code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def summary(self, alpha=.05, start=None, title=None, model_name=None, display_params=True): """ Summarize the Model Parameters ---------- alpha : float, optional Significance level for the confidence intervals. Default is 0.05. start : int, optional Integer of the start observation. Default is 0. title : str, optional The title of the summary table. model_name : str The name of the model used. Default is to use model class name. display_params : bool, optional Whether or not to display tables of estimated parameters. Default is True. Usually only used internally. Returns ------- summary : Summary instance This holds the summary table and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary """ from statsmodels.iolib.summary import Summary # Model specification results model = self.model if title is None: title = 'Markov Switching Model Results' if start is None: start = 0 if self.data.dates is not None: dates = self.data.dates d = dates[start] sample = ['%02d-%02d-%02d' % (d.month, d.day, d.year)] d = dates[-1] sample += ['- ' + '%02d-%02d-%02d' % (d.month, d.day, d.year)] else: sample = [str(start), ' - ' + str(self.model.nobs)] # Standardize the model name as a list of str if model_name is None: model_name = model.__class__.__name__ # Create the tables if not isinstance(model_name, list): model_name = [model_name] top_left = [('Dep. Variable:', None)] top_left.append(('Model:', [model_name[0]])) for i in range(1, len(model_name)): top_left.append(('', ['+ ' + model_name[i]])) top_left += [ ('Date:', None), ('Time:', None), ('Sample:', [sample[0]]), ('', [sample[1]]) ] top_right = [ ('No. Observations:', [self.model.nobs]), ('Log Likelihood', ["%#5.3f" % self.llf]), ('AIC', ["%#5.3f" % self.aic]), ('BIC', ["%#5.3f" % self.bic]), ('HQIC', ["%#5.3f" % self.hqic]) ] if hasattr(self, 'cov_type'): top_left.append(('Covariance Type:', [self.cov_type])) summary = Summary() summary.add_table_2cols(self, gleft=top_left, gright=top_right, title=title) # Make parameters tables for each regime import re from statsmodels.iolib.summary import summary_params def make_table(self, mask, title, strip_end=True): res = (self, self.params[mask], self.bse[mask], self.tvalues[mask], self.pvalues[mask], self.conf_int(alpha)[mask]) param_names = [ re.sub(r'\[\d+\]$', '', name) for name in np.array(self.data.param_names)[mask].tolist() ] return summary_params(res, yname=None, xname=param_names, alpha=alpha, use_t=False, title=title) params = model.parameters regime_masks = [[] for i in range(model.k_regimes)] other_masks = {} for key, switching in params.switching.items(): k_params = len(switching) if key == 'regime_transition': continue other_masks[key] = [] for i in range(k_params): if switching[i]: for j in range(self.k_regimes): regime_masks[j].append(params[j, key][i]) else: other_masks[key].append(params[0, key][i]) for i in range(self.k_regimes): mask = regime_masks[i] if len(mask) > 0: table = make_table(self, mask, 'Regime %d parameters' % i) summary.tables.append(table) mask = [] for key, _mask in other_masks.items(): mask.extend(_mask) if len(mask) > 0: table = make_table(self, mask, 'Non-switching parameters') summary.tables.append(table) # Transition parameters mask = params['regime_transition'] table = make_table(self, mask, 'Regime transition parameters') summary.tables.append(table) # Add warnings/notes, added to text format only etext = [] if hasattr(self, 'cov_type') and 'description' in self.cov_kwds: etext.append(self.cov_kwds['description']) if self._rank < len(self.params): etext.append("Covariance matrix is singular or near-singular," " with condition number %6.3g. Standard errors may be" " unstable." % _safe_cond(self.cov_params())) if etext: etext = [f"[{i + 1}] {text}" for i, text in enumerate(etext)] etext.insert(0, "Warnings:") summary.add_extra_txt(etext) return summary
Summarize the Model Parameters ---------- alpha : float, optional Significance level for the confidence intervals. Default is 0.05. start : int, optional Integer of the start observation. Default is 0. title : str, optional The title of the summary table. model_name : str The name of the model used. Default is to use model class name. display_params : bool, optional Whether or not to display tables of estimated parameters. Default is True. Usually only used internally. Returns ------- summary : Summary instance This holds the summary table and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary
summary
python
statsmodels/statsmodels
statsmodels/tsa/regime_switching/markov_switching.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/regime_switching/markov_switching.py
BSD-3-Clause
def arma_order_select_ic( y, max_ar=4, max_ma=2, ic="bic", trend="c", model_kw=None, fit_kw=None ): """ Compute information criteria for many ARMA models. Parameters ---------- y : array_like Array of time-series data. max_ar : int Maximum number of AR lags to use. Default 4. max_ma : int Maximum number of MA lags to use. Default 2. ic : str, list Information criteria to report. Either a single string or a list of different criteria is possible. trend : str The trend to use when fitting the ARMA models. model_kw : dict Keyword arguments to be passed to the ``ARMA`` model. fit_kw : dict Keyword arguments to be passed to ``ARMA.fit``. Returns ------- Bunch Dict-like object with attribute access. Each ic is an attribute with a DataFrame for the results. The AR order used is the row index. The ma order used is the column index. The minimum orders are available as ``ic_min_order``. Notes ----- This method can be used to tentatively identify the order of an ARMA process, provided that the time series is stationary and invertible. This function computes the full exact MLE estimate of each model and can be, therefore a little slow. An implementation using approximate estimates will be provided in the future. In the meantime, consider passing {method : "css"} to fit_kw. Examples -------- >>> from statsmodels.tsa.arima_process import arma_generate_sample >>> import statsmodels.api as sm >>> import numpy as np >>> arparams = np.array([.75, -.25]) >>> maparams = np.array([.65, .35]) >>> arparams = np.r_[1, -arparams] >>> maparam = np.r_[1, maparams] >>> nobs = 250 >>> np.random.seed(2014) >>> y = arma_generate_sample(arparams, maparams, nobs) >>> res = sm.tsa.arma_order_select_ic(y, ic=["aic", "bic"], trend="n") >>> res.aic_min_order >>> res.bic_min_order """ max_ar = int_like(max_ar, "max_ar") max_ma = int_like(max_ma, "max_ma") trend = string_like(trend, "trend", options=("n", "c")) model_kw = dict_like(model_kw, "model_kw", optional=True) fit_kw = dict_like(fit_kw, "fit_kw", optional=True) ar_range = [i for i in range(max_ar + 1)] ma_range = [i for i in range(max_ma + 1)] if isinstance(ic, str): ic = [ic] elif not isinstance(ic, (list, tuple)): raise ValueError("Need a list or a tuple for ic if not a string.") results = np.zeros((len(ic), max_ar + 1, max_ma + 1)) model_kw = {} if model_kw is None else model_kw fit_kw = {} if fit_kw is None else fit_kw y_arr = array_like(y, "y", contiguous=True) for ar in ar_range: for ma in ma_range: mod = _safe_arma_fit(y_arr, (ar, 0, ma), model_kw, trend, fit_kw) if mod is None: results[:, ar, ma] = np.nan continue for i, criteria in enumerate(ic): results[i, ar, ma] = getattr(mod, criteria) dfs = [pd.DataFrame(res, columns=ma_range, index=ar_range) for res in results] res = dict(zip(ic, dfs)) # add the minimums to the results dict min_res = {} for i, result in res.items(): delta = np.ascontiguousarray(np.abs(result.min().min() - result)) ncols = delta.shape[1] loc = np.argmin(delta) min_res.update({i + "_min_order": (loc // ncols, loc % ncols)}) res.update(min_res) return Bunch(**res)
Compute information criteria for many ARMA models. Parameters ---------- y : array_like Array of time-series data. max_ar : int Maximum number of AR lags to use. Default 4. max_ma : int Maximum number of MA lags to use. Default 2. ic : str, list Information criteria to report. Either a single string or a list of different criteria is possible. trend : str The trend to use when fitting the ARMA models. model_kw : dict Keyword arguments to be passed to the ``ARMA`` model. fit_kw : dict Keyword arguments to be passed to ``ARMA.fit``. Returns ------- Bunch Dict-like object with attribute access. Each ic is an attribute with a DataFrame for the results. The AR order used is the row index. The ma order used is the column index. The minimum orders are available as ``ic_min_order``. Notes ----- This method can be used to tentatively identify the order of an ARMA process, provided that the time series is stationary and invertible. This function computes the full exact MLE estimate of each model and can be, therefore a little slow. An implementation using approximate estimates will be provided in the future. In the meantime, consider passing {method : "css"} to fit_kw. Examples -------- >>> from statsmodels.tsa.arima_process import arma_generate_sample >>> import statsmodels.api as sm >>> import numpy as np >>> arparams = np.array([.75, -.25]) >>> maparams = np.array([.65, .35]) >>> arparams = np.r_[1, -arparams] >>> maparam = np.r_[1, maparams] >>> nobs = 250 >>> np.random.seed(2014) >>> y = arma_generate_sample(arparams, maparams, nobs) >>> res = sm.tsa.arma_order_select_ic(y, ic=["aic", "bic"], trend="n") >>> res.aic_min_order >>> res.bic_min_order
arma_order_select_ic
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_arma_order_selection.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_arma_order_selection.py
BSD-3-Clause
def _autolag( mod, endog, exog, startlag, maxlag, method, modargs=(), fitargs=(), regresults=False, ): """ Returns the results for the lag length that maximizes the info criterion. Parameters ---------- mod : Model class Model estimator class endog : array_like nobs array containing endogenous variable exog : array_like nobs by (startlag + maxlag) array containing lags and possibly other variables startlag : int The first zero-indexed column to hold a lag. See Notes. maxlag : int The highest lag order for lag length selection. method : {"aic", "bic", "t-stat"} aic - Akaike Information Criterion bic - Bayes Information Criterion t-stat - Based on last lag modargs : tuple, optional args to pass to model. See notes. fitargs : tuple, optional args to pass to fit. See notes. regresults : bool, optional Flag indicating to return optional return results Returns ------- icbest : float Best information criteria. bestlag : int The lag length that maximizes the information criterion. results : dict, optional Dictionary containing all estimation results Notes ----- Does estimation like mod(endog, exog[:,:i], *modargs).fit(*fitargs) where i goes from lagstart to lagstart+maxlag+1. Therefore, lags are assumed to be in contiguous columns from low to high lag length with the highest lag in the last column. """ # TODO: can tcol be replaced by maxlag + 2? # TODO: This could be changed to laggedRHS and exog keyword arguments if # this will be more general. results = {} method = method.lower() for lag in range(startlag, startlag + maxlag + 1): mod_instance = mod(endog, exog[:, :lag], *modargs) results[lag] = mod_instance.fit() if method == "aic": icbest, bestlag = min((v.aic, k) for k, v in results.items()) elif method == "bic": icbest, bestlag = min((v.bic, k) for k, v in results.items()) elif method == "t-stat": # stop = stats.norm.ppf(.95) stop = 1.6448536269514722 # Default values to ensure that always set bestlag = startlag + maxlag icbest = 0.0 for lag in range(startlag + maxlag, startlag - 1, -1): icbest = np.abs(results[lag].tvalues[-1]) bestlag = lag if np.abs(icbest) >= stop: # Break for first lag with a significant t-stat break else: raise ValueError(f"Information Criterion {method} not understood.") if not regresults: return icbest, bestlag else: return icbest, bestlag, results
Returns the results for the lag length that maximizes the info criterion. Parameters ---------- mod : Model class Model estimator class endog : array_like nobs array containing endogenous variable exog : array_like nobs by (startlag + maxlag) array containing lags and possibly other variables startlag : int The first zero-indexed column to hold a lag. See Notes. maxlag : int The highest lag order for lag length selection. method : {"aic", "bic", "t-stat"} aic - Akaike Information Criterion bic - Bayes Information Criterion t-stat - Based on last lag modargs : tuple, optional args to pass to model. See notes. fitargs : tuple, optional args to pass to fit. See notes. regresults : bool, optional Flag indicating to return optional return results Returns ------- icbest : float Best information criteria. bestlag : int The lag length that maximizes the information criterion. results : dict, optional Dictionary containing all estimation results Notes ----- Does estimation like mod(endog, exog[:,:i], *modargs).fit(*fitargs) where i goes from lagstart to lagstart+maxlag+1. Therefore, lags are assumed to be in contiguous columns from low to high lag length with the highest lag in the last column.
_autolag
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def adfuller( x, maxlag: int | None = None, regression="c", autolag="AIC", store=False, regresults=False, ): """ Augmented Dickey-Fuller unit root test. The Augmented Dickey-Fuller test can be used to test for a unit root in a univariate process in the presence of serial correlation. Parameters ---------- x : array_like, 1d The data series to test. maxlag : {None, int} Maximum lag which is included in test, default value of 12*(nobs/100)^{1/4} is used when ``None``. regression : {"c","ct","ctt","n"} Constant and trend order to include in regression. * "c" : constant only (default). * "ct" : constant and trend. * "ctt" : constant, and linear and quadratic trend. * "n" : no constant, no trend. autolag : {"AIC", "BIC", "t-stat", None} Method to use when automatically determining the lag length among the values 0, 1, ..., maxlag. * If "AIC" (default) or "BIC", then the number of lags is chosen to minimize the corresponding information criterion. * "t-stat" based choice of maxlag. Starts with maxlag and drops a lag until the t-statistic on the last lag length is significant using a 5%-sized test. * If None, then the number of included lags is set to maxlag. store : bool If True, then a result instance is returned additionally to the adf statistic. Default is False. regresults : bool, optional If True, the full regression results are returned. Default is False. Returns ------- adf : float The test statistic. pvalue : float MacKinnon's approximate p-value based on MacKinnon (1994, 2010). usedlag : int The number of lags used. nobs : int The number of observations used for the ADF regression and calculation of the critical values. critical values : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels. Based on MacKinnon (2010). icbest : float The maximized information criterion if autolag is not None. resstore : ResultStore, optional A dummy class with results attached as attributes. Notes ----- The null hypothesis of the Augmented Dickey-Fuller is that there is a unit root, with the alternative that there is no unit root. If the pvalue is above a critical size, then we cannot reject that there is a unit root. The p-values are obtained through regression surface approximation from MacKinnon 1994, but using the updated 2010 tables. If the p-value is close to significant, then the critical values should be used to judge whether to reject the null. The autolag option and maxlag for it are described in Greene. See the notebook `Stationarity and detrending (ADF/KPSS) <../examples/notebooks/generated/stationarity_detrending_adf_kpss.html>`__ for an overview. References ---------- .. [1] W. Green. "Econometric Analysis," 5th ed., Pearson, 2003. .. [2] Hamilton, J.D. "Time Series Analysis". Princeton, 1994. .. [3] MacKinnon, J.G. 1994. "Approximate asymptotic distribution functions for unit-root and cointegration tests. `Journal of Business and Economic Statistics` 12, 167-76. .. [4] MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen"s University, Dept of Economics, Working Papers. Available at http://ideas.repec.org/p/qed/wpaper/1227.html """ x = array_like(x, "x") maxlag = int_like(maxlag, "maxlag", optional=True) regression = string_like(regression, "regression", options=("c", "ct", "ctt", "n")) autolag = string_like( autolag, "autolag", optional=True, options=("aic", "bic", "t-stat") ) store = bool_like(store, "store") regresults = bool_like(regresults, "regresults") if x.max() == x.min(): raise ValueError("Invalid input, x is constant") if regresults: store = True trenddict = {None: "n", 0: "c", 1: "ct", 2: "ctt"} if regression is None or isinstance(regression, int): regression = trenddict[regression] regression = regression.lower() nobs = x.shape[0] ntrend = len(regression) if regression != "n" else 0 if maxlag is None: # from Greene referencing Schwert 1989 maxlag = int(np.ceil(12.0 * np.power(nobs / 100.0, 1 / 4.0))) # -1 for the diff maxlag = min(nobs // 2 - ntrend - 1, maxlag) if maxlag < 0: raise ValueError( "sample size is too short to use selected " "regression component" ) elif maxlag > nobs // 2 - ntrend - 1: raise ValueError( "maxlag must be less than (nobs/2 - 1 - ntrend) " "where n trend is the number of included " "deterministic regressors" ) xdiff = np.diff(x) xdall = lagmat(xdiff[:, None], maxlag, trim="both", original="in") nobs = xdall.shape[0] xdall[:, 0] = x[-nobs - 1 : -1] # replace 0 xdiff with level of x xdshort = xdiff[-nobs:] if store: resstore = ResultsStore() if autolag: if regression != "n": fullRHS = add_trend(xdall, regression, prepend=True) else: fullRHS = xdall startlag = fullRHS.shape[1] - xdall.shape[1] + 1 # 1 for level # search for lag length with smallest information criteria # Note: use the same number of observations to have comparable IC # aic and bic: smaller is better if not regresults: icbest, bestlag = _autolag(OLS, xdshort, fullRHS, startlag, maxlag, autolag) else: icbest, bestlag, alres = _autolag( OLS, xdshort, fullRHS, startlag, maxlag, autolag, regresults=regresults, ) resstore.autolag_results = alres bestlag -= startlag # convert to lag not column index # rerun ols with best autolag xdall = lagmat(xdiff[:, None], bestlag, trim="both", original="in") nobs = xdall.shape[0] xdall[:, 0] = x[-nobs - 1 : -1] # replace 0 xdiff with level of x xdshort = xdiff[-nobs:] usedlag = bestlag else: usedlag = maxlag icbest = None if regression != "n": resols = OLS(xdshort, add_trend(xdall[:, : usedlag + 1], regression)).fit() else: resols = OLS(xdshort, xdall[:, : usedlag + 1]).fit() adfstat = resols.tvalues[0] # adfstat = (resols.params[0]-1.0)/resols.bse[0] # the "asymptotically correct" z statistic is obtained as # nobs/(1-np.sum(resols.params[1:-(trendorder+1)])) (resols.params[0] - 1) # I think this is the statistic that is used for series that are integrated # for orders higher than I(1), ie., not ADF but cointegration tests. # Get approx p-value and critical values pvalue = mackinnonp(adfstat, regression=regression, N=1) critvalues = mackinnoncrit(N=1, regression=regression, nobs=nobs) critvalues = { "1%": critvalues[0], "5%": critvalues[1], "10%": critvalues[2], } if store: resstore.resols = resols resstore.maxlag = maxlag resstore.usedlag = usedlag resstore.adfstat = adfstat resstore.critvalues = critvalues resstore.nobs = nobs resstore.H0 = "The coefficient on the lagged level equals 1 - unit root" resstore.HA = "The coefficient on the lagged level < 1 - stationary" resstore.icbest = icbest resstore._str = "Augmented Dickey-Fuller Test Results" return adfstat, pvalue, critvalues, resstore else: if not autolag: return adfstat, pvalue, usedlag, nobs, critvalues else: return adfstat, pvalue, usedlag, nobs, critvalues, icbest
Augmented Dickey-Fuller unit root test. The Augmented Dickey-Fuller test can be used to test for a unit root in a univariate process in the presence of serial correlation. Parameters ---------- x : array_like, 1d The data series to test. maxlag : {None, int} Maximum lag which is included in test, default value of 12*(nobs/100)^{1/4} is used when ``None``. regression : {"c","ct","ctt","n"} Constant and trend order to include in regression. * "c" : constant only (default). * "ct" : constant and trend. * "ctt" : constant, and linear and quadratic trend. * "n" : no constant, no trend. autolag : {"AIC", "BIC", "t-stat", None} Method to use when automatically determining the lag length among the values 0, 1, ..., maxlag. * If "AIC" (default) or "BIC", then the number of lags is chosen to minimize the corresponding information criterion. * "t-stat" based choice of maxlag. Starts with maxlag and drops a lag until the t-statistic on the last lag length is significant using a 5%-sized test. * If None, then the number of included lags is set to maxlag. store : bool If True, then a result instance is returned additionally to the adf statistic. Default is False. regresults : bool, optional If True, the full regression results are returned. Default is False. Returns ------- adf : float The test statistic. pvalue : float MacKinnon's approximate p-value based on MacKinnon (1994, 2010). usedlag : int The number of lags used. nobs : int The number of observations used for the ADF regression and calculation of the critical values. critical values : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels. Based on MacKinnon (2010). icbest : float The maximized information criterion if autolag is not None. resstore : ResultStore, optional A dummy class with results attached as attributes. Notes ----- The null hypothesis of the Augmented Dickey-Fuller is that there is a unit root, with the alternative that there is no unit root. If the pvalue is above a critical size, then we cannot reject that there is a unit root. The p-values are obtained through regression surface approximation from MacKinnon 1994, but using the updated 2010 tables. If the p-value is close to significant, then the critical values should be used to judge whether to reject the null. The autolag option and maxlag for it are described in Greene. See the notebook `Stationarity and detrending (ADF/KPSS) <../examples/notebooks/generated/stationarity_detrending_adf_kpss.html>`__ for an overview. References ---------- .. [1] W. Green. "Econometric Analysis," 5th ed., Pearson, 2003. .. [2] Hamilton, J.D. "Time Series Analysis". Princeton, 1994. .. [3] MacKinnon, J.G. 1994. "Approximate asymptotic distribution functions for unit-root and cointegration tests. `Journal of Business and Economic Statistics` 12, 167-76. .. [4] MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen"s University, Dept of Economics, Working Papers. Available at http://ideas.repec.org/p/qed/wpaper/1227.html
adfuller
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def acovf(x, adjusted=False, demean=True, fft=True, missing="none", nlag=None): """ Estimate autocovariances. Parameters ---------- x : array_like Time series data. Must be 1d. adjusted : bool, default False If True, then denominators is n-k, otherwise n. demean : bool, default True If True, then subtract the mean x from each element of x. fft : bool, default True If True, use FFT convolution. This method should be preferred for long time series. missing : str, default "none" A string in ["none", "raise", "conservative", "drop"] specifying how the NaNs are to be treated. "none" performs no checks. "raise" raises an exception if NaN values are found. "drop" removes the missing observations and then estimates the autocovariances treating the non-missing as contiguous. "conservative" computes the autocovariance using nan-ops so that nans are removed when computing the mean and cross-products that are used to estimate the autocovariance. When using "conservative", n is set to the number of non-missing observations. nlag : {int, None}, default None Limit the number of autocovariances returned. Size of returned array is nlag + 1. Setting nlag when fft is False uses a simple, direct estimator of the autocovariances that only computes the first nlag + 1 values. This can be much faster when the time series is long and only a small number of autocovariances are needed. Returns ------- ndarray The estimated autocovariances. References ---------- .. [1] Parzen, E., 1963. On spectral analysis with missing observations and amplitude modulation. Sankhya: The Indian Journal of Statistics, Series A, pp.383-392. """ adjusted = bool_like(adjusted, "adjusted") demean = bool_like(demean, "demean") fft = bool_like(fft, "fft", optional=False) missing = string_like( missing, "missing", options=("none", "raise", "conservative", "drop") ) nlag = int_like(nlag, "nlag", optional=True) x = array_like(x, "x", ndim=1) missing = missing.lower() if missing == "none": deal_with_masked = False else: deal_with_masked = has_missing(x) if deal_with_masked: if missing == "raise": raise MissingDataError("NaNs were encountered in the data") notmask_bool = ~np.isnan(x) # bool if missing == "conservative": # Must copy for thread safety x = x.copy() x[~notmask_bool] = 0 else: # "drop" x = x[notmask_bool] # copies non-missing notmask_int = notmask_bool.astype(int) # int if demean and deal_with_masked: # whether "drop" or "conservative": xo = x - x.sum() / notmask_int.sum() if missing == "conservative": xo[~notmask_bool] = 0 elif demean: xo = x - x.mean() else: xo = x n = len(x) lag_len = nlag if nlag is None: lag_len = n - 1 elif nlag > n - 1: raise ValueError("nlag must be smaller than nobs - 1") if not fft and nlag is not None: acov = np.empty(lag_len + 1) acov[0] = xo.dot(xo) for i in range(lag_len): acov[i + 1] = xo[i + 1 :].dot(xo[: -(i + 1)]) if not deal_with_masked or missing == "drop": if adjusted: acov /= n - np.arange(lag_len + 1) else: acov /= n else: if adjusted: divisor = np.empty(lag_len + 1, dtype=np.int64) divisor[0] = notmask_int.sum() for i in range(lag_len): divisor[i + 1] = notmask_int[i + 1 :].dot(notmask_int[: -(i + 1)]) divisor[divisor == 0] = 1 acov /= divisor else: # biased, missing data but npt "drop" acov /= notmask_int.sum() return acov if adjusted and deal_with_masked and missing == "conservative": d = np.correlate(notmask_int, notmask_int, "full") d[d == 0] = 1 elif adjusted: xi = np.arange(1, n + 1) d = np.hstack((xi, xi[:-1][::-1])) elif deal_with_masked: # biased and NaNs given and ("drop" or "conservative") d = notmask_int.sum() * np.ones(2 * n - 1) else: # biased and no NaNs or missing=="none" d = n * np.ones(2 * n - 1) if fft: nobs = len(xo) n = _next_regular(2 * nobs + 1) Frf = np.fft.fft(xo, n=n) acov = np.fft.ifft(Frf * np.conjugate(Frf))[:nobs] / d[nobs - 1 :] acov = acov.real else: acov = np.correlate(xo, xo, "full")[n - 1 :] / d[n - 1 :] if nlag is not None: # Copy to allow gc of full array rather than view return acov[: lag_len + 1].copy() return acov
Estimate autocovariances. Parameters ---------- x : array_like Time series data. Must be 1d. adjusted : bool, default False If True, then denominators is n-k, otherwise n. demean : bool, default True If True, then subtract the mean x from each element of x. fft : bool, default True If True, use FFT convolution. This method should be preferred for long time series. missing : str, default "none" A string in ["none", "raise", "conservative", "drop"] specifying how the NaNs are to be treated. "none" performs no checks. "raise" raises an exception if NaN values are found. "drop" removes the missing observations and then estimates the autocovariances treating the non-missing as contiguous. "conservative" computes the autocovariance using nan-ops so that nans are removed when computing the mean and cross-products that are used to estimate the autocovariance. When using "conservative", n is set to the number of non-missing observations. nlag : {int, None}, default None Limit the number of autocovariances returned. Size of returned array is nlag + 1. Setting nlag when fft is False uses a simple, direct estimator of the autocovariances that only computes the first nlag + 1 values. This can be much faster when the time series is long and only a small number of autocovariances are needed. Returns ------- ndarray The estimated autocovariances. References ---------- .. [1] Parzen, E., 1963. On spectral analysis with missing observations and amplitude modulation. Sankhya: The Indian Journal of Statistics, Series A, pp.383-392.
acovf
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def q_stat(x, nobs): """ Compute Ljung-Box Q Statistic. Parameters ---------- x : array_like Array of autocorrelation coefficients. Can be obtained from acf. nobs : int, optional Number of observations in the entire sample (ie., not just the length of the autocorrelation function results. Returns ------- q-stat : ndarray Ljung-Box Q-statistic for autocorrelation parameters. p-value : ndarray P-value of the Q statistic. See Also -------- statsmodels.stats.diagnostic.acorr_ljungbox Ljung-Box Q-test for autocorrelation in time series based on a time series rather than the estimated autocorrelation function. Notes ----- Designed to be used with acf. """ x = array_like(x, "x") nobs = int_like(nobs, "nobs") ret = ( nobs * (nobs + 2) * np.cumsum((1.0 / (nobs - np.arange(1, len(x) + 1))) * x**2) ) chi2 = stats.chi2.sf(ret, np.arange(1, len(x) + 1)) return ret, chi2
Compute Ljung-Box Q Statistic. Parameters ---------- x : array_like Array of autocorrelation coefficients. Can be obtained from acf. nobs : int, optional Number of observations in the entire sample (ie., not just the length of the autocorrelation function results. Returns ------- q-stat : ndarray Ljung-Box Q-statistic for autocorrelation parameters. p-value : ndarray P-value of the Q statistic. See Also -------- statsmodels.stats.diagnostic.acorr_ljungbox Ljung-Box Q-test for autocorrelation in time series based on a time series rather than the estimated autocorrelation function. Notes ----- Designed to be used with acf.
q_stat
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def acf( x, adjusted=False, nlags=None, qstat=False, fft=True, alpha=None, bartlett_confint=True, missing="none", ): """ Calculate the autocorrelation function. Parameters ---------- x : array_like The time series data. adjusted : bool, default False If True, then denominators for autocovariance are n-k, otherwise n. nlags : int, optional Number of lags to return autocorrelation for. If not provided, uses min(10 * np.log10(nobs), nobs - 1). The returned value includes lag 0 (ie., 1) so size of the acf vector is (nlags + 1,). qstat : bool, default False If True, returns the Ljung-Box q statistic for each autocorrelation coefficient. See q_stat for more information. fft : bool, default True If True, computes the ACF via FFT. alpha : scalar, default None If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to Bartlett"s formula. bartlett_confint : bool, default True Confidence intervals for ACF values are generally placed at 2 standard errors around r_k. The formula used for standard error depends upon the situation. If the autocorrelations are being used to test for randomness of residuals as part of the ARIMA routine, the standard errors are determined assuming the residuals are white noise. The approximate formula for any lag is that standard error of each r_k = 1/sqrt(N). See section 9.4 of [2] for more details on the 1/sqrt(N) result. For more elementary discussion, see section 5.3.2 in [3]. For the ACF of raw data, the standard error at a lag k is found as if the right model was an MA(k-1). This allows the possible interpretation that if all autocorrelations past a certain lag are within the limits, the model might be an MA of order defined by the last significant autocorrelation. In this case, a moving average model is assumed for the data and the standard errors for the confidence intervals should be generated using Bartlett's formula. For more details on Bartlett formula result, see section 7.2 in [2]. missing : str, default "none" A string in ["none", "raise", "conservative", "drop"] specifying how the NaNs are to be treated. "none" performs no checks. "raise" raises an exception if NaN values are found. "drop" removes the missing observations and then estimates the autocovariances treating the non-missing as contiguous. "conservative" computes the autocovariance using nan-ops so that nans are removed when computing the mean and cross-products that are used to estimate the autocovariance. When using "conservative", n is set to the number of non-missing observations. Returns ------- acf : ndarray The autocorrelation function for lags 0, 1, ..., nlags. Shape (nlags+1,). confint : ndarray, optional Confidence intervals for the ACF at lags 0, 1, ..., nlags. Shape (nlags + 1, 2). Returned if alpha is not None. The confidence intervals are centered on the estimated ACF values. This behavior differs from plot_acf which centers the confidence intervals on 0. qstat : ndarray, optional The Ljung-Box Q-Statistic for lags 1, 2, ..., nlags (excludes lag zero). Returned if q_stat is True. pvalues : ndarray, optional The p-values associated with the Q-statistics for lags 1, 2, ..., nlags (excludes lag zero). Returned if q_stat is True. Notes ----- The acf at lag 0 (ie., 1) is returned. For very long time series it is recommended to use fft convolution instead. When fft is False uses a simple, direct estimator of the autocovariances that only computes the first nlag + 1 values. This can be much faster when the time series is long and only a small number of autocovariances are needed. If adjusted is true, the denominator for the autocovariance is adjusted for the loss of data. References ---------- .. [1] Parzen, E., 1963. On spectral analysis with missing observations and amplitude modulation. Sankhya: The Indian Journal of Statistics, Series A, pp.383-392. .. [2] Brockwell and Davis, 1987. Time Series Theory and Methods .. [3] Brockwell and Davis, 2010. Introduction to Time Series and Forecasting, 2nd edition. See Also -------- statsmodels.tsa.stattools.acf Estimate the autocorrelation function. statsmodels.graphics.tsaplots.plot_acf Plot autocorrelations and confidence intervals. """ adjusted = bool_like(adjusted, "adjusted") nlags = int_like(nlags, "nlags", optional=True) qstat = bool_like(qstat, "qstat") fft = bool_like(fft, "fft", optional=False) alpha = float_like(alpha, "alpha", optional=True) missing = string_like( missing, "missing", options=("none", "raise", "conservative", "drop") ) x = array_like(x, "x") # TODO: should this shrink for missing="drop" and NaNs in x? nobs = x.shape[0] if nlags is None: nlags = min(int(10 * np.log10(nobs)), nobs - 1) avf = acovf(x, adjusted=adjusted, demean=True, fft=fft, missing=missing) acf = avf[: nlags + 1] / avf[0] if not (qstat or alpha): return acf _alpha = alpha if alpha is not None else 0.05 if bartlett_confint: varacf = np.ones_like(acf) / nobs varacf[0] = 0 varacf[1] = 1.0 / nobs varacf[2:] *= 1 + 2 * np.cumsum(acf[1:-1] ** 2) else: varacf = 1.0 / len(x) interval = stats.norm.ppf(1 - _alpha / 2.0) * np.sqrt(varacf) confint = np.array(lzip(acf - interval, acf + interval)) if not qstat: return acf, confint qstat, pvalue = q_stat(acf[1:], nobs=nobs) # drop lag 0 if alpha is not None: return acf, confint, qstat, pvalue else: return acf, qstat, pvalue
Calculate the autocorrelation function. Parameters ---------- x : array_like The time series data. adjusted : bool, default False If True, then denominators for autocovariance are n-k, otherwise n. nlags : int, optional Number of lags to return autocorrelation for. If not provided, uses min(10 * np.log10(nobs), nobs - 1). The returned value includes lag 0 (ie., 1) so size of the acf vector is (nlags + 1,). qstat : bool, default False If True, returns the Ljung-Box q statistic for each autocorrelation coefficient. See q_stat for more information. fft : bool, default True If True, computes the ACF via FFT. alpha : scalar, default None If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to Bartlett"s formula. bartlett_confint : bool, default True Confidence intervals for ACF values are generally placed at 2 standard errors around r_k. The formula used for standard error depends upon the situation. If the autocorrelations are being used to test for randomness of residuals as part of the ARIMA routine, the standard errors are determined assuming the residuals are white noise. The approximate formula for any lag is that standard error of each r_k = 1/sqrt(N). See section 9.4 of [2] for more details on the 1/sqrt(N) result. For more elementary discussion, see section 5.3.2 in [3]. For the ACF of raw data, the standard error at a lag k is found as if the right model was an MA(k-1). This allows the possible interpretation that if all autocorrelations past a certain lag are within the limits, the model might be an MA of order defined by the last significant autocorrelation. In this case, a moving average model is assumed for the data and the standard errors for the confidence intervals should be generated using Bartlett's formula. For more details on Bartlett formula result, see section 7.2 in [2]. missing : str, default "none" A string in ["none", "raise", "conservative", "drop"] specifying how the NaNs are to be treated. "none" performs no checks. "raise" raises an exception if NaN values are found. "drop" removes the missing observations and then estimates the autocovariances treating the non-missing as contiguous. "conservative" computes the autocovariance using nan-ops so that nans are removed when computing the mean and cross-products that are used to estimate the autocovariance. When using "conservative", n is set to the number of non-missing observations. Returns ------- acf : ndarray The autocorrelation function for lags 0, 1, ..., nlags. Shape (nlags+1,). confint : ndarray, optional Confidence intervals for the ACF at lags 0, 1, ..., nlags. Shape (nlags + 1, 2). Returned if alpha is not None. The confidence intervals are centered on the estimated ACF values. This behavior differs from plot_acf which centers the confidence intervals on 0. qstat : ndarray, optional The Ljung-Box Q-Statistic for lags 1, 2, ..., nlags (excludes lag zero). Returned if q_stat is True. pvalues : ndarray, optional The p-values associated with the Q-statistics for lags 1, 2, ..., nlags (excludes lag zero). Returned if q_stat is True. Notes ----- The acf at lag 0 (ie., 1) is returned. For very long time series it is recommended to use fft convolution instead. When fft is False uses a simple, direct estimator of the autocovariances that only computes the first nlag + 1 values. This can be much faster when the time series is long and only a small number of autocovariances are needed. If adjusted is true, the denominator for the autocovariance is adjusted for the loss of data. References ---------- .. [1] Parzen, E., 1963. On spectral analysis with missing observations and amplitude modulation. Sankhya: The Indian Journal of Statistics, Series A, pp.383-392. .. [2] Brockwell and Davis, 1987. Time Series Theory and Methods .. [3] Brockwell and Davis, 2010. Introduction to Time Series and Forecasting, 2nd edition. See Also -------- statsmodels.tsa.stattools.acf Estimate the autocorrelation function. statsmodels.graphics.tsaplots.plot_acf Plot autocorrelations and confidence intervals.
acf
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def pacf_yw( x: ArrayLike1D, nlags: int | None = None, method: Literal["adjusted", "mle"] = "adjusted", ) -> np.ndarray: """ Partial autocorrelation estimated with non-recursive yule_walker. Parameters ---------- x : array_like The observations of time series for which pacf is calculated. nlags : int, optional Number of lags to return autocorrelation for. If not provided, uses min(10 * np.log10(nobs), nobs - 1). method : {"adjusted", "mle"}, default "adjusted" The method for the autocovariance calculations in yule walker. Returns ------- ndarray The partial autocorrelations, maxlag+1 elements. See Also -------- statsmodels.tsa.stattools.pacf Partial autocorrelation estimation. statsmodels.tsa.stattools.pacf_ols Partial autocorrelation estimation using OLS. statsmodels.tsa.stattools.pacf_burg Partial autocorrelation estimation using Burg"s method. Notes ----- This solves yule_walker for each desired lag and contains currently duplicate calculations. """ x = array_like(x, "x") nlags = int_like(nlags, "nlags", optional=True) nobs = x.shape[0] if nlags is None: nlags = max(min(int(10 * np.log10(nobs)), nobs - 1), 1) method = string_like(method, "method", options=("adjusted", "mle")) pacf = [1.0] with warnings.catch_warnings(): warnings.simplefilter("once", ValueWarning) for k in range(1, nlags + 1): pacf.append(yule_walker(x, k, method=method)[0][-1]) return np.array(pacf)
Partial autocorrelation estimated with non-recursive yule_walker. Parameters ---------- x : array_like The observations of time series for which pacf is calculated. nlags : int, optional Number of lags to return autocorrelation for. If not provided, uses min(10 * np.log10(nobs), nobs - 1). method : {"adjusted", "mle"}, default "adjusted" The method for the autocovariance calculations in yule walker. Returns ------- ndarray The partial autocorrelations, maxlag+1 elements. See Also -------- statsmodels.tsa.stattools.pacf Partial autocorrelation estimation. statsmodels.tsa.stattools.pacf_ols Partial autocorrelation estimation using OLS. statsmodels.tsa.stattools.pacf_burg Partial autocorrelation estimation using Burg"s method. Notes ----- This solves yule_walker for each desired lag and contains currently duplicate calculations.
pacf_yw
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def pacf_burg( x: ArrayLike1D, nlags: int | None = None, demean: bool = True ) -> tuple[np.ndarray, np.ndarray]: """ Calculate Burg"s partial autocorrelation estimator. Parameters ---------- x : array_like Observations of time series for which pacf is calculated. nlags : int, optional Number of lags to return autocorrelation for. If not provided, uses min(10 * np.log10(nobs), nobs - 1). demean : bool, optional Flag indicating to demean that data. Set to False if x has been previously demeaned. Returns ------- pacf : ndarray Partial autocorrelations for lags 0, 1, ..., nlag. sigma2 : ndarray Residual variance estimates where the value in position m is the residual variance in an AR model that includes m lags. See Also -------- statsmodels.tsa.stattools.pacf Partial autocorrelation estimation. statsmodels.tsa.stattools.pacf_yw Partial autocorrelation estimation using Yule-Walker. statsmodels.tsa.stattools.pacf_ols Partial autocorrelation estimation using OLS. References ---------- .. [1] Brockwell, P.J. and Davis, R.A., 2016. Introduction to time series and forecasting. Springer. """ x = array_like(x, "x") if demean: x = x - x.mean() nobs = x.shape[0] p = nlags if nlags is not None else min(int(10 * np.log10(nobs)), nobs - 1) p = max(p, 1) if p > nobs - 1: raise ValueError("nlags must be smaller than nobs - 1") d = np.zeros(p + 1) d[0] = 2 * x.dot(x) pacf = np.zeros(p + 1) u = x[::-1].copy() v = x[::-1].copy() d[1] = u[:-1].dot(u[:-1]) + v[1:].dot(v[1:]) pacf[1] = 2 / d[1] * v[1:].dot(u[:-1]) last_u = np.empty_like(u) last_v = np.empty_like(v) for i in range(1, p): last_u[:] = u last_v[:] = v u[1:] = last_u[:-1] - pacf[i] * last_v[1:] v[1:] = last_v[1:] - pacf[i] * last_u[:-1] d[i + 1] = (1 - pacf[i] ** 2) * d[i] - v[i] ** 2 - u[-1] ** 2 pacf[i + 1] = 2 / d[i + 1] * v[i + 1 :].dot(u[i:-1]) sigma2 = (1 - pacf**2) * d / (2.0 * (nobs - np.arange(0, p + 1))) pacf[0] = 1 # Insert the 0 lag partial autocorrel return pacf, sigma2
Calculate Burg"s partial autocorrelation estimator. Parameters ---------- x : array_like Observations of time series for which pacf is calculated. nlags : int, optional Number of lags to return autocorrelation for. If not provided, uses min(10 * np.log10(nobs), nobs - 1). demean : bool, optional Flag indicating to demean that data. Set to False if x has been previously demeaned. Returns ------- pacf : ndarray Partial autocorrelations for lags 0, 1, ..., nlag. sigma2 : ndarray Residual variance estimates where the value in position m is the residual variance in an AR model that includes m lags. See Also -------- statsmodels.tsa.stattools.pacf Partial autocorrelation estimation. statsmodels.tsa.stattools.pacf_yw Partial autocorrelation estimation using Yule-Walker. statsmodels.tsa.stattools.pacf_ols Partial autocorrelation estimation using OLS. References ---------- .. [1] Brockwell, P.J. and Davis, R.A., 2016. Introduction to time series and forecasting. Springer.
pacf_burg
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def pacf_ols( x: ArrayLike1D, nlags: int | None = None, efficient: bool = True, adjusted: bool = False, ) -> np.ndarray: """ Calculate partial autocorrelations via OLS. Parameters ---------- x : array_like Observations of time series for which pacf is calculated. nlags : int, optional Number of lags to return autocorrelation for. If not provided, uses min(10 * np.log10(nobs), nobs - 1). efficient : bool, optional If true, uses the maximum number of available observations to compute each partial autocorrelation. If not, uses the same number of observations to compute all pacf values. adjusted : bool, optional Adjust each partial autocorrelation by n / (n - lag). Returns ------- ndarray The partial autocorrelations, (maxlag,) array corresponding to lags 0, 1, ..., maxlag. See Also -------- statsmodels.tsa.stattools.pacf Partial autocorrelation estimation. statsmodels.tsa.stattools.pacf_yw Partial autocorrelation estimation using Yule-Walker. statsmodels.tsa.stattools.pacf_burg Partial autocorrelation estimation using Burg"s method. Notes ----- This solves a separate OLS estimation for each desired lag using method in [1]_. Setting efficient to True has two effects. First, it uses `nobs - lag` observations of estimate each pacf. Second, it re-estimates the mean in each regression. If efficient is False, then the data are first demeaned, and then `nobs - maxlag` observations are used to estimate each partial autocorrelation. The inefficient estimator appears to have better finite sample properties. This option should only be used in time series that are covariance stationary. OLS estimation of the pacf does not guarantee that all pacf values are between -1 and 1. References ---------- .. [1] Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons, p. 66 """ x = array_like(x, "x") nlags = int_like(nlags, "nlags", optional=True) efficient = bool_like(efficient, "efficient") adjusted = bool_like(adjusted, "adjusted") nobs = x.shape[0] if nlags is None: nlags = max(min(int(10 * np.log10(nobs)), nobs // 2), 1) if nlags > nobs // 2: raise ValueError(f"nlags must be smaller than nobs // 2 ({nobs//2})") pacf = np.empty(nlags + 1) pacf[0] = 1.0 if efficient: xlags, x0 = lagmat(x, nlags, original="sep") xlags = add_constant(xlags) for k in range(1, nlags + 1): params = lstsq(xlags[k:, : k + 1], x0[k:], rcond=None)[0] pacf[k] = np.squeeze(params[-1]) else: x = x - np.mean(x) # Create a single set of lags for multivariate OLS xlags, x0 = lagmat(x, nlags, original="sep", trim="both") for k in range(1, nlags + 1): params = lstsq(xlags[:, :k], x0, rcond=None)[0] # Last coefficient corresponds to PACF value (see [1]) pacf[k] = np.squeeze(params[-1]) if adjusted: pacf *= nobs / (nobs - np.arange(nlags + 1)) return pacf
Calculate partial autocorrelations via OLS. Parameters ---------- x : array_like Observations of time series for which pacf is calculated. nlags : int, optional Number of lags to return autocorrelation for. If not provided, uses min(10 * np.log10(nobs), nobs - 1). efficient : bool, optional If true, uses the maximum number of available observations to compute each partial autocorrelation. If not, uses the same number of observations to compute all pacf values. adjusted : bool, optional Adjust each partial autocorrelation by n / (n - lag). Returns ------- ndarray The partial autocorrelations, (maxlag,) array corresponding to lags 0, 1, ..., maxlag. See Also -------- statsmodels.tsa.stattools.pacf Partial autocorrelation estimation. statsmodels.tsa.stattools.pacf_yw Partial autocorrelation estimation using Yule-Walker. statsmodels.tsa.stattools.pacf_burg Partial autocorrelation estimation using Burg"s method. Notes ----- This solves a separate OLS estimation for each desired lag using method in [1]_. Setting efficient to True has two effects. First, it uses `nobs - lag` observations of estimate each pacf. Second, it re-estimates the mean in each regression. If efficient is False, then the data are first demeaned, and then `nobs - maxlag` observations are used to estimate each partial autocorrelation. The inefficient estimator appears to have better finite sample properties. This option should only be used in time series that are covariance stationary. OLS estimation of the pacf does not guarantee that all pacf values are between -1 and 1. References ---------- .. [1] Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons, p. 66
pacf_ols
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def pacf( x: ArrayLike1D, nlags: int | None = None, method: Literal[ "yw", "ywadjusted", "ols", "ols-inefficient", "ols-adjusted", "ywm", "ywmle", "ld", "ldadjusted", "ldb", "ldbiased", "burg", ] = "ywadjusted", alpha: float | None = None, ) -> np.ndarray | tuple[np.ndarray, np.ndarray]: """ Partial autocorrelation estimate. Parameters ---------- x : array_like Observations of time series for which pacf is calculated. nlags : int, optional Number of lags to return autocorrelation for. If not provided, uses min(10 * np.log10(nobs), nobs // 2 - 1). The returned value includes lag 0 (ie., 1) so size of the pacf vector is (nlags + 1,). method : str, default "ywunbiased" Specifies which method for the calculations to use. - "yw" or "ywadjusted" : Yule-Walker with sample-size adjustment in denominator for acovf. Default. - "ywm" or "ywmle" : Yule-Walker without adjustment. - "ols" : regression of time series on lags of it and on constant. - "ols-inefficient" : regression of time series on lags using a single common sample to estimate all pacf coefficients. - "ols-adjusted" : regression of time series on lags with a bias adjustment. - "ld" or "ldadjusted" : Levinson-Durbin recursion with bias correction. - "ldb" or "ldbiased" : Levinson-Durbin recursion without bias correction. - "burg" : Burg"s partial autocorrelation estimator. alpha : float, optional If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to 1/sqrt(len(x)). Returns ------- pacf : ndarray The partial autocorrelations for lags 0, 1, ..., nlags. Shape (nlags+1,). confint : ndarray, optional Confidence intervals for the PACF at lags 0, 1, ..., nlags. Shape (nlags + 1, 2). Returned if alpha is not None. See Also -------- statsmodels.tsa.stattools.acf Estimate the autocorrelation function. statsmodels.tsa.stattools.pacf Partial autocorrelation estimation. statsmodels.tsa.stattools.pacf_yw Partial autocorrelation estimation using Yule-Walker. statsmodels.tsa.stattools.pacf_ols Partial autocorrelation estimation using OLS. statsmodels.tsa.stattools.pacf_burg Partial autocorrelation estimation using Burg's method. statsmodels.graphics.tsaplots.plot_pacf Plot partial autocorrelations and confidence intervals. Notes ----- Based on simulation evidence across a range of low-order ARMA models, the best methods based on root MSE are Yule-Walker (MLW), Levinson-Durbin (MLE) and Burg, respectively. The estimators with the lowest bias included included these three in addition to OLS and OLS-adjusted. Yule-Walker (adjusted) and Levinson-Durbin (adjusted) performed consistently worse than the other options. """ nlags = int_like(nlags, "nlags", optional=True) methods = ( "ols", "ols-inefficient", "ols-adjusted", "yw", "ywa", "ld", "ywadjusted", "yw_adjusted", "ywm", "ywmle", "yw_mle", "lda", "ldadjusted", "ld_adjusted", "ldb", "ldbiased", "ld_biased", "burg", ) x = array_like(x, "x", maxdim=2) method = string_like(method, "method", options=methods) alpha = float_like(alpha, "alpha", optional=True) nobs = x.shape[0] if nlags is None: nlags = min(int(10 * np.log10(nobs)), nobs // 2 - 1) nlags = max(nlags, 1) if nlags > x.shape[0] // 2: raise ValueError( "Can only compute partial correlations for lags up to 50% of the " f"sample size. The requested nlags {nlags} must be < " f"{x.shape[0] // 2}." ) if method in ("ols", "ols-inefficient", "ols-adjusted"): efficient = "inefficient" not in method adjusted = "adjusted" in method ret = pacf_ols(x, nlags=nlags, efficient=efficient, adjusted=adjusted) elif method in ("yw", "ywa", "ywadjusted", "yw_adjusted"): ret = pacf_yw(x, nlags=nlags, method="adjusted") elif method in ("ywm", "ywmle", "yw_mle"): ret = pacf_yw(x, nlags=nlags, method="mle") elif method in ("ld", "lda", "ldadjusted", "ld_adjusted"): acv = acovf(x, adjusted=True, fft=False) ld_ = levinson_durbin(acv, nlags=nlags, isacov=True) ret = ld_[2] elif method == "burg": ret, _ = pacf_burg(x, nlags=nlags, demean=True) # inconsistent naming with ywmle else: # method in ("ldb", "ldbiased", "ld_biased") acv = acovf(x, adjusted=False, fft=False) ld_ = levinson_durbin(acv, nlags=nlags, isacov=True) ret = ld_[2] if alpha is not None: varacf = 1.0 / len(x) # for all lags >=1 interval = stats.norm.ppf(1.0 - alpha / 2.0) * np.sqrt(varacf) confint = np.array(lzip(ret - interval, ret + interval)) confint[0] = ret[0] # fix confidence interval for lag 0 to varpacf=0 return ret, confint else: return ret
Partial autocorrelation estimate. Parameters ---------- x : array_like Observations of time series for which pacf is calculated. nlags : int, optional Number of lags to return autocorrelation for. If not provided, uses min(10 * np.log10(nobs), nobs // 2 - 1). The returned value includes lag 0 (ie., 1) so size of the pacf vector is (nlags + 1,). method : str, default "ywunbiased" Specifies which method for the calculations to use. - "yw" or "ywadjusted" : Yule-Walker with sample-size adjustment in denominator for acovf. Default. - "ywm" or "ywmle" : Yule-Walker without adjustment. - "ols" : regression of time series on lags of it and on constant. - "ols-inefficient" : regression of time series on lags using a single common sample to estimate all pacf coefficients. - "ols-adjusted" : regression of time series on lags with a bias adjustment. - "ld" or "ldadjusted" : Levinson-Durbin recursion with bias correction. - "ldb" or "ldbiased" : Levinson-Durbin recursion without bias correction. - "burg" : Burg"s partial autocorrelation estimator. alpha : float, optional If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to 1/sqrt(len(x)). Returns ------- pacf : ndarray The partial autocorrelations for lags 0, 1, ..., nlags. Shape (nlags+1,). confint : ndarray, optional Confidence intervals for the PACF at lags 0, 1, ..., nlags. Shape (nlags + 1, 2). Returned if alpha is not None. See Also -------- statsmodels.tsa.stattools.acf Estimate the autocorrelation function. statsmodels.tsa.stattools.pacf Partial autocorrelation estimation. statsmodels.tsa.stattools.pacf_yw Partial autocorrelation estimation using Yule-Walker. statsmodels.tsa.stattools.pacf_ols Partial autocorrelation estimation using OLS. statsmodels.tsa.stattools.pacf_burg Partial autocorrelation estimation using Burg's method. statsmodels.graphics.tsaplots.plot_pacf Plot partial autocorrelations and confidence intervals. Notes ----- Based on simulation evidence across a range of low-order ARMA models, the best methods based on root MSE are Yule-Walker (MLW), Levinson-Durbin (MLE) and Burg, respectively. The estimators with the lowest bias included included these three in addition to OLS and OLS-adjusted. Yule-Walker (adjusted) and Levinson-Durbin (adjusted) performed consistently worse than the other options.
pacf
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def ccovf(x, y, adjusted=True, demean=True, fft=True): """ Calculate the cross-covariance between two series. Parameters ---------- x, y : array_like The time series data to use in the calculation. adjusted : bool, optional If True, then denominators for cross-covariance are n-k, otherwise n. demean : bool, optional Flag indicating whether to demean x and y. fft : bool, default True If True, use FFT convolution. This method should be preferred for long time series. Returns ------- ndarray The estimated cross-covariance function: the element at index k is the covariance between {x[k], x[k+1], ..., x[n]} and {y[0], y[1], ..., y[m-k]}, where n and m are the lengths of x and y, respectively. """ x = array_like(x, "x") y = array_like(y, "y") adjusted = bool_like(adjusted, "adjusted") demean = bool_like(demean, "demean") fft = bool_like(fft, "fft", optional=False) n = len(x) if demean: xo = x - x.mean() yo = y - y.mean() else: xo = x yo = y if adjusted: d = np.arange(n, 0, -1) else: d = n method = "fft" if fft else "direct" return correlate(xo, yo, "full", method=method)[n - 1 :] / d
Calculate the cross-covariance between two series. Parameters ---------- x, y : array_like The time series data to use in the calculation. adjusted : bool, optional If True, then denominators for cross-covariance are n-k, otherwise n. demean : bool, optional Flag indicating whether to demean x and y. fft : bool, default True If True, use FFT convolution. This method should be preferred for long time series. Returns ------- ndarray The estimated cross-covariance function: the element at index k is the covariance between {x[k], x[k+1], ..., x[n]} and {y[0], y[1], ..., y[m-k]}, where n and m are the lengths of x and y, respectively.
ccovf
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def ccf(x, y, adjusted=True, fft=True, *, nlags=None, alpha=None): """ The cross-correlation function. Parameters ---------- x, y : array_like The time series data to use in the calculation. adjusted : bool If True, then denominators for cross-correlation are n-k, otherwise n. fft : bool, default True If True, use FFT convolution. This method should be preferred for long time series. nlags : int, optional Number of lags to return cross-correlations for. If not provided, the number of lags equals len(x). alpha : float, optional If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to 1/sqrt(len(x)). Returns ------- ndarray The cross-correlation function of x and y: the element at index k is the correlation between {x[k], x[k+1], ..., x[n]} and {y[0], y[1], ..., y[m-k]}, where n and m are the lengths of x and y, respectively. confint : ndarray, optional Confidence intervals for the CCF at lags 0, 1, ..., nlags-1 using the level given by alpha and the standard deviation calculated as 1/sqrt(len(x)) [1]. Shape (nlags, 2). Returned if alpha is not None. Notes ----- If adjusted is True, the denominator for the cross-correlation is adjusted. References ---------- .. [1] Brockwell and Davis, 2016. Introduction to Time Series and Forecasting, 3rd edition, p. 242. """ x = array_like(x, "x") y = array_like(y, "y") adjusted = bool_like(adjusted, "adjusted") fft = bool_like(fft, "fft", optional=False) cvf = ccovf(x, y, adjusted=adjusted, demean=True, fft=fft) ret = cvf / (np.std(x) * np.std(y)) ret = ret[:nlags] if alpha is not None: interval = stats.norm.ppf(1.0 - alpha / 2.0) / np.sqrt(len(x)) confint = ret.reshape(-1, 1) + interval * np.array([-1, 1]) return ret, confint else: return ret
The cross-correlation function. Parameters ---------- x, y : array_like The time series data to use in the calculation. adjusted : bool If True, then denominators for cross-correlation are n-k, otherwise n. fft : bool, default True If True, use FFT convolution. This method should be preferred for long time series. nlags : int, optional Number of lags to return cross-correlations for. If not provided, the number of lags equals len(x). alpha : float, optional If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to 1/sqrt(len(x)). Returns ------- ndarray The cross-correlation function of x and y: the element at index k is the correlation between {x[k], x[k+1], ..., x[n]} and {y[0], y[1], ..., y[m-k]}, where n and m are the lengths of x and y, respectively. confint : ndarray, optional Confidence intervals for the CCF at lags 0, 1, ..., nlags-1 using the level given by alpha and the standard deviation calculated as 1/sqrt(len(x)) [1]. Shape (nlags, 2). Returned if alpha is not None. Notes ----- If adjusted is True, the denominator for the cross-correlation is adjusted. References ---------- .. [1] Brockwell and Davis, 2016. Introduction to Time Series and Forecasting, 3rd edition, p. 242.
ccf
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def levinson_durbin(s, nlags=10, isacov=False): """ Levinson-Durbin recursion for autoregressive processes. Parameters ---------- s : array_like If isacov is False, then this is the time series. If iasacov is true then this is interpreted as autocovariance starting with lag 0. nlags : int, optional The largest lag to include in recursion or order of the autoregressive process. isacov : bool, optional Flag indicating whether the first argument, s, contains the autocovariances or the data series. Returns ------- sigma_v : float The estimate of the error variance. arcoefs : ndarray The estimate of the autoregressive coefficients for a model including nlags. pacf : ndarray The partial autocorrelation function. sigma : ndarray The entire sigma array from intermediate result, last value is sigma_v. phi : ndarray The entire phi array from intermediate result, last column contains autoregressive coefficients for AR(nlags). Notes ----- This function returns currently all results, but maybe we drop sigma and phi from the returns. If this function is called with the time series (isacov=False), then the sample autocovariance function is calculated with the default options (biased, no fft). """ s = array_like(s, "s") nlags = int_like(nlags, "nlags") isacov = bool_like(isacov, "isacov") order = nlags if isacov: sxx_m = s else: sxx_m = acovf(s, fft=False)[: order + 1] # not tested phi = np.zeros((order + 1, order + 1), "d") sig = np.zeros(order + 1) # initial points for the recursion phi[1, 1] = sxx_m[1] / sxx_m[0] sig[1] = sxx_m[0] - phi[1, 1] * sxx_m[1] for k in range(2, order + 1): phi[k, k] = (sxx_m[k] - np.dot(phi[1:k, k - 1], sxx_m[1:k][::-1])) / sig[k - 1] for j in range(1, k): phi[j, k] = phi[j, k - 1] - phi[k, k] * phi[k - j, k - 1] sig[k] = sig[k - 1] * (1 - phi[k, k] ** 2) sigma_v = sig[-1] arcoefs = phi[1:, -1] pacf_ = np.diag(phi).copy() pacf_[0] = 1.0 return sigma_v, arcoefs, pacf_, sig, phi # return everything
Levinson-Durbin recursion for autoregressive processes. Parameters ---------- s : array_like If isacov is False, then this is the time series. If iasacov is true then this is interpreted as autocovariance starting with lag 0. nlags : int, optional The largest lag to include in recursion or order of the autoregressive process. isacov : bool, optional Flag indicating whether the first argument, s, contains the autocovariances or the data series. Returns ------- sigma_v : float The estimate of the error variance. arcoefs : ndarray The estimate of the autoregressive coefficients for a model including nlags. pacf : ndarray The partial autocorrelation function. sigma : ndarray The entire sigma array from intermediate result, last value is sigma_v. phi : ndarray The entire phi array from intermediate result, last column contains autoregressive coefficients for AR(nlags). Notes ----- This function returns currently all results, but maybe we drop sigma and phi from the returns. If this function is called with the time series (isacov=False), then the sample autocovariance function is calculated with the default options (biased, no fft).
levinson_durbin
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def levinson_durbin_pacf(pacf, nlags=None): """ Levinson-Durbin algorithm that returns the acf and ar coefficients. Parameters ---------- pacf : array_like Partial autocorrelation array for lags 0, 1, ... p. nlags : int, optional Number of lags in the AR model. If omitted, returns coefficients from an AR(p) and the first p autocorrelations. Returns ------- arcoefs : ndarray AR coefficients computed from the partial autocorrelations. acf : ndarray The acf computed from the partial autocorrelations. Array returned contains the autocorrelations corresponding to lags 0, 1, ..., p. References ---------- .. [1] Brockwell, P.J. and Davis, R.A., 2016. Introduction to time series and forecasting. Springer. """ pacf = array_like(pacf, "pacf") nlags = int_like(nlags, "nlags", optional=True) pacf = np.squeeze(np.asarray(pacf)) if pacf[0] != 1: raise ValueError( "The first entry of the pacf corresponds to lags 0 " "and so must be 1." ) pacf = pacf[1:] n = pacf.shape[0] if nlags is not None: if nlags > n: raise ValueError( "Must provide at least as many values from the " "pacf as the number of lags." ) pacf = pacf[:nlags] n = pacf.shape[0] acf = np.zeros(n + 1) acf[1] = pacf[0] nu = np.cumprod(1 - pacf**2) arcoefs = pacf.copy() for i in range(1, n): prev = arcoefs[: -(n - i)].copy() arcoefs[: -(n - i)] = prev - arcoefs[i] * prev[::-1] acf[i + 1] = arcoefs[i] * nu[i - 1] + prev.dot(acf[1 : -(n - i)][::-1]) acf[0] = 1 return arcoefs, acf
Levinson-Durbin algorithm that returns the acf and ar coefficients. Parameters ---------- pacf : array_like Partial autocorrelation array for lags 0, 1, ... p. nlags : int, optional Number of lags in the AR model. If omitted, returns coefficients from an AR(p) and the first p autocorrelations. Returns ------- arcoefs : ndarray AR coefficients computed from the partial autocorrelations. acf : ndarray The acf computed from the partial autocorrelations. Array returned contains the autocorrelations corresponding to lags 0, 1, ..., p. References ---------- .. [1] Brockwell, P.J. and Davis, R.A., 2016. Introduction to time series and forecasting. Springer.
levinson_durbin_pacf
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def grangercausalitytests(x, maxlag, addconst=True, verbose=None): """ Four tests for granger non causality of 2 time series. All four tests give similar results. `params_ftest` and `ssr_ftest` are equivalent based on F test which is identical to lmtest:grangertest in R. Parameters ---------- x : array_like The data for testing whether the time series in the second column Granger causes the time series in the first column. Missing values are not supported. maxlag : {int, Iterable[int]} If an integer, computes the test for all lags up to maxlag. If an iterable, computes the tests only for the lags in maxlag. addconst : bool Include a constant in the model. verbose : bool Print results. Deprecated .. deprecated: 0.14 verbose is deprecated and will be removed after 0.15 is released Returns ------- dict All test results, dictionary keys are the number of lags. For each lag the values are a tuple, with the first element a dictionary with test statistic, pvalues, degrees of freedom, the second element are the OLS estimation results for the restricted model, the unrestricted model and the restriction (contrast) matrix for the parameter f_test. Notes ----- TODO: convert to class and attach results properly The Null hypothesis for grangercausalitytests is that the time series in the second column, x2, does NOT Granger cause the time series in the first column, x1. Grange causality means that past values of x2 have a statistically significant effect on the current value of x1, taking past values of x1 into account as regressors. We reject the null hypothesis that x2 does not Granger cause x1 if the pvalues are below a desired size of the test. The null hypothesis for all four test is that the coefficients corresponding to past values of the second time series are zero. `params_ftest`, `ssr_ftest` are based on F distribution `ssr_chi2test`, `lrtest` are based on chi-square distribution References ---------- .. [1] https://en.wikipedia.org/wiki/Granger_causality .. [2] Greene: Econometric Analysis Examples -------- >>> import statsmodels.api as sm >>> from statsmodels.tsa.stattools import grangercausalitytests >>> import numpy as np >>> data = sm.datasets.macrodata.load_pandas() >>> data = data.data[["realgdp", "realcons"]].pct_change().dropna() All lags up to 4 >>> gc_res = grangercausalitytests(data, 4) Only lag 4 >>> gc_res = grangercausalitytests(data, [4]) """ x = array_like(x, "x", ndim=2) if not np.isfinite(x).all(): raise ValueError("x contains NaN or inf values.") addconst = bool_like(addconst, "addconst") if verbose is not None: verbose = bool_like(verbose, "verbose") warnings.warn( "verbose is deprecated since functions should not print results", FutureWarning, ) else: verbose = True # old default try: maxlag = int_like(maxlag, "maxlag") if maxlag <= 0: raise ValueError("maxlag must be a positive integer") lags = np.arange(1, maxlag + 1) except TypeError: lags = np.array([int(lag) for lag in maxlag]) maxlag = lags.max() if lags.min() <= 0 or lags.size == 0: raise ValueError( "maxlag must be a non-empty list containing only " "positive integers" ) if x.shape[0] <= 3 * maxlag + int(addconst): raise ValueError( "Insufficient observations. Maximum allowable " "lag is {}".format(int((x.shape[0] - int(addconst)) / 3) - 1) ) resli = {} for mlg in lags: result = {} if verbose: print("\nGranger Causality") print("number of lags (no zero)", mlg) mxlg = mlg # create lagmat of both time series dta = lagmat2ds(x, mxlg, trim="both", dropex=1) # add constant if addconst: dtaown = add_constant(dta[:, 1 : (mxlg + 1)], prepend=False) dtajoint = add_constant(dta[:, 1:], prepend=False) if ( dtajoint.shape[1] == (dta.shape[1] - 1) or (dtajoint.max(0) == dtajoint.min(0)).sum() != 1 ): raise InfeasibleTestError( "The x values include a column with constant values and so" " the test statistic cannot be computed." ) else: raise NotImplementedError("Not Implemented") # dtaown = dta[:, 1:mxlg] # dtajoint = dta[:, 1:] # Run ols on both models without and with lags of second variable res2down = OLS(dta[:, 0], dtaown).fit() res2djoint = OLS(dta[:, 0], dtajoint).fit() # print results # for ssr based tests see: # http://support.sas.com/rnd/app/examples/ets/granger/index.htm # the other tests are made-up # Granger Causality test using ssr (F statistic) if res2djoint.model.k_constant: tss = res2djoint.centered_tss else: tss = res2djoint.uncentered_tss if ( tss == 0 or res2djoint.ssr == 0 or np.isnan(res2djoint.rsquared) or (res2djoint.ssr / tss) < np.finfo(float).eps or res2djoint.params.shape[0] != dtajoint.shape[1] ): raise InfeasibleTestError( "The Granger causality test statistic cannot be computed " "because the VAR has a perfect fit of the data." ) fgc1 = ( (res2down.ssr - res2djoint.ssr) / res2djoint.ssr / mxlg * res2djoint.df_resid ) if verbose: print( "ssr based F test: F=%-8.4f, p=%-8.4f, df_denom=%d," " df_num=%d" % ( fgc1, stats.f.sf(fgc1, mxlg, res2djoint.df_resid), res2djoint.df_resid, mxlg, ) ) result["ssr_ftest"] = ( fgc1, stats.f.sf(fgc1, mxlg, res2djoint.df_resid), res2djoint.df_resid, mxlg, ) # Granger Causality test using ssr (ch2 statistic) fgc2 = res2down.nobs * (res2down.ssr - res2djoint.ssr) / res2djoint.ssr if verbose: print( "ssr based chi2 test: chi2=%-8.4f, p=%-8.4f, " "df=%d" % (fgc2, stats.chi2.sf(fgc2, mxlg), mxlg) ) result["ssr_chi2test"] = (fgc2, stats.chi2.sf(fgc2, mxlg), mxlg) # likelihood ratio test pvalue: lr = -2 * (res2down.llf - res2djoint.llf) if verbose: print( "likelihood ratio test: chi2=%-8.4f, p=%-8.4f, df=%d" % (lr, stats.chi2.sf(lr, mxlg), mxlg) ) result["lrtest"] = (lr, stats.chi2.sf(lr, mxlg), mxlg) # F test that all lag coefficients of exog are zero rconstr = np.column_stack( (np.zeros((mxlg, mxlg)), np.eye(mxlg, mxlg), np.zeros((mxlg, 1))) ) ftres = res2djoint.f_test(rconstr) if verbose: print( "parameter F test: F=%-8.4f, p=%-8.4f, df_denom=%d," " df_num=%d" % (ftres.fvalue, ftres.pvalue, ftres.df_denom, ftres.df_num) ) result["params_ftest"] = ( np.squeeze(ftres.fvalue)[()], np.squeeze(ftres.pvalue)[()], ftres.df_denom, ftres.df_num, ) resli[mxlg] = (result, [res2down, res2djoint, rconstr]) return resli
Four tests for granger non causality of 2 time series. All four tests give similar results. `params_ftest` and `ssr_ftest` are equivalent based on F test which is identical to lmtest:grangertest in R. Parameters ---------- x : array_like The data for testing whether the time series in the second column Granger causes the time series in the first column. Missing values are not supported. maxlag : {int, Iterable[int]} If an integer, computes the test for all lags up to maxlag. If an iterable, computes the tests only for the lags in maxlag. addconst : bool Include a constant in the model. verbose : bool Print results. Deprecated .. deprecated: 0.14 verbose is deprecated and will be removed after 0.15 is released Returns ------- dict All test results, dictionary keys are the number of lags. For each lag the values are a tuple, with the first element a dictionary with test statistic, pvalues, degrees of freedom, the second element are the OLS estimation results for the restricted model, the unrestricted model and the restriction (contrast) matrix for the parameter f_test. Notes ----- TODO: convert to class and attach results properly The Null hypothesis for grangercausalitytests is that the time series in the second column, x2, does NOT Granger cause the time series in the first column, x1. Grange causality means that past values of x2 have a statistically significant effect on the current value of x1, taking past values of x1 into account as regressors. We reject the null hypothesis that x2 does not Granger cause x1 if the pvalues are below a desired size of the test. The null hypothesis for all four test is that the coefficients corresponding to past values of the second time series are zero. `params_ftest`, `ssr_ftest` are based on F distribution `ssr_chi2test`, `lrtest` are based on chi-square distribution References ---------- .. [1] https://en.wikipedia.org/wiki/Granger_causality .. [2] Greene: Econometric Analysis Examples -------- >>> import statsmodels.api as sm >>> from statsmodels.tsa.stattools import grangercausalitytests >>> import numpy as np >>> data = sm.datasets.macrodata.load_pandas() >>> data = data.data[["realgdp", "realcons"]].pct_change().dropna() All lags up to 4 >>> gc_res = grangercausalitytests(data, 4) Only lag 4 >>> gc_res = grangercausalitytests(data, [4])
grangercausalitytests
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def coint( y0, y1, trend="c", method="aeg", maxlag=None, autolag: str | None = "aic", return_results=None, ): """ Test for no-cointegration of a univariate equation. The null hypothesis is no cointegration. Variables in y0 and y1 are assumed to be integrated of order 1, I(1). This uses the augmented Engle-Granger two-step cointegration test. Constant or trend is included in 1st stage regression, i.e. in cointegrating equation. **Warning:** The autolag default has changed compared to statsmodels 0.8. In 0.8 autolag was always None, no the keyword is used and defaults to "aic". Use `autolag=None` to avoid the lag search. Parameters ---------- y0 : array_like The first element in cointegrated system. Must be 1-d. y1 : array_like The remaining elements in cointegrated system. trend : str {"c", "ct"} The trend term included in regression for cointegrating equation. * "c" : constant. * "ct" : constant and linear trend. * also available quadratic trend "ctt", and no constant "n". method : {"aeg"} Only "aeg" (augmented Engle-Granger) is available. maxlag : None or int Argument for `adfuller`, largest or given number of lags. autolag : str Argument for `adfuller`, lag selection criterion. * If None, then maxlag lags are used without lag search. * If "AIC" (default) or "BIC", then the number of lags is chosen to minimize the corresponding information criterion. * "t-stat" based choice of maxlag. Starts with maxlag and drops a lag until the t-statistic on the last lag length is significant using a 5%-sized test. return_results : bool For future compatibility, currently only tuple available. If True, then a results instance is returned. Otherwise, a tuple with the test outcome is returned. Set `return_results=False` to avoid future changes in return. Returns ------- coint_t : float The t-statistic of unit-root test on residuals. pvalue : float MacKinnon"s approximate, asymptotic p-value based on MacKinnon (1994). crit_value : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels based on regression curve. This depends on the number of observations. Notes ----- The Null hypothesis is that there is no cointegration, the alternative hypothesis is that there is cointegrating relationship. If the pvalue is small, below a critical size, then we can reject the hypothesis that there is no cointegrating relationship. P-values and critical values are obtained through regression surface approximation from MacKinnon 1994 and 2010. If the two series are almost perfectly collinear, then computing the test is numerically unstable. However, the two series will be cointegrated under the maintained assumption that they are integrated. In this case the t-statistic will be set to -inf and the pvalue to zero. TODO: We could handle gaps in data by dropping rows with nans in the Auxiliary regressions. Not implemented yet, currently assumes no nans and no gaps in time series. References ---------- .. [1] MacKinnon, J.G. 1994 "Approximate Asymptotic Distribution Functions for Unit-Root and Cointegration Tests." Journal of Business & Economics Statistics, 12.2, 167-76. .. [2] MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen"s University, Dept of Economics Working Papers 1227. http://ideas.repec.org/p/qed/wpaper/1227.html """ y0 = array_like(y0, "y0") y1 = array_like(y1, "y1", ndim=2) trend = string_like(trend, "trend", options=("c", "n", "ct", "ctt")) string_like(method, "method", options=("aeg",)) maxlag = int_like(maxlag, "maxlag", optional=True) autolag = string_like( autolag, "autolag", optional=True, options=("aic", "bic", "t-stat") ) return_results = bool_like(return_results, "return_results", optional=True) nobs, k_vars = y1.shape k_vars += 1 # add 1 for y0 if trend == "n": xx = y1 else: xx = add_trend(y1, trend=trend, prepend=False) res_co = OLS(y0, xx).fit() if res_co.rsquared < 1 - 100 * SQRTEPS: res_adf = adfuller(res_co.resid, maxlag=maxlag, autolag=autolag, regression="n") else: warnings.warn( "y0 and y1 are (almost) perfectly colinear." "Cointegration test is not reliable in this case.", CollinearityWarning, stacklevel=2, ) # Edge case where series are too similar res_adf = (-np.inf,) # no constant or trend, see egranger in Stata and MacKinnon if trend == "n": crit = [np.nan] * 3 # 2010 critical values not available else: crit = mackinnoncrit(N=k_vars, regression=trend, nobs=nobs - 1) # nobs - 1, the -1 is to match egranger in Stata, I do not know why. # TODO: check nobs or df = nobs - k pval_asy = mackinnonp(res_adf[0], regression=trend, N=k_vars) return res_adf[0], pval_asy, crit
Test for no-cointegration of a univariate equation. The null hypothesis is no cointegration. Variables in y0 and y1 are assumed to be integrated of order 1, I(1). This uses the augmented Engle-Granger two-step cointegration test. Constant or trend is included in 1st stage regression, i.e. in cointegrating equation. **Warning:** The autolag default has changed compared to statsmodels 0.8. In 0.8 autolag was always None, no the keyword is used and defaults to "aic". Use `autolag=None` to avoid the lag search. Parameters ---------- y0 : array_like The first element in cointegrated system. Must be 1-d. y1 : array_like The remaining elements in cointegrated system. trend : str {"c", "ct"} The trend term included in regression for cointegrating equation. * "c" : constant. * "ct" : constant and linear trend. * also available quadratic trend "ctt", and no constant "n". method : {"aeg"} Only "aeg" (augmented Engle-Granger) is available. maxlag : None or int Argument for `adfuller`, largest or given number of lags. autolag : str Argument for `adfuller`, lag selection criterion. * If None, then maxlag lags are used without lag search. * If "AIC" (default) or "BIC", then the number of lags is chosen to minimize the corresponding information criterion. * "t-stat" based choice of maxlag. Starts with maxlag and drops a lag until the t-statistic on the last lag length is significant using a 5%-sized test. return_results : bool For future compatibility, currently only tuple available. If True, then a results instance is returned. Otherwise, a tuple with the test outcome is returned. Set `return_results=False` to avoid future changes in return. Returns ------- coint_t : float The t-statistic of unit-root test on residuals. pvalue : float MacKinnon"s approximate, asymptotic p-value based on MacKinnon (1994). crit_value : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels based on regression curve. This depends on the number of observations. Notes ----- The Null hypothesis is that there is no cointegration, the alternative hypothesis is that there is cointegrating relationship. If the pvalue is small, below a critical size, then we can reject the hypothesis that there is no cointegrating relationship. P-values and critical values are obtained through regression surface approximation from MacKinnon 1994 and 2010. If the two series are almost perfectly collinear, then computing the test is numerically unstable. However, the two series will be cointegrated under the maintained assumption that they are integrated. In this case the t-statistic will be set to -inf and the pvalue to zero. TODO: We could handle gaps in data by dropping rows with nans in the Auxiliary regressions. Not implemented yet, currently assumes no nans and no gaps in time series. References ---------- .. [1] MacKinnon, J.G. 1994 "Approximate Asymptotic Distribution Functions for Unit-Root and Cointegration Tests." Journal of Business & Economics Statistics, 12.2, 167-76. .. [2] MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen"s University, Dept of Economics Working Papers 1227. http://ideas.repec.org/p/qed/wpaper/1227.html
coint
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def has_missing(data): """ Returns True if "data" contains missing entries, otherwise False """ return np.isnan(np.sum(data))
Returns True if "data" contains missing entries, otherwise False
has_missing
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def kpss( x, regression: Literal["c", "ct"] = "c", nlags: Literal["auto", "legacy"] | int = "auto", store: bool = False, ) -> tuple[float, float, int, dict[str, float]]: """ Kwiatkowski-Phillips-Schmidt-Shin test for stationarity. Computes the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for the null hypothesis that x is level or trend stationary. Parameters ---------- x : array_like, 1d The data series to test. regression : str{"c", "ct"} The null hypothesis for the KPSS test. * "c" : The data is stationary around a constant (default). * "ct" : The data is stationary around a trend. nlags : {str, int}, optional Indicates the number of lags to be used. If "auto" (default), lags is calculated using the data-dependent method of Hobijn et al. (1998). See also Andrews (1991), Newey & West (1994), and Schwert (1989). If set to "legacy", uses int(12 * (n / 100)**(1 / 4)) , as outlined in Schwert (1989). store : bool If True, then a result instance is returned additionally to the KPSS statistic (default is False). Returns ------- kpss_stat : float The KPSS test statistic. p_value : float The p-value of the test. The p-value is interpolated from Table 1 in Kwiatkowski et al. (1992), and a boundary point is returned if the test statistic is outside the table of critical values, that is, if the p-value is outside the interval (0.01, 0.1). lags : int The truncation lag parameter. crit : dict The critical values at 10%, 5%, 2.5% and 1%. Based on Kwiatkowski et al. (1992). resstore : (optional) instance of ResultStore An instance of a dummy class with results attached as attributes. Notes ----- To estimate sigma^2 the Newey-West estimator is used. If lags is "legacy", the truncation lag parameter is set to int(12 * (n / 100) ** (1 / 4)), as outlined in Schwert (1989). The p-values are interpolated from Table 1 of Kwiatkowski et al. (1992). If the computed statistic is outside the table of critical values, then a warning message is generated. Missing values are not handled. See the notebook `Stationarity and detrending (ADF/KPSS) <../examples/notebooks/generated/stationarity_detrending_adf_kpss.html>`__ for an overview. References ---------- .. [1] Andrews, D.W.K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59: 817-858. .. [2] Hobijn, B., Frances, B.H., & Ooms, M. (2004). Generalizations of the KPSS-test for stationarity. Statistica Neerlandica, 52: 483-502. .. [3] Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54: 159-178. .. [4] Newey, W.K., & West, K.D. (1994). Automatic lag selection in covariance matrix estimation. Review of Economic Studies, 61: 631-653. .. [5] Schwert, G. W. (1989). Tests for unit roots: A Monte Carlo investigation. Journal of Business and Economic Statistics, 7 (2): 147-159. """ x = array_like(x, "x") regression = string_like(regression, "regression", options=("c", "ct")) store = bool_like(store, "store") nobs = x.shape[0] hypo = regression # if m is not one, n != m * n if nobs != x.size: raise ValueError(f"x of shape {x.shape} not understood") if hypo == "ct": # p. 162 Kwiatkowski et al. (1992): y_t = beta * t + r_t + e_t, # where beta is the trend, r_t a random walk and e_t a stationary # error term. resids = OLS(x, add_constant(np.arange(1, nobs + 1))).fit().resid crit = [0.119, 0.146, 0.176, 0.216] else: # hypo == "c" # special case of the model above, where beta = 0 (so the null # hypothesis is that the data is stationary around r_0). resids = x - x.mean() crit = [0.347, 0.463, 0.574, 0.739] if nlags == "legacy": nlags = int(np.ceil(12.0 * np.power(nobs / 100.0, 1 / 4.0))) nlags = min(nlags, nobs - 1) elif nlags == "auto" or nlags is None: if nlags is None: # TODO: Remove before 0.14 is released warnings.warn( "None is not a valid value for nlags. It must be an integer, " "'auto' or 'legacy'. None will raise starting in 0.14", FutureWarning, stacklevel=2, ) # autolag method of Hobijn et al. (1998) nlags = _kpss_autolag(resids, nobs) nlags = min(nlags, nobs - 1) elif isinstance(nlags, str): raise ValueError("nvals must be 'auto' or 'legacy' when not an int") else: nlags = int_like(nlags, "nlags", optional=False) if nlags >= nobs: raise ValueError( f"lags ({nlags}) must be < number of observations ({nobs})" ) pvals = [0.10, 0.05, 0.025, 0.01] eta = np.sum(resids.cumsum() ** 2) / (nobs**2) # eq. 11, p. 165 s_hat = _sigma_est_kpss(resids, nobs, nlags) kpss_stat = eta / s_hat p_value = np.interp(kpss_stat, crit, pvals) warn_msg = """\ The test statistic is outside of the range of p-values available in the look-up table. The actual p-value is {direction} than the p-value returned. """ if p_value == pvals[-1]: warnings.warn( warn_msg.format(direction="smaller"), InterpolationWarning, stacklevel=2, ) elif p_value == pvals[0]: warnings.warn( warn_msg.format(direction="greater"), InterpolationWarning, stacklevel=2, ) crit_dict = {"10%": crit[0], "5%": crit[1], "2.5%": crit[2], "1%": crit[3]} if store: rstore = ResultsStore() rstore.lags = nlags rstore.nobs = nobs stationary_type = "level" if hypo == "c" else "trend" rstore.H0 = f"The series is {stationary_type} stationary" rstore.HA = f"The series is not {stationary_type} stationary" return kpss_stat, p_value, crit_dict, rstore else: return kpss_stat, p_value, nlags, crit_dict
Kwiatkowski-Phillips-Schmidt-Shin test for stationarity. Computes the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for the null hypothesis that x is level or trend stationary. Parameters ---------- x : array_like, 1d The data series to test. regression : str{"c", "ct"} The null hypothesis for the KPSS test. * "c" : The data is stationary around a constant (default). * "ct" : The data is stationary around a trend. nlags : {str, int}, optional Indicates the number of lags to be used. If "auto" (default), lags is calculated using the data-dependent method of Hobijn et al. (1998). See also Andrews (1991), Newey & West (1994), and Schwert (1989). If set to "legacy", uses int(12 * (n / 100)**(1 / 4)) , as outlined in Schwert (1989). store : bool If True, then a result instance is returned additionally to the KPSS statistic (default is False). Returns ------- kpss_stat : float The KPSS test statistic. p_value : float The p-value of the test. The p-value is interpolated from Table 1 in Kwiatkowski et al. (1992), and a boundary point is returned if the test statistic is outside the table of critical values, that is, if the p-value is outside the interval (0.01, 0.1). lags : int The truncation lag parameter. crit : dict The critical values at 10%, 5%, 2.5% and 1%. Based on Kwiatkowski et al. (1992). resstore : (optional) instance of ResultStore An instance of a dummy class with results attached as attributes. Notes ----- To estimate sigma^2 the Newey-West estimator is used. If lags is "legacy", the truncation lag parameter is set to int(12 * (n / 100) ** (1 / 4)), as outlined in Schwert (1989). The p-values are interpolated from Table 1 of Kwiatkowski et al. (1992). If the computed statistic is outside the table of critical values, then a warning message is generated. Missing values are not handled. See the notebook `Stationarity and detrending (ADF/KPSS) <../examples/notebooks/generated/stationarity_detrending_adf_kpss.html>`__ for an overview. References ---------- .. [1] Andrews, D.W.K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59: 817-858. .. [2] Hobijn, B., Frances, B.H., & Ooms, M. (2004). Generalizations of the KPSS-test for stationarity. Statistica Neerlandica, 52: 483-502. .. [3] Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54: 159-178. .. [4] Newey, W.K., & West, K.D. (1994). Automatic lag selection in covariance matrix estimation. Review of Economic Studies, 61: 631-653. .. [5] Schwert, G. W. (1989). Tests for unit roots: A Monte Carlo investigation. Journal of Business and Economic Statistics, 7 (2): 147-159.
kpss
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def _sigma_est_kpss(resids, nobs, lags): """ Computes equation 10, p. 164 of Kwiatkowski et al. (1992). This is the consistent estimator for the variance. """ s_hat = np.sum(resids**2) for i in range(1, lags + 1): resids_prod = np.dot(resids[i:], resids[: nobs - i]) s_hat += 2 * resids_prod * (1.0 - (i / (lags + 1.0))) return s_hat / nobs
Computes equation 10, p. 164 of Kwiatkowski et al. (1992). This is the consistent estimator for the variance.
_sigma_est_kpss
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def _kpss_autolag(resids, nobs): """ Computes the number of lags for covariance matrix estimation in KPSS test using method of Hobijn et al (1998). See also Andrews (1991), Newey & West (1994), and Schwert (1989). Assumes Bartlett / Newey-West kernel. """ covlags = int(np.power(nobs, 2.0 / 9.0)) s0 = np.sum(resids**2) / nobs s1 = 0 for i in range(1, covlags + 1): resids_prod = np.dot(resids[i:], resids[: nobs - i]) resids_prod /= nobs / 2.0 s0 += resids_prod s1 += i * resids_prod s_hat = s1 / s0 pwr = 1.0 / 3.0 gamma_hat = 1.1447 * np.power(s_hat * s_hat, pwr) autolags = int(gamma_hat * np.power(nobs, pwr)) return autolags
Computes the number of lags for covariance matrix estimation in KPSS test using method of Hobijn et al (1998). See also Andrews (1991), Newey & West (1994), and Schwert (1989). Assumes Bartlett / Newey-West kernel.
_kpss_autolag
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def range_unit_root_test(x, store=False): """ Range unit-root test for stationarity. Computes the Range Unit-Root (RUR) test for the null hypothesis that x is stationary. Parameters ---------- x : array_like, 1d The data series to test. store : bool If True, then a result instance is returned additionally to the RUR statistic (default is False). Returns ------- rur_stat : float The RUR test statistic. p_value : float The p-value of the test. The p-value is interpolated from Table 1 in Aparicio et al. (2006), and a boundary point is returned if the test statistic is outside the table of critical values, that is, if the p-value is outside the interval (0.01, 0.1). crit : dict The critical values at 10%, 5%, 2.5% and 1%. Based on Aparicio et al. (2006). resstore : (optional) instance of ResultStore An instance of a dummy class with results attached as attributes. Notes ----- The p-values are interpolated from Table 1 of Aparicio et al. (2006). If the computed statistic is outside the table of critical values, then a warning message is generated. Missing values are not handled. References ---------- .. [1] Aparicio, F., Escribano A., Sipols, A.E. (2006). Range Unit-Root (RUR) tests: robust against nonlinearities, error distributions, structural breaks and outliers. Journal of Time Series Analysis, 27 (4): 545-576. """ x = array_like(x, "x") store = bool_like(store, "store") nobs = x.shape[0] # if m is not one, n != m * n if nobs != x.size: raise ValueError(f"x of shape {x.shape} not understood") # Table from [1] has been replicated using 200,000 samples # Critical values for new n_obs values have been identified pvals = [0.01, 0.025, 0.05, 0.10, 0.90, 0.95] n = np.array([25, 50, 100, 150, 200, 250, 500, 1000, 2000, 3000, 4000, 5000]) crit = np.array( [ [0.6626, 0.8126, 0.9192, 1.0712, 2.4863, 2.7312], [0.7977, 0.9274, 1.0478, 1.1964, 2.6821, 2.9613], [0.9070, 1.0243, 1.1412, 1.2888, 2.8317, 3.1393], [0.9543, 1.0768, 1.1869, 1.3294, 2.8915, 3.2049], [0.9833, 1.0984, 1.2101, 1.3494, 2.9308, 3.2482], [0.9982, 1.1137, 1.2242, 1.3632, 2.9571, 3.2842], [1.0494, 1.1643, 1.2712, 1.4076, 3.0207, 3.3584], [1.0846, 1.1959, 1.2988, 1.4344, 3.0653, 3.4073], [1.1121, 1.2200, 1.3230, 1.4556, 3.0948, 3.4439], [1.1204, 1.2295, 1.3303, 1.4656, 3.1054, 3.4632], [1.1309, 1.2347, 1.3378, 1.4693, 3.1165, 3.4717], [1.1377, 1.2402, 1.3408, 1.4729, 3.1252, 3.4807], ] ) # Interpolation for nobs inter_crit = np.zeros((1, crit.shape[1])) for i in range(crit.shape[1]): f = interp1d(n, crit[:, i]) inter_crit[0, i] = f(nobs) # Calculate RUR stat xs = pd.Series(x) exp_max = xs.expanding(1).max().shift(1) exp_min = xs.expanding(1).min().shift(1) count = (xs > exp_max).sum() + (xs < exp_min).sum() rur_stat = count / np.sqrt(len(x)) k = len(pvals) - 1 for i in range(len(pvals) - 1, -1, -1): if rur_stat < inter_crit[0, i]: k = i else: break p_value = pvals[k] warn_msg = """\ The test statistic is outside of the range of p-values available in the look-up table. The actual p-value is {direction} than the p-value returned. """ direction = "" if p_value == pvals[-1]: direction = "smaller" elif p_value == pvals[0]: direction = "larger" if direction: warnings.warn( warn_msg.format(direction=direction), InterpolationWarning, stacklevel=2, ) crit_dict = { "10%": inter_crit[0, 3], "5%": inter_crit[0, 2], "2.5%": inter_crit[0, 1], "1%": inter_crit[0, 0], } if store: rstore = ResultsStore() rstore.nobs = nobs rstore.H0 = "The series is not stationary" rstore.HA = "The series is stationary" return rur_stat, p_value, crit_dict, rstore else: return rur_stat, p_value, crit_dict
Range unit-root test for stationarity. Computes the Range Unit-Root (RUR) test for the null hypothesis that x is stationary. Parameters ---------- x : array_like, 1d The data series to test. store : bool If True, then a result instance is returned additionally to the RUR statistic (default is False). Returns ------- rur_stat : float The RUR test statistic. p_value : float The p-value of the test. The p-value is interpolated from Table 1 in Aparicio et al. (2006), and a boundary point is returned if the test statistic is outside the table of critical values, that is, if the p-value is outside the interval (0.01, 0.1). crit : dict The critical values at 10%, 5%, 2.5% and 1%. Based on Aparicio et al. (2006). resstore : (optional) instance of ResultStore An instance of a dummy class with results attached as attributes. Notes ----- The p-values are interpolated from Table 1 of Aparicio et al. (2006). If the computed statistic is outside the table of critical values, then a warning message is generated. Missing values are not handled. References ---------- .. [1] Aparicio, F., Escribano A., Sipols, A.E. (2006). Range Unit-Root (RUR) tests: robust against nonlinearities, error distributions, structural breaks and outliers. Journal of Time Series Analysis, 27 (4): 545-576.
range_unit_root_test
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def __init__(self): """ Critical values for the three different models specified for the Zivot-Andrews unit-root test. Notes ----- The p-values are generated through Monte Carlo simulation using 100,000 replications and 2000 data points. """ self._za_critical_values = {} # constant-only model self._c = ( (0.001, -6.78442), (0.100, -5.83192), (0.200, -5.68139), (0.300, -5.58461), (0.400, -5.51308), (0.500, -5.45043), (0.600, -5.39924), (0.700, -5.36023), (0.800, -5.33219), (0.900, -5.30294), (1.000, -5.27644), (2.500, -5.03340), (5.000, -4.81067), (7.500, -4.67636), (10.000, -4.56618), (12.500, -4.48130), (15.000, -4.40507), (17.500, -4.33947), (20.000, -4.28155), (22.500, -4.22683), (25.000, -4.17830), (27.500, -4.13101), (30.000, -4.08586), (32.500, -4.04455), (35.000, -4.00380), (37.500, -3.96144), (40.000, -3.92078), (42.500, -3.88178), (45.000, -3.84503), (47.500, -3.80549), (50.000, -3.77031), (52.500, -3.73209), (55.000, -3.69600), (57.500, -3.65985), (60.000, -3.62126), (65.000, -3.54580), (70.000, -3.46848), (75.000, -3.38533), (80.000, -3.29112), (85.000, -3.17832), (90.000, -3.04165), (92.500, -2.95146), (95.000, -2.83179), (96.000, -2.76465), (97.000, -2.68624), (98.000, -2.57884), (99.000, -2.40044), (99.900, -1.88932), ) self._za_critical_values["c"] = np.asarray(self._c) # trend-only model self._t = ( (0.001, -83.9094), (0.100, -13.8837), (0.200, -9.13205), (0.300, -6.32564), (0.400, -5.60803), (0.500, -5.38794), (0.600, -5.26585), (0.700, -5.18734), (0.800, -5.12756), (0.900, -5.07984), (1.000, -5.03421), (2.500, -4.65634), (5.000, -4.40580), (7.500, -4.25214), (10.000, -4.13678), (12.500, -4.03765), (15.000, -3.95185), (17.500, -3.87945), (20.000, -3.81295), (22.500, -3.75273), (25.000, -3.69836), (27.500, -3.64785), (30.000, -3.59819), (32.500, -3.55146), (35.000, -3.50522), (37.500, -3.45987), (40.000, -3.41672), (42.500, -3.37465), (45.000, -3.33394), (47.500, -3.29393), (50.000, -3.25316), (52.500, -3.21244), (55.000, -3.17124), (57.500, -3.13211), (60.000, -3.09204), (65.000, -3.01135), (70.000, -2.92897), (75.000, -2.83614), (80.000, -2.73893), (85.000, -2.62840), (90.000, -2.49611), (92.500, -2.41337), (95.000, -2.30820), (96.000, -2.25797), (97.000, -2.19648), (98.000, -2.11320), (99.000, -1.99138), (99.900, -1.67466), ) self._za_critical_values["t"] = np.asarray(self._t) # constant + trend model self._ct = ( (0.001, -38.17800), (0.100, -6.43107), (0.200, -6.07279), (0.300, -5.95496), (0.400, -5.86254), (0.500, -5.77081), (0.600, -5.72541), (0.700, -5.68406), (0.800, -5.65163), (0.900, -5.60419), (1.000, -5.57556), (2.500, -5.29704), (5.000, -5.07332), (7.500, -4.93003), (10.000, -4.82668), (12.500, -4.73711), (15.000, -4.66020), (17.500, -4.58970), (20.000, -4.52855), (22.500, -4.47100), (25.000, -4.42011), (27.500, -4.37387), (30.000, -4.32705), (32.500, -4.28126), (35.000, -4.23793), (37.500, -4.19822), (40.000, -4.15800), (42.500, -4.11946), (45.000, -4.08064), (47.500, -4.04286), (50.000, -4.00489), (52.500, -3.96837), (55.000, -3.93200), (57.500, -3.89496), (60.000, -3.85577), (65.000, -3.77795), (70.000, -3.69794), (75.000, -3.61852), (80.000, -3.52485), (85.000, -3.41665), (90.000, -3.28527), (92.500, -3.19724), (95.000, -3.08769), (96.000, -3.03088), (97.000, -2.96091), (98.000, -2.85581), (99.000, -2.71015), (99.900, -2.28767), ) self._za_critical_values["ct"] = np.asarray(self._ct)
Critical values for the three different models specified for the Zivot-Andrews unit-root test. Notes ----- The p-values are generated through Monte Carlo simulation using 100,000 replications and 2000 data points.
__init__
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def _za_crit(self, stat, model="c"): """ Linear interpolation for Zivot-Andrews p-values and critical values Parameters ---------- stat : float The ZA test statistic model : {"c","t","ct"} The model used when computing the ZA statistic. "c" is default. Returns ------- pvalue : float The interpolated p-value cvdict : dict Critical values for the test statistic at the 1%, 5%, and 10% levels Notes ----- The p-values are linear interpolated from the quantiles of the simulated ZA test statistic distribution """ table = self._za_critical_values[model] pcnts = table[:, 0] stats = table[:, 1] # ZA cv table contains quantiles multiplied by 100 pvalue = np.interp(stat, stats, pcnts) / 100.0 cv = [1.0, 5.0, 10.0] crit_value = np.interp(cv, pcnts, stats) cvdict = { "1%": crit_value[0], "5%": crit_value[1], "10%": crit_value[2], } return pvalue, cvdict
Linear interpolation for Zivot-Andrews p-values and critical values Parameters ---------- stat : float The ZA test statistic model : {"c","t","ct"} The model used when computing the ZA statistic. "c" is default. Returns ------- pvalue : float The interpolated p-value cvdict : dict Critical values for the test statistic at the 1%, 5%, and 10% levels Notes ----- The p-values are linear interpolated from the quantiles of the simulated ZA test statistic distribution
_za_crit
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def _quick_ols(self, endog, exog): """ Minimal implementation of LS estimator for internal use """ xpxi = np.linalg.inv(exog.T.dot(exog)) xpy = exog.T.dot(endog) nobs, k_exog = exog.shape b = xpxi.dot(xpy) e = endog - exog.dot(b) sigma2 = e.T.dot(e) / (nobs - k_exog) return b / np.sqrt(np.diag(sigma2 * xpxi))
Minimal implementation of LS estimator for internal use
_quick_ols
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def _format_regression_data(self, series, nobs, const, trend, cols, lags): """ Create the endog/exog data for the auxiliary regressions from the original (standardized) series under test. """ # first-diff y and standardize for numerical stability endog = np.diff(series, axis=0) endog /= np.sqrt(endog.T.dot(endog)) series = series / np.sqrt(series.T.dot(series)) # reserve exog space exog = np.zeros((endog[lags:].shape[0], cols + lags)) exog[:, 0] = const # lagged y and dy exog[:, cols - 1] = series[lags : (nobs - 1)] exog[:, cols:] = lagmat(endog, lags, trim="none")[lags : exog.shape[0] + lags] return endog, exog
Create the endog/exog data for the auxiliary regressions from the original (standardized) series under test.
_format_regression_data
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def _update_regression_exog( self, exog, regression, period, nobs, const, trend, cols, lags ): """ Update the exog array for the next regression. """ cutoff = period - (lags + 1) if regression != "t": exog[:cutoff, 1] = 0 exog[cutoff:, 1] = const exog[:, 2] = trend[(lags + 2) : (nobs + 1)] if regression == "ct": exog[:cutoff, 3] = 0 exog[cutoff:, 3] = trend[1 : (nobs - period + 1)] else: exog[:, 1] = trend[(lags + 2) : (nobs + 1)] exog[: (cutoff - 1), 2] = 0 exog[(cutoff - 1) :, 2] = trend[0 : (nobs - period + 1)] return exog
Update the exog array for the next regression.
_update_regression_exog
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def run(self, x, trim=0.15, maxlag=None, regression="c", autolag="AIC"): """ Zivot-Andrews structural-break unit-root test. The Zivot-Andrews test tests for a unit root in a univariate process in the presence of serial correlation and a single structural break. Parameters ---------- x : array_like The data series to test. trim : float The percentage of series at begin/end to exclude from break-period calculation in range [0, 0.333] (default=0.15). maxlag : int The maximum lag which is included in test, default is 12*(nobs/100)^{1/4} (Schwert, 1989). regression : {"c","t","ct"} Constant and trend order to include in regression. * "c" : constant only (default). * "t" : trend only. * "ct" : constant and trend. autolag : {"AIC", "BIC", "t-stat", None} The method to select the lag length when using automatic selection. * if None, then maxlag lags are used, * if "AIC" (default) or "BIC", then the number of lags is chosen to minimize the corresponding information criterion, * "t-stat" based choice of maxlag. Starts with maxlag and drops a lag until the t-statistic on the last lag length is significant using a 5%-sized test. Returns ------- zastat : float The test statistic. pvalue : float The pvalue based on MC-derived critical values. cvdict : dict The critical values for the test statistic at the 1%, 5%, and 10% levels. baselag : int The number of lags used for period regressions. bpidx : int The index of x corresponding to endogenously calculated break period with values in the range [0..nobs-1]. Notes ----- H0 = unit root with a single structural break Algorithm follows Baum (2004/2015) approximation to original Zivot-Andrews method. Rather than performing an autolag regression at each candidate break period (as per the original paper), a single autolag regression is run up-front on the base model (constant + trend with no dummies) to determine the best lag length. This lag length is then used for all subsequent break-period regressions. This results in significant run time reduction but also slightly more pessimistic test statistics than the original Zivot-Andrews method, although no attempt has been made to characterize the size/power trade-off. References ---------- .. [1] Baum, C.F. (2004). ZANDREWS: Stata module to calculate Zivot-Andrews unit root test in presence of structural break," Statistical Software Components S437301, Boston College Department of Economics, revised 2015. .. [2] Schwert, G.W. (1989). Tests for unit roots: A Monte Carlo investigation. Journal of Business & Economic Statistics, 7: 147-159. .. [3] Zivot, E., and Andrews, D.W.K. (1992). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Studies, 10: 251-270. """ x = array_like(x, "x", dtype=np.double, ndim=1) trim = float_like(trim, "trim") maxlag = int_like(maxlag, "maxlag", optional=True) regression = string_like(regression, "regression", options=("c", "t", "ct")) autolag = string_like( autolag, "autolag", options=("aic", "bic", "t-stat"), optional=True ) if trim < 0 or trim > (1.0 / 3.0): raise ValueError("trim value must be a float in range [0, 1/3)") nobs = x.shape[0] if autolag: adf_res = adfuller(x, maxlag=maxlag, regression="ct", autolag=autolag) baselags = adf_res[2] elif maxlag: baselags = maxlag else: baselags = int(12.0 * np.power(nobs / 100.0, 1 / 4.0)) trimcnt = int(nobs * trim) start_period = trimcnt end_period = nobs - trimcnt if regression == "ct": basecols = 5 else: basecols = 4 # normalize constant and trend terms for stability c_const = 1 / np.sqrt(nobs) t_const = np.arange(1.0, nobs + 2) t_const *= np.sqrt(3) / nobs ** (3 / 2) # format the auxiliary regression data endog, exog = self._format_regression_data( x, nobs, c_const, t_const, basecols, baselags ) # iterate through the time periods stats = np.full(end_period + 1, np.inf) for bp in range(start_period + 1, end_period + 1): # update intercept dummy / trend / trend dummy exog = self._update_regression_exog( exog, regression, bp, nobs, c_const, t_const, basecols, baselags, ) # check exog rank on first iteration if bp == start_period + 1: o = OLS(endog[baselags:], exog, hasconst=1).fit() if o.df_model < exog.shape[1] - 1: raise ValueError( "ZA: auxiliary exog matrix is not full rank.\n" " cols (exc intercept) = {} rank = {}".format( exog.shape[1] - 1, o.df_model ) ) stats[bp] = o.tvalues[basecols - 1] else: stats[bp] = self._quick_ols(endog[baselags:], exog)[basecols - 1] # return best seen zastat = np.min(stats) bpidx = np.argmin(stats) - 1 crit = self._za_crit(zastat, regression) pval = crit[0] cvdict = crit[1] return zastat, pval, cvdict, baselags, bpidx
Zivot-Andrews structural-break unit-root test. The Zivot-Andrews test tests for a unit root in a univariate process in the presence of serial correlation and a single structural break. Parameters ---------- x : array_like The data series to test. trim : float The percentage of series at begin/end to exclude from break-period calculation in range [0, 0.333] (default=0.15). maxlag : int The maximum lag which is included in test, default is 12*(nobs/100)^{1/4} (Schwert, 1989). regression : {"c","t","ct"} Constant and trend order to include in regression. * "c" : constant only (default). * "t" : trend only. * "ct" : constant and trend. autolag : {"AIC", "BIC", "t-stat", None} The method to select the lag length when using automatic selection. * if None, then maxlag lags are used, * if "AIC" (default) or "BIC", then the number of lags is chosen to minimize the corresponding information criterion, * "t-stat" based choice of maxlag. Starts with maxlag and drops a lag until the t-statistic on the last lag length is significant using a 5%-sized test. Returns ------- zastat : float The test statistic. pvalue : float The pvalue based on MC-derived critical values. cvdict : dict The critical values for the test statistic at the 1%, 5%, and 10% levels. baselag : int The number of lags used for period regressions. bpidx : int The index of x corresponding to endogenously calculated break period with values in the range [0..nobs-1]. Notes ----- H0 = unit root with a single structural break Algorithm follows Baum (2004/2015) approximation to original Zivot-Andrews method. Rather than performing an autolag regression at each candidate break period (as per the original paper), a single autolag regression is run up-front on the base model (constant + trend with no dummies) to determine the best lag length. This lag length is then used for all subsequent break-period regressions. This results in significant run time reduction but also slightly more pessimistic test statistics than the original Zivot-Andrews method, although no attempt has been made to characterize the size/power trade-off. References ---------- .. [1] Baum, C.F. (2004). ZANDREWS: Stata module to calculate Zivot-Andrews unit root test in presence of structural break," Statistical Software Components S437301, Boston College Department of Economics, revised 2015. .. [2] Schwert, G.W. (1989). Tests for unit roots: A Monte Carlo investigation. Journal of Business & Economic Statistics, 7: 147-159. .. [3] Zivot, E., and Andrews, D.W.K. (1992). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Studies, 10: 251-270.
run
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_stattools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_stattools.py
BSD-3-Clause
def __init__(self): """ Asymptotic critical values for the two different models specified for the Leybourne-McCabe stationarity test. Asymptotic CVs are the same as the asymptotic CVs for the KPSS stationarity test. Notes ----- The p-values are generated through Monte Carlo simulation using 1,000,000 replications and 10,000 data points. """ self.__leybourne_critical_values = { # constant-only model "c": statsmodels.tsa._leybourne.c, # constant-trend model "ct": statsmodels.tsa._leybourne.ct, }
Asymptotic critical values for the two different models specified for the Leybourne-McCabe stationarity test. Asymptotic CVs are the same as the asymptotic CVs for the KPSS stationarity test. Notes ----- The p-values are generated through Monte Carlo simulation using 1,000,000 replications and 10,000 data points.
__init__
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_leybourne.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_leybourne.py
BSD-3-Clause
def __leybourne_crit(self, stat, model="c"): """ Linear interpolation for Leybourne p-values and critical values Parameters ---------- stat : float The Leybourne-McCabe test statistic model : {'c','ct'} The model used when computing the test statistic. 'c' is default. Returns ------- pvalue : float The interpolated p-value cvdict : dict Critical values for the test statistic at the 1%, 5%, and 10% levels Notes ----- The p-values are linear interpolated from the quantiles of the simulated Leybourne-McCabe (KPSS) test statistic distribution """ table = self.__leybourne_critical_values[model] # reverse the order y = table[:, 0] x = table[:, 1] # LM cv table contains quantiles multiplied by 100 pvalue = np.interp(stat, x, y) / 100.0 cv = [1.0, 5.0, 10.0] crit_value = np.interp(cv, np.flip(y), np.flip(x)) cvdict = {"1%": crit_value[0], "5%": crit_value[1], "10%": crit_value[2]} return pvalue, cvdict
Linear interpolation for Leybourne p-values and critical values Parameters ---------- stat : float The Leybourne-McCabe test statistic model : {'c','ct'} The model used when computing the test statistic. 'c' is default. Returns ------- pvalue : float The interpolated p-value cvdict : dict Critical values for the test statistic at the 1%, 5%, and 10% levels Notes ----- The p-values are linear interpolated from the quantiles of the simulated Leybourne-McCabe (KPSS) test statistic distribution
__leybourne_crit
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_leybourne.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_leybourne.py
BSD-3-Clause
def _tsls_arima(self, x, arlags, model): """ Two-stage least squares approach for estimating ARIMA(p, 1, 1) parameters as an alternative to MLE estimation in the case of solver non-convergence Parameters ---------- x : array_like data series arlags : int AR(p) order model : {'c','ct'} Constant and trend order to include in regression * 'c' : constant only * 'ct' : constant and trend Returns ------- arparams : int AR(1) coefficient plus constant theta : int MA(1) coefficient olsfit.resid : ndarray residuals from second-stage regression """ endog = np.diff(x, axis=0) exog = lagmat(endog, arlags, trim="both") # add constant if requested if model == "ct": exog = add_constant(exog) # remove extra terms from front of endog endog = endog[arlags:] if arlags > 0: resids = lagmat(OLS(endog, exog).fit().resid, 1, trim="forward") else: resids = lagmat(-endog, 1, trim="forward") # add negated residuals column to exog as MA(1) term exog = np.append(exog, -resids, axis=1) olsfit = OLS(endog, exog).fit() if model == "ct": arparams = olsfit.params[1 : (len(olsfit.params) - 1)] else: arparams = olsfit.params[0 : (len(olsfit.params) - 1)] theta = olsfit.params[len(olsfit.params) - 1] return arparams, theta, olsfit.resid
Two-stage least squares approach for estimating ARIMA(p, 1, 1) parameters as an alternative to MLE estimation in the case of solver non-convergence Parameters ---------- x : array_like data series arlags : int AR(p) order model : {'c','ct'} Constant and trend order to include in regression * 'c' : constant only * 'ct' : constant and trend Returns ------- arparams : int AR(1) coefficient plus constant theta : int MA(1) coefficient olsfit.resid : ndarray residuals from second-stage regression
_tsls_arima
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_leybourne.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_leybourne.py
BSD-3-Clause
def _autolag(self, x): """ Empirical method for Leybourne-McCabe auto AR lag detection. Set number of AR lags equal to the first PACF falling within the 95% confidence interval. Maximum nuber of AR lags is limited to the smaller of 10 or 1/2 series length. Minimum is zero lags. Parameters ---------- x : array_like data series Returns ------- arlags : int AR(p) order """ p = pacf(x, nlags=min(len(x) // 2, 10), method="ols") ci = 1.960 / np.sqrt(len(x)) arlags = max( 0, ([n - 1 for n, i in enumerate(p) if abs(i) < ci] + [len(p) - 1])[0] ) return arlags
Empirical method for Leybourne-McCabe auto AR lag detection. Set number of AR lags equal to the first PACF falling within the 95% confidence interval. Maximum nuber of AR lags is limited to the smaller of 10 or 1/2 series length. Minimum is zero lags. Parameters ---------- x : array_like data series Returns ------- arlags : int AR(p) order
_autolag
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_leybourne.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_leybourne.py
BSD-3-Clause
def run(self, x, arlags=1, regression="c", method="mle", varest="var94"): """ Leybourne-McCabe stationarity test The Leybourne-McCabe test can be used to test for stationarity in a univariate process. Parameters ---------- x : array_like data series arlags : int number of autoregressive terms to include, default=None regression : {'c','ct'} Constant and trend order to include in regression * 'c' : constant only (default) * 'ct' : constant and trend method : {'mle','ols'} Method used to estimate ARIMA(p, 1, 1) filter model * 'mle' : condition sum of squares maximum likelihood * 'ols' : two-stage least squares (default) varest : {'var94','var99'} Method used for residual variance estimation * 'var94' : method used in original Leybourne-McCabe paper (1994) (default) * 'var99' : method used in follow-up paper (1999) Returns ------- lmstat : float test statistic pvalue : float based on MC-derived critical values arlags : int AR(p) order used to create the filtered series cvdict : dict critical values for the test statistic at the 1%, 5%, and 10% levels Notes ----- H0 = series is stationary Basic process is to create a filtered series which removes the AR(p) effects from the series under test followed by an auxiliary regression similar to that of Kwiatkowski et al (1992). The AR(p) coefficients are obtained by estimating an ARIMA(p, 1, 1) model. Two methods are provided for ARIMA estimation: MLE and two-stage least squares. Two methods are provided for residual variance estimation used in the calculation of the test statistic. The first method ('var94') is the mean of the squared residuals from the filtered regression. The second method ('var99') is the MA(1) coefficient times the mean of the squared residuals from the ARIMA(p, 1, 1) filtering model. An empirical autolag procedure is provided. In this context, the number of lags is equal to the number of AR(p) terms used in the filtering step. The number of AR(p) terms is set equal to the to the first PACF falling within the 95% confidence interval. Maximum nuber of AR lags is limited to 1/2 series length. References ---------- Kwiatkowski, D., Phillips, P.C.B., Schmidt, P. & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54: 159–178. Leybourne, S.J., & McCabe, B.P.M. (1994). A consistent test for a unit root. Journal of Business and Economic Statistics, 12: 157–166. Leybourne, S.J., & McCabe, B.P.M. (1999). Modified stationarity tests with data-dependent model-selection rules. Journal of Business and Economic Statistics, 17: 264-270. Schwert, G W. (1987). Effects of model specification on tests for unit roots in macroeconomic data. Journal of Monetary Economics, 20: 73–103. """ if regression not in ["c", "ct"]: raise ValueError("LM: regression option '%s' not understood" % regression) if method not in ["mle", "ols"]: raise ValueError("LM: method option '%s' not understood" % method) if varest not in ["var94", "var99"]: raise ValueError("LM: varest option '%s' not understood" % varest) x = np.asarray(x) if x.ndim > 2 or (x.ndim == 2 and x.shape[1] != 1): raise ValueError( "LM: x must be a 1d array or a 2d array with a single column" ) x = np.reshape(x, (-1, 1)) # determine AR order if not specified if arlags is None: arlags = self._autolag(x) elif not isinstance(arlags, int) or arlags < 0 or arlags > int(len(x) / 2): raise ValueError( "LM: arlags must be an integer in range [0..%s]" % str(int(len(x) / 2)) ) # estimate the reduced ARIMA(p, 1, 1) model if method == "mle": if regression == "ct": reg = "t" else: reg = None from statsmodels.tsa.arima.model import ARIMA arima = ARIMA( x, order=(arlags, 1, 1), trend=reg, enforce_invertibility=False ) arfit = arima.fit() resids = arfit.resid arcoeffs = [] if arlags > 0: arcoeffs = arfit.arparams theta = arfit.maparams[0] else: arcoeffs, theta, resids = self._tsls_arima(x, arlags, model=regression) # variance estimator from (1999) LM paper var99 = abs(theta * np.sum(resids**2) / len(resids)) # create the filtered series: # z(t) = x(t) - arcoeffs[0]*x(t-1) - ... - arcoeffs[p-1]*x(t-p) z = np.full(len(x) - arlags, np.inf) for i in range(len(z)): z[i] = x[i + arlags, 0] for j in range(len(arcoeffs)): z[i] -= arcoeffs[j] * x[i + arlags - j - 1, 0] # regress the filtered series against a constant and # trend term (if requested) if regression == "c": resids = z - z.mean() else: resids = OLS(z, add_constant(np.arange(1, len(z) + 1))).fit().resid # variance estimator from (1994) LM paper var94 = np.sum(resids**2) / len(resids) # compute test statistic with specified variance estimator eta = np.sum(resids.cumsum() ** 2) / (len(resids) ** 2) if varest == "var99": lmstat = eta / var99 else: lmstat = eta / var94 # calculate pval lmpval, cvdict = self.__leybourne_crit(lmstat, regression) return lmstat, lmpval, arlags, cvdict
Leybourne-McCabe stationarity test The Leybourne-McCabe test can be used to test for stationarity in a univariate process. Parameters ---------- x : array_like data series arlags : int number of autoregressive terms to include, default=None regression : {'c','ct'} Constant and trend order to include in regression * 'c' : constant only (default) * 'ct' : constant and trend method : {'mle','ols'} Method used to estimate ARIMA(p, 1, 1) filter model * 'mle' : condition sum of squares maximum likelihood * 'ols' : two-stage least squares (default) varest : {'var94','var99'} Method used for residual variance estimation * 'var94' : method used in original Leybourne-McCabe paper (1994) (default) * 'var99' : method used in follow-up paper (1999) Returns ------- lmstat : float test statistic pvalue : float based on MC-derived critical values arlags : int AR(p) order used to create the filtered series cvdict : dict critical values for the test statistic at the 1%, 5%, and 10% levels Notes ----- H0 = series is stationary Basic process is to create a filtered series which removes the AR(p) effects from the series under test followed by an auxiliary regression similar to that of Kwiatkowski et al (1992). The AR(p) coefficients are obtained by estimating an ARIMA(p, 1, 1) model. Two methods are provided for ARIMA estimation: MLE and two-stage least squares. Two methods are provided for residual variance estimation used in the calculation of the test statistic. The first method ('var94') is the mean of the squared residuals from the filtered regression. The second method ('var99') is the MA(1) coefficient times the mean of the squared residuals from the ARIMA(p, 1, 1) filtering model. An empirical autolag procedure is provided. In this context, the number of lags is equal to the number of AR(p) terms used in the filtering step. The number of AR(p) terms is set equal to the to the first PACF falling within the 95% confidence interval. Maximum nuber of AR lags is limited to 1/2 series length. References ---------- Kwiatkowski, D., Phillips, P.C.B., Schmidt, P. & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54: 159–178. Leybourne, S.J., & McCabe, B.P.M. (1994). A consistent test for a unit root. Journal of Business and Economic Statistics, 12: 157–166. Leybourne, S.J., & McCabe, B.P.M. (1999). Modified stationarity tests with data-dependent model-selection rules. Journal of Business and Economic Statistics, 17: 264-270. Schwert, G W. (1987). Effects of model specification on tests for unit roots in macroeconomic data. Journal of Monetary Economics, 20: 73–103.
run
python
statsmodels/statsmodels
statsmodels/tsa/stattools/_leybourne.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stattools/_leybourne.py
BSD-3-Clause
def fit(self): """ Estimate a trend component, multiple seasonal components, and a residual component. Returns ------- DecomposeResult Estimation results. """ num_seasons = len(self.periods) iterate = 1 if num_seasons == 1 else self.iterate # Box Cox if self.lmbda == "auto": y, lmbda = boxcox(self._y, lmbda=None) self.est_lmbda = lmbda elif self.lmbda: y = boxcox(self._y, lmbda=self.lmbda) else: y = self._y # Get STL fit params stl_inner_iter = self._stl_kwargs.pop("inner_iter", None) stl_outer_iter = self._stl_kwargs.pop("outer_iter", None) # Iterate over each seasonal component to extract seasonalities seasonal = np.zeros(shape=(num_seasons, self.nobs)) deseas = y for _ in range(iterate): for i in range(num_seasons): deseas = deseas + seasonal[i] res = STL( endog=deseas, period=self.periods[i], seasonal=self.windows[i], **self._stl_kwargs, ).fit(inner_iter=stl_inner_iter, outer_iter=stl_outer_iter) seasonal[i] = res.seasonal deseas = deseas - seasonal[i] seasonal = np.squeeze(seasonal.T) trend = res.trend rw = res.weights resid = deseas - trend # Return pandas if endog is pandas if isinstance(self.endog, (pd.Series, pd.DataFrame)): index = self.endog.index y = pd.Series(y, index=index, name="observed") trend = pd.Series(trend, index=index, name="trend") resid = pd.Series(resid, index=index, name="resid") rw = pd.Series(rw, index=index, name="robust_weight") cols = [f"seasonal_{period}" for period in self.periods] if seasonal.ndim == 1: seasonal = pd.Series(seasonal, index=index, name="seasonal") else: seasonal = pd.DataFrame(seasonal, index=index, columns=cols) return DecomposeResult(y, seasonal, trend, resid, rw)
Estimate a trend component, multiple seasonal components, and a residual component. Returns ------- DecomposeResult Estimation results.
fit
python
statsmodels/statsmodels
statsmodels/tsa/stl/mstl.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/stl/mstl.py
BSD-3-Clause
def bkfilter(x, low=6, high=32, K=12): """ Filter a time series using the Baxter-King bandpass filter. Parameters ---------- x : array_like A 1 or 2d ndarray. If 2d, variables are assumed to be in columns. low : float Minimum period for oscillations, ie., Baxter and King suggest that the Burns-Mitchell U.S. business cycle has 6 for quarterly data and 1.5 for annual data. high : float Maximum period for oscillations BK suggest that the U.S. business cycle has 32 for quarterly data and 8 for annual data. K : int Lead-lag length of the filter. Baxter and King propose a truncation length of 12 for quarterly data and 3 for annual data. Returns ------- ndarray The cyclical component of x. See Also -------- statsmodels.tsa.filters.cf_filter.cffilter The Christiano Fitzgerald asymmetric, random walk filter. statsmodels.tsa.filters.bk_filter.hpfilter Hodrick-Prescott filter. statsmodels.tsa.seasonal.seasonal_decompose Decompose a time series using moving averages. statsmodels.tsa.seasonal.STL Season-Trend decomposition using LOESS. Notes ----- Returns a centered weighted moving average of the original series. Where the weights a[j] are computed :: a[j] = b[j] + theta, for j = 0, +/-1, +/-2, ... +/- K b[0] = (omega_2 - omega_1)/pi b[j] = 1/(pi*j)(sin(omega_2*j)-sin(omega_1*j), for j = +/-1, +/-2,... and theta is a normalizing constant :: theta = -sum(b)/(2K+1) See the notebook `Time Series Filters <../examples/notebooks/generated/tsa_filters.html>`__ for an overview. References ---------- Baxter, M. and R. G. King. "Measuring Business Cycles: Approximate Band-Pass Filters for Economic Time Series." *Review of Economics and Statistics*, 1999, 81(4), 575-593. Examples -------- >>> import statsmodels.api as sm >>> import pandas as pd >>> dta = sm.datasets.macrodata.load_pandas().data >>> index = pd.DatetimeIndex(start='1959Q1', end='2009Q4', freq='Q') >>> dta.set_index(index, inplace=True) >>> cycles = sm.tsa.filters.bkfilter(dta[['realinv']], 6, 24, 12) >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> cycles.plot(ax=ax, style=['r--', 'b-']) >>> plt.show() .. plot:: plots/bkf_plot.py """ # TODO: change the docstring to ..math::? # TODO: allow windowing functions to correct for Gibb's Phenomenon? # adjust bweights (symmetrically) by below before demeaning # Lancosz Sigma Factors np.sinc(2*j/(2.*K+1)) pw = PandasWrapper(x) x = array_like(x, 'x', maxdim=2) omega_1 = 2. * np.pi / high # convert from freq. to periodicity omega_2 = 2. * np.pi / low bweights = np.zeros(2 * K + 1) bweights[K] = (omega_2 - omega_1) / np.pi # weight at zero freq. j = np.arange(1, int(K) + 1) weights = 1 / (np.pi * j) * (np.sin(omega_2 * j) - np.sin(omega_1 * j)) bweights[K + j] = weights # j is an idx bweights[:K] = weights[::-1] # make symmetric weights bweights -= bweights.mean() # make sure weights sum to zero if x.ndim == 2: bweights = bweights[:, None] x = fftconvolve(x, bweights, mode='valid') # get a centered moving avg/convolution return pw.wrap(x, append='cycle', trim_start=K, trim_end=K)
Filter a time series using the Baxter-King bandpass filter. Parameters ---------- x : array_like A 1 or 2d ndarray. If 2d, variables are assumed to be in columns. low : float Minimum period for oscillations, ie., Baxter and King suggest that the Burns-Mitchell U.S. business cycle has 6 for quarterly data and 1.5 for annual data. high : float Maximum period for oscillations BK suggest that the U.S. business cycle has 32 for quarterly data and 8 for annual data. K : int Lead-lag length of the filter. Baxter and King propose a truncation length of 12 for quarterly data and 3 for annual data. Returns ------- ndarray The cyclical component of x. See Also -------- statsmodels.tsa.filters.cf_filter.cffilter The Christiano Fitzgerald asymmetric, random walk filter. statsmodels.tsa.filters.bk_filter.hpfilter Hodrick-Prescott filter. statsmodels.tsa.seasonal.seasonal_decompose Decompose a time series using moving averages. statsmodels.tsa.seasonal.STL Season-Trend decomposition using LOESS. Notes ----- Returns a centered weighted moving average of the original series. Where the weights a[j] are computed :: a[j] = b[j] + theta, for j = 0, +/-1, +/-2, ... +/- K b[0] = (omega_2 - omega_1)/pi b[j] = 1/(pi*j)(sin(omega_2*j)-sin(omega_1*j), for j = +/-1, +/-2,... and theta is a normalizing constant :: theta = -sum(b)/(2K+1) See the notebook `Time Series Filters <../examples/notebooks/generated/tsa_filters.html>`__ for an overview. References ---------- Baxter, M. and R. G. King. "Measuring Business Cycles: Approximate Band-Pass Filters for Economic Time Series." *Review of Economics and Statistics*, 1999, 81(4), 575-593. Examples -------- >>> import statsmodels.api as sm >>> import pandas as pd >>> dta = sm.datasets.macrodata.load_pandas().data >>> index = pd.DatetimeIndex(start='1959Q1', end='2009Q4', freq='Q') >>> dta.set_index(index, inplace=True) >>> cycles = sm.tsa.filters.bkfilter(dta[['realinv']], 6, 24, 12) >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> cycles.plot(ax=ax, style=['r--', 'b-']) >>> plt.show() .. plot:: plots/bkf_plot.py
bkfilter
python
statsmodels/statsmodels
statsmodels/tsa/filters/bk_filter.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/filters/bk_filter.py
BSD-3-Clause
def cffilter(x, low=6, high=32, drift=True): """ Christiano Fitzgerald asymmetric, random walk filter. Parameters ---------- x : array_like The 1 or 2d array to filter. If 2d, variables are assumed to be in columns. low : float Minimum period of oscillations. Features below low periodicity are filtered out. Default is 6 for quarterly data, giving a 1.5 year periodicity. high : float Maximum period of oscillations. Features above high periodicity are filtered out. Default is 32 for quarterly data, giving an 8 year periodicity. drift : bool Whether or not to remove a trend from the data. The trend is estimated as np.arange(nobs)*(x[-1] - x[0])/(len(x)-1). Returns ------- cycle : array_like The features of x between the periodicities low and high. trend : array_like The trend in the data with the cycles removed. See Also -------- statsmodels.tsa.filters.bk_filter.bkfilter Baxter-King filter. statsmodels.tsa.filters.bk_filter.hpfilter Hodrick-Prescott filter. statsmodels.tsa.seasonal.seasonal_decompose Decompose a time series using moving averages. statsmodels.tsa.seasonal.STL Season-Trend decomposition using LOESS. Notes ----- See the notebook `Time Series Filters <../examples/notebooks/generated/tsa_filters.html>`__ for an overview. Examples -------- >>> import statsmodels.api as sm >>> import pandas as pd >>> dta = sm.datasets.macrodata.load_pandas().data >>> index = pd.DatetimeIndex(start='1959Q1', end='2009Q4', freq='Q') >>> dta.set_index(index, inplace=True) >>> cf_cycles, cf_trend = sm.tsa.filters.cffilter(dta[["infl", "unemp"]]) >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> cf_cycles.plot(ax=ax, style=['r--', 'b-']) >>> plt.show() .. plot:: plots/cff_plot.py """ #TODO: cythonize/vectorize loop?, add ability for symmetric filter, # and estimates of theta other than random walk. if low < 2: raise ValueError("low must be >= 2") pw = PandasWrapper(x) x = array_like(x, 'x', ndim=2) nobs, nseries = x.shape a = 2*np.pi/high b = 2*np.pi/low if drift: # get drift adjusted series x = x - np.arange(nobs)[:, None] * (x[-1] - x[0]) / (nobs - 1) J = np.arange(1, nobs + 1) Bj = (np.sin(b * J) - np.sin(a * J)) / (np.pi * J) B0 = (b - a) / np.pi Bj = np.r_[B0, Bj][:, None] y = np.zeros((nobs, nseries)) for i in range(nobs): B = -.5 * Bj[0] - np.sum(Bj[1:-i - 2]) A = -Bj[0] - np.sum(Bj[1:-i - 2]) - np.sum(Bj[1:i]) - B y[i] = (Bj[0] * x[i] + np.dot(Bj[1:-i - 2].T, x[i + 1:-1]) + B * x[-1] + np.dot(Bj[1:i].T, x[1:i][::-1]) + A * x[0]) y = y.squeeze() cycle, trend = y.squeeze(), x.squeeze() - y return pw.wrap(cycle, append='cycle'), pw.wrap(trend, append='trend')
Christiano Fitzgerald asymmetric, random walk filter. Parameters ---------- x : array_like The 1 or 2d array to filter. If 2d, variables are assumed to be in columns. low : float Minimum period of oscillations. Features below low periodicity are filtered out. Default is 6 for quarterly data, giving a 1.5 year periodicity. high : float Maximum period of oscillations. Features above high periodicity are filtered out. Default is 32 for quarterly data, giving an 8 year periodicity. drift : bool Whether or not to remove a trend from the data. The trend is estimated as np.arange(nobs)*(x[-1] - x[0])/(len(x)-1). Returns ------- cycle : array_like The features of x between the periodicities low and high. trend : array_like The trend in the data with the cycles removed. See Also -------- statsmodels.tsa.filters.bk_filter.bkfilter Baxter-King filter. statsmodels.tsa.filters.bk_filter.hpfilter Hodrick-Prescott filter. statsmodels.tsa.seasonal.seasonal_decompose Decompose a time series using moving averages. statsmodels.tsa.seasonal.STL Season-Trend decomposition using LOESS. Notes ----- See the notebook `Time Series Filters <../examples/notebooks/generated/tsa_filters.html>`__ for an overview. Examples -------- >>> import statsmodels.api as sm >>> import pandas as pd >>> dta = sm.datasets.macrodata.load_pandas().data >>> index = pd.DatetimeIndex(start='1959Q1', end='2009Q4', freq='Q') >>> dta.set_index(index, inplace=True) >>> cf_cycles, cf_trend = sm.tsa.filters.cffilter(dta[["infl", "unemp"]]) >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> cf_cycles.plot(ax=ax, style=['r--', 'b-']) >>> plt.show() .. plot:: plots/cff_plot.py
cffilter
python
statsmodels/statsmodels
statsmodels/tsa/filters/cf_filter.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/filters/cf_filter.py
BSD-3-Clause
def pandas_wrapper_freq(func, trim_head=None, trim_tail=None, freq_kw='freq', columns=None, *args, **kwargs): """ Return a new function that catches the incoming X, checks if it's pandas, calls the functions as is. Then wraps the results in the incoming index. Deals with frequencies. Expects that the function returns a tuple, a Bunch object, or a pandas-object. """ @wraps(func) def new_func(X, *args, **kwargs): # quick pass-through for do nothing case if not _is_using_pandas(X, None): return func(X, *args, **kwargs) wrapper_func = _get_pandas_wrapper(X, trim_head, trim_tail, columns) index = X.index freq = index.inferred_freq kwargs.update({freq_kw : freq_to_period(freq)}) ret = func(X, *args, **kwargs) ret = wrapper_func(ret) return ret return new_func
Return a new function that catches the incoming X, checks if it's pandas, calls the functions as is. Then wraps the results in the incoming index. Deals with frequencies. Expects that the function returns a tuple, a Bunch object, or a pandas-object.
pandas_wrapper_freq
python
statsmodels/statsmodels
statsmodels/tsa/filters/_utils.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/filters/_utils.py
BSD-3-Clause
def fftconvolveinv(in1, in2, mode="full"): """ Convolve two N-dimensional arrays using FFT. See convolve. copied from scipy.signal.signaltools, but here used to try out inverse filter. does not work or I cannot get it to work 2010-10-23: looks ok to me for 1d, from results below with padded data array (fftp) but it does not work for multidimensional inverse filter (fftn) original signal.fftconvolve also uses fftn """ s1 = np.array(in1.shape) s2 = np.array(in2.shape) complex_result = (np.issubdtype(in1.dtype, np.complex) or np.issubdtype(in2.dtype, np.complex)) size = s1+s2-1 # Always use 2**n-sized FFT fsize = 2**np.ceil(np.log2(size)) IN1 = fft.fftn(in1,fsize) #IN1 *= fftn(in2,fsize) #JP: this looks like the only change I made IN1 /= fft.fftn(in2,fsize) # use inverse filter # note the inverse is elementwise not matrix inverse # is this correct, NO does not seem to work for VARMA fslice = tuple([slice(0, int(sz)) for sz in size]) ret = fft.ifftn(IN1)[fslice].copy() del IN1 if not complex_result: ret = ret.real if mode == "full": return ret elif mode == "same": if np.product(s1,axis=0) > np.product(s2,axis=0): osize = s1 else: osize = s2 return trim_centered(ret,osize) elif mode == "valid": return trim_centered(ret,abs(s2-s1)+1)
Convolve two N-dimensional arrays using FFT. See convolve. copied from scipy.signal.signaltools, but here used to try out inverse filter. does not work or I cannot get it to work 2010-10-23: looks ok to me for 1d, from results below with padded data array (fftp) but it does not work for multidimensional inverse filter (fftn) original signal.fftconvolve also uses fftn
fftconvolveinv
python
statsmodels/statsmodels
statsmodels/tsa/filters/filtertools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/filters/filtertools.py
BSD-3-Clause
def fftconvolve3(in1, in2=None, in3=None, mode="full"): """ Convolve two N-dimensional arrays using FFT. See convolve. For use with arma (old version: in1=num in2=den in3=data * better for consistency with other functions in1=data in2=num in3=den * note in2 and in3 need to have consistent dimension/shape since I'm using max of in2, in3 shapes and not the sum copied from scipy.signal.signaltools, but here used to try out inverse filter does not work or I cannot get it to work 2010-10-23 looks ok to me for 1d, from results below with padded data array (fftp) but it does not work for multidimensional inverse filter (fftn) original signal.fftconvolve also uses fftn """ if (in2 is None) and (in3 is None): raise ValueError('at least one of in2 and in3 needs to be given') s1 = np.array(in1.shape) if in2 is not None: s2 = np.array(in2.shape) else: s2 = 0 if in3 is not None: s3 = np.array(in3.shape) s2 = max(s2, s3) # try this looks reasonable for ARMA #s2 = s3 complex_result = (np.issubdtype(in1.dtype, np.complex) or np.issubdtype(in2.dtype, np.complex)) size = s1+s2-1 # Always use 2**n-sized FFT fsize = 2**np.ceil(np.log2(size)) #convolve shorter ones first, not sure if it matters IN1 = in1.copy() # TODO: Is this correct? if in2 is not None: IN1 = fft.fftn(in2, fsize) if in3 is not None: IN1 /= fft.fftn(in3, fsize) # use inverse filter # note the inverse is elementwise not matrix inverse # is this correct, NO does not seem to work for VARMA IN1 *= fft.fftn(in1, fsize) fslice = tuple([slice(0, int(sz)) for sz in size]) ret = fft.ifftn(IN1)[fslice].copy() del IN1 if not complex_result: ret = ret.real if mode == "full": return ret elif mode == "same": if np.product(s1,axis=0) > np.product(s2,axis=0): osize = s1 else: osize = s2 return trim_centered(ret,osize) elif mode == "valid": return trim_centered(ret,abs(s2-s1)+1)
Convolve two N-dimensional arrays using FFT. See convolve. For use with arma (old version: in1=num in2=den in3=data * better for consistency with other functions in1=data in2=num in3=den * note in2 and in3 need to have consistent dimension/shape since I'm using max of in2, in3 shapes and not the sum copied from scipy.signal.signaltools, but here used to try out inverse filter does not work or I cannot get it to work 2010-10-23 looks ok to me for 1d, from results below with padded data array (fftp) but it does not work for multidimensional inverse filter (fftn) original signal.fftconvolve also uses fftn
fftconvolve3
python
statsmodels/statsmodels
statsmodels/tsa/filters/filtertools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/filters/filtertools.py
BSD-3-Clause
def recursive_filter(x, ar_coeff, init=None): """ Autoregressive, or recursive, filtering. Parameters ---------- x : array_like Time-series data. Should be 1d or n x 1. ar_coeff : array_like AR coefficients in reverse time order. See Notes for details. init : array_like Initial values of the time-series prior to the first value of y. The default is zero. Returns ------- array_like Filtered array, number of columns determined by x and ar_coeff. If x is a pandas object than a Series is returned. Notes ----- Computes the recursive filter :: y[n] = ar_coeff[0] * y[n-1] + ... + ar_coeff[n_coeff - 1] * y[n - n_coeff] + x[n] where n_coeff = len(n_coeff). """ pw = PandasWrapper(x) x = array_like(x, 'x') ar_coeff = array_like(ar_coeff, 'ar_coeff') if init is not None: # integer init are treated differently in lfiltic init = array_like(init, 'init') if len(init) != len(ar_coeff): raise ValueError("ar_coeff must be the same length as init") if init is not None: zi = signal.lfiltic([1], np.r_[1, -ar_coeff], init, x) else: zi = None y = signal.lfilter([1.], np.r_[1, -ar_coeff], x, zi=zi) if init is not None: result = y[0] else: result = y return pw.wrap(result)
Autoregressive, or recursive, filtering. Parameters ---------- x : array_like Time-series data. Should be 1d or n x 1. ar_coeff : array_like AR coefficients in reverse time order. See Notes for details. init : array_like Initial values of the time-series prior to the first value of y. The default is zero. Returns ------- array_like Filtered array, number of columns determined by x and ar_coeff. If x is a pandas object than a Series is returned. Notes ----- Computes the recursive filter :: y[n] = ar_coeff[0] * y[n-1] + ... + ar_coeff[n_coeff - 1] * y[n - n_coeff] + x[n] where n_coeff = len(n_coeff).
recursive_filter
python
statsmodels/statsmodels
statsmodels/tsa/filters/filtertools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/filters/filtertools.py
BSD-3-Clause
def convolution_filter(x, filt, nsides=2): """ Linear filtering via convolution. Centered and backward displaced moving weighted average. Parameters ---------- x : array_like data array, 1d or 2d, if 2d then observations in rows filt : array_like Linear filter coefficients in reverse time-order. Should have the same number of dimensions as x though if 1d and ``x`` is 2d will be coerced to 2d. nsides : int, optional If 2, a centered moving average is computed using the filter coefficients. If 1, the filter coefficients are for past values only. Both methods use scipy.signal.convolve. Returns ------- y : ndarray, 2d Filtered array, number of columns determined by x and filt. If a pandas object is given, a pandas object is returned. The index of the return is the exact same as the time period in ``x`` Notes ----- In nsides == 1, x is filtered :: y[n] = filt[0]*x[n-1] + ... + filt[n_filt-1]*x[n-n_filt] where n_filt is len(filt). If nsides == 2, x is filtered around lag 0 :: y[n] = filt[0]*x[n - n_filt/2] + ... + filt[n_filt / 2] * x[n] + ... + x[n + n_filt/2] where n_filt is len(filt). If n_filt is even, then more of the filter is forward in time than backward. If filt is 1d or (nlags,1) one lag polynomial is applied to all variables (columns of x). If filt is 2d, (nlags, nvars) each series is independently filtered with its own lag polynomial, uses loop over nvar. This is different than the usual 2d vs 2d convolution. Filtering is done with scipy.signal.convolve, so it will be reasonably fast for medium sized data. For large data fft convolution would be faster. """ # for nsides shift the index instead of using 0 for 0 lag this # allows correct handling of NaNs if nsides == 1: trim_head = len(filt) - 1 trim_tail = None elif nsides == 2: trim_head = int(np.ceil(len(filt)/2.) - 1) or None trim_tail = int(np.ceil(len(filt)/2.) - len(filt) % 2) or None else: # pragma : no cover raise ValueError("nsides must be 1 or 2") pw = PandasWrapper(x) x = array_like(x, 'x', maxdim=2) filt = array_like(filt, 'filt', ndim=x.ndim) if filt.ndim == 1 or min(filt.shape) == 1: result = signal.convolve(x, filt, mode='valid') else: # filt.ndim == 2 nlags = filt.shape[0] nvar = x.shape[1] result = np.zeros((x.shape[0] - nlags + 1, nvar)) if nsides == 2: for i in range(nvar): # could also use np.convolve, but easier for swiching to fft result[:, i] = signal.convolve(x[:, i], filt[:, i], mode='valid') elif nsides == 1: for i in range(nvar): result[:, i] = signal.convolve(x[:, i], np.r_[0, filt[:, i]], mode='valid') result = _pad_nans(result, trim_head, trim_tail) return pw.wrap(result)
Linear filtering via convolution. Centered and backward displaced moving weighted average. Parameters ---------- x : array_like data array, 1d or 2d, if 2d then observations in rows filt : array_like Linear filter coefficients in reverse time-order. Should have the same number of dimensions as x though if 1d and ``x`` is 2d will be coerced to 2d. nsides : int, optional If 2, a centered moving average is computed using the filter coefficients. If 1, the filter coefficients are for past values only. Both methods use scipy.signal.convolve. Returns ------- y : ndarray, 2d Filtered array, number of columns determined by x and filt. If a pandas object is given, a pandas object is returned. The index of the return is the exact same as the time period in ``x`` Notes ----- In nsides == 1, x is filtered :: y[n] = filt[0]*x[n-1] + ... + filt[n_filt-1]*x[n-n_filt] where n_filt is len(filt). If nsides == 2, x is filtered around lag 0 :: y[n] = filt[0]*x[n - n_filt/2] + ... + filt[n_filt / 2] * x[n] + ... + x[n + n_filt/2] where n_filt is len(filt). If n_filt is even, then more of the filter is forward in time than backward. If filt is 1d or (nlags,1) one lag polynomial is applied to all variables (columns of x). If filt is 2d, (nlags, nvars) each series is independently filtered with its own lag polynomial, uses loop over nvar. This is different than the usual 2d vs 2d convolution. Filtering is done with scipy.signal.convolve, so it will be reasonably fast for medium sized data. For large data fft convolution would be faster.
convolution_filter
python
statsmodels/statsmodels
statsmodels/tsa/filters/filtertools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/filters/filtertools.py
BSD-3-Clause
def miso_lfilter(ar, ma, x, useic=False): """ Filter multiple time series into a single time series. Uses a convolution to merge inputs, and then lfilter to produce output. Parameters ---------- ar : array_like The coefficients of autoregressive lag polynomial including lag zero, ar(L) in the expression ar(L)y_t. ma : array_like, same ndim as x, currently 2d The coefficient of the moving average lag polynomial, ma(L) in ma(L)x_t. x : array_like The 2-d input data series, time in rows, variables in columns. useic : bool Flag indicating whether to use initial conditions. Returns ------- y : ndarray The filtered output series. inp : ndarray, 1d The combined input series. Notes ----- currently for 2d inputs only, no choice of axis Use of signal.lfilter requires that ar lag polynomial contains floating point numbers does not cut off invalid starting and final values miso_lfilter find array y such that: ar(L)y_t = ma(L)x_t with shapes y (nobs,), x (nobs, nvars), ar (narlags,), and ma (narlags, nvars). """ ma = array_like(ma, 'ma') ar = array_like(ar, 'ar') inp = signal.correlate(x, ma[::-1, :])[:, (x.shape[1] + 1) // 2] # for testing 2d equivalence between convolve and correlate # inp2 = signal.convolve(x, ma[:,::-1])[:, (x.shape[1]+1)//2] # np.testing.assert_almost_equal(inp2, inp) nobs = x.shape[0] # cut of extra values at end # TODO: initialize also x for correlate if useic: return signal.lfilter([1], ar, inp, zi=signal.lfiltic(np.array([1., 0.]), ar, useic))[0][:nobs], inp[:nobs] else: return signal.lfilter([1], ar, inp)[:nobs], inp[:nobs]
Filter multiple time series into a single time series. Uses a convolution to merge inputs, and then lfilter to produce output. Parameters ---------- ar : array_like The coefficients of autoregressive lag polynomial including lag zero, ar(L) in the expression ar(L)y_t. ma : array_like, same ndim as x, currently 2d The coefficient of the moving average lag polynomial, ma(L) in ma(L)x_t. x : array_like The 2-d input data series, time in rows, variables in columns. useic : bool Flag indicating whether to use initial conditions. Returns ------- y : ndarray The filtered output series. inp : ndarray, 1d The combined input series. Notes ----- currently for 2d inputs only, no choice of axis Use of signal.lfilter requires that ar lag polynomial contains floating point numbers does not cut off invalid starting and final values miso_lfilter find array y such that: ar(L)y_t = ma(L)x_t with shapes y (nobs,), x (nobs, nvars), ar (narlags,), and ma (narlags, nvars).
miso_lfilter
python
statsmodels/statsmodels
statsmodels/tsa/filters/filtertools.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/filters/filtertools.py
BSD-3-Clause
def hpfilter(x, lamb=1600): """ Hodrick-Prescott filter. Parameters ---------- x : array_like The time series to filter, 1-d. lamb : float The Hodrick-Prescott smoothing parameter. A value of 1600 is suggested for quarterly data. Ravn and Uhlig suggest using a value of 6.25 (1600/4**4) for annual data and 129600 (1600*3**4) for monthly data. Returns ------- cycle : ndarray The estimated cycle in the data given lamb. trend : ndarray The estimated trend in the data given lamb. See Also -------- statsmodels.tsa.filters.bk_filter.bkfilter Baxter-King filter. statsmodels.tsa.filters.cf_filter.cffilter The Christiano Fitzgerald asymmetric, random walk filter. statsmodels.tsa.seasonal.seasonal_decompose Decompose a time series using moving averages. statsmodels.tsa.seasonal.STL Season-Trend decomposition using LOESS. Notes ----- The HP filter removes a smooth trend, `T`, from the data `x`. by solving min sum((x[t] - T[t])**2 + lamb*((T[t+1] - T[t]) - (T[t] - T[t-1]))**2) T t Here we implemented the HP filter as a ridge-regression rule using scipy.sparse. In this sense, the solution can be written as T = inv(I + lamb*K'K)x where I is a nobs x nobs identity matrix, and K is a (nobs-2) x nobs matrix such that K[i,j] = 1 if i == j or i == j + 2 K[i,j] = -2 if i == j + 1 K[i,j] = 0 otherwise See the notebook `Time Series Filters <../examples/notebooks/generated/tsa_filters.html>`__ for an overview. References ---------- Hodrick, R.J, and E. C. Prescott. 1980. "Postwar U.S. Business Cycles: An Empirical Investigation." `Carnegie Mellon University discussion paper no. 451`. Ravn, M.O and H. Uhlig. 2002. "Notes On Adjusted the Hodrick-Prescott Filter for the Frequency of Observations." `The Review of Economics and Statistics`, 84(2), 371-80. Examples -------- >>> import statsmodels.api as sm >>> import pandas as pd >>> dta = sm.datasets.macrodata.load_pandas().data >>> index = pd.period_range('1959Q1', '2009Q3', freq='Q') >>> dta.set_index(index, inplace=True) >>> cycle, trend = sm.tsa.filters.hpfilter(dta.realgdp, 1600) >>> gdp_decomp = dta[['realgdp']] >>> gdp_decomp["cycle"] = cycle >>> gdp_decomp["trend"] = trend >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> gdp_decomp[["realgdp", "trend"]]["2000-03-31":].plot(ax=ax, ... fontsize=16) >>> plt.show() .. plot:: plots/hpf_plot.py """ pw = PandasWrapper(x) x = array_like(x, 'x', ndim=1) nobs = len(x) I = sparse.eye(nobs, nobs) # noqa:E741 offsets = np.array([0, 1, 2]) data = np.repeat([[1.], [-2.], [1.]], nobs, axis=1) K = sparse.dia_matrix((data, offsets), shape=(nobs - 2, nobs)) use_umfpack = True trend = spsolve(I+lamb*K.T.dot(K), x, use_umfpack=use_umfpack) cycle = x - trend return pw.wrap(cycle, append='cycle'), pw.wrap(trend, append='trend')
Hodrick-Prescott filter. Parameters ---------- x : array_like The time series to filter, 1-d. lamb : float The Hodrick-Prescott smoothing parameter. A value of 1600 is suggested for quarterly data. Ravn and Uhlig suggest using a value of 6.25 (1600/4**4) for annual data and 129600 (1600*3**4) for monthly data. Returns ------- cycle : ndarray The estimated cycle in the data given lamb. trend : ndarray The estimated trend in the data given lamb. See Also -------- statsmodels.tsa.filters.bk_filter.bkfilter Baxter-King filter. statsmodels.tsa.filters.cf_filter.cffilter The Christiano Fitzgerald asymmetric, random walk filter. statsmodels.tsa.seasonal.seasonal_decompose Decompose a time series using moving averages. statsmodels.tsa.seasonal.STL Season-Trend decomposition using LOESS. Notes ----- The HP filter removes a smooth trend, `T`, from the data `x`. by solving min sum((x[t] - T[t])**2 + lamb*((T[t+1] - T[t]) - (T[t] - T[t-1]))**2) T t Here we implemented the HP filter as a ridge-regression rule using scipy.sparse. In this sense, the solution can be written as T = inv(I + lamb*K'K)x where I is a nobs x nobs identity matrix, and K is a (nobs-2) x nobs matrix such that K[i,j] = 1 if i == j or i == j + 2 K[i,j] = -2 if i == j + 1 K[i,j] = 0 otherwise See the notebook `Time Series Filters <../examples/notebooks/generated/tsa_filters.html>`__ for an overview. References ---------- Hodrick, R.J, and E. C. Prescott. 1980. "Postwar U.S. Business Cycles: An Empirical Investigation." `Carnegie Mellon University discussion paper no. 451`. Ravn, M.O and H. Uhlig. 2002. "Notes On Adjusted the Hodrick-Prescott Filter for the Frequency of Observations." `The Review of Economics and Statistics`, 84(2), 371-80. Examples -------- >>> import statsmodels.api as sm >>> import pandas as pd >>> dta = sm.datasets.macrodata.load_pandas().data >>> index = pd.period_range('1959Q1', '2009Q3', freq='Q') >>> dta.set_index(index, inplace=True) >>> cycle, trend = sm.tsa.filters.hpfilter(dta.realgdp, 1600) >>> gdp_decomp = dta[['realgdp']] >>> gdp_decomp["cycle"] = cycle >>> gdp_decomp["trend"] = trend >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> gdp_decomp[["realgdp", "trend"]]["2000-03-31":].plot(ax=ax, ... fontsize=16) >>> plt.show() .. plot:: plots/hpf_plot.py
hpfilter
python
statsmodels/statsmodels
statsmodels/tsa/filters/hp_filter.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/filters/hp_filter.py
BSD-3-Clause
def _extrapolate_trend(trend, npoints): """ Replace nan values on trend's end-points with least-squares extrapolated values with regression considering npoints closest defined points. """ front = next(i for i, vals in enumerate(trend) if not np.any(np.isnan(vals))) back = ( trend.shape[0] - 1 - next(i for i, vals in enumerate(trend[::-1]) if not np.any(np.isnan(vals))) ) front_last = min(front + npoints, back) back_first = max(front, back - npoints) k, n = np.linalg.lstsq( np.c_[np.arange(front, front_last), np.ones(front_last - front)], trend[front:front_last], rcond=-1, )[0] extra = (np.arange(0, front) * np.c_[k] + np.c_[n]).T if trend.ndim == 1: extra = extra.squeeze() trend[:front] = extra k, n = np.linalg.lstsq( np.c_[np.arange(back_first, back), np.ones(back - back_first)], trend[back_first:back], rcond=-1, )[0] extra = (np.arange(back + 1, trend.shape[0]) * np.c_[k] + np.c_[n]).T if trend.ndim == 1: extra = extra.squeeze() trend[back + 1 :] = extra return trend
Replace nan values on trend's end-points with least-squares extrapolated values with regression considering npoints closest defined points.
_extrapolate_trend
python
statsmodels/statsmodels
statsmodels/tsa/seasonal/_seasonal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/seasonal/_seasonal.py
BSD-3-Clause
def seasonal_mean(x, period): """ Return means for each period in x. period is an int that gives the number of periods per cycle. E.g., 12 for monthly. NaNs are ignored in the mean. """ return np.array([pd_nanmean(x[i::period], axis=0) for i in range(period)])
Return means for each period in x. period is an int that gives the number of periods per cycle. E.g., 12 for monthly. NaNs are ignored in the mean.
seasonal_mean
python
statsmodels/statsmodels
statsmodels/tsa/seasonal/_seasonal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/seasonal/_seasonal.py
BSD-3-Clause
def seasonal_decompose( x, model="additive", filt=None, period=None, two_sided=True, extrapolate_trend=0, ): """ Seasonal decomposition using moving averages. Parameters ---------- x : array_like Time series. If 2d, individual series are in columns. x must contain 2 complete cycles. model : {"additive", "multiplicative"}, optional Type of seasonal component. Abbreviations are accepted. filt : array_like, optional The filter coefficients for filtering out the seasonal component. The concrete moving average method used in filtering is determined by two_sided. period : int, optional Period of the series (eg, 1 for annual, 4 for quarterly, etc). Must be used if x is not a pandas object or if the index of x does not have a frequency. Overrides default periodicity of x if x is a pandas object with a timeseries index. two_sided : bool, optional The moving average method used in filtering. If True (default), a centered moving average is computed using the filt. If False, the filter coefficients are for past values only. extrapolate_trend : int or 'freq', optional If set to > 0, the trend resulting from the convolution is linear least-squares extrapolated on both ends (or the single one if two_sided is False) considering this many (+1) closest points. If set to 'freq', use `freq` closest points. Setting this parameter results in no NaN values in trend or resid components. Returns ------- DecomposeResult A object with seasonal, trend, and resid attributes. See Also -------- statsmodels.tsa.filters.bk_filter.bkfilter Baxter-King filter. statsmodels.tsa.filters.cf_filter.cffilter Christiano-Fitzgerald asymmetric, random walk filter. statsmodels.tsa.filters.hp_filter.hpfilter Hodrick-Prescott filter. statsmodels.tsa.filters.convolution_filter Linear filtering via convolution. statsmodels.tsa.seasonal.STL Season-Trend decomposition using LOESS. Notes ----- This is a naive decomposition. More sophisticated methods should be preferred. The additive model is Y[t] = T[t] + S[t] + e[t] The multiplicative model is Y[t] = T[t] * S[t] * e[t] The results are obtained by first estimating the trend by applying a convolution filter to the data. The trend is then removed from the series and the average of this de-trended series for each period is the returned seasonal component. """ pfreq = period pw = PandasWrapper(x) if period is None: if isinstance(x, (pd.Series, pd.DataFrame)): index = x.index if isinstance(index, pd.PeriodIndex): pfreq = index.freq else: pfreq = getattr(index, "freq", None) or getattr( index, "inferred_freq", None ) x = array_like(x, "x", maxdim=2) nobs = len(x) if not np.all(np.isfinite(x)): raise ValueError("This function does not handle missing values") if model.startswith("m"): if np.any(x <= 0): raise ValueError( "Multiplicative seasonality is not appropriate " "for zero and negative values" ) if period is None: if pfreq is not None: pfreq = freq_to_period(pfreq) period = pfreq else: raise ValueError( "You must specify a period or x must be a pandas object with " "a PeriodIndex or a DatetimeIndex with a freq not set to None" ) if x.shape[0] < 2 * pfreq: raise ValueError( f"x must have 2 complete cycles requires {2 * pfreq} " f"observations. x only has {x.shape[0]} observation(s)" ) if filt is None: if period % 2 == 0: # split weights at ends filt = np.array([0.5] + [1] * (period - 1) + [0.5]) / period else: filt = np.repeat(1.0 / period, period) nsides = int(two_sided) + 1 trend = convolution_filter(x, filt, nsides) if extrapolate_trend == "freq": extrapolate_trend = period - 1 if extrapolate_trend > 0: trend = _extrapolate_trend(trend, extrapolate_trend + 1) if model.startswith("m"): detrended = x / trend else: detrended = x - trend period_averages = seasonal_mean(detrended, period) if model.startswith("m"): period_averages /= np.mean(period_averages, axis=0) else: period_averages -= np.mean(period_averages, axis=0) seasonal = np.tile(period_averages.T, nobs // period + 1).T[:nobs] if model.startswith("m"): resid = x / seasonal / trend else: resid = detrended - seasonal results = [] for s, name in zip( (seasonal, trend, resid, x), ("seasonal", "trend", "resid", None) ): results.append(pw.wrap(s.squeeze(), columns=name)) return DecomposeResult( seasonal=results[0], trend=results[1], resid=results[2], observed=results[3], )
Seasonal decomposition using moving averages. Parameters ---------- x : array_like Time series. If 2d, individual series are in columns. x must contain 2 complete cycles. model : {"additive", "multiplicative"}, optional Type of seasonal component. Abbreviations are accepted. filt : array_like, optional The filter coefficients for filtering out the seasonal component. The concrete moving average method used in filtering is determined by two_sided. period : int, optional Period of the series (eg, 1 for annual, 4 for quarterly, etc). Must be used if x is not a pandas object or if the index of x does not have a frequency. Overrides default periodicity of x if x is a pandas object with a timeseries index. two_sided : bool, optional The moving average method used in filtering. If True (default), a centered moving average is computed using the filt. If False, the filter coefficients are for past values only. extrapolate_trend : int or 'freq', optional If set to > 0, the trend resulting from the convolution is linear least-squares extrapolated on both ends (or the single one if two_sided is False) considering this many (+1) closest points. If set to 'freq', use `freq` closest points. Setting this parameter results in no NaN values in trend or resid components. Returns ------- DecomposeResult A object with seasonal, trend, and resid attributes. See Also -------- statsmodels.tsa.filters.bk_filter.bkfilter Baxter-King filter. statsmodels.tsa.filters.cf_filter.cffilter Christiano-Fitzgerald asymmetric, random walk filter. statsmodels.tsa.filters.hp_filter.hpfilter Hodrick-Prescott filter. statsmodels.tsa.filters.convolution_filter Linear filtering via convolution. statsmodels.tsa.seasonal.STL Season-Trend decomposition using LOESS. Notes ----- This is a naive decomposition. More sophisticated methods should be preferred. The additive model is Y[t] = T[t] + S[t] + e[t] The multiplicative model is Y[t] = T[t] * S[t] * e[t] The results are obtained by first estimating the trend by applying a convolution filter to the data. The trend is then removed from the series and the average of this de-trended series for each period is the returned seasonal component.
seasonal_decompose
python
statsmodels/statsmodels
statsmodels/tsa/seasonal/_seasonal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/seasonal/_seasonal.py
BSD-3-Clause
def observed(self): """Observed data""" return self._observed
Observed data
observed
python
statsmodels/statsmodels
statsmodels/tsa/seasonal/_seasonal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/seasonal/_seasonal.py
BSD-3-Clause
def seasonal(self): """The estimated seasonal component""" return self._seasonal
The estimated seasonal component
seasonal
python
statsmodels/statsmodels
statsmodels/tsa/seasonal/_seasonal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/seasonal/_seasonal.py
BSD-3-Clause
def trend(self): """The estimated trend component""" return self._trend
The estimated trend component
trend
python
statsmodels/statsmodels
statsmodels/tsa/seasonal/_seasonal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/seasonal/_seasonal.py
BSD-3-Clause
def resid(self): """The estimated residuals""" return self._resid
The estimated residuals
resid
python
statsmodels/statsmodels
statsmodels/tsa/seasonal/_seasonal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/seasonal/_seasonal.py
BSD-3-Clause
def weights(self): """The weights used in the robust estimation""" return self._weights
The weights used in the robust estimation
weights
python
statsmodels/statsmodels
statsmodels/tsa/seasonal/_seasonal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/seasonal/_seasonal.py
BSD-3-Clause
def nobs(self): """Number of observations""" return self._observed.shape
Number of observations
nobs
python
statsmodels/statsmodels
statsmodels/tsa/seasonal/_seasonal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/seasonal/_seasonal.py
BSD-3-Clause
def plot( self, observed=True, seasonal=True, trend=True, resid=True, weights=False, ): """ Plot estimated components Parameters ---------- observed : bool Include the observed series in the plot seasonal : bool Include the seasonal component in the plot trend : bool Include the trend component in the plot resid : bool Include the residual in the plot weights : bool Include the weights in the plot (if any) Returns ------- matplotlib.figure.Figure The figure instance that containing the plot. """ from pandas.plotting import register_matplotlib_converters from statsmodels.graphics.utils import _import_mpl plt = _import_mpl() register_matplotlib_converters() series = [(self._observed, "Observed")] if observed else [] series += [(self.trend, "trend")] if trend else [] if self.seasonal.ndim == 1: series += [(self.seasonal, "seasonal")] if seasonal else [] elif self.seasonal.ndim > 1: if isinstance(self.seasonal, pd.DataFrame): for col in self.seasonal.columns: series += [(self.seasonal[col], "seasonal")] if seasonal else [] else: for i in range(self.seasonal.shape[1]): series += [(self.seasonal[:, i], "seasonal")] if seasonal else [] series += [(self.resid, "residual")] if resid else [] series += [(self.weights, "weights")] if weights else [] if isinstance(self._observed, (pd.DataFrame, pd.Series)): nobs = self._observed.shape[0] xlim = self._observed.index[0], self._observed.index[nobs - 1] else: xlim = (0, self._observed.shape[0] - 1) fig, axs = plt.subplots(len(series), 1, sharex=True) for i, (ax, (series, def_name)) in enumerate(zip(axs, series)): if def_name != "residual": ax.plot(series) else: ax.plot(series, marker="o", linestyle="none") ax.plot(xlim, (0, 0), color="#000000", zorder=-3) name = getattr(series, "name", def_name) if def_name != "Observed": name = name.capitalize() title = ax.set_title if i == 0 and observed else ax.set_ylabel title(name) ax.set_xlim(xlim) fig.tight_layout() return fig
Plot estimated components Parameters ---------- observed : bool Include the observed series in the plot seasonal : bool Include the seasonal component in the plot trend : bool Include the trend component in the plot resid : bool Include the residual in the plot weights : bool Include the weights in the plot (if any) Returns ------- matplotlib.figure.Figure The figure instance that containing the plot.
plot
python
statsmodels/statsmodels
statsmodels/tsa/seasonal/_seasonal.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/seasonal/_seasonal.py
BSD-3-Clause
def summary(self): """Return summary""" title = self.title + ". " + self.h0 + ". " \ + self.conclusion_str + self.signif_str + "." data_fmt = {"data_fmts": ["%#0.4g", "%#0.4g", "%#0.3F", "%s"]} html_data_fmt = dict(data_fmt) html_data_fmt["data_fmts"] = ["<td>" + i + "</td>" for i in html_data_fmt["data_fmts"]] return SimpleTable(data=[[self.test_statistic, self.crit_value, self.pvalue, str(self.df)]], headers=['Test statistic', 'Critical value', 'p-value', 'df'], title=title, txt_fmt=data_fmt, html_fmt=html_data_fmt, ltx_fmt=data_fmt)
Return summary
summary
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/hypothesis_test_results.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/hypothesis_test_results.py
BSD-3-Clause
def cov(self, orth=False): """ Compute asymptotic standard errors for impulse response coefficients Notes ----- Lütkepohl eq 3.7.5 Returns ------- """ if orth: return self._orth_cov() covs = self._empty_covm(self.periods + 1) covs[0] = np.zeros((self.neqs ** 2, self.neqs ** 2)) for i in range(1, self.periods + 1): Gi = self.G[i - 1] covs[i] = Gi @ self.cov_a @ Gi.T return covs
Compute asymptotic standard errors for impulse response coefficients Notes ----- Lütkepohl eq 3.7.5 Returns -------
cov
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/irf.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/irf.py
BSD-3-Clause
def errband_mc(self, orth=False, svar=False, repl=1000, signif=0.05, seed=None, burn=100): """ IRF Monte Carlo integrated error bands """ model = self.model periods = self.periods if svar: return model.sirf_errband_mc(orth=orth, repl=repl, steps=periods, signif=signif, seed=seed, burn=burn, cum=False) else: return model.irf_errband_mc(orth=orth, repl=repl, steps=periods, signif=signif, seed=seed, burn=burn, cum=False)
IRF Monte Carlo integrated error bands
errband_mc
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/irf.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/irf.py
BSD-3-Clause
def err_band_sz1(self, orth=False, svar=False, repl=1000, signif=0.05, seed=None, burn=100, component=None): """ IRF Sims-Zha error band method 1. Assumes symmetric error bands around mean. Parameters ---------- orth : bool, default False Compute orthogonalized impulse responses repl : int, default 1000 Number of MC replications signif : float (0 < signif < 1) Significance level for error bars, defaults to 95% CI seed : int, default None np.random seed burn : int, default 100 Number of initial simulated obs to discard component : neqs x neqs array, default to largest for each Index of column of eigenvector/value to use for each error band Note: period of impulse (t=0) is not included when computing principle component References ---------- Sims, Christopher A., and Tao Zha. 1999. "Error Bands for Impulse Response". Econometrica 67: 1113-1155. """ model = self.model periods = self.periods irfs = self._choose_irfs(orth, svar) neqs = self.neqs irf_resim = model.irf_resim(orth=orth, repl=repl, steps=periods, seed=seed, burn=burn) q = util.norm_signif_level(signif) W, eigva, k =self._eigval_decomp_SZ(irf_resim) if component is not None: if np.shape(component) != (neqs,neqs): raise ValueError("Component array must be " + str(neqs) + " x " + str(neqs)) if np.argmax(component) >= neqs*periods: raise ValueError("Atleast one of the components does not exist") else: k = component # here take the kth column of W, which we determine by finding the largest eigenvalue of the covaraince matrix lower = np.copy(irfs) upper = np.copy(irfs) for i in range(neqs): for j in range(neqs): lower[1:,i,j] = irfs[1:,i,j] + W[i,j,:,k[i,j]]*q*np.sqrt(eigva[i,j,k[i,j]]) upper[1:,i,j] = irfs[1:,i,j] - W[i,j,:,k[i,j]]*q*np.sqrt(eigva[i,j,k[i,j]]) return lower, upper
IRF Sims-Zha error band method 1. Assumes symmetric error bands around mean. Parameters ---------- orth : bool, default False Compute orthogonalized impulse responses repl : int, default 1000 Number of MC replications signif : float (0 < signif < 1) Significance level for error bars, defaults to 95% CI seed : int, default None np.random seed burn : int, default 100 Number of initial simulated obs to discard component : neqs x neqs array, default to largest for each Index of column of eigenvector/value to use for each error band Note: period of impulse (t=0) is not included when computing principle component References ---------- Sims, Christopher A., and Tao Zha. 1999. "Error Bands for Impulse Response". Econometrica 67: 1113-1155.
err_band_sz1
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/irf.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/irf.py
BSD-3-Clause
def err_band_sz2(self, orth=False, svar=False, repl=1000, signif=0.05, seed=None, burn=100, component=None): """ IRF Sims-Zha error band method 2. This method Does not assume symmetric error bands around mean. Parameters ---------- orth : bool, default False Compute orthogonalized impulse responses repl : int, default 1000 Number of MC replications signif : float (0 < signif < 1) Significance level for error bars, defaults to 95% CI seed : int, default None np.random seed burn : int, default 100 Number of initial simulated obs to discard component : neqs x neqs array, default to largest for each Index of column of eigenvector/value to use for each error band Note: period of impulse (t=0) is not included when computing principle component References ---------- Sims, Christopher A., and Tao Zha. 1999. "Error Bands for Impulse Response". Econometrica 67: 1113-1155. """ model = self.model periods = self.periods irfs = self._choose_irfs(orth, svar) neqs = self.neqs irf_resim = model.irf_resim(orth=orth, repl=repl, steps=periods, seed=seed, burn=100) W, eigva, k = self._eigval_decomp_SZ(irf_resim) if component is not None: if np.shape(component) != (neqs,neqs): raise ValueError("Component array must be " + str(neqs) + " x " + str(neqs)) if np.argmax(component) >= neqs*periods: raise ValueError("Atleast one of the components does not exist") else: k = component gamma = np.zeros((repl, periods+1, neqs, neqs)) for p in range(repl): for i in range(neqs): for j in range(neqs): gamma[p,1:,i,j] = W[i,j,k[i,j],:] * irf_resim[p,1:,i,j] gamma_sort = np.sort(gamma, axis=0) #sort to get quantiles indx = round(signif/2*repl)-1,round((1-signif/2)*repl)-1 lower = np.copy(irfs) upper = np.copy(irfs) for i in range(neqs): for j in range(neqs): lower[:,i,j] = irfs[:,i,j] + gamma_sort[indx[0],:,i,j] upper[:,i,j] = irfs[:,i,j] + gamma_sort[indx[1],:,i,j] return lower, upper
IRF Sims-Zha error band method 2. This method Does not assume symmetric error bands around mean. Parameters ---------- orth : bool, default False Compute orthogonalized impulse responses repl : int, default 1000 Number of MC replications signif : float (0 < signif < 1) Significance level for error bars, defaults to 95% CI seed : int, default None np.random seed burn : int, default 100 Number of initial simulated obs to discard component : neqs x neqs array, default to largest for each Index of column of eigenvector/value to use for each error band Note: period of impulse (t=0) is not included when computing principle component References ---------- Sims, Christopher A., and Tao Zha. 1999. "Error Bands for Impulse Response". Econometrica 67: 1113-1155.
err_band_sz2
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/irf.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/irf.py
BSD-3-Clause
def err_band_sz3(self, orth=False, svar=False, repl=1000, signif=0.05, seed=None, burn=100, component=None): """ IRF Sims-Zha error band method 3. Does not assume symmetric error bands around mean. Parameters ---------- orth : bool, default False Compute orthogonalized impulse responses repl : int, default 1000 Number of MC replications signif : float (0 < signif < 1) Significance level for error bars, defaults to 95% CI seed : int, default None np.random seed burn : int, default 100 Number of initial simulated obs to discard component : vector length neqs, default to largest for each Index of column of eigenvector/value to use for each error band Note: period of impulse (t=0) is not included when computing principle component References ---------- Sims, Christopher A., and Tao Zha. 1999. "Error Bands for Impulse Response". Econometrica 67: 1113-1155. """ model = self.model periods = self.periods irfs = self._choose_irfs(orth, svar) neqs = self.neqs irf_resim = model.irf_resim(orth=orth, repl=repl, steps=periods, seed=seed, burn=100) stack = np.zeros((neqs, repl, periods*neqs)) #stack left to right, up and down for p in range(repl): for i in range(neqs): stack[i, p,:] = np.ravel(irf_resim[p,1:,:,i].T) stack_cov=np.zeros((neqs, periods*neqs, periods*neqs)) W = np.zeros((neqs, periods*neqs, periods*neqs)) eigva = np.zeros((neqs, periods*neqs)) k = np.zeros(neqs, dtype=int) if component is not None: if np.size(component) != (neqs): raise ValueError("Component array must be of length " + str(neqs)) if np.argmax(component) >= neqs*periods: raise ValueError("Atleast one of the components does not exist") else: k = component #compute for eigen decomp for each stack for i in range(neqs): stack_cov[i] = np.cov(stack[i],rowvar=0) W[i], eigva[i], k[i] = util.eigval_decomp(stack_cov[i]) gamma = np.zeros((repl, periods+1, neqs, neqs)) for p in range(repl): for j in range(neqs): for i in range(neqs): gamma[p,1:,i,j] = W[j,k[j],i*periods:(i+1)*periods] * irf_resim[p,1:,i,j] if i == neqs-1: gamma[p,1:,i,j] = W[j,k[j],i*periods:] * irf_resim[p,1:,i,j] gamma_sort = np.sort(gamma, axis=0) #sort to get quantiles indx = round(signif/2*repl)-1,round((1-signif/2)*repl)-1 lower = np.copy(irfs) upper = np.copy(irfs) for i in range(neqs): for j in range(neqs): lower[:,i,j] = irfs[:,i,j] + gamma_sort[indx[0],:,i,j] upper[:,i,j] = irfs[:,i,j] + gamma_sort[indx[1],:,i,j] return lower, upper
IRF Sims-Zha error band method 3. Does not assume symmetric error bands around mean. Parameters ---------- orth : bool, default False Compute orthogonalized impulse responses repl : int, default 1000 Number of MC replications signif : float (0 < signif < 1) Significance level for error bars, defaults to 95% CI seed : int, default None np.random seed burn : int, default 100 Number of initial simulated obs to discard component : vector length neqs, default to largest for each Index of column of eigenvector/value to use for each error band Note: period of impulse (t=0) is not included when computing principle component References ---------- Sims, Christopher A., and Tao Zha. 1999. "Error Bands for Impulse Response". Econometrica 67: 1113-1155.
err_band_sz3
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/irf.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/irf.py
BSD-3-Clause
def _eigval_decomp_SZ(self, irf_resim): """ Returns ------- W: array of eigenvectors eigva: list of eigenvalues k: matrix indicating column # of largest eigenvalue for each c_i,j """ neqs = self.neqs periods = self.periods cov_hold = np.zeros((neqs, neqs, periods, periods)) for i in range(neqs): for j in range(neqs): cov_hold[i,j,:,:] = np.cov(irf_resim[:,1:,i,j],rowvar=0) W = np.zeros((neqs, neqs, periods, periods)) eigva = np.zeros((neqs, neqs, periods, 1)) k = np.zeros((neqs, neqs), dtype=int) for i in range(neqs): for j in range(neqs): W[i,j,:,:], eigva[i,j,:,0], k[i,j] = util.eigval_decomp(cov_hold[i,j,:,:]) return W, eigva, k
Returns ------- W: array of eigenvectors eigva: list of eigenvalues k: matrix indicating column # of largest eigenvalue for each c_i,j
_eigval_decomp_SZ
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/irf.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/irf.py
BSD-3-Clause
def cum_effect_cov(self, orth=False): """ Compute asymptotic standard errors for cumulative impulse response coefficients Parameters ---------- orth : bool Notes ----- eq. 3.7.7 (non-orth), 3.7.10 (orth) Returns ------- """ Ik = np.eye(self.neqs) PIk = np.kron(self.P.T, Ik) F = 0. covs = self._empty_covm(self.periods + 1) for i in range(self.periods + 1): if i > 0: F = F + self.G[i - 1] if orth: if i == 0: apiece = 0 else: Bn = np.dot(PIk, F) apiece = Bn @ self.cov_a @ Bn.T Bnbar = np.dot(np.kron(Ik, self.cum_effects[i]), self.H) bpiece = (Bnbar @ self.cov_sig @ Bnbar.T) / self.T covs[i] = apiece + bpiece else: if i == 0: covs[i] = np.zeros((self.neqs**2, self.neqs**2)) continue covs[i] = F @ self.cov_a @ F.T return covs
Compute asymptotic standard errors for cumulative impulse response coefficients Parameters ---------- orth : bool Notes ----- eq. 3.7.7 (non-orth), 3.7.10 (orth) Returns -------
cum_effect_cov
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/irf.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/irf.py
BSD-3-Clause
def cum_errband_mc(self, orth=False, repl=1000, signif=0.05, seed=None, burn=100): """ IRF Monte Carlo integrated error bands of cumulative effect """ model = self.model periods = self.periods return model.irf_errband_mc(orth=orth, repl=repl, steps=periods, signif=signif, seed=seed, burn=burn, cum=True)
IRF Monte Carlo integrated error bands of cumulative effect
cum_errband_mc
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/irf.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/irf.py
BSD-3-Clause
def lr_effect_cov(self, orth=False): """ Returns ------- """ lre = self.lr_effects Finfty = np.kron(np.tile(lre.T, self.lags), lre) Ik = np.eye(self.neqs) if orth: Binf = np.dot(np.kron(self.P.T, np.eye(self.neqs)), Finfty) Binfbar = np.dot(np.kron(Ik, lre), self.H) return (Binf @ self.cov_a @ Binf.T + Binfbar @ self.cov_sig @ Binfbar.T) else: return Finfty @ self.cov_a @ Finfty.T
Returns -------
lr_effect_cov
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/irf.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/irf.py
BSD-3-Clause
def fit(self, A_guess=None, B_guess=None, maxlags=None, method='ols', ic=None, trend='c', verbose=False, s_method='mle', solver="bfgs", override=False, maxiter=500, maxfun=500): """ Fit the SVAR model and solve for structural parameters Parameters ---------- A_guess : array_like, optional A vector of starting values for all parameters to be estimated in A. B_guess : array_like, optional A vector of starting values for all parameters to be estimated in B. maxlags : int Maximum number of lags to check for order selection, defaults to 12 * (nobs/100.)**(1./4), see select_order function method : {'ols'} Estimation method to use ic : {'aic', 'fpe', 'hqic', 'bic', None} Information criterion to use for VAR order selection. aic : Akaike fpe : Final prediction error hqic : Hannan-Quinn bic : Bayesian a.k.a. Schwarz verbose : bool, default False Print order selection output to the screen trend, str {"c", "ct", "ctt", "n"} "c" - add constant "ct" - constant and trend "ctt" - constant, linear and quadratic trend "n" - co constant, no trend Note that these are prepended to the columns of the dataset. s_method : {'mle'} Estimation method for structural parameters solver : {'nm', 'newton', 'bfgs', 'cg', 'ncg', 'powell'} Solution method See statsmodels.base for details override : bool, default False If True, returns estimates of A and B without checking order or rank condition maxiter : int, default 500 Number of iterations to perform in solution method maxfun : int Number of function evaluations to perform Notes ----- Lütkepohl pp. 146-153 Hamilton pp. 324-336 Returns ------- est : SVARResults """ lags = maxlags if ic is not None: selections = self.select_order(maxlags=maxlags, verbose=verbose) if ic not in selections: raise ValueError("%s not recognized, must be among %s" % (ic, sorted(selections))) lags = selections[ic] if verbose: print('Using %d based on %s criterion' % (lags, ic)) else: if lags is None: lags = 1 self.nobs = len(self.endog) - lags # initialize starting parameters start_params = self._get_init_params(A_guess, B_guess) return self._estimate_svar(start_params, lags, trend=trend, solver=solver, override=override, maxiter=maxiter, maxfun=maxfun)
Fit the SVAR model and solve for structural parameters Parameters ---------- A_guess : array_like, optional A vector of starting values for all parameters to be estimated in A. B_guess : array_like, optional A vector of starting values for all parameters to be estimated in B. maxlags : int Maximum number of lags to check for order selection, defaults to 12 * (nobs/100.)**(1./4), see select_order function method : {'ols'} Estimation method to use ic : {'aic', 'fpe', 'hqic', 'bic', None} Information criterion to use for VAR order selection. aic : Akaike fpe : Final prediction error hqic : Hannan-Quinn bic : Bayesian a.k.a. Schwarz verbose : bool, default False Print order selection output to the screen trend, str {"c", "ct", "ctt", "n"} "c" - add constant "ct" - constant and trend "ctt" - constant, linear and quadratic trend "n" - co constant, no trend Note that these are prepended to the columns of the dataset. s_method : {'mle'} Estimation method for structural parameters solver : {'nm', 'newton', 'bfgs', 'cg', 'ncg', 'powell'} Solution method See statsmodels.base for details override : bool, default False If True, returns estimates of A and B without checking order or rank condition maxiter : int, default 500 Number of iterations to perform in solution method maxfun : int Number of function evaluations to perform Notes ----- Lütkepohl pp. 146-153 Hamilton pp. 324-336 Returns ------- est : SVARResults
fit
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/svar_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/svar_model.py
BSD-3-Clause
def _get_init_params(self, A_guess, B_guess): """ Returns either the given starting or .1 if none are given. """ var_type = self.svar_type.lower() n_masked_a = self.A_mask.sum() if var_type in ['ab', 'a']: if A_guess is None: A_guess = np.array([.1]*n_masked_a) else: if len(A_guess) != n_masked_a: msg = 'len(A_guess) = %s, there are %s parameters in A' raise ValueError(msg % (len(A_guess), n_masked_a)) else: A_guess = [] n_masked_b = self.B_mask.sum() if var_type in ['ab', 'b']: if B_guess is None: B_guess = np.array([.1]*n_masked_b) else: if len(B_guess) != n_masked_b: msg = 'len(B_guess) = %s, there are %s parameters in B' raise ValueError(msg % (len(B_guess), n_masked_b)) else: B_guess = [] return np.r_[A_guess, B_guess]
Returns either the given starting or .1 if none are given.
_get_init_params
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/svar_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/svar_model.py
BSD-3-Clause
def _estimate_svar(self, start_params, lags, maxiter, maxfun, trend='c', solver="nm", override=False): """ lags : int trend : {str, None} As per above """ k_trend = util.get_trendorder(trend) y = self.endog z = util.get_var_endog(y, lags, trend=trend, has_constant='raise') y_sample = y[lags:] # Lutkepohl p75, about 5x faster than stated formula var_params = np.linalg.lstsq(z, y_sample, rcond=-1)[0] resid = y_sample - np.dot(z, var_params) # Unbiased estimate of covariance matrix $\Sigma_u$ of the white noise # process $u$ # equivalent definition # .. math:: \frac{1}{T - Kp - 1} Y^\prime (I_T - Z (Z^\prime Z)^{-1} # Z^\prime) Y # Ref: Lutkepohl p.75 # df_resid right now is T - Kp - 1, which is a suggested correction avobs = len(y_sample) df_resid = avobs - (self.neqs * lags + k_trend) sse = np.dot(resid.T, resid) #TODO: should give users the option to use a dof correction or not omega = sse / df_resid self.sigma_u = omega A, B = self._solve_AB(start_params, override=override, solver=solver, maxiter=maxiter) A_mask = self.A_mask B_mask = self.B_mask return SVARResults(y, z, var_params, omega, lags, names=self.endog_names, trend=trend, dates=self.data.dates, model=self, A=A, B=B, A_mask=A_mask, B_mask=B_mask)
lags : int trend : {str, None} As per above
_estimate_svar
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/svar_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/svar_model.py
BSD-3-Clause
def loglike(self, params): """ Loglikelihood for SVAR model Notes ----- This method assumes that the autoregressive parameters are first estimated, then likelihood with structural parameters is estimated """ #TODO: this does not look robust if A or B is None A = self.A B = self.B A_mask = self.A_mask B_mask = self.B_mask A_len = len(A[A_mask]) B_len = len(B[B_mask]) if A is not None: A[A_mask] = params[:A_len] if B is not None: B[B_mask] = params[A_len:A_len+B_len] nobs = self.nobs neqs = self.neqs sigma_u = self.sigma_u W = np.dot(npl.inv(B),A) trc_in = np.dot(np.dot(W.T,W),sigma_u) sign, b_logdet = slogdet(B**2) #numpy 1.4 compat b_slogdet = sign * b_logdet likl = -nobs/2. * (neqs * np.log(2 * np.pi) - np.log(npl.det(A)**2) + b_slogdet + np.trace(trc_in)) return likl
Loglikelihood for SVAR model Notes ----- This method assumes that the autoregressive parameters are first estimated, then likelihood with structural parameters is estimated
loglike
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/svar_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/svar_model.py
BSD-3-Clause
def score(self, AB_mask): """ Return the gradient of the loglike at AB_mask. Parameters ---------- AB_mask : unknown values of A and B matrix concatenated Notes ----- Return numerical gradient """ loglike = self.loglike if AB_mask.ndim > 1: AB_mask = AB_mask.ravel() grad = approx_fprime(AB_mask, loglike, epsilon=1e-8) # workaround shape of grad if only one parameter #9302 if AB_mask.size == 1 and grad.ndim == 2: grad = grad.ravel() return grad
Return the gradient of the loglike at AB_mask. Parameters ---------- AB_mask : unknown values of A and B matrix concatenated Notes ----- Return numerical gradient
score
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/svar_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/svar_model.py
BSD-3-Clause
def hessian(self, AB_mask): """ Returns numerical hessian. """ loglike = self.loglike if AB_mask.ndim > 1: AB_mask = AB_mask.ravel() return approx_hess(AB_mask, loglike)
Returns numerical hessian.
hessian
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/svar_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/svar_model.py
BSD-3-Clause
def _solve_AB(self, start_params, maxiter, override=False, solver='bfgs'): """ Solves for MLE estimate of structural parameters Parameters ---------- override : bool, default False If True, returns estimates of A and B without checking order or rank condition solver : str or None, optional Solver to be used. The default is 'nm' (Nelder-Mead). Other choices are 'bfgs', 'newton' (Newton-Raphson), 'cg' conjugate, 'ncg' (non-conjugate gradient), and 'powell'. maxiter : int, optional The maximum number of iterations. Default is 500. Returns ------- A_solve, B_solve: ML solutions for A, B matrices """ #TODO: this could stand a refactor A_mask = self.A_mask B_mask = self.B_mask A = self.A B = self.B A_len = len(A[A_mask]) A[A_mask] = start_params[:A_len] B[B_mask] = start_params[A_len:] if not override: J = self._compute_J(A, B) self.check_order(J) self.check_rank(J) else: #TODO: change to a warning? print("Order/rank conditions have not been checked") if solver == "bfgs": kwargs = {"gtol": 1e-5} else: kwargs = {} retvals = super().fit(start_params=start_params, method=solver, maxiter=maxiter, disp=False, **kwargs).params if retvals.ndim > 1: retvals = retvals.ravel() A[A_mask] = retvals[:A_len] B[B_mask] = retvals[A_len:] return A, B
Solves for MLE estimate of structural parameters Parameters ---------- override : bool, default False If True, returns estimates of A and B without checking order or rank condition solver : str or None, optional Solver to be used. The default is 'nm' (Nelder-Mead). Other choices are 'bfgs', 'newton' (Newton-Raphson), 'cg' conjugate, 'ncg' (non-conjugate gradient), and 'powell'. maxiter : int, optional The maximum number of iterations. Default is 500. Returns ------- A_solve, B_solve: ML solutions for A, B matrices
_solve_AB
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/svar_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/svar_model.py
BSD-3-Clause
def orth_ma_rep(self, maxn=10, P=None): """ Unavailable for SVAR """ raise NotImplementedError
Unavailable for SVAR
orth_ma_rep
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/svar_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/svar_model.py
BSD-3-Clause
def svar_ma_rep(self, maxn=10, P=None): """ Compute Structural MA coefficient matrices using MLE of A, B """ if P is None: A_solve = self.A_solve B_solve = self.B_solve P = np.dot(npl.inv(A_solve), B_solve) ma_mats = self.ma_rep(maxn=maxn) return np.array([np.dot(coefs, P) for coefs in ma_mats])
Compute Structural MA coefficient matrices using MLE of A, B
svar_ma_rep
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/svar_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/svar_model.py
BSD-3-Clause
def irf(self, periods=10, var_order=None): """ Analyze structural impulse responses to shocks in system Parameters ---------- periods : int Returns ------- irf : IRAnalysis """ A = self.A B= self.B P = np.dot(npl.inv(A), B) return IRAnalysis(self, P=P, periods=periods, svar=True)
Analyze structural impulse responses to shocks in system Parameters ---------- periods : int Returns ------- irf : IRAnalysis
irf
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/svar_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/svar_model.py
BSD-3-Clause
def sirf_errband_mc(self, orth=False, repl=1000, steps=10, signif=0.05, seed=None, burn=100, cum=False): """ Compute Monte Carlo integrated error bands assuming normally distributed for impulse response functions Parameters ---------- orth : bool, default False Compute orthogonalized impulse response error bands repl : int number of Monte Carlo replications to perform steps : int, default 10 number of impulse response periods signif : float (0 < signif <1) Significance level for error bars, defaults to 95% CI seed : int np.random.seed for replications burn : int number of initial observations to discard for simulation cum : bool, default False produce cumulative irf error bands Notes ----- Lütkepohl (2005) Appendix D Returns ------- Tuple of lower and upper arrays of ma_rep monte carlo standard errors """ neqs = self.neqs k_ar = self.k_ar coefs = self.coefs sigma_u = self.sigma_u intercept = self.intercept nobs = self.nobs ma_coll = np.zeros((repl, steps + 1, neqs, neqs)) A = self.A B = self.B A_mask = self.A_mask B_mask = self.B_mask A_pass = self.model.A_original B_pass = self.model.B_original s_type = self.model.svar_type g_list = [] def agg(impulses): if cum: return impulses.cumsum(axis=0) return impulses opt_A = A[A_mask] opt_B = B[B_mask] for i in range(repl): # discard first hundred to correct for starting bias sim = util.varsim(coefs, intercept, sigma_u, seed=seed, steps=nobs + burn) sim = sim[burn:] smod = SVAR(sim, svar_type=s_type, A=A_pass, B=B_pass) if i == 10: # Use first 10 to update starting val for remainder of fits mean_AB = np.mean(g_list, axis=0) split = len(A[A_mask]) opt_A = mean_AB[:split] opt_B = mean_AB[split:] sres = smod.fit(maxlags=k_ar, A_guess=opt_A, B_guess=opt_B) if i < 10: # save estimates for starting val if in first 10 g_list.append(np.append(sres.A[A_mask].tolist(), sres.B[B_mask].tolist())) ma_coll[i] = agg(sres.svar_ma_rep(maxn=steps)) ma_sort = np.sort(ma_coll, axis=0) # sort to get quantiles index = (int(round(signif / 2 * repl) - 1), int(round((1 - signif / 2) * repl) - 1)) lower = ma_sort[index[0], :, :, :] upper = ma_sort[index[1], :, :, :] return lower, upper
Compute Monte Carlo integrated error bands assuming normally distributed for impulse response functions Parameters ---------- orth : bool, default False Compute orthogonalized impulse response error bands repl : int number of Monte Carlo replications to perform steps : int, default 10 number of impulse response periods signif : float (0 < signif <1) Significance level for error bars, defaults to 95% CI seed : int np.random.seed for replications burn : int number of initial observations to discard for simulation cum : bool, default False produce cumulative irf error bands Notes ----- Lütkepohl (2005) Appendix D Returns ------- Tuple of lower and upper arrays of ma_rep monte carlo standard errors
sirf_errband_mc
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/svar_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/svar_model.py
BSD-3-Clause
def plot_mts(Y, names=None, index=None): """ Plot multiple time series """ import matplotlib.pyplot as plt k = Y.shape[1] rows, cols = k, 1 fig = plt.figure(figsize=(10, 10)) for j in range(k): ts = Y[:, j] ax = fig.add_subplot(rows, cols, j+1) if index is not None: ax.plot(index, ts) else: ax.plot(ts) if names is not None: ax.set_title(names[j]) return fig
Plot multiple time series
plot_mts
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/plotting.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/plotting.py
BSD-3-Clause
def plot_with_error(y, error, x=None, axes=None, value_fmt='k', error_fmt='k--', alpha=0.05, stderr_type = 'asym'): """ Make plot with optional error bars Parameters ---------- y : error : array or None """ import matplotlib.pyplot as plt if axes is None: axes = plt.gca() x = x if x is not None else lrange(len(y)) def plot_action(y, fmt): return axes.plot(x, y, fmt) plot_action(y, value_fmt) #changed this if error is not None: if stderr_type == 'asym': q = util.norm_signif_level(alpha) plot_action(y - q * error, error_fmt) plot_action(y + q * error, error_fmt) if stderr_type in ('mc','sz1','sz2','sz3'): plot_action(error[0], error_fmt) plot_action(error[1], error_fmt)
Make plot with optional error bars Parameters ---------- y : error : array or None
plot_with_error
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/plotting.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/plotting.py
BSD-3-Clause
def plot_full_acorr(acorr, fontsize=8, linewidth=8, xlabel=None, err_bound=None): """ Parameters ---------- """ import matplotlib.pyplot as plt config = MPLConfigurator() config.set_fontsize(fontsize) k = acorr.shape[1] fig, axes = plt.subplots(k, k, figsize=(10, 10), squeeze=False) for i in range(k): for j in range(k): ax = axes[i][j] acorr_plot(acorr[:, i, j], linewidth=linewidth, xlabel=xlabel, ax=ax) if err_bound is not None: ax.axhline(err_bound, color='k', linestyle='--') ax.axhline(-err_bound, color='k', linestyle='--') adjust_subplots() config.revert() return fig
Parameters ----------
plot_full_acorr
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/plotting.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/plotting.py
BSD-3-Clause
def irf_grid_plot(values, stderr, impcol, rescol, names, title, signif=0.05, hlines=None, subplot_params=None, plot_params=None, figsize=(10,10), stderr_type='asym'): """ Reusable function to make flexible grid plots of impulse responses and comulative effects values : (T + 1) x k x k stderr : T x k x k hlines : k x k """ import matplotlib.pyplot as plt if subplot_params is None: subplot_params = {} if plot_params is None: plot_params = {} nrows, ncols, to_plot = _get_irf_plot_config(names, impcol, rescol) fig, axes = plt.subplots(nrows=nrows, ncols=ncols, sharex=True, squeeze=False, figsize=figsize) # fill out space adjust_subplots() fig.suptitle(title, fontsize=14) subtitle_temp = r'%s$\rightarrow$%s' k = len(names) rng = lrange(len(values)) for (j, i, ai, aj) in to_plot: ax = axes[ai][aj] # HACK? if stderr is not None: if stderr_type == 'asym': sig = np.sqrt(stderr[:, j * k + i, j * k + i]) plot_with_error(values[:, i, j], sig, x=rng, axes=ax, alpha=signif, value_fmt='b', stderr_type=stderr_type) if stderr_type in ('mc','sz1','sz2','sz3'): errs = stderr[0][:, i, j], stderr[1][:, i, j] plot_with_error(values[:, i, j], errs, x=rng, axes=ax, alpha=signif, value_fmt='b', stderr_type=stderr_type) else: plot_with_error(values[:, i, j], None, x=rng, axes=ax, value_fmt='b') ax.axhline(0, color='k') if hlines is not None: ax.axhline(hlines[i,j], color='k') sz = subplot_params.get('fontsize', 12) ax.set_title(subtitle_temp % (names[j], names[i]), fontsize=sz) return fig
Reusable function to make flexible grid plots of impulse responses and comulative effects values : (T + 1) x k x k stderr : T x k x k hlines : k x k
irf_grid_plot
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/plotting.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/plotting.py
BSD-3-Clause
def make(self, endog_names=None, exog_names=None): """ Summary of VAR model """ buf = StringIO() buf.write(self._header_table() + '\n') buf.write(self._stats_table() + '\n') buf.write(self._coef_table() + '\n') buf.write(self._resid_info() + '\n') return buf.getvalue()
Summary of VAR model
make
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/output.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/output.py
BSD-3-Clause
def is_stable(coefs, verbose=False): """ Determine stability of VAR(p) system by examining the eigenvalues of the VAR(1) representation Parameters ---------- coefs : ndarray (p x k x k) Returns ------- is_stable : bool """ A_var1 = util.comp_matrix(coefs) eigs = np.linalg.eigvals(A_var1) if verbose: print("Eigenvalues of VAR(1) rep") for val in np.abs(eigs): print(val) return (np.abs(eigs) <= 1).all()
Determine stability of VAR(p) system by examining the eigenvalues of the VAR(1) representation Parameters ---------- coefs : ndarray (p x k x k) Returns ------- is_stable : bool
is_stable
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def var_acf(coefs, sig_u, nlags=None): """ Compute autocovariance function ACF_y(h) up to nlags of stable VAR(p) process Parameters ---------- coefs : ndarray (p x k x k) Coefficient matrices A_i sig_u : ndarray (k x k) Covariance of white noise process u_t nlags : int, optional Defaults to order p of system Notes ----- Ref: Lütkepohl p.28-29 Returns ------- acf : ndarray, (p, k, k) """ p, k, _ = coefs.shape if nlags is None: nlags = p # p x k x k, ACF for lags 0, ..., p-1 result = np.zeros((nlags + 1, k, k)) result[:p] = _var_acf(coefs, sig_u) # yule-walker equations for h in range(p, nlags + 1): # compute ACF for lag=h # G(h) = A_1 G(h-1) + ... + A_p G(h-p) for j in range(p): result[h] += np.dot(coefs[j], result[h - j - 1]) return result
Compute autocovariance function ACF_y(h) up to nlags of stable VAR(p) process Parameters ---------- coefs : ndarray (p x k x k) Coefficient matrices A_i sig_u : ndarray (k x k) Covariance of white noise process u_t nlags : int, optional Defaults to order p of system Notes ----- Ref: Lütkepohl p.28-29 Returns ------- acf : ndarray, (p, k, k)
var_acf
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def _var_acf(coefs, sig_u): """ Compute autocovariance function ACF_y(h) for h=1,...,p Notes ----- Lütkepohl (2005) p.29 """ p, k, k2 = coefs.shape assert k == k2 A = util.comp_matrix(coefs) # construct VAR(1) noise covariance SigU = np.zeros((k * p, k * p)) SigU[:k, :k] = sig_u # vec(ACF) = (I_(kp)^2 - kron(A, A))^-1 vec(Sigma_U) vecACF = np.linalg.solve(np.eye((k * p) ** 2) - np.kron(A, A), vec(SigU)) acf = unvec(vecACF) acf = [acf[:k, k * i : k * (i + 1)] for i in range(p)] acf = np.array(acf) return acf
Compute autocovariance function ACF_y(h) for h=1,...,p Notes ----- Lütkepohl (2005) p.29
_var_acf
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def forecast(y, coefs, trend_coefs, steps, exog=None): """ Produce linear minimum MSE forecast Parameters ---------- y : ndarray (k_ar x neqs) coefs : ndarray (k_ar x neqs x neqs) trend_coefs : ndarray (1 x neqs) or (neqs) steps : int exog : ndarray (trend_coefs.shape[1] x neqs) Returns ------- forecasts : ndarray (steps x neqs) Notes ----- Lütkepohl p. 37 """ coefs = np.asarray(coefs) if coefs.ndim != 3: raise ValueError("coefs must be an array with 3 dimensions") p, k = coefs.shape[:2] if y.shape[0] < p: raise ValueError( f"y must by have at least order ({p}) observations. " f"Got {y.shape[0]}." ) # initial value forcs = np.zeros((steps, k)) if exog is not None and trend_coefs is not None: forcs += np.dot(exog, trend_coefs) # to make existing code (with trend_coefs=intercept and without exog) work: elif exog is None and trend_coefs is not None: forcs += trend_coefs # h=0 forecast should be latest observation # forcs[0] = y[-1] # make indices easier to think about for h in range(1, steps + 1): # y_t(h) = intercept + sum_1^p A_i y_t_(h-i) f = forcs[h - 1] for i in range(1, p + 1): # slightly hackish if h - i <= 0: # e.g. when h=1, h-1 = 0, which is y[-1] prior_y = y[h - i - 1] else: # e.g. when h=2, h-1=1, which is forcs[0] prior_y = forcs[h - i - 1] # i=1 is coefs[0] f = f + np.dot(coefs[i - 1], prior_y) forcs[h - 1] = f return forcs
Produce linear minimum MSE forecast Parameters ---------- y : ndarray (k_ar x neqs) coefs : ndarray (k_ar x neqs x neqs) trend_coefs : ndarray (1 x neqs) or (neqs) steps : int exog : ndarray (trend_coefs.shape[1] x neqs) Returns ------- forecasts : ndarray (steps x neqs) Notes ----- Lütkepohl p. 37
forecast
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def _forecast_vars(steps, ma_coefs, sig_u): """_forecast_vars function used by VECMResults. Note that the definition of the local variable covs is the same as in VARProcess and as such it differs from the one in VARResults! Parameters ---------- steps ma_coefs sig_u Returns ------- """ covs = mse(ma_coefs, sig_u, steps) # Take diagonal for each cov neqs = len(sig_u) inds = np.arange(neqs) return covs[:, inds, inds]
_forecast_vars function used by VECMResults. Note that the definition of the local variable covs is the same as in VARProcess and as such it differs from the one in VARResults! Parameters ---------- steps ma_coefs sig_u Returns -------
_forecast_vars
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def test_normality(results, signif=0.05): """ Test assumption of normal-distributed errors using Jarque-Bera-style omnibus Chi^2 test Parameters ---------- results : VARResults or statsmodels.tsa.vecm.vecm.VECMResults signif : float The test's significance level. Notes ----- H0 (null) : data are generated by a Gaussian-distributed process Returns ------- result : NormalityTestResults References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series* *Analysis*. Springer. .. [2] Kilian, L. & Demiroglu, U. (2000). "Residual-Based Tests for Normality in Autoregressions: Asymptotic Theory and Simulation Evidence." Journal of Business & Economic Statistics """ resid_c = results.resid - results.resid.mean(0) sig = np.dot(resid_c.T, resid_c) / results.nobs Pinv = np.linalg.inv(np.linalg.cholesky(sig)) w = np.dot(Pinv, resid_c.T) b1 = (w**3).sum(1)[:, None] / results.nobs b2 = (w**4).sum(1)[:, None] / results.nobs - 3 lam_skew = results.nobs * np.dot(b1.T, b1) / 6 lam_kurt = results.nobs * np.dot(b2.T, b2) / 24 lam_omni = float(np.squeeze(lam_skew + lam_kurt)) omni_dist = stats.chi2(results.neqs * 2) omni_pvalue = float(omni_dist.sf(lam_omni)) crit_omni = float(omni_dist.ppf(1 - signif)) return NormalityTestResults( lam_omni, crit_omni, omni_pvalue, results.neqs * 2, signif )
Test assumption of normal-distributed errors using Jarque-Bera-style omnibus Chi^2 test Parameters ---------- results : VARResults or statsmodels.tsa.vecm.vecm.VECMResults signif : float The test's significance level. Notes ----- H0 (null) : data are generated by a Gaussian-distributed process Returns ------- result : NormalityTestResults References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series* *Analysis*. Springer. .. [2] Kilian, L. & Demiroglu, U. (2000). "Residual-Based Tests for Normality in Autoregressions: Asymptotic Theory and Simulation Evidence." Journal of Business & Economic Statistics
test_normality
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def predict(self, params, start=None, end=None, lags=1, trend="c"): """ Returns in-sample predictions or forecasts """ params = np.array(params) if start is None: start = lags # Handle start, end ( start, end, out_of_sample, prediction_index, ) = self._get_prediction_index(start, end) if end < start: raise ValueError("end is before start") if end == start + out_of_sample: return np.array([]) k_trend = util.get_trendorder(trend) k = self.neqs k_ar = lags predictedvalues = np.zeros((end + 1 - start + out_of_sample, k)) if k_trend != 0: intercept = params[:k_trend] predictedvalues += intercept y = self.endog x = util.get_var_endog(y, lags, trend=trend, has_constant="raise") fittedvalues = np.dot(x, params) fv_start = start - k_ar pv_end = min(len(predictedvalues), len(fittedvalues) - fv_start) fv_end = min(len(fittedvalues), end - k_ar + 1) predictedvalues[:pv_end] = fittedvalues[fv_start:fv_end] if not out_of_sample: return predictedvalues # fit out of sample y = y[-k_ar:] coefs = params[k_trend:].reshape((k_ar, k, k)).swapaxes(1, 2) predictedvalues[pv_end:] = forecast(y, coefs, intercept, out_of_sample) return predictedvalues
Returns in-sample predictions or forecasts
predict
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def fit( self, maxlags: int | None = None, method="ols", ic=None, trend="c", verbose=False, ): # todo: this code is only supporting deterministic terms as exog. # This means that all exog-variables have lag 0. If dealing with # different exogs is necessary, a `lags_exog`-parameter might make # sense (e.g. a sequence of ints specifying lags). # Alternatively, leading zeros for exog-variables with smaller number # of lags than the maximum number of exog-lags might work. """ Fit the VAR model Parameters ---------- maxlags : {int, None}, default None Maximum number of lags to check for order selection, defaults to 12 * (nobs/100.)**(1./4), see select_order function method : {'ols'} Estimation method to use ic : {'aic', 'fpe', 'hqic', 'bic', None} Information criterion to use for VAR order selection. aic : Akaike fpe : Final prediction error hqic : Hannan-Quinn bic : Bayesian a.k.a. Schwarz verbose : bool, default False Print order selection output to the screen trend : str {"c", "ct", "ctt", "n"} "c" - add constant "ct" - constant and trend "ctt" - constant, linear and quadratic trend "n" - co constant, no trend Note that these are prepended to the columns of the dataset. Returns ------- VARResults Estimation results Notes ----- See Lütkepohl pp. 146-153 for implementation details. """ lags = maxlags if trend not in ["c", "ct", "ctt", "n"]: raise ValueError(f"trend '{trend}' not supported for VAR") if ic is not None: selections = self.select_order(maxlags=maxlags) if not hasattr(selections, ic): raise ValueError( "%s not recognized, must be among %s" % (ic, sorted(selections)) ) lags = getattr(selections, ic) if verbose: print(selections) print("Using %d based on %s criterion" % (lags, ic)) else: if lags is None: lags = 1 k_trend = util.get_trendorder(trend) orig_exog_names = self.exog_names self.exog_names = util.make_lag_names(self.endog_names, lags, k_trend) self.nobs = self.n_totobs - lags # add exog to data.xnames (necessary because the length of xnames also # determines the allowed size of VARResults.params) if self.exog is not None: if orig_exog_names: x_names_to_add = orig_exog_names else: x_names_to_add = [("exog%d" % i) for i in range(self.exog.shape[1])] self.data.xnames = ( self.data.xnames[:k_trend] + x_names_to_add + self.data.xnames[k_trend:] ) self.data.cov_names = pd.MultiIndex.from_product( (self.data.xnames, self.data.ynames) ) return self._estimate_var(lags, trend=trend)
Fit the VAR model Parameters ---------- maxlags : {int, None}, default None Maximum number of lags to check for order selection, defaults to 12 * (nobs/100.)**(1./4), see select_order function method : {'ols'} Estimation method to use ic : {'aic', 'fpe', 'hqic', 'bic', None} Information criterion to use for VAR order selection. aic : Akaike fpe : Final prediction error hqic : Hannan-Quinn bic : Bayesian a.k.a. Schwarz verbose : bool, default False Print order selection output to the screen trend : str {"c", "ct", "ctt", "n"} "c" - add constant "ct" - constant and trend "ctt" - constant, linear and quadratic trend "n" - co constant, no trend Note that these are prepended to the columns of the dataset. Returns ------- VARResults Estimation results Notes ----- See Lütkepohl pp. 146-153 for implementation details.
fit
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def _estimate_var(self, lags, offset=0, trend="c"): """ lags : int Lags of the endogenous variable. offset : int Periods to drop from beginning-- for order selection so it's an apples-to-apples comparison trend : {str, None} As per above """ # have to do this again because select_order does not call fit self.k_trend = k_trend = util.get_trendorder(trend) if offset < 0: # pragma: no cover raise ValueError("offset must be >= 0") nobs = self.n_totobs - lags - offset endog = self.endog[offset:] exog = None if self.exog is None else self.exog[offset:] z = util.get_var_endog(endog, lags, trend=trend, has_constant="raise") if exog is not None: # TODO: currently only deterministic terms supported (exoglags==0) # and since exoglags==0, x will be an array of size 0. x = util.get_var_endog(exog[-nobs:], 0, trend="n", has_constant="raise") x_inst = exog[-nobs:] x = np.column_stack((x, x_inst)) del x_inst # free memory temp_z = z z = np.empty((x.shape[0], x.shape[1] + z.shape[1])) z[:, : self.k_trend] = temp_z[:, : self.k_trend] z[:, self.k_trend : self.k_trend + x.shape[1]] = x z[:, self.k_trend + x.shape[1] :] = temp_z[:, self.k_trend :] del temp_z, x # free memory # the following modification of z is necessary to get the same results # as JMulTi for the constant-term-parameter... for i in range(self.k_trend): if (np.diff(z[:, i]) == 1).all(): # modify the trend-column z[:, i] += lags # make the same adjustment for the quadratic term if (np.diff(np.sqrt(z[:, i])) == 1).all(): z[:, i] = (np.sqrt(z[:, i]) + lags) ** 2 y_sample = endog[lags:] # Lütkepohl p75, about 5x faster than stated formula params = np.linalg.lstsq(z, y_sample, rcond=1e-15)[0] resid = y_sample - np.dot(z, params) # Unbiased estimate of covariance matrix $\Sigma_u$ of the white noise # process $u$ # equivalent definition # .. math:: \frac{1}{T - Kp - 1} Y^\prime (I_T - Z (Z^\prime Z)^{-1} # Z^\prime) Y # Ref: Lütkepohl p.75 # df_resid right now is T - Kp - 1, which is a suggested correction avobs = len(y_sample) if exog is not None: k_trend += exog.shape[1] df_resid = avobs - (self.neqs * lags + k_trend) sse = np.dot(resid.T, resid) if df_resid: omega = sse / df_resid else: omega = np.full_like(sse, np.nan) varfit = VARResults( endog, z, params, omega, lags, names=self.endog_names, trend=trend, dates=self.data.dates, model=self, exog=self.exog, ) return VARResultsWrapper(varfit)
lags : int Lags of the endogenous variable. offset : int Periods to drop from beginning-- for order selection so it's an apples-to-apples comparison trend : {str, None} As per above
_estimate_var
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def select_order(self, maxlags=None, trend="c"): """ Compute lag order selections based on each of the available information criteria Parameters ---------- maxlags : int if None, defaults to 12 * (nobs/100.)**(1./4) trend : str {"n", "c", "ct", "ctt"} * "n" - no deterministic terms * "c" - constant term * "ct" - constant and linear term * "ctt" - constant, linear, and quadratic term Returns ------- selections : LagOrderResults """ ntrend = len(trend) if trend.startswith("c") else 0 max_estimable = (self.n_totobs - self.neqs - ntrend) // (1 + self.neqs) if maxlags is None: maxlags = int(round(12 * (len(self.endog) / 100.0) ** (1 / 4.0))) # TODO: This expression shows up in a bunch of places, but # in some it is `int` and in others `np.ceil`. Also in some # it multiplies by 4 instead of 12. Let's put these all in # one place and document when to use which variant. # Ensure enough obs to estimate model with maxlags maxlags = min(maxlags, max_estimable) else: if maxlags > max_estimable: raise ValueError( "maxlags is too large for the number of observations and " "the number of equations. The largest model cannot be " "estimated." ) ics = defaultdict(list) p_min = 0 if self.exog is not None or trend != "n" else 1 for p in range(p_min, maxlags + 1): # exclude some periods to same amount of data used for each lag # order result = self._estimate_var(p, offset=maxlags - p, trend=trend) for k, v in result.info_criteria.items(): ics[k].append(v) selected_orders = {k: np.array(v).argmin() + p_min for k, v in ics.items()} return LagOrderResults(ics, selected_orders, vecm=False)
Compute lag order selections based on each of the available information criteria Parameters ---------- maxlags : int if None, defaults to 12 * (nobs/100.)**(1./4) trend : str {"n", "c", "ct", "ctt"} * "n" - no deterministic terms * "c" - constant term * "ct" - constant and linear term * "ctt" - constant, linear, and quadratic term Returns ------- selections : LagOrderResults
select_order
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def from_formula(cls, formula, data, subset=None, drop_cols=None, *args, **kwargs): """ Not implemented. Formulas are not supported for VAR models. """ raise NotImplementedError("formulas are not supported for VAR models.")
Not implemented. Formulas are not supported for VAR models.
from_formula
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def get_eq_index(self, name): """Return integer position of requested equation name""" return util.get_index(self.names, name)
Return integer position of requested equation name
get_eq_index
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def is_stable(self, verbose=False): """Determine stability based on model coefficients Parameters ---------- verbose : bool Print eigenvalues of the VAR(1) companion Notes ----- Checks if det(I - Az) = 0 for any mod(z) <= 1, so all the eigenvalues of the companion matrix must lie outside the unit circle """ return is_stable(self.coefs, verbose=verbose)
Determine stability based on model coefficients Parameters ---------- verbose : bool Print eigenvalues of the VAR(1) companion Notes ----- Checks if det(I - Az) = 0 for any mod(z) <= 1, so all the eigenvalues of the companion matrix must lie outside the unit circle
is_stable
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def simulate_var( self, steps=None, offset=None, seed=None, initial_values=None, nsimulations=None ): """ simulate the VAR(p) process for the desired number of steps Parameters ---------- steps : None or int number of observations to simulate, this includes the initial observations to start the autoregressive process. If offset is not None, then exog of the model are used if they were provided in the model offset : None or ndarray (steps, neqs) If not None, then offset is added as an observation specific intercept to the autoregression. If it is None and either trend (including intercept) or exog were used in the VAR model, then the linear predictor of those components will be used as offset. This should have the same number of rows as steps, and the same number of columns as endogenous variables (neqs). seed : {None, int} If seed is not None, then it will be used with for the random variables generated by numpy.random. initial_values : array_like, optional Initial values for use in the simulation. Shape should be (nlags, neqs) or (neqs,). Values should be ordered from less to most recent. Note that this values will be returned by the simulation as the first values of `endog_simulated` and they will count for the total number of steps. nsimulations : {None, int} Number of simulations to perform. If `nsimulations` is None it will perform one simulation and return value will have shape (steps, neqs). Returns ------- endog_simulated : nd_array Endog of the simulated VAR process. Shape will be (nsimulations, steps, neqs) or (steps, neqs) if `nsimulations` is None. """ steps_ = None if offset is None: if self.k_exog_user > 0 or self.k_trend > 1: # if more than intercept # endog_lagged contains all regressors, trend, exog_user # and lagged endog, trimmed initial observations offset = self.endog_lagged[:, : self.k_exog].dot(self.coefs_exog.T) steps_ = self.endog_lagged.shape[0] else: offset = self.intercept else: steps_ = offset.shape[0] # default, but over written if exog or offset are used if steps is None: if steps_ is None: steps = 1000 else: steps = steps_ else: if steps_ is not None and steps != steps_: raise ValueError( "if exog or offset are used, then steps must" "be equal to their length or None" ) y = util.varsim( self.coefs, offset, self.sigma_u, steps=steps, seed=seed, initial_values=initial_values, nsimulations=nsimulations, ) return y
simulate the VAR(p) process for the desired number of steps Parameters ---------- steps : None or int number of observations to simulate, this includes the initial observations to start the autoregressive process. If offset is not None, then exog of the model are used if they were provided in the model offset : None or ndarray (steps, neqs) If not None, then offset is added as an observation specific intercept to the autoregression. If it is None and either trend (including intercept) or exog were used in the VAR model, then the linear predictor of those components will be used as offset. This should have the same number of rows as steps, and the same number of columns as endogenous variables (neqs). seed : {None, int} If seed is not None, then it will be used with for the random variables generated by numpy.random. initial_values : array_like, optional Initial values for use in the simulation. Shape should be (nlags, neqs) or (neqs,). Values should be ordered from less to most recent. Note that this values will be returned by the simulation as the first values of `endog_simulated` and they will count for the total number of steps. nsimulations : {None, int} Number of simulations to perform. If `nsimulations` is None it will perform one simulation and return value will have shape (steps, neqs). Returns ------- endog_simulated : nd_array Endog of the simulated VAR process. Shape will be (nsimulations, steps, neqs) or (steps, neqs) if `nsimulations` is None.
simulate_var
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def plotsim(self, steps=None, offset=None, seed=None): """ Plot a simulation from the VAR(p) process for the desired number of steps """ y = self.simulate_var(steps=steps, offset=offset, seed=seed) return plotting.plot_mts(y)
Plot a simulation from the VAR(p) process for the desired number of steps
plotsim
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def _char_mat(self): """Characteristic matrix of the VAR""" return np.eye(self.neqs) - self.coefs.sum(0)
Characteristic matrix of the VAR
_char_mat
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def acf(self, nlags=None): """Compute theoretical autocovariance function Returns ------- acf : ndarray (p x k x k) """ return var_acf(self.coefs, self.sigma_u, nlags=nlags)
Compute theoretical autocovariance function Returns ------- acf : ndarray (p x k x k)
acf
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def acorr(self, nlags=None): """ Autocorrelation function Parameters ---------- nlags : int or None The number of lags to include in the autocovariance function. The default is the number of lags included in the model. Returns ------- acorr : ndarray Autocorrelation and cross correlations (nlags, neqs, neqs) """ return util.acf_to_acorr(self.acf(nlags=nlags))
Autocorrelation function Parameters ---------- nlags : int or None The number of lags to include in the autocovariance function. The default is the number of lags included in the model. Returns ------- acorr : ndarray Autocorrelation and cross correlations (nlags, neqs, neqs)
acorr
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def plot_acorr(self, nlags=10, linewidth=8): """Plot theoretical autocorrelation function""" fig = plotting.plot_full_acorr(self.acorr(nlags=nlags), linewidth=linewidth) return fig
Plot theoretical autocorrelation function
plot_acorr
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def forecast(self, y, steps, exog_future=None): """Produce linear minimum MSE forecasts for desired number of steps ahead, using prior values y Parameters ---------- y : ndarray (p x k) steps : int Returns ------- forecasts : ndarray (steps x neqs) Notes ----- Lütkepohl pp 37-38 """ if self.exog is None and exog_future is not None: raise ValueError( "No exog in model, so no exog_future supported " "in forecast method." ) if self.exog is not None and exog_future is None: raise ValueError( "Please provide an exog_future argument to " "the forecast method." ) exog_future = array_like(exog_future, "exog_future", optional=True, ndim=2) if exog_future is not None: if exog_future.shape[0] != steps: err_msg = f"""\ exog_future only has {exog_future.shape[0]} observations. It must have \ steps ({steps}) observations. """ raise ValueError(err_msg) trend_coefs = None if self.coefs_exog.size == 0 else self.coefs_exog.T exogs = [] if self.trend.startswith("c"): # constant term exogs.append(np.ones(steps)) exog_lin_trend = np.arange(self.n_totobs + 1, self.n_totobs + 1 + steps) if "t" in self.trend: exogs.append(exog_lin_trend) if "tt" in self.trend: exogs.append(exog_lin_trend**2) if exog_future is not None: exogs.append(exog_future) if not exogs: exog_future = None else: exog_future = np.column_stack(exogs) return forecast(y, self.coefs, trend_coefs, steps, exog_future)
Produce linear minimum MSE forecasts for desired number of steps ahead, using prior values y Parameters ---------- y : ndarray (p x k) steps : int Returns ------- forecasts : ndarray (steps x neqs) Notes ----- Lütkepohl pp 37-38
forecast
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def forecast_interval(self, y, steps, alpha=0.05, exog_future=None): """ Construct forecast interval estimates assuming the y are Gaussian Parameters ---------- y : {ndarray, None} The initial values to use for the forecasts. If None, the last k_ar values of the original endogenous variables are used. steps : int Number of steps ahead to forecast alpha : float, optional The significance level for the confidence intervals. exog_future : ndarray, optional Forecast values of the exogenous variables. Should include constant, trend, etc. as needed, including extrapolating out of sample. Returns ------- point : ndarray Mean value of forecast lower : ndarray Lower bound of confidence interval upper : ndarray Upper bound of confidence interval Notes ----- Lütkepohl pp. 39-40 """ if not 0 < alpha < 1: raise ValueError("alpha must be between 0 and 1") q = util.norm_signif_level(alpha) point_forecast = self.forecast(y, steps, exog_future=exog_future) sigma = np.sqrt(self._forecast_vars(steps)) forc_lower = point_forecast - q * sigma forc_upper = point_forecast + q * sigma return point_forecast, forc_lower, forc_upper
Construct forecast interval estimates assuming the y are Gaussian Parameters ---------- y : {ndarray, None} The initial values to use for the forecasts. If None, the last k_ar values of the original endogenous variables are used. steps : int Number of steps ahead to forecast alpha : float, optional The significance level for the confidence intervals. exog_future : ndarray, optional Forecast values of the exogenous variables. Should include constant, trend, etc. as needed, including extrapolating out of sample. Returns ------- point : ndarray Mean value of forecast lower : ndarray Lower bound of confidence interval upper : ndarray Upper bound of confidence interval Notes ----- Lütkepohl pp. 39-40
forecast_interval
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause