code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def load_results_jmulti(dataset, dt_s_list):
"""
Parameters
----------
dataset : module
A data module in the statsmodels/datasets directory that defines a
__str__() method returning the dataset's name.
dt_s_list : list
A list of strings where each string represents a combination of
deterministic terms.
Returns
-------
result : dict
A dict (keys: tuples of deterministic terms and seasonal terms)
of dicts (keys: strings "est" (for estimators),
"se" (for standard errors),
"t" (for t-values),
"p" (for p-values))
of dicts (keys: strings "alpha", "beta", "Gamma" and other results)
"""
source = "jmulti"
results_dict_per_det_terms = dict.fromkeys(dt_s_list)
for dt_s in dt_s_list:
dt_string = dt_s_tup_to_string(dt_s)
params_file = dataset.__str__()+"_"+source+"_"+dt_string+".txt"
params_file = os.path.join(here, params_file)
# sections in jmulti output:
section_headers = ["Lagged endogenous term", # parameter matrices
"Deterministic term"] # c, s, ct
if dt_string == "nc":
del section_headers[-1]
results = dict()
results["est"] = dict.fromkeys(section_headers)
results["se"] = dict.fromkeys(section_headers)
results["t"] = dict.fromkeys(section_headers)
results["p"] = dict.fromkeys(section_headers)
result = []
result_se = []
result_t = []
result_p = []
rows = 0
started_reading_section = False
start_end_mark = "-----"
# ---------------------------------------------------------------------
# parse information about \alpha, \beta, \Gamma, deterministic of VECM
# and A_i and deterministic of corresponding VAR:
section = -1
params_file = open(params_file, encoding='latin_1')
for line in params_file:
if section == -1 and section_headers[section+1] not in line:
continue
if section < len(section_headers)-1 \
and section_headers[section+1] in line: # new section
section += 1
continue
if not started_reading_section:
if line.startswith(start_end_mark):
started_reading_section = True
continue
if started_reading_section:
if line.startswith(start_end_mark):
if result == []: # no values collected in section "Legend"
started_reading_section = False
continue
results["est"][section_headers[section]] = np.column_stack(
result)
result = []
results["se"][section_headers[section]] = np.column_stack(
result_se)
result_se = []
results["t"][section_headers[section]] = np.column_stack(
result_t)
result_t = []
results["p"][section_headers[section]] = np.column_stack(
result_p)
result_p = []
started_reading_section = False
continue
str_number = r"-?\d+\.\d{3}"
regex_est = re.compile(str_number + r"[^\)\]\}]")
est_col = re.findall(regex_est, line)
# standard errors in parantheses in JMulTi output:
regex_se = re.compile(r"\(" + str_number + r"\)")
se_col = re.findall(regex_se, line)
# t-values in brackets in JMulTi output:
regex_t_value = re.compile(r"\[" + str_number + r"\]")
t_col = re.findall(regex_t_value, line)
# p-values in braces in JMulTi output:
regex_p_value = re.compile(r"\{" + str_number + r"\}")
p_col = re.findall(regex_p_value, line)
if result == [] and est_col != []:
rows = len(est_col)
if est_col != []:
est_col = [float(el) for el in est_col]
result.append(est_col)
elif se_col != []:
for i in range(rows):
se_col[i] = se_col[i].replace("(", "").replace(")", "")
se_col = [float(el) for el in se_col]
result_se.append(se_col)
elif t_col != []:
for i in range(rows):
t_col[i] = t_col[i].replace("[", "").replace("]", "")
t_col = [float(el) for el in t_col]
result_t.append(t_col)
elif p_col != []:
for i in range(rows):
p_col[i] = p_col[i].replace("{", "").replace("}", "")
p_col = [float(el) for el in p_col]
result_p.append(p_col)
params_file.close()
# ---------------------------------------------------------------------
# parse information regarding \Sigma_u
sigmau_file = dataset.__str__() + "_" + source + "_" + dt_string \
+ "_Sigmau" + ".txt"
sigmau_file = os.path.join(here, sigmau_file)
rows_to_parse = 0
# all numbers of Sigma_u in notation with e (e.g. 2.283862e-05)
regex_est = re.compile(r"\s+\S+e\S+")
sigmau_section_reached = False
sigmau_file = open(sigmau_file, encoding='latin_1')
for line in sigmau_file:
if line.startswith("Log Likelihood:"):
line = line[len("Log Likelihood:"):]
results["log_like"] = float(re.findall(regex_est, line)[0])
continue
if not sigmau_section_reached and "Covariance:" not in line:
continue
if "Covariance:" in line:
sigmau_section_reached = True
row = re.findall(regex_est, line)
rows_to_parse = len(row) # Sigma_u quadratic ==> #rows==#cols
sigma_u = np.empty((rows_to_parse, rows_to_parse))
row = re.findall(regex_est, line)
rows_to_parse -= 1
sigma_u[rows_to_parse] = row # rows are added in reverse order...
if rows_to_parse == 0:
break
sigmau_file.close()
results["est"]["Sigma_u"] = sigma_u[::-1] # ...and reversed again here
# ---------------------------------------------------------------------
# parse forecast related output:
fc_file = dataset.__str__() + "_" + source + "_" + dt_string \
+ "_fc5" + ".txt"
fc_file = os.path.join(here, fc_file)
fc, lower, upper, plu_min = [], [], [], []
fc_file = open(fc_file, encoding='latin_1')
for line in fc_file:
str_number = r"(\s+-?\d+\.\d{3}\s*)"
regex_number = re.compile(str_number)
numbers = re.findall(regex_number, line)
if numbers == []:
continue
fc.append(float(numbers[0]))
lower.append(float(numbers[1]))
upper.append(float(numbers[2]))
plu_min.append(float(numbers[3]))
fc_file.close()
neqs = len(results["est"]["Sigma_u"])
fc = np.hstack(np.vsplit(np.array(fc)[:, None], neqs))
lower = np.hstack(np.vsplit(np.array(lower)[:, None], neqs))
upper = np.hstack(np.vsplit(np.array(upper)[:, None], neqs))
results["fc"] = dict.fromkeys(["fc", "lower", "upper"])
results["fc"]["fc"] = fc
results["fc"]["lower"] = lower
results["fc"]["upper"] = upper
# ---------------------------------------------------------------------
# parse output related to Granger-caus. and instantaneous causality:
results["granger_caus"] = dict.fromkeys(["p", "test_stat"])
results["granger_caus"]["p"] = dict()
results["granger_caus"]["test_stat"] = dict()
results["inst_caus"] = dict.fromkeys(["p", "test_stat"])
results["inst_caus"]["p"] = dict()
results["inst_caus"]["test_stat"] = dict()
vn = dataset.variable_names
# all possible combinations of potentially causing variables
# (at least 1 variable and not all variables together):
var_combs = sublists(vn, 1, len(vn)-1)
if debug_mode:
print("\n\n\n" + dt_string)
for causing in var_combs:
caused = tuple(name for name in vn if name not in causing)
causality_file = dataset.__str__() + "_" + source + "_" \
+ dt_string + "_granger_causality_" \
+ stringify_var_names(causing, "_") + ".txt"
causality_file = os.path.join(here, causality_file)
causality_file = open(causality_file, encoding="latin_1")
causality_results = []
for line in causality_file:
str_number = r"\d+\.\d{4}"
regex_number = re.compile(str_number)
number = re.search(regex_number, line)
if number is None:
continue
number = float(number.group(0))
causality_results.append(number)
causality_file.close()
results["granger_caus"]["test_stat"][(causing, caused)] = \
causality_results[0]
results["granger_caus"]["p"][(causing, caused)] =\
causality_results[1]
results["inst_caus"]["test_stat"][(causing, caused)] = \
causality_results[2]
results["inst_caus"]["p"][(causing, caused)] = \
causality_results[3]
# ---------------------------------------------------------------------
# parse output related to impulse-response analysis:
ir_file = dataset.__str__() + "_" + source + "_" + dt_string \
+ "_ir" + ".txt"
ir_file = os.path.join(here, ir_file)
ir_file = open(ir_file, encoding='latin_1')
causing = None
caused = None
data = None
regex_vars = re.compile(r"\w+")
regex_vals = re.compile(r"-?\d+\.\d{4}")
line_start_causing = "time"
data_line_indicator = "point estimate"
data_rows_read = 0
for line in ir_file:
if causing is None and not line.startswith(line_start_causing):
continue # no relevant info in the header
if line.startswith(line_start_causing):
line = line[4:]
causing = re.findall(regex_vars, line)
# 21 periods shown in JMulTi output
data = np.empty((21, len(causing)))
continue
if caused is None:
caused = re.findall(regex_vars, line)
continue
# now start collecting the values:
if data_line_indicator not in line:
continue
start = line.find(data_line_indicator) + len(data_line_indicator)
line = line[start:]
data[data_rows_read] = re.findall(regex_vals, line)
data_rows_read += 1
ir_file.close()
results["ir"] = data
# ---------------------------------------------------------------------
# parse output related to lag order selection:
lagorder_file = dataset.__str__() + "_" + source + "_" + dt_string \
+ "_lagorder" + ".txt"
lagorder_file = os.path.join(here, lagorder_file)
lagorder_file = open(lagorder_file, encoding='latin_1')
results["lagorder"] = dict()
aic_start = "Akaike Info Criterion:"
fpe_start = "Final Prediction Error:"
hqic_start = "Hannan-Quinn Criterion:"
bic_start = "Schwarz Criterion:"
for line in lagorder_file:
if line.startswith(aic_start):
results["lagorder"]["aic"] = int(line[len(aic_start):])
elif line.startswith(fpe_start):
results["lagorder"]["fpe"] = int(line[len(fpe_start):])
elif line.startswith(hqic_start):
results["lagorder"]["hqic"] = int(line[len(hqic_start):])
elif line.startswith(bic_start):
results["lagorder"]["bic"] = int(line[len(bic_start):])
lagorder_file.close()
# ---------------------------------------------------------------------
# parse output related to non-normality-test:
test_norm_file = dataset.__str__() + "_" + source + "_" + dt_string \
+ "_diag" + ".txt"
test_norm_file = os.path.join(here, test_norm_file)
test_norm_file = open(test_norm_file, encoding='latin_1')
results["test_norm"] = dict()
section_start_marker = "TESTS FOR NONNORMALITY"
section_reached = False
subsection_start_marker = "Introduction to Multiple Time Series A"
subsection_reached = False
line_start_statistic = "joint test statistic:"
line_start_pvalue = " p-value:"
for line in test_norm_file:
if not section_reached:
if section_start_marker in line:
section_reached = True # section w/ relevant results found
continue
if not subsection_reached:
if subsection_start_marker in line:
subsection_reached = True
continue
if "joint_pvalue" in results["test_norm"].keys():
break
if line.startswith(line_start_statistic):
line_end = line[len(line_start_statistic):]
results["test_norm"]["joint_test_statistic"] = float(line_end)
if line.startswith(line_start_pvalue):
line_end = line[len(line_start_pvalue):]
results["test_norm"]["joint_pvalue"] = float(line_end)
test_norm_file.close()
# ---------------------------------------------------------------------
# parse output related to testing the whiteness of the residuals:
whiteness_file = dataset.__str__() + "_" + source + "_" + dt_string \
+ "_diag" + ".txt"
whiteness_file = os.path.join(here, whiteness_file)
whiteness_file = open(whiteness_file, encoding='latin_1')
results["whiteness"] = dict()
section_start_marker = "PORTMANTEAU TEST"
order_start = "tested order:"
statistic_start = "test statistic:"
p_start = " p-value:"
adj_statistic_start = "adjusted test statistic:"
unadjusted_finished = False
in_section = False
for line in whiteness_file:
if not in_section and section_start_marker not in line:
continue
if not in_section and section_start_marker in line:
in_section = True
continue
if line.startswith(order_start):
results["whiteness"]["tested order"] = int(
line[len(order_start):])
continue
if line.startswith(statistic_start):
results["whiteness"]["test statistic"] = float(
line[len(statistic_start):])
continue
if line.startswith(adj_statistic_start):
results["whiteness"]["test statistic adj."] = float(
line[len(adj_statistic_start):])
continue
if line.startswith(p_start): # same for unadjusted and adjusted
if not unadjusted_finished:
results["whiteness"]["p-value"] = \
float(line[len(p_start):])
unadjusted_finished = True
else:
results["whiteness"]["p-value adjusted"] = \
float(line[len(p_start):])
break
whiteness_file.close()
# ---------------------------------------------------------------------
if debug_mode:
print_debug_output(results, dt_string)
results_dict_per_det_terms[dt_s] = results
return results_dict_per_det_terms | Parameters
----------
dataset : module
A data module in the statsmodels/datasets directory that defines a
__str__() method returning the dataset's name.
dt_s_list : list
A list of strings where each string represents a combination of
deterministic terms.
Returns
-------
result : dict
A dict (keys: tuples of deterministic terms and seasonal terms)
of dicts (keys: strings "est" (for estimators),
"se" (for standard errors),
"t" (for t-values),
"p" (for p-values))
of dicts (keys: strings "alpha", "beta", "Gamma" and other results) | load_results_jmulti | python | statsmodels/statsmodels | statsmodels/tsa/vector_ar/tests/JMulTi_results/parse_jmulti_var_output.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/tests/JMulTi_results/parse_jmulti_var_output.py | BSD-3-Clause |
def fit(self, start_params=None, transformed=True, includes_fixed=False,
method=None, method_kwargs=None, gls=None, gls_kwargs=None,
cov_type=None, cov_kwds=None, return_params=False,
low_memory=False):
"""
Fit (estimate) the parameters of the model.
Parameters
----------
start_params : array_like, optional
Initial guess of the solution for the loglikelihood maximization.
If None, the default is given by Model.start_params.
transformed : bool, optional
Whether or not `start_params` is already transformed. Default is
True.
includes_fixed : bool, optional
If parameters were previously fixed with the `fix_params` method,
this argument describes whether or not `start_params` also includes
the fixed parameters, in addition to the free parameters. Default
is False.
method : str, optional
The method used for estimating the parameters of the model. Valid
options include 'statespace', 'innovations_mle', 'hannan_rissanen',
'burg', 'innovations', and 'yule_walker'. Not all options are
available for every specification (for example 'yule_walker' can
only be used with AR(p) models).
method_kwargs : dict, optional
Arguments to pass to the fit function for the parameter estimator
described by the `method` argument.
gls : bool, optional
Whether or not to use generalized least squares (GLS) to estimate
regression effects. The default is False if `method='statespace'`
and is True otherwise.
gls_kwargs : dict, optional
Arguments to pass to the GLS estimation fit method. Only applicable
if GLS estimation is used (see `gls` argument for details).
cov_type : str, optional
The `cov_type` keyword governs the method for calculating the
covariance matrix of parameter estimates. Can be one of:
- 'opg' for the outer product of gradient estimator
- 'oim' for the observed information matrix estimator, calculated
using the method of Harvey (1989)
- 'approx' for the observed information matrix estimator,
calculated using a numerical approximation of the Hessian matrix.
- 'robust' for an approximate (quasi-maximum likelihood) covariance
matrix that may be valid even in the presence of some
misspecifications. Intermediate calculations use the 'oim'
method.
- 'robust_approx' is the same as 'robust' except that the
intermediate calculations use the 'approx' method.
- 'none' for no covariance matrix calculation.
Default is 'opg' unless memory conservation is used to avoid
computing the loglikelihood values for each observation, in which
case the default is 'oim'.
cov_kwds : dict or None, optional
A dictionary of arguments affecting covariance matrix computation.
**opg, oim, approx, robust, robust_approx**
- 'approx_complex_step' : bool, optional - If True, numerical
approximations are computed using complex-step methods. If False,
numerical approximations are computed using finite difference
methods. Default is True.
- 'approx_centered' : bool, optional - If True, numerical
approximations computed using finite difference methods use a
centered approximation. Default is False.
return_params : bool, optional
Whether or not to return only the array of maximizing parameters.
Default is False.
low_memory : bool, optional
If set to True, techniques are applied to substantially reduce
memory usage. If used, some features of the results object will
not be available (including smoothed results and in-sample
prediction), although out-of-sample forecasting is possible.
Default is False.
Returns
-------
ARIMAResults
Examples
--------
>>> mod = sm.tsa.arima.ARIMA(endog, order=(1, 0, 0))
>>> res = mod.fit()
>>> print(res.summary())
"""
# Determine which method to use
# 1. If method is specified, make sure it is valid
if method is not None:
self._spec_arima.validate_estimator(method)
# 2. Otherwise, use state space
# TODO: may want to consider using innovations (MLE) if possible here,
# (since in some cases it may be faster than state space), but it is
# less tested.
else:
method = 'statespace'
# Can only use fixed parameters with the following methods
methods_with_fixed_params = ['statespace', 'hannan_rissanen']
if self._has_fixed_params and method not in methods_with_fixed_params:
raise ValueError(
"When parameters have been fixed, only the methods "
f"{methods_with_fixed_params} can be used; got '{method}'."
)
# Handle kwargs related to the fit method
if method_kwargs is None:
method_kwargs = {}
required_kwargs = []
if method == 'statespace':
required_kwargs = ['enforce_stationarity', 'enforce_invertibility',
'concentrate_scale']
elif method == 'innovations_mle':
required_kwargs = ['enforce_invertibility']
for name in required_kwargs:
if name in method_kwargs:
raise ValueError('Cannot override model level value for "%s"'
' when method="%s".' % (name, method))
method_kwargs[name] = getattr(self, name)
# Handle kwargs related to GLS estimation
if gls_kwargs is None:
gls_kwargs = {}
# Handle starting parameters
# TODO: maybe should have standard way of computing starting
# parameters in this class?
if start_params is not None:
if method not in ['statespace', 'innovations_mle']:
raise ValueError('Estimation method "%s" does not use starting'
' parameters, but `start_params` argument was'
' given.' % method)
method_kwargs['start_params'] = start_params
method_kwargs['transformed'] = transformed
method_kwargs['includes_fixed'] = includes_fixed
# Perform estimation, depending on whether we have exog or not
p = None
fit_details = None
has_exog = self._spec_arima.exog is not None
if has_exog or method == 'statespace':
# Use GLS if it was explicitly requested (`gls = True`) or if it
# was left at the default (`gls = None`) and the ARMA estimator is
# anything but statespace.
# Note: both GLS and statespace are able to handle models with
# integration, so we don't need to difference endog or exog here.
if has_exog and (gls or (gls is None and method != 'statespace')):
if self._has_fixed_params:
raise NotImplementedError(
'GLS estimation is not yet implemented for the case '
'with fixed parameters.'
)
p, fit_details = estimate_gls(
self.endog, exog=self.exog, order=self.order,
seasonal_order=self.seasonal_order, include_constant=False,
arma_estimator=method, arma_estimator_kwargs=method_kwargs,
**gls_kwargs)
elif method != 'statespace':
raise ValueError('If `exog` is given and GLS is disabled'
' (`gls=False`), then the only valid'
" method is 'statespace'. Got '%s'."
% method)
else:
method_kwargs.setdefault('disp', 0)
res = super().fit(
return_params=return_params, low_memory=low_memory,
cov_type=cov_type, cov_kwds=cov_kwds, **method_kwargs)
if not return_params:
res.fit_details = res.mlefit
else:
# Handle differencing if we have an integrated model
# (these methods do not support handling integration internally,
# so we need to manually do the differencing)
endog = self.endog
order = self._spec_arima.order
seasonal_order = self._spec_arima.seasonal_order
if self._spec_arima.is_integrated:
warnings.warn('Provided `endog` series has been differenced'
' to eliminate integration prior to parameter'
' estimation by method "%s".' % method,
stacklevel=2,)
endog = diff(
endog, k_diff=self._spec_arima.diff,
k_seasonal_diff=self._spec_arima.seasonal_diff,
seasonal_periods=self._spec_arima.seasonal_periods)
if order[1] > 0:
order = (order[0], 0, order[2])
if seasonal_order[1] > 0:
seasonal_order = (seasonal_order[0], 0, seasonal_order[2],
seasonal_order[3])
if self._has_fixed_params:
method_kwargs['fixed_params'] = self._fixed_params.copy()
# Now, estimate parameters
if method == 'yule_walker':
p, fit_details = yule_walker(
endog, ar_order=order[0], demean=False,
**method_kwargs)
elif method == 'burg':
p, fit_details = burg(endog, ar_order=order[0],
demean=False, **method_kwargs)
elif method == 'hannan_rissanen':
p, fit_details = hannan_rissanen(
endog, ar_order=order[0],
ma_order=order[2], demean=False, **method_kwargs)
elif method == 'innovations':
p, fit_details = innovations(
endog, ma_order=order[2], demean=False,
**method_kwargs)
# innovations computes estimates through the given order, so
# we want to take the estimate associated with the given order
p = p[-1]
elif method == 'innovations_mle':
p, fit_details = innovations_mle(
endog, order=order,
seasonal_order=seasonal_order,
demean=False, **method_kwargs)
# In all cases except method='statespace', we now need to extract the
# parameters and, optionally, create a new results object
if p is not None:
# Need to check that fitted parameters satisfy given restrictions
if (self.enforce_stationarity
and self._spec_arima.max_reduced_ar_order > 0
and not p.is_stationary):
raise ValueError('Non-stationary autoregressive parameters'
' found with `enforce_stationarity=True`.'
' Consider setting it to False or using a'
' different estimation method, such as'
' method="statespace".')
if (self.enforce_invertibility
and self._spec_arima.max_reduced_ma_order > 0
and not p.is_invertible):
raise ValueError('Non-invertible moving average parameters'
' found with `enforce_invertibility=True`.'
' Consider setting it to False or using a'
' different estimation method, such as'
' method="statespace".')
# Build the requested results
if return_params:
res = p.params
else:
# Handle memory conservation option
if low_memory:
conserve_memory = self.ssm.conserve_memory
self.ssm.set_conserve_memory(MEMORY_CONSERVE)
# Perform filtering / smoothing
if (self.ssm.memory_no_predicted or self.ssm.memory_no_gain
or self.ssm.memory_no_smoothing):
func = self.filter
else:
func = self.smooth
res = func(p.params, transformed=True, includes_fixed=True,
cov_type=cov_type, cov_kwds=cov_kwds)
# Save any details from the fit method
res.fit_details = fit_details
# Reset memory conservation
if low_memory:
self.ssm.set_conserve_memory(conserve_memory)
return res | Fit (estimate) the parameters of the model.
Parameters
----------
start_params : array_like, optional
Initial guess of the solution for the loglikelihood maximization.
If None, the default is given by Model.start_params.
transformed : bool, optional
Whether or not `start_params` is already transformed. Default is
True.
includes_fixed : bool, optional
If parameters were previously fixed with the `fix_params` method,
this argument describes whether or not `start_params` also includes
the fixed parameters, in addition to the free parameters. Default
is False.
method : str, optional
The method used for estimating the parameters of the model. Valid
options include 'statespace', 'innovations_mle', 'hannan_rissanen',
'burg', 'innovations', and 'yule_walker'. Not all options are
available for every specification (for example 'yule_walker' can
only be used with AR(p) models).
method_kwargs : dict, optional
Arguments to pass to the fit function for the parameter estimator
described by the `method` argument.
gls : bool, optional
Whether or not to use generalized least squares (GLS) to estimate
regression effects. The default is False if `method='statespace'`
and is True otherwise.
gls_kwargs : dict, optional
Arguments to pass to the GLS estimation fit method. Only applicable
if GLS estimation is used (see `gls` argument for details).
cov_type : str, optional
The `cov_type` keyword governs the method for calculating the
covariance matrix of parameter estimates. Can be one of:
- 'opg' for the outer product of gradient estimator
- 'oim' for the observed information matrix estimator, calculated
using the method of Harvey (1989)
- 'approx' for the observed information matrix estimator,
calculated using a numerical approximation of the Hessian matrix.
- 'robust' for an approximate (quasi-maximum likelihood) covariance
matrix that may be valid even in the presence of some
misspecifications. Intermediate calculations use the 'oim'
method.
- 'robust_approx' is the same as 'robust' except that the
intermediate calculations use the 'approx' method.
- 'none' for no covariance matrix calculation.
Default is 'opg' unless memory conservation is used to avoid
computing the loglikelihood values for each observation, in which
case the default is 'oim'.
cov_kwds : dict or None, optional
A dictionary of arguments affecting covariance matrix computation.
**opg, oim, approx, robust, robust_approx**
- 'approx_complex_step' : bool, optional - If True, numerical
approximations are computed using complex-step methods. If False,
numerical approximations are computed using finite difference
methods. Default is True.
- 'approx_centered' : bool, optional - If True, numerical
approximations computed using finite difference methods use a
centered approximation. Default is False.
return_params : bool, optional
Whether or not to return only the array of maximizing parameters.
Default is False.
low_memory : bool, optional
If set to True, techniques are applied to substantially reduce
memory usage. If used, some features of the results object will
not be available (including smoothed results and in-sample
prediction), although out-of-sample forecasting is possible.
Default is False.
Returns
-------
ARIMAResults
Examples
--------
>>> mod = sm.tsa.arima.ARIMA(endog, order=(1, 0, 0))
>>> res = mod.fit()
>>> print(res.summary()) | fit | python | statsmodels/statsmodels | statsmodels/tsa/arima/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/model.py | BSD-3-Clause |
def exog_params(self):
"""(array) Parameters associated with exogenous variables."""
return self._params_split['exog_params'] | (array) Parameters associated with exogenous variables. | exog_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def ar_params(self):
"""(array) Autoregressive (non-seasonal) parameters."""
return self._params_split['ar_params'] | (array) Autoregressive (non-seasonal) parameters. | ar_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def ar_poly(self):
"""(Polynomial) Autoregressive (non-seasonal) lag polynomial."""
coef = np.zeros(self.spec.max_ar_order + 1)
coef[0] = 1
ix = self.spec.ar_lags
coef[ix] = -self._params_split['ar_params']
return Polynomial(coef) | (Polynomial) Autoregressive (non-seasonal) lag polynomial. | ar_poly | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def ma_params(self):
"""(array) Moving average (non-seasonal) parameters."""
return self._params_split['ma_params'] | (array) Moving average (non-seasonal) parameters. | ma_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def ma_poly(self):
"""(Polynomial) Moving average (non-seasonal) lag polynomial."""
coef = np.zeros(self.spec.max_ma_order + 1)
coef[0] = 1
ix = self.spec.ma_lags
coef[ix] = self._params_split['ma_params']
return Polynomial(coef) | (Polynomial) Moving average (non-seasonal) lag polynomial. | ma_poly | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def seasonal_ar_params(self):
"""(array) Seasonal autoregressive parameters."""
return self._params_split['seasonal_ar_params'] | (array) Seasonal autoregressive parameters. | seasonal_ar_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def seasonal_ar_poly(self):
"""(Polynomial) Seasonal autoregressive lag polynomial."""
# Need to expand the polynomial according to the season
s = self.spec.seasonal_periods
coef = [1]
if s > 0:
expanded = np.zeros(self.spec.max_seasonal_ar_order)
ix = np.array(self.spec.seasonal_ar_lags, dtype=int) - 1
expanded[ix] = -self._params_split['seasonal_ar_params']
coef = np.r_[1, np.pad(np.reshape(expanded, (-1, 1)),
[(0, 0), (s - 1, 0)], 'constant').flatten()]
return Polynomial(coef) | (Polynomial) Seasonal autoregressive lag polynomial. | seasonal_ar_poly | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def seasonal_ma_params(self):
"""(array) Seasonal moving average parameters."""
return self._params_split['seasonal_ma_params'] | (array) Seasonal moving average parameters. | seasonal_ma_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def seasonal_ma_poly(self):
"""(Polynomial) Seasonal moving average lag polynomial."""
# Need to expand the polynomial according to the season
s = self.spec.seasonal_periods
coef = np.array([1])
if s > 0:
expanded = np.zeros(self.spec.max_seasonal_ma_order)
ix = np.array(self.spec.seasonal_ma_lags, dtype=int) - 1
expanded[ix] = self._params_split['seasonal_ma_params']
coef = np.r_[1, np.pad(np.reshape(expanded, (-1, 1)),
[(0, 0), (s - 1, 0)], 'constant').flatten()]
return Polynomial(coef) | (Polynomial) Seasonal moving average lag polynomial. | seasonal_ma_poly | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def sigma2(self):
"""(float) Innovation variance."""
return self._params_split['sigma2'] | (float) Innovation variance. | sigma2 | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def reduced_ar_poly(self):
"""(Polynomial) Reduced form autoregressive lag polynomial."""
return self.ar_poly * self.seasonal_ar_poly | (Polynomial) Reduced form autoregressive lag polynomial. | reduced_ar_poly | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def reduced_ma_poly(self):
"""(Polynomial) Reduced form moving average lag polynomial."""
return self.ma_poly * self.seasonal_ma_poly | (Polynomial) Reduced form moving average lag polynomial. | reduced_ma_poly | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def params(self):
"""(array) Complete parameter vector."""
if self._params is None:
self._params = self.spec.join_params(**self._params_split)
return self._params.copy() | (array) Complete parameter vector. | params | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def is_complete(self):
"""(bool) Are current parameter values all filled in (i.e. not NaN)."""
return not np.any(np.isnan(self.params)) | (bool) Are current parameter values all filled in (i.e. not NaN). | is_complete | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def is_valid(self):
"""(bool) Are current parameter values valid (e.g. variance > 0)."""
valid = True
try:
self.spec.validate_params(self.params)
except ValueError:
valid = False
return valid | (bool) Are current parameter values valid (e.g. variance > 0). | is_valid | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def is_stationary(self):
"""(bool) Is the reduced autoregressive lag poylnomial stationary."""
validate_basic(self.ar_params, self.k_ar_params,
title='AR coefficients')
validate_basic(self.seasonal_ar_params, self.k_seasonal_ar_params,
title='seasonal AR coefficients')
ar_stationary = True
seasonal_ar_stationary = True
if self.k_ar_params > 0:
ar_stationary = is_invertible(self.ar_poly.coef)
if self.k_seasonal_ar_params > 0:
seasonal_ar_stationary = is_invertible(self.seasonal_ar_poly.coef)
return ar_stationary and seasonal_ar_stationary | (bool) Is the reduced autoregressive lag poylnomial stationary. | is_stationary | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def is_invertible(self):
"""(bool) Is the reduced moving average lag poylnomial invertible."""
# Short-circuit if there is no MA component
validate_basic(self.ma_params, self.k_ma_params,
title='MA coefficients')
validate_basic(self.seasonal_ma_params, self.k_seasonal_ma_params,
title='seasonal MA coefficients')
ma_stationary = True
seasonal_ma_stationary = True
if self.k_ma_params > 0:
ma_stationary = is_invertible(self.ma_poly.coef)
if self.k_seasonal_ma_params > 0:
seasonal_ma_stationary = is_invertible(self.seasonal_ma_poly.coef)
return ma_stationary and seasonal_ma_stationary | (bool) Is the reduced moving average lag poylnomial invertible. | is_invertible | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def to_dict(self):
"""
Return the parameters split by type into a dictionary.
Returns
-------
split_params : dict
Dictionary with keys 'exog_params', 'ar_params', 'ma_params',
'seasonal_ar_params', 'seasonal_ma_params', and (unless
`concentrate_scale=True`) 'sigma2'. Values are the parameters
associated with the key, based on the `params` argument.
"""
return self._params_split.copy() | Return the parameters split by type into a dictionary.
Returns
-------
split_params : dict
Dictionary with keys 'exog_params', 'ar_params', 'ma_params',
'seasonal_ar_params', 'seasonal_ma_params', and (unless
`concentrate_scale=True`) 'sigma2'. Values are the parameters
associated with the key, based on the `params` argument. | to_dict | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def to_pandas(self):
"""
Return the parameters as a Pandas series.
Returns
-------
series : pd.Series
Pandas series with index set to the parameter names.
"""
return pd.Series(self.params, index=self.param_names) | Return the parameters as a Pandas series.
Returns
-------
series : pd.Series
Pandas series with index set to the parameter names. | to_pandas | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def __repr__(self):
"""Represent SARIMAXParams object as a string."""
components = []
if self.k_exog_params:
components.append('exog=%s' % str(self.exog_params))
if self.k_ar_params:
components.append('ar=%s' % str(self.ar_params))
if self.k_ma_params:
components.append('ma=%s' % str(self.ma_params))
if self.k_seasonal_ar_params:
components.append('seasonal_ar=%s' %
str(self.seasonal_ar_params))
if self.k_seasonal_ma_params:
components.append('seasonal_ma=%s' %
str(self.seasonal_ma_params))
if not self.spec.concentrate_scale:
components.append('sigma2=%s' % self.sigma2)
return 'SARIMAXParams(%s)' % ', '.join(components) | Represent SARIMAXParams object as a string. | __repr__ | python | statsmodels/statsmodels | statsmodels/tsa/arima/params.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/params.py | BSD-3-Clause |
def standardize_lag_order(order, title=None):
"""
Standardize lag order input.
Parameters
----------
order : int or array_like
Maximum lag order (if integer) or iterable of specific lag orders.
title : str, optional
Description of the order (e.g. "autoregressive") to use in error
messages.
Returns
-------
order : int or list of int
Maximum lag order if consecutive lag orders were specified, otherwise
a list of integer lag orders.
Notes
-----
It is ambiguous if order=[1] is meant to be a boolean list or
a list of lag orders to include, but this is irrelevant because either
interpretation gives the same result.
Order=[0] would be ambiguous, except that 0 is not a valid lag
order to include, so there is no harm in interpreting as a boolean
list, in which case it is the same as order=0, which seems like
reasonable behavior.
Examples
--------
>>> standardize_lag_order(3)
3
>>> standardize_lag_order(np.arange(1, 4))
3
>>> standardize_lag_order([1, 3])
[1, 3]
"""
order = np.array(order)
title = 'order' if title is None else '%s order' % title
# Only integer orders are valid
if not np.all(order == order.astype(int)):
raise ValueError('Invalid %s. Non-integer order (%s) given.'
% (title, order))
order = order.astype(int)
# Only positive integers are valid
if np.any(order < 0):
raise ValueError('Terms in the %s cannot be negative.' % title)
# Try to squeeze out an irrelevant trailing dimension
if order.ndim == 2 and order.shape[1] == 1:
order = order[:, 0]
elif order.ndim > 1:
raise ValueError('Invalid %s. Must be an integer or'
' 1-dimensional array-like object (e.g. list,'
' ndarray, etc.). Got %s.' % (title, order))
# Option 1: the typical integer response (implies including all
# lags up through and including the value)
if order.ndim == 0:
order = order.item()
elif len(order) == 0:
order = 0
else:
# Option 2: boolean list
has_zeros = (0 in order)
has_multiple_ones = np.sum(order == 1) > 1
has_gt_one = np.any(order > 1)
if has_zeros or has_multiple_ones:
if has_gt_one:
raise ValueError('Invalid %s. Appears to be a boolean list'
' (since it contains a 0 element and/or'
' multiple elements) but also contains'
' elements greater than 1 like a list of'
' lag orders.' % title)
order = (np.where(order == 1)[0] + 1)
# (Default) Option 3: list of lag orders to include
else:
order = np.sort(order)
# If we have an empty list, set order to zero
if len(order) == 0:
order = 0
# If we actually were given consecutive lag orders, just use integer
elif np.all(order == np.arange(1, len(order) + 1)):
order = order[-1]
# Otherwise, convert to list
else:
order = order.tolist()
# Check for duplicates
has_duplicate = isinstance(order, list) and np.any(np.diff(order) == 0)
if has_duplicate:
raise ValueError('Invalid %s. Cannot have duplicate elements.' % title)
return order | Standardize lag order input.
Parameters
----------
order : int or array_like
Maximum lag order (if integer) or iterable of specific lag orders.
title : str, optional
Description of the order (e.g. "autoregressive") to use in error
messages.
Returns
-------
order : int or list of int
Maximum lag order if consecutive lag orders were specified, otherwise
a list of integer lag orders.
Notes
-----
It is ambiguous if order=[1] is meant to be a boolean list or
a list of lag orders to include, but this is irrelevant because either
interpretation gives the same result.
Order=[0] would be ambiguous, except that 0 is not a valid lag
order to include, so there is no harm in interpreting as a boolean
list, in which case it is the same as order=0, which seems like
reasonable behavior.
Examples
--------
>>> standardize_lag_order(3)
3
>>> standardize_lag_order(np.arange(1, 4))
3
>>> standardize_lag_order([1, 3])
[1, 3] | standardize_lag_order | python | statsmodels/statsmodels | statsmodels/tsa/arima/tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/tools.py | BSD-3-Clause |
def validate_basic(params, length, allow_infnan=False, title=None):
"""
Validate parameter vector for basic correctness.
Parameters
----------
params : array_like
Array of parameters to validate.
length : int
Expected length of the parameter vector.
allow_infnan : bool, optional
Whether or not to allow `params` to contain -np.inf, np.inf, and
np.nan. Default is False.
title : str, optional
Description of the parameters (e.g. "autoregressive") to use in error
messages.
Returns
-------
params : ndarray
Array of validated parameters.
Notes
-----
Basic check that the parameters are numeric and that they are the right
shape. Optionally checks for NaN / infinite values.
"""
title = '' if title is None else ' for %s' % title
# Check for invalid type and coerce to non-integer
try:
params = np.array(params, dtype=object)
is_complex = [isinstance(p, complex) for p in params.ravel()]
dtype = complex if any(is_complex) else float
params = np.array(params, dtype=dtype)
except TypeError:
raise ValueError('Parameters vector%s includes invalid values.'
% title)
# Check for NaN, inf
if not allow_infnan and (np.any(np.isnan(params)) or
np.any(np.isinf(params))):
raise ValueError('Parameters vector%s includes NaN or Inf values.'
% title)
params = np.atleast_1d(np.squeeze(params))
# Check for right number of parameters
if params.shape != (length,):
plural = '' if length == 1 else 's'
raise ValueError('Specification%s implies %d parameter%s, but'
' values with shape %s were provided.'
% (title, length, plural, params.shape))
return params | Validate parameter vector for basic correctness.
Parameters
----------
params : array_like
Array of parameters to validate.
length : int
Expected length of the parameter vector.
allow_infnan : bool, optional
Whether or not to allow `params` to contain -np.inf, np.inf, and
np.nan. Default is False.
title : str, optional
Description of the parameters (e.g. "autoregressive") to use in error
messages.
Returns
-------
params : ndarray
Array of validated parameters.
Notes
-----
Basic check that the parameters are numeric and that they are the right
shape. Optionally checks for NaN / infinite values. | validate_basic | python | statsmodels/statsmodels | statsmodels/tsa/arima/tools.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/tools.py | BSD-3-Clause |
def is_ar_consecutive(self):
"""
(bool) Is autoregressive lag polynomial consecutive.
I.e. does it include all lags up to and including the maximum lag.
"""
return (self.max_seasonal_ar_order == 0 and
not isinstance(self.ar_order, list)) | (bool) Is autoregressive lag polynomial consecutive.
I.e. does it include all lags up to and including the maximum lag. | is_ar_consecutive | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def is_ma_consecutive(self):
"""
(bool) Is moving average lag polynomial consecutive.
I.e. does it include all lags up to and including the maximum lag.
"""
return (self.max_seasonal_ma_order == 0 and
not isinstance(self.ma_order, list)) | (bool) Is moving average lag polynomial consecutive.
I.e. does it include all lags up to and including the maximum lag. | is_ma_consecutive | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def is_integrated(self):
"""
(bool) Is the model integrated.
I.e. does it have a nonzero `diff` or `seasonal_diff`.
"""
return self.diff > 0 or self.seasonal_diff > 0 | (bool) Is the model integrated.
I.e. does it have a nonzero `diff` or `seasonal_diff`. | is_integrated | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def is_seasonal(self):
"""(bool) Does the model include a seasonal component."""
return self.seasonal_periods != 0 | (bool) Does the model include a seasonal component. | is_seasonal | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def k_exog_params(self):
"""(int) Number of parameters associated with exogenous variables."""
return len(self.exog_names) | (int) Number of parameters associated with exogenous variables. | k_exog_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def k_ar_params(self):
"""(int) Number of autoregressive (non-seasonal) parameters."""
return len(self.ar_lags) | (int) Number of autoregressive (non-seasonal) parameters. | k_ar_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def k_ma_params(self):
"""(int) Number of moving average (non-seasonal) parameters."""
return len(self.ma_lags) | (int) Number of moving average (non-seasonal) parameters. | k_ma_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def k_seasonal_ar_params(self):
"""(int) Number of seasonal autoregressive parameters."""
return len(self.seasonal_ar_lags) | (int) Number of seasonal autoregressive parameters. | k_seasonal_ar_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def k_seasonal_ma_params(self):
"""(int) Number of seasonal moving average parameters."""
return len(self.seasonal_ma_lags) | (int) Number of seasonal moving average parameters. | k_seasonal_ma_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def k_params(self):
"""(int) Total number of model parameters."""
k_params = (self.k_exog_params + self.k_ar_params + self.k_ma_params +
self.k_seasonal_ar_params + self.k_seasonal_ma_params)
if not self.concentrate_scale:
k_params += 1
return k_params | (int) Total number of model parameters. | k_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def exog_names(self):
"""(list of str) Names associated with exogenous parameters."""
exog_names = self._model.exog_names
return [] if exog_names is None else exog_names | (list of str) Names associated with exogenous parameters. | exog_names | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def ar_names(self):
"""(list of str) Names of (non-seasonal) autoregressive parameters."""
return ['ar.L%d' % i for i in self.ar_lags] | (list of str) Names of (non-seasonal) autoregressive parameters. | ar_names | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def ma_names(self):
"""(list of str) Names of (non-seasonal) moving average parameters."""
return ['ma.L%d' % i for i in self.ma_lags] | (list of str) Names of (non-seasonal) moving average parameters. | ma_names | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def seasonal_ar_names(self):
"""(list of str) Names of seasonal autoregressive parameters."""
s = self.seasonal_periods
return ['ar.S.L%d' % (i * s) for i in self.seasonal_ar_lags] | (list of str) Names of seasonal autoregressive parameters. | seasonal_ar_names | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def seasonal_ma_names(self):
"""(list of str) Names of seasonal moving average parameters."""
s = self.seasonal_periods
return ['ma.S.L%d' % (i * s) for i in self.seasonal_ma_lags] | (list of str) Names of seasonal moving average parameters. | seasonal_ma_names | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def param_names(self):
"""(list of str) Names of all model parameters."""
names = (self.exog_names + self.ar_names + self.ma_names +
self.seasonal_ar_names + self.seasonal_ma_names)
if not self.concentrate_scale:
names.append('sigma2')
return names | (list of str) Names of all model parameters. | param_names | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def valid_estimators(self):
"""
(list of str) Estimators that could be used with specification.
Note: does not consider the presense of `exog` in determining valid
estimators. If there are exogenous variables, then feasible Generalized
Least Squares should be used through the `gls` estimator, and the
`valid_estimators` are the estimators that could be passed as the
`arma_estimator` argument to `gls`.
"""
estimators = {'yule_walker', 'burg', 'innovations',
'hannan_rissanen', 'innovations_mle', 'statespace'}
# Properties
has_ar = self.max_ar_order != 0
has_ma = self.max_ma_order != 0
has_seasonal = self.seasonal_periods != 0
# Only state space can handle missing data or concentrated scale
if self._has_missing:
estimators.intersection_update(['statespace'])
# Only numerical MLE estimators can enforce restrictions
if ((self.enforce_stationarity and self.max_ar_order > 0) or
(self.enforce_invertibility and self.max_ma_order > 0)):
estimators.intersection_update(['innovations_mle', 'statespace'])
# Innovations: no AR, non-consecutive MA, seasonal
if has_ar or not self.is_ma_consecutive or has_seasonal:
estimators.discard('innovations')
# Yule-Walker/Burg: no MA, non-consecutive AR, seasonal
if has_ma or not self.is_ar_consecutive or has_seasonal:
estimators.discard('yule_walker')
estimators.discard('burg')
# Hannan-Rissanen: no seasonal
if has_seasonal:
estimators.discard('hannan_rissanen')
# Innovations MLE: cannot have enforce_stationary=False or
# concentratre_scale=True
if self.enforce_stationarity is False or self.concentrate_scale:
estimators.discard('innovations_mle')
return estimators | (list of str) Estimators that could be used with specification.
Note: does not consider the presense of `exog` in determining valid
estimators. If there are exogenous variables, then feasible Generalized
Least Squares should be used through the `gls` estimator, and the
`valid_estimators` are the estimators that could be passed as the
`arma_estimator` argument to `gls`. | valid_estimators | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def validate_estimator(self, estimator):
"""
Validate an SARIMA estimator.
Parameters
----------
estimator : str
Name of the estimator to validate against the current state of
the specification. Possible values are: 'yule_walker', 'burg',
'innovations', 'hannan_rissanen', 'innovoations_mle', 'statespace'.
Notes
-----
This method will raise a `ValueError` if an invalid method is passed,
and otherwise will return None.
This method does not consider the presense of `exog` in determining
valid estimators. If there are exogenous variables, then feasible
Generalized Least Squares should be used through the `gls` estimator,
and a "valid" estimator is one that could be passed as the
`arma_estimator` argument to `gls`.
This method only uses the attributes `enforce_stationarity` and
`concentrate_scale` to determine the validity of numerical maximum
likelihood estimators. These only include 'innovations_mle' (which
does not support `enforce_stationarity=False` or
`concentrate_scale=True`) and 'statespace' (which supports all
combinations of each).
Examples
--------
>>> spec = SARIMAXSpecification(order=(1, 0, 2))
>>> spec.validate_estimator('yule_walker')
ValueError: Yule-Walker estimator does not support moving average
components.
>>> spec.validate_estimator('burg')
ValueError: Burg estimator does not support moving average components.
>>> spec.validate_estimator('innovations')
ValueError: Burg estimator does not support autoregressive components.
>>> spec.validate_estimator('hannan_rissanen') # returns None
>>> spec.validate_estimator('innovations_mle') # returns None
>>> spec.validate_estimator('statespace') # returns None
>>> spec.validate_estimator('not_an_estimator')
ValueError: "not_an_estimator" is not a valid estimator.
"""
has_ar = self.max_ar_order != 0
has_ma = self.max_ma_order != 0
has_seasonal = self.seasonal_periods != 0
has_missing = self._has_missing
titles = {
'yule_walker': 'Yule-Walker',
'burg': 'Burg',
'innovations': 'Innovations',
'hannan_rissanen': 'Hannan-Rissanen',
'innovations_mle': 'Innovations MLE',
'statespace': 'State space'
}
# Only state space form can support missing data
if estimator != 'statespace':
if has_missing:
raise ValueError('%s estimator does not support missing'
' values in `endog`.' % titles[estimator])
# Only state space and innovations MLE can enforce parameter
# restrictions
if estimator not in ['innovations_mle', 'statespace']:
if self.max_ar_order > 0 and self.enforce_stationarity:
raise ValueError('%s estimator cannot enforce a stationary'
' autoregressive lag polynomial.'
% titles[estimator])
if self.max_ma_order > 0 and self.enforce_invertibility:
raise ValueError('%s estimator cannot enforce an invertible'
' moving average lag polynomial.'
% titles[estimator])
# Now go through specific disqualifications for each estimator
if estimator in ['yule_walker', 'burg']:
if has_seasonal:
raise ValueError('%s estimator does not support seasonal'
' components.' % titles[estimator])
if not self.is_ar_consecutive:
raise ValueError('%s estimator does not support'
' non-consecutive autoregressive lags.'
% titles[estimator])
if has_ma:
raise ValueError('%s estimator does not support moving average'
' components.' % titles[estimator])
elif estimator == 'innovations':
if has_seasonal:
raise ValueError('Innovations estimator does not support'
' seasonal components.')
if not self.is_ma_consecutive:
raise ValueError('Innovations estimator does not support'
' non-consecutive moving average lags.')
if has_ar:
raise ValueError('Innovations estimator does not support'
' autoregressive components.')
elif estimator == 'hannan_rissanen':
if has_seasonal:
raise ValueError('Hannan-Rissanen estimator does not support'
' seasonal components.')
elif estimator == 'innovations_mle':
if self.enforce_stationarity is False:
raise ValueError('Innovations MLE estimator does not support'
' non-stationary autoregressive components,'
' but `enforce_stationarity` is set to False')
if self.concentrate_scale:
raise ValueError('Innovations MLE estimator does not support'
' concentrating the scale out of the'
' log-likelihood function')
elif estimator == 'statespace':
# State space form supports all variations of SARIMAX.
pass
else:
raise ValueError('"%s" is not a valid estimator.' % estimator) | Validate an SARIMA estimator.
Parameters
----------
estimator : str
Name of the estimator to validate against the current state of
the specification. Possible values are: 'yule_walker', 'burg',
'innovations', 'hannan_rissanen', 'innovoations_mle', 'statespace'.
Notes
-----
This method will raise a `ValueError` if an invalid method is passed,
and otherwise will return None.
This method does not consider the presense of `exog` in determining
valid estimators. If there are exogenous variables, then feasible
Generalized Least Squares should be used through the `gls` estimator,
and a "valid" estimator is one that could be passed as the
`arma_estimator` argument to `gls`.
This method only uses the attributes `enforce_stationarity` and
`concentrate_scale` to determine the validity of numerical maximum
likelihood estimators. These only include 'innovations_mle' (which
does not support `enforce_stationarity=False` or
`concentrate_scale=True`) and 'statespace' (which supports all
combinations of each).
Examples
--------
>>> spec = SARIMAXSpecification(order=(1, 0, 2))
>>> spec.validate_estimator('yule_walker')
ValueError: Yule-Walker estimator does not support moving average
components.
>>> spec.validate_estimator('burg')
ValueError: Burg estimator does not support moving average components.
>>> spec.validate_estimator('innovations')
ValueError: Burg estimator does not support autoregressive components.
>>> spec.validate_estimator('hannan_rissanen') # returns None
>>> spec.validate_estimator('innovations_mle') # returns None
>>> spec.validate_estimator('statespace') # returns None
>>> spec.validate_estimator('not_an_estimator')
ValueError: "not_an_estimator" is not a valid estimator. | validate_estimator | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def split_params(self, params, allow_infnan=False):
"""
Split parameter array by type into dictionary.
Parameters
----------
params : array_like
Array of model parameters.
allow_infnan : bool, optional
Whether or not to allow `params` to contain -np.inf, np.inf, and
np.nan. Default is False.
Returns
-------
split_params : dict
Dictionary with keys 'exog_params', 'ar_params', 'ma_params',
'seasonal_ar_params', 'seasonal_ma_params', and (unless
`concentrate_scale=True`) 'sigma2'. Values are the parameters
associated with the key, based on the `params` argument.
Examples
--------
>>> spec = SARIMAXSpecification(ar_order=1)
>>> spec.split_params([0.5, 4])
{'exog_params': array([], dtype=float64),
'ar_params': array([0.5]),
'ma_params': array([], dtype=float64),
'seasonal_ar_params': array([], dtype=float64),
'seasonal_ma_params': array([], dtype=float64),
'sigma2': 4.0}
"""
params = validate_basic(params, self.k_params,
allow_infnan=allow_infnan,
title='joint parameters')
ix = [self.k_exog_params, self.k_ar_params, self.k_ma_params,
self.k_seasonal_ar_params, self.k_seasonal_ma_params]
names = ['exog_params', 'ar_params', 'ma_params',
'seasonal_ar_params', 'seasonal_ma_params']
if not self.concentrate_scale:
ix.append(1)
names.append('sigma2')
ix = np.cumsum(ix)
out = dict(zip(names, np.split(params, ix)))
if 'sigma2' in out:
out['sigma2'] = out['sigma2'].item()
return out | Split parameter array by type into dictionary.
Parameters
----------
params : array_like
Array of model parameters.
allow_infnan : bool, optional
Whether or not to allow `params` to contain -np.inf, np.inf, and
np.nan. Default is False.
Returns
-------
split_params : dict
Dictionary with keys 'exog_params', 'ar_params', 'ma_params',
'seasonal_ar_params', 'seasonal_ma_params', and (unless
`concentrate_scale=True`) 'sigma2'. Values are the parameters
associated with the key, based on the `params` argument.
Examples
--------
>>> spec = SARIMAXSpecification(ar_order=1)
>>> spec.split_params([0.5, 4])
{'exog_params': array([], dtype=float64),
'ar_params': array([0.5]),
'ma_params': array([], dtype=float64),
'seasonal_ar_params': array([], dtype=float64),
'seasonal_ma_params': array([], dtype=float64),
'sigma2': 4.0} | split_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def join_params(self, exog_params=None, ar_params=None, ma_params=None,
seasonal_ar_params=None, seasonal_ma_params=None,
sigma2=None):
"""
Join parameters into a single vector.
Parameters
----------
exog_params : array_like, optional
Parameters associated with exogenous regressors. Required if
`exog` is part of specification.
ar_params : array_like, optional
Parameters associated with (non-seasonal) autoregressive component.
Required if this component is part of the specification.
ma_params : array_like, optional
Parameters associated with (non-seasonal) moving average component.
Required if this component is part of the specification.
seasonal_ar_params : array_like, optional
Parameters associated with seasonal autoregressive component.
Required if this component is part of the specification.
seasonal_ma_params : array_like, optional
Parameters associated with seasonal moving average component.
Required if this component is part of the specification.
sigma2 : array_like, optional
Innovation variance parameter. Required unless
`concentrated_scale=True`.
Returns
-------
params : ndarray
Array of parameters.
Examples
--------
>>> spec = SARIMAXSpecification(ar_order=1)
>>> spec.join_params(ar_params=0.5, sigma2=4)
array([0.5, 4. ])
"""
definitions = [
('exogenous variables', self.k_exog_params, exog_params),
('AR terms', self.k_ar_params, ar_params),
('MA terms', self.k_ma_params, ma_params),
('seasonal AR terms', self.k_seasonal_ar_params,
seasonal_ar_params),
('seasonal MA terms', self.k_seasonal_ma_params,
seasonal_ma_params),
('variance', int(not self.concentrate_scale), sigma2)]
params_list = []
for title, k, params in definitions:
if k > 0:
# Validate
if params is None:
raise ValueError('Specification includes %s, but no'
' parameters were provided.' % title)
params = np.atleast_1d(np.squeeze(params))
if not params.shape == (k,):
raise ValueError('Specification included %d %s, but'
' parameters with shape %s were provided.'
% (k, title, params.shape))
# Otherwise add to the list
params_list.append(params)
return np.concatenate(params_list) | Join parameters into a single vector.
Parameters
----------
exog_params : array_like, optional
Parameters associated with exogenous regressors. Required if
`exog` is part of specification.
ar_params : array_like, optional
Parameters associated with (non-seasonal) autoregressive component.
Required if this component is part of the specification.
ma_params : array_like, optional
Parameters associated with (non-seasonal) moving average component.
Required if this component is part of the specification.
seasonal_ar_params : array_like, optional
Parameters associated with seasonal autoregressive component.
Required if this component is part of the specification.
seasonal_ma_params : array_like, optional
Parameters associated with seasonal moving average component.
Required if this component is part of the specification.
sigma2 : array_like, optional
Innovation variance parameter. Required unless
`concentrated_scale=True`.
Returns
-------
params : ndarray
Array of parameters.
Examples
--------
>>> spec = SARIMAXSpecification(ar_order=1)
>>> spec.join_params(ar_params=0.5, sigma2=4)
array([0.5, 4. ]) | join_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def validate_params(self, params):
"""
Validate parameter vector by raising ValueError on invalid values.
Parameters
----------
params : array_like
Array of model parameters.
Notes
-----
Primarily checks that the parameters have the right shape and are not
NaN or infinite. Also checks if parameters are consistent with a
stationary process if `enforce_stationarity=True` and that they are
consistent with an invertible process if `enforce_invertibility=True`.
Finally, checks that the variance term is positive, unless
`concentrate_scale=True`.
Examples
--------
>>> spec = SARIMAXSpecification(ar_order=1)
>>> spec.validate_params([-0.5, 4.]) # returns None
>>> spec.validate_params([-0.5, -2])
ValueError: Non-positive variance term.
>>> spec.validate_params([-1.5, 4.])
ValueError: Non-stationary autoregressive polynomial.
"""
# Note: split_params includes basic validation
params = self.split_params(params)
# Specific checks
if self.enforce_stationarity:
if self.k_ar_params:
ar_poly = np.r_[1, -params['ar_params']]
if not is_invertible(ar_poly):
raise ValueError('Non-stationary autoregressive'
' polynomial.')
if self.k_seasonal_ar_params:
seasonal_ar_poly = np.r_[1, -params['seasonal_ar_params']]
if not is_invertible(seasonal_ar_poly):
raise ValueError('Non-stationary seasonal autoregressive'
' polynomial.')
if self.enforce_invertibility:
if self.k_ma_params:
ma_poly = np.r_[1, params['ma_params']]
if not is_invertible(ma_poly):
raise ValueError('Non-invertible moving average'
' polynomial.')
if self.k_seasonal_ma_params:
seasonal_ma_poly = np.r_[1, params['seasonal_ma_params']]
if not is_invertible(seasonal_ma_poly):
raise ValueError('Non-invertible seasonal moving average'
' polynomial.')
if not self.concentrate_scale:
if params['sigma2'] <= 0:
raise ValueError('Non-positive variance term.') | Validate parameter vector by raising ValueError on invalid values.
Parameters
----------
params : array_like
Array of model parameters.
Notes
-----
Primarily checks that the parameters have the right shape and are not
NaN or infinite. Also checks if parameters are consistent with a
stationary process if `enforce_stationarity=True` and that they are
consistent with an invertible process if `enforce_invertibility=True`.
Finally, checks that the variance term is positive, unless
`concentrate_scale=True`.
Examples
--------
>>> spec = SARIMAXSpecification(ar_order=1)
>>> spec.validate_params([-0.5, 4.]) # returns None
>>> spec.validate_params([-0.5, -2])
ValueError: Non-positive variance term.
>>> spec.validate_params([-1.5, 4.])
ValueError: Non-stationary autoregressive polynomial. | validate_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def constrain_params(self, unconstrained):
"""
Constrain parameter values to be valid through transformations.
Parameters
----------
unconstrained : array_like
Array of model unconstrained parameters.
Returns
-------
constrained : ndarray
Array of model parameters transformed to produce a valid model.
Notes
-----
This is usually only used when performing numerical minimization
of the log-likelihood function. This function is necessary because
the minimizers consider values over the entire real space, while
SARIMAX models require parameters in subspaces (for example positive
variances).
Examples
--------
>>> spec = SARIMAXSpecification(ar_order=1)
>>> spec.constrain_params([10, -2])
array([-0.99504, 4. ])
"""
unconstrained = self.split_params(unconstrained)
params = {}
if self.k_exog_params:
params['exog_params'] = unconstrained['exog_params']
if self.k_ar_params:
if self.enforce_stationarity:
params['ar_params'] = constrain(unconstrained['ar_params'])
else:
params['ar_params'] = unconstrained['ar_params']
if self.k_ma_params:
if self.enforce_invertibility:
params['ma_params'] = -constrain(unconstrained['ma_params'])
else:
params['ma_params'] = unconstrained['ma_params']
if self.k_seasonal_ar_params:
if self.enforce_stationarity:
params['seasonal_ar_params'] = (
constrain(unconstrained['seasonal_ar_params']))
else:
params['seasonal_ar_params'] = (
unconstrained['seasonal_ar_params'])
if self.k_seasonal_ma_params:
if self.enforce_invertibility:
params['seasonal_ma_params'] = (
-constrain(unconstrained['seasonal_ma_params']))
else:
params['seasonal_ma_params'] = (
unconstrained['seasonal_ma_params'])
if not self.concentrate_scale:
params['sigma2'] = unconstrained['sigma2']**2
return self.join_params(**params) | Constrain parameter values to be valid through transformations.
Parameters
----------
unconstrained : array_like
Array of model unconstrained parameters.
Returns
-------
constrained : ndarray
Array of model parameters transformed to produce a valid model.
Notes
-----
This is usually only used when performing numerical minimization
of the log-likelihood function. This function is necessary because
the minimizers consider values over the entire real space, while
SARIMAX models require parameters in subspaces (for example positive
variances).
Examples
--------
>>> spec = SARIMAXSpecification(ar_order=1)
>>> spec.constrain_params([10, -2])
array([-0.99504, 4. ]) | constrain_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def unconstrain_params(self, constrained):
"""
Reverse transformations used to constrain parameter values to be valid.
Parameters
----------
constrained : array_like
Array of model parameters.
Returns
-------
unconstrained : ndarray
Array of parameters with constraining transformions reversed.
Notes
-----
This is usually only used when performing numerical minimization
of the log-likelihood function. This function is the (approximate)
inverse of `constrain_params`.
Examples
--------
>>> spec = SARIMAXSpecification(ar_order=1)
>>> spec.unconstrain_params([-0.5, 4.])
array([0.57735, 2. ])
"""
constrained = self.split_params(constrained)
params = {}
if self.k_exog_params:
params['exog_params'] = constrained['exog_params']
if self.k_ar_params:
if self.enforce_stationarity:
params['ar_params'] = unconstrain(constrained['ar_params'])
else:
params['ar_params'] = constrained['ar_params']
if self.k_ma_params:
if self.enforce_invertibility:
params['ma_params'] = unconstrain(-constrained['ma_params'])
else:
params['ma_params'] = constrained['ma_params']
if self.k_seasonal_ar_params:
if self.enforce_stationarity:
params['seasonal_ar_params'] = (
unconstrain(constrained['seasonal_ar_params']))
else:
params['seasonal_ar_params'] = (
constrained['seasonal_ar_params'])
if self.k_seasonal_ma_params:
if self.enforce_invertibility:
params['seasonal_ma_params'] = (
unconstrain(-constrained['seasonal_ma_params']))
else:
params['seasonal_ma_params'] = (
constrained['seasonal_ma_params'])
if not self.concentrate_scale:
params['sigma2'] = constrained['sigma2']**0.5
return self.join_params(**params) | Reverse transformations used to constrain parameter values to be valid.
Parameters
----------
constrained : array_like
Array of model parameters.
Returns
-------
unconstrained : ndarray
Array of parameters with constraining transformions reversed.
Notes
-----
This is usually only used when performing numerical minimization
of the log-likelihood function. This function is the (approximate)
inverse of `constrain_params`.
Examples
--------
>>> spec = SARIMAXSpecification(ar_order=1)
>>> spec.unconstrain_params([-0.5, 4.])
array([0.57735, 2. ]) | unconstrain_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def __repr__(self):
"""Represent SARIMAXSpecification object as a string."""
components = []
if self.endog is not None:
components.append('endog=%s' % self._model.endog_names)
if self.k_exog_params:
components.append('exog=%s' % self.exog_names)
components.append('order=%s' % str(self.order))
if self.seasonal_periods > 0:
components.append('seasonal_order=%s' % str(self.seasonal_order))
if self.enforce_stationarity is not None:
components.append('enforce_stationarity=%s'
% self.enforce_stationarity)
if self.enforce_invertibility is not None:
components.append('enforce_invertibility=%s'
% self.enforce_invertibility)
if self.concentrate_scale is not None:
components.append('concentrate_scale=%s' % self.concentrate_scale)
return 'SARIMAXSpecification(%s)' % ', '.join(components) | Represent SARIMAXSpecification object as a string. | __repr__ | python | statsmodels/statsmodels | statsmodels/tsa/arima/specification.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/specification.py | BSD-3-Clause |
def test_nonstationary_gls_error():
# GH-6540
endog = pd.read_csv(
io.StringIO(
"""\
data\n
9.112\n9.102\n9.103\n9.099\n9.094\n9.090\n9.108\n9.088\n9.091\n9.083\n9.095\n
9.090\n9.098\n9.093\n9.087\n9.088\n9.083\n9.095\n9.077\n9.082\n9.082\n9.081\n
9.081\n9.079\n9.088\n9.096\n9.081\n9.098\n9.081\n9.094\n9.091\n9.095\n9.097\n
9.108\n9.104\n9.098\n9.085\n9.093\n9.094\n9.092\n9.093\n9.106\n9.097\n9.108\n
9.100\n9.106\n9.114\n9.111\n9.097\n9.099\n9.108\n9.108\n9.110\n9.101\n9.111\n
9.114\n9.111\n9.126\n9.124\n9.112\n9.120\n9.142\n9.136\n9.131\n9.106\n9.112\n
9.119\n9.125\n9.123\n9.138\n9.133\n9.133\n9.137\n9.133\n9.138\n9.136\n9.128\n
9.127\n9.143\n9.128\n9.135\n9.133\n9.131\n9.136\n9.120\n9.127\n9.130\n9.116\n
9.132\n9.128\n9.119\n9.119\n9.110\n9.132\n9.130\n9.124\n9.130\n9.135\n9.135\n
9.119\n9.119\n9.136\n9.126\n9.122\n9.119\n9.123\n9.121\n9.130\n9.121\n9.119\n
9.106\n9.118\n9.124\n9.121\n9.127\n9.113\n9.118\n9.103\n9.112\n9.110\n9.111\n
9.108\n9.113\n9.117\n9.111\n9.100\n9.106\n9.109\n9.113\n9.110\n9.101\n9.113\n
9.111\n9.101\n9.097\n9.102\n9.100\n9.110\n9.110\n9.096\n9.095\n9.090\n9.104\n
9.097\n9.099\n9.095\n9.096\n9.085\n9.097\n9.098\n9.090\n9.080\n9.093\n9.085\n
9.075\n9.067\n9.072\n9.062\n9.068\n9.053\n9.051\n9.049\n9.052\n9.059\n9.070\n
9.058\n9.074\n9.063\n9.057\n9.062\n9.058\n9.049\n9.047\n9.062\n9.052\n9.052\n
9.044\n9.060\n9.062\n9.055\n9.058\n9.054\n9.044\n9.047\n9.050\n9.048\n9.041\n
9.055\n9.051\n9.028\n9.030\n9.029\n9.027\n9.016\n9.023\n9.031\n9.042\n9.035\n
"""
),
index_col=None,
)
mod = ARIMA(
endog,
order=(18, 0, 39),
enforce_stationarity=False,
enforce_invertibility=False,
)
with pytest.raises(ValueError, match="Roots of the autoregressive"):
mod.fit(method="hannan_rissanen", low_memory=True, cov_type="none") | \
data\n
9.112\n9.102\n9.103\n9.099\n9.094\n9.090\n9.108\n9.088\n9.091\n9.083\n9.095\n
9.090\n9.098\n9.093\n9.087\n9.088\n9.083\n9.095\n9.077\n9.082\n9.082\n9.081\n
9.081\n9.079\n9.088\n9.096\n9.081\n9.098\n9.081\n9.094\n9.091\n9.095\n9.097\n
9.108\n9.104\n9.098\n9.085\n9.093\n9.094\n9.092\n9.093\n9.106\n9.097\n9.108\n
9.100\n9.106\n9.114\n9.111\n9.097\n9.099\n9.108\n9.108\n9.110\n9.101\n9.111\n
9.114\n9.111\n9.126\n9.124\n9.112\n9.120\n9.142\n9.136\n9.131\n9.106\n9.112\n
9.119\n9.125\n9.123\n9.138\n9.133\n9.133\n9.137\n9.133\n9.138\n9.136\n9.128\n
9.127\n9.143\n9.128\n9.135\n9.133\n9.131\n9.136\n9.120\n9.127\n9.130\n9.116\n
9.132\n9.128\n9.119\n9.119\n9.110\n9.132\n9.130\n9.124\n9.130\n9.135\n9.135\n
9.119\n9.119\n9.136\n9.126\n9.122\n9.119\n9.123\n9.121\n9.130\n9.121\n9.119\n
9.106\n9.118\n9.124\n9.121\n9.127\n9.113\n9.118\n9.103\n9.112\n9.110\n9.111\n
9.108\n9.113\n9.117\n9.111\n9.100\n9.106\n9.109\n9.113\n9.110\n9.101\n9.113\n
9.111\n9.101\n9.097\n9.102\n9.100\n9.110\n9.110\n9.096\n9.095\n9.090\n9.104\n
9.097\n9.099\n9.095\n9.096\n9.085\n9.097\n9.098\n9.090\n9.080\n9.093\n9.085\n
9.075\n9.067\n9.072\n9.062\n9.068\n9.053\n9.051\n9.049\n9.052\n9.059\n9.070\n
9.058\n9.074\n9.063\n9.057\n9.062\n9.058\n9.049\n9.047\n9.062\n9.052\n9.052\n
9.044\n9.060\n9.062\n9.055\n9.058\n9.054\n9.044\n9.047\n9.050\n9.048\n9.041\n
9.055\n9.051\n9.028\n9.030\n9.029\n9.027\n9.016\n9.023\n9.031\n9.042\n9.035\n | test_nonstationary_gls_error | python | statsmodels/statsmodels | statsmodels/tsa/arima/tests/test_model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/tests/test_model.py | BSD-3-Clause |
def innovations(endog, ma_order=0, demean=True):
"""
Estimate MA parameters using innovations algorithm.
Parameters
----------
endog : array_like or SARIMAXSpecification
Input time series array, assumed to be stationary.
ma_order : int, optional
Maximum moving average order. Default is 0.
demean : bool, optional
Whether to estimate and remove the mean from the process prior to
fitting the moving average coefficients. Default is True.
Returns
-------
parameters : list of SARIMAXParams objects
List elements correspond to estimates at different `ma_order`. For
example, parameters[0] is an `SARIMAXParams` instance corresponding to
`ma_order=0`.
other_results : Bunch
Includes one component, `spec`, containing the `SARIMAXSpecification`
instance corresponding to the input arguments.
Notes
-----
The primary reference is [1]_, section 5.1.3.
This procedure assumes that the series is stationary.
References
----------
.. [1] Brockwell, Peter J., and Richard A. Davis. 2016.
Introduction to Time Series and Forecasting. Springer.
"""
spec = max_spec = SARIMAXSpecification(endog, ma_order=ma_order)
endog = max_spec.endog
if demean:
endog = endog - endog.mean()
if not max_spec.is_ma_consecutive:
raise ValueError('Innovations estimation unavailable for models with'
' seasonal or otherwise non-consecutive MA orders.')
sample_acovf = acovf(endog, fft=True)
theta, v = innovations_algo(sample_acovf, nobs=max_spec.ma_order + 1)
ma_params = [theta[i, :i] for i in range(1, max_spec.ma_order + 1)]
sigma2 = v
out = []
for i in range(max_spec.ma_order + 1):
spec = SARIMAXSpecification(ma_order=i)
p = SARIMAXParams(spec=spec)
if i == 0:
p.params = sigma2[i]
else:
p.params = np.r_[ma_params[i - 1], sigma2[i]]
out.append(p)
# Construct other results
other_results = Bunch({
'spec': spec,
})
return out, other_results | Estimate MA parameters using innovations algorithm.
Parameters
----------
endog : array_like or SARIMAXSpecification
Input time series array, assumed to be stationary.
ma_order : int, optional
Maximum moving average order. Default is 0.
demean : bool, optional
Whether to estimate and remove the mean from the process prior to
fitting the moving average coefficients. Default is True.
Returns
-------
parameters : list of SARIMAXParams objects
List elements correspond to estimates at different `ma_order`. For
example, parameters[0] is an `SARIMAXParams` instance corresponding to
`ma_order=0`.
other_results : Bunch
Includes one component, `spec`, containing the `SARIMAXSpecification`
instance corresponding to the input arguments.
Notes
-----
The primary reference is [1]_, section 5.1.3.
This procedure assumes that the series is stationary.
References
----------
.. [1] Brockwell, Peter J., and Richard A. Davis. 2016.
Introduction to Time Series and Forecasting. Springer. | innovations | python | statsmodels/statsmodels | statsmodels/tsa/arima/estimators/innovations.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/estimators/innovations.py | BSD-3-Clause |
def burg(endog, ar_order=0, demean=True):
"""
Estimate AR parameters using Burg technique.
Parameters
----------
endog : array_like or SARIMAXSpecification
Input time series array, assumed to be stationary.
ar_order : int, optional
Autoregressive order. Default is 0.
demean : bool, optional
Whether to estimate and remove the mean from the process prior to
fitting the autoregressive coefficients.
Returns
-------
parameters : SARIMAXParams object
Contains the parameter estimates from the final iteration.
other_results : Bunch
Includes one component, `spec`, which is the `SARIMAXSpecification`
instance corresponding to the input arguments.
Notes
-----
The primary reference is [1]_, section 5.1.2.
This procedure assumes that the series is stationary.
This function is a light wrapper around `statsmodels.linear_model.burg`.
References
----------
.. [1] Brockwell, Peter J., and Richard A. Davis. 2016.
Introduction to Time Series and Forecasting. Springer.
"""
spec = SARIMAXSpecification(endog, ar_order=ar_order)
endog = spec.endog
# Workaround for statsmodels.tsa.stattools.pacf_burg which does not work
# on integer input
# TODO: remove when possible
if np.issubdtype(endog.dtype, np.dtype(int)):
endog = endog * 1.0
if not spec.is_ar_consecutive:
raise ValueError('Burg estimation unavailable for models with'
' seasonal or otherwise non-consecutive AR orders.')
p = SARIMAXParams(spec=spec)
if ar_order == 0:
p.sigma2 = np.var(endog)
else:
p.ar_params, p.sigma2 = linear_model.burg(endog, order=ar_order,
demean=demean)
# Construct other results
other_results = Bunch({
'spec': spec,
})
return p, other_results | Estimate AR parameters using Burg technique.
Parameters
----------
endog : array_like or SARIMAXSpecification
Input time series array, assumed to be stationary.
ar_order : int, optional
Autoregressive order. Default is 0.
demean : bool, optional
Whether to estimate and remove the mean from the process prior to
fitting the autoregressive coefficients.
Returns
-------
parameters : SARIMAXParams object
Contains the parameter estimates from the final iteration.
other_results : Bunch
Includes one component, `spec`, which is the `SARIMAXSpecification`
instance corresponding to the input arguments.
Notes
-----
The primary reference is [1]_, section 5.1.2.
This procedure assumes that the series is stationary.
This function is a light wrapper around `statsmodels.linear_model.burg`.
References
----------
.. [1] Brockwell, Peter J., and Richard A. Davis. 2016.
Introduction to Time Series and Forecasting. Springer. | burg | python | statsmodels/statsmodels | statsmodels/tsa/arima/estimators/burg.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/estimators/burg.py | BSD-3-Clause |
def durbin_levinson(endog, ar_order=0, demean=True, adjusted=False):
"""
Estimate AR parameters at multiple orders using Durbin-Levinson recursions.
Parameters
----------
endog : array_like or SARIMAXSpecification
Input time series array, assumed to be stationary.
ar_order : int, optional
Autoregressive order. Default is 0.
demean : bool, optional
Whether to estimate and remove the mean from the process prior to
fitting the autoregressive coefficients. Default is True.
adjusted : bool, optional
Whether to use the "adjusted" autocovariance estimator, which uses
n - h degrees of freedom rather than n. This option can result in
a non-positive definite autocovariance matrix. Default is False.
Returns
-------
parameters : list of SARIMAXParams objects
List elements correspond to estimates at different `ar_order`. For
example, parameters[0] is an `SARIMAXParams` instance corresponding to
`ar_order=0`.
other_results : Bunch
Includes one component, `spec`, containing the `SARIMAXSpecification`
instance corresponding to the input arguments.
Notes
-----
The primary reference is [1]_, section 2.5.1.
This procedure assumes that the series is stationary.
References
----------
.. [1] Brockwell, Peter J., and Richard A. Davis. 2016.
Introduction to Time Series and Forecasting. Springer.
"""
spec = max_spec = SARIMAXSpecification(endog, ar_order=ar_order)
endog = max_spec.endog
# Make sure we have a consecutive process
if not max_spec.is_ar_consecutive:
raise ValueError('Durbin-Levinson estimation unavailable for models'
' with seasonal or otherwise non-consecutive AR'
' orders.')
gamma = acovf(endog, adjusted=adjusted, fft=True, demean=demean,
nlag=max_spec.ar_order)
# If no AR component, just a variance computation
if max_spec.ar_order == 0:
ar_params = [None]
sigma2 = [gamma[0]]
# Otherwise, AR model
else:
Phi = np.zeros((max_spec.ar_order, max_spec.ar_order))
v = np.zeros(max_spec.ar_order + 1)
Phi[0, 0] = gamma[1] / gamma[0]
v[0] = gamma[0]
v[1] = v[0] * (1 - Phi[0, 0]**2)
for i in range(1, max_spec.ar_order):
tmp = Phi[i-1, :i]
Phi[i, i] = (gamma[i + 1] - np.dot(tmp, gamma[i:0:-1])) / v[i]
Phi[i, :i] = (tmp - Phi[i, i] * tmp[::-1])
v[i + 1] = v[i] * (1 - Phi[i, i]**2)
ar_params = [None] + [Phi[i, :i + 1] for i in range(max_spec.ar_order)]
sigma2 = v
# Compute output
out = []
for i in range(max_spec.ar_order + 1):
spec = SARIMAXSpecification(ar_order=i)
p = SARIMAXParams(spec=spec)
if i == 0:
p.params = sigma2[i]
else:
p.params = np.r_[ar_params[i], sigma2[i]]
out.append(p)
# Construct other results
other_results = Bunch({
'spec': spec,
})
return out, other_results | Estimate AR parameters at multiple orders using Durbin-Levinson recursions.
Parameters
----------
endog : array_like or SARIMAXSpecification
Input time series array, assumed to be stationary.
ar_order : int, optional
Autoregressive order. Default is 0.
demean : bool, optional
Whether to estimate and remove the mean from the process prior to
fitting the autoregressive coefficients. Default is True.
adjusted : bool, optional
Whether to use the "adjusted" autocovariance estimator, which uses
n - h degrees of freedom rather than n. This option can result in
a non-positive definite autocovariance matrix. Default is False.
Returns
-------
parameters : list of SARIMAXParams objects
List elements correspond to estimates at different `ar_order`. For
example, parameters[0] is an `SARIMAXParams` instance corresponding to
`ar_order=0`.
other_results : Bunch
Includes one component, `spec`, containing the `SARIMAXSpecification`
instance corresponding to the input arguments.
Notes
-----
The primary reference is [1]_, section 2.5.1.
This procedure assumes that the series is stationary.
References
----------
.. [1] Brockwell, Peter J., and Richard A. Davis. 2016.
Introduction to Time Series and Forecasting. Springer. | durbin_levinson | python | statsmodels/statsmodels | statsmodels/tsa/arima/estimators/durbin_levinson.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/estimators/durbin_levinson.py | BSD-3-Clause |
def hannan_rissanen(endog, ar_order=0, ma_order=0, demean=True,
initial_ar_order=None, unbiased=None,
fixed_params=None):
"""
Estimate ARMA parameters using Hannan-Rissanen procedure.
Parameters
----------
endog : array_like
Input time series array, assumed to be stationary.
ar_order : int or list of int
Autoregressive order
ma_order : int or list of int
Moving average order
demean : bool, optional
Whether to estimate and remove the mean from the process prior to
fitting the ARMA coefficients. Default is True.
initial_ar_order : int, optional
Order of long autoregressive process used for initial computation of
residuals.
unbiased : bool, optional
Whether or not to apply the bias correction step. Default is True if
the estimated coefficients from the previous step imply a stationary
and invertible process and False otherwise.
fixed_params : dict, optional
Dictionary with names of fixed parameters as keys (e.g. 'ar.L1',
'ma.L2'), which correspond to SARIMAXSpecification.param_names.
Dictionary values are the values of the associated fixed parameters.
Returns
-------
parameters : SARIMAXParams object
other_results : Bunch
Includes three components: `spec`, containing the
`SARIMAXSpecification` instance corresponding to the input arguments;
`initial_ar_order`, containing the autoregressive lag order used in the
first step; and `resid`, which contains the computed residuals from the
last step.
Notes
-----
The primary reference is [1]_, section 5.1.4, which describes a three-step
procedure that we implement here.
1. Fit a large-order AR model via Yule-Walker to estimate residuals
2. Compute AR and MA estimates via least squares
3. (Unless the estimated coefficients from step (2) are non-stationary /
non-invertible or `unbiased=False`) Perform bias correction
The order used for the AR model in the first step may be given as an
argument. If it is not, we compute it as suggested by [2]_.
The estimate of the variance that we use is computed from the residuals
of the least-squares regression and not from the innovations algorithm.
This is because our fast implementation of the innovations algorithm is
only valid for stationary processes, and the Hannan-Rissanen procedure may
produce estimates that imply non-stationary processes. To avoid
inconsistency, we never compute this latter variance here, even if it is
possible. See test_hannan_rissanen::test_brockwell_davis_example_517 for
an example of how to compute this variance manually.
This procedure assumes that the series is stationary, but if this is not
true, it is still possible that this procedure will return parameters that
imply a non-stationary / non-invertible process.
Note that the third stage will only be applied if the parameters from the
second stage imply a stationary / invertible model. If `unbiased=True` is
given, then non-stationary / non-invertible parameters in the second stage
will throw an exception.
References
----------
.. [1] Brockwell, Peter J., and Richard A. Davis. 2016.
Introduction to Time Series and Forecasting. Springer.
.. [2] Gomez, Victor, and Agustin Maravall. 2001.
"Automatic Modeling Methods for Univariate Series."
A Course in Time Series Analysis, 171–201.
"""
spec = SARIMAXSpecification(endog, ar_order=ar_order, ma_order=ma_order)
fixed_params = _validate_fixed_params(fixed_params, spec.param_names)
endog = spec.endog
if demean:
endog = endog - endog.mean()
p = SARIMAXParams(spec=spec)
nobs = len(endog)
max_ar_order = spec.max_ar_order
max_ma_order = spec.max_ma_order
# Default initial_ar_order is as suggested by Gomez and Maravall (2001)
if initial_ar_order is None:
initial_ar_order = max(np.floor(np.log(nobs)**2).astype(int),
2 * max(max_ar_order, max_ma_order))
# Create a spec, just to validate the initial autoregressive order
_ = SARIMAXSpecification(endog, ar_order=initial_ar_order)
# Unpack fixed and free ar/ma lags, ix, and params (fixed only)
params_info = _package_fixed_and_free_params_info(
fixed_params, spec.ar_lags, spec.ma_lags
)
# Compute lagged endog
lagged_endog = lagmat(endog, max_ar_order, trim='both')
# If no AR or MA components, this is just a variance computation
mod = None
if max_ma_order == 0 and max_ar_order == 0:
p.sigma2 = np.var(endog, ddof=0)
resid = endog.copy()
# If no MA component, this is just CSS
elif max_ma_order == 0:
# extract 1) lagged_endog with free params; 2) lagged_endog with fixed
# params; 3) endog residual after applying fixed params if applicable
X_with_free_params = lagged_endog[:, params_info.free_ar_ix]
X_with_fixed_params = lagged_endog[:, params_info.fixed_ar_ix]
y = endog[max_ar_order:]
if X_with_fixed_params.shape[1] != 0:
y = y - X_with_fixed_params.dot(params_info.fixed_ar_params)
# no free ar params -> variance computation on the endog residual
if X_with_free_params.shape[1] == 0:
p.ar_params = params_info.fixed_ar_params
p.sigma2 = np.var(y, ddof=0)
resid = y.copy()
# otherwise OLS with endog residual (after applying fixed params) as y,
# and lagged_endog with free params as X
else:
mod = OLS(y, X_with_free_params)
res = mod.fit()
resid = res.resid
p.sigma2 = res.scale
p.ar_params = _stitch_fixed_and_free_params(
fixed_ar_or_ma_lags=params_info.fixed_ar_lags,
fixed_ar_or_ma_params=params_info.fixed_ar_params,
free_ar_or_ma_lags=params_info.free_ar_lags,
free_ar_or_ma_params=res.params,
spec_ar_or_ma_lags=spec.ar_lags
)
# Otherwise ARMA model
else:
# Step 1: Compute long AR model via Yule-Walker, get residuals
initial_ar_params, _ = yule_walker(
endog, order=initial_ar_order, method='mle')
X = lagmat(endog, initial_ar_order, trim='both')
y = endog[initial_ar_order:]
resid = y - X.dot(initial_ar_params)
# Get lagged residuals for `exog` in least-squares regression
lagged_resid = lagmat(resid, max_ma_order, trim='both')
# Step 2: estimate ARMA model via least squares
ix = initial_ar_order + max_ma_order - max_ar_order
X_with_free_params = np.c_[
lagged_endog[ix:, params_info.free_ar_ix],
lagged_resid[:, params_info.free_ma_ix]
]
X_with_fixed_params = np.c_[
lagged_endog[ix:, params_info.fixed_ar_ix],
lagged_resid[:, params_info.fixed_ma_ix]
]
y = endog[initial_ar_order + max_ma_order:]
if X_with_fixed_params.shape[1] != 0:
y = y - X_with_fixed_params.dot(
np.r_[params_info.fixed_ar_params, params_info.fixed_ma_params]
)
# Step 2.1: no free ar params -> variance computation on the endog
# residual
if X_with_free_params.shape[1] == 0:
p.ar_params = params_info.fixed_ar_params
p.ma_params = params_info.fixed_ma_params
p.sigma2 = np.var(y, ddof=0)
resid = y.copy()
# Step 2.2: otherwise OLS with endog residual (after applying fixed
# params) as y, and lagged_endog and lagged_resid with free params as X
else:
mod = OLS(y, X_with_free_params)
res = mod.fit()
k_free_ar_params = len(params_info.free_ar_lags)
p.ar_params = _stitch_fixed_and_free_params(
fixed_ar_or_ma_lags=params_info.fixed_ar_lags,
fixed_ar_or_ma_params=params_info.fixed_ar_params,
free_ar_or_ma_lags=params_info.free_ar_lags,
free_ar_or_ma_params=res.params[:k_free_ar_params],
spec_ar_or_ma_lags=spec.ar_lags
)
p.ma_params = _stitch_fixed_and_free_params(
fixed_ar_or_ma_lags=params_info.fixed_ma_lags,
fixed_ar_or_ma_params=params_info.fixed_ma_params,
free_ar_or_ma_lags=params_info.free_ma_lags,
free_ar_or_ma_params=res.params[k_free_ar_params:],
spec_ar_or_ma_lags=spec.ma_lags
)
resid = res.resid
p.sigma2 = res.scale
# Step 3: bias correction (if requested)
# Step 3.1: validate `unbiased` argument and handle setting the default
if unbiased is True:
if len(fixed_params) != 0:
raise NotImplementedError(
"Third step of Hannan-Rissanen estimation to remove "
"parameter bias is not yet implemented for the case "
"with fixed parameters."
)
elif not (p.is_stationary and p.is_invertible):
raise ValueError(
"Cannot perform third step of Hannan-Rissanen estimation "
"to remove parameter bias, because parameters estimated "
"from the second step are non-stationary or "
"non-invertible."
)
elif unbiased is None:
if len(fixed_params) != 0:
unbiased = False
else:
unbiased = p.is_stationary and p.is_invertible
# Step 3.2: bias correction
if unbiased is True:
if mod is None:
raise ValueError("Must have free parameters to use unbiased")
Z = np.zeros_like(endog)
ar_coef = p.ar_poly.coef
ma_coef = p.ma_poly.coef
for t in range(nobs):
if t >= max(max_ar_order, max_ma_order):
# Note: in the case of non-consecutive lag orders, the
# polynomials have the appropriate zeros so we don't
# need to subset `endog[t - max_ar_order:t]` or
# Z[t - max_ma_order:t]
tmp_ar = np.dot(
-ar_coef[1:], endog[t - max_ar_order:t][::-1])
tmp_ma = np.dot(ma_coef[1:],
Z[t - max_ma_order:t][::-1])
Z[t] = endog[t] - tmp_ar - tmp_ma
V = lfilter([1], ar_coef, Z)
W = lfilter(np.r_[1, -ma_coef[1:]], [1], Z)
lagged_V = lagmat(V, max_ar_order, trim='both')
lagged_W = lagmat(W, max_ma_order, trim='both')
exog = np.c_[
lagged_V[
max(max_ma_order - max_ar_order, 0):,
params_info.free_ar_ix
],
lagged_W[
max(max_ar_order - max_ma_order, 0):,
params_info.free_ma_ix
]
]
mod_unbias = OLS(Z[max(max_ar_order, max_ma_order):], exog)
res_unbias = mod_unbias.fit()
p.ar_params = (
p.ar_params + res_unbias.params[:spec.k_ar_params])
p.ma_params = (
p.ma_params + res_unbias.params[spec.k_ar_params:])
# Recompute sigma2
resid = mod.endog - mod.exog.dot(
np.r_[p.ar_params, p.ma_params])
p.sigma2 = np.inner(resid, resid) / len(resid)
# TODO: Gomez and Maravall (2001) or Gomez (1998)
# propose one more step here to further improve MA estimates
# Construct results
other_results = Bunch({
'spec': spec,
'initial_ar_order': initial_ar_order,
'resid': resid
})
return p, other_results | Estimate ARMA parameters using Hannan-Rissanen procedure.
Parameters
----------
endog : array_like
Input time series array, assumed to be stationary.
ar_order : int or list of int
Autoregressive order
ma_order : int or list of int
Moving average order
demean : bool, optional
Whether to estimate and remove the mean from the process prior to
fitting the ARMA coefficients. Default is True.
initial_ar_order : int, optional
Order of long autoregressive process used for initial computation of
residuals.
unbiased : bool, optional
Whether or not to apply the bias correction step. Default is True if
the estimated coefficients from the previous step imply a stationary
and invertible process and False otherwise.
fixed_params : dict, optional
Dictionary with names of fixed parameters as keys (e.g. 'ar.L1',
'ma.L2'), which correspond to SARIMAXSpecification.param_names.
Dictionary values are the values of the associated fixed parameters.
Returns
-------
parameters : SARIMAXParams object
other_results : Bunch
Includes three components: `spec`, containing the
`SARIMAXSpecification` instance corresponding to the input arguments;
`initial_ar_order`, containing the autoregressive lag order used in the
first step; and `resid`, which contains the computed residuals from the
last step.
Notes
-----
The primary reference is [1]_, section 5.1.4, which describes a three-step
procedure that we implement here.
1. Fit a large-order AR model via Yule-Walker to estimate residuals
2. Compute AR and MA estimates via least squares
3. (Unless the estimated coefficients from step (2) are non-stationary /
non-invertible or `unbiased=False`) Perform bias correction
The order used for the AR model in the first step may be given as an
argument. If it is not, we compute it as suggested by [2]_.
The estimate of the variance that we use is computed from the residuals
of the least-squares regression and not from the innovations algorithm.
This is because our fast implementation of the innovations algorithm is
only valid for stationary processes, and the Hannan-Rissanen procedure may
produce estimates that imply non-stationary processes. To avoid
inconsistency, we never compute this latter variance here, even if it is
possible. See test_hannan_rissanen::test_brockwell_davis_example_517 for
an example of how to compute this variance manually.
This procedure assumes that the series is stationary, but if this is not
true, it is still possible that this procedure will return parameters that
imply a non-stationary / non-invertible process.
Note that the third stage will only be applied if the parameters from the
second stage imply a stationary / invertible model. If `unbiased=True` is
given, then non-stationary / non-invertible parameters in the second stage
will throw an exception.
References
----------
.. [1] Brockwell, Peter J., and Richard A. Davis. 2016.
Introduction to Time Series and Forecasting. Springer.
.. [2] Gomez, Victor, and Agustin Maravall. 2001.
"Automatic Modeling Methods for Univariate Series."
A Course in Time Series Analysis, 171–201. | hannan_rissanen | python | statsmodels/statsmodels | statsmodels/tsa/arima/estimators/hannan_rissanen.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/estimators/hannan_rissanen.py | BSD-3-Clause |
def _validate_fixed_params(fixed_params, spec_param_names):
"""
Check that keys in fixed_params are a subset of spec.param_names except
"sigma2"
Parameters
----------
fixed_params : dict
spec_param_names : list of string
SARIMAXSpecification.param_names
"""
if fixed_params is None:
fixed_params = {}
assert isinstance(fixed_params, dict)
fixed_param_names = set(fixed_params.keys())
valid_param_names = set(spec_param_names) - {"sigma2"}
invalid_param_names = fixed_param_names - valid_param_names
if len(invalid_param_names) > 0:
raise ValueError(
f"Invalid fixed parameter(s): {sorted(list(invalid_param_names))}."
f" Please select among {sorted(list(valid_param_names))}."
)
return fixed_params | Check that keys in fixed_params are a subset of spec.param_names except
"sigma2"
Parameters
----------
fixed_params : dict
spec_param_names : list of string
SARIMAXSpecification.param_names | _validate_fixed_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/estimators/hannan_rissanen.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/estimators/hannan_rissanen.py | BSD-3-Clause |
def _package_fixed_and_free_params_info(fixed_params, spec_ar_lags,
spec_ma_lags):
"""
Parameters
----------
fixed_params : dict
spec_ar_lags : list of int
SARIMAXSpecification.ar_lags
spec_ma_lags : list of int
SARIMAXSpecification.ma_lags
Returns
-------
Bunch with
(lags) fixed_ar_lags, fixed_ma_lags, free_ar_lags, free_ma_lags;
(ix) fixed_ar_ix, fixed_ma_ix, free_ar_ix, free_ma_ix;
(params) fixed_ar_params, free_ma_params
"""
# unpack fixed lags and params
fixed_ar_lags_and_params = []
fixed_ma_lags_and_params = []
for key, val in fixed_params.items():
lag = int(key.split(".")[-1].lstrip("L"))
if key.startswith("ar"):
fixed_ar_lags_and_params.append((lag, val))
elif key.startswith("ma"):
fixed_ma_lags_and_params.append((lag, val))
fixed_ar_lags_and_params.sort()
fixed_ma_lags_and_params.sort()
fixed_ar_lags = [lag for lag, _ in fixed_ar_lags_and_params]
fixed_ar_params = np.array([val for _, val in fixed_ar_lags_and_params])
fixed_ma_lags = [lag for lag, _ in fixed_ma_lags_and_params]
fixed_ma_params = np.array([val for _, val in fixed_ma_lags_and_params])
# unpack free lags
free_ar_lags = [lag for lag in spec_ar_lags
if lag not in set(fixed_ar_lags)]
free_ma_lags = [lag for lag in spec_ma_lags
if lag not in set(fixed_ma_lags)]
# get ix for indexing purposes: `ar_ix`, and `ma_ix` below, are to account
# for non-consecutive lags; for indexing purposes, must have dtype int
free_ar_ix = np.array(free_ar_lags, dtype=int) - 1
free_ma_ix = np.array(free_ma_lags, dtype=int) - 1
fixed_ar_ix = np.array(fixed_ar_lags, dtype=int) - 1
fixed_ma_ix = np.array(fixed_ma_lags, dtype=int) - 1
return Bunch(
# lags
fixed_ar_lags=fixed_ar_lags, fixed_ma_lags=fixed_ma_lags,
free_ar_lags=free_ar_lags, free_ma_lags=free_ma_lags,
# ixs
fixed_ar_ix=fixed_ar_ix, fixed_ma_ix=fixed_ma_ix,
free_ar_ix=free_ar_ix, free_ma_ix=free_ma_ix,
# fixed params
fixed_ar_params=fixed_ar_params, fixed_ma_params=fixed_ma_params,
) | Parameters
----------
fixed_params : dict
spec_ar_lags : list of int
SARIMAXSpecification.ar_lags
spec_ma_lags : list of int
SARIMAXSpecification.ma_lags
Returns
-------
Bunch with
(lags) fixed_ar_lags, fixed_ma_lags, free_ar_lags, free_ma_lags;
(ix) fixed_ar_ix, fixed_ma_ix, free_ar_ix, free_ma_ix;
(params) fixed_ar_params, free_ma_params | _package_fixed_and_free_params_info | python | statsmodels/statsmodels | statsmodels/tsa/arima/estimators/hannan_rissanen.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/estimators/hannan_rissanen.py | BSD-3-Clause |
def _stitch_fixed_and_free_params(fixed_ar_or_ma_lags, fixed_ar_or_ma_params,
free_ar_or_ma_lags, free_ar_or_ma_params,
spec_ar_or_ma_lags):
"""
Stitch together fixed and free params, by the order of lags, for setting
SARIMAXParams.ma_params or SARIMAXParams.ar_params
Parameters
----------
fixed_ar_or_ma_lags : list or np.array
fixed_ar_or_ma_params : list or np.array
fixed_ar_or_ma_params corresponds with fixed_ar_or_ma_lags
free_ar_or_ma_lags : list or np.array
free_ar_or_ma_params : list or np.array
free_ar_or_ma_params corresponds with free_ar_or_ma_lags
spec_ar_or_ma_lags : list
SARIMAXSpecification.ar_lags or SARIMAXSpecification.ma_lags
Returns
-------
list of fixed and free params by the order of lags
"""
assert len(fixed_ar_or_ma_lags) == len(fixed_ar_or_ma_params)
assert len(free_ar_or_ma_lags) == len(free_ar_or_ma_params)
all_lags = np.r_[fixed_ar_or_ma_lags, free_ar_or_ma_lags]
all_params = np.r_[fixed_ar_or_ma_params, free_ar_or_ma_params]
assert set(all_lags) == set(spec_ar_or_ma_lags)
lag_to_param_map = dict(zip(all_lags, all_params))
# Sort params by the order of their corresponding lags in
# spec_ar_or_ma_lags (e.g. SARIMAXSpecification.ar_lags or
# SARIMAXSpecification.ma_lags)
all_params_sorted = [lag_to_param_map[lag] for lag in spec_ar_or_ma_lags]
return all_params_sorted | Stitch together fixed and free params, by the order of lags, for setting
SARIMAXParams.ma_params or SARIMAXParams.ar_params
Parameters
----------
fixed_ar_or_ma_lags : list or np.array
fixed_ar_or_ma_params : list or np.array
fixed_ar_or_ma_params corresponds with fixed_ar_or_ma_lags
free_ar_or_ma_lags : list or np.array
free_ar_or_ma_params : list or np.array
free_ar_or_ma_params corresponds with free_ar_or_ma_lags
spec_ar_or_ma_lags : list
SARIMAXSpecification.ar_lags or SARIMAXSpecification.ma_lags
Returns
-------
list of fixed and free params by the order of lags | _stitch_fixed_and_free_params | python | statsmodels/statsmodels | statsmodels/tsa/arima/estimators/hannan_rissanen.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/estimators/hannan_rissanen.py | BSD-3-Clause |
def yule_walker(endog, ar_order=0, demean=True, adjusted=False):
"""
Estimate AR parameters using Yule-Walker equations.
Parameters
----------
endog : array_like or SARIMAXSpecification
Input time series array, assumed to be stationary.
ar_order : int, optional
Autoregressive order. Default is 0.
demean : bool, optional
Whether to estimate and remove the mean from the process prior to
fitting the autoregressive coefficients. Default is True.
adjusted : bool, optional
Whether to use the adjusted autocovariance estimator, which uses
n - h degrees of freedom rather than n. For some processes this option
may result in a non-positive definite autocovariance matrix. Default
is False.
Returns
-------
parameters : SARIMAXParams object
Contains the parameter estimates from the final iteration.
other_results : Bunch
Includes one component, `spec`, which is the `SARIMAXSpecification`
instance corresponding to the input arguments.
Notes
-----
The primary reference is [1]_, section 5.1.1.
This procedure assumes that the series is stationary.
For a description of the effect of the adjusted estimate of the
autocovariance function, see 2.4.2 of [1]_.
References
----------
.. [1] Brockwell, Peter J., and Richard A. Davis. 2016.
Introduction to Time Series and Forecasting. Springer.
"""
spec = SARIMAXSpecification(endog, ar_order=ar_order)
endog = spec.endog
p = SARIMAXParams(spec=spec)
if not spec.is_ar_consecutive:
raise ValueError('Yule-Walker estimation unavailable for models with'
' seasonal or non-consecutive AR orders.')
# Estimate parameters
method = 'adjusted' if adjusted else 'mle'
p.ar_params, sigma = linear_model.yule_walker(
endog, order=ar_order, demean=demean, method=method)
p.sigma2 = sigma**2
# Construct other results
other_results = Bunch({
'spec': spec,
})
return p, other_results | Estimate AR parameters using Yule-Walker equations.
Parameters
----------
endog : array_like or SARIMAXSpecification
Input time series array, assumed to be stationary.
ar_order : int, optional
Autoregressive order. Default is 0.
demean : bool, optional
Whether to estimate and remove the mean from the process prior to
fitting the autoregressive coefficients. Default is True.
adjusted : bool, optional
Whether to use the adjusted autocovariance estimator, which uses
n - h degrees of freedom rather than n. For some processes this option
may result in a non-positive definite autocovariance matrix. Default
is False.
Returns
-------
parameters : SARIMAXParams object
Contains the parameter estimates from the final iteration.
other_results : Bunch
Includes one component, `spec`, which is the `SARIMAXSpecification`
instance corresponding to the input arguments.
Notes
-----
The primary reference is [1]_, section 5.1.1.
This procedure assumes that the series is stationary.
For a description of the effect of the adjusted estimate of the
autocovariance function, see 2.4.2 of [1]_.
References
----------
.. [1] Brockwell, Peter J., and Richard A. Davis. 2016.
Introduction to Time Series and Forecasting. Springer. | yule_walker | python | statsmodels/statsmodels | statsmodels/tsa/arima/estimators/yule_walker.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/arima/estimators/yule_walker.py | BSD-3-Clause |
def fix_params(self, values):
"""
Temporarily fix parameters for estimation.
Parameters
----------
values : dict
Values to fix. The key is the parameter name and the value is the
fixed value.
Yields
------
None
No value returned.
Examples
--------
>>> from statsmodels.datasets.macrodata import load_pandas
>>> data = load_pandas()
>>> import statsmodels.tsa.api as tsa
>>> mod = tsa.ExponentialSmoothing(data.data.realcons, trend="add",
... initialization_method="estimated")
>>> with mod.fix_params({"smoothing_level": 0.2}):
... mod.fit()
"""
values = dict_like(values, "values")
valid_keys = ("smoothing_level",)
if self.has_trend:
valid_keys += ("smoothing_trend",)
if self.has_seasonal:
valid_keys += ("smoothing_seasonal",)
m = self.seasonal_periods
valid_keys += tuple([f"initial_seasonal.{i}" for i in range(m)])
if self.damped_trend:
valid_keys += ("damping_trend",)
if self._initialization_method in ("estimated", None):
extra_keys = [
key.replace("smoothing_", "initial_")
for key in valid_keys
if "smoothing_" in key
]
valid_keys += tuple(extra_keys)
for key in values:
if key not in valid_keys:
valid = ", ".join(valid_keys[:-1]) + ", and " + valid_keys[-1]
raise KeyError(
f"{key} if not allowed. Only {valid} are supported in "
"this specification."
)
if "smoothing_level" in values:
alpha = values["smoothing_level"]
if alpha <= 0.0:
raise ValueError("smoothing_level must be in (0, 1)")
beta = values.get("smoothing_trend", 0.0)
if beta > alpha:
raise ValueError("smoothing_trend must be <= smoothing_level")
gamma = values.get("smoothing_seasonal", 0.0)
if gamma > 1 - alpha:
raise ValueError(
"smoothing_seasonal must be <= 1 - smoothing_level"
)
try:
self._fixed_parameters = values
yield
finally:
self._fixed_parameters = {} | Temporarily fix parameters for estimation.
Parameters
----------
values : dict
Values to fix. The key is the parameter name and the value is the
fixed value.
Yields
------
None
No value returned.
Examples
--------
>>> from statsmodels.datasets.macrodata import load_pandas
>>> data = load_pandas()
>>> import statsmodels.tsa.api as tsa
>>> mod = tsa.ExponentialSmoothing(data.data.realcons, trend="add",
... initialization_method="estimated")
>>> with mod.fix_params({"smoothing_level": 0.2}):
... mod.fit() | fix_params | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/model.py | BSD-3-Clause |
def predict(self, params, start=None, end=None):
"""
In-sample and out-of-sample prediction.
Parameters
----------
params : ndarray
The fitted model parameters.
start : int, str, or datetime
Zero-indexed observation number at which to start forecasting, ie.,
the first forecast is start. Can also be a date string to
parse or a datetime type.
end : int, str, or datetime
Zero-indexed observation number at which to end forecasting, ie.,
the first forecast is start. Can also be a date string to
parse or a datetime type.
Returns
-------
ndarray
The predicted values.
"""
if start is None:
freq = getattr(self._index, "freq", 1)
if isinstance(freq, int):
start = self._index.shape[0]
else:
start = self._index[-1] + freq
start, end, out_of_sample, _ = self._get_prediction_index(
start=start, end=end
)
if out_of_sample > 0:
res = self._predict(h=out_of_sample, **params)
else:
res = self._predict(h=0, **params)
return res.fittedfcast[start : end + out_of_sample + 1] | In-sample and out-of-sample prediction.
Parameters
----------
params : ndarray
The fitted model parameters.
start : int, str, or datetime
Zero-indexed observation number at which to start forecasting, ie.,
the first forecast is start. Can also be a date string to
parse or a datetime type.
end : int, str, or datetime
Zero-indexed observation number at which to end forecasting, ie.,
the first forecast is start. Can also be a date string to
parse or a datetime type.
Returns
-------
ndarray
The predicted values. | predict | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/model.py | BSD-3-Clause |
def fit(
self,
smoothing_level=None,
smoothing_trend=None,
smoothing_seasonal=None,
damping_trend=None,
*,
optimized=True,
remove_bias=False,
start_params=None,
method=None,
minimize_kwargs=None,
use_brute=True,
use_boxcox=None,
use_basinhopping=None,
initial_level=None,
initial_trend=None,
):
"""
Fit the model
Parameters
----------
smoothing_level : float, optional
The alpha value of the simple exponential smoothing, if the value
is set then this value will be used as the value.
smoothing_trend : float, optional
The beta value of the Holt's trend method, if the value is
set then this value will be used as the value.
smoothing_seasonal : float, optional
The gamma value of the holt winters seasonal method, if the value
is set then this value will be used as the value.
damping_trend : float, optional
The phi value of the damped method, if the value is
set then this value will be used as the value.
optimized : bool, optional
Estimate model parameters by maximizing the log-likelihood.
remove_bias : bool, optional
Remove bias from forecast values and fitted values by enforcing
that the average residual is equal to zero.
start_params : array_like, optional
Starting values to used when optimizing the fit. If not provided,
starting values are determined using a combination of grid search
and reasonable values based on the initial values of the data. See
the notes for the structure of the model parameters.
method : str, optional
The minimizer used. Valid options are "L-BFGS-B" , "TNC",
"SLSQP" (default), "Powell", "trust-constr", "basinhopping" (also
"bh") and "least_squares" (also "ls"). basinhopping tries multiple
starting values in an attempt to find a global minimizer in
non-convex problems, and so is slower than the others.
minimize_kwargs : dict[str, Any]
A dictionary of keyword arguments passed to SciPy's minimize
function if method is one of "L-BFGS-B", "TNC",
"SLSQP", "Powell", or "trust-constr", or SciPy's basinhopping
or least_squares functions. The valid keywords are optimizer
specific. Consult SciPy's documentation for the full set of
options.
use_brute : bool, optional
Search for good starting values using a brute force (grid)
optimizer. If False, a naive set of starting values is used.
use_boxcox : {True, False, 'log', float}, optional
Should the Box-Cox transform be applied to the data first? If 'log'
then apply the log. If float then use the value as lambda.
.. deprecated:: 0.12
Set use_boxcox when constructing the model
use_basinhopping : bool, optional
Deprecated. Using Basin Hopping optimizer to find optimal values.
Use ``method`` instead.
.. deprecated:: 0.12
Use ``method`` instead.
initial_level : float, optional
Value to use when initializing the fitted level.
.. deprecated:: 0.12
Set initial_level when constructing the model
initial_trend : float, optional
Value to use when initializing the fitted trend.
.. deprecated:: 0.12
Set initial_trend when constructing the model
or set initialization_method.
Returns
-------
HoltWintersResults
See statsmodels.tsa.holtwinters.HoltWintersResults.
Notes
-----
This is a full implementation of the holt winters exponential smoothing
as per [1]. This includes all the unstable methods as well as the
stable methods. The implementation of the library covers the
functionality of the R library as much as possible whilst still
being Pythonic.
The parameters are ordered
[alpha, beta, gamma, initial_level, initial_trend, phi]
which are then followed by m seasonal values if the model contains
a seasonal smoother. Any parameter not relevant for the model is
omitted. For example, a model that has a level and a seasonal
component, but no trend and is not damped, would have starting
values
[alpha, gamma, initial_level, s0, s1, ..., s<m-1>]
where sj is the initial value for seasonal component j.
References
----------
[1] Hyndman, Rob J., and George Athanasopoulos. Forecasting: principles
and practice. OTexts, 2014.
"""
# Variable renames to alpha,beta, etc as this helps with following the
# mathematical notation in general
alpha = float_like(smoothing_level, "smoothing_level", True)
beta = float_like(smoothing_trend, "smoothing_trend", True)
gamma = float_like(smoothing_seasonal, "smoothing_seasonal", True)
phi = float_like(damping_trend, "damping_trend", True)
initial_level = float_like(initial_level, "initial_level", True)
initial_trend = float_like(initial_trend, "initial_trend", True)
start_params = array_like(start_params, "start_params", optional=True)
minimize_kwargs = dict_like(
minimize_kwargs, "minimize_kwargs", optional=True
)
minimize_kwargs = {} if minimize_kwargs is None else minimize_kwargs
use_basinhopping = bool_like(
use_basinhopping, "use_basinhopping", optional=True
)
supported_methods = ("basinhopping", "bh")
supported_methods += ("least_squares", "ls")
supported_methods += (
"L-BFGS-B",
"TNC",
"SLSQP",
"Powell",
"trust-constr",
)
method = string_like(
method,
"method",
options=supported_methods,
lower=False,
optional=True,
)
# TODO: Deprecate initial_level and related parameters from fit
if initial_level is not None or initial_trend is not None:
raise ValueError(
"Initial values were set during model construction. These "
"cannot be changed during fit."
)
if use_boxcox is not None:
raise ValueError(
"use_boxcox was set at model initialization and cannot "
"be changed"
)
elif self._use_boxcox is None:
use_boxcox = False
else:
use_boxcox = self._use_boxcox
if use_basinhopping is not None:
raise ValueError(
"use_basinhopping is deprecated. Set optimization method "
"using 'method'."
)
data = self._data
damped = self.damped_trend
phi = phi if damped else 1.0
if self._use_boxcox is None:
if use_boxcox == "log":
lamda = 0.0
y = boxcox(data, lamda)
elif isinstance(use_boxcox, float):
lamda = use_boxcox
y = boxcox(data, lamda)
elif use_boxcox:
y, lamda = boxcox(data)
# use_boxcox = lamda
else:
y = data.squeeze()
else:
y = self._y
self._y = y
res = _OptConfig()
res.alpha = alpha
res.beta = beta
res.phi = phi
res.gamma = gamma
res.level = initial_level
res.trend = initial_trend
res.seasonal = None
res.y = y
res.params = start_params
res.mle_retvals = res.mask = None
method = "SLSQP" if method is None else method
if optimized:
res = self._optimize_parameters(
res, use_brute, method, minimize_kwargs
)
else:
l0, b0, s0 = self.initial_values(
initial_level=initial_level, initial_trend=initial_trend
)
res.level = l0
res.trend = b0
res.seasonal = s0
if self._fixed_parameters:
fp = self._fixed_parameters
res.alpha = fp.get("smoothing_level", res.alpha)
res.beta = fp.get("smoothing_trend", res.beta)
res.gamma = fp.get("smoothing_seasonal", res.gamma)
res.phi = fp.get("damping_trend", res.phi)
res.level = fp.get("initial_level", res.level)
res.trend = fp.get("initial_trend", res.trend)
res.seasonal = fp.get("initial_seasonal", res.seasonal)
hwfit = self._predict(
h=0,
smoothing_level=res.alpha,
smoothing_trend=res.beta,
smoothing_seasonal=res.gamma,
damping_trend=res.phi,
initial_level=res.level,
initial_trend=res.trend,
initial_seasons=res.seasonal,
use_boxcox=use_boxcox,
remove_bias=remove_bias,
is_optimized=res.mask,
)
hwfit._results.mle_retvals = res.mle_retvals
return hwfit | Fit the model
Parameters
----------
smoothing_level : float, optional
The alpha value of the simple exponential smoothing, if the value
is set then this value will be used as the value.
smoothing_trend : float, optional
The beta value of the Holt's trend method, if the value is
set then this value will be used as the value.
smoothing_seasonal : float, optional
The gamma value of the holt winters seasonal method, if the value
is set then this value will be used as the value.
damping_trend : float, optional
The phi value of the damped method, if the value is
set then this value will be used as the value.
optimized : bool, optional
Estimate model parameters by maximizing the log-likelihood.
remove_bias : bool, optional
Remove bias from forecast values and fitted values by enforcing
that the average residual is equal to zero.
start_params : array_like, optional
Starting values to used when optimizing the fit. If not provided,
starting values are determined using a combination of grid search
and reasonable values based on the initial values of the data. See
the notes for the structure of the model parameters.
method : str, optional
The minimizer used. Valid options are "L-BFGS-B" , "TNC",
"SLSQP" (default), "Powell", "trust-constr", "basinhopping" (also
"bh") and "least_squares" (also "ls"). basinhopping tries multiple
starting values in an attempt to find a global minimizer in
non-convex problems, and so is slower than the others.
minimize_kwargs : dict[str, Any]
A dictionary of keyword arguments passed to SciPy's minimize
function if method is one of "L-BFGS-B", "TNC",
"SLSQP", "Powell", or "trust-constr", or SciPy's basinhopping
or least_squares functions. The valid keywords are optimizer
specific. Consult SciPy's documentation for the full set of
options.
use_brute : bool, optional
Search for good starting values using a brute force (grid)
optimizer. If False, a naive set of starting values is used.
use_boxcox : {True, False, 'log', float}, optional
Should the Box-Cox transform be applied to the data first? If 'log'
then apply the log. If float then use the value as lambda.
.. deprecated:: 0.12
Set use_boxcox when constructing the model
use_basinhopping : bool, optional
Deprecated. Using Basin Hopping optimizer to find optimal values.
Use ``method`` instead.
.. deprecated:: 0.12
Use ``method`` instead.
initial_level : float, optional
Value to use when initializing the fitted level.
.. deprecated:: 0.12
Set initial_level when constructing the model
initial_trend : float, optional
Value to use when initializing the fitted trend.
.. deprecated:: 0.12
Set initial_trend when constructing the model
or set initialization_method.
Returns
-------
HoltWintersResults
See statsmodels.tsa.holtwinters.HoltWintersResults.
Notes
-----
This is a full implementation of the holt winters exponential smoothing
as per [1]. This includes all the unstable methods as well as the
stable methods. The implementation of the library covers the
functionality of the R library as much as possible whilst still
being Pythonic.
The parameters are ordered
[alpha, beta, gamma, initial_level, initial_trend, phi]
which are then followed by m seasonal values if the model contains
a seasonal smoother. Any parameter not relevant for the model is
omitted. For example, a model that has a level and a seasonal
component, but no trend and is not damped, would have starting
values
[alpha, gamma, initial_level, s0, s1, ..., s<m-1>]
where sj is the initial value for seasonal component j.
References
----------
[1] Hyndman, Rob J., and George Athanasopoulos. Forecasting: principles
and practice. OTexts, 2014. | fit | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/model.py | BSD-3-Clause |
def initial_values(
self, initial_level=None, initial_trend=None, force=False
):
"""
Compute initial values used in the exponential smoothing recursions.
Parameters
----------
initial_level : {float, None}
The initial value used for the level component.
initial_trend : {float, None}
The initial value used for the trend component.
force : bool
Force the calculation even if initial values exist.
Returns
-------
initial_level : float
The initial value used for the level component.
initial_trend : {float, None}
The initial value used for the trend component.
initial_seasons : list
The initial values used for the seasonal components.
Notes
-----
Convenience function the exposes the values used to initialize the
recursions. When optimizing parameters these are used as starting
values.
Method used to compute the initial value depends on when components
are included in the model. In a simple exponential smoothing model
without trend or a seasonal components, the initial value is set to the
first observation. When a trend is added, the trend is initialized
either using y[1]/y[0], if multiplicative, or y[1]-y[0]. When the
seasonal component is added the initialization adapts to account for
the modified structure.
"""
if self._initialization_method is not None and not force:
return (
self._initial_level,
self._initial_trend,
self._initial_seasonal,
)
y = self._y
trend = self.trend
seasonal = self.seasonal
has_seasonal = self.has_seasonal
has_trend = self.has_trend
m = self.seasonal_periods
l0 = initial_level
b0 = initial_trend
if has_seasonal:
l0 = y[np.arange(self.nobs) % m == 0].mean() if l0 is None else l0
if b0 is None and has_trend:
# TODO: Fix for short m
lead, lag = y[m : m + m], y[:m]
if trend == "mul":
b0 = np.exp((np.log(lead.mean()) - np.log(lag.mean())) / m)
else:
b0 = ((lead - lag) / m).mean()
s0 = list(y[:m] / l0) if seasonal == "mul" else list(y[:m] - l0)
elif has_trend:
l0 = y[0] if l0 is None else l0
if b0 is None:
b0 = y[1] / y[0] if trend == "mul" else y[1] - y[0]
s0 = []
else:
if l0 is None:
l0 = y[0]
b0 = None
s0 = []
return l0, b0, s0 | Compute initial values used in the exponential smoothing recursions.
Parameters
----------
initial_level : {float, None}
The initial value used for the level component.
initial_trend : {float, None}
The initial value used for the trend component.
force : bool
Force the calculation even if initial values exist.
Returns
-------
initial_level : float
The initial value used for the level component.
initial_trend : {float, None}
The initial value used for the trend component.
initial_seasons : list
The initial values used for the seasonal components.
Notes
-----
Convenience function the exposes the values used to initialize the
recursions. When optimizing parameters these are used as starting
values.
Method used to compute the initial value depends on when components
are included in the model. In a simple exponential smoothing model
without trend or a seasonal components, the initial value is set to the
first observation. When a trend is added, the trend is initialized
either using y[1]/y[0], if multiplicative, or y[1]-y[0]. When the
seasonal component is added the initialization adapts to account for
the modified structure. | initial_values | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/model.py | BSD-3-Clause |
def _predict(
self,
h=None,
smoothing_level=None,
smoothing_trend=None,
smoothing_seasonal=None,
initial_level=None,
initial_trend=None,
damping_trend=None,
initial_seasons=None,
use_boxcox=None,
lamda=None,
remove_bias=None,
is_optimized=None,
):
"""
Helper prediction function
Parameters
----------
h : int, optional
The number of time steps to forecast ahead.
"""
# Variable renames to alpha, beta, etc as this helps with following the
# mathematical notation in general
alpha = smoothing_level
beta = smoothing_trend
gamma = smoothing_seasonal
phi = damping_trend
# Start in sample and out of sample predictions
data = self.endog
damped = self.damped_trend
has_seasonal = self.has_seasonal
has_trend = self.has_trend
trend = self.trend
seasonal = self.seasonal
m = self.seasonal_periods
phi = phi if damped else 1.0
if use_boxcox == "log":
lamda = 0.0
y = boxcox(data, 0.0)
elif isinstance(use_boxcox, float):
lamda = use_boxcox
y = boxcox(data, lamda)
elif use_boxcox:
y, lamda = boxcox(data)
else:
lamda = None
y = data.squeeze()
if np.ndim(y) != 1:
raise NotImplementedError("Only 1 dimensional data supported")
y_alpha = np.zeros((self.nobs,))
y_gamma = np.zeros((self.nobs,))
alphac = 1 - alpha
y_alpha[:] = alpha * y
betac = 1 - beta if beta is not None else 0
gammac = 1 - gamma if gamma is not None else 0
if has_seasonal:
y_gamma[:] = gamma * y
lvls = np.zeros((self.nobs + h + 1,))
b = np.zeros((self.nobs + h + 1,))
s = np.zeros((self.nobs + h + m + 1,))
lvls[0] = initial_level
b[0] = initial_trend
s[:m] = initial_seasons
phi_h = (
np.cumsum(np.repeat(phi, h + 1) ** np.arange(1, h + 1 + 1))
if damped
else np.arange(1, h + 1 + 1)
)
trended = {"mul": np.multiply, "add": np.add, None: lambda lvl, b: lvl}[
trend
]
detrend = {"mul": np.divide, "add": np.subtract, None: lambda lvl, b: 0}[
trend
]
dampen = {"mul": np.power, "add": np.multiply, None: lambda b, phi: 0}[
trend
]
nobs = self.nobs
if seasonal == "mul":
for i in range(1, nobs + 1):
lvls[i] = y_alpha[i - 1] / s[i - 1] + (
alphac * trended(lvls[i - 1], dampen(b[i - 1], phi))
)
if has_trend:
b[i] = (beta * detrend(lvls[i], lvls[i - 1])) + (
betac * dampen(b[i - 1], phi)
)
s[i + m - 1] = y_gamma[i - 1] / trended(
lvls[i - 1], dampen(b[i - 1], phi)
) + (gammac * s[i - 1])
_trend = b[1 : nobs + 1].copy()
season = s[m : nobs + m].copy()
lvls[nobs:] = lvls[nobs]
if has_trend:
b[:nobs] = dampen(b[:nobs], phi)
b[nobs:] = dampen(b[nobs], phi_h)
trend = trended(lvls, b)
s[nobs + m - 1 :] = [
s[(nobs - 1) + j % m] for j in range(h + 1 + 1)
]
fitted = trend * s[:-m]
elif seasonal == "add":
for i in range(1, nobs + 1):
lvls[i] = (
y_alpha[i - 1]
- (alpha * s[i - 1])
+ (alphac * trended(lvls[i - 1], dampen(b[i - 1], phi)))
)
if has_trend:
b[i] = (beta * detrend(lvls[i], lvls[i - 1])) + (
betac * dampen(b[i - 1], phi)
)
s[i + m - 1] = (
y_gamma[i - 1]
- (gamma * trended(lvls[i - 1], dampen(b[i - 1], phi)))
+ (gammac * s[i - 1])
)
_trend = b[1 : nobs + 1].copy()
season = s[m : nobs + m].copy()
lvls[nobs:] = lvls[nobs]
if has_trend:
b[:nobs] = dampen(b[:nobs], phi)
b[nobs:] = dampen(b[nobs], phi_h)
trend = trended(lvls, b)
s[nobs + m - 1 :] = [
s[(nobs - 1) + j % m] for j in range(h + 1 + 1)
]
fitted = trend + s[:-m]
else:
for i in range(1, nobs + 1):
lvls[i] = y_alpha[i - 1] + (
alphac * trended(lvls[i - 1], dampen(b[i - 1], phi))
)
if has_trend:
b[i] = (beta * detrend(lvls[i], lvls[i - 1])) + (
betac * dampen(b[i - 1], phi)
)
_trend = b[1 : nobs + 1].copy()
season = s[m : nobs + m].copy()
lvls[nobs:] = lvls[nobs]
if has_trend:
b[:nobs] = dampen(b[:nobs], phi)
b[nobs:] = dampen(b[nobs], phi_h)
trend = trended(lvls, b)
fitted = trend
level = lvls[1 : nobs + 1].copy()
if use_boxcox or use_boxcox == "log" or isinstance(use_boxcox, float):
fitted = inv_boxcox(fitted, lamda)
err = fitted[: -h - 1] - data
sse = err.T @ err
# (s0 + gamma) + (b0 + beta) + (l0 + alpha) + phi
k = m * has_seasonal + 2 * has_trend + 2 + 1 * damped
aic = self.nobs * np.log(sse / self.nobs) + k * 2
dof_eff = self.nobs - k - 3
if dof_eff > 0:
aicc_penalty = (2 * (k + 2) * (k + 3)) / dof_eff
else:
aicc_penalty = np.inf
aicc = aic + aicc_penalty
bic = self.nobs * np.log(sse / self.nobs) + k * np.log(self.nobs)
resid = data - fitted[: -h - 1]
if remove_bias:
fitted += resid.mean()
self.params = {
"smoothing_level": alpha,
"smoothing_trend": beta,
"smoothing_seasonal": gamma,
"damping_trend": phi if damped else np.nan,
"initial_level": lvls[0],
"initial_trend": b[0] / phi if phi > 0 else 0,
"initial_seasons": s[:m],
"use_boxcox": use_boxcox,
"lamda": lamda,
"remove_bias": remove_bias,
}
# Format parameters into a DataFrame
codes = ["alpha", "beta", "gamma", "l.0", "b.0", "phi"]
codes += [f"s.{i}" for i in range(m)]
idx = [
"smoothing_level",
"smoothing_trend",
"smoothing_seasonal",
"initial_level",
"initial_trend",
"damping_trend",
]
idx += [f"initial_seasons.{i}" for i in range(m)]
formatted = [alpha, beta, gamma, lvls[0], b[0], phi]
formatted += s[:m].tolist()
formatted = list(map(lambda v: np.nan if v is None else v, formatted))
formatted = np.array(formatted)
if is_optimized is None:
optimized = np.zeros(len(codes), dtype=bool)
else:
optimized = is_optimized.astype(bool)
included = [True, has_trend, has_seasonal, True, has_trend, damped]
included += [True] * m
formatted = pd.DataFrame(
[[c, f, o] for c, f, o in zip(codes, formatted, optimized)],
columns=["name", "param", "optimized"],
index=idx,
)
formatted = formatted.loc[included]
hwfit = HoltWintersResults(
self,
self.params,
fittedfcast=fitted,
fittedvalues=fitted[: -h - 1],
fcastvalues=fitted[-h - 1 :],
sse=sse,
level=level,
trend=_trend,
season=season,
aic=aic,
bic=bic,
aicc=aicc,
resid=resid,
k=k,
params_formatted=formatted,
optimized=optimized,
)
return HoltWintersResultsWrapper(hwfit) | Helper prediction function
Parameters
----------
h : int, optional
The number of time steps to forecast ahead. | _predict | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/model.py | BSD-3-Clause |
def fit(
self,
smoothing_level=None,
*,
optimized=True,
start_params=None,
initial_level=None,
use_brute=True,
use_boxcox=None,
remove_bias=False,
method=None,
minimize_kwargs=None,
):
"""
Fit the model
Parameters
----------
smoothing_level : float, optional
The smoothing_level value of the simple exponential smoothing, if
the value is set then this value will be used as the value.
optimized : bool, optional
Estimate model parameters by maximizing the log-likelihood.
start_params : ndarray, optional
Starting values to used when optimizing the fit. If not provided,
starting values are determined using a combination of grid search
and reasonable values based on the initial values of the data.
initial_level : float, optional
Value to use when initializing the fitted level.
use_brute : bool, optional
Search for good starting values using a brute force (grid)
optimizer. If False, a naive set of starting values is used.
use_boxcox : {True, False, 'log', float}, optional
Should the Box-Cox transform be applied to the data first? If 'log'
then apply the log. If float then use the value as lambda.
remove_bias : bool, optional
Remove bias from forecast values and fitted values by enforcing
that the average residual is equal to zero.
method : str, default "L-BFGS-B"
The minimizer used. Valid options are "L-BFGS-B" (default), "TNC",
"SLSQP", "Powell", "trust-constr", "basinhopping" (also "bh") and
"least_squares" (also "ls"). basinhopping tries multiple starting
values in an attempt to find a global minimizer in non-convex
problems, and so is slower than the others.
minimize_kwargs : dict[str, Any]
A dictionary of keyword arguments passed to SciPy's minimize
function if method is one of "L-BFGS-B" (default), "TNC",
"SLSQP", "Powell", or "trust-constr", or SciPy's basinhopping
or least_squares. The valid keywords are optimizer specific.
Consult SciPy's documentation for the full set of options.
Returns
-------
HoltWintersResults
See statsmodels.tsa.holtwinters.HoltWintersResults.
Notes
-----
This is a full implementation of the simple exponential smoothing as
per [1].
References
----------
[1] Hyndman, Rob J., and George Athanasopoulos. Forecasting: principles
and practice. OTexts, 2014.
"""
return super().fit(
smoothing_level=smoothing_level,
optimized=optimized,
start_params=start_params,
initial_level=initial_level,
use_brute=use_brute,
remove_bias=remove_bias,
use_boxcox=use_boxcox,
method=method,
minimize_kwargs=minimize_kwargs,
) | Fit the model
Parameters
----------
smoothing_level : float, optional
The smoothing_level value of the simple exponential smoothing, if
the value is set then this value will be used as the value.
optimized : bool, optional
Estimate model parameters by maximizing the log-likelihood.
start_params : ndarray, optional
Starting values to used when optimizing the fit. If not provided,
starting values are determined using a combination of grid search
and reasonable values based on the initial values of the data.
initial_level : float, optional
Value to use when initializing the fitted level.
use_brute : bool, optional
Search for good starting values using a brute force (grid)
optimizer. If False, a naive set of starting values is used.
use_boxcox : {True, False, 'log', float}, optional
Should the Box-Cox transform be applied to the data first? If 'log'
then apply the log. If float then use the value as lambda.
remove_bias : bool, optional
Remove bias from forecast values and fitted values by enforcing
that the average residual is equal to zero.
method : str, default "L-BFGS-B"
The minimizer used. Valid options are "L-BFGS-B" (default), "TNC",
"SLSQP", "Powell", "trust-constr", "basinhopping" (also "bh") and
"least_squares" (also "ls"). basinhopping tries multiple starting
values in an attempt to find a global minimizer in non-convex
problems, and so is slower than the others.
minimize_kwargs : dict[str, Any]
A dictionary of keyword arguments passed to SciPy's minimize
function if method is one of "L-BFGS-B" (default), "TNC",
"SLSQP", "Powell", or "trust-constr", or SciPy's basinhopping
or least_squares. The valid keywords are optimizer specific.
Consult SciPy's documentation for the full set of options.
Returns
-------
HoltWintersResults
See statsmodels.tsa.holtwinters.HoltWintersResults.
Notes
-----
This is a full implementation of the simple exponential smoothing as
per [1].
References
----------
[1] Hyndman, Rob J., and George Athanasopoulos. Forecasting: principles
and practice. OTexts, 2014. | fit | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/model.py | BSD-3-Clause |
def fit(
self,
smoothing_level=None,
smoothing_trend=None,
*,
damping_trend=None,
optimized=True,
start_params=None,
initial_level=None,
initial_trend=None,
use_brute=True,
use_boxcox=None,
remove_bias=False,
method=None,
minimize_kwargs=None,
):
"""
Fit the model
Parameters
----------
smoothing_level : float, optional
The alpha value of the simple exponential smoothing, if the value
is set then this value will be used as the value.
smoothing_trend : float, optional
The beta value of the Holt's trend method, if the value is
set then this value will be used as the value.
damping_trend : float, optional
The phi value of the damped method, if the value is
set then this value will be used as the value.
optimized : bool, optional
Estimate model parameters by maximizing the log-likelihood.
start_params : ndarray, optional
Starting values to used when optimizing the fit. If not provided,
starting values are determined using a combination of grid search
and reasonable values based on the initial values of the data.
initial_level : float, optional
Value to use when initializing the fitted level.
.. deprecated:: 0.12
Set initial_level when constructing the model
initial_trend : float, optional
Value to use when initializing the fitted trend.
.. deprecated:: 0.12
Set initial_trend when constructing the model
use_brute : bool, optional
Search for good starting values using a brute force (grid)
optimizer. If False, a naive set of starting values is used.
use_boxcox : {True, False, 'log', float}, optional
Should the Box-Cox transform be applied to the data first? If 'log'
then apply the log. If float then use the value as lambda.
remove_bias : bool, optional
Remove bias from forecast values and fitted values by enforcing
that the average residual is equal to zero.
method : str, default "L-BFGS-B"
The minimizer used. Valid options are "L-BFGS-B" (default), "TNC",
"SLSQP", "Powell", "trust-constr", "basinhopping" (also "bh") and
"least_squares" (also "ls"). basinhopping tries multiple starting
values in an attempt to find a global minimizer in non-convex
problems, and so is slower than the others.
minimize_kwargs : dict[str, Any]
A dictionary of keyword arguments passed to SciPy's minimize
function if method is one of "L-BFGS-B" (default), "TNC",
"SLSQP", "Powell", or "trust-constr", or SciPy's basinhopping
or least_squares. The valid keywords are optimizer specific.
Consult SciPy's documentation for the full set of options.
Returns
-------
HoltWintersResults
See statsmodels.tsa.holtwinters.HoltWintersResults.
Notes
-----
This is a full implementation of the Holt's exponential smoothing as
per [1].
References
----------
[1] Hyndman, Rob J., and George Athanasopoulos. Forecasting: principles
and practice. OTexts, 2014.
"""
return super().fit(
smoothing_level=smoothing_level,
smoothing_trend=smoothing_trend,
damping_trend=damping_trend,
optimized=optimized,
start_params=start_params,
initial_level=initial_level,
initial_trend=initial_trend,
use_brute=use_brute,
use_boxcox=use_boxcox,
remove_bias=remove_bias,
method=method,
minimize_kwargs=minimize_kwargs,
) | Fit the model
Parameters
----------
smoothing_level : float, optional
The alpha value of the simple exponential smoothing, if the value
is set then this value will be used as the value.
smoothing_trend : float, optional
The beta value of the Holt's trend method, if the value is
set then this value will be used as the value.
damping_trend : float, optional
The phi value of the damped method, if the value is
set then this value will be used as the value.
optimized : bool, optional
Estimate model parameters by maximizing the log-likelihood.
start_params : ndarray, optional
Starting values to used when optimizing the fit. If not provided,
starting values are determined using a combination of grid search
and reasonable values based on the initial values of the data.
initial_level : float, optional
Value to use when initializing the fitted level.
.. deprecated:: 0.12
Set initial_level when constructing the model
initial_trend : float, optional
Value to use when initializing the fitted trend.
.. deprecated:: 0.12
Set initial_trend when constructing the model
use_brute : bool, optional
Search for good starting values using a brute force (grid)
optimizer. If False, a naive set of starting values is used.
use_boxcox : {True, False, 'log', float}, optional
Should the Box-Cox transform be applied to the data first? If 'log'
then apply the log. If float then use the value as lambda.
remove_bias : bool, optional
Remove bias from forecast values and fitted values by enforcing
that the average residual is equal to zero.
method : str, default "L-BFGS-B"
The minimizer used. Valid options are "L-BFGS-B" (default), "TNC",
"SLSQP", "Powell", "trust-constr", "basinhopping" (also "bh") and
"least_squares" (also "ls"). basinhopping tries multiple starting
values in an attempt to find a global minimizer in non-convex
problems, and so is slower than the others.
minimize_kwargs : dict[str, Any]
A dictionary of keyword arguments passed to SciPy's minimize
function if method is one of "L-BFGS-B" (default), "TNC",
"SLSQP", "Powell", or "trust-constr", or SciPy's basinhopping
or least_squares. The valid keywords are optimizer specific.
Consult SciPy's documentation for the full set of options.
Returns
-------
HoltWintersResults
See statsmodels.tsa.holtwinters.HoltWintersResults.
Notes
-----
This is a full implementation of the Holt's exponential smoothing as
per [1].
References
----------
[1] Hyndman, Rob J., and George Athanasopoulos. Forecasting: principles
and practice. OTexts, 2014. | fit | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/model.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/model.py | BSD-3-Clause |
def to_restricted(p, sel, bounds):
"""
Transform parameters from the unrestricted [0,1] space
to satisfy both the bounds and the 2 constraints
beta <= alpha and gamma <= (1-alpha)
Parameters
----------
p : ndarray
The parameters to transform
sel : ndarray
Array indicating whether a parameter is being estimated. If not
estimated, not transformed.
bounds : ndarray
2-d array of bounds where bound for element i is in row i
and stored as [lb, ub]
Returns
-------
"""
a, b, g = p[:3]
if sel[0]:
lb = max(LOWER_BOUND, bounds[0, 0])
ub = min(1 - LOWER_BOUND, bounds[0, 1])
a = lb + a * (ub - lb)
if sel[1]:
lb = bounds[1, 0]
ub = min(a, bounds[1, 1])
b = lb + b * (ub - lb)
if sel[2]:
lb = bounds[2, 0]
ub = min(1.0 - a, bounds[2, 1])
g = lb + g * (ub - lb)
return a, b, g | Transform parameters from the unrestricted [0,1] space
to satisfy both the bounds and the 2 constraints
beta <= alpha and gamma <= (1-alpha)
Parameters
----------
p : ndarray
The parameters to transform
sel : ndarray
Array indicating whether a parameter is being estimated. If not
estimated, not transformed.
bounds : ndarray
2-d array of bounds where bound for element i is in row i
and stored as [lb, ub]
Returns
------- | to_restricted | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/_smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/_smoothers.py | BSD-3-Clause |
def to_unrestricted(p, sel, bounds):
"""
Transform parameters to the unrestricted [0,1] space
Parameters
----------
p : ndarray
Parameters that strictly satisfy the constraints
Returns
-------
ndarray
Parameters all in (0,1)
"""
# eps < a < 1 - eps
# eps < b <= a
# eps < g <= 1 - a
a, b, g = p[:3]
if sel[0]:
lb = max(LOWER_BOUND, bounds[0, 0])
ub = min(1 - LOWER_BOUND, bounds[0, 1])
a = (a - lb) / (ub - lb)
if sel[1]:
lb = bounds[1, 0]
ub = min(p[0], bounds[1, 1])
b = (b - lb) / (ub - lb)
if sel[2]:
lb = bounds[2, 0]
ub = min(1.0 - p[0], bounds[2, 1])
g = (g - lb) / (ub - lb)
return a, b, g | Transform parameters to the unrestricted [0,1] space
Parameters
----------
p : ndarray
Parameters that strictly satisfy the constraints
Returns
-------
ndarray
Parameters all in (0,1) | to_unrestricted | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/_smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/_smoothers.py | BSD-3-Clause |
def holt_init(x, hw_args: HoltWintersArgs):
"""
Initialization for the Holt Models
"""
# Map back to the full set of parameters
hw_args.p[hw_args.xi.astype(bool)] = x
# Ensure alpha and beta satisfy the requirements
if hw_args.transform:
alpha, beta, _ = to_restricted(hw_args.p, hw_args.xi, hw_args.bounds)
else:
alpha, beta = hw_args.p[:2]
# Level, trend and dampening
l0, b0, phi = hw_args.p[3:6]
# Save repeated calculations
alphac = 1 - alpha
betac = 1 - beta
# Setup alpha * y
y_alpha = alpha * hw_args.y
# In-place operations
hw_args.lvl[0] = l0
hw_args.b[0] = b0
return alpha, beta, phi, alphac, betac, y_alpha | Initialization for the Holt Models | holt_init | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/_smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/_smoothers.py | BSD-3-Clause |
def holt__(x, hw_args: HoltWintersArgs):
"""
Simple Exponential Smoothing
Minimization Function
(,)
"""
_, _, _, alphac, _, y_alpha = holt_init(x, hw_args)
n = hw_args.n
lvl = hw_args.lvl
for i in range(1, n):
lvl[i] = (y_alpha[i - 1]) + (alphac * (lvl[i - 1]))
return hw_args.y - lvl | Simple Exponential Smoothing
Minimization Function
(,) | holt__ | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/_smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/_smoothers.py | BSD-3-Clause |
def holt_mul_dam(x, hw_args: HoltWintersArgs):
"""
Multiplicative and Multiplicative Damped
Minimization Function
(M,) & (Md,)
"""
_, beta, phi, alphac, betac, y_alpha = holt_init(x, hw_args)
lvl = hw_args.lvl
b = hw_args.b
for i in range(1, hw_args.n):
lvl[i] = (y_alpha[i - 1]) + (alphac * (lvl[i - 1] * b[i - 1] ** phi))
b[i] = (beta * (lvl[i] / lvl[i - 1])) + (betac * b[i - 1] ** phi)
return hw_args.y - lvl * b**phi | Multiplicative and Multiplicative Damped
Minimization Function
(M,) & (Md,) | holt_mul_dam | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/_smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/_smoothers.py | BSD-3-Clause |
def holt_add_dam(x, hw_args: HoltWintersArgs):
"""
Additive and Additive Damped
Minimization Function
(A,) & (Ad,)
"""
_, beta, phi, alphac, betac, y_alpha = holt_init(x, hw_args)
lvl = hw_args.lvl
b = hw_args.b
for i in range(1, hw_args.n):
lvl[i] = (y_alpha[i - 1]) + (alphac * (lvl[i - 1] + phi * b[i - 1]))
b[i] = (beta * (lvl[i] - lvl[i - 1])) + (betac * phi * b[i - 1])
return hw_args.y - (lvl + phi * b) | Additive and Additive Damped
Minimization Function
(A,) & (Ad,) | holt_add_dam | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/_smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/_smoothers.py | BSD-3-Clause |
def holt_win_init(x, hw_args: HoltWintersArgs):
"""Initialization for the Holt Winters Seasonal Models"""
hw_args.p[hw_args.xi.astype(bool)] = x
if hw_args.transform:
alpha, beta, gamma = to_restricted(
hw_args.p, hw_args.xi, hw_args.bounds
)
else:
alpha, beta, gamma = hw_args.p[:3]
l0, b0, phi = hw_args.p[3:6]
s0 = hw_args.p[6:]
alphac = 1 - alpha
betac = 1 - beta
gammac = 1 - gamma
y_alpha = alpha * hw_args.y
y_gamma = gamma * hw_args.y
hw_args.lvl[:] = 0
hw_args.b[:] = 0
hw_args.s[:] = 0
hw_args.lvl[0] = l0
hw_args.b[0] = b0
hw_args.s[: hw_args.m] = s0
return alpha, beta, gamma, phi, alphac, betac, gammac, y_alpha, y_gamma | Initialization for the Holt Winters Seasonal Models | holt_win_init | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/_smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/_smoothers.py | BSD-3-Clause |
def holt_win__mul(x, hw_args: HoltWintersArgs):
"""
Multiplicative Seasonal
Minimization Function
(,M)
"""
(_, _, _, _, alphac, _, gammac, y_alpha, y_gamma) = holt_win_init(
x, hw_args
)
lvl = hw_args.lvl
s = hw_args.s
m = hw_args.m
for i in range(1, hw_args.n):
lvl[i] = (y_alpha[i - 1] / s[i - 1]) + (alphac * (lvl[i - 1]))
s[i + m - 1] = (y_gamma[i - 1] / (lvl[i - 1])) + (gammac * s[i - 1])
return hw_args.y - lvl * s[: -(m - 1)] | Multiplicative Seasonal
Minimization Function
(,M) | holt_win__mul | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/_smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/_smoothers.py | BSD-3-Clause |
def holt_win__add(x, hw_args: HoltWintersArgs):
"""
Additive Seasonal
Minimization Function
(,A)
"""
(alpha, _, gamma, _, alphac, _, gammac, y_alpha, y_gamma) = holt_win_init(
x, hw_args
)
lvl = hw_args.lvl
s = hw_args.s
m = hw_args.m
for i in range(1, hw_args.n):
lvl[i] = (
(y_alpha[i - 1]) - (alpha * s[i - 1]) + (alphac * (lvl[i - 1]))
)
s[i + m - 1] = (
y_gamma[i - 1] - (gamma * (lvl[i - 1])) + (gammac * s[i - 1])
)
return hw_args.y - lvl - s[: -(m - 1)] | Additive Seasonal
Minimization Function
(,A) | holt_win__add | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/_smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/_smoothers.py | BSD-3-Clause |
def holt_win_add_mul_dam(x, hw_args: HoltWintersArgs):
"""
Additive and Additive Damped with Multiplicative Seasonal
Minimization Function
(A,M) & (Ad,M)
"""
(
_,
beta,
_,
phi,
alphac,
betac,
gammac,
y_alpha,
y_gamma,
) = holt_win_init(x, hw_args)
lvl = hw_args.lvl
b = hw_args.b
s = hw_args.s
m = hw_args.m
for i in range(1, hw_args.n):
lvl[i] = (y_alpha[i - 1] / s[i - 1]) + (
alphac * (lvl[i - 1] + phi * b[i - 1])
)
b[i] = (beta * (lvl[i] - lvl[i - 1])) + (betac * phi * b[i - 1])
s[i + m - 1] = (y_gamma[i - 1] / (lvl[i - 1] + phi * b[i - 1])) + (
gammac * s[i - 1]
)
return hw_args.y - (lvl + phi * b) * s[: -(m - 1)] | Additive and Additive Damped with Multiplicative Seasonal
Minimization Function
(A,M) & (Ad,M) | holt_win_add_mul_dam | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/_smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/_smoothers.py | BSD-3-Clause |
def holt_win_mul_mul_dam(x, hw_args: HoltWintersArgs):
"""
Multiplicative and Multiplicative Damped with Multiplicative Seasonal
Minimization Function
(M,M) & (Md,M)
"""
(
_,
beta,
_,
phi,
alphac,
betac,
gammac,
y_alpha,
y_gamma,
) = holt_win_init(x, hw_args)
lvl = hw_args.lvl
s = hw_args.s
b = hw_args.b
m = hw_args.m
for i in range(1, hw_args.n):
lvl[i] = (y_alpha[i - 1] / s[i - 1]) + (
alphac * (lvl[i - 1] * b[i - 1] ** phi)
)
b[i] = (beta * (lvl[i] / lvl[i - 1])) + (betac * b[i - 1] ** phi)
s[i + m - 1] = (y_gamma[i - 1] / (lvl[i - 1] * b[i - 1] ** phi)) + (
gammac * s[i - 1]
)
return hw_args.y - (lvl * b**phi) * s[: -(m - 1)] | Multiplicative and Multiplicative Damped with Multiplicative Seasonal
Minimization Function
(M,M) & (Md,M) | holt_win_mul_mul_dam | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/_smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/_smoothers.py | BSD-3-Clause |
def holt_win_add_add_dam(x, hw_args: HoltWintersArgs):
"""
Additive and Additive Damped with Additive Seasonal
Minimization Function
(A,A) & (Ad,A)
"""
(
alpha,
beta,
gamma,
phi,
alphac,
betac,
gammac,
y_alpha,
y_gamma,
) = holt_win_init(x, hw_args)
lvl = hw_args.lvl
s = hw_args.s
b = hw_args.b
m = hw_args.m
for i in range(1, hw_args.n):
lvl[i] = (
(y_alpha[i - 1])
- (alpha * s[i - 1])
+ (alphac * (lvl[i - 1] + phi * b[i - 1]))
)
b[i] = (beta * (lvl[i] - lvl[i - 1])) + (betac * phi * b[i - 1])
s[i + m - 1] = (
y_gamma[i - 1]
- (gamma * (lvl[i - 1] + phi * b[i - 1]))
+ (gammac * s[i - 1])
)
return hw_args.y - ((lvl + phi * b) + s[: -(m - 1)]) | Additive and Additive Damped with Additive Seasonal
Minimization Function
(A,A) & (Ad,A) | holt_win_add_add_dam | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/_smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/_smoothers.py | BSD-3-Clause |
def holt_win_mul_add_dam(x, hw_args: HoltWintersArgs):
"""
Multiplicative and Multiplicative Damped with Additive Seasonal
Minimization Function
(M,A) & (M,Ad)
"""
(
alpha,
beta,
gamma,
phi,
alphac,
betac,
gammac,
y_alpha,
y_gamma,
) = holt_win_init(x, hw_args)
lvl = hw_args.lvl
s = hw_args.s
b = hw_args.b
m = hw_args.m
for i in range(1, hw_args.n):
lvl[i] = (
(y_alpha[i - 1])
- (alpha * s[i - 1])
+ (alphac * (lvl[i - 1] * b[i - 1] ** phi))
)
b[i] = (beta * (lvl[i] / lvl[i - 1])) + (betac * b[i - 1] ** phi)
s[i + m - 1] = (
y_gamma[i - 1]
- (gamma * (lvl[i - 1] * b[i - 1] ** phi))
+ (gammac * s[i - 1])
)
return hw_args.y - ((lvl * phi * b) + s[: -(m - 1)]) | Multiplicative and Multiplicative Damped with Additive Seasonal
Minimization Function
(M,A) & (M,Ad) | holt_win_mul_add_dam | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/_smoothers.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/_smoothers.py | BSD-3-Clause |
def aic(self):
"""
The Akaike information criterion.
"""
return self._aic | The Akaike information criterion. | aic | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def aicc(self):
"""
AIC with a correction for finite sample sizes.
"""
return self._aicc | AIC with a correction for finite sample sizes. | aicc | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def bic(self):
"""
The Bayesian information criterion.
"""
return self._bic | The Bayesian information criterion. | bic | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def sse(self):
"""
The sum of squared errors between the data and the fittted value.
"""
return self._sse | The sum of squared errors between the data and the fittted value. | sse | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def model(self):
"""
The model used to produce the results instance.
"""
return self._model | The model used to produce the results instance. | model | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def level(self):
"""
An array of the levels values that make up the fitted values.
"""
return self._level | An array of the levels values that make up the fitted values. | level | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def optimized(self):
"""
Flag indicating if model parameters were optimized to fit the data.
"""
return self._optimized | Flag indicating if model parameters were optimized to fit the data. | optimized | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def trend(self):
"""
An array of the trend values that make up the fitted values.
"""
return self._trend | An array of the trend values that make up the fitted values. | trend | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def season(self):
"""
An array of the seasonal values that make up the fitted values.
"""
return self._season | An array of the seasonal values that make up the fitted values. | season | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def params_formatted(self):
"""
DataFrame containing all parameters
Contains short names and a flag indicating whether the parameter's
value was optimized to fit the data.
"""
return self._params_formatted | DataFrame containing all parameters
Contains short names and a flag indicating whether the parameter's
value was optimized to fit the data. | params_formatted | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def fittedvalues(self):
"""
An array of the fitted values
"""
return self._fittedvalues | An array of the fitted values | fittedvalues | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def fittedfcast(self):
"""
An array of both the fitted values and forecast values.
"""
return self._fittedfcast | An array of both the fitted values and forecast values. | fittedfcast | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def fcastvalues(self):
"""
An array of the forecast values
"""
return self._fcastvalues | An array of the forecast values | fcastvalues | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def resid(self):
"""
An array of the residuals of the fittedvalues and actual values.
"""
return self._resid | An array of the residuals of the fittedvalues and actual values. | resid | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def k(self):
"""
The k parameter used to remove the bias in AIC, BIC etc.
"""
return self._k | The k parameter used to remove the bias in AIC, BIC etc. | k | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def mle_retvals(self):
"""
Optimization results if the parameters were optimized to fit the data.
"""
return self._mle_retvals | Optimization results if the parameters were optimized to fit the data. | mle_retvals | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def predict(self, start=None, end=None):
"""
In-sample prediction and out-of-sample forecasting
Parameters
----------
start : int, str, or datetime, optional
Zero-indexed observation number at which to start forecasting, ie.,
the first forecast is start. Can also be a date string to
parse or a datetime type. Default is the the zeroth observation.
end : int, str, or datetime, optional
Zero-indexed observation number at which to end forecasting, ie.,
the first forecast is start. Can also be a date string to
parse or a datetime type. However, if the dates index does not
have a fixed frequency, end must be an integer index if you
want out of sample prediction. Default is the last observation in
the sample.
Returns
-------
forecast : ndarray
Array of out of sample forecasts.
"""
return self.model.predict(self.params, start, end) | In-sample prediction and out-of-sample forecasting
Parameters
----------
start : int, str, or datetime, optional
Zero-indexed observation number at which to start forecasting, ie.,
the first forecast is start. Can also be a date string to
parse or a datetime type. Default is the the zeroth observation.
end : int, str, or datetime, optional
Zero-indexed observation number at which to end forecasting, ie.,
the first forecast is start. Can also be a date string to
parse or a datetime type. However, if the dates index does not
have a fixed frequency, end must be an integer index if you
want out of sample prediction. Default is the last observation in
the sample.
Returns
-------
forecast : ndarray
Array of out of sample forecasts. | predict | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def forecast(self, steps=1):
"""
Out-of-sample forecasts
Parameters
----------
steps : int
The number of out of sample forecasts from the end of the
sample.
Returns
-------
forecast : ndarray
Array of out of sample forecasts
"""
try:
freq = getattr(self.model._index, "freq", 1)
if not isinstance(freq, int) and isinstance(
self.model._index, (pd.DatetimeIndex, pd.PeriodIndex)
):
start = self.model._index[-1] + freq
end = self.model._index[-1] + steps * freq
else:
start = self.model._index.shape[0]
end = start + steps - 1
return self.model.predict(self.params, start=start, end=end)
except AttributeError:
# May occur when the index does not have a freq
return self.model._predict(h=steps, **self.params).fcastvalues | Out-of-sample forecasts
Parameters
----------
steps : int
The number of out of sample forecasts from the end of the
sample.
Returns
-------
forecast : ndarray
Array of out of sample forecasts | forecast | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def summary(self):
"""
Summarize the fitted Model
Returns
-------
smry : Summary instance
This holds the summary table and text, which can be printed or
converted to various output formats.
See Also
--------
statsmodels.iolib.summary.Summary
"""
from statsmodels.iolib.summary import Summary
from statsmodels.iolib.table import SimpleTable
model = self.model
title = model.__class__.__name__ + " Model Results"
dep_variable = "endog"
orig_endog = self.model.data.orig_endog
if isinstance(orig_endog, pd.DataFrame):
dep_variable = orig_endog.columns[0]
elif isinstance(orig_endog, pd.Series):
dep_variable = orig_endog.name
seasonal_periods = (
None
if self.model.seasonal is None
else self.model.seasonal_periods
)
lookup = {
"add": "Additive",
"additive": "Additive",
"mul": "Multiplicative",
"multiplicative": "Multiplicative",
None: "None",
}
transform = self.params["use_boxcox"]
box_cox_transform = True if transform else False
box_cox_coeff = (
transform if isinstance(transform, str) else self.params["lamda"]
)
if isinstance(box_cox_coeff, float):
box_cox_coeff = f"{box_cox_coeff:>10.5f}"
top_left = [
("Dep. Variable:", [dep_variable]),
("Model:", [model.__class__.__name__]),
("Optimized:", [str(np.any(self.optimized))]),
("Trend:", [lookup[self.model.trend]]),
("Seasonal:", [lookup[self.model.seasonal]]),
("Seasonal Periods:", [str(seasonal_periods)]),
("Box-Cox:", [str(box_cox_transform)]),
("Box-Cox Coeff.:", [str(box_cox_coeff)]),
]
top_right = [
("No. Observations:", [str(len(self.model.endog))]),
("SSE", [f"{self.sse:5.3f}"]),
("AIC", [f"{self.aic:5.3f}"]),
("BIC", [f"{self.bic:5.3f}"]),
("AICC", [f"{self.aicc:5.3f}"]),
("Date:", None),
("Time:", None),
]
smry = Summary()
smry.add_table_2cols(
self, gleft=top_left, gright=top_right, title=title
)
formatted = self.params_formatted # type: pd.DataFrame
def _fmt(x):
abs_x = np.abs(x)
scale = 1
if np.isnan(x):
return f"{str(x):>20}"
if abs_x != 0:
scale = int(np.log10(abs_x))
if scale > 4 or scale < -3:
return f"{x:>20.5g}"
dec = min(7 - scale, 7)
fmt = f"{{:>20.{dec}f}}"
return fmt.format(x)
tab = []
for _, vals in formatted.iterrows():
tab.append(
[
_fmt(vals.iloc[1]),
f"{vals.iloc[0]:>20}",
f"{str(bool(vals.iloc[2])):>20}",
]
)
params_table = SimpleTable(
tab,
headers=["coeff", "code", "optimized"],
title="",
stubs=list(formatted.index),
)
smry.tables.append(params_table)
return smry | Summarize the fitted Model
Returns
-------
smry : Summary instance
This holds the summary table and text, which can be printed or
converted to various output formats.
See Also
--------
statsmodels.iolib.summary.Summary | summary | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/results.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/results.py | BSD-3-Clause |
def _simple_dbl_exp_smoother(x, alpha, beta, l0, b0, nforecast=0):
"""
Simple, slow, direct implementation of double exp smoothing for testing
"""
n = x.shape[0]
lvals = np.zeros(n)
b = np.zeros(n)
xhat = np.zeros(n)
f = np.zeros(nforecast)
lvals[0] = l0
b[0] = b0
# Special case the 0 observations since index -1 is not available
xhat[0] = l0 + b0
lvals[0] = alpha * x[0] + (1 - alpha) * (l0 + b0)
b[0] = beta * (lvals[0] - l0) + (1 - beta) * b0
for t in range(1, n):
# Obs in index t is the time t forecast for t + 1
lvals[t] = alpha * x[t] + (1 - alpha) * (lvals[t - 1] + b[t - 1])
b[t] = beta * (lvals[t] - lvals[t - 1]) + (1 - beta) * b[t - 1]
xhat[1:] = lvals[0:-1] + b[0:-1]
f[:] = lvals[-1] + np.arange(1, nforecast + 1) * b[-1]
err = x - xhat
return lvals, b, f, err, xhat | Simple, slow, direct implementation of double exp smoothing for testing | _simple_dbl_exp_smoother | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/tests/test_holtwinters.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/tests/test_holtwinters.py | BSD-3-Clause |
def simulate_expected_results_r():
"""
obtained from ets.simulate in the R package forecast, data is from fpp2
package.
library(magrittr)
library(fpp2)
library(forecast)
concat <- function(...) {
return(paste(..., sep=""))
}
error <- c("A", "M")
trend <- c("A", "M", "N")
seasonal <- c("A", "M", "N")
models <- outer(error, trend, FUN = "concat") %>%
outer(seasonal, FUN = "concat") %>% as.vector
# innov from np.random.seed(0); np.random.randn(4)
innov <- c(1.76405235, 0.40015721, 0.97873798, 2.2408932)
params <- expand.grid(models, c(TRUE, FALSE))
results <- apply(params, 1, FUN = function(p) {
tryCatch(
simulate(ets(austourists, model = p[1], damped = as.logical(p[2])),
innov = innov),
error = function(e) c(NA, NA, NA, NA))
}) %>% t
rownames(results) <- apply(params, 1, FUN = function(x) paste(x[1], x[2]))
"""
damped = {
"AAA": [77.84173, 52.69818, 65.83254, 71.85204],
"MAA": [207.81653, 136.97700, 253.56234, 588.95800],
"MAM": [215.83822, 127.17132, 269.09483, 704.32105],
"MMM": [216.52591, 132.47637, 283.04889, 759.08043],
"AAN": [62.51423, 61.87381, 63.14735, 65.11360],
"MAN": [168.25189, 90.46201, 133.54769, 232.81738],
"MMN": [167.97747, 90.59675, 134.20300, 235.64502],
}
undamped = {
"AAA": [77.10860, 51.51669, 64.46857, 70.36349],
"MAA": [209.23158, 149.62943, 270.65579, 637.03828],
"ANA": [77.09320, 51.52384, 64.36231, 69.84786],
"MNA": [207.86986, 169.42706, 313.97960, 793.97948],
"MAM": [214.45750, 106.19605, 211.61304, 492.12223],
"MMM": [221.01861, 158.55914, 403.22625, 1389.33384],
"MNM": [215.00997, 140.93035, 309.92465, 875.07985],
"AAN": [63.66619, 63.09571, 64.45832, 66.51967],
"MAN": [172.37584, 91.51932, 134.11221, 230.98970],
"MMN": [169.88595, 97.33527, 142.97017, 252.51834],
"ANN": [60.53589, 59.51851, 60.17570, 61.63011],
"MNN": [163.01575, 112.58317, 172.21992, 338.93918],
}
return {True: damped, False: undamped} | obtained from ets.simulate in the R package forecast, data is from fpp2
package.
library(magrittr)
library(fpp2)
library(forecast)
concat <- function(...) {
return(paste(..., sep=""))
}
error <- c("A", "M")
trend <- c("A", "M", "N")
seasonal <- c("A", "M", "N")
models <- outer(error, trend, FUN = "concat") %>%
outer(seasonal, FUN = "concat") %>% as.vector
# innov from np.random.seed(0); np.random.randn(4)
innov <- c(1.76405235, 0.40015721, 0.97873798, 2.2408932)
params <- expand.grid(models, c(TRUE, FALSE))
results <- apply(params, 1, FUN = function(p) {
tryCatch(
simulate(ets(austourists, model = p[1], damped = as.logical(p[2])),
innov = innov),
error = function(e) c(NA, NA, NA, NA))
}) %>% t
rownames(results) <- apply(params, 1, FUN = function(x) paste(x[1], x[2])) | simulate_expected_results_r | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/tests/test_holtwinters.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/tests/test_holtwinters.py | BSD-3-Clause |
def simulate_fit_state_r():
"""
The final state from the R model fits to get an exact comparison
Obtained with this R script:
library(magrittr)
library(fpp2)
library(forecast)
concat <- function(...) {
return(paste(..., sep=""))
}
as_dict_string <- function(named) {
string <- '{'
for (name in names(named)) {
string <- concat(string, "\"", name, "\": ", named[name], ", ")
}
string <- concat(string, '}')
return(string)
}
get_var <- function(named, name) {
if (name %in% names(named))
val <- c(named[name])
else
val <- c(NaN)
names(val) <- c(name)
return(val)
}
error <- c("A", "M")
trend <- c("A", "M", "N")
seasonal <- c("A", "M", "N")
models <- outer(error, trend, FUN = "concat") %>%
outer(seasonal, FUN = "concat") %>% as.vector
# innov from np.random.seed(0); np.random.randn(4)
innov <- c(1.76405235, 0.40015721, 0.97873798, 2.2408932)
n <- length(austourists) + 1
# print fit parameters and final states
for (damped in c(TRUE, FALSE)) {
print(paste("damped =", damped))
for (model in models) {
state <- tryCatch((function(){
fit <- ets(austourists, model = model, damped = damped)
pars <- c()
# alpha, beta, gamma, phi
for (name in c("alpha", "beta", "gamma", "phi")) {
pars <- c(pars, get_var(fit$par, name))
}
# l, b, s1, s2, s3, s4
states <- c()
for (name in c("l", "b", "s1", "s2", "s3", "s4"))
states <- c(states, get_var(fit$states[n,], name))
c(pars, states)
})(),
error = function(e) rep(NA, 10))
cat(concat("\"", model, "\": ", as_dict_string(state), ",\n"))
}
}
"""
damped = {
"AAA": {
"alpha": 0.35445427317618,
"beta": 0.0320074905894167,
"gamma": 0.399933869627979,
"phi": 0.979999965983533,
"l": 62.003405788717,
"b": 0.706524957599738,
"s1": 3.58786406600866,
"s2": -0.0747450283892903,
"s3": -11.7569356589817,
"s4": 13.3818805055271,
},
"MAA": {
"alpha": 0.31114284033284,
"beta": 0.0472138763848083,
"gamma": 0.309502324693322,
"phi": 0.870889202791893,
"l": 59.2902342851514,
"b": 0.62538315801909,
"s1": 5.66660224738038,
"s2": 2.16097311633352,
"s3": -9.20020909069337,
"s4": 15.3505801601698,
},
"MAM": {
"alpha": 0.483975835390643,
"beta": 0.00351728130401287,
"gamma": 0.00011309784353818,
"phi": 0.979999998322032,
"l": 63.0042707536293,
"b": 0.275035160634846,
"s1": 1.03531670491486,
"s2": 0.960515682506077,
"s3": 0.770086097577864,
"s4": 1.23412213281709,
},
"MMM": {
"alpha": 0.523526123191035,
"beta": 0.000100021136675999,
"gamma": 0.000100013723372502,
"phi": 0.971025672907157,
"l": 63.2030316675533,
"b": 1.00458391644788,
"s1": 1.03476354353096,
"s2": 0.959953222294316,
"s3": 0.771346403552048,
"s4": 1.23394845160922,
},
"AAN": {
"alpha": 0.014932817259302,
"beta": 0.0149327068053362,
"gamma": np.nan,
"phi": 0.979919958387887,
"l": 60.0651024395378,
"b": 0.699112782133822,
"s1": np.nan,
"s2": np.nan,
"s3": np.nan,
"s4": np.nan,
},
"MAN": {
"alpha": 0.0144217343786778,
"beta": 0.0144216994589862,
"gamma": np.nan,
"phi": 0.979999719878659,
"l": 60.1870032363649,
"b": 0.698421913047609,
"s1": np.nan,
"s2": np.nan,
"s3": np.nan,
"s4": np.nan,
},
"MMN": {
"alpha": 0.015489181776072,
"beta": 0.0154891632646377,
"gamma": np.nan,
"phi": 0.975139118496093,
"l": 60.1855946424729,
"b": 1.00999589024928,
"s1": np.nan,
"s2": np.nan,
"s3": np.nan,
"s4": np.nan,
},
}
undamped = {
"AAA": {
"alpha": 0.20281951627363,
"beta": 0.000169786227368617,
"gamma": 0.464523797585052,
"phi": np.nan,
"l": 62.5598121416791,
"b": 0.578091734736357,
"s1": 2.61176734723357,
"s2": -1.24386240029203,
"s3": -12.9575427049515,
"s4": 12.2066400808086,
},
"MAA": {
"alpha": 0.416371920801538,
"beta": 0.000100008012920072,
"gamma": 0.352943901103959,
"phi": np.nan,
"l": 62.0497742976079,
"b": 0.450130087198346,
"s1": 3.50368220490457,
"s2": -0.0544297321113539,
"s3": -11.6971093199679,
"s4": 13.1974985095916,
},
"ANA": {
"alpha": 0.54216694759434,
"beta": np.nan,
"gamma": 0.392030170511872,
"phi": np.nan,
"l": 57.606831186929,
"b": np.nan,
"s1": 8.29613785790501,
"s2": 4.6033791939889,
"s3": -7.43956343440823,
"s4": 17.722316385643,
},
"MNA": {
"alpha": 0.532842556756286,
"beta": np.nan,
"gamma": 0.346387433608713,
"phi": np.nan,
"l": 58.0372808528325,
"b": np.nan,
"s1": 7.70802088750111,
"s2": 4.14885814748503,
"s3": -7.72115936226225,
"s4": 17.1674660340923,
},
"MAM": {
"alpha": 0.315621390571192,
"beta": 0.000100011993615961,
"gamma": 0.000100051297784532,
"phi": np.nan,
"l": 62.4082004238551,
"b": 0.513327867101983,
"s1": 1.03713425342421,
"s2": 0.959607104686072,
"s3": 0.770172817592091,
"s4": 1.23309264451638,
},
"MMM": {
"alpha": 0.546068965886,
"beta": 0.0737816453485457,
"gamma": 0.000100031693302807,
"phi": np.nan,
"l": 63.8203866275649,
"b": 1.01833305374778,
"s1": 1.03725227137871,
"s2": 0.961177239042923,
"s3": 0.771173487523454,
"s4": 1.23036313932852,
},
"MNM": {
"alpha": 0.608993139624813,
"beta": np.nan,
"gamma": 0.000167258612971303,
"phi": np.nan,
"l": 63.1472153330648,
"b": np.nan,
"s1": 1.0384840572776,
"s2": 0.961456755855531,
"s3": 0.768427399477366,
"s4": 1.23185085956321,
},
"AAN": {
"alpha": 0.0097430554119077,
"beta": 0.00974302759255084,
"gamma": np.nan,
"phi": np.nan,
"l": 61.1430969243248,
"b": 0.759041621012503,
"s1": np.nan,
"s2": np.nan,
"s3": np.nan,
"s4": np.nan,
},
"MAN": {
"alpha": 0.0101749952821338,
"beta": 0.0101749138539332,
"gamma": np.nan,
"phi": np.nan,
"l": 61.6020426238699,
"b": 0.761407500773051,
"s1": np.nan,
"s2": np.nan,
"s3": np.nan,
"s4": np.nan,
},
"MMN": {
"alpha": 0.0664382968951546,
"beta": 0.000100001678373356,
"gamma": np.nan,
"phi": np.nan,
"l": 60.7206911970871,
"b": 1.01221899136391,
"s1": np.nan,
"s2": np.nan,
"s3": np.nan,
"s4": np.nan,
},
"ANN": {
"alpha": 0.196432515825523,
"beta": np.nan,
"gamma": np.nan,
"phi": np.nan,
"l": 58.7718395431632,
"b": np.nan,
"s1": np.nan,
"s2": np.nan,
"s3": np.nan,
"s4": np.nan,
},
"MNN": {
"alpha": 0.205985314333856,
"beta": np.nan,
"gamma": np.nan,
"phi": np.nan,
"l": 58.9770839944419,
"b": np.nan,
"s1": np.nan,
"s2": np.nan,
"s3": np.nan,
"s4": np.nan,
},
}
return {True: damped, False: undamped} | The final state from the R model fits to get an exact comparison
Obtained with this R script:
library(magrittr)
library(fpp2)
library(forecast)
concat <- function(...) {
return(paste(..., sep=""))
}
as_dict_string <- function(named) {
string <- '{'
for (name in names(named)) {
string <- concat(string, "\"", name, "\": ", named[name], ", ")
}
string <- concat(string, '}')
return(string)
}
get_var <- function(named, name) {
if (name %in% names(named))
val <- c(named[name])
else
val <- c(NaN)
names(val) <- c(name)
return(val)
}
error <- c("A", "M")
trend <- c("A", "M", "N")
seasonal <- c("A", "M", "N")
models <- outer(error, trend, FUN = "concat") %>%
outer(seasonal, FUN = "concat") %>% as.vector
# innov from np.random.seed(0); np.random.randn(4)
innov <- c(1.76405235, 0.40015721, 0.97873798, 2.2408932)
n <- length(austourists) + 1
# print fit parameters and final states
for (damped in c(TRUE, FALSE)) {
print(paste("damped =", damped))
for (model in models) {
state <- tryCatch((function(){
fit <- ets(austourists, model = model, damped = damped)
pars <- c()
# alpha, beta, gamma, phi
for (name in c("alpha", "beta", "gamma", "phi")) {
pars <- c(pars, get_var(fit$par, name))
}
# l, b, s1, s2, s3, s4
states <- c()
for (name in c("l", "b", "s1", "s2", "s3", "s4"))
states <- c(states, get_var(fit$states[n,], name))
c(pars, states)
})(),
error = function(e) rep(NA, 10))
cat(concat("\"", model, "\": ", as_dict_string(state), ",\n"))
}
} | simulate_fit_state_r | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/tests/test_holtwinters.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/tests/test_holtwinters.py | BSD-3-Clause |
def test_simulate_expected_r(
trend,
seasonal,
damped,
error,
austourists,
simulate_expected_results_r,
simulate_fit_state_r,
):
"""
Test for :meth:``statsmodels.tsa.holtwinters.HoltWintersResults``.
The tests are using the implementation in the R package ``forecast`` as
reference, and example data is taken from ``fpp2`` (package and book).
"""
short_name = {"add": "A", "mul": "M", None: "N"}
model_name = short_name[error] + short_name[trend] + short_name[seasonal]
if model_name in simulate_expected_results_r[damped]:
expected = np.asarray(simulate_expected_results_r[damped][model_name])
state = simulate_fit_state_r[damped][model_name]
else:
return
# create HoltWintersResults object with same parameters as in R
fit = ExponentialSmoothing(
austourists,
seasonal_periods=4,
trend=trend,
seasonal=seasonal,
damped_trend=damped,
).fit(
smoothing_level=state["alpha"],
smoothing_trend=state["beta"],
smoothing_seasonal=state["gamma"],
damping_trend=state["phi"],
optimized=False,
)
# set the same final state as in R
fit._level[-1] = state["l"]
fit._trend[-1] = state["b"]
fit._season[-1] = state["s1"]
fit._season[-2] = state["s2"]
fit._season[-3] = state["s3"]
fit._season[-4] = state["s4"]
# for MMM with damped trend the fit fails
if np.any(np.isnan(fit.fittedvalues)):
return
innov = np.asarray([[1.76405235, 0.40015721, 0.97873798, 2.2408932]]).T
sim = fit.simulate(4, repetitions=1, error=error, random_errors=innov)
assert_almost_equal(expected, sim.values, 5) | Test for :meth:``statsmodels.tsa.holtwinters.HoltWintersResults``.
The tests are using the implementation in the R package ``forecast`` as
reference, and example data is taken from ``fpp2`` (package and book). | test_simulate_expected_r | python | statsmodels/statsmodels | statsmodels/tsa/holtwinters/tests/test_holtwinters.py | https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/tests/test_holtwinters.py | BSD-3-Clause |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.