
wandb_run.log(metrics)
if not jnp.isfinite(metrics["loss"]):
raise ValueError(f"Loss is not finite: {metrics['loss']}")
final_permutation = {k: jnp.argsort(lsa(v)) for k, v in train_state.params.items()}
# Save final_permutation as an Artifact
artifact = wandb.Artifact("model_b_permutation",
type="permutation",
metadata={
"dataset": "mnist",
"model": "mlp"
})
with artifact.new_file("permutation.pkl", mode="wb") as f:
pickle.dump(final_permutation, f)
wandb_run.log_artifact(artifact)
### plotting
lambdas = jnp.linspace(0, 1, num=25)
train_loss_interp_naive = []
test_loss_interp_naive = []
train_acc_interp_naive = []
test_acc_interp_naive = []
for lam in tqdm(lambdas):
naive_p = tree_map(lambda a, b: (1 - lam) * a + lam * b, model_a.params, model_b.params)
train_loss, train_acc = stuff["dataset_loss_and_accuracy"](naive_p, train_ds, 10_000)
test_loss, test_acc = stuff["dataset_loss_and_accuracy"](naive_p, test_ds, 10_000)
train_loss_interp_naive.append(train_loss)
test_loss_interp_naive.append(test_loss)
train_acc_interp_naive.append(train_acc)
test_acc_interp_naive.append(test_acc)
model_b_clever = apply_permutation(final_permutation, model_b.params)
train_loss_interp_clever = []
test_loss_interp_clever = []
train_acc_interp_clever = []
test_acc_interp_clever = []
for lam in tqdm(lambdas):
clever_p = tree_map(lambda a, b: (1 - lam) * a + lam * b, model_a.params, model_b_clever)
train_loss, train_acc = stuff["dataset_loss_and_accuracy"](clever_p, train_ds, 10_000)
test_loss, test_acc = stuff["dataset_loss_and_accuracy"](clever_p, test_ds, 10_000)
train_loss_interp_clever.append(train_loss)
test_loss_interp_clever.append(test_loss)
train_acc_interp_clever.append(train_acc)
test_acc_interp_clever.append(test_acc)
assert len(lambdas) == len(train_loss_interp_naive)
assert len(lambdas) == len(test_loss_interp_naive)
assert len(lambdas) == len(train_acc_interp_naive)
assert len(lambdas) == len(test_acc_interp_naive)
assert len(lambdas) == len(train_loss_interp_clever)
assert len(lambdas) == len(test_loss_interp_clever)
assert len(lambdas) == len(train_acc_interp_clever)
assert len(lambdas) == len(test_acc_interp_clever)
print("Plotting...")
fig = plot_interp_loss(config.load_epoch, lambdas, train_loss_interp_naive,
test_loss_interp_naive, train_loss_interp_clever,
test_loss_interp_clever)
plt.savefig(f"mnist_mlp_ste_interp_loss_epoch{config.load_epoch}.png", dpi=300)
wandb_run.log({"interp_loss_fig": wandb.Image(fig)}, commit=False)
plt.close(fig)
fig = plot_interp_acc(config.load_epoch, lambdas, train_acc_interp_naive, test_acc_interp_naive,
train_acc_interp_clever, test_acc_interp_clever)
plt.savefig(f"mnist_mlp_ste_interp_accuracy_epoch{config.load_epoch}.png", dpi=300)
wandb_run.log({"interp_acc_fig": wandb.Image(fig)}, commit=False)
plt.close(fig)
wandb_run.log({}, commit=True) | Convert a permutation array, eg. [2, 3, 0, 1], to a permutation matrix. | main | python | samuela/git-re-basin | src/mnist_mlp_ste.py | https://github.com/samuela/git-re-basin/blob/master/src/mnist_mlp_ste.py | MIT |
def conv_gn_conv(paf, pbf, l1, l2):
"""Permute the output channels of Conv_{l1} and the input channels of Conv_{l2}."""
ka = paf[f"params/Conv_{l1}/kernel"]
kb = pbf[f"params/Conv_{l1}/kernel"]
assert ka.shape == kb.shape
ri, ci = linear_sum_assignment(cosine_similarity(
jnp.reshape(jnp.moveaxis(ka, -1, 0), (ka.shape[-1], -1)),
jnp.reshape(jnp.moveaxis(kb, -1, 0), (kb.shape[-1], -1))),
maximize=True)
assert (ri == jnp.arange(len(ri))).all()
return {
**pbf, f"params/Conv_{l1}/kernel": pbf[f"params/Conv_{l1}/kernel"][:, :, :, ci],
f"params/Conv_{l1}/bias": pbf[f"params/Conv_{l1}/bias"][ci],
f"params/LayerNorm_{l1}/scale": pbf[f"params/LayerNorm_{l1}/scale"][ci],
f"params/LayerNorm_{l1}/bias": pbf[f"params/LayerNorm_{l1}/bias"][ci],
f"params/Conv_{l2}/kernel": pbf[f"params/Conv_{l2}/kernel"][:, :, ci, :]
} | Permute the output channels of Conv_{l1} and the input channels of Conv_{l2}. | permutify.conv_gn_conv | python | samuela/git-re-basin | src/cifar10_vgg_cosine_similarity_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_cosine_similarity_matching.py | MIT |
def dense_dense(paf, pbf, l1, l2):
"""Permute the output channels of Dense_{l1} and the input channels of Dense_{l2}."""
ka = paf[f"params/Dense_{l1}/kernel"]
kb = pbf[f"params/Dense_{l1}/kernel"]
assert ka.shape == kb.shape
ri, ci = linear_sum_assignment(cosine_similarity(ka.T, kb.T), maximize=True)
assert (ri == jnp.arange(len(ri))).all()
return {
**pbf, f"params/Dense_{l1}/kernel": pbf[f"params/Dense_{l1}/kernel"][:, ci],
f"params/Dense_{l1}/bias": pbf[f"params/Dense_{l1}/bias"][ci],
f"params/Dense_{l2}/kernel": pbf[f"params/Dense_{l2}/kernel"][ci, :]
} | Permute the output channels of Dense_{l1} and the input channels of Dense_{l2}. | permutify.dense_dense | python | samuela/git-re-basin | src/cifar10_vgg_cosine_similarity_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_cosine_similarity_matching.py | MIT |
def permutify(paramsA, paramsB):
"""Permute the parameters of paramsB to match paramsA as closely as possible.
Returns the permuted version of paramsB. Only works on sequences of Dense
layers for now."""
paf = flatten_params(paramsA)
pbf = flatten_params(paramsB)
# conv kernel shape: (width, height, in_channel, out_channel)
# dense kernel shape: (in, out)
# VGG16: Conv0-Conv12 flatten Dense0-Dense2
def conv_gn_conv(paf, pbf, l1, l2):
"""Permute the output channels of Conv_{l1} and the input channels of Conv_{l2}."""
ka = paf[f"params/Conv_{l1}/kernel"]
kb = pbf[f"params/Conv_{l1}/kernel"]
assert ka.shape == kb.shape
ri, ci = linear_sum_assignment(cosine_similarity(
jnp.reshape(jnp.moveaxis(ka, -1, 0), (ka.shape[-1], -1)),
jnp.reshape(jnp.moveaxis(kb, -1, 0), (kb.shape[-1], -1))),
maximize=True)
assert (ri == jnp.arange(len(ri))).all()
return {
**pbf, f"params/Conv_{l1}/kernel": pbf[f"params/Conv_{l1}/kernel"][:, :, :, ci],
f"params/Conv_{l1}/bias": pbf[f"params/Conv_{l1}/bias"][ci],
f"params/LayerNorm_{l1}/scale": pbf[f"params/LayerNorm_{l1}/scale"][ci],
f"params/LayerNorm_{l1}/bias": pbf[f"params/LayerNorm_{l1}/bias"][ci],
f"params/Conv_{l2}/kernel": pbf[f"params/Conv_{l2}/kernel"][:, :, ci, :]
}
def dense_dense(paf, pbf, l1, l2):
"""Permute the output channels of Dense_{l1} and the input channels of Dense_{l2}."""
ka = paf[f"params/Dense_{l1}/kernel"]
kb = pbf[f"params/Dense_{l1}/kernel"]
assert ka.shape == kb.shape
ri, ci = linear_sum_assignment(cosine_similarity(ka.T, kb.T), maximize=True)
assert (ri == jnp.arange(len(ri))).all()
return {
**pbf, f"params/Dense_{l1}/kernel": pbf[f"params/Dense_{l1}/kernel"][:, ci],
f"params/Dense_{l1}/bias": pbf[f"params/Dense_{l1}/bias"][ci],
f"params/Dense_{l2}/kernel": pbf[f"params/Dense_{l2}/kernel"][ci, :]
}
def conv_gn_flatten_dense(paf, pbf, l1, l2):
# Note that this is much simpler than the general case since we also know
# that the output of Conv_{l1} has shape (_, 1, 1, 512) when inputs are
# (_, 32, 32, 3) as is the case with CIFAR-10. And Dense_{l2} has shape
# (512, _).
ka = paf[f"params/Conv_{l1}/kernel"]
kb = pbf[f"params/Conv_{l1}/kernel"]
assert ka.shape == kb.shape
ri, ci = linear_sum_assignment(cosine_similarity(
jnp.reshape(jnp.moveaxis(ka, -1, 0), (ka.shape[-1], -1)),
jnp.reshape(jnp.moveaxis(kb, -1, 0), (kb.shape[-1], -1))),
maximize=True)
assert (ri == jnp.arange(len(ri))).all()
return {
**pbf, f"params/Conv_{l1}/kernel": pbf[f"params/Conv_{l1}/kernel"][:, :, :, ci],
f"params/Conv_{l1}/bias": pbf[f"params/Conv_{l1}/bias"][ci],
f"params/LayerNorm_{l1}/scale": pbf[f"params/LayerNorm_{l1}/scale"][ci],
f"params/LayerNorm_{l1}/bias": pbf[f"params/LayerNorm_{l1}/bias"][ci],
f"params/Dense_{l2}/kernel": pbf[f"params/Dense_{l2}/kernel"][ci, :]
}
pbf_new = {**pbf}
# Backbone conv layers
for layer in range(12):
pbf_new = conv_gn_conv(paf, pbf_new, layer, layer + 1)
# Conv_12 flatten Dense_0
pbf_new = conv_gn_flatten_dense(paf, pbf_new, 12, 0)
# (Dense_0, Dense_1) and (Dense_1, Dense_2)
pbf_new = dense_dense(paf, pbf_new, 0, 1)
pbf_new = dense_dense(paf, pbf_new, 1, 2)
return unflatten_params(pbf_new) | Permute the parameters of paramsB to match paramsA as closely as possible.
Returns the permuted version of paramsB. Only works on sequences of Dense
layers for now. | permutify | python | samuela/git-re-basin | src/cifar10_vgg_cosine_similarity_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_cosine_similarity_matching.py | MIT |
def load_mnist():
"""Return the training and test datasets, unbatched."""
# See https://www.tensorflow.org/datasets/overview#as_batched_tftensor_batch_size-1.
train_ds_images_u8, train_ds_labels = tfds.as_numpy(
tfds.load("mnist", split="train", batch_size=-1, as_supervised=True))
test_ds_images_u8, test_ds_labels = tfds.as_numpy(
tfds.load("mnist", split="test", batch_size=-1, as_supervised=True))
train_ds = {"images_u8": train_ds_images_u8, "labels": train_ds_labels}
test_ds = {"images_u8": test_ds_images_u8, "labels": test_ds_labels}
return train_ds, test_ds | Return the training and test datasets, unbatched. | load_mnist | python | samuela/git-re-basin | src/mnist_mlp_wm_many.py | https://github.com/samuela/git-re-basin/blob/master/src/mnist_mlp_wm_many.py | MIT |
def get_intermediates(params, images_u8):
"""Calculate intermediate activations for all layers in flax's format."""
images_f32 = vmap(stuff["normalize_transform"])(None, images_u8)
_, state = model.apply({"params": params},
images_f32,
capture_intermediates=lambda mdl, _: isinstance(mdl, nn.Dense),
mutable=["intermediates"])
return state["intermediates"] | Calculate intermediate activations for all layers in flax's format. | get_intermediates | python | samuela/git-re-basin | src/cifar10_mlp_activation_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_mlp_activation_matching.py | MIT |
def normalize_activations(intermediates):
"""Simplify the activation dict format and flatten everything to be (batch_size, channels)."""
def dense(i: int):
k = f"Dense_{i}"
# The activations are (batch_size, num_units) so we don't need to reshape.
act = intermediates[k]["__call__"][0]
act = nn.relu(act)
return act
return {f"Dense_{i}": dense(i) for i in range(num_mlp_layers)} | Simplify the activation dict format and flatten everything to be (batch_size, channels). | normalize_activations | python | samuela/git-re-basin | src/cifar10_mlp_activation_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_mlp_activation_matching.py | MIT |
def conv_norm_conv(pf, l1, l2, perm):
"""Permute the output channels of Conv_{l1} and the input channels of
Conv_{l2}."""
return {
**pf, f"params/Conv_{l1}/kernel": pf[f"params/Conv_{l1}/kernel"][:, :, :, perm],
f"params/Conv_{l1}/bias": pf[f"params/Conv_{l1}/bias"][perm],
f"params/LayerNorm_{l1}/scale": pf[f"params/LayerNorm_{l1}/scale"][perm],
f"params/LayerNorm_{l1}/bias": pf[f"params/LayerNorm_{l1}/bias"][perm],
f"params/Conv_{l2}/kernel": pf[f"params/Conv_{l2}/kernel"][:, :, perm, :]
} | Permute the output channels of Conv_{l1} and the input channels of
Conv_{l2}. | vgg16_permutify.conv_norm_conv | python | samuela/git-re-basin | src/cifar10_vgg_activation_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_activation_matching.py | MIT |
def dense_dense(pf, l1, l2, perm):
"""Permute the output channels of Dense_{l1} and the input channels of Dense_{l2}."""
return {
**pf, f"params/Dense_{l1}/kernel": pf[f"params/Dense_{l1}/kernel"][:, perm],
f"params/Dense_{l1}/bias": pf[f"params/Dense_{l1}/bias"][perm],
f"params/Dense_{l2}/kernel": pf[f"params/Dense_{l2}/kernel"][perm, :]
} | Permute the output channels of Dense_{l1} and the input channels of Dense_{l2}. | vgg16_permutify.dense_dense | python | samuela/git-re-basin | src/cifar10_vgg_activation_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_activation_matching.py | MIT |
def conv_norm_flatten_dense(pf, l1, l2, perm):
"""Permute the output channels of Conv_{l1} and the input channels of Dense_{l2}."""
# Note that the flatten is kind of a no-op since the flatten is (batch, 1, 1, 512) -> (batch, 512)
return {
**pf, f"params/Conv_{l1}/kernel": pf[f"params/Conv_{l1}/kernel"][:, :, :, perm],
f"params/Conv_{l1}/bias": pf[f"params/Conv_{l1}/bias"][perm],
f"params/LayerNorm_{l1}/scale": pf[f"params/LayerNorm_{l1}/scale"][perm],
f"params/LayerNorm_{l1}/bias": pf[f"params/LayerNorm_{l1}/bias"][perm],
f"params/Dense_{l2}/kernel": pf[f"params/Dense_{l2}/kernel"][perm, :]
} | Permute the output channels of Conv_{l1} and the input channels of Dense_{l2}. | vgg16_permutify.conv_norm_flatten_dense | python | samuela/git-re-basin | src/cifar10_vgg_activation_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_activation_matching.py | MIT |
def vgg16_permutify(permutation, params):
"""Permute the parameters of `params` based on `permutation`."""
params_flat = flatten_params(params)
# print(tree_map(jnp.shape, params_flat))
# conv kernel shape: (width, height, in_channel, out_channel)
# dense kernel shape: (in, out)
# VGG16: Conv0-Conv12 flatten Dense0-Dense2
def conv_norm_conv(pf, l1, l2, perm):
"""Permute the output channels of Conv_{l1} and the input channels of
Conv_{l2}."""
return {
**pf, f"params/Conv_{l1}/kernel": pf[f"params/Conv_{l1}/kernel"][:, :, :, perm],
f"params/Conv_{l1}/bias": pf[f"params/Conv_{l1}/bias"][perm],
f"params/LayerNorm_{l1}/scale": pf[f"params/LayerNorm_{l1}/scale"][perm],
f"params/LayerNorm_{l1}/bias": pf[f"params/LayerNorm_{l1}/bias"][perm],
f"params/Conv_{l2}/kernel": pf[f"params/Conv_{l2}/kernel"][:, :, perm, :]
}
def dense_dense(pf, l1, l2, perm):
"""Permute the output channels of Dense_{l1} and the input channels of Dense_{l2}."""
return {
**pf, f"params/Dense_{l1}/kernel": pf[f"params/Dense_{l1}/kernel"][:, perm],
f"params/Dense_{l1}/bias": pf[f"params/Dense_{l1}/bias"][perm],
f"params/Dense_{l2}/kernel": pf[f"params/Dense_{l2}/kernel"][perm, :]
}
def conv_norm_flatten_dense(pf, l1, l2, perm):
"""Permute the output channels of Conv_{l1} and the input channels of Dense_{l2}."""
# Note that the flatten is kind of a no-op since the flatten is (batch, 1, 1, 512) -> (batch, 512)
return {
**pf, f"params/Conv_{l1}/kernel": pf[f"params/Conv_{l1}/kernel"][:, :, :, perm],
f"params/Conv_{l1}/bias": pf[f"params/Conv_{l1}/bias"][perm],
f"params/LayerNorm_{l1}/scale": pf[f"params/LayerNorm_{l1}/scale"][perm],
f"params/LayerNorm_{l1}/bias": pf[f"params/LayerNorm_{l1}/bias"][perm],
f"params/Dense_{l2}/kernel": pf[f"params/Dense_{l2}/kernel"][perm, :]
}
params_flat_new = {**params_flat}
# Backbone conv layers
for layer in range(12):
params_flat_new = conv_norm_conv(params_flat_new, layer, layer + 1,
permutation[f"Conv_{layer}"])
# Conv_12 flatten Dense_0
params_flat_new = conv_norm_flatten_dense(params_flat_new, 12, 0, permutation["Conv_12"])
# (Dense_0, Dense_1) and (Dense_1, Dense_2)
params_flat_new = dense_dense(params_flat_new, 0, 1, permutation["Dense_0"])
params_flat_new = dense_dense(params_flat_new, 1, 2, permutation["Dense_1"])
return unflatten_params(params_flat_new) | Permute the parameters of `params` based on `permutation`. | vgg16_permutify | python | samuela/git-re-basin | src/cifar10_vgg_activation_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_activation_matching.py | MIT |
def get_intermediates(params, images_u8):
"""Calculate intermediate activations for all layers in flax's format."""
images_f32 = vmap(stuff["normalize_transform"])(None, images_u8)
_, state = model.apply({"params": params},
images_f32,
capture_intermediates=lambda mdl, _: isinstance(mdl, nn.LayerNorm) or
isinstance(mdl, nn.Dense),
mutable=["intermediates"])
return state["intermediates"] | Calculate intermediate activations for all layers in flax's format. | get_intermediates | python | samuela/git-re-basin | src/cifar10_vgg_activation_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_activation_matching.py | MIT |
def normalize_activations(intermediates):
"""Simplify the activation dict format and flatten everything to be (batch_size, channels)."""
def layernorm(i: int):
k = f"LayerNorm_{i}"
act = intermediates[k]["__call__"][0]
act = rearrange(act, "batch w h c -> (batch w h) c")
act = nn.relu(act)
return act
def dense(i: int):
k = f"Dense_{i}"
# The activations are (batch_size, num_units) so we don't need to reshape.
act = intermediates[k]["__call__"][0]
act = nn.relu(act)
return act
return {
"Dense_0": dense(0),
"Dense_1": dense(1),
**{f"Conv_{i}": layernorm(i)
for i in range(13)},
} | Simplify the activation dict format and flatten everything to be (batch_size, channels). | normalize_activations | python | samuela/git-re-basin | src/cifar10_vgg_activation_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/cifar10_vgg_activation_matching.py | MIT |
def mlp_permutation_spec(num_hidden_layers: int) -> PermutationSpec:
"""We assume that one permutation cannot appear in two axes of the same weight array."""
assert num_hidden_layers >= 1
return permutation_spec_from_axes_to_perm({
"Dense_0/kernel": (None, "P_0"),
**{f"Dense_{i}/kernel": (f"P_{i-1}", f"P_{i}")
for i in range(1, num_hidden_layers)},
**{f"Dense_{i}/bias": (f"P_{i}", )
for i in range(num_hidden_layers)},
f"Dense_{num_hidden_layers}/kernel": (f"P_{num_hidden_layers-1}", None),
f"Dense_{num_hidden_layers}/bias": (None, ),
}) | We assume that one permutation cannot appear in two axes of the same weight array. | mlp_permutation_spec | python | samuela/git-re-basin | src/mnist_vgg_weight_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/mnist_vgg_weight_matching.py | MIT |
def get_permuted_param(ps: PermutationSpec, perm, k: str, params, except_axis=None):
"""Get parameter `k` from `params`, with the permutations applied."""
w = params[k]
for axis, p in enumerate(ps.axes_to_perm[k]):
# Skip the axis we're trying to permute.
if axis == except_axis:
continue
# None indicates that there is no permutation relevant to that axis.
if p is not None:
w = jnp.take(w, perm[p], axis=axis)
return w | Get parameter `k` from `params`, with the permutations applied. | get_permuted_param | python | samuela/git-re-basin | src/mnist_vgg_weight_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/mnist_vgg_weight_matching.py | MIT |
def apply_permutation(ps: PermutationSpec, perm, params):
"""Apply a `perm` to `params`."""
return {k: get_permuted_param(ps, perm, k, params) for k in params.keys()} | Apply a `perm` to `params`. | apply_permutation | python | samuela/git-re-basin | src/mnist_vgg_weight_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/mnist_vgg_weight_matching.py | MIT |
def weight_matching(rng, ps: PermutationSpec, params_a, params_b):
"""Find a permutation of `params_b` to make them match `params_a`."""
perm_sizes = {p: params_a[axes[0][0]].shape[axes[0][1]] for p, axes in ps.perm_to_axes.items()}
perm = {p: jnp.arange(n) for p, n in perm_sizes.items()}
perm_names = list(perm.keys())
for iteration in range(100):
progress = False
for p_ix in random.permutation(rngmix(rng, iteration), len(perm_names)):
p = perm_names[p_ix]
n = perm_sizes[p]
A = jnp.zeros((n, n))
for wk, axis in ps.perm_to_axes[p]:
w_a = params_a[wk]
w_b = get_permuted_param(ps, perm, wk, params_b, except_axis=axis)
w_a = jnp.moveaxis(w_a, axis, 0).reshape((n, -1))
w_b = jnp.moveaxis(w_b, axis, 0).reshape((n, -1))
A += w_a @ w_b.T
# A += w_a.size * (w_a @ w_b.T)
ri, ci = linear_sum_assignment(A, maximize=True)
assert (ri == jnp.arange(len(ri))).all()
oldL = jnp.vdot(A, jnp.eye(n)[perm[p]])
newL = jnp.vdot(A, jnp.eye(n)[ci, :])
print(f"{iteration}/{p}: {newL - oldL}")
progress = progress or newL > oldL + 1e-12
perm[p] = jnp.array(ci)
if not progress:
break
return perm | Find a permutation of `params_b` to make them match `params_a`. | weight_matching | python | samuela/git-re-basin | src/mnist_vgg_weight_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/mnist_vgg_weight_matching.py | MIT |
def test_weight_matching():
"""If we just have a single hidden layer then it should converge after just one step."""
ps = mlp_permutation_spec(num_hidden_layers=1)
rng = random.PRNGKey(123)
num_hidden = 10
shapes = {
"Dense_0/kernel": (2, num_hidden),
"Dense_0/bias": (num_hidden, ),
"Dense_1/kernel": (num_hidden, 3),
"Dense_1/bias": (3, )
}
params_a = {k: random.normal(rngmix(rng, f"a-{k}"), shape) for k, shape in shapes.items()}
params_b = {k: random.normal(rngmix(rng, f"b-{k}"), shape) for k, shape in shapes.items()}
perm = weight_matching(rng, ps, params_a, params_b)
print(perm) | If we just have a single hidden layer then it should converge after just one step. | test_weight_matching | python | samuela/git-re-basin | src/mnist_vgg_weight_matching.py | https://github.com/samuela/git-re-basin/blob/master/src/mnist_vgg_weight_matching.py | MIT |
def get_datasets(test_mode):
"""Return the training and test datasets, unbatched.
test_mode: Whether or not we're running in "smoke test" mode.
"""
train_ds = tfds.load("mnist", split="train", as_supervised=True)
test_ds = tfds.load("mnist", split="test", as_supervised=True)
# Note: The take/cache warning:
# 2022-01-25 07:32:58.144059: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
# is not because we're actually doing this in the wrong order, but rather that
# the dataset is loaded in and called .cache() on before we receive it.
if test_mode:
train_ds = train_ds.take(13)
test_ds = test_ds.take(17)
# Normalize 0-255 pixel values to 0.0-1.0
normalize = lambda image, label: (tf.cast(image, tf.float32) / 255.0, tf.one_hot(label, depth=10))
train_ds = train_ds.map(normalize).cache()
test_ds = test_ds.map(normalize).cache()
return train_ds, test_ds | Return the training and test datasets, unbatched.
test_mode: Whether or not we're running in "smoke test" mode. | get_datasets | python | samuela/git-re-basin | src/mnist_convnet_run.py | https://github.com/samuela/git-re-basin/blob/master/src/mnist_convnet_run.py | MIT |
def __init__(
self,
dim: int,
dim_out: int,
heads: int,
q_stride: int = 1,
window_size: int = 0,
use_mask_unit_attn: bool = False,
):
"""
Args:
- dim, dim_out: The input and output feature dimensions.
- heads: The number of attention heads.
- q_stride: If greater than 1, pool q with this stride. The stride should be flattened (e.g., 2x2 = 4).
- window_size: The current (flattened) size of a mask unit *after* pooling (if any).
- use_mask_unit_attn: Use Mask Unit or Global Attention.
"""
super().__init__()
self.dim = dim
self.dim_out = dim_out
self.heads = heads
self.q_stride = q_stride
self.head_dim = dim_out // heads
self.scale = (self.head_dim) ** -0.5
self.qkv = nn.Linear(dim, 3 * dim_out)
self.proj = nn.Linear(dim_out, dim_out)
self.window_size = window_size
self.use_mask_unit_attn = use_mask_unit_attn | Args:
- dim, dim_out: The input and output feature dimensions.
- heads: The number of attention heads.
- q_stride: If greater than 1, pool q with this stride. The stride should be flattened (e.g., 2x2 = 4).
- window_size: The current (flattened) size of a mask unit *after* pooling (if any).
- use_mask_unit_attn: Use Mask Unit or Global Attention. | __init__ | python | facebookresearch/hiera | hiera/hiera.py | https://github.com/facebookresearch/hiera/blob/master/hiera/hiera.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
""" Input should be of shape [batch, tokens, channels]. """
B, N, _ = x.shape
num_windows = (
(N // (self.q_stride * self.window_size)) if self.use_mask_unit_attn else 1
)
qkv = (
self.qkv(x)
.reshape(B, -1, num_windows, 3, self.heads, self.head_dim)
.permute(3, 0, 4, 2, 1, 5)
)
q, k, v = qkv[0], qkv[1], qkv[2]
if self.q_stride > 1:
# Refer to Unroll to see how this performs a maxpool-Nd
q = (
q.view(B, self.heads, num_windows, self.q_stride, -1, self.head_dim)
.max(dim=3)
.values
)
if hasattr(F, "scaled_dot_product_attention"):
# Note: the original paper did *not* use SDPA, it's a free boost!
x = F.scaled_dot_product_attention(q, k, v)
else:
attn = (q * self.scale) @ k.transpose(-1, -2)
attn = attn.softmax(dim=-1)
x = (attn @ v)
x = x.transpose(1, 3).reshape(B, -1, self.dim_out)
x = self.proj(x)
return x | Input should be of shape [batch, tokens, channels]. | forward | python | facebookresearch/hiera | hiera/hiera.py | https://github.com/facebookresearch/hiera/blob/master/hiera/hiera.py | Apache-2.0 |
def get_random_mask(self, x: torch.Tensor, mask_ratio: float) -> torch.Tensor:
"""
Generates a random mask, mask_ratio fraction are dropped.
1 is *keep*, 0 is *remove*. Useful for MAE, FLIP, etc.
"""
B = x.shape[0]
# Tokens selected for masking at mask unit level
num_windows = math.prod(self.mask_spatial_shape) # num_mask_units
len_keep = int(num_windows * (1 - mask_ratio))
noise = torch.rand(B, num_windows, device=x.device)
# Sort noise for each sample
ids_shuffle = torch.argsort(
noise, dim=1
) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# Generate the binary mask: 1 is *keep*, 0 is *remove*
# Note this is opposite to original MAE
mask = torch.zeros([B, num_windows], device=x.device)
mask[:, :len_keep] = 1
# Unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return mask.bool() | Generates a random mask, mask_ratio fraction are dropped.
1 is *keep*, 0 is *remove*. Useful for MAE, FLIP, etc. | get_random_mask | python | facebookresearch/hiera | hiera/hiera.py | https://github.com/facebookresearch/hiera/blob/master/hiera/hiera.py | Apache-2.0 |
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor = None,
return_intermediates: bool = False,
) -> torch.Tensor:
"""
mask should be a boolean tensor of shape [B, #MUt*#MUy*#MUx] where #MU are the number of mask units in that dim.
Note: 1 in mask is *keep*, 0 is *remove*; mask.sum(dim=-1) should be the same across the batch.
"""
# Slowfast training passes in a list
if isinstance(x, list):
x = x[0]
intermediates = []
x = self.patch_embed(
x,
mask=mask.view(
x.shape[0], 1, *self.mask_spatial_shape
) # B, C, *mask_spatial_shape
if mask is not None
else None,
)
x = x + self.get_pos_embed()
x = self.unroll(x)
# Discard masked tokens
if mask is not None:
x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(
x.shape[0], -1, x.shape[-1]
)
for i, blk in enumerate(self.blocks):
x = blk(x)
if return_intermediates and i in self.stage_ends:
intermediates.append(self.reroll(x, i, mask=mask))
if mask is None:
x = x.mean(dim=1)
x = self.norm(x)
x = self.head(x)
# x may not always be in spatial order here.
# e.g. if q_pool = 2, mask_unit_size = (8, 8), and
# q_stride = (2, 2), not all unrolls were consumed,
# intermediates[-1] is x in spatial order
if return_intermediates:
return x, intermediates
return x | mask should be a boolean tensor of shape [B, #MUt*#MUy*#MUx] where #MU are the number of mask units in that dim.
Note: 1 in mask is *keep*, 0 is *remove*; mask.sum(dim=-1) should be the same across the batch. | forward | python | facebookresearch/hiera | hiera/hiera.py | https://github.com/facebookresearch/hiera/blob/master/hiera/hiera.py | Apache-2.0 |
def benchmark(
model: torch.nn.Module,
device: torch.device = 0,
input_size: Tuple[int] = (3, 224, 224),
batch_size: int = 64,
runs: int = 40,
throw_out: float = 0.25,
use_fp16: bool = False,
verbose: bool = False,
) -> float:
"""
Benchmark the given model with random inputs at the given batch size.
Args:
- model: the module to benchmark
- device: the device to use for benchmarking
- input_size: the input size to pass to the model e.g., (ch, h, w) or (ch, t, h, w)
- batch_size: the batch size to use for evaluation
- runs: the number of total runs to do
- throw_out: the percentage of runs to throw out at the start of testing
- use_fp16: whether or not to benchmark with float16 and autocast
- verbose: whether or not to use tqdm to print progress / print throughput at end
Returns:
- the throughput measured in images / second
"""
if not isinstance(device, torch.device):
device = torch.device(device)
is_cuda = torch.device(device).type == "cuda"
model = model.eval().to(device)
input = torch.rand(batch_size, *input_size, device=device)
if use_fp16:
input = input.half()
warm_up = int(runs * throw_out)
total = 0
start = time.time()
with torch.autocast(device.type, enabled=use_fp16):
with torch.no_grad():
for i in tqdm(range(runs), disable=not verbose, desc="Benchmarking"):
if i == warm_up:
if is_cuda:
torch.cuda.synchronize()
total = 0
start = time.time()
model(input)
total += batch_size
if is_cuda:
torch.cuda.synchronize()
end = time.time()
elapsed = end - start
throughput = total / elapsed
if verbose:
print(f"Throughput: {throughput:.2f} im/s")
return throughput | Benchmark the given model with random inputs at the given batch size.
Args:
- model: the module to benchmark
- device: the device to use for benchmarking
- input_size: the input size to pass to the model e.g., (ch, h, w) or (ch, t, h, w)
- batch_size: the batch size to use for evaluation
- runs: the number of total runs to do
- throw_out: the percentage of runs to throw out at the start of testing
- use_fp16: whether or not to benchmark with float16 and autocast
- verbose: whether or not to use tqdm to print progress / print throughput at end
Returns:
- the throughput measured in images / second | benchmark | python | facebookresearch/hiera | hiera/benchmarking.py | https://github.com/facebookresearch/hiera/blob/master/hiera/benchmarking.py | Apache-2.0 |
def pretrained_model(checkpoints: Dict[str, str], default: str = None) -> Callable:
""" Loads a Hiera model from a pretrained source (if pretrained=True). Use "checkpoint" to specify the checkpoint. """
def inner(model_func: Callable) -> Callable:
def model_def(pretrained: bool = False, checkpoint: str = default, strict: bool = True, **kwdargs) -> nn.Module:
if pretrained:
if checkpoints is None:
raise RuntimeError("This model currently doesn't have pretrained weights available.")
elif checkpoint is None:
raise RuntimeError("No checkpoint specified.")
elif checkpoint not in checkpoints:
raise RuntimeError(f"Invalid checkpoint specified ({checkpoint}). Options are: {list(checkpoints.keys())}.")
state_dict = torch.hub.load_state_dict_from_url(checkpoints[checkpoint], map_location="cpu")
if "head.projection.weight" in state_dict["model_state"]:
# Set the number of classes equal to the state_dict only if the user doesn't want to overwrite it
if "num_classes" not in kwdargs:
kwdargs["num_classes"] = state_dict["model_state"]["head.projection.weight"].shape[0]
# If the user specified a different number of classes, remove the projection weights or else we'll error out
elif kwdargs["num_classes"] != state_dict["model_state"]["head.projection.weight"].shape[0]:
del state_dict["model_state"]["head.projection.weight"]
del state_dict["model_state"]["head.projection.bias"]
model = model_func(**kwdargs)
if pretrained:
# Disable being strict when trying to load a encoder-decoder model into an encoder-only model
if "decoder_pos_embed" in state_dict["model_state"] and not hasattr(model, "decoder_pos_embed"):
strict = False
model.load_state_dict(state_dict["model_state"], strict=strict)
return model
# Keep some metadata so we can do things that require looping through all available models
model_def.checkpoints = checkpoints
model_def.default = default
return model_def
return inner | Loads a Hiera model from a pretrained source (if pretrained=True). Use "checkpoint" to specify the checkpoint. | pretrained_model | python | facebookresearch/hiera | hiera/hiera_utils.py | https://github.com/facebookresearch/hiera/blob/master/hiera/hiera_utils.py | Apache-2.0 |
def conv_nd(n: int) -> Type[nn.Module]:
"""
Returns a conv with nd (e.g., Conv2d for n=2). Work up to n=3.
If you wanted a 4d Hiera, you could probably just implement this for n=4. (no promises)
"""
return [nn.Identity, nn.Conv1d, nn.Conv2d, nn.Conv3d][n] | Returns a conv with nd (e.g., Conv2d for n=2). Work up to n=3.
If you wanted a 4d Hiera, you could probably just implement this for n=4. (no promises) | conv_nd | python | facebookresearch/hiera | hiera/hiera_utils.py | https://github.com/facebookresearch/hiera/blob/master/hiera/hiera_utils.py | Apache-2.0 |
def do_masked_conv(
x: torch.Tensor, conv: nn.Module, mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""Zero-out the masked regions of the input before conv.
Prevents leakage of masked regions when using overlapping kernels.
"""
if conv is None:
return x
if mask is None:
return conv(x)
mask = get_resized_mask(target_size=x.shape[2:], mask=mask)
return conv(x * mask.bool()) | Zero-out the masked regions of the input before conv.
Prevents leakage of masked regions when using overlapping kernels. | do_masked_conv | python | facebookresearch/hiera | hiera/hiera_utils.py | https://github.com/facebookresearch/hiera/blob/master/hiera/hiera_utils.py | Apache-2.0 |
def undo_windowing(
x: torch.Tensor, shape: List[int], mu_shape: List[int]
) -> torch.Tensor:
"""
Restore spatial organization by undoing windowed organization of mask units.
Args:
x: organized by mask units windows, e.g. in 2d [B, #MUy*#MUx, MUy, MUx, C]
shape: current spatial shape, if it were not organized into mask unit
windows, e.g. in 2d [B, #MUy*MUy, #MUx*MUx, C].
mu_shape: current mask unit shape, e.g. in 2d [MUy, MUx]
Returns:
x: e.g. in 2d, [B, #MUy*MUy, #MUx*MUx, C]
"""
D = len(shape)
B, C = x.shape[0], x.shape[-1]
# [B, #MUy*#MUx, MUy, MUx, C] -> [B, #MUy, #MUx, MUy, MUx, C]
num_MUs = [s // mu for s, mu in zip(shape, mu_shape)]
x = x.view(B, *num_MUs, *mu_shape, C)
# [B, #MUy, #MUx, MUy, MUx, C] -> [B, #MUy*MUy, #MUx*MUx, C]
permute = (
[0]
+ sum(
[list(p) for p in zip(range(1, 1 + D), range(1 + D, 1 + 2 * D))],
[],
)
+ [len(x.shape) - 1]
)
x = x.permute(permute).reshape(B, *shape, C)
return x | Restore spatial organization by undoing windowed organization of mask units.
Args:
x: organized by mask units windows, e.g. in 2d [B, #MUy*#MUx, MUy, MUx, C]
shape: current spatial shape, if it were not organized into mask unit
windows, e.g. in 2d [B, #MUy*MUy, #MUx*MUx, C].
mu_shape: current mask unit shape, e.g. in 2d [MUy, MUx]
Returns:
x: e.g. in 2d, [B, #MUy*MUy, #MUx*MUx, C] | undo_windowing | python | facebookresearch/hiera | hiera/hiera_utils.py | https://github.com/facebookresearch/hiera/blob/master/hiera/hiera_utils.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Input: Flattened patch embeddings [B, N, C]
Output: Patch embeddings [B, N, C] permuted such that [B, 4, N//4, C].max(1) etc. performs MaxPoolNd
"""
B, _, C = x.shape
cur_size = self.size
x = x.view(*([B] + cur_size + [C]))
for strides in self.schedule:
# Move patches with the given strides to the batch dimension
# Create a view of the tensor with the patch stride as separate dims
# For example in 2d: [B, H // Sy, Sy, W // Sx, Sx, C]
cur_size = [i // s for i, s in zip(cur_size, strides)]
new_shape = [B] + sum([[i, s] for i, s in zip(cur_size, strides)], []) + [C]
x = x.view(new_shape)
# Move the patch stride into the batch dimension
# For example in 2d: [B, Sy, Sx, H // Sy, W // Sx, C]
L = len(new_shape)
permute = (
[0] + list(range(2, L - 1, 2)) + list(range(1, L - 1, 2)) + [L - 1]
)
x = x.permute(permute)
# Now finally flatten the relevant dims into the batch dimension
x = x.flatten(0, len(strides))
B *= math.prod(strides)
x = x.reshape(-1, math.prod(self.size), C)
return x | Input: Flattened patch embeddings [B, N, C]
Output: Patch embeddings [B, N, C] permuted such that [B, 4, N//4, C].max(1) etc. performs MaxPoolNd | forward | python | facebookresearch/hiera | hiera/hiera_utils.py | https://github.com/facebookresearch/hiera/blob/master/hiera/hiera_utils.py | Apache-2.0 |
def forward(
self, x: torch.Tensor, block_idx: int, mask: torch.Tensor = None
) -> torch.Tensor:
"""
Roll the given tensor back up to spatial order assuming it's from the given block.
If no mask is provided:
- Returns [B, H, W, C] for 2d, [B, T, H, W, C] for 3d, etc.
If a mask is provided:
- Returns [B, #MUs, MUy, MUx, C] for 2d, etc.
"""
schedule, size = self.schedule[block_idx]
B, N, C = x.shape
D = len(size)
cur_mu_shape = [1] * D
for strides in schedule:
# Extract the current patch from N
x = x.view(B, *strides, N // math.prod(strides), *cur_mu_shape, C)
# Move that patch into the current MU
# Example in 2d: [B, Sy, Sx, N//(Sy*Sx), MUy, MUx, C] -> [B, N//(Sy*Sx), Sy, MUy, Sx, MUx, C]
L = len(x.shape)
permute = (
[0, 1 + D]
+ sum(
[list(p) for p in zip(range(1, 1 + D), range(1 + D + 1, L - 1))],
[],
)
+ [L - 1]
)
x = x.permute(permute)
# Reshape to [B, N//(Sy*Sx), *MU, C]
for i in range(D):
cur_mu_shape[i] *= strides[i]
x = x.reshape(B, -1, *cur_mu_shape, C)
N = x.shape[1]
# Current shape (e.g., 2d: [B, #MUy*#MUx, MUy, MUx, C])
x = x.view(B, N, *cur_mu_shape, C)
# If masked, return [B, #MUs, MUy, MUx, C]
if mask is not None:
return x
# If not masked, we can return [B, H, W, C]
x = undo_windowing(x, size, cur_mu_shape)
return x | Roll the given tensor back up to spatial order assuming it's from the given block.
If no mask is provided:
- Returns [B, H, W, C] for 2d, [B, T, H, W, C] for 3d, etc.
If a mask is provided:
- Returns [B, #MUs, MUy, MUx, C] for 2d, etc. | forward | python | facebookresearch/hiera | hiera/hiera_utils.py | https://github.com/facebookresearch/hiera/blob/master/hiera/hiera_utils.py | Apache-2.0 |
def forward_loss(
self, x: torch.Tensor, pred: torch.Tensor, mask: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Note: in mask, 0 is *visible*, 1 is *masked*
x: e.g. [B, 3, H, W]
pred: [B * num_pred_tokens, num_pixels_in_pred_patch * in_chans]
label: [B * num_pred_tokens, num_pixels_in_pred_patch * in_chans]
"""
if len(self.q_stride) == 2:
label = self.get_pixel_label_2d(x, mask)
elif len(self.q_stride) == 3:
label = self.get_pixel_label_3d(x, mask)
else:
raise NotImplementedError
pred = pred[mask]
loss = (pred - label) ** 2
return loss.mean(), pred, label | Note: in mask, 0 is *visible*, 1 is *masked*
x: e.g. [B, 3, H, W]
pred: [B * num_pred_tokens, num_pixels_in_pred_patch * in_chans]
label: [B * num_pred_tokens, num_pixels_in_pred_patch * in_chans] | forward_loss | python | facebookresearch/hiera | hiera/hiera_mae.py | https://github.com/facebookresearch/hiera/blob/master/hiera/hiera_mae.py | Apache-2.0 |
def merge_node_test_kcfg() -> KCFG:
"""Define a KCFG with all possible scenarios for merging nodes.
Here are some specifications for the KCFG:
1. Unable to continue other pattern-rewriting, e.g., lift_edge_edge, lift_split_split, lift_edge_split, ...
2. Able to test the merged CTerms and the merged CSubsts.
3. Able to propagate all possible result structures through different heuristics, including
merged-into-one, merged-into-two, partially-merged-into-one, partially-merged-into-two, and not-merged.
4. Contains Split, Edge, and MergedEdge, because the merging process is targeted at these types of edges.
"""
cfg = KCFG()
# Split Source: A
# 1 <X> -10 <= X < 100
cfg.create_node(
CTerm(k(KVariable('X')), [ge_ml('X', -10), lt_ml('X', 100)]),
)
# Split Targets & Edge Sources: Ai
# 2 <X> -10 <= X < 0
cfg.create_node(CTerm(k(KVariable('X')), [ge_ml('X', -10), lt_ml('X', 0)]))
# 3 <X> 0 <= X < 2
cfg.create_node(CTerm(k(KVariable('X')), [ge_ml('X', 0), lt_ml('X', 2)]))
# 4 <X> 2 <= A < 6
cfg.create_node(CTerm(k(KVariable('A')), [ge_ml('A', 2), lt_ml('A', 6)]))
# 5 <Y> 6 <= B < 10
cfg.create_node(CTerm(k(KVariable('B')), [ge_ml('B', 6), lt_ml('B', 10)]))
# 6 <10>
cfg.create_node(CTerm(k(intToken(10))))
# 7 <11>
cfg.create_node(CTerm(k(intToken(11))))
# 8 <Z> 12 <= Z < 100
cfg.create_node(CTerm(k(KVariable('Z')), [ge_ml('Z', 12), lt_ml('Z', 100)]))
# Edge Targets: Bi
# 9 <1>
cfg.create_node(CTerm(k(intToken(1))))
# 10 <2>
cfg.create_node(CTerm(k(intToken(2))))
# 11 <3>
cfg.create_node(CTerm(k(intToken(3))))
# 12 <4>
cfg.create_node(CTerm(k(intToken(4))))
# 13 <5>
cfg.create_node(CTerm(k(intToken(5))))
# 14 <6>
cfg.create_node(CTerm(k(intToken(6))))
# 15 <7>
cfg.create_node(CTerm(k(intToken(7))))
# MergedEdge Sources
# 16 <X> 2 <= X < 4
cfg.create_node(CTerm(k(KVariable('X')), [ge_ml('X', 2), lt_ml('X', 4)]))
# 17 <Y> 4 <= Y < 6
cfg.create_node(CTerm(k(KVariable('Y')), [ge_ml('Y', 4), lt_ml('Y', 6)]))
# 18 <X> 6 <= X < 8
cfg.create_node(CTerm(k(KVariable('X')), [ge_ml('X', 6), lt_ml('X', 8)]))
# 19 <X> 8 <= Y < 10
cfg.create_node(CTerm(k(KVariable('Y')), [ge_ml('Y', 8), lt_ml('Y', 10)]))
# MergedEdge Targets
# 20 <8>
cfg.create_node(CTerm(k(intToken(8))))
# 21 <9>
cfg.create_node(CTerm(k(intToken(9))))
# 22 <10>
cfg.create_node(CTerm(k(intToken(10))))
# 23 <11>
cfg.create_node(CTerm(k(intToken(11))))
# MergedEdge
e1 = cfg.create_edge(16, 20, 5, ['r1'])
e2 = cfg.create_edge(17, 21, 6, ['r2', 'r3'])
e3 = cfg.create_edge(18, 22, 7, ['r4', 'r5'])
e4 = cfg.create_edge(19, 23, 8, ['r6', 'r7', 'r8'])
cfg.remove_node(16)
cfg.remove_node(17)
cfg.remove_node(18)
cfg.remove_node(19)
cfg.remove_node(20)
cfg.remove_node(21)
cfg.remove_node(22)
cfg.remove_node(23)
# Split
cfg.create_split_by_nodes(1, [2, 3, 4, 5, 6, 7, 8])
# Edge
cfg.create_edge(2, 9, 10, ['r9'])
cfg.create_edge(3, 10, 11, ['r10', 'r11'])
cfg.create_merged_edge(4, 11, [e1, e2])
cfg.create_merged_edge(5, 12, [e3, e4])
cfg.create_edge(6, 13, 14, ['r12', 'r13', 'r14'])
cfg.create_edge(7, 14, 15, ['r15'])
cfg.create_edge(8, 15, 16, ['r16'])
return cfg | Define a KCFG with all possible scenarios for merging nodes.
Here are some specifications for the KCFG:
1. Unable to continue other pattern-rewriting, e.g., lift_edge_edge, lift_split_split, lift_edge_split, ...
2. Able to test the merged CTerms and the merged CSubsts.
3. Able to propagate all possible result structures through different heuristics, including
merged-into-one, merged-into-two, partially-merged-into-one, partially-merged-into-two, and not-merged.
4. Contains Split, Edge, and MergedEdge, because the merging process is targeted at these types of edges. | merge_node_test_kcfg | python | runtimeverification/k | pyk/src/tests/unit/kcfg/merge_node_data.py | https://github.com/runtimeverification/k/blob/master/pyk/src/tests/unit/kcfg/merge_node_data.py | BSD-3-Clause |
def test_get_model(self, kore_client: KoreClient, op: str, a: int, b: int, c: int) -> None:
"""Check whether the SMT solver returns ``X = c`` for ``X = a op b``."""
# Given
pattern = Equals(
BOOL,
INT,
TRUE,
eq_int(div_pattern(op, a, b), EVar('X', INT)),
)
expected = SatResult(Equals(INT, INT, EVar('X', INT), int_dv(c)))
# When
actual = kore_client.get_model(pattern)
# Then
assert actual == expected | Check whether the SMT solver returns ``X = c`` for ``X = a op b``. | test_get_model | python | runtimeverification/k | pyk/src/tests/integration/test_division_hooks.py | https://github.com/runtimeverification/k/blob/master/pyk/src/tests/integration/test_division_hooks.py | BSD-3-Clause |
def test_simplify(self, kore_client: KoreClient, op: str, a: int, b: int, c: int) -> None:
"""Check whether kore-rpc (HS hook) and booster (LLVM library) both return ``c`` for ``a op b``."""
# Given
pattern = div_pattern(op, a, b)
expected = (int_dv(c), ())
# When
actual = kore_client.simplify(pattern)
# Then
assert actual == expected | Check whether kore-rpc (HS hook) and booster (LLVM library) both return ``c`` for ``a op b``. | test_simplify | python | runtimeverification/k | pyk/src/tests/integration/test_division_hooks.py | https://github.com/runtimeverification/k/blob/master/pyk/src/tests/integration/test_division_hooks.py | BSD-3-Clause |
def test_llvm_interpret(imp_definition: Path, a: int, b: int, expected: int) -> None:
"""Run the intepreter on Euclid's algorithm."""
# Given
program_text = Template(
"""
int a, b, c, res;
a = $a;
b = $b;
while (0 < b) {
c = a % b;
a = b;
b = c;
}
res = a;
"""
).substitute(a=a, b=b)
kore_text = _kast(definition_dir=imp_definition, input='program', output='kore', expression=program_text).stdout
program_pattern = KoreParser(kore_text).pattern()
init_pattern = top_cell_initializer(
{
'$PGM': inj(SortApp('SortPgm'), SortApp('SortKItem'), program_pattern),
}
)
# When
final_pattern = llvm_interpret(imp_definition, init_pattern, depth=1000)
extract_state = (
chain
>> km.app("Lbl'-LT-'generatedTop'-GT-'")
>> km.arg("Lbl'-LT-'T'-GT-'")
>> km.arg("Lbl'-LT-'state'-GT-'")
>> km.arg(0)
>> km.kore_map_of(
key=chain >> km.inj >> km.kore_id,
value=chain >> km.inj >> km.kore_int,
)
)
state = dict(extract_state(final_pattern))
actual = state['res']
# Then
assert actual == expected | Run the intepreter on Euclid's algorithm. | test_llvm_interpret | python | runtimeverification/k | pyk/src/tests/integration/test_krun.py | https://github.com/runtimeverification/k/blob/master/pyk/src/tests/integration/test_krun.py | BSD-3-Clause |
def start_pattern() -> Pattern:
"""
<k> int x ; x = 1 </k>
"""
text = r"""
LblinitGeneratedTopCell{}(
Lbl'Unds'Map'Unds'{}(
Lbl'Stop'Map{}(),
Lbl'UndsPipe'-'-GT-Unds'{}(
inj{SortKConfigVar{}, SortKItem{}}(\dv{SortKConfigVar{}}("$PGM")),
inj{SortPgm{}, SortKItem{}}(
Lblint'UndsSClnUnds'{}(
Lbl'UndsCommUnds'{}(
\dv{SortId{}}("x"),
Lbl'Stop'List'LBraQuotUndsCommUndsQuotRBra'{}()
),
Lbl'UndsEqlsUndsSCln'{}(
\dv{SortId{}}("x"),
inj{SortInt{}, SortAExp{}}(\dv{SortInt{}}("1"))
)
)
)
)
)
)
"""
return Parser.from_string(text).pattern() | <k> int x ; x = 1 </k> | start_pattern | python | runtimeverification/k | pyk/src/tests/integration/kllvm/test_internal_term.py | https://github.com/runtimeverification/k/blob/master/pyk/src/tests/integration/kllvm/test_internal_term.py | BSD-3-Clause |
def start_pattern() -> Pattern:
"""
<k> foo(100) </k>
"""
text = r"""
LblinitGeneratedTopCell{}(
Lbl'Unds'Map'Unds'{}(
Lbl'Stop'Map{}(),
Lbl'UndsPipe'-'-GT-Unds'{}(
inj{SortKConfigVar{}, SortKItem{}}(\dv{SortKConfigVar{}}("$PGM")),
inj{SortFoo{}, SortKItem{}}(
inj{SortFoo{}, SortKItem{}}(
Lblfoo'LParUndsRParUnds'STEPS'Unds'Foo'Unds'Int{}(\dv{SortInt{}}("100"))
)
)
)
)
)
"""
return parse_pattern(text) | <k> foo(100) </k> | start_pattern | python | runtimeverification/k | pyk/src/tests/integration/kllvm/test_step.py | https://github.com/runtimeverification/k/blob/master/pyk/src/tests/integration/kllvm/test_step.py | BSD-3-Clause |
def foo_output(n: int) -> str:
"""
<k> foo(100 - n) </k>
"""
return fr"""Lbl'-LT-'generatedTop'-GT-'{{}}(Lbl'-LT-'k'-GT-'{{}}(kseq{{}}(inj{{SortFoo{{}}, SortKItem{{}}}}(Lblfoo'LParUndsRParUnds'STEPS'Unds'Foo'Unds'Int{{}}(\dv{{SortInt{{}}}}("{100-n}"))),dotk{{}}())),Lbl'-LT-'generatedCounter'-GT-'{{}}(\dv{{SortInt{{}}}}("0")))""" | <k> foo(100 - n) </k> | foo_output | python | runtimeverification/k | pyk/src/tests/integration/kllvm/test_step.py | https://github.com/runtimeverification/k/blob/master/pyk/src/tests/integration/kllvm/test_step.py | BSD-3-Clause |
def bar_output() -> str:
"""
<k> bar() </k>
"""
return r"""Lbl'-LT-'generatedTop'-GT-'{}(Lbl'-LT-'k'-GT-'{}(kseq{}(inj{SortFoo{}, SortKItem{}}(Lblbar'LParRParUnds'STEPS'Unds'Foo{}()),dotk{}())),Lbl'-LT-'generatedCounter'-GT-'{}(\dv{SortInt{}}("0")))""" | <k> bar() </k> | bar_output | python | runtimeverification/k | pyk/src/tests/integration/kllvm/test_step.py | https://github.com/runtimeverification/k/blob/master/pyk/src/tests/integration/kllvm/test_step.py | BSD-3-Clause |
def partition(iterable: Iterable[T], pred: Callable[[T, T], bool]) -> list[list[T]]:
"""Partition the iterable into sublists based on the given predicate.
predicate pred(_, _) should satisfy:
- pred(x, x)
- if pred(x, y) and pred(y, z) then pred(x, z);
- if pred(x, y) then pred(y, x);
"""
groups: list[list[T]] = []
for item in iterable:
found = False
for group in groups:
group_matches = []
for group_item in group:
group_match = pred(group_item, item)
if group_match != pred(item, group_item):
raise ValueError(f'Partitioning failed, predicate commutativity failed on: {(item, group_item)}')
group_matches.append(group_match)
if found and any(group_matches):
raise ValueError(f'Partitioning failed, item matched multiple groups: {item}')
if all(group_matches):
found = True
group.append(item)
elif any(group_matches):
raise ValueError(f'Partitioning failed, item matched only some elements of group: {(item, group)}')
if not found:
groups.append([item])
return groups | Partition the iterable into sublists based on the given predicate.
predicate pred(_, _) should satisfy:
- pred(x, x)
- if pred(x, y) and pred(y, z) then pred(x, z);
- if pred(x, y) then pred(y, x); | partition | python | runtimeverification/k | pyk/src/pyk/utils.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/utils.py | BSD-3-Clause |
def get_rule_by_id(definition: KDefinition, rule_id: str) -> KRule:
"""Get a rule from the definition by coverage rule id.
Args:
definition: JSON-encoded definition.
rule_id: String of unique rule identifier generated by `kompile --coverage`.
Returns:
JSON encoded rule which has identifier `rule_id`.
"""
for module in definition.modules:
for sentence in module.sentences:
if type(sentence) is KRule:
if Atts.UNIQUE_ID in sentence.att and sentence.att[Atts.UNIQUE_ID] == rule_id:
return sentence
raise ValueError(f'Could not find rule with ID: {rule_id}') | Get a rule from the definition by coverage rule id.
Args:
definition: JSON-encoded definition.
rule_id: String of unique rule identifier generated by `kompile --coverage`.
Returns:
JSON encoded rule which has identifier `rule_id`. | get_rule_by_id | python | runtimeverification/k | pyk/src/pyk/coverage.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/coverage.py | BSD-3-Clause |
def translate_coverage(
src_all_rules: Iterable[str],
dst_all_rules: Iterable[str],
dst_definition: KDefinition,
src_rules_list: Iterable[str],
) -> list[str]:
"""Translate the coverage data from one kompiled definition to another.
Args:
src_all_rules: Contents of allRules.txt for definition which coverage was generated for.
dst_all_rules: Contents of allRules.txt for definition which you desire coverage for.
dst_definition: JSON encoded definition of dst kompiled definition.
src_rules_list: Actual coverage data produced.
Returns:
List of non-functional rules applied in dst definition translated from src definition.
"""
# Load the src_rule_id -> src_source_location rule map from the src kompiled directory
src_rule_map = {}
for line in src_all_rules:
src_rule_hash, src_rule_loc = line.split(' ')
src_rule_loc = src_rule_loc.split('/')[-1]
src_rule_map[src_rule_hash.strip()] = src_rule_loc.strip()
# Load the dst_rule_id -> dst_source_location rule map (and inverts it) from the dst kompiled directory
dst_rule_map = {}
for line in dst_all_rules:
dst_rule_hash, dst_rule_loc = line.split(' ')
dst_rule_loc = dst_rule_loc.split('/')[-1]
dst_rule_map[dst_rule_loc.strip()] = dst_rule_hash.strip()
src_rule_list = [rule_hash.strip() for rule_hash in src_rules_list]
# Filter out non-functional rules from rule map (determining if they are functional via the top symbol in the rule being `<generatedTop>`)
dst_non_function_rules = []
for module in dst_definition.modules:
for sentence in module.sentences:
if type(sentence) is KRule:
body = sentence.body
if (type(body) is KApply and body.label.name == '<generatedTop>') or (
type(body) is KRewrite and type(body.lhs) is KApply and body.lhs.label.name == '<generatedTop>'
):
if Atts.UNIQUE_ID in sentence.att:
dst_non_function_rules.append(sentence.att[Atts.UNIQUE_ID])
# Convert the src_coverage rules to dst_no_coverage rules via the maps generated above
dst_rule_list = []
for src_rule in src_rule_list:
if src_rule not in src_rule_map:
raise ValueError(f'Could not find rule in src_rule_map: {src_rule}')
src_rule_loc = src_rule_map[src_rule]
if src_rule_loc not in dst_rule_map:
raise ValueError(f'Could not find rule location in dst_rule_map: {src_rule_loc}')
dst_rule = dst_rule_map[src_rule_loc]
if dst_rule in dst_non_function_rules:
dst_rule_list.append(dst_rule)
return dst_rule_list | Translate the coverage data from one kompiled definition to another.
Args:
src_all_rules: Contents of allRules.txt for definition which coverage was generated for.
dst_all_rules: Contents of allRules.txt for definition which you desire coverage for.
dst_definition: JSON encoded definition of dst kompiled definition.
src_rules_list: Actual coverage data produced.
Returns:
List of non-functional rules applied in dst definition translated from src definition. | translate_coverage | python | runtimeverification/k | pyk/src/pyk/coverage.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/coverage.py | BSD-3-Clause |
def translate_coverage_from_paths(src_kompiled_dir: str, dst_kompiled_dir: str, src_rules_file: PathLike) -> list[str]:
"""Translate coverage information given paths to needed files.
Args:
src_kompiled_dir: Path to kompiled directory of source.
dst_kompiled_dir: Path to kompiled directory of destination.
src_rules_file: Path to generated rules coverage file.
Returns:
Translated list of rules with non-semantic rules stripped out.
"""
src_all_rules = []
with open(src_kompiled_dir + '/allRules.txt') as src_all_rules_file:
src_all_rules = [line.strip() for line in src_all_rules_file]
dst_all_rules = []
with open(dst_kompiled_dir + '/allRules.txt') as dst_all_rules_file:
dst_all_rules = [line.strip() for line in dst_all_rules_file]
dst_definition = read_kast_definition(dst_kompiled_dir + '/compiled.json')
src_rules_list = []
with open(src_rules_file) as src_rules:
src_rules_list = [line.strip() for line in src_rules]
return translate_coverage(src_all_rules, dst_all_rules, dst_definition, src_rules_list) | Translate coverage information given paths to needed files.
Args:
src_kompiled_dir: Path to kompiled directory of source.
dst_kompiled_dir: Path to kompiled directory of destination.
src_rules_file: Path to generated rules coverage file.
Returns:
Translated list of rules with non-semantic rules stripped out. | translate_coverage_from_paths | python | runtimeverification/k | pyk/src/pyk/coverage.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/coverage.py | BSD-3-Clause |
def exec_rpc_kast(options: RPCKastOptions) -> None:
"""Convert an 'execute' JSON RPC response to a new 'execute' or 'simplify' request.
Copies parameters from a reference request.
"""
reference_request = json.loads(options.reference_request_file.read())
input_dict = json.loads(options.response_file.read())
execute_result = ExecuteResult.from_dict(input_dict['result'])
non_state_keys = set(reference_request['params'].keys()).difference(['state'])
request_params = {}
for key in non_state_keys:
request_params[key] = reference_request['params'][key]
request_params['state'] = {'format': 'KORE', 'version': 1, 'term': execute_result.state.kore.dict}
request = {
'jsonrpc': reference_request['jsonrpc'],
'id': reference_request['id'],
'method': reference_request['method'],
'params': request_params,
}
options.output_file.write(json.dumps(request)) | Convert an 'execute' JSON RPC response to a new 'execute' or 'simplify' request.
Copies parameters from a reference request. | exec_rpc_kast | python | runtimeverification/k | pyk/src/pyk/__main__.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/__main__.py | BSD-3-Clause |
def __add__(self, other: object) -> Loc:
if isinstance(other, str):
"""Return the line,column after the additional text"""
line, col = self.line, self.col
for c in other:
if c == '\n':
line += 1
col = 0
col += 1
return Loc(line, col)
return NotImplemented | Return the line,column after the additional text | __add__ | python | runtimeverification/k | pyk/src/pyk/kast/outer_lexer.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/kast/outer_lexer.py | BSD-3-Clause |
def loc(self) -> Loc:
"""Return the ``(line, column)`` of the last character returned by the iterator.
If no character has been returned yet, it will be the location that this
iterator was initialized with. The default is (1,0), which is the only
time the column will be 0.
"""
return Loc(self._line, self._col) | Return the ``(line, column)`` of the last character returned by the iterator.
If no character has been returned yet, it will be the location that this
iterator was initialized with. The default is (1,0), which is the only
time the column will be 0. | loc | python | runtimeverification/k | pyk/src/pyk/kast/outer_lexer.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/kast/outer_lexer.py | BSD-3-Clause |
def _maybe_comment(la: str, it: Iterator[str]) -> tuple[bool, list[str], str]:
"""Attempt to consume a line or block comment from the iterator.
Expects la to be ``'/'``.
Args:
la: The current lookahead.
it: The iterator.
Returns:
A tuple ``(success, consumed, la)`` where
- ``success``: Indicates whether `consumed` is a comment.
- ``consumed``: The list of consumed characters.
- ``la``: The current lookahead.
"""
assert la == '/'
consumed = [la] # ['/']
la = next(it, '')
if la == '':
return False, consumed, la
elif la == '/':
consumed.append(la) # ['/', '/']
la = next(it, '')
while la and la != '\n':
consumed.append(la) # ['/', '/', ..., X]
la = next(it, '')
return True, consumed, la
elif la == '*':
consumed.append(la) # ['/', '*']
la = next(it, '')
while True:
if la == '':
return False, consumed, la
elif la == '*':
consumed.append(la) # ['/', '*', ..., '*']
la = next(it, '')
if la == '':
return False, consumed, la
elif la == '/':
consumed.append(la) # ['/', '*', ..., '*', '/']
la = next(it, '')
return True, consumed, la
else:
consumed.append(la) # ['/', '*', ..., '*', X]
la = next(it, '')
continue
else:
consumed.append(la) # ['/', '*', ..., X]
la = next(it, '')
continue
else:
return False, consumed, la | Attempt to consume a line or block comment from the iterator.
Expects la to be ``'/'``.
Args:
la: The current lookahead.
it: The iterator.
Returns:
A tuple ``(success, consumed, la)`` where
- ``success``: Indicates whether `consumed` is a comment.
- ``consumed``: The list of consumed characters.
- ``la``: The current lookahead. | _maybe_comment | python | runtimeverification/k | pyk/src/pyk/kast/outer_lexer.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/kast/outer_lexer.py | BSD-3-Clause |
def _associativity_wrong(definition: KDefinition, parent: KApply, term: KApply, index: int) -> bool:
"""Return whether `term` can appear as the `index`-th child of `parent` according to associativity rules.
A left (right) associative symbol cannot appear as the rightmost (leftmost) child of a symbol with equal priority.
"""
parent_label = parent.label.name
term_label = term.label.name
prod = definition.symbols[parent_label]
if index == 0 and term_label in definition.right_assocs.get(parent_label, ()):
return True
if index == len(prod.items) - 1 and term_label in definition.left_assocs.get(parent_label, ()):
return True
return False | Return whether `term` can appear as the `index`-th child of `parent` according to associativity rules.
A left (right) associative symbol cannot appear as the rightmost (leftmost) child of a symbol with equal priority. | _associativity_wrong | python | runtimeverification/k | pyk/src/pyk/kast/formatter.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/kast/formatter.py | BSD-3-Clause |
def _priority_wrong(definition: KDefinition, parent: KApply, term: KApply) -> bool:
"""Return whether `term` can appear as a child of `parent` according to priority rules.
A symbol with a lesser priority cannot appear as the child of a symbol with greater priority.
"""
parent_label = parent.label.name
term_label = term.label.name
return term_label in definition.priorities.get(parent_label, ()) | Return whether `term` can appear as a child of `parent` according to priority rules.
A symbol with a lesser priority cannot appear as the child of a symbol with greater priority. | _priority_wrong | python | runtimeverification/k | pyk/src/pyk/kast/formatter.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/kast/formatter.py | BSD-3-Clause |
def cell_label_to_var_name(label: str) -> str:
"""Return a variable name based on a cell label."""
return label.replace('-', '_').replace('<', '').replace('>', '').upper() + '_CELL' | Return a variable name based on a cell label. | cell_label_to_var_name | python | runtimeverification/k | pyk/src/pyk/kast/manip.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/kast/manip.py | BSD-3-Clause |
def split_config_from(configuration: KInner) -> tuple[KInner, dict[str, KInner]]:
"""Split the substitution from a given configuration.
Given an input configuration `config`, will return a tuple `(symbolic_config, subst)`, where:
1. `config == substitute(symbolic_config, subst)`
2. `symbolic_config` is the same configuration structure, but where the contents of leaf cells is replaced with a fresh KVariable.
3. `subst` is the substitution for the generated KVariables back to the original configuration contents.
"""
initial_substitution = {}
def _replace_with_var(k: KInner) -> KInner:
if type(k) is KApply and k.is_cell:
if k.arity == 1 and not (type(k.args[0]) is KApply and k.args[0].is_cell):
config_var = cell_label_to_var_name(k.label.name)
initial_substitution[config_var] = k.args[0]
return KApply(k.label, [KVariable(config_var)])
return k
symbolic_config = top_down(_replace_with_var, configuration)
return (symbolic_config, initial_substitution) | Split the substitution from a given configuration.
Given an input configuration `config`, will return a tuple `(symbolic_config, subst)`, where:
1. `config == substitute(symbolic_config, subst)`
2. `symbolic_config` is the same configuration structure, but where the contents of leaf cells is replaced with a fresh KVariable.
3. `subst` is the substitution for the generated KVariables back to the original configuration contents. | split_config_from | python | runtimeverification/k | pyk/src/pyk/kast/manip.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/kast/manip.py | BSD-3-Clause |
def collapse_dots(kast: KInner) -> KInner:
"""Given a configuration with structural frames `...`, minimize the structural frames needed.
Args:
kast: A configuration, potentially with structural frames.
Returns:
The same configuration, with the amount of structural framing minimized.
"""
def _collapse_dots(_kast: KInner) -> KInner:
if type(_kast) is KApply:
if _kast.is_cell and _kast.arity == 1 and _kast.args[0] == DOTS:
return DOTS
new_args = [arg for arg in _kast.args if arg != DOTS]
if _kast.is_cell and len(new_args) == 0:
return DOTS
if len(new_args) < len(_kast.args):
new_args.append(DOTS)
return _kast.let(args=new_args)
elif type(_kast) is KRewrite:
if _kast.lhs == DOTS:
return DOTS
return _kast
return bottom_up(_collapse_dots, kast) | Given a configuration with structural frames `...`, minimize the structural frames needed.
Args:
kast: A configuration, potentially with structural frames.
Returns:
The same configuration, with the amount of structural framing minimized. | collapse_dots | python | runtimeverification/k | pyk/src/pyk/kast/manip.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/kast/manip.py | BSD-3-Clause |
def inline_cell_maps(kast: KInner) -> KInner:
"""Ensure that cell map collections are printed nicely, not as Maps.
Args:
kast: A KAST term.
Returns:
The KAST term with cell maps inlined.
"""
def _inline_cell_maps(_kast: KInner) -> KInner:
if type(_kast) is KApply and _kast.label.name.endswith('CellMapItem'):
map_key = _kast.args[0]
if type(map_key) is KApply and map_key.is_cell:
return _kast.args[1]
return _kast
return bottom_up(_inline_cell_maps, kast) | Ensure that cell map collections are printed nicely, not as Maps.
Args:
kast: A KAST term.
Returns:
The KAST term with cell maps inlined. | inline_cell_maps | python | runtimeverification/k | pyk/src/pyk/kast/manip.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/kast/manip.py | BSD-3-Clause |
def remove_semantic_casts(kast: KInner) -> KInner:
"""Remove injected `#SemanticCast*` nodes in AST.
Args:
kast: A term (possibly) containing automatically injected `#SemanticCast*` KApply nodes.
Returns:
The term without the `#SemanticCast*` nodes.
"""
def _remove_semtnaic_casts(_kast: KInner) -> KInner:
if type(_kast) is KApply and _kast.arity == 1 and _kast.label.name.startswith('#SemanticCast'):
return _kast.args[0]
return _kast
return bottom_up(_remove_semtnaic_casts, kast) | Remove injected `#SemanticCast*` nodes in AST.
Args:
kast: A term (possibly) containing automatically injected `#SemanticCast*` KApply nodes.
Returns:
The term without the `#SemanticCast*` nodes. | remove_semantic_casts | python | runtimeverification/k | pyk/src/pyk/kast/manip.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/kast/manip.py | BSD-3-Clause |
def useless_vars_to_dots(kast: KInner, keep_vars: Iterable[str] = ()) -> KInner:
"""Structurally abstract away useless variables.
Args:
kast: A term.
keep_vars: Iterable of variables to keep.
Returns:
The term with the useless varables structurally abstracted.
"""
num_occs = count_vars(kast) + Counter(keep_vars)
def _collapse_useless_vars(_kast: KInner) -> KInner:
if type(_kast) is KApply and _kast.is_cell:
new_args: list[KInner] = []
for arg in _kast.args:
if type(arg) is KVariable and num_occs[arg.name] == 1:
new_args.append(DOTS)
else:
new_args.append(arg)
return _kast.let(args=new_args)
return _kast
return bottom_up(_collapse_useless_vars, kast) | Structurally abstract away useless variables.
Args:
kast: A term.
keep_vars: Iterable of variables to keep.
Returns:
The term with the useless varables structurally abstracted. | useless_vars_to_dots | python | runtimeverification/k | pyk/src/pyk/kast/manip.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/kast/manip.py | BSD-3-Clause |
def labels_to_dots(kast: KInner, labels: Collection[str]) -> KInner:
"""Abstract specific labels for printing.
Args:
kast: A term.
labels: List of labels to abstract.
Returns
The term with `labels` abstracted.
"""
def _labels_to_dots(k: KInner) -> KInner:
if type(k) is KApply and k.is_cell and k.label.name in labels:
return DOTS
return k
return bottom_up(_labels_to_dots, kast) | Abstract specific labels for printing.
Args:
kast: A term.
labels: List of labels to abstract.
Returns
The term with `labels` abstracted. | labels_to_dots | python | runtimeverification/k | pyk/src/pyk/kast/manip.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/kast/manip.py | BSD-3-Clause |
def minimize_term(
term: KInner, keep_vars: Iterable[str] = (), abstract_labels: Collection[str] = (), keep_cells: Collection[str] = ()
) -> KInner:
"""Minimize a K term for pretty-printing.
- Variables only used once will be removed.
- Unused cells will be abstracted.
- Useless conditions will be attempted to be removed.
Args:
kast: A term.
Returns:
The term, minimized.
"""
term = inline_cell_maps(term)
term = remove_semantic_casts(term)
term = useless_vars_to_dots(term, keep_vars=keep_vars)
if keep_cells:
term = extract_cells(term, keep_cells)
else:
term = labels_to_dots(term, abstract_labels)
term = collapse_dots(term)
return term | Minimize a K term for pretty-printing.
- Variables only used once will be removed.
- Unused cells will be abstracted.
- Useless conditions will be attempted to be removed.
Args:
kast: A term.
Returns:
The term, minimized. | minimize_term | python | runtimeverification/k | pyk/src/pyk/kast/manip.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/kast/manip.py | BSD-3-Clause |
def minimize_rule_like(rule: RL, keep_vars: Iterable[str] = ()) -> RL:
"""Minimize a K rule or claim for pretty-printing.
- Variables only used once will be removed.
- Unused cells will be abstracted.
- Useless side-conditions will be attempted to be removed.
Args:
rule: A K rule or claim.
Returns:
The rule or claim, minimized.
"""
body = rule.body
requires = rule.requires
ensures = rule.ensures
requires = andBool(flatten_label('_andBool_', requires))
requires = simplify_bool(requires)
ensures = andBool(flatten_label('_andBool_', ensures))
ensures = simplify_bool(ensures)
constrained_vars = set(keep_vars) | free_vars(requires) | free_vars(ensures)
body = minimize_term(body, keep_vars=constrained_vars)
return rule.let(body=body, requires=requires, ensures=ensures) | Minimize a K rule or claim for pretty-printing.
- Variables only used once will be removed.
- Unused cells will be abstracted.
- Useless side-conditions will be attempted to be removed.
Args:
rule: A K rule or claim.
Returns:
The rule or claim, minimized. | minimize_rule_like | python | runtimeverification/k | pyk/src/pyk/kast/manip.py | https://github.com/runtimeverification/k/blob/master/pyk/src/pyk/kast/manip.py | BSD-3-Clause |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.