code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def transform_params(self, unconstrained): """ Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation Parameters ---------- unconstrained : array_like Array of unconstrained parameters used by the optimizer, to be transformed. Returns ------- constrained : array_like Array of constrained parameters which may be used in likelihood evaluation. Notes ----- Constrains the factor transition to be stationary and variances to be positive. """ unconstrained = np.array(unconstrained, ndmin=1) dtype = unconstrained.dtype constrained = np.zeros(unconstrained.shape, dtype=dtype) # 1. Factor loadings # The factor loadings do not need to be adjusted constrained[self._params_loadings] = ( unconstrained[self._params_loadings]) # 2. Exog # The regression coefficients do not need to be adjusted constrained[self._params_exog] = ( unconstrained[self._params_exog]) # 3. Error covariances # If we have variances, force them to be positive if self.error_cov_type in ['scalar', 'diagonal']: constrained[self._params_error_cov] = ( unconstrained[self._params_error_cov]**2) # Otherwise, nothing needs to be done elif self.error_cov_type == 'unstructured': constrained[self._params_error_cov] = ( unconstrained[self._params_error_cov]) # 4. Factor transition VAR # VAR transition: optionally force to be stationary if self.enforce_stationarity and self.factor_order > 0: # Transform the parameters unconstrained_matrices = ( unconstrained[self._params_factor_transition].reshape( self.k_factors, self._factor_order)) # This is always an identity matrix, but because the transform # done prior to update (where the ssm representation matrices # change), it may be complex cov = self.ssm['state_cov', :self.k_factors, :self.k_factors].real coefficient_matrices, variance = ( constrain_stationary_multivariate(unconstrained_matrices, cov)) constrained[self._params_factor_transition] = ( coefficient_matrices.ravel()) else: constrained[self._params_factor_transition] = ( unconstrained[self._params_factor_transition]) # 5. Error transition VAR # VAR transition: optionally force to be stationary if self.enforce_stationarity and self.error_order > 0: # Joint VAR specification if self.error_var: unconstrained_matrices = ( unconstrained[self._params_error_transition].reshape( self.k_endog, self._error_order)) start = self.k_factors end = self.k_factors + self.k_endog cov = self.ssm['state_cov', start:end, start:end].real coefficient_matrices, variance = ( constrain_stationary_multivariate( unconstrained_matrices, cov)) constrained[self._params_error_transition] = ( coefficient_matrices.ravel()) # Separate AR specifications else: coefficients = ( unconstrained[self._params_error_transition].copy()) for i in range(self.k_endog): start = i * self.error_order end = (i + 1) * self.error_order coefficients[start:end] = constrain_stationary_univariate( coefficients[start:end]) constrained[self._params_error_transition] = coefficients else: constrained[self._params_error_transition] = ( unconstrained[self._params_error_transition]) return constrained
Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation Parameters ---------- unconstrained : array_like Array of unconstrained parameters used by the optimizer, to be transformed. Returns ------- constrained : array_like Array of constrained parameters which may be used in likelihood evaluation. Notes ----- Constrains the factor transition to be stationary and variances to be positive.
transform_params
python
statsmodels/statsmodels
statsmodels/tsa/statespace/dynamic_factor.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/dynamic_factor.py
BSD-3-Clause
def untransform_params(self, constrained): """ Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer. Parameters ---------- constrained : array_like Array of constrained parameters used in likelihood evaluation, to be transformed. Returns ------- unconstrained : array_like Array of unconstrained parameters used by the optimizer. """ constrained = np.array(constrained, ndmin=1) dtype = constrained.dtype unconstrained = np.zeros(constrained.shape, dtype=dtype) # 1. Factor loadings # The factor loadings do not need to be adjusted unconstrained[self._params_loadings] = ( constrained[self._params_loadings]) # 2. Exog # The regression coefficients do not need to be adjusted unconstrained[self._params_exog] = ( constrained[self._params_exog]) # 3. Error covariances # If we have variances, force them to be positive if self.error_cov_type in ['scalar', 'diagonal']: unconstrained[self._params_error_cov] = ( constrained[self._params_error_cov]**0.5) # Otherwise, nothing needs to be done elif self.error_cov_type == 'unstructured': unconstrained[self._params_error_cov] = ( constrained[self._params_error_cov]) # 3. Factor transition VAR # VAR transition: optionally force to be stationary if self.enforce_stationarity and self.factor_order > 0: # Transform the parameters constrained_matrices = ( constrained[self._params_factor_transition].reshape( self.k_factors, self._factor_order)) cov = self.ssm['state_cov', :self.k_factors, :self.k_factors].real coefficient_matrices, variance = ( unconstrain_stationary_multivariate( constrained_matrices, cov)) unconstrained[self._params_factor_transition] = ( coefficient_matrices.ravel()) else: unconstrained[self._params_factor_transition] = ( constrained[self._params_factor_transition]) # 5. Error transition VAR # VAR transition: optionally force to be stationary if self.enforce_stationarity and self.error_order > 0: # Joint VAR specification if self.error_var: constrained_matrices = ( constrained[self._params_error_transition].reshape( self.k_endog, self._error_order)) start = self.k_factors end = self.k_factors + self.k_endog cov = self.ssm['state_cov', start:end, start:end].real coefficient_matrices, variance = ( unconstrain_stationary_multivariate( constrained_matrices, cov)) unconstrained[self._params_error_transition] = ( coefficient_matrices.ravel()) # Separate AR specifications else: coefficients = ( constrained[self._params_error_transition].copy()) for i in range(self.k_endog): start = i * self.error_order end = (i + 1) * self.error_order coefficients[start:end] = ( unconstrain_stationary_univariate( coefficients[start:end])) unconstrained[self._params_error_transition] = coefficients else: unconstrained[self._params_error_transition] = ( constrained[self._params_error_transition]) return unconstrained
Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer. Parameters ---------- constrained : array_like Array of constrained parameters used in likelihood evaluation, to be transformed. Returns ------- unconstrained : array_like Array of unconstrained parameters used by the optimizer.
untransform_params
python
statsmodels/statsmodels
statsmodels/tsa/statespace/dynamic_factor.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/dynamic_factor.py
BSD-3-Clause
def update(self, params, transformed=True, includes_fixed=False, complex_step=False): """ Update the parameters of the model Updates the representation matrices to fill in the new parameter values. Parameters ---------- params : array_like Array of new parameters. transformed : bool, optional Whether or not `params` is already transformed. If set to False, `transform_params` is called. Default is True.. Returns ------- params : array_like Array of parameters. Notes ----- Let `n = k_endog`, `m = k_factors`, and `p = factor_order`. Then the `params` vector has length :math:`[n \times m] + [n] + [m^2 \times p]`. It is expanded in the following way: - The first :math:`n \times m` parameters fill out the factor loading matrix, starting from the [0,0] entry and then proceeding along rows. These parameters are not modified in `transform_params`. - The next :math:`n` parameters provide variances for the error_cov errors in the observation equation. They fill in the diagonal of the observation covariance matrix, and are constrained to be positive by `transofrm_params`. - The next :math:`m^2 \times p` parameters are used to create the `p` coefficient matrices for the vector autoregression describing the factor transition. They are transformed in `transform_params` to enforce stationarity of the VAR(p). They are placed so as to make the transition matrix a companion matrix for the VAR. In particular, we assume that the first :math:`m^2` parameters fill the first coefficient matrix (starting at [0,0] and filling along rows), the second :math:`m^2` parameters fill the second matrix, etc. """ params = self.handle_params(params, transformed=transformed, includes_fixed=includes_fixed) # 1. Factor loadings # Update the design / factor loading matrix self.ssm[self._idx_loadings] = ( params[self._params_loadings].reshape(self.k_endog, self.k_factors) ) # 2. Exog if self.k_exog > 0: exog_params = params[self._params_exog].reshape( self.k_endog, self.k_exog).T self.ssm[self._idx_exog] = np.dot(self.exog, exog_params).T # 3. Error covariances if self.error_cov_type in ['scalar', 'diagonal']: self.ssm[self._idx_error_cov] = ( params[self._params_error_cov]) elif self.error_cov_type == 'unstructured': error_cov_lower = np.zeros((self.k_endog, self.k_endog), dtype=params.dtype) error_cov_lower[self._idx_lower_error_cov] = ( params[self._params_error_cov]) self.ssm[self._idx_error_cov] = ( np.dot(error_cov_lower, error_cov_lower.T)) # 4. Factor transition VAR self.ssm[self._idx_factor_transition] = ( params[self._params_factor_transition].reshape( self.k_factors, self.factor_order * self.k_factors)) # 5. Error transition VAR if self.error_var: self.ssm[self._idx_error_transition] = ( params[self._params_error_transition].reshape( self.k_endog, self._error_order)) else: self.ssm[self._idx_error_transition] = ( params[self._params_error_transition])
Update the parameters of the model Updates the representation matrices to fill in the new parameter values. Parameters ---------- params : array_like Array of new parameters. transformed : bool, optional Whether or not `params` is already transformed. If set to False, `transform_params` is called. Default is True.. Returns ------- params : array_like Array of parameters. Notes ----- Let `n = k_endog`, `m = k_factors`, and `p = factor_order`. Then the `params` vector has length :math:`[n \times m] + [n] + [m^2 \times p]`. It is expanded in the following way: - The first :math:`n \times m` parameters fill out the factor loading matrix, starting from the [0,0] entry and then proceeding along rows. These parameters are not modified in `transform_params`. - The next :math:`n` parameters provide variances for the error_cov errors in the observation equation. They fill in the diagonal of the observation covariance matrix, and are constrained to be positive by `transofrm_params`. - The next :math:`m^2 \times p` parameters are used to create the `p` coefficient matrices for the vector autoregression describing the factor transition. They are transformed in `transform_params` to enforce stationarity of the VAR(p). They are placed so as to make the transition matrix a companion matrix for the VAR. In particular, we assume that the first :math:`m^2` parameters fill the first coefficient matrix (starting at [0,0] and filling along rows), the second :math:`m^2` parameters fill the second matrix, etc.
update
python
statsmodels/statsmodels
statsmodels/tsa/statespace/dynamic_factor.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/dynamic_factor.py
BSD-3-Clause
def factors(self): """ Estimates of unobserved factors Returns ------- out : Bunch Has the following attributes shown in Notes. Notes ----- The output is a bunch of the following format: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins """ # If present, level is always the first component of the state vector out = None spec = self.specification if spec.k_factors > 0: offset = 0 end = spec.k_factors res = self.filter_results out = Bunch( filtered=res.filtered_state[offset:end], filtered_cov=res.filtered_state_cov[offset:end, offset:end], smoothed=None, smoothed_cov=None, offset=offset) if self.smoothed_state is not None: out.smoothed = self.smoothed_state[offset:end] if self.smoothed_state_cov is not None: out.smoothed_cov = ( self.smoothed_state_cov[offset:end, offset:end]) return out
Estimates of unobserved factors Returns ------- out : Bunch Has the following attributes shown in Notes. Notes ----- The output is a bunch of the following format: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins
factors
python
statsmodels/statsmodels
statsmodels/tsa/statespace/dynamic_factor.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/dynamic_factor.py
BSD-3-Clause
def coefficients_of_determination(self): """ Coefficients of determination (:math:`R^2`) from regressions of individual estimated factors on endogenous variables. Returns ------- coefficients_of_determination : ndarray A `k_endog` x `k_factors` array, where `coefficients_of_determination[i, j]` represents the :math:`R^2` value from a regression of factor `j` and a constant on endogenous variable `i`. Notes ----- Although it can be difficult to interpret the estimated factor loadings and factors, it is often helpful to use the coefficients of determination from univariate regressions to assess the importance of each factor in explaining the variation in each endogenous variable. In models with many variables and factors, this can sometimes lend interpretation to the factors (for example sometimes one factor will load primarily on real variables and another on nominal variables). See Also -------- plot_coefficients_of_determination """ from statsmodels.tools import add_constant spec = self.specification coefficients = np.zeros((spec.k_endog, spec.k_factors)) which = 'filtered' if self.smoothed_state is None else 'smoothed' for i in range(spec.k_factors): exog = add_constant(self.factors[which][i]) for j in range(spec.k_endog): endog = self.filter_results.endog[j] coefficients[j, i] = OLS(endog, exog).fit().rsquared return coefficients
Coefficients of determination (:math:`R^2`) from regressions of individual estimated factors on endogenous variables. Returns ------- coefficients_of_determination : ndarray A `k_endog` x `k_factors` array, where `coefficients_of_determination[i, j]` represents the :math:`R^2` value from a regression of factor `j` and a constant on endogenous variable `i`. Notes ----- Although it can be difficult to interpret the estimated factor loadings and factors, it is often helpful to use the coefficients of determination from univariate regressions to assess the importance of each factor in explaining the variation in each endogenous variable. In models with many variables and factors, this can sometimes lend interpretation to the factors (for example sometimes one factor will load primarily on real variables and another on nominal variables). See Also -------- plot_coefficients_of_determination
coefficients_of_determination
python
statsmodels/statsmodels
statsmodels/tsa/statespace/dynamic_factor.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/dynamic_factor.py
BSD-3-Clause
def plot_coefficients_of_determination(self, endog_labels=None, fig=None, figsize=None): """ Plot the coefficients of determination Parameters ---------- endog_labels : bool, optional Whether or not to label the endogenous variables along the x-axis of the plots. Default is to include labels if there are 5 or fewer endogenous variables. fig : Figure, optional If given, subplots are created in this figure instead of in a new figure. Note that the grid will be created in the provided figure using `fig.add_subplot()`. figsize : tuple, optional If a figure is created, this argument allows specifying a size. The tuple is (width, height). Notes ----- Produces a `k_factors` x 1 plot grid. The `i`th plot shows a bar plot of the coefficients of determination associated with factor `i`. The endogenous variables are arranged along the x-axis according to their position in the `endog` array. See Also -------- coefficients_of_determination """ from statsmodels.graphics.utils import _import_mpl, create_mpl_fig _import_mpl() fig = create_mpl_fig(fig, figsize) spec = self.specification # Should we label endogenous variables? if endog_labels is None: endog_labels = spec.k_endog <= 5 # Plot the coefficients of determination coefficients_of_determination = self.coefficients_of_determination plot_idx = 1 locations = np.arange(spec.k_endog) for coeffs in coefficients_of_determination.T: # Create the new axis ax = fig.add_subplot(spec.k_factors, 1, plot_idx) ax.set_ylim((0, 1)) ax.set(title='Factor %i' % plot_idx, ylabel=r'$R^2$') bars = ax.bar(locations, coeffs) if endog_labels: width = bars[0].get_width() ax.xaxis.set_ticks(locations + width / 2) ax.xaxis.set_ticklabels(self.model.endog_names) else: ax.set(xlabel='Endogenous variables') ax.xaxis.set_ticks([]) plot_idx += 1 return fig
Plot the coefficients of determination Parameters ---------- endog_labels : bool, optional Whether or not to label the endogenous variables along the x-axis of the plots. Default is to include labels if there are 5 or fewer endogenous variables. fig : Figure, optional If given, subplots are created in this figure instead of in a new figure. Note that the grid will be created in the provided figure using `fig.add_subplot()`. figsize : tuple, optional If a figure is created, this argument allows specifying a size. The tuple is (width, height). Notes ----- Produces a `k_factors` x 1 plot grid. The `i`th plot shows a bar plot of the coefficients of determination associated with factor `i`. The endogenous variables are arranged along the x-axis according to their position in the `endog` array. See Also -------- coefficients_of_determination
plot_coefficients_of_determination
python
statsmodels/statsmodels
statsmodels/tsa/statespace/dynamic_factor.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/dynamic_factor.py
BSD-3-Clause
def initialize(self): """ Initialize the SARIMAX model. Notes ----- These initialization steps must occur following the parent class __init__ function calls. """ super().initialize() # Cache the indexes of included polynomial orders (for update below) # (but we do not want the index of the constant term, so exclude the # first index) self._polynomial_ar_idx = np.nonzero(self.polynomial_ar)[0][1:] self._polynomial_ma_idx = np.nonzero(self.polynomial_ma)[0][1:] self._polynomial_seasonal_ar_idx = np.nonzero( self.polynomial_seasonal_ar )[0][1:] self._polynomial_seasonal_ma_idx = np.nonzero( self.polynomial_seasonal_ma )[0][1:] # Save the indices corresponding to the reduced form lag polynomial # parameters in the transition and selection matrices so that they # do not have to be recalculated for each update() start_row = self._k_states_diff end_row = start_row + self.k_ar + self.k_seasonal_ar col = self._k_states_diff if not self.hamilton_representation: self.transition_ar_params_idx = ( np.s_['transition', start_row:end_row, col] ) else: self.transition_ar_params_idx = ( np.s_['transition', col, start_row:end_row] ) start_row += 1 end_row = start_row + self.k_ma + self.k_seasonal_ma col = 0 if not self.hamilton_representation: self.selection_ma_params_idx = ( np.s_['selection', start_row:end_row, col] ) else: self.design_ma_params_idx = ( np.s_['design', col, start_row:end_row] ) # Cache indices for exog variances in the state covariance matrix if self.state_regression and self.time_varying_regression: idx = np.diag_indices(self.k_posdef) self._exog_variance_idx = ('state_cov', idx[0][-self._k_exog:], idx[1][-self._k_exog:])
Initialize the SARIMAX model. Notes ----- These initialization steps must occur following the parent class __init__ function calls.
initialize
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def initialize_default(self, approximate_diffuse_variance=None): """Initialize default""" if approximate_diffuse_variance is None: approximate_diffuse_variance = self.ssm.initial_variance if self.use_exact_diffuse: diffuse_type = 'diffuse' else: diffuse_type = 'approximate_diffuse' # Set the loglikelihood burn parameter, if not given in constructor if self._loglikelihood_burn is None: k_diffuse_states = self.k_states if self.enforce_stationarity: k_diffuse_states -= self._k_order self.loglikelihood_burn = k_diffuse_states init = Initialization( self.k_states, approximate_diffuse_variance=approximate_diffuse_variance) if self.enforce_stationarity: # Differencing operators are at the beginning init.set((0, self._k_states_diff), diffuse_type) # Stationary component in the middle init.set((self._k_states_diff, self._k_states_diff + self._k_order), 'stationary') # Regression components at the end init.set((self._k_states_diff + self._k_order, self._k_states_diff + self._k_order + self._k_exog), diffuse_type) # If we're not enforcing a stationarity, then we cannot initialize a # stationary component else: init.set(None, diffuse_type) self.ssm.initialization = init
Initialize default
initialize_default
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def initial_design(self): """Initial design matrix""" # Basic design matrix design = np.r_[ [1] * self._k_diff, ([0] * (self.seasonal_periods - 1) + [1]) * self._k_seasonal_diff, [1] * self.state_error, [0] * (self._k_order - 1) ] if len(design) == 0: design = np.r_[0] # If we have exogenous regressors included as part of the state vector # then the exogenous data is incorporated as a time-varying component # of the design matrix if self.state_regression: if self._k_order > 0: design = np.c_[ np.reshape( np.repeat(design, self.nobs), (design.shape[0], self.nobs) ).T, self.exog ].T[None, :, :] else: design = self.exog.T[None, :, :] return design
Initial design matrix
initial_design
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def initial_state_intercept(self): """Initial state intercept vector""" # TODO make this self._k_trend > 1 and adjust the update to take # into account that if the trend is a constant, it is not time-varying if self._k_trend > 0: state_intercept = np.zeros((self.k_states, self.nobs)) else: state_intercept = np.zeros((self.k_states,)) return state_intercept
Initial state intercept vector
initial_state_intercept
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def initial_transition(self): """Initial transition matrix""" transition = np.zeros((self.k_states, self.k_states)) # Exogenous regressors component if self.state_regression: start = -self._k_exog # T_\beta transition[start:, start:] = np.eye(self._k_exog) # Autoregressive component start = -(self._k_exog + self._k_order) end = -self._k_exog if self._k_exog > 0 else None else: # Autoregressive component start = -self._k_order end = None # T_c if self._k_order > 0: transition[start:end, start:end] = companion_matrix(self._k_order) if self.hamilton_representation: transition[start:end, start:end] = np.transpose( companion_matrix(self._k_order) ) # Seasonal differencing component # T^* if self._k_seasonal_diff > 0: seasonal_companion = companion_matrix(self.seasonal_periods).T seasonal_companion[0, -1] = 1 for d in range(self._k_seasonal_diff): start = self._k_diff + d * self.seasonal_periods end = self._k_diff + (d + 1) * self.seasonal_periods # T_c^* transition[start:end, start:end] = seasonal_companion # i if d < self._k_seasonal_diff - 1: transition[start, end + self.seasonal_periods - 1] = 1 # \iota transition[start, self._k_states_diff] = 1 # Differencing component if self._k_diff > 0: idx = np.triu_indices(self._k_diff) # T^** transition[idx] = 1 # [0 1] if self.seasonal_periods > 0: start = self._k_diff end = self._k_states_diff transition[:self._k_diff, start:end] = ( ([0] * (self.seasonal_periods - 1) + [1]) * self._k_seasonal_diff) # [1 0] column = self._k_states_diff transition[:self._k_diff, column] = 1 return transition
Initial transition matrix
initial_transition
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def initial_selection(self): """Initial selection matrix""" if not (self.state_regression and self.time_varying_regression): if self.k_posdef > 0: selection = np.r_[ [0] * (self._k_states_diff), [1] * (self._k_order > 0), [0] * (self._k_order - 1), [0] * ((1 - self.mle_regression) * self._k_exog) ][:, None] if len(selection) == 0: selection = np.zeros((self.k_states, self.k_posdef)) else: selection = np.zeros((self.k_states, 0)) else: selection = np.zeros((self.k_states, self.k_posdef)) # Typical state variance if self._k_order > 0: selection[0, 0] = 1 # Time-varying regression coefficient variances for i in range(self._k_exog, 0, -1): selection[-i, -i] = 1 return selection
Initial selection matrix
initial_selection
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def start_params(self): """ Starting parameters for maximum likelihood estimation """ # Perform differencing if necessary (i.e. if simple differencing is # false so that the state-space model will use the entire dataset) trend_data = self._trend_data if not self.simple_differencing and ( self._k_diff > 0 or self._k_seasonal_diff > 0): endog = diff(self.endog, self._k_diff, self._k_seasonal_diff, self.seasonal_periods) if self.exog is not None: exog = diff(self.exog, self._k_diff, self._k_seasonal_diff, self.seasonal_periods) else: exog = None trend_data = trend_data[:endog.shape[0], :] else: endog = self.endog.copy() exog = self.exog.copy() if self.exog is not None else None endog = endog.squeeze() # Although the Kalman filter can deal with missing values in endog, # conditional sum of squares cannot if np.any(np.isnan(endog)): mask = ~np.isnan(endog).squeeze() endog = endog[mask] if exog is not None: exog = exog[mask] if trend_data is not None: trend_data = trend_data[mask] # Regression effects via OLS params_exog = [] if self._k_exog > 0: params_exog = np.linalg.pinv(exog).dot(endog) endog = endog - np.dot(exog, params_exog) if self.state_regression: params_exog = [] # Non-seasonal ARMA component and trend (params_trend, params_ar, params_ma, params_variance) = self._conditional_sum_squares( endog, self.k_ar, self.polynomial_ar, self.k_ma, self.polynomial_ma, self._k_trend, trend_data, warning_description='ARMA and trend') # If we have estimated non-stationary start parameters but enforce # stationarity is on, start with 0 parameters and warn invalid_ar = ( self.k_ar > 0 and self.enforce_stationarity and not is_invertible(np.r_[1, -params_ar]) ) if invalid_ar: warn('Non-stationary starting autoregressive parameters' ' found. Using zeros as starting parameters.') params_ar *= 0 # If we have estimated non-invertible start parameters but enforce # invertibility is on, raise an error invalid_ma = ( self.k_ma > 0 and self.enforce_invertibility and not is_invertible(np.r_[1, params_ma]) ) if invalid_ma: warn('Non-invertible starting MA parameters found.' ' Using zeros as starting parameters.', UserWarning) params_ma *= 0 # Seasonal Parameters _, params_seasonal_ar, params_seasonal_ma, params_seasonal_variance = ( self._conditional_sum_squares( endog, self.k_seasonal_ar, self.polynomial_seasonal_ar, self.k_seasonal_ma, self.polynomial_seasonal_ma, warning_description='seasonal ARMA')) # If we have estimated non-stationary start parameters but enforce # stationarity is on, warn and set start params to 0 invalid_seasonal_ar = ( self.k_seasonal_ar > 0 and self.enforce_stationarity and not is_invertible(np.r_[1, -params_seasonal_ar]) ) if invalid_seasonal_ar: warn('Non-stationary starting seasonal autoregressive' ' Using zeros as starting parameters.') params_seasonal_ar *= 0 # If we have estimated non-invertible start parameters but enforce # invertibility is on, raise an error invalid_seasonal_ma = ( self.k_seasonal_ma > 0 and self.enforce_invertibility and not is_invertible(np.r_[1, params_seasonal_ma]) ) if invalid_seasonal_ma: warn('Non-invertible starting seasonal moving average' ' Using zeros as starting parameters.') params_seasonal_ma *= 0 # Variances params_exog_variance = [] if self.state_regression and self.time_varying_regression: # TODO how to set the initial variance parameters? params_exog_variance = [1] * self._k_exog if (self.state_error and type(params_variance) is list and len(params_variance) == 0): if not (type(params_seasonal_variance) is list and len(params_seasonal_variance) == 0): params_variance = params_seasonal_variance elif self._k_exog > 0: params_variance = np.inner(endog, endog) else: params_variance = np.inner(endog, endog) / self.nobs params_measurement_variance = 1 if self.measurement_error else [] # We want to bound the starting variance away from zero params_variance = np.atleast_1d(np.array(params_variance)) if params_variance.size: # Avoid comparisons with empty arrays due to changes in NumPy 2.2 params_variance = np.atleast_1d(max(params_variance[0], 1e-10)) # Remove state variance as parameter if scale is concentrated out if self.concentrate_scale: params_variance = [] # Combine all parameters return np.r_[ params_trend, params_exog, params_ar, params_ma, params_seasonal_ar, params_seasonal_ma, params_exog_variance, params_measurement_variance, params_variance ]
Starting parameters for maximum likelihood estimation
start_params
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def endog_names(self, latex=False): """Names of endogenous variables""" diff = '' if self.k_diff > 0: if self.k_diff == 1: diff = r'\Delta' if latex else 'D' else: diff = (r'\Delta^%d' if latex else 'D%d') % self.k_diff seasonal_diff = '' if self.k_seasonal_diff > 0: if self.k_seasonal_diff == 1: seasonal_diff = ((r'\Delta_%d' if latex else 'DS%d') % (self.seasonal_periods)) else: seasonal_diff = ((r'\Delta_%d^%d' if latex else 'D%dS%d') % (self.k_seasonal_diff, self.seasonal_periods)) endog_diff = self.simple_differencing if endog_diff and self.k_diff > 0 and self.k_seasonal_diff > 0: return (('%s%s %s' if latex else '%s.%s.%s') % (diff, seasonal_diff, self.data.ynames)) elif endog_diff and self.k_diff > 0: return (('%s %s' if latex else '%s.%s') % (diff, self.data.ynames)) elif endog_diff and self.k_seasonal_diff > 0: return (('%s %s' if latex else '%s.%s') % (seasonal_diff, self.data.ynames)) else: return self.data.ynames
Names of endogenous variables
endog_names
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def param_terms(self): """ List of parameters actually included in the model, in sorted order. TODO Make this an dict with slice or indices as the values. """ model_orders = self.model_orders # Get basic list from model orders params = [ order for order in self.params_complete if model_orders[order] > 0 ] # k_exog may be positive without associated parameters if it is in the # state vector if 'exog' in params and not self.mle_regression: params.remove('exog') return params
List of parameters actually included in the model, in sorted order. TODO Make this an dict with slice or indices as the values.
param_terms
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def param_names(self): """ List of human readable parameter names (for parameters actually included in the model). """ params_sort_order = self.param_terms model_names = self.model_names return [ name for param in params_sort_order for name in model_names[param] ]
List of human readable parameter names (for parameters actually included in the model).
param_names
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def model_orders(self): """ The orders of each of the polynomials in the model. """ return { 'trend': self._k_trend, 'exog': self._k_exog, 'ar': self.k_ar, 'ma': self.k_ma, 'seasonal_ar': self.k_seasonal_ar, 'seasonal_ma': self.k_seasonal_ma, 'reduced_ar': self.k_ar + self.k_seasonal_ar, 'reduced_ma': self.k_ma + self.k_seasonal_ma, 'exog_variance': self._k_exog if ( self.state_regression and self.time_varying_regression) else 0, 'measurement_variance': int(self.measurement_error), 'variance': int(self.state_error and not self.concentrate_scale), }
The orders of each of the polynomials in the model.
model_orders
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def model_names(self): """ The plain text names of all possible model parameters. """ return self._get_model_names(latex=False)
The plain text names of all possible model parameters.
model_names
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def model_latex_names(self): """ The latex names of all possible model parameters. """ return self._get_model_names(latex=True)
The latex names of all possible model parameters.
model_latex_names
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def transform_params(self, unconstrained): """ Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation. Used primarily to enforce stationarity of the autoregressive lag polynomial, invertibility of the moving average lag polynomial, and positive variance parameters. Parameters ---------- unconstrained : array_like Unconstrained parameters used by the optimizer. Returns ------- constrained : array_like Constrained parameters used in likelihood evaluation. Notes ----- If the lag polynomial has non-consecutive powers (so that the coefficient is zero on some element of the polynomial), then the constraint function is not onto the entire space of invertible polynomials, although it only excludes a very small portion very close to the invertibility boundary. """ unconstrained = np.array(unconstrained, ndmin=1) constrained = np.zeros(unconstrained.shape, unconstrained.dtype) start = end = 0 # Retain the trend parameters if self._k_trend > 0: end += self._k_trend constrained[start:end] = unconstrained[start:end] start += self._k_trend # Retain any MLE regression coefficients if self.mle_regression: end += self._k_exog constrained[start:end] = unconstrained[start:end] start += self._k_exog # Transform the AR parameters (phi) to be stationary if self.k_ar_params > 0: end += self.k_ar_params if self.enforce_stationarity: constrained[start:end] = ( constrain_stationary_univariate(unconstrained[start:end]) ) else: constrained[start:end] = unconstrained[start:end] start += self.k_ar_params # Transform the MA parameters (theta) to be invertible if self.k_ma_params > 0: end += self.k_ma_params if self.enforce_invertibility: constrained[start:end] = ( -constrain_stationary_univariate(unconstrained[start:end]) ) else: constrained[start:end] = unconstrained[start:end] start += self.k_ma_params # Transform the seasonal AR parameters (\tilde phi) to be stationary if self.k_seasonal_ar > 0: end += self.k_seasonal_ar_params if self.enforce_stationarity: constrained[start:end] = ( constrain_stationary_univariate(unconstrained[start:end]) ) else: constrained[start:end] = unconstrained[start:end] start += self.k_seasonal_ar_params # Transform the seasonal MA parameters (\tilde theta) to be invertible if self.k_seasonal_ma_params > 0: end += self.k_seasonal_ma_params if self.enforce_invertibility: constrained[start:end] = ( -constrain_stationary_univariate(unconstrained[start:end]) ) else: constrained[start:end] = unconstrained[start:end] start += self.k_seasonal_ma_params # Transform the standard deviation parameters to be positive if self.state_regression and self.time_varying_regression: end += self._k_exog constrained[start:end] = unconstrained[start:end]**2 start += self._k_exog if self.measurement_error: constrained[start] = unconstrained[start]**2 start += 1 end += 1 if self.state_error and not self.concentrate_scale: constrained[start] = unconstrained[start]**2 # start += 1 # end += 1 return constrained
Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation. Used primarily to enforce stationarity of the autoregressive lag polynomial, invertibility of the moving average lag polynomial, and positive variance parameters. Parameters ---------- unconstrained : array_like Unconstrained parameters used by the optimizer. Returns ------- constrained : array_like Constrained parameters used in likelihood evaluation. Notes ----- If the lag polynomial has non-consecutive powers (so that the coefficient is zero on some element of the polynomial), then the constraint function is not onto the entire space of invertible polynomials, although it only excludes a very small portion very close to the invertibility boundary.
transform_params
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def untransform_params(self, constrained): """ Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer Used primarily to reverse enforcement of stationarity of the autoregressive lag polynomial and invertibility of the moving average lag polynomial. Parameters ---------- constrained : array_like Constrained parameters used in likelihood evaluation. Returns ------- constrained : array_like Unconstrained parameters used by the optimizer. Notes ----- If the lag polynomial has non-consecutive powers (so that the coefficient is zero on some element of the polynomial), then the constraint function is not onto the entire space of invertible polynomials, although it only excludes a very small portion very close to the invertibility boundary. """ constrained = np.array(constrained, ndmin=1) unconstrained = np.zeros(constrained.shape, constrained.dtype) start = end = 0 # Retain the trend parameters if self._k_trend > 0: end += self._k_trend unconstrained[start:end] = constrained[start:end] start += self._k_trend # Retain any MLE regression coefficients if self.mle_regression: end += self._k_exog unconstrained[start:end] = constrained[start:end] start += self._k_exog # Transform the AR parameters (phi) to be stationary if self.k_ar_params > 0: end += self.k_ar_params if self.enforce_stationarity: unconstrained[start:end] = ( unconstrain_stationary_univariate(constrained[start:end]) ) else: unconstrained[start:end] = constrained[start:end] start += self.k_ar_params # Transform the MA parameters (theta) to be invertible if self.k_ma_params > 0: end += self.k_ma_params if self.enforce_invertibility: unconstrained[start:end] = ( unconstrain_stationary_univariate(-constrained[start:end]) ) else: unconstrained[start:end] = constrained[start:end] start += self.k_ma_params # Transform the seasonal AR parameters (\tilde phi) to be stationary if self.k_seasonal_ar > 0: end += self.k_seasonal_ar_params if self.enforce_stationarity: unconstrained[start:end] = ( unconstrain_stationary_univariate(constrained[start:end]) ) else: unconstrained[start:end] = constrained[start:end] start += self.k_seasonal_ar_params # Transform the seasonal MA parameters (\tilde theta) to be invertible if self.k_seasonal_ma_params > 0: end += self.k_seasonal_ma_params if self.enforce_invertibility: unconstrained[start:end] = ( unconstrain_stationary_univariate(-constrained[start:end]) ) else: unconstrained[start:end] = constrained[start:end] start += self.k_seasonal_ma_params # Untransform the standard deviation if self.state_regression and self.time_varying_regression: end += self._k_exog unconstrained[start:end] = constrained[start:end]**0.5 start += self._k_exog if self.measurement_error: unconstrained[start] = constrained[start]**0.5 start += 1 end += 1 if self.state_error and not self.concentrate_scale: unconstrained[start] = constrained[start]**0.5 # start += 1 # end += 1 return unconstrained
Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer Used primarily to reverse enforcement of stationarity of the autoregressive lag polynomial and invertibility of the moving average lag polynomial. Parameters ---------- constrained : array_like Constrained parameters used in likelihood evaluation. Returns ------- constrained : array_like Unconstrained parameters used by the optimizer. Notes ----- If the lag polynomial has non-consecutive powers (so that the coefficient is zero on some element of the polynomial), then the constraint function is not onto the entire space of invertible polynomials, although it only excludes a very small portion very close to the invertibility boundary.
untransform_params
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def update(self, params, transformed=True, includes_fixed=False, complex_step=False): """ Update the parameters of the model Updates the representation matrices to fill in the new parameter values. Parameters ---------- params : array_like Array of new parameters. transformed : bool, optional Whether or not `params` is already transformed. If set to False, `transform_params` is called. Default is True.. Returns ------- params : array_like Array of parameters. """ params = self.handle_params(params, transformed=transformed, includes_fixed=includes_fixed) params_trend = None params_exog = None params_ar = None params_ma = None params_seasonal_ar = None params_seasonal_ma = None params_exog_variance = None params_measurement_variance = None params_variance = None # Extract the parameters start = end = 0 end += self._k_trend params_trend = params[start:end] start += self._k_trend if self.mle_regression: end += self._k_exog params_exog = params[start:end] start += self._k_exog end += self.k_ar_params params_ar = params[start:end] start += self.k_ar_params end += self.k_ma_params params_ma = params[start:end] start += self.k_ma_params end += self.k_seasonal_ar_params params_seasonal_ar = params[start:end] start += self.k_seasonal_ar_params end += self.k_seasonal_ma_params params_seasonal_ma = params[start:end] start += self.k_seasonal_ma_params if self.state_regression and self.time_varying_regression: end += self._k_exog params_exog_variance = params[start:end] start += self._k_exog if self.measurement_error: params_measurement_variance = params[start] start += 1 end += 1 if self.state_error and not self.concentrate_scale: params_variance = params[start] # start += 1 # end += 1 # Update lag polynomials if self.k_ar > 0: if self._polynomial_ar.dtype == params.dtype: self._polynomial_ar[self._polynomial_ar_idx] = -params_ar else: polynomial_ar = self._polynomial_ar.real.astype(params.dtype) polynomial_ar[self._polynomial_ar_idx] = -params_ar self._polynomial_ar = polynomial_ar if self.k_ma > 0: if self._polynomial_ma.dtype == params.dtype: self._polynomial_ma[self._polynomial_ma_idx] = params_ma else: polynomial_ma = self._polynomial_ma.real.astype(params.dtype) polynomial_ma[self._polynomial_ma_idx] = params_ma self._polynomial_ma = polynomial_ma if self.k_seasonal_ar > 0: idx = self._polynomial_seasonal_ar_idx if self._polynomial_seasonal_ar.dtype == params.dtype: self._polynomial_seasonal_ar[idx] = -params_seasonal_ar else: polynomial_seasonal_ar = ( self._polynomial_seasonal_ar.real.astype(params.dtype) ) polynomial_seasonal_ar[idx] = -params_seasonal_ar self._polynomial_seasonal_ar = polynomial_seasonal_ar if self.k_seasonal_ma > 0: idx = self._polynomial_seasonal_ma_idx if self._polynomial_seasonal_ma.dtype == params.dtype: self._polynomial_seasonal_ma[idx] = params_seasonal_ma else: polynomial_seasonal_ma = ( self._polynomial_seasonal_ma.real.astype(params.dtype) ) polynomial_seasonal_ma[idx] = params_seasonal_ma self._polynomial_seasonal_ma = polynomial_seasonal_ma # Get the reduced form lag polynomial terms by multiplying the regular # and seasonal lag polynomials # Note: that although the numpy np.polymul examples assume that they # are ordered from highest degree to lowest, whereas our are from # lowest to highest, it does not matter. if self.k_seasonal_ar > 0: reduced_polynomial_ar = -np.polymul( self._polynomial_ar, self._polynomial_seasonal_ar ) else: reduced_polynomial_ar = -self._polynomial_ar if self.k_seasonal_ma > 0: reduced_polynomial_ma = np.polymul( self._polynomial_ma, self._polynomial_seasonal_ma ) else: reduced_polynomial_ma = self._polynomial_ma # Observation intercept # Exogenous data with MLE estimation of parameters enters through a # time-varying observation intercept (is equivalent to simply # subtracting it out of the endogenous variable first) if self.mle_regression: self.ssm['obs_intercept'] = np.dot(self.exog, params_exog)[None, :] # State intercept (Harvey) or additional observation intercept # (Hamilton) # SARIMA trend enters through the a time-varying state intercept, # associated with the first row of the stationary component of the # state vector (i.e. the first element of the state vector following # any differencing elements) if self._k_trend > 0: data = np.dot(self._trend_data, params_trend).astype(params.dtype) if not self.hamilton_representation: self.ssm['state_intercept', self._k_states_diff, :] = data else: # The way the trend enters in the Hamilton representation means # that the parameter is not an ``intercept'' but instead the # mean of the process. The trend values in `data` are meant for # an intercept, and so must be transformed to represent the # mean instead if self.hamilton_representation: data /= np.sum(-reduced_polynomial_ar) # If we already set the observation intercept for MLE # regression, just add to it if self.mle_regression: self.ssm.obs_intercept += data[None, :] # Otherwise set it directly else: self.ssm['obs_intercept'] = data[None, :] # Observation covariance matrix if self.measurement_error: self.ssm['obs_cov', 0, 0] = params_measurement_variance # Transition matrix if self.k_ar > 0 or self.k_seasonal_ar > 0: self.ssm[self.transition_ar_params_idx] = reduced_polynomial_ar[1:] elif not self.ssm.transition.dtype == params.dtype: # This is required if the transition matrix is not really in use # (e.g. for an MA(q) process) so that it's dtype never changes as # the parameters' dtype changes. This changes the dtype manually. self.ssm['transition'] = self.ssm['transition'].real.astype( params.dtype) # Selection matrix (Harvey) or Design matrix (Hamilton) if self.k_ma > 0 or self.k_seasonal_ma > 0: if not self.hamilton_representation: self.ssm[self.selection_ma_params_idx] = ( reduced_polynomial_ma[1:] ) else: self.ssm[self.design_ma_params_idx] = reduced_polynomial_ma[1:] # State covariance matrix if self.k_posdef > 0: if not self.concentrate_scale: self['state_cov', 0, 0] = params_variance if self.state_regression and self.time_varying_regression: self.ssm[self._exog_variance_idx] = params_exog_variance return params
Update the parameters of the model Updates the representation matrices to fill in the new parameter values. Parameters ---------- params : array_like Array of new parameters. transformed : bool, optional Whether or not `params` is already transformed. If set to False, `transform_params` is called. Default is True.. Returns ------- params : array_like Array of parameters.
update
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def _get_extension_time_varying_matrices( self, params, exog, out_of_sample, extend_kwargs=None, transformed=True, includes_fixed=False, **kwargs): """ Get time-varying state space system matrices for extended model Notes ----- We need to override this method for SARIMAX because we need some special handling in the `simple_differencing=True` case. """ # Get the appropriate exog for the extended sample exog = self._validate_out_of_sample_exog(exog, out_of_sample) # Get the tmp endog, exog if self.simple_differencing: nobs = self.data.orig_endog.shape[0] + out_of_sample tmp_endog = np.zeros((nobs, self.k_endog)) if exog is not None: tmp_exog = np.c_[self.data.orig_exog.T, exog.T].T else: tmp_exog = None else: tmp_endog = np.zeros((out_of_sample, self.k_endog)) tmp_exog = exog # Create extended model if extend_kwargs is None: extend_kwargs = {} if not self.simple_differencing and self.k_trend > 0: extend_kwargs.setdefault( 'trend_offset', self.trend_offset + self.nobs) extend_kwargs.setdefault('validate_specification', False) mod_extend = self.clone( endog=tmp_endog, exog=tmp_exog, **extend_kwargs) mod_extend.update(params, transformed=transformed, includes_fixed=includes_fixed,) # Retrieve the extensions to the time-varying system matrices and # put them in kwargs for name in self.ssm.shapes.keys(): if name == 'obs' or name in kwargs: continue original = getattr(self.ssm, name) extended = getattr(mod_extend.ssm, name) so = original.shape[-1] se = extended.shape[-1] if ((so > 1 or se > 1) or ( so == 1 and self.nobs == 1 and np.any(original[..., 0] != extended[..., 0]))): kwargs[name] = extended[..., -out_of_sample:] return kwargs
Get time-varying state space system matrices for extended model Notes ----- We need to override this method for SARIMAX because we need some special handling in the `simple_differencing=True` case.
_get_extension_time_varying_matrices
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def arroots(self): """ (array) Roots of the reduced form autoregressive lag polynomial """ return np.roots(self.polynomial_reduced_ar)**-1
(array) Roots of the reduced form autoregressive lag polynomial
arroots
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def maroots(self): """ (array) Roots of the reduced form moving average lag polynomial """ return np.roots(self.polynomial_reduced_ma)**-1
(array) Roots of the reduced form moving average lag polynomial
maroots
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def arfreq(self): """ (array) Frequency of the roots of the reduced form autoregressive lag polynomial """ z = self.arroots if not z.size: return return np.arctan2(z.imag, z.real) / (2 * np.pi)
(array) Frequency of the roots of the reduced form autoregressive lag polynomial
arfreq
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def mafreq(self): """ (array) Frequency of the roots of the reduced form moving average lag polynomial """ z = self.maroots if not z.size: return return np.arctan2(z.imag, z.real) / (2 * np.pi)
(array) Frequency of the roots of the reduced form moving average lag polynomial
mafreq
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def arparams(self): """ (array) Autoregressive parameters actually estimated in the model. Does not include seasonal autoregressive parameters (see `seasonalarparams`) or parameters whose values are constrained to be zero. """ return self._params_ar
(array) Autoregressive parameters actually estimated in the model. Does not include seasonal autoregressive parameters (see `seasonalarparams`) or parameters whose values are constrained to be zero.
arparams
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def seasonalarparams(self): """ (array) Seasonal autoregressive parameters actually estimated in the model. Does not include nonseasonal autoregressive parameters (see `arparams`) or parameters whose values are constrained to be zero. """ return self._params_seasonal_ar
(array) Seasonal autoregressive parameters actually estimated in the model. Does not include nonseasonal autoregressive parameters (see `arparams`) or parameters whose values are constrained to be zero.
seasonalarparams
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def maparams(self): """ (array) Moving average parameters actually estimated in the model. Does not include seasonal moving average parameters (see `seasonalmaparams`) or parameters whose values are constrained to be zero. """ return self._params_ma
(array) Moving average parameters actually estimated in the model. Does not include seasonal moving average parameters (see `seasonalmaparams`) or parameters whose values are constrained to be zero.
maparams
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def seasonalmaparams(self): """ (array) Seasonal moving average parameters actually estimated in the model. Does not include nonseasonal moving average parameters (see `maparams`) or parameters whose values are constrained to be zero. """ return self._params_seasonal_ma
(array) Seasonal moving average parameters actually estimated in the model. Does not include nonseasonal moving average parameters (see `maparams`) or parameters whose values are constrained to be zero.
seasonalmaparams
python
statsmodels/statsmodels
statsmodels/tsa/statespace/sarimax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/sarimax.py
BSD-3-Clause
def transform_params(self, unconstrained): """ Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation Parameters ---------- unconstrained : array_like Array of unconstrained parameters used by the optimizer, to be transformed. Returns ------- constrained : array_like Array of constrained parameters which may be used in likelihood evaluation. Notes ----- Constrains the factor transition to be stationary and variances to be positive. """ unconstrained = np.array(unconstrained, ndmin=1) constrained = np.zeros(unconstrained.shape, dtype=unconstrained.dtype) # 1. Intercept terms: nothing to do constrained[self._params_trend] = unconstrained[self._params_trend] # 2. AR terms: optionally force to be stationary if self.k_ar > 0 and self.enforce_stationarity: # Create the state covariance matrix if self.error_cov_type == 'diagonal': state_cov = np.diag(unconstrained[self._params_state_cov]**2) elif self.error_cov_type == 'unstructured': state_cov_lower = np.zeros(self.ssm['state_cov'].shape, dtype=unconstrained.dtype) state_cov_lower[self._idx_lower_state_cov] = ( unconstrained[self._params_state_cov]) state_cov = np.dot(state_cov_lower, state_cov_lower.T) # Transform the parameters coefficients = unconstrained[self._params_ar].reshape( self.k_endog, self.k_endog * self.k_ar) coefficient_matrices, variance = ( constrain_stationary_multivariate(coefficients, state_cov)) constrained[self._params_ar] = coefficient_matrices.ravel() else: constrained[self._params_ar] = unconstrained[self._params_ar] # 3. MA terms: optionally force to be invertible if self.k_ma > 0 and self.enforce_invertibility: # Transform the parameters, using an identity variance matrix state_cov = np.eye(self.k_endog, dtype=unconstrained.dtype) coefficients = unconstrained[self._params_ma].reshape( self.k_endog, self.k_endog * self.k_ma) coefficient_matrices, variance = ( constrain_stationary_multivariate(coefficients, state_cov)) constrained[self._params_ma] = coefficient_matrices.ravel() else: constrained[self._params_ma] = unconstrained[self._params_ma] # 4. Regression terms: nothing to do constrained[self._params_regression] = ( unconstrained[self._params_regression]) # 5. State covariance terms # If we have variances, force them to be positive if self.error_cov_type == 'diagonal': constrained[self._params_state_cov] = ( unconstrained[self._params_state_cov]**2) # Otherwise, nothing needs to be done elif self.error_cov_type == 'unstructured': constrained[self._params_state_cov] = ( unconstrained[self._params_state_cov]) # 5. Measurement error variance terms if self.measurement_error: # Force these to be positive constrained[self._params_obs_cov] = ( unconstrained[self._params_obs_cov]**2) return constrained
Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation Parameters ---------- unconstrained : array_like Array of unconstrained parameters used by the optimizer, to be transformed. Returns ------- constrained : array_like Array of constrained parameters which may be used in likelihood evaluation. Notes ----- Constrains the factor transition to be stationary and variances to be positive.
transform_params
python
statsmodels/statsmodels
statsmodels/tsa/statespace/varmax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/varmax.py
BSD-3-Clause
def untransform_params(self, constrained): """ Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer. Parameters ---------- constrained : array_like Array of constrained parameters used in likelihood evaluation, to be transformed. Returns ------- unconstrained : array_like Array of unconstrained parameters used by the optimizer. """ constrained = np.array(constrained, ndmin=1) unconstrained = np.zeros(constrained.shape, dtype=constrained.dtype) # 1. Intercept terms: nothing to do unconstrained[self._params_trend] = constrained[self._params_trend] # 2. AR terms: optionally were forced to be stationary if self.k_ar > 0 and self.enforce_stationarity: # Create the state covariance matrix if self.error_cov_type == 'diagonal': state_cov = np.diag(constrained[self._params_state_cov]) elif self.error_cov_type == 'unstructured': state_cov_lower = np.zeros(self.ssm['state_cov'].shape, dtype=constrained.dtype) state_cov_lower[self._idx_lower_state_cov] = ( constrained[self._params_state_cov]) state_cov = np.dot(state_cov_lower, state_cov_lower.T) # Transform the parameters coefficients = constrained[self._params_ar].reshape( self.k_endog, self.k_endog * self.k_ar) unconstrained_matrices, variance = ( unconstrain_stationary_multivariate(coefficients, state_cov)) unconstrained[self._params_ar] = unconstrained_matrices.ravel() else: unconstrained[self._params_ar] = constrained[self._params_ar] # 3. MA terms: optionally were forced to be invertible if self.k_ma > 0 and self.enforce_invertibility: # Transform the parameters, using an identity variance matrix state_cov = np.eye(self.k_endog, dtype=constrained.dtype) coefficients = constrained[self._params_ma].reshape( self.k_endog, self.k_endog * self.k_ma) unconstrained_matrices, variance = ( unconstrain_stationary_multivariate(coefficients, state_cov)) unconstrained[self._params_ma] = unconstrained_matrices.ravel() else: unconstrained[self._params_ma] = constrained[self._params_ma] # 4. Regression terms: nothing to do unconstrained[self._params_regression] = ( constrained[self._params_regression]) # 5. State covariance terms # If we have variances, then these were forced to be positive if self.error_cov_type == 'diagonal': unconstrained[self._params_state_cov] = ( constrained[self._params_state_cov]**0.5) # Otherwise, nothing needs to be done elif self.error_cov_type == 'unstructured': unconstrained[self._params_state_cov] = ( constrained[self._params_state_cov]) # 5. Measurement error variance terms if self.measurement_error: # These were forced to be positive unconstrained[self._params_obs_cov] = ( constrained[self._params_obs_cov]**0.5) return unconstrained
Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer. Parameters ---------- constrained : array_like Array of constrained parameters used in likelihood evaluation, to be transformed. Returns ------- unconstrained : array_like Array of unconstrained parameters used by the optimizer.
untransform_params
python
statsmodels/statsmodels
statsmodels/tsa/statespace/varmax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/varmax.py
BSD-3-Clause
def _set_final_exog(self, exog): """ Set the final state intercept value using out-of-sample `exog` / trend Parameters ---------- exog : ndarray Out-of-sample `exog` values, usually produced by `_validate_out_of_sample_exog` to ensure the correct shape (this method does not do any additional validation of its own). out_of_sample : int Number of out-of-sample periods. Notes ----- We need special handling for simulating or forecasting with `exog` or trend, because if we had these then the last predicted_state has been set to NaN since we did not have the appropriate `exog` to create it. Since we handle trend in the same way as `exog`, we still have this issue when only trend is used without `exog`. """ cache_value = self._final_exog if self.k_exog > 0: if exog is not None: exog = np.atleast_1d(exog) if exog.ndim == 2: exog = exog[:1] try: exog = np.reshape(exog[:1], (self.k_exog,)) except ValueError: raise ValueError('Provided exogenous values are not of the' ' appropriate shape. Required %s, got %s.' % (str((self.k_exog,)), str(exog.shape))) self._final_exog = exog try: yield finally: self._final_exog = cache_value
Set the final state intercept value using out-of-sample `exog` / trend Parameters ---------- exog : ndarray Out-of-sample `exog` values, usually produced by `_validate_out_of_sample_exog` to ensure the correct shape (this method does not do any additional validation of its own). out_of_sample : int Number of out-of-sample periods. Notes ----- We need special handling for simulating or forecasting with `exog` or trend, because if we had these then the last predicted_state has been set to NaN since we did not have the appropriate `exog` to create it. Since we handle trend in the same way as `exog`, we still have this issue when only trend is used without `exog`.
_set_final_exog
python
statsmodels/statsmodels
statsmodels/tsa/statespace/varmax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/varmax.py
BSD-3-Clause
def _set_final_exog(self, exog): """ Set the final state intercept value using out-of-sample `exog` / trend Parameters ---------- exog : ndarray Out-of-sample `exog` values, usually produced by `_validate_out_of_sample_exog` to ensure the correct shape (this method does not do any additional validation of its own). out_of_sample : int Number of out-of-sample periods. Notes ----- This context manager calls the model-level context manager and additionally updates the last element of filter_results.state_intercept appropriately. """ mod = self.model with mod._set_final_exog(exog): cache_value = self.filter_results.state_intercept[:, -1] mod.update(self.params) self.filter_results.state_intercept[:mod.k_endog, -1] = ( mod['state_intercept', :mod.k_endog, -1]) try: yield finally: self.filter_results.state_intercept[:, -1] = cache_value
Set the final state intercept value using out-of-sample `exog` / trend Parameters ---------- exog : ndarray Out-of-sample `exog` values, usually produced by `_validate_out_of_sample_exog` to ensure the correct shape (this method does not do any additional validation of its own). out_of_sample : int Number of out-of-sample periods. Notes ----- This context manager calls the model-level context manager and additionally updates the last element of filter_results.state_intercept appropriately.
_set_final_exog
python
statsmodels/statsmodels
statsmodels/tsa/statespace/varmax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/varmax.py
BSD-3-Clause
def _set_final_predicted_state(self, exog, out_of_sample): """ Set the final predicted state value using out-of-sample `exog` / trend Parameters ---------- exog : ndarray Out-of-sample `exog` values, usually produced by `_validate_out_of_sample_exog` to ensure the correct shape (this method does not do any additional validation of its own). out_of_sample : int Number of out-of-sample periods. Notes ----- We need special handling for forecasting with `exog`, because if we had these then the last predicted_state has been set to NaN since we did not have the appropriate `exog` to create it. """ flag = out_of_sample and self.model.k_exog > 0 if flag: tmp_endog = concat([ self.model.endog[-1:], np.zeros((1, self.model.k_endog))]) if self.model.k_exog > 0: tmp_exog = concat([self.model.exog[-1:], exog[:1]]) else: tmp_exog = None tmp_trend_offset = self.model.trend_offset + self.nobs - 1 tmp_mod = self.model.clone(tmp_endog, exog=tmp_exog, trend_offset=tmp_trend_offset) constant = self.filter_results.predicted_state[:, -2] stationary_cov = self.filter_results.predicted_state_cov[:, :, -2] tmp_mod.ssm.initialize_known(constant=constant, stationary_cov=stationary_cov) tmp_res = tmp_mod.filter(self.params, transformed=True, includes_fixed=True, return_ssm=True) # Patch up `predicted_state` self.filter_results.predicted_state[:, -1] = ( tmp_res.predicted_state[:, -2]) try: yield finally: if flag: self.filter_results.predicted_state[:, -1] = np.nan
Set the final predicted state value using out-of-sample `exog` / trend Parameters ---------- exog : ndarray Out-of-sample `exog` values, usually produced by `_validate_out_of_sample_exog` to ensure the correct shape (this method does not do any additional validation of its own). out_of_sample : int Number of out-of-sample periods. Notes ----- We need special handling for forecasting with `exog`, because if we had these then the last predicted_state has been set to NaN since we did not have the appropriate `exog` to create it.
_set_final_predicted_state
python
statsmodels/statsmodels
statsmodels/tsa/statespace/varmax.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/varmax.py
BSD-3-Clause
def setup(self): """ Setup the structural time series representation """ # Initialize the ordered sets of parameters self.parameters = {} self.parameters_obs_intercept = {} self.parameters_obs_cov = {} self.parameters_transition = {} self.parameters_state_cov = {} # Initialize the fixed components of the state space matrices, i = 0 # state offset j = 0 # state covariance offset if self.irregular: self.parameters_obs_cov['irregular_var'] = 1 if self.level: self.ssm['design', 0, i] = 1. self.ssm['transition', i, i] = 1. if self.trend: self.ssm['transition', i, i+1] = 1. if self.stochastic_level: self.ssm['selection', i, j] = 1. self.parameters_state_cov['level_var'] = 1 j += 1 i += 1 if self.trend: self.ssm['transition', i, i] = 1. if self.stochastic_trend: self.ssm['selection', i, j] = 1. self.parameters_state_cov['trend_var'] = 1 j += 1 i += 1 if self.seasonal: n = self.seasonal_periods - 1 self.ssm['design', 0, i] = 1. self.ssm['transition', i:i + n, i:i + n] = ( companion_matrix(np.r_[1, [1] * n]).transpose() ) if self.stochastic_seasonal: self.ssm['selection', i, j] = 1. self.parameters_state_cov['seasonal_var'] = 1 j += 1 i += n if self.freq_seasonal: for ix, h in enumerate(self.freq_seasonal_harmonics): # These are the \gamma_jt and \gamma^*_jt terms in D&K (3.8) n = 2 * h p = self.freq_seasonal_periods[ix] lambda_p = 2 * np.pi / float(p) t = 0 # frequency transition matrix offset for block in range(1, h + 1): # ibid. eqn (3.7) self.ssm['design', 0, i+t] = 1. # ibid. eqn (3.8) cos_lambda_block = np.cos(lambda_p * block) sin_lambda_block = np.sin(lambda_p * block) trans = np.array([[cos_lambda_block, sin_lambda_block], [-sin_lambda_block, cos_lambda_block]]) trans_s = np.s_[i + t:i + t + 2] self.ssm['transition', trans_s, trans_s] = trans t += 2 if self.stochastic_freq_seasonal[ix]: self.ssm['selection', i:i + n, j:j + n] = np.eye(n) cov_key = f'freq_seasonal_var_{ix!r}' self.parameters_state_cov[cov_key] = 1 j += n i += n if self.cycle: self.ssm['design', 0, i] = 1. self.parameters_transition['cycle_freq'] = 1 if self.damped_cycle: self.parameters_transition['cycle_damp'] = 1 if self.stochastic_cycle: self.ssm['selection', i:i+2, j:j+2] = np.eye(2) self.parameters_state_cov['cycle_var'] = 1 j += 2 self._idx_cycle_transition = np.s_['transition', i:i+2, i:i+2] i += 2 if self.autoregressive: self.ssm['design', 0, i] = 1. self.parameters_transition['ar_coeff'] = self.ar_order self.parameters_state_cov['ar_var'] = 1 self.ssm['selection', i, j] = 1 self.ssm['transition', i:i+self.ar_order, i:i+self.ar_order] = ( companion_matrix(self.ar_order).T ) self._idx_ar_transition = ( np.s_['transition', i, i:i+self.ar_order] ) j += 1 i += self.ar_order if self.regression: if self.mle_regression: self.parameters_obs_intercept['reg_coeff'] = self.k_exog else: design = np.repeat(self.ssm['design', :, :, 0], self.nobs, axis=0) self.ssm['design'] = design.transpose()[np.newaxis, :, :] self.ssm['design', 0, i:i+self.k_exog, :] = ( self.exog.transpose()) self.ssm['transition', i:i+self.k_exog, i:i+self.k_exog] = ( np.eye(self.k_exog) ) i += self.k_exog # Update to get the actual parameter set self.parameters.update(self.parameters_obs_cov) self.parameters.update(self.parameters_state_cov) self.parameters.update(self.parameters_transition) # ordered last self.parameters.update(self.parameters_obs_intercept) self.k_obs_intercept = sum(self.parameters_obs_intercept.values()) self.k_obs_cov = sum(self.parameters_obs_cov.values()) self.k_transition = sum(self.parameters_transition.values()) self.k_state_cov = sum(self.parameters_state_cov.values()) self.k_params = sum(self.parameters.values()) # Other indices idx = np.diag_indices(self.ssm.k_posdef) self._idx_state_cov = ('state_cov', idx[0], idx[1]) # Some of the variances may be tied together (repeated parameter usage) # Use list() for compatibility with python 3.5 param_keys = list(self.parameters_state_cov.keys()) self._var_repetitions = np.ones(self.k_state_cov, dtype=int) if self.freq_seasonal: for ix, is_stochastic in enumerate(self.stochastic_freq_seasonal): if is_stochastic: num_harmonics = self.freq_seasonal_harmonics[ix] repeat_times = 2 * num_harmonics cov_key = f'freq_seasonal_var_{ix!r}' cov_ix = param_keys.index(cov_key) self._var_repetitions[cov_ix] = repeat_times if self.stochastic_cycle and self.cycle: cov_ix = param_keys.index('cycle_var') self._var_repetitions[cov_ix] = 2 self._repeat_any_var = any(self._var_repetitions > 1)
Setup the structural time series representation
setup
python
statsmodels/statsmodels
statsmodels/tsa/statespace/structural.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/structural.py
BSD-3-Clause
def transform_params(self, unconstrained): """ Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation """ unconstrained = np.array(unconstrained, ndmin=1) constrained = np.zeros(unconstrained.shape, dtype=unconstrained.dtype) # Positive parameters: obs_cov, state_cov offset = self.k_obs_cov + self.k_state_cov constrained[:offset] = unconstrained[:offset]**2 # Cycle parameters if self.cycle: # Cycle frequency must be between between our bounds low, high = self.cycle_frequency_bound constrained[offset] = ( 1 / (1 + np.exp(-unconstrained[offset])) ) * (high - low) + low offset += 1 # Cycle damping (if present) must be between 0 and 1 if self.damped_cycle: constrained[offset] = ( 1 / (1 + np.exp(-unconstrained[offset])) ) offset += 1 # Autoregressive coefficients must be stationary if self.autoregressive: constrained[offset:offset + self.ar_order] = ( constrain_stationary_univariate( unconstrained[offset:offset + self.ar_order] ) ) offset += self.ar_order # Nothing to do with betas constrained[offset:offset + self.k_exog] = ( unconstrained[offset:offset + self.k_exog] ) return constrained
Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation
transform_params
python
statsmodels/statsmodels
statsmodels/tsa/statespace/structural.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/structural.py
BSD-3-Clause
def untransform_params(self, constrained): """ Reverse the transformation """ constrained = np.array(constrained, ndmin=1) unconstrained = np.zeros(constrained.shape, dtype=constrained.dtype) # Positive parameters: obs_cov, state_cov offset = self.k_obs_cov + self.k_state_cov unconstrained[:offset] = constrained[:offset]**0.5 # Cycle parameters if self.cycle: # Cycle frequency must be between between our bounds low, high = self.cycle_frequency_bound x = (constrained[offset] - low) / (high - low) unconstrained[offset] = np.log( x / (1 - x) ) offset += 1 # Cycle damping (if present) must be between 0 and 1 if self.damped_cycle: unconstrained[offset] = np.log( constrained[offset] / (1 - constrained[offset]) ) offset += 1 # Autoregressive coefficients must be stationary if self.autoregressive: unconstrained[offset:offset + self.ar_order] = ( unconstrain_stationary_univariate( constrained[offset:offset + self.ar_order] ) ) offset += self.ar_order # Nothing to do with betas unconstrained[offset:offset + self.k_exog] = ( constrained[offset:offset + self.k_exog] ) return unconstrained
Reverse the transformation
untransform_params
python
statsmodels/statsmodels
statsmodels/tsa/statespace/structural.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/structural.py
BSD-3-Clause
def level(self): """ Estimates of unobserved level component Returns ------- out: Bunch Has the following attributes: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins """ # If present, level is always the first component of the state vector out = None spec = self.specification if spec.level: offset = 0 out = Bunch(filtered=self.filtered_state[offset], filtered_cov=self.filtered_state_cov[offset, offset], smoothed=None, smoothed_cov=None, offset=offset) if self.smoothed_state is not None: out.smoothed = self.smoothed_state[offset] if self.smoothed_state_cov is not None: out.smoothed_cov = self.smoothed_state_cov[offset, offset] return out
Estimates of unobserved level component Returns ------- out: Bunch Has the following attributes: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins
level
python
statsmodels/statsmodels
statsmodels/tsa/statespace/structural.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/structural.py
BSD-3-Clause
def trend(self): """ Estimates of of unobserved trend component Returns ------- out: Bunch Has the following attributes: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins """ # If present, trend is always the second component of the state vector # (because level is always present if trend is present) out = None spec = self.specification if spec.trend: offset = int(spec.level) out = Bunch(filtered=self.filtered_state[offset], filtered_cov=self.filtered_state_cov[offset, offset], smoothed=None, smoothed_cov=None, offset=offset) if self.smoothed_state is not None: out.smoothed = self.smoothed_state[offset] if self.smoothed_state_cov is not None: out.smoothed_cov = self.smoothed_state_cov[offset, offset] return out
Estimates of of unobserved trend component Returns ------- out: Bunch Has the following attributes: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins
trend
python
statsmodels/statsmodels
statsmodels/tsa/statespace/structural.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/structural.py
BSD-3-Clause
def seasonal(self): """ Estimates of unobserved seasonal component Returns ------- out: Bunch Has the following attributes: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins """ # If present, seasonal always follows level/trend (if they are present) # Note that we return only the first seasonal state, but there are # in fact seasonal_periods-1 seasonal states, however latter states # are just lagged versions of the first seasonal state. out = None spec = self.specification if spec.seasonal: offset = int(spec.trend + spec.level) out = Bunch(filtered=self.filtered_state[offset], filtered_cov=self.filtered_state_cov[offset, offset], smoothed=None, smoothed_cov=None, offset=offset) if self.smoothed_state is not None: out.smoothed = self.smoothed_state[offset] if self.smoothed_state_cov is not None: out.smoothed_cov = self.smoothed_state_cov[offset, offset] return out
Estimates of unobserved seasonal component Returns ------- out: Bunch Has the following attributes: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins
seasonal
python
statsmodels/statsmodels
statsmodels/tsa/statespace/structural.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/structural.py
BSD-3-Clause
def freq_seasonal(self): """ Estimates of unobserved frequency domain seasonal component(s) Returns ------- out: list of Bunch instances Each item has the following attributes: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins """ # If present, freq_seasonal components always follows level/trend # and seasonal. # There are 2 * (harmonics) seasonal states per freq_seasonal # component. # The sum of every other state enters the measurement equation. # Additionally, there can be multiple components of this type. # These facts make this property messier in implementation than the # others. # Fortunately, the states are conditionally mutually independent # (conditional on previous timestep's states), so that the calculations # of the variances are simple summations of individual variances and # the calculation of the returned state is likewise a summation. out = [] spec = self.specification if spec.freq_seasonal: previous_states_offset = int(spec.trend + spec.level + self._k_states_by_type['seasonal']) previous_f_seas_offset = 0 for ix, h in enumerate(spec.freq_seasonal_harmonics): offset = previous_states_offset + previous_f_seas_offset period = spec.freq_seasonal_periods[ix] # Only the gamma_jt terms enter the measurement equation (cf. # D&K 2012 (3.7)) states_in_sum = np.arange(0, 2 * h, 2) filtered_state = np.sum( [self.filtered_state[offset + j] for j in states_in_sum], axis=0) filtered_cov = np.sum( [self.filtered_state_cov[offset + j, offset + j] for j in states_in_sum], axis=0) item = Bunch( filtered=filtered_state, filtered_cov=filtered_cov, smoothed=None, smoothed_cov=None, offset=offset, pretty_name='seasonal {p}({h})'.format(p=repr(period), h=repr(h))) if self.smoothed_state is not None: item.smoothed = np.sum( [self.smoothed_state[offset+j] for j in states_in_sum], axis=0) if self.smoothed_state_cov is not None: item.smoothed_cov = np.sum( [self.smoothed_state_cov[offset+j, offset+j] for j in states_in_sum], axis=0) out.append(item) previous_f_seas_offset += 2 * h return out
Estimates of unobserved frequency domain seasonal component(s) Returns ------- out: list of Bunch instances Each item has the following attributes: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins
freq_seasonal
python
statsmodels/statsmodels
statsmodels/tsa/statespace/structural.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/structural.py
BSD-3-Clause
def cycle(self): """ Estimates of unobserved cycle component Returns ------- out: Bunch Has the following attributes: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins """ # If present, cycle always follows level/trend, seasonal, and freq # seasonal. # Note that we return only the first cyclical state, but there are # in fact 2 cyclical states. The second cyclical state is not simply # a lag of the first cyclical state, but the first cyclical state is # the one that enters the measurement equation. out = None spec = self.specification if spec.cycle: offset = int(spec.trend + spec.level + self._k_states_by_type['seasonal'] + self._k_states_by_type['freq_seasonal']) out = Bunch(filtered=self.filtered_state[offset], filtered_cov=self.filtered_state_cov[offset, offset], smoothed=None, smoothed_cov=None, offset=offset) if self.smoothed_state is not None: out.smoothed = self.smoothed_state[offset] if self.smoothed_state_cov is not None: out.smoothed_cov = self.smoothed_state_cov[offset, offset] return out
Estimates of unobserved cycle component Returns ------- out: Bunch Has the following attributes: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins
cycle
python
statsmodels/statsmodels
statsmodels/tsa/statespace/structural.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/structural.py
BSD-3-Clause
def autoregressive(self): """ Estimates of unobserved autoregressive component Returns ------- out: Bunch Has the following attributes: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins """ # If present, autoregressive always follows level/trend, seasonal, # freq seasonal, and cyclical. # If it is an AR(p) model, then there are p associated # states, but the second - pth states are just lags of the first state. out = None spec = self.specification if spec.autoregressive: offset = int(spec.trend + spec.level + self._k_states_by_type['seasonal'] + self._k_states_by_type['freq_seasonal'] + self._k_states_by_type['cycle']) out = Bunch(filtered=self.filtered_state[offset], filtered_cov=self.filtered_state_cov[offset, offset], smoothed=None, smoothed_cov=None, offset=offset) if self.smoothed_state is not None: out.smoothed = self.smoothed_state[offset] if self.smoothed_state_cov is not None: out.smoothed_cov = self.smoothed_state_cov[offset, offset] return out
Estimates of unobserved autoregressive component Returns ------- out: Bunch Has the following attributes: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins
autoregressive
python
statsmodels/statsmodels
statsmodels/tsa/statespace/structural.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/structural.py
BSD-3-Clause
def regression_coefficients(self): """ Estimates of unobserved regression coefficients Returns ------- out: Bunch Has the following attributes: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins """ # If present, state-vector regression coefficients always are last # (i.e. they follow level/trend, seasonal, freq seasonal, cyclical, and # autoregressive states). There is one state associated with each # regressor, and all are returned here. out = None spec = self.specification if spec.regression: if spec.mle_regression: import warnings warnings.warn('Regression coefficients estimated via maximum' ' likelihood. Estimated coefficients are' ' available in the parameters list, not as part' ' of the state vector.', OutputWarning) else: offset = int(spec.trend + spec.level + self._k_states_by_type['seasonal'] + self._k_states_by_type['freq_seasonal'] + self._k_states_by_type['cycle'] + spec.ar_order) start = offset end = offset + spec.k_exog out = Bunch( filtered=self.filtered_state[start:end], filtered_cov=self.filtered_state_cov[start:end, start:end], smoothed=None, smoothed_cov=None, offset=offset ) if self.smoothed_state is not None: out.smoothed = self.smoothed_state[start:end] if self.smoothed_state_cov is not None: out.smoothed_cov = ( self.smoothed_state_cov[start:end, start:end]) return out
Estimates of unobserved regression coefficients Returns ------- out: Bunch Has the following attributes: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins
regression_coefficients
python
statsmodels/statsmodels
statsmodels/tsa/statespace/structural.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/structural.py
BSD-3-Clause
def plot_components(self, which=None, alpha=0.05, observed=True, level=True, trend=True, seasonal=True, freq_seasonal=True, cycle=True, autoregressive=True, legend_loc='upper right', fig=None, figsize=None): """ Plot the estimated components of the model. Parameters ---------- which : {'filtered', 'smoothed'}, or None, optional Type of state estimate to plot. Default is 'smoothed' if smoothed results are available otherwise 'filtered'. alpha : float, optional The confidence intervals for the components are (1 - alpha) % observed : bool, optional Whether or not to plot the observed series against one-step-ahead predictions. Default is True. level : bool, optional Whether or not to plot the level component, if applicable. Default is True. trend : bool, optional Whether or not to plot the trend component, if applicable. Default is True. seasonal : bool, optional Whether or not to plot the seasonal component, if applicable. Default is True. freq_seasonal : bool, optional Whether or not to plot the frequency domain seasonal component(s), if applicable. Default is True. cycle : bool, optional Whether or not to plot the cyclical component, if applicable. Default is True. autoregressive : bool, optional Whether or not to plot the autoregressive state, if applicable. Default is True. fig : Figure, optional If given, subplots are created in this figure instead of in a new figure. Note that the grid will be created in the provided figure using `fig.add_subplot()`. figsize : tuple, optional If a figure is created, this argument allows specifying a size. The tuple is (width, height). Notes ----- If all options are included in the model and selected, this produces a 6x1 plot grid with the following plots (ordered top-to-bottom): 0. Observed series against predicted series 1. Level 2. Trend 3. Seasonal 4. Freq Seasonal 5. Cycle 6. Autoregressive Specific subplots will be removed if the component is not present in the estimated model or if the corresponding keyword argument is set to False. All plots contain (1 - `alpha`) % confidence intervals. """ from scipy.stats import norm from statsmodels.graphics.utils import _import_mpl, create_mpl_fig plt = _import_mpl() fig = create_mpl_fig(fig, figsize) # Determine which results we have if which is None: which = 'filtered' if self.smoothed_state is None else 'smoothed' # Determine which plots we have spec = self.specification comp = [ ('level', level and spec.level), ('trend', trend and spec.trend), ('seasonal', seasonal and spec.seasonal), ] if freq_seasonal and spec.freq_seasonal: for ix, _ in enumerate(spec.freq_seasonal_periods): key = f'freq_seasonal_{ix!r}' comp.append((key, True)) comp.extend( [('cycle', cycle and spec.cycle), ('autoregressive', autoregressive and spec.autoregressive)]) components = dict(comp) llb = self.filter_results.loglikelihood_burn # Number of plots k_plots = observed + np.sum(list(components.values())) # Get dates, if applicable if hasattr(self.data, 'dates') and self.data.dates is not None: dates = self.data.dates._mpl_repr() else: dates = np.arange(len(self.data.endog)) # Get the critical value for confidence intervals critical_value = norm.ppf(1 - alpha / 2.) plot_idx = 1 # Observed, predicted, confidence intervals if observed: ax = fig.add_subplot(k_plots, 1, plot_idx) plot_idx += 1 # Plot the observed dataset ax.plot(dates[llb:], self.model.endog[llb:], color='k', label='Observed') # Get the predicted values and confidence intervals predict = self.filter_results.forecasts[0] std_errors = np.sqrt(self.filter_results.forecasts_error_cov[0, 0]) ci_lower = predict - critical_value * std_errors ci_upper = predict + critical_value * std_errors # Plot ax.plot(dates[llb:], predict[llb:], label='One-step-ahead predictions') ci_poly = ax.fill_between( dates[llb:], ci_lower[llb:], ci_upper[llb:], alpha=0.2 ) ci_label = '$%.3g \\%%$ confidence interval' % ((1 - alpha) * 100) # Proxy artist for fill_between legend entry # See e.g. https://matplotlib.org/1.3.1/users/legend_guide.html p = plt.Rectangle((0, 0), 1, 1, fc=ci_poly.get_facecolor()[0]) # Legend handles, labels = ax.get_legend_handles_labels() handles.append(p) labels.append(ci_label) ax.legend(handles, labels, loc=legend_loc) ax.set_title('Predicted vs observed') # Plot each component for component, is_plotted in components.items(): if not is_plotted: continue ax = fig.add_subplot(k_plots, 1, plot_idx) plot_idx += 1 try: component_bunch = getattr(self, component) title = component.title() except AttributeError: # This might be a freq_seasonal component, of which there are # possibly multiple bagged up in property freq_seasonal if component.startswith('freq_seasonal_'): ix = int(component.replace('freq_seasonal_', '')) big_bunch = getattr(self, 'freq_seasonal') component_bunch = big_bunch[ix] title = component_bunch.pretty_name else: raise # Check for a valid estimation type if which not in component_bunch: raise ValueError('Invalid type of state estimate.') which_cov = '%s_cov' % which # Get the predicted values value = component_bunch[which] # Plot state_label = f'{title} ({which})' ax.plot(dates[llb:], value[llb:], label=state_label) # Get confidence intervals if which_cov in component_bunch: std_errors = np.sqrt(component_bunch['%s_cov' % which]) ci_lower = value - critical_value * std_errors ci_upper = value + critical_value * std_errors ci_poly = ax.fill_between( dates[llb:], ci_lower[llb:], ci_upper[llb:], alpha=0.2 ) ci_label = ('$%.3g \\%%$ confidence interval' % ((1 - alpha) * 100)) # Legend ax.legend(loc=legend_loc) ax.set_title('%s component' % title) # Add a note if first observations excluded if llb > 0: text = ('Note: The first %d observations are not shown, due to' ' approximate diffuse initialization.') fig.text(0.1, 0.01, text % llb, fontsize='large') return fig
Plot the estimated components of the model. Parameters ---------- which : {'filtered', 'smoothed'}, or None, optional Type of state estimate to plot. Default is 'smoothed' if smoothed results are available otherwise 'filtered'. alpha : float, optional The confidence intervals for the components are (1 - alpha) % observed : bool, optional Whether or not to plot the observed series against one-step-ahead predictions. Default is True. level : bool, optional Whether or not to plot the level component, if applicable. Default is True. trend : bool, optional Whether or not to plot the trend component, if applicable. Default is True. seasonal : bool, optional Whether or not to plot the seasonal component, if applicable. Default is True. freq_seasonal : bool, optional Whether or not to plot the frequency domain seasonal component(s), if applicable. Default is True. cycle : bool, optional Whether or not to plot the cyclical component, if applicable. Default is True. autoregressive : bool, optional Whether or not to plot the autoregressive state, if applicable. Default is True. fig : Figure, optional If given, subplots are created in this figure instead of in a new figure. Note that the grid will be created in the provided figure using `fig.add_subplot()`. figsize : tuple, optional If a figure is created, this argument allows specifying a size. The tuple is (width, height). Notes ----- If all options are included in the model and selected, this produces a 6x1 plot grid with the following plots (ordered top-to-bottom): 0. Observed series against predicted series 1. Level 2. Trend 3. Seasonal 4. Freq Seasonal 5. Cycle 6. Autoregressive Specific subplots will be removed if the component is not present in the estimated model or if the corresponding keyword argument is set to False. All plots contain (1 - `alpha`) % confidence intervals.
plot_components
python
statsmodels/statsmodels
statsmodels/tsa/statespace/structural.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/structural.py
BSD-3-Clause
def prepare_data(self): """ Prepare data for use in the state space representation """ endog = np.require( np.array(self.data.orig_endog, copy=True), requirements="CW" ).copy() exog = self.data.orig_exog if exog is not None: exog = np.array(exog) # Base class may allow 1-dim data, whereas we need 2-dim if endog.ndim == 1: endog.shape = (endog.shape[0], 1) # this will be C-contiguous return endog, exog
Prepare data for use in the state space representation
prepare_data
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def initialize_statespace(self, **kwargs): """ Initialize the state space representation Parameters ---------- **kwargs Additional keyword arguments to pass to the state space class constructor. """ # (Now self.endog is C-ordered and in long format (nobs x k_endog). To # get F-ordered and in wide format just need to transpose) endog = self.endog.T # Instantiate the state space object self.ssm = SimulationSmoother(endog.shape[0], self.k_states, nobs=endog.shape[1], **kwargs) # Bind the data to the model self.ssm.bind(endog) # Other dimensions, now that `ssm` is available self.k_endog = self.ssm.k_endog
Initialize the state space representation Parameters ---------- **kwargs Additional keyword arguments to pass to the state space class constructor.
initialize_statespace
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def clone(self, endog, exog=None, **kwargs): """ Clone state space model with new data and optionally new specification Parameters ---------- endog : array_like The observed time-series process :math:`y` k_states : int The dimension of the unobserved state process. exog : array_like, optional Array of exogenous regressors, shaped nobs x k. Default is no exogenous regressors. kwargs Keyword arguments to pass to the new model class to change the model specification. Returns ------- model : MLEModel subclass Notes ----- This method must be implemented """ raise NotImplementedError('This method is not implemented in the base' ' class and must be set up by each specific' ' model.')
Clone state space model with new data and optionally new specification Parameters ---------- endog : array_like The observed time-series process :math:`y` k_states : int The dimension of the unobserved state process. exog : array_like, optional Array of exogenous regressors, shaped nobs x k. Default is no exogenous regressors. kwargs Keyword arguments to pass to the new model class to change the model specification. Returns ------- model : MLEModel subclass Notes ----- This method must be implemented
clone
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def set_filter_method(self, filter_method=None, **kwargs): """ Set the filtering method The filtering method controls aspects of which Kalman filtering approach will be used. Parameters ---------- filter_method : int, optional Bitmask value to set the filter method to. See notes for details. **kwargs Keyword arguments may be used to influence the filter method by setting individual boolean flags. See notes for details. Notes ----- This method is rarely used. See the corresponding function in the `KalmanFilter` class for details. """ self.ssm.set_filter_method(filter_method, **kwargs)
Set the filtering method The filtering method controls aspects of which Kalman filtering approach will be used. Parameters ---------- filter_method : int, optional Bitmask value to set the filter method to. See notes for details. **kwargs Keyword arguments may be used to influence the filter method by setting individual boolean flags. See notes for details. Notes ----- This method is rarely used. See the corresponding function in the `KalmanFilter` class for details.
set_filter_method
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def set_inversion_method(self, inversion_method=None, **kwargs): """ Set the inversion method The Kalman filter may contain one matrix inversion: that of the forecast error covariance matrix. The inversion method controls how and if that inverse is performed. Parameters ---------- inversion_method : int, optional Bitmask value to set the inversion method to. See notes for details. **kwargs Keyword arguments may be used to influence the inversion method by setting individual boolean flags. See notes for details. Notes ----- This method is rarely used. See the corresponding function in the `KalmanFilter` class for details. """ self.ssm.set_inversion_method(inversion_method, **kwargs)
Set the inversion method The Kalman filter may contain one matrix inversion: that of the forecast error covariance matrix. The inversion method controls how and if that inverse is performed. Parameters ---------- inversion_method : int, optional Bitmask value to set the inversion method to. See notes for details. **kwargs Keyword arguments may be used to influence the inversion method by setting individual boolean flags. See notes for details. Notes ----- This method is rarely used. See the corresponding function in the `KalmanFilter` class for details.
set_inversion_method
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def set_stability_method(self, stability_method=None, **kwargs): """ Set the numerical stability method The Kalman filter is a recursive algorithm that may in some cases suffer issues with numerical stability. The stability method controls what, if any, measures are taken to promote stability. Parameters ---------- stability_method : int, optional Bitmask value to set the stability method to. See notes for details. **kwargs Keyword arguments may be used to influence the stability method by setting individual boolean flags. See notes for details. Notes ----- This method is rarely used. See the corresponding function in the `KalmanFilter` class for details. """ self.ssm.set_stability_method(stability_method, **kwargs)
Set the numerical stability method The Kalman filter is a recursive algorithm that may in some cases suffer issues with numerical stability. The stability method controls what, if any, measures are taken to promote stability. Parameters ---------- stability_method : int, optional Bitmask value to set the stability method to. See notes for details. **kwargs Keyword arguments may be used to influence the stability method by setting individual boolean flags. See notes for details. Notes ----- This method is rarely used. See the corresponding function in the `KalmanFilter` class for details.
set_stability_method
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def set_conserve_memory(self, conserve_memory=None, **kwargs): """ Set the memory conservation method By default, the Kalman filter computes a number of intermediate matrices at each iteration. The memory conservation options control which of those matrices are stored. Parameters ---------- conserve_memory : int, optional Bitmask value to set the memory conservation method to. See notes for details. **kwargs Keyword arguments may be used to influence the memory conservation method by setting individual boolean flags. Notes ----- This method is rarely used. See the corresponding function in the `KalmanFilter` class for details. """ self.ssm.set_conserve_memory(conserve_memory, **kwargs)
Set the memory conservation method By default, the Kalman filter computes a number of intermediate matrices at each iteration. The memory conservation options control which of those matrices are stored. Parameters ---------- conserve_memory : int, optional Bitmask value to set the memory conservation method to. See notes for details. **kwargs Keyword arguments may be used to influence the memory conservation method by setting individual boolean flags. Notes ----- This method is rarely used. See the corresponding function in the `KalmanFilter` class for details.
set_conserve_memory
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def set_smoother_output(self, smoother_output=None, **kwargs): """ Set the smoother output The smoother can produce several types of results. The smoother output variable controls which are calculated and returned. Parameters ---------- smoother_output : int, optional Bitmask value to set the smoother output to. See notes for details. **kwargs Keyword arguments may be used to influence the smoother output by setting individual boolean flags. Notes ----- This method is rarely used. See the corresponding function in the `KalmanSmoother` class for details. """ self.ssm.set_smoother_output(smoother_output, **kwargs)
Set the smoother output The smoother can produce several types of results. The smoother output variable controls which are calculated and returned. Parameters ---------- smoother_output : int, optional Bitmask value to set the smoother output to. See notes for details. **kwargs Keyword arguments may be used to influence the smoother output by setting individual boolean flags. Notes ----- This method is rarely used. See the corresponding function in the `KalmanSmoother` class for details.
set_smoother_output
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def initialize_known(self, initial_state, initial_state_cov): """Initialize known""" self.ssm.initialize_known(initial_state, initial_state_cov)
Initialize known
initialize_known
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def initialize_approximate_diffuse(self, variance=None): """Initialize approximate diffuse""" self.ssm.initialize_approximate_diffuse(variance)
Initialize approximate diffuse
initialize_approximate_diffuse
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def initialize_stationary(self): """Initialize stationary""" self.ssm.initialize_stationary()
Initialize stationary
initialize_stationary
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def fix_params(self, params): """ Fix parameters to specific values (context manager) Parameters ---------- params : dict Dictionary describing the fixed parameter values, of the form `param_name: fixed_value`. See the `param_names` property for valid parameter names. Examples -------- >>> mod = sm.tsa.SARIMAX(endog, order=(1, 0, 1)) >>> with mod.fix_params({'ar.L1': 0.5}): res = mod.fit() """ k_params = len(self.param_names) # Initialization (this is done here rather than in the constructor # because param_names may not be available at that point) if self._fixed_params is None: self._fixed_params = {} self._params_index = dict( zip(self.param_names, np.arange(k_params))) # Cache the current fixed parameters cache_fixed_params = self._fixed_params.copy() cache_has_fixed_params = self._has_fixed_params cache_fixed_params_index = self._fixed_params_index cache_free_params_index = self._free_params_index # Validate parameter names and values all_fixed_param_names = ( set(params.keys()) | set(self._fixed_params.keys()) ) self._validate_can_fix_params(all_fixed_param_names) # Set the new fixed parameters, keeping the order as given by # param_names self._fixed_params.update(params) self._fixed_params = { name: self._fixed_params[name] for name in self.param_names if name in self._fixed_params} # Update associated values self._has_fixed_params = True self._fixed_params_index = [self._params_index[key] for key in self._fixed_params.keys()] self._free_params_index = list( set(np.arange(k_params)).difference(self._fixed_params_index)) try: yield finally: # Reset the fixed parameters self._has_fixed_params = cache_has_fixed_params self._fixed_params = cache_fixed_params self._fixed_params_index = cache_fixed_params_index self._free_params_index = cache_free_params_index
Fix parameters to specific values (context manager) Parameters ---------- params : dict Dictionary describing the fixed parameter values, of the form `param_name: fixed_value`. See the `param_names` property for valid parameter names. Examples -------- >>> mod = sm.tsa.SARIMAX(endog, order=(1, 0, 1)) >>> with mod.fix_params({'ar.L1': 0.5}): res = mod.fit()
fix_params
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def fit(self, start_params=None, transformed=True, includes_fixed=False, cov_type=None, cov_kwds=None, method='lbfgs', maxiter=50, full_output=1, disp=5, callback=None, return_params=False, optim_score=None, optim_complex_step=None, optim_hessian=None, flags=None, low_memory=False, **kwargs): """ Fits the model by maximum likelihood via Kalman filter. Parameters ---------- start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. If None, the default is given by Model.start_params. transformed : bool, optional Whether or not `start_params` is already transformed. Default is True. includes_fixed : bool, optional If parameters were previously fixed with the `fix_params` method, this argument describes whether or not `start_params` also includes the fixed parameters, in addition to the free parameters. Default is False. cov_type : str, optional The `cov_type` keyword governs the method for calculating the covariance matrix of parameter estimates. Can be one of: - 'opg' for the outer product of gradient estimator - 'oim' for the observed information matrix estimator, calculated using the method of Harvey (1989) - 'approx' for the observed information matrix estimator, calculated using a numerical approximation of the Hessian matrix. - 'robust' for an approximate (quasi-maximum likelihood) covariance matrix that may be valid even in the presence of some misspecifications. Intermediate calculations use the 'oim' method. - 'robust_approx' is the same as 'robust' except that the intermediate calculations use the 'approx' method. - 'none' for no covariance matrix calculation. Default is 'opg' unless memory conservation is used to avoid computing the loglikelihood values for each observation, in which case the default is 'approx'. cov_kwds : dict or None, optional A dictionary of arguments affecting covariance matrix computation. **opg, oim, approx, robust, robust_approx** - 'approx_complex_step' : bool, optional - If True, numerical approximations are computed using complex-step methods. If False, numerical approximations are computed using finite difference methods. Default is True. - 'approx_centered' : bool, optional - If True, numerical approximations computed using finite difference methods use a centered approximation. Default is False. method : str, optional The `method` determines which solver from `scipy.optimize` is used, and it can be chosen from among the following strings: - 'newton' for Newton-Raphson - 'nm' for Nelder-Mead - 'bfgs' for Broyden-Fletcher-Goldfarb-Shanno (BFGS) - 'lbfgs' for limited-memory BFGS with optional box constraints - 'powell' for modified Powell's method - 'cg' for conjugate gradient - 'ncg' for Newton-conjugate gradient - 'basinhopping' for global basin-hopping solver The explicit arguments in `fit` are passed to the solver, with the exception of the basin-hopping solver. Each solver has several optional arguments that are not the same across solvers. See the notes section below (or scipy.optimize) for the available arguments and for the list of explicit arguments that the basin-hopping solver supports. maxiter : int, optional The maximum number of iterations to perform. full_output : bool, optional Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. disp : bool, optional Set to True to print convergence messages. callback : callable callback(xk), optional Called after each iteration, as callback(xk), where xk is the current parameter vector. return_params : bool, optional Whether or not to return only the array of maximizing parameters. Default is False. optim_score : {'harvey', 'approx'} or None, optional The method by which the score vector is calculated. 'harvey' uses the method from Harvey (1989), 'approx' uses either finite difference or complex step differentiation depending upon the value of `optim_complex_step`, and None uses the built-in gradient approximation of the optimizer. Default is None. This keyword is only relevant if the optimization method uses the score. optim_complex_step : bool, optional Whether or not to use complex step differentiation when approximating the score; if False, finite difference approximation is used. Default is True. This keyword is only relevant if `optim_score` is set to 'harvey' or 'approx'. optim_hessian : {'opg', 'oim', 'approx'}, optional The method by which the Hessian is numerically approximated. 'opg' uses outer product of gradients, 'oim' uses the information matrix formula from Harvey (1989), and 'approx' uses numerical approximation. This keyword is only relevant if the optimization method uses the Hessian matrix. low_memory : bool, optional If set to True, techniques are applied to substantially reduce memory usage. If used, some features of the results object will not be available (including smoothed results and in-sample prediction), although out-of-sample forecasting is possible. Default is False. **kwargs Additional keyword arguments to pass to the optimizer. Returns ------- results Results object holding results from fitting a state space model. See Also -------- statsmodels.base.model.LikelihoodModel.fit statsmodels.tsa.statespace.mlemodel.MLEResults statsmodels.tsa.statespace.structural.UnobservedComponentsResults """ if start_params is None: start_params = self.start_params transformed = True includes_fixed = True # Update the score method if optim_score is None and method == 'lbfgs': kwargs.setdefault('approx_grad', True) kwargs.setdefault('epsilon', 1e-5) elif optim_score is None: optim_score = 'approx' # Check for complex step differentiation if optim_complex_step is None: optim_complex_step = not self.ssm._complex_endog elif optim_complex_step and self.ssm._complex_endog: raise ValueError('Cannot use complex step derivatives when data' ' or parameters are complex.') # Standardize starting parameters start_params = self.handle_params(start_params, transformed=True, includes_fixed=includes_fixed) # Unconstrain the starting parameters if transformed: start_params = self.untransform_params(start_params) # Remove any fixed parameters if self._has_fixed_params: start_params = start_params[self._free_params_index] # If all parameters are fixed, we are done if self._has_fixed_params and len(start_params) == 0: mlefit = Bunch(params=[], mle_retvals=None, mle_settings=None) else: # Remove disallowed kwargs disallow = ( "concentrate_scale", "enforce_stationarity", "enforce_invertibility" ) kwargs = {k: v for k, v in kwargs.items() if k not in disallow} # Maximum likelihood estimation if flags is None: flags = {} flags.update({ 'transformed': False, 'includes_fixed': False, 'score_method': optim_score, 'approx_complex_step': optim_complex_step }) if optim_hessian is not None: flags['hessian_method'] = optim_hessian fargs = (flags,) mlefit = super().fit(start_params, method=method, fargs=fargs, maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, skip_hessian=True, **kwargs) # Just return the fitted parameters if requested if return_params: return self.handle_params(mlefit.params, transformed=False, includes_fixed=False) # Otherwise construct the results class if desired else: # Handle memory conservation option if low_memory: conserve_memory = self.ssm.conserve_memory self.ssm.set_conserve_memory(MEMORY_CONSERVE) # Perform filtering / smoothing if (self.ssm.memory_no_predicted or self.ssm.memory_no_gain or self.ssm.memory_no_smoothing): func = self.filter else: func = self.smooth res = func(mlefit.params, transformed=False, includes_fixed=False, cov_type=cov_type, cov_kwds=cov_kwds) res.mlefit = mlefit res.mle_retvals = mlefit.mle_retvals res.mle_settings = mlefit.mle_settings # Reset memory conservation if low_memory: self.ssm.set_conserve_memory(conserve_memory) return res
Fits the model by maximum likelihood via Kalman filter. Parameters ---------- start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. If None, the default is given by Model.start_params. transformed : bool, optional Whether or not `start_params` is already transformed. Default is True. includes_fixed : bool, optional If parameters were previously fixed with the `fix_params` method, this argument describes whether or not `start_params` also includes the fixed parameters, in addition to the free parameters. Default is False. cov_type : str, optional The `cov_type` keyword governs the method for calculating the covariance matrix of parameter estimates. Can be one of: - 'opg' for the outer product of gradient estimator - 'oim' for the observed information matrix estimator, calculated using the method of Harvey (1989) - 'approx' for the observed information matrix estimator, calculated using a numerical approximation of the Hessian matrix. - 'robust' for an approximate (quasi-maximum likelihood) covariance matrix that may be valid even in the presence of some misspecifications. Intermediate calculations use the 'oim' method. - 'robust_approx' is the same as 'robust' except that the intermediate calculations use the 'approx' method. - 'none' for no covariance matrix calculation. Default is 'opg' unless memory conservation is used to avoid computing the loglikelihood values for each observation, in which case the default is 'approx'. cov_kwds : dict or None, optional A dictionary of arguments affecting covariance matrix computation. **opg, oim, approx, robust, robust_approx** - 'approx_complex_step' : bool, optional - If True, numerical approximations are computed using complex-step methods. If False, numerical approximations are computed using finite difference methods. Default is True. - 'approx_centered' : bool, optional - If True, numerical approximations computed using finite difference methods use a centered approximation. Default is False. method : str, optional The `method` determines which solver from `scipy.optimize` is used, and it can be chosen from among the following strings: - 'newton' for Newton-Raphson - 'nm' for Nelder-Mead - 'bfgs' for Broyden-Fletcher-Goldfarb-Shanno (BFGS) - 'lbfgs' for limited-memory BFGS with optional box constraints - 'powell' for modified Powell's method - 'cg' for conjugate gradient - 'ncg' for Newton-conjugate gradient - 'basinhopping' for global basin-hopping solver The explicit arguments in `fit` are passed to the solver, with the exception of the basin-hopping solver. Each solver has several optional arguments that are not the same across solvers. See the notes section below (or scipy.optimize) for the available arguments and for the list of explicit arguments that the basin-hopping solver supports. maxiter : int, optional The maximum number of iterations to perform. full_output : bool, optional Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. disp : bool, optional Set to True to print convergence messages. callback : callable callback(xk), optional Called after each iteration, as callback(xk), where xk is the current parameter vector. return_params : bool, optional Whether or not to return only the array of maximizing parameters. Default is False. optim_score : {'harvey', 'approx'} or None, optional The method by which the score vector is calculated. 'harvey' uses the method from Harvey (1989), 'approx' uses either finite difference or complex step differentiation depending upon the value of `optim_complex_step`, and None uses the built-in gradient approximation of the optimizer. Default is None. This keyword is only relevant if the optimization method uses the score. optim_complex_step : bool, optional Whether or not to use complex step differentiation when approximating the score; if False, finite difference approximation is used. Default is True. This keyword is only relevant if `optim_score` is set to 'harvey' or 'approx'. optim_hessian : {'opg', 'oim', 'approx'}, optional The method by which the Hessian is numerically approximated. 'opg' uses outer product of gradients, 'oim' uses the information matrix formula from Harvey (1989), and 'approx' uses numerical approximation. This keyword is only relevant if the optimization method uses the Hessian matrix. low_memory : bool, optional If set to True, techniques are applied to substantially reduce memory usage. If used, some features of the results object will not be available (including smoothed results and in-sample prediction), although out-of-sample forecasting is possible. Default is False. **kwargs Additional keyword arguments to pass to the optimizer. Returns ------- results Results object holding results from fitting a state space model. See Also -------- statsmodels.base.model.LikelihoodModel.fit statsmodels.tsa.statespace.mlemodel.MLEResults statsmodels.tsa.statespace.structural.UnobservedComponentsResults
fit
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def fit_constrained(self, constraints, start_params=None, **fit_kwds): """ Fit the model with some parameters subject to equality constraints. Parameters ---------- constraints : dict Dictionary of constraints, of the form `param_name: fixed_value`. See the `param_names` property for valid parameter names. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. If None, the default is given by Model.start_params. **fit_kwds : keyword arguments fit_kwds are used in the optimization of the remaining parameters. Returns ------- results : Results instance Examples -------- >>> mod = sm.tsa.SARIMAX(endog, order=(1, 0, 1)) >>> res = mod.fit_constrained({'ar.L1': 0.5}) """ with self.fix_params(constraints): res = self.fit(start_params, **fit_kwds) return res
Fit the model with some parameters subject to equality constraints. Parameters ---------- constraints : dict Dictionary of constraints, of the form `param_name: fixed_value`. See the `param_names` property for valid parameter names. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. If None, the default is given by Model.start_params. **fit_kwds : keyword arguments fit_kwds are used in the optimization of the remaining parameters. Returns ------- results : Results instance Examples -------- >>> mod = sm.tsa.SARIMAX(endog, order=(1, 0, 1)) >>> res = mod.fit_constrained({'ar.L1': 0.5})
fit_constrained
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def filter(self, params, transformed=True, includes_fixed=False, complex_step=False, cov_type=None, cov_kwds=None, return_ssm=False, results_class=None, results_wrapper_class=None, low_memory=False, **kwargs): """ Kalman filtering Parameters ---------- params : array_like Array of parameters at which to evaluate the loglikelihood function. transformed : bool, optional Whether or not `params` is already transformed. Default is True. return_ssm : bool,optional Whether or not to return only the state space output or a full results object. Default is to return a full results object. cov_type : str, optional See `MLEResults.fit` for a description of covariance matrix types for results object. cov_kwds : dict or None, optional See `MLEResults.get_robustcov_results` for a description required keywords for alternative covariance estimators low_memory : bool, optional If set to True, techniques are applied to substantially reduce memory usage. If used, some features of the results object will not be available (including in-sample prediction), although out-of-sample forecasting is possible. Default is False. **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. """ params = self.handle_params(params, transformed=transformed, includes_fixed=includes_fixed) self.update(params, transformed=True, includes_fixed=True, complex_step=complex_step) # Save the parameter names self.data.param_names = self.param_names if complex_step: kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU # Handle memory conservation if low_memory: kwargs['conserve_memory'] = MEMORY_CONSERVE # Get the state space output result = self.ssm.filter(complex_step=complex_step, **kwargs) # Wrap in a results object return self._wrap_results(params, result, return_ssm, cov_type, cov_kwds, results_class, results_wrapper_class)
Kalman filtering Parameters ---------- params : array_like Array of parameters at which to evaluate the loglikelihood function. transformed : bool, optional Whether or not `params` is already transformed. Default is True. return_ssm : bool,optional Whether or not to return only the state space output or a full results object. Default is to return a full results object. cov_type : str, optional See `MLEResults.fit` for a description of covariance matrix types for results object. cov_kwds : dict or None, optional See `MLEResults.get_robustcov_results` for a description required keywords for alternative covariance estimators low_memory : bool, optional If set to True, techniques are applied to substantially reduce memory usage. If used, some features of the results object will not be available (including in-sample prediction), although out-of-sample forecasting is possible. Default is False. **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details.
filter
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def smooth(self, params, transformed=True, includes_fixed=False, complex_step=False, cov_type=None, cov_kwds=None, return_ssm=False, results_class=None, results_wrapper_class=None, **kwargs): """ Kalman smoothing Parameters ---------- params : array_like Array of parameters at which to evaluate the loglikelihood function. transformed : bool, optional Whether or not `params` is already transformed. Default is True. return_ssm : bool,optional Whether or not to return only the state space output or a full results object. Default is to return a full results object. cov_type : str, optional See `MLEResults.fit` for a description of covariance matrix types for results object. cov_kwds : dict or None, optional See `MLEResults.get_robustcov_results` for a description required keywords for alternative covariance estimators **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. """ params = self.handle_params(params, transformed=transformed, includes_fixed=includes_fixed) self.update(params, transformed=True, includes_fixed=True, complex_step=complex_step) # Save the parameter names self.data.param_names = self.param_names if complex_step: kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU # Get the state space output result = self.ssm.smooth(complex_step=complex_step, **kwargs) # Wrap in a results object return self._wrap_results(params, result, return_ssm, cov_type, cov_kwds, results_class, results_wrapper_class)
Kalman smoothing Parameters ---------- params : array_like Array of parameters at which to evaluate the loglikelihood function. transformed : bool, optional Whether or not `params` is already transformed. Default is True. return_ssm : bool,optional Whether or not to return only the state space output or a full results object. Default is to return a full results object. cov_type : str, optional See `MLEResults.fit` for a description of covariance matrix types for results object. cov_kwds : dict or None, optional See `MLEResults.get_robustcov_results` for a description required keywords for alternative covariance estimators **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details.
smooth
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def loglike(self, params, *args, **kwargs): """ Loglikelihood evaluation Parameters ---------- params : array_like Array of parameters at which to evaluate the loglikelihood function. transformed : bool, optional Whether or not `params` is already transformed. Default is True. **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. See Also -------- update : modifies the internal state of the state space model to reflect new params Notes ----- [1]_ recommend maximizing the average likelihood to avoid scale issues; this is done automatically by the base Model fit method. References ---------- .. [1] Koopman, Siem Jan, Neil Shephard, and Jurgen A. Doornik. 1999. Statistical Algorithms for Models in State Space Using SsfPack 2.2. Econometrics Journal 2 (1): 107-60. doi:10.1111/1368-423X.00023. """ transformed, includes_fixed, complex_step, kwargs = _handle_args( MLEModel._loglike_param_names, MLEModel._loglike_param_defaults, *args, **kwargs) params = self.handle_params(params, transformed=transformed, includes_fixed=includes_fixed) self.update(params, transformed=True, includes_fixed=True, complex_step=complex_step) if complex_step: kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU loglike = self.ssm.loglike(complex_step=complex_step, **kwargs) # Koopman, Shephard, and Doornik recommend maximizing the average # likelihood to avoid scale issues, but the averaging is done # automatically in the base model `fit` method return loglike
Loglikelihood evaluation Parameters ---------- params : array_like Array of parameters at which to evaluate the loglikelihood function. transformed : bool, optional Whether or not `params` is already transformed. Default is True. **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. See Also -------- update : modifies the internal state of the state space model to reflect new params Notes ----- [1]_ recommend maximizing the average likelihood to avoid scale issues; this is done automatically by the base Model fit method. References ---------- .. [1] Koopman, Siem Jan, Neil Shephard, and Jurgen A. Doornik. 1999. Statistical Algorithms for Models in State Space Using SsfPack 2.2. Econometrics Journal 2 (1): 107-60. doi:10.1111/1368-423X.00023.
loglike
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def loglikeobs(self, params, transformed=True, includes_fixed=False, complex_step=False, **kwargs): """ Loglikelihood evaluation Parameters ---------- params : array_like Array of parameters at which to evaluate the loglikelihood function. transformed : bool, optional Whether or not `params` is already transformed. Default is True. **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. See Also -------- update : modifies the internal state of the Model to reflect new params Notes ----- [1]_ recommend maximizing the average likelihood to avoid scale issues; this is done automatically by the base Model fit method. References ---------- .. [1] Koopman, Siem Jan, Neil Shephard, and Jurgen A. Doornik. 1999. Statistical Algorithms for Models in State Space Using SsfPack 2.2. Econometrics Journal 2 (1): 107-60. doi:10.1111/1368-423X.00023. """ params = self.handle_params(params, transformed=transformed, includes_fixed=includes_fixed) # If we're using complex-step differentiation, then we cannot use # Cholesky factorization if complex_step: kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU self.update(params, transformed=True, includes_fixed=True, complex_step=complex_step) return self.ssm.loglikeobs(complex_step=complex_step, **kwargs)
Loglikelihood evaluation Parameters ---------- params : array_like Array of parameters at which to evaluate the loglikelihood function. transformed : bool, optional Whether or not `params` is already transformed. Default is True. **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. See Also -------- update : modifies the internal state of the Model to reflect new params Notes ----- [1]_ recommend maximizing the average likelihood to avoid scale issues; this is done automatically by the base Model fit method. References ---------- .. [1] Koopman, Siem Jan, Neil Shephard, and Jurgen A. Doornik. 1999. Statistical Algorithms for Models in State Space Using SsfPack 2.2. Econometrics Journal 2 (1): 107-60. doi:10.1111/1368-423X.00023.
loglikeobs
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def observed_information_matrix(self, params, transformed=True, includes_fixed=False, approx_complex_step=None, approx_centered=False, **kwargs): """ Observed information matrix Parameters ---------- params : array_like, optional Array of parameters at which to evaluate the loglikelihood function. **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. Notes ----- This method is from Harvey (1989), which shows that the information matrix only depends on terms from the gradient. This implementation is partially analytic and partially numeric approximation, therefore, because it uses the analytic formula for the information matrix, with numerically computed elements of the gradient. References ---------- Harvey, Andrew C. 1990. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press. """ params = np.array(params, ndmin=1) # Setup n = len(params) # We cannot use complex-step differentiation with non-transformed # parameters if approx_complex_step is None: approx_complex_step = transformed if not transformed and approx_complex_step: raise ValueError("Cannot use complex-step approximations to" " calculate the observed_information_matrix" " with untransformed parameters.") # Get values at the params themselves params = self.handle_params(params, transformed=transformed, includes_fixed=includes_fixed) self.update(params, transformed=True, includes_fixed=True, complex_step=approx_complex_step) # If we're using complex-step differentiation, then we cannot use # Cholesky factorization if approx_complex_step: kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU res = self.ssm.filter(complex_step=approx_complex_step, **kwargs) dtype = self.ssm.dtype # Save this for inversion later inv_forecasts_error_cov = res.forecasts_error_cov.copy() partials_forecasts_error, partials_forecasts_error_cov = ( self._forecasts_error_partial_derivatives( params, transformed=transformed, includes_fixed=includes_fixed, approx_complex_step=approx_complex_step, approx_centered=approx_centered, res=res, **kwargs)) # Compute the information matrix tmp = np.zeros((self.k_endog, self.k_endog, self.nobs, n), dtype=dtype) information_matrix = np.zeros((n, n), dtype=dtype) d = np.maximum(self.ssm.loglikelihood_burn, res.nobs_diffuse) for t in range(d, self.nobs): inv_forecasts_error_cov[:, :, t] = ( np.linalg.inv(res.forecasts_error_cov[:, :, t]) ) for i in range(n): tmp[:, :, t, i] = np.dot( inv_forecasts_error_cov[:, :, t], partials_forecasts_error_cov[:, :, t, i] ) for i in range(n): for j in range(n): information_matrix[i, j] += ( 0.5 * np.trace(np.dot(tmp[:, :, t, i], tmp[:, :, t, j])) ) information_matrix[i, j] += np.inner( partials_forecasts_error[:, t, i], np.dot(inv_forecasts_error_cov[:, :, t], partials_forecasts_error[:, t, j]) ) return information_matrix / (self.nobs - self.ssm.loglikelihood_burn)
Observed information matrix Parameters ---------- params : array_like, optional Array of parameters at which to evaluate the loglikelihood function. **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. Notes ----- This method is from Harvey (1989), which shows that the information matrix only depends on terms from the gradient. This implementation is partially analytic and partially numeric approximation, therefore, because it uses the analytic formula for the information matrix, with numerically computed elements of the gradient. References ---------- Harvey, Andrew C. 1990. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press.
observed_information_matrix
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def opg_information_matrix(self, params, transformed=True, includes_fixed=False, approx_complex_step=None, **kwargs): """ Outer product of gradients information matrix Parameters ---------- params : array_like, optional Array of parameters at which to evaluate the loglikelihood function. **kwargs Additional arguments to the `loglikeobs` method. References ---------- Berndt, Ernst R., Bronwyn Hall, Robert Hall, and Jerry Hausman. 1974. Estimation and Inference in Nonlinear Structural Models. NBER Chapters. National Bureau of Economic Research, Inc. """ # We cannot use complex-step differentiation with non-transformed # parameters if approx_complex_step is None: approx_complex_step = transformed if not transformed and approx_complex_step: raise ValueError("Cannot use complex-step approximations to" " calculate the observed_information_matrix" " with untransformed parameters.") score_obs = self.score_obs(params, transformed=transformed, includes_fixed=includes_fixed, approx_complex_step=approx_complex_step, **kwargs).transpose() return ( np.inner(score_obs, score_obs) / (self.nobs - self.ssm.loglikelihood_burn) )
Outer product of gradients information matrix Parameters ---------- params : array_like, optional Array of parameters at which to evaluate the loglikelihood function. **kwargs Additional arguments to the `loglikeobs` method. References ---------- Berndt, Ernst R., Bronwyn Hall, Robert Hall, and Jerry Hausman. 1974. Estimation and Inference in Nonlinear Structural Models. NBER Chapters. National Bureau of Economic Research, Inc.
opg_information_matrix
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def _score_obs_harvey(self, params, approx_complex_step=True, approx_centered=False, includes_fixed=False, **kwargs): """ Score Parameters ---------- params : array_like, optional Array of parameters at which to evaluate the loglikelihood function. **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. Notes ----- This method is from Harvey (1989), section 3.4.5 References ---------- Harvey, Andrew C. 1990. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press. """ params = np.array(params, ndmin=1) n = len(params) # Get values at the params themselves self.update(params, transformed=True, includes_fixed=includes_fixed, complex_step=approx_complex_step) if approx_complex_step: kwargs['inversion_method'] = INVERT_UNIVARIATE | SOLVE_LU if 'transformed' in kwargs: del kwargs['transformed'] res = self.ssm.filter(complex_step=approx_complex_step, **kwargs) # Get forecasts error partials partials_forecasts_error, partials_forecasts_error_cov = ( self._forecasts_error_partial_derivatives( params, transformed=True, includes_fixed=includes_fixed, approx_complex_step=approx_complex_step, approx_centered=approx_centered, res=res, **kwargs)) # Compute partial derivatives w.r.t. likelihood function partials = np.zeros((self.nobs, n)) k_endog = self.k_endog for t in range(self.nobs): inv_forecasts_error_cov = np.linalg.inv( res.forecasts_error_cov[:, :, t]) for i in range(n): partials[t, i] += np.trace(np.dot( np.dot(inv_forecasts_error_cov, partials_forecasts_error_cov[:, :, t, i]), (np.eye(k_endog) - np.dot(inv_forecasts_error_cov, np.outer(res.forecasts_error[:, t], res.forecasts_error[:, t]))))) # 2 * dv / di * F^{-1} v_t # where x = F^{-1} v_t or F x = v partials[t, i] += 2 * np.dot( partials_forecasts_error[:, t, i], np.dot(inv_forecasts_error_cov, res.forecasts_error[:, t])) return -partials / 2.
Score Parameters ---------- params : array_like, optional Array of parameters at which to evaluate the loglikelihood function. **kwargs Additional keyword arguments to pass to the Kalman filter. See `KalmanFilter.filter` for more details. Notes ----- This method is from Harvey (1989), section 3.4.5 References ---------- Harvey, Andrew C. 1990. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press.
_score_obs_harvey
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def score(self, params, *args, **kwargs): """ Compute the score function at params. Parameters ---------- params : array_like Array of parameters at which to evaluate the score. *args Additional positional arguments to the `loglike` method. **kwargs Additional keyword arguments to the `loglike` method. Returns ------- score : ndarray Score, evaluated at `params`. Notes ----- This is a numerical approximation, calculated using first-order complex step differentiation on the `loglike` method. Both args and kwargs are necessary because the optimizer from `fit` must call this function and only supports passing arguments via args (for example `scipy.optimize.fmin_l_bfgs`). """ (transformed, includes_fixed, method, approx_complex_step, approx_centered, kwargs) = ( _handle_args(MLEModel._score_param_names, MLEModel._score_param_defaults, *args, **kwargs)) # For fit() calls, the method is called 'score_method' (to distinguish # it from the method used for fit) but generally in kwargs the method # will just be called 'method' if 'method' in kwargs: method = kwargs.pop('method') if approx_complex_step is None: approx_complex_step = not self.ssm._complex_endog if approx_complex_step and self.ssm._complex_endog: raise ValueError('Cannot use complex step derivatives when data' ' or parameters are complex.') out = self.handle_params( params, transformed=transformed, includes_fixed=includes_fixed, return_jacobian=not transformed) if transformed: params = out else: params, transform_score = out if method == 'harvey': kwargs['includes_fixed'] = True score = self._score_harvey( params, approx_complex_step=approx_complex_step, **kwargs) elif method == 'approx' and approx_complex_step: kwargs['includes_fixed'] = True score = self._score_complex_step(params, **kwargs) elif method == 'approx': kwargs['includes_fixed'] = True score = self._score_finite_difference( params, approx_centered=approx_centered, **kwargs) else: raise NotImplementedError('Invalid score method.') if not transformed: score = np.dot(transform_score, score) if self._has_fixed_params and not includes_fixed: score = score[self._free_params_index] return score
Compute the score function at params. Parameters ---------- params : array_like Array of parameters at which to evaluate the score. *args Additional positional arguments to the `loglike` method. **kwargs Additional keyword arguments to the `loglike` method. Returns ------- score : ndarray Score, evaluated at `params`. Notes ----- This is a numerical approximation, calculated using first-order complex step differentiation on the `loglike` method. Both args and kwargs are necessary because the optimizer from `fit` must call this function and only supports passing arguments via args (for example `scipy.optimize.fmin_l_bfgs`).
score
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def score_obs(self, params, method='approx', transformed=True, includes_fixed=False, approx_complex_step=None, approx_centered=False, **kwargs): """ Compute the score per observation, evaluated at params Parameters ---------- params : array_like Array of parameters at which to evaluate the score. **kwargs Additional arguments to the `loglike` method. Returns ------- score : ndarray Score per observation, evaluated at `params`. Notes ----- This is a numerical approximation, calculated using first-order complex step differentiation on the `loglikeobs` method. """ if not transformed and approx_complex_step: raise ValueError("Cannot use complex-step approximations to" " calculate the score at each observation" " with untransformed parameters.") if approx_complex_step is None: approx_complex_step = not self.ssm._complex_endog if approx_complex_step and self.ssm._complex_endog: raise ValueError('Cannot use complex step derivatives when data' ' or parameters are complex.') params = self.handle_params(params, transformed=True, includes_fixed=includes_fixed) kwargs['transformed'] = transformed kwargs['includes_fixed'] = True if method == 'harvey': score = self._score_obs_harvey( params, approx_complex_step=approx_complex_step, **kwargs) elif method == 'approx' and approx_complex_step: # the default epsilon can be too small epsilon = _get_epsilon(params, 2., None, len(params)) kwargs['complex_step'] = True score = approx_fprime_cs(params, self.loglikeobs, epsilon=epsilon, kwargs=kwargs) elif method == 'approx': score = approx_fprime(params, self.loglikeobs, kwargs=kwargs, centered=approx_centered) else: raise NotImplementedError('Invalid scoreobs method.') return score
Compute the score per observation, evaluated at params Parameters ---------- params : array_like Array of parameters at which to evaluate the score. **kwargs Additional arguments to the `loglike` method. Returns ------- score : ndarray Score per observation, evaluated at `params`. Notes ----- This is a numerical approximation, calculated using first-order complex step differentiation on the `loglikeobs` method.
score_obs
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def _hessian_oim(self, params, **kwargs): """ Hessian matrix computed using the Harvey (1989) information matrix """ return -self.observed_information_matrix(params, **kwargs)
Hessian matrix computed using the Harvey (1989) information matrix
_hessian_oim
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def _hessian_opg(self, params, **kwargs): """ Hessian matrix computed using the outer product of gradients information matrix """ return -self.opg_information_matrix(params, **kwargs)
Hessian matrix computed using the outer product of gradients information matrix
_hessian_opg
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def _hessian_complex_step(self, params, **kwargs): """ Hessian matrix computed by second-order complex-step differentiation on the `loglike` function. """ # the default epsilon can be too small epsilon = _get_epsilon(params, 3., None, len(params)) kwargs['transformed'] = True kwargs['complex_step'] = True hessian = approx_hess_cs( params, self.loglike, epsilon=epsilon, kwargs=kwargs) return hessian / (self.nobs - self.ssm.loglikelihood_burn)
Hessian matrix computed by second-order complex-step differentiation on the `loglike` function.
_hessian_complex_step
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def start_params(self): """ (array) Starting parameters for maximum likelihood estimation. """ if hasattr(self, '_start_params'): return self._start_params else: raise NotImplementedError
(array) Starting parameters for maximum likelihood estimation.
start_params
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def param_names(self): """ (list of str) List of human readable parameter names (for parameters actually included in the model). """ if hasattr(self, '_param_names'): return self._param_names else: try: names = ['param.%d' % i for i in range(len(self.start_params))] except NotImplementedError: names = [] return names
(list of str) List of human readable parameter names (for parameters actually included in the model).
param_names
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def state_names(self): """ (list of str) List of human readable names for unobserved states. """ if hasattr(self, '_state_names'): return self._state_names else: names = ['state.%d' % i for i in range(self.k_states)] return names
(list of str) List of human readable names for unobserved states.
state_names
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def transform_jacobian(self, unconstrained, approx_centered=False): """ Jacobian matrix for the parameter transformation function Parameters ---------- unconstrained : array_like Array of unconstrained parameters used by the optimizer. Returns ------- jacobian : ndarray Jacobian matrix of the transformation, evaluated at `unconstrained` See Also -------- transform_params Notes ----- This is a numerical approximation using finite differences. Note that in general complex step methods cannot be used because it is not guaranteed that the `transform_params` method is a real function (e.g. if Cholesky decomposition is used). """ return approx_fprime(unconstrained, self.transform_params, centered=approx_centered)
Jacobian matrix for the parameter transformation function Parameters ---------- unconstrained : array_like Array of unconstrained parameters used by the optimizer. Returns ------- jacobian : ndarray Jacobian matrix of the transformation, evaluated at `unconstrained` See Also -------- transform_params Notes ----- This is a numerical approximation using finite differences. Note that in general complex step methods cannot be used because it is not guaranteed that the `transform_params` method is a real function (e.g. if Cholesky decomposition is used).
transform_jacobian
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def transform_params(self, unconstrained): """ Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation Parameters ---------- unconstrained : array_like Array of unconstrained parameters used by the optimizer, to be transformed. Returns ------- constrained : array_like Array of constrained parameters which may be used in likelihood evaluation. Notes ----- This is a noop in the base class, subclasses should override where appropriate. """ return np.array(unconstrained, ndmin=1)
Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation Parameters ---------- unconstrained : array_like Array of unconstrained parameters used by the optimizer, to be transformed. Returns ------- constrained : array_like Array of constrained parameters which may be used in likelihood evaluation. Notes ----- This is a noop in the base class, subclasses should override where appropriate.
transform_params
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def untransform_params(self, constrained): """ Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer Parameters ---------- constrained : array_like Array of constrained parameters used in likelihood evaluation, to be transformed. Returns ------- unconstrained : array_like Array of unconstrained parameters used by the optimizer. Notes ----- This is a noop in the base class, subclasses should override where appropriate. """ return np.array(constrained, ndmin=1)
Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer Parameters ---------- constrained : array_like Array of constrained parameters used in likelihood evaluation, to be transformed. Returns ------- unconstrained : array_like Array of unconstrained parameters used by the optimizer. Notes ----- This is a noop in the base class, subclasses should override where appropriate.
untransform_params
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def handle_params(self, params, transformed=True, includes_fixed=False, return_jacobian=False): """ Ensure model parameters satisfy shape and other requirements """ params = np.array(params, ndmin=1) # Never want integer dtype, so convert to floats if np.issubdtype(params.dtype, np.integer): params = params.astype(np.float64) if not includes_fixed and self._has_fixed_params: k_params = len(self.param_names) new_params = np.zeros(k_params, dtype=params.dtype) * np.nan new_params[self._free_params_index] = params params = new_params if not transformed: # It may be the case that the transformation relies on having # "some" (non-NaN) values for the fixed parameters, even if we will # not actually be transforming the fixed parameters (as they will) # be set below regardless if not includes_fixed and self._has_fixed_params: params[self._fixed_params_index] = ( list(self._fixed_params.values())) if return_jacobian: transform_score = self.transform_jacobian(params) params = self.transform_params(params) if not includes_fixed and self._has_fixed_params: params[self._fixed_params_index] = ( list(self._fixed_params.values())) return (params, transform_score) if return_jacobian else params
Ensure model parameters satisfy shape and other requirements
handle_params
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def update(self, params, transformed=True, includes_fixed=False, complex_step=False): """ Update the parameters of the model Parameters ---------- params : array_like Array of new parameters. transformed : bool, optional Whether or not `params` is already transformed. If set to False, `transform_params` is called. Default is True. Returns ------- params : array_like Array of parameters. Notes ----- Since Model is a base class, this method should be overridden by subclasses to perform actual updating steps. """ return self.handle_params(params=params, transformed=transformed, includes_fixed=includes_fixed)
Update the parameters of the model Parameters ---------- params : array_like Array of new parameters. transformed : bool, optional Whether or not `params` is already transformed. If set to False, `transform_params` is called. Default is True. Returns ------- params : array_like Array of parameters. Notes ----- Since Model is a base class, this method should be overridden by subclasses to perform actual updating steps.
update
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def _validate_out_of_sample_exog(self, exog, out_of_sample): """ Validate given `exog` as satisfactory for out-of-sample operations Parameters ---------- exog : array_like or None New observations of exogenous regressors, if applicable. out_of_sample : int Number of new observations required. Returns ------- exog : array or None A numpy array of shape (out_of_sample, k_exog) if the model contains an `exog` component, or None if it does not. """ k_exog = getattr(self, 'k_exog', 0) if out_of_sample and k_exog > 0: if exog is None: raise ValueError('Out-of-sample operations in a model' ' with a regression component require' ' additional exogenous values via the' ' `exog` argument.') exog = np.array(exog) required_exog_shape = (out_of_sample, self.k_exog) try: exog = exog.reshape(required_exog_shape) except ValueError: raise ValueError('Provided exogenous values are not of the' ' appropriate shape. Required %s, got %s.' % (str(required_exog_shape), str(exog.shape))) elif k_exog > 0 and exog is not None: exog = None warnings.warn('Exogenous array provided, but additional data' ' is not required. `exog` argument ignored.', ValueWarning) return exog
Validate given `exog` as satisfactory for out-of-sample operations Parameters ---------- exog : array_like or None New observations of exogenous regressors, if applicable. out_of_sample : int Number of new observations required. Returns ------- exog : array or None A numpy array of shape (out_of_sample, k_exog) if the model contains an `exog` component, or None if it does not.
_validate_out_of_sample_exog
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def _get_extension_time_varying_matrices( self, params, exog, out_of_sample, extend_kwargs=None, transformed=True, includes_fixed=False, **kwargs): """ Get updated time-varying state space system matrices Parameters ---------- params : array_like Array of parameters used to construct the time-varying system matrices. exog : array_like or None New observations of exogenous regressors, if applicable. out_of_sample : int Number of new observations required. extend_kwargs : dict, optional Dictionary of keyword arguments to pass to the state space model constructor. For example, for an SARIMAX state space model, this could be used to pass the `concentrate_scale=True` keyword argument. Any arguments that are not explicitly set in this dictionary will be copied from the current model instance. transformed : bool, optional Whether or not `start_params` is already transformed. Default is True. includes_fixed : bool, optional If parameters were previously fixed with the `fix_params` method, this argument describes whether or not `start_params` also includes the fixed parameters, in addition to the free parameters. Default is False. """ # Get the appropriate exog for the extended sample exog = self._validate_out_of_sample_exog(exog, out_of_sample) # Create extended model if extend_kwargs is None: extend_kwargs = {} # Handle trend offset for extended model if getattr(self, 'k_trend', 0) > 0 and hasattr(self, 'trend_offset'): extend_kwargs.setdefault( 'trend_offset', self.trend_offset + self.nobs) mod_extend = self.clone( endog=np.zeros((out_of_sample, self.k_endog)), exog=exog, **extend_kwargs) mod_extend.update(params, transformed=transformed, includes_fixed=includes_fixed) # Retrieve the extensions to the time-varying system matrices and # put them in kwargs for name in self.ssm.shapes.keys(): if name == 'obs' or name in kwargs: continue original = getattr(self.ssm, name) extended = getattr(mod_extend.ssm, name) so = original.shape[-1] se = extended.shape[-1] if ((so > 1 or se > 1) or ( so == 1 and self.nobs == 1 and np.any(original[..., 0] != extended[..., 0]))): kwargs[name] = extended[..., -out_of_sample:] return kwargs
Get updated time-varying state space system matrices Parameters ---------- params : array_like Array of parameters used to construct the time-varying system matrices. exog : array_like or None New observations of exogenous regressors, if applicable. out_of_sample : int Number of new observations required. extend_kwargs : dict, optional Dictionary of keyword arguments to pass to the state space model constructor. For example, for an SARIMAX state space model, this could be used to pass the `concentrate_scale=True` keyword argument. Any arguments that are not explicitly set in this dictionary will be copied from the current model instance. transformed : bool, optional Whether or not `start_params` is already transformed. Default is True. includes_fixed : bool, optional If parameters were previously fixed with the `fix_params` method, this argument describes whether or not `start_params` also includes the fixed parameters, in addition to the free parameters. Default is False.
_get_extension_time_varying_matrices
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def impulse_responses(self, params, steps=1, impulse=0, orthogonalized=False, cumulative=False, anchor=None, exog=None, extend_model=None, extend_kwargs=None, transformed=True, includes_fixed=False, **kwargs): """ Impulse response function Parameters ---------- params : array_like Array of model parameters. steps : int, optional The number of steps for which impulse responses are calculated. Default is 1. Note that for time-invariant models, the initial impulse is not counted as a step, so if `steps=1`, the output will have 2 entries. impulse : int, str or array_like If an integer, the state innovation to pulse; must be between 0 and `k_posdef-1`. If a str, it indicates which column of df the unit (1) impulse is given. Alternatively, a custom impulse vector may be provided; must be shaped `k_posdef x 1`. orthogonalized : bool, optional Whether or not to perform impulse using orthogonalized innovations. Note that this will also affect custum `impulse` vectors. Default is False. cumulative : bool, optional Whether or not to return cumulative impulse responses. Default is False. anchor : int, str, or datetime, optional Time point within the sample for the state innovation impulse. Type depends on the index of the given `endog` in the model. Two special cases are the strings 'start' and 'end', which refer to setting the impulse at the first and last points of the sample, respectively. Integer values can run from 0 to `nobs - 1`, or can be negative to apply negative indexing. Finally, if a date/time index was provided to the model, then this argument can be a date string to parse or a datetime type. Default is 'start'. exog : array_like, optional New observations of exogenous regressors for our-of-sample periods, if applicable. transformed : bool, optional Whether or not `params` is already transformed. Default is True. includes_fixed : bool, optional If parameters were previously fixed with the `fix_params` method, this argument describes whether or not `params` also includes the fixed parameters, in addition to the free parameters. Default is False. **kwargs If the model has time-varying design or transition matrices and the combination of `anchor` and `steps` implies creating impulse responses for the out-of-sample period, then these matrices must have updated values provided for the out-of-sample steps. For example, if `design` is a time-varying component, `nobs` is 10, `anchor=1`, and `steps` is 15, a (`k_endog` x `k_states` x 7) matrix must be provided with the new design matrix values. Returns ------- impulse_responses : ndarray Responses for each endogenous variable due to the impulse given by the `impulse` argument. For a time-invariant model, the impulse responses are given for `steps + 1` elements (this gives the "initial impulse" followed by `steps` responses for the important cases of VAR and SARIMAX models), while for time-varying models the impulse responses are only given for `steps` elements (to avoid having to unexpectedly provide updated time-varying matrices). See Also -------- simulate Simulate a time series according to the given state space model, optionally with specified series for the innovations. Notes ----- Intercepts in the measurement and state equation are ignored when calculating impulse responses. TODO: add an option to allow changing the ordering for the orthogonalized option. Will require permuting matrices when constructing the extended model. """ # Make sure the model class has the current parameters self.update(params, transformed=transformed, includes_fixed=includes_fixed) # For time-invariant models, add an additional `step`. This is the # default for time-invariant models based on the expected behavior for # ARIMA and VAR models: we want to record the initial impulse and also # `steps` values of the responses afterwards. # Note: we don't modify `steps` itself, because # `KalmanFilter.impulse_responses` also adds an additional step in this # case (this is so that there isn't different behavior when calling # this method versus that method). We just need to also keep track of # this here because we need to generate the correct extended model. additional_steps = 0 if (self.ssm._design.shape[2] == 1 and self.ssm._transition.shape[2] == 1 and self.ssm._selection.shape[2] == 1): additional_steps = 1 # Get the starting location if anchor is None or anchor == 'start': iloc = 0 elif anchor == 'end': iloc = self.nobs - 1 else: iloc, _, _ = self._get_index_loc(anchor) if isinstance(iloc, slice): iloc = iloc.start if iloc < 0: iloc = self.nobs + iloc if iloc >= self.nobs: raise ValueError('Cannot anchor impulse responses outside of the' ' sample.') time_invariant = ( self.ssm._design.shape[2] == self.ssm._obs_cov.shape[2] == self.ssm._transition.shape[2] == self.ssm._selection.shape[2] == self.ssm._state_cov.shape[2] == 1) # Get updated time-varying system matrices in **kwargs, if necessary # (Note: KalmanFilter adds 1 to steps to account for the first impulse) out_of_sample = max( iloc + (steps + additional_steps + 1) - self.nobs, 0) if extend_model is None: extend_model = self.exog is not None and not time_invariant if out_of_sample and extend_model: kwargs = self._get_extension_time_varying_matrices( params, exog, out_of_sample, extend_kwargs, transformed=transformed, includes_fixed=includes_fixed, **kwargs) # Special handling for matrix terms that are time-varying but # irrelevant for impulse response functions. Must be set since # ssm.extend() requires that we pass new matrices for these, but they # are ignored for IRF purposes. end = min(self.nobs, iloc + steps + additional_steps) nextend = iloc + (steps + additional_steps + 1) - end if ('obs_intercept' not in kwargs and self.ssm._obs_intercept.shape[1] > 1): kwargs['obs_intercept'] = np.zeros((self.k_endog, nextend)) if ('state_intercept' not in kwargs and self.ssm._state_intercept.shape[1] > 1): kwargs['state_intercept'] = np.zeros((self.k_states, nextend)) if 'obs_cov' not in kwargs and self.ssm._obs_cov.shape[2] > 1: kwargs['obs_cov'] = np.zeros((self.k_endog, self.k_endog, nextend)) # Special handling for matrix terms that are time-varying but # only the value at the anchor matters for IRF purposes. if 'state_cov' not in kwargs and self.ssm._state_cov.shape[2] > 1: tmp = np.zeros((self.ssm.k_posdef, self.ssm.k_posdef, nextend)) tmp[:] = self['state_cov', :, :, iloc:iloc + 1] kwargs['state_cov'] = tmp if 'selection' not in kwargs and self.ssm._selection.shape[2] > 1: tmp = np.zeros((self.k_states, self.ssm.k_posdef, nextend)) tmp[:] = self['selection', :, :, iloc:iloc + 1] kwargs['selection'] = tmp # Construct a model that represents the simulation period sim_model = self.ssm.extend(np.empty((nextend, self.k_endog)), start=iloc, end=end, **kwargs) # Compute the impulse responses # Convert endog name to index use_pandas = isinstance(self.data, PandasData) if type(impulse) is str: if not use_pandas: raise ValueError('Endog must be pd.DataFrame.') impulse = self.endog_names.index(impulse) irfs = sim_model.impulse_responses( steps, impulse, orthogonalized, cumulative) # IRF is (nobs x k_endog); do not want to squeeze in case of steps = 1 if irfs.shape[1] == 1: irfs = irfs[:, 0] # Wrap data / squeeze where appropriate if use_pandas: if self.k_endog == 1: irfs = pd.Series(irfs, name=self.endog_names) else: irfs = pd.DataFrame(irfs, columns=self.endog_names) return irfs
Impulse response function Parameters ---------- params : array_like Array of model parameters. steps : int, optional The number of steps for which impulse responses are calculated. Default is 1. Note that for time-invariant models, the initial impulse is not counted as a step, so if `steps=1`, the output will have 2 entries. impulse : int, str or array_like If an integer, the state innovation to pulse; must be between 0 and `k_posdef-1`. If a str, it indicates which column of df the unit (1) impulse is given. Alternatively, a custom impulse vector may be provided; must be shaped `k_posdef x 1`. orthogonalized : bool, optional Whether or not to perform impulse using orthogonalized innovations. Note that this will also affect custum `impulse` vectors. Default is False. cumulative : bool, optional Whether or not to return cumulative impulse responses. Default is False. anchor : int, str, or datetime, optional Time point within the sample for the state innovation impulse. Type depends on the index of the given `endog` in the model. Two special cases are the strings 'start' and 'end', which refer to setting the impulse at the first and last points of the sample, respectively. Integer values can run from 0 to `nobs - 1`, or can be negative to apply negative indexing. Finally, if a date/time index was provided to the model, then this argument can be a date string to parse or a datetime type. Default is 'start'. exog : array_like, optional New observations of exogenous regressors for our-of-sample periods, if applicable. transformed : bool, optional Whether or not `params` is already transformed. Default is True. includes_fixed : bool, optional If parameters were previously fixed with the `fix_params` method, this argument describes whether or not `params` also includes the fixed parameters, in addition to the free parameters. Default is False. **kwargs If the model has time-varying design or transition matrices and the combination of `anchor` and `steps` implies creating impulse responses for the out-of-sample period, then these matrices must have updated values provided for the out-of-sample steps. For example, if `design` is a time-varying component, `nobs` is 10, `anchor=1`, and `steps` is 15, a (`k_endog` x `k_states` x 7) matrix must be provided with the new design matrix values. Returns ------- impulse_responses : ndarray Responses for each endogenous variable due to the impulse given by the `impulse` argument. For a time-invariant model, the impulse responses are given for `steps + 1` elements (this gives the "initial impulse" followed by `steps` responses for the important cases of VAR and SARIMAX models), while for time-varying models the impulse responses are only given for `steps` elements (to avoid having to unexpectedly provide updated time-varying matrices). See Also -------- simulate Simulate a time series according to the given state space model, optionally with specified series for the innovations. Notes ----- Intercepts in the measurement and state equation are ignored when calculating impulse responses. TODO: add an option to allow changing the ordering for the orthogonalized option. Will require permuting matrices when constructing the extended model.
impulse_responses
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def from_formula(cls, formula, data, subset=None): """ Not implemented for state space models """ raise NotImplementedError
Not implemented for state space models
from_formula
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def _get_robustcov_results(self, cov_type='opg', **kwargs): """ Create new results instance with specified covariance estimator as default Note: creating new results instance currently not supported. Parameters ---------- cov_type : str the type of covariance matrix estimator to use. See Notes below kwargs : depends on cov_type Required or optional arguments for covariance calculation. See Notes below. Returns ------- results : results instance This method creates a new results instance with the requested covariance as the default covariance of the parameters. Inferential statistics like p-values and hypothesis tests will be based on this covariance matrix. Notes ----- The following covariance types and required or optional arguments are currently available: - 'opg' for the outer product of gradient estimator - 'oim' for the observed information matrix estimator, calculated using the method of Harvey (1989) - 'approx' for the observed information matrix estimator, calculated using a numerical approximation of the Hessian matrix. Uses complex step approximation by default, or uses finite differences if `approx_complex_step=False` in the `cov_kwds` dictionary. - 'robust' for an approximate (quasi-maximum likelihood) covariance matrix that may be valid even in the presence of some misspecifications. Intermediate calculations use the 'oim' method. - 'robust_approx' is the same as 'robust' except that the intermediate calculations use the 'approx' method. - 'none' for no covariance matrix calculation. """ from statsmodels.base.covtype import descriptions use_self = kwargs.pop('use_self', False) if use_self: res = self else: raise NotImplementedError res = self.__class__( self.model, self.params, normalized_cov_params=self.normalized_cov_params, scale=self.scale) # Set the new covariance type res.cov_type = cov_type res.cov_kwds = {} # Calculate the new covariance matrix approx_complex_step = self._cov_approx_complex_step if approx_complex_step: approx_type_str = 'complex-step' elif self._cov_approx_centered: approx_type_str = 'centered finite differences' else: approx_type_str = 'finite differences' k_params = len(self.params) if k_params == 0: res.cov_params_default = np.zeros((0, 0)) res._rank = 0 res.cov_kwds['description'] = 'No parameters estimated.' elif cov_type == 'custom': res.cov_type = kwargs['custom_cov_type'] res.cov_params_default = kwargs['custom_cov_params'] res.cov_kwds['description'] = kwargs['custom_description'] if len(self.fixed_params) > 0: mask = np.ix_(self._free_params_index, self._free_params_index) else: mask = np.s_[...] res._rank = np.linalg.matrix_rank(res.cov_params_default[mask]) elif cov_type == 'none': res.cov_params_default = np.zeros((k_params, k_params)) * np.nan res._rank = np.nan res.cov_kwds['description'] = descriptions['none'] elif self.cov_type == 'approx': res.cov_params_default = res.cov_params_approx res.cov_kwds['description'] = descriptions['approx'].format( approx_type=approx_type_str) elif self.cov_type == 'oim': res.cov_params_default = res.cov_params_oim res.cov_kwds['description'] = descriptions['OIM'].format( approx_type=approx_type_str) elif self.cov_type == 'opg': res.cov_params_default = res.cov_params_opg res.cov_kwds['description'] = descriptions['OPG'].format( approx_type=approx_type_str) elif self.cov_type == 'robust' or self.cov_type == 'robust_oim': res.cov_params_default = res.cov_params_robust_oim res.cov_kwds['description'] = descriptions['robust-OIM'].format( approx_type=approx_type_str) elif self.cov_type == 'robust_approx': res.cov_params_default = res.cov_params_robust_approx res.cov_kwds['description'] = descriptions['robust-approx'].format( approx_type=approx_type_str) else: raise NotImplementedError('Invalid covariance matrix type.') return res
Create new results instance with specified covariance estimator as default Note: creating new results instance currently not supported. Parameters ---------- cov_type : str the type of covariance matrix estimator to use. See Notes below kwargs : depends on cov_type Required or optional arguments for covariance calculation. See Notes below. Returns ------- results : results instance This method creates a new results instance with the requested covariance as the default covariance of the parameters. Inferential statistics like p-values and hypothesis tests will be based on this covariance matrix. Notes ----- The following covariance types and required or optional arguments are currently available: - 'opg' for the outer product of gradient estimator - 'oim' for the observed information matrix estimator, calculated using the method of Harvey (1989) - 'approx' for the observed information matrix estimator, calculated using a numerical approximation of the Hessian matrix. Uses complex step approximation by default, or uses finite differences if `approx_complex_step=False` in the `cov_kwds` dictionary. - 'robust' for an approximate (quasi-maximum likelihood) covariance matrix that may be valid even in the presence of some misspecifications. Intermediate calculations use the 'oim' method. - 'robust_approx' is the same as 'robust' except that the intermediate calculations use the 'approx' method. - 'none' for no covariance matrix calculation.
_get_robustcov_results
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def aic(self): """ (float) Akaike Information Criterion """ return aic(self.llf, self.nobs_effective, self.df_model)
(float) Akaike Information Criterion
aic
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def aicc(self): """ (float) Akaike Information Criterion with small sample correction """ return aicc(self.llf, self.nobs_effective, self.df_model)
(float) Akaike Information Criterion with small sample correction
aicc
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def bic(self): """ (float) Bayes Information Criterion """ return bic(self.llf, self.nobs_effective, self.df_model)
(float) Bayes Information Criterion
bic
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def cov_params_approx(self): """ (array) The variance / covariance matrix. Computed using the numerical Hessian approximated by complex step or finite differences methods. """ return self._cov_params_approx(self._cov_approx_complex_step, self._cov_approx_centered)
(array) The variance / covariance matrix. Computed using the numerical Hessian approximated by complex step or finite differences methods.
cov_params_approx
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def cov_params_oim(self): """ (array) The variance / covariance matrix. Computed using the method from Harvey (1989). """ return self._cov_params_oim(self._cov_approx_complex_step, self._cov_approx_centered)
(array) The variance / covariance matrix. Computed using the method from Harvey (1989).
cov_params_oim
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def cov_params_opg(self): """ (array) The variance / covariance matrix. Computed using the outer product of gradients method. """ return self._cov_params_opg(self._cov_approx_complex_step, self._cov_approx_centered)
(array) The variance / covariance matrix. Computed using the outer product of gradients method.
cov_params_opg
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def cov_params_robust(self): """ (array) The QMLE variance / covariance matrix. Alias for `cov_params_robust_oim` """ return self.cov_params_robust_oim
(array) The QMLE variance / covariance matrix. Alias for `cov_params_robust_oim`
cov_params_robust
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def cov_params_robust_oim(self): """ (array) The QMLE variance / covariance matrix. Computed using the method from Harvey (1989) as the evaluated hessian. """ return self._cov_params_robust_oim(self._cov_approx_complex_step, self._cov_approx_centered)
(array) The QMLE variance / covariance matrix. Computed using the method from Harvey (1989) as the evaluated hessian.
cov_params_robust_oim
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def cov_params_robust_approx(self): """ (array) The QMLE variance / covariance matrix. Computed using the numerical Hessian as the evaluated hessian. """ return self._cov_params_robust_approx(self._cov_approx_complex_step, self._cov_approx_centered)
(array) The QMLE variance / covariance matrix. Computed using the numerical Hessian as the evaluated hessian.
cov_params_robust_approx
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def fittedvalues(self): """ (array) The predicted values of the model. An (nobs x k_endog) array. """ # This is a (k_endog x nobs array; do not want to squeeze in case of # the corner case where nobs = 1 (mostly a concern in the predict or # forecast functions, but here also to maintain consistency) fittedvalues = self.forecasts if fittedvalues is None: pass elif fittedvalues.shape[0] == 1: fittedvalues = fittedvalues[0, :] else: fittedvalues = fittedvalues.T return fittedvalues
(array) The predicted values of the model. An (nobs x k_endog) array.
fittedvalues
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def hqic(self): """ (float) Hannan-Quinn Information Criterion """ # return (-2 * self.llf + # 2 * np.log(np.log(self.nobs_effective)) * self.df_model) return hqic(self.llf, self.nobs_effective, self.df_model)
(float) Hannan-Quinn Information Criterion
hqic
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def llf_obs(self): """ (float) The value of the log-likelihood function evaluated at `params`. """ return self.filter_results.llf_obs
(float) The value of the log-likelihood function evaluated at `params`.
llf_obs
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def llf(self): """ (float) The value of the log-likelihood function evaluated at `params`. """ return self.filter_results.llf
(float) The value of the log-likelihood function evaluated at `params`.
llf
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause
def loglikelihood_burn(self): """ (float) The number of observations during which the likelihood is not evaluated. """ return self.filter_results.loglikelihood_burn
(float) The number of observations during which the likelihood is not evaluated.
loglikelihood_burn
python
statsmodels/statsmodels
statsmodels/tsa/statespace/mlemodel.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/statespace/mlemodel.py
BSD-3-Clause