code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def to_vecm(self): """to_vecm""" k = self.coefs.shape[1] p = self.coefs.shape[0] A = self.coefs pi = -(np.identity(k) - np.sum(A, 0)) gamma = np.zeros((p - 1, k, k)) for i in range(p - 1): gamma[i] = -(np.sum(A[i + 1 :], 0)) gamma = np.concatenate(gamma, 1) return {"Gamma": gamma, "Pi": pi}
to_vecm
to_vecm
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def plot(self): """Plot input time series""" return plotting.plot_mts(self.endog, names=self.names, index=self.dates)
Plot input time series
plot
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def df_model(self): """ Number of estimated parameters per variable, including the intercept / trends """ return self.neqs * self.k_ar + self.k_exog
Number of estimated parameters per variable, including the intercept / trends
df_model
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def df_resid(self): """Number of observations minus number of estimated parameters""" return self.nobs - self.df_model
Number of observations minus number of estimated parameters
df_resid
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def fittedvalues(self): """ The predicted insample values of the response variables of the model. """ return np.dot(self.endog_lagged, self.params)
The predicted insample values of the response variables of the model.
fittedvalues
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def resid(self): """ Residuals of response variable resulting from estimated coefficients """ return self.endog[self.k_ar :] - self.fittedvalues
Residuals of response variable resulting from estimated coefficients
resid
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def sample_acov(self, nlags=1): """Sample acov""" return _compute_acov(self.endog[self.k_ar :], nlags=nlags)
Sample acov
sample_acov
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def sample_acorr(self, nlags=1): """Sample acorr""" acovs = self.sample_acov(nlags=nlags) return _acovs_to_acorrs(acovs)
Sample acorr
sample_acorr
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def plot_sample_acorr(self, nlags=10, linewidth=8): """ Plot sample autocorrelation function Parameters ---------- nlags : int The number of lags to use in compute the autocorrelation. Does not count the zero lag, which will be returned. linewidth : int The linewidth for the plots. Returns ------- Figure The figure that contains the plot axes. """ fig = plotting.plot_full_acorr( self.sample_acorr(nlags=nlags), linewidth=linewidth ) return fig
Plot sample autocorrelation function Parameters ---------- nlags : int The number of lags to use in compute the autocorrelation. Does not count the zero lag, which will be returned. linewidth : int The linewidth for the plots. Returns ------- Figure The figure that contains the plot axes.
plot_sample_acorr
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def resid_acov(self, nlags=1): """ Compute centered sample autocovariance (including lag 0) Parameters ---------- nlags : int Returns ------- """ return _compute_acov(self.resid, nlags=nlags)
Compute centered sample autocovariance (including lag 0) Parameters ---------- nlags : int Returns -------
resid_acov
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def resid_acorr(self, nlags=1): """ Compute sample autocorrelation (including lag 0) Parameters ---------- nlags : int Returns ------- """ acovs = self.resid_acov(nlags=nlags) return _acovs_to_acorrs(acovs)
Compute sample autocorrelation (including lag 0) Parameters ---------- nlags : int Returns -------
resid_acorr
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def resid_corr(self): """ Centered residual correlation matrix """ return self.resid_acorr(0)[0]
Centered residual correlation matrix
resid_corr
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def sigma_u_mle(self): """(Biased) maximum likelihood estimate of noise process covariance""" if not self.df_resid: return np.zeros_like(self.sigma_u) return self.sigma_u * self.df_resid / self.nobs
(Biased) maximum likelihood estimate of noise process covariance
sigma_u_mle
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def cov_params(self): """Estimated variance-covariance of model coefficients Notes ----- Covariance of vec(B), where B is the matrix [params_for_deterministic_terms, A_1, ..., A_p] with the shape (K x (Kp + number_of_deterministic_terms)) Adjusted to be an unbiased estimator Ref: Lütkepohl p.74-75 """ z = self.endog_lagged return np.kron(np.linalg.inv(z.T @ z), self.sigma_u)
Estimated variance-covariance of model coefficients Notes ----- Covariance of vec(B), where B is the matrix [params_for_deterministic_terms, A_1, ..., A_p] with the shape (K x (Kp + number_of_deterministic_terms)) Adjusted to be an unbiased estimator Ref: Lütkepohl p.74-75
cov_params
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def _cov_alpha(self): """ Estimated covariance matrix of model coefficients w/o exog """ # drop exog kn = self.k_exog * self.neqs return self.cov_params()[kn:, kn:]
Estimated covariance matrix of model coefficients w/o exog
_cov_alpha
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def _cov_sigma(self): """ Estimated covariance matrix of vech(sigma_u) """ D_K = tsa.duplication_matrix(self.neqs) D_Kinv = np.linalg.pinv(D_K) sigxsig = np.kron(self.sigma_u, self.sigma_u) return 2 * D_Kinv @ sigxsig @ D_Kinv.T
Estimated covariance matrix of vech(sigma_u)
_cov_sigma
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def stderr(self): """Standard errors of coefficients, reshaped to match in size""" stderr = np.sqrt(np.diag(self.cov_params())) return stderr.reshape((self.df_model, self.neqs), order="C")
Standard errors of coefficients, reshaped to match in size
stderr
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def stderr_endog_lagged(self): """Stderr_endog_lagged""" start = self.k_exog return self.stderr[start:]
Stderr_endog_lagged
stderr_endog_lagged
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def stderr_dt(self): """Stderr_dt""" end = self.k_exog return self.stderr[:end]
Stderr_dt
stderr_dt
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def tvalues(self): """ Compute t-statistics. Use Student-t(T - Kp - 1) = t(df_resid) to test significance. """ return self.params / self.stderr
Compute t-statistics. Use Student-t(T - Kp - 1) = t(df_resid) to test significance.
tvalues
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def tvalues_endog_lagged(self): """tvalues_endog_lagged""" start = self.k_exog return self.tvalues[start:]
tvalues_endog_lagged
tvalues_endog_lagged
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def tvalues_dt(self): """tvalues_dt""" end = self.k_exog return self.tvalues[:end]
tvalues_dt
tvalues_dt
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def pvalues(self): """ Two-sided p-values for model coefficients from Student t-distribution """ # return stats.t.sf(np.abs(self.tvalues), self.df_resid)*2 return 2 * stats.norm.sf(np.abs(self.tvalues))
Two-sided p-values for model coefficients from Student t-distribution
pvalues
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def pvalues_endog_lagged(self): """pvalues_endog_laggd""" start = self.k_exog return self.pvalues[start:]
pvalues_endog_laggd
pvalues_endog_lagged
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def pvalues_dt(self): """pvalues_dt""" end = self.k_exog return self.pvalues[:end]
pvalues_dt
pvalues_dt
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def plot_forecast(self, steps, alpha=0.05, plot_stderr=True): """ Plot forecast """ mid, lower, upper = self.forecast_interval( self.endog[-self.k_ar :], steps, alpha=alpha ) fig = plotting.plot_var_forc( self.endog, mid, lower, upper, names=self.names, plot_stderr=plot_stderr, ) return fig
Plot forecast
plot_forecast
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def irf_errband_mc( self, orth=False, repl=1000, steps=10, signif=0.05, seed=None, burn=100, cum=False, ): """ Compute Monte Carlo integrated error bands assuming normally distributed for impulse response functions Parameters ---------- orth : bool, default False Compute orthogonalized impulse response error bands repl : int number of Monte Carlo replications to perform steps : int, default 10 number of impulse response periods signif : float (0 < signif <1) Significance level for error bars, defaults to 95% CI seed : int np.random.seed for replications burn : int number of initial observations to discard for simulation cum : bool, default False produce cumulative irf error bands Notes ----- Lütkepohl (2005) Appendix D Returns ------- Tuple of lower and upper arrays of ma_rep monte carlo standard errors """ ma_coll = self.irf_resim( orth=orth, repl=repl, steps=steps, seed=seed, burn=burn, cum=cum ) ma_sort = np.sort(ma_coll, axis=0) # sort to get quantiles # python 2: round returns float low_idx = int(round(signif / 2 * repl) - 1) upp_idx = int(round((1 - signif / 2) * repl) - 1) lower = ma_sort[low_idx, :, :, :] upper = ma_sort[upp_idx, :, :, :] return lower, upper
Compute Monte Carlo integrated error bands assuming normally distributed for impulse response functions Parameters ---------- orth : bool, default False Compute orthogonalized impulse response error bands repl : int number of Monte Carlo replications to perform steps : int, default 10 number of impulse response periods signif : float (0 < signif <1) Significance level for error bars, defaults to 95% CI seed : int np.random.seed for replications burn : int number of initial observations to discard for simulation cum : bool, default False produce cumulative irf error bands Notes ----- Lütkepohl (2005) Appendix D Returns ------- Tuple of lower and upper arrays of ma_rep monte carlo standard errors
irf_errband_mc
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def irf_resim( self, orth=False, repl=1000, steps=10, seed=None, burn=100, cum=False ): """ Simulates impulse response function, returning an array of simulations. Used for Sims-Zha error band calculation. Parameters ---------- orth : bool, default False Compute orthogonalized impulse response error bands repl : int number of Monte Carlo replications to perform steps : int, default 10 number of impulse response periods signif : float (0 < signif <1) Significance level for error bars, defaults to 95% CI seed : int np.random.seed for replications burn : int number of initial observations to discard for simulation cum : bool, default False produce cumulative irf error bands Notes ----- .. [*] Sims, Christoper A., and Tao Zha. 1999. "Error Bands for Impulse Response." Econometrica 67: 1113-1155. Returns ------- Array of simulated impulse response functions """ neqs = self.neqs k_ar = self.k_ar coefs = self.coefs sigma_u = self.sigma_u intercept = self.intercept nobs = self.nobs nobs_original = nobs + k_ar ma_coll = np.zeros((repl, steps + 1, neqs, neqs)) def fill_coll(sim): ret = VAR(sim, exog=self.exog).fit(maxlags=k_ar, trend=self.trend) ret = ret.orth_ma_rep(maxn=steps) if orth else ret.ma_rep(maxn=steps) return ret.cumsum(axis=0) if cum else ret for i in range(repl): # discard first burn to eliminate correct for starting bias sim = util.varsim( coefs, intercept, sigma_u, seed=seed, steps=nobs_original + burn, ) sim = sim[burn:] ma_coll[i, :, :, :] = fill_coll(sim) return ma_coll
Simulates impulse response function, returning an array of simulations. Used for Sims-Zha error band calculation. Parameters ---------- orth : bool, default False Compute orthogonalized impulse response error bands repl : int number of Monte Carlo replications to perform steps : int, default 10 number of impulse response periods signif : float (0 < signif <1) Significance level for error bars, defaults to 95% CI seed : int np.random.seed for replications burn : int number of initial observations to discard for simulation cum : bool, default False produce cumulative irf error bands Notes ----- .. [*] Sims, Christoper A., and Tao Zha. 1999. "Error Bands for Impulse Response." Econometrica 67: 1113-1155. Returns ------- Array of simulated impulse response functions
irf_resim
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def summary(self): """Compute console output summary of estimates Returns ------- summary : VARSummary """ return VARSummary(self)
Compute console output summary of estimates Returns ------- summary : VARSummary
summary
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def irf(self, periods=10, var_decomp=None, var_order=None): """Analyze impulse responses to shocks in system Parameters ---------- periods : int var_decomp : ndarray (k x k), lower triangular Must satisfy Omega = P P', where P is the passed matrix. Defaults to Cholesky decomposition of Omega var_order : sequence Alternate variable order for Cholesky decomposition Returns ------- irf : IRAnalysis """ if var_order is not None: raise NotImplementedError( "alternate variable order not implemented" " (yet)" ) return IRAnalysis(self, P=var_decomp, periods=periods)
Analyze impulse responses to shocks in system Parameters ---------- periods : int var_decomp : ndarray (k x k), lower triangular Must satisfy Omega = P P', where P is the passed matrix. Defaults to Cholesky decomposition of Omega var_order : sequence Alternate variable order for Cholesky decomposition Returns ------- irf : IRAnalysis
irf
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def fevd(self, periods=10, var_decomp=None): """ Compute forecast error variance decomposition ("fevd") Returns ------- fevd : FEVD instance """ return FEVD(self, P=var_decomp, periods=periods)
Compute forecast error variance decomposition ("fevd") Returns ------- fevd : FEVD instance
fevd
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def reorder(self, order): """Reorder variables for structural specification""" if len(order) != len(self.params[0, :]): raise ValueError( "Reorder specification length should match " "number of endogenous variables" ) # This converts order to list of integers if given as strings if isinstance(order[0], str): order_new = [] for i, nam in enumerate(order): order_new.append(self.names.index(order[i])) order = order_new return _reordered(self, order)
Reorder variables for structural specification
reorder
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def test_causality(self, caused, causing=None, kind="f", signif=0.05): """ Test Granger causality Parameters ---------- caused : int or str or sequence of int or str If int or str, test whether the variable specified via this index (int) or name (str) is Granger-caused by the variable(s) specified by `causing`. If a sequence of int or str, test whether the corresponding variables are Granger-caused by the variable(s) specified by `causing`. causing : int or str or sequence of int or str or None, default: None If int or str, test whether the variable specified via this index (int) or name (str) is Granger-causing the variable(s) specified by `caused`. If a sequence of int or str, test whether the corresponding variables are Granger-causing the variable(s) specified by `caused`. If None, `causing` is assumed to be the complement of `caused`. kind : {'f', 'wald'} Perform F-test or Wald (chi-sq) test signif : float, default 5% Significance level for computing critical values for test, defaulting to standard 0.05 level Notes ----- Null hypothesis is that there is no Granger-causality for the indicated variables. The degrees of freedom in the F-test are based on the number of variables in the VAR system, that is, degrees of freedom are equal to the number of equations in the VAR times degree of freedom of a single equation. Test for Granger-causality as described in chapter 7.6.3 of [1]_. Test H0: "`causing` does not Granger-cause the remaining variables of the system" against H1: "`causing` is Granger-causal for the remaining variables". Returns ------- results : CausalityTestResults References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series* *Analysis*. Springer. """ if not (0 < signif < 1): raise ValueError("signif has to be between 0 and 1") allowed_types = (str, int) if isinstance(caused, allowed_types): caused = [caused] if not all(isinstance(c, allowed_types) for c in caused): raise TypeError( "caused has to be of type string or int (or a " "sequence of these types)." ) caused = [self.names[c] if type(c) is int else c for c in caused] caused_ind = [util.get_index(self.names, c) for c in caused] if causing is not None: if isinstance(causing, allowed_types): causing = [causing] if not all(isinstance(c, allowed_types) for c in causing): raise TypeError( "causing has to be of type string or int (or " "a sequence of these types) or None." ) causing = [self.names[c] if type(c) is int else c for c in causing] causing_ind = [util.get_index(self.names, c) for c in causing] else: causing_ind = [i for i in range(self.neqs) if i not in caused_ind] causing = [self.names[c] for c in caused_ind] k, p = self.neqs, self.k_ar if p == 0: err = "Cannot test Granger Causality in a model with 0 lags." raise RuntimeError(err) # number of restrictions num_restr = len(causing) * len(caused) * p num_det_terms = self.k_exog # Make restriction matrix C = np.zeros((num_restr, k * num_det_terms + k**2 * p), dtype=float) cols_det = k * num_det_terms row = 0 for j in range(p): for ing_ind in causing_ind: for ed_ind in caused_ind: C[row, cols_det + ed_ind + k * ing_ind + k**2 * j] = 1 row += 1 # Lütkepohl 3.6.5 Cb = np.dot(C, vec(self.params.T)) middle = np.linalg.inv(C @ self.cov_params() @ C.T) # wald statistic lam_wald = statistic = Cb @ middle @ Cb if kind.lower() == "wald": df = num_restr dist = stats.chi2(df) elif kind.lower() == "f": statistic = lam_wald / num_restr df = (num_restr, k * self.df_resid) dist = stats.f(*df) else: raise ValueError("kind %s not recognized" % kind) pvalue = dist.sf(statistic) crit_value = dist.ppf(1 - signif) return CausalityTestResults( causing, caused, statistic, crit_value, pvalue, df, signif, test="granger", method=kind, )
Test Granger causality Parameters ---------- caused : int or str or sequence of int or str If int or str, test whether the variable specified via this index (int) or name (str) is Granger-caused by the variable(s) specified by `causing`. If a sequence of int or str, test whether the corresponding variables are Granger-caused by the variable(s) specified by `causing`. causing : int or str or sequence of int or str or None, default: None If int or str, test whether the variable specified via this index (int) or name (str) is Granger-causing the variable(s) specified by `caused`. If a sequence of int or str, test whether the corresponding variables are Granger-causing the variable(s) specified by `caused`. If None, `causing` is assumed to be the complement of `caused`. kind : {'f', 'wald'} Perform F-test or Wald (chi-sq) test signif : float, default 5% Significance level for computing critical values for test, defaulting to standard 0.05 level Notes ----- Null hypothesis is that there is no Granger-causality for the indicated variables. The degrees of freedom in the F-test are based on the number of variables in the VAR system, that is, degrees of freedom are equal to the number of equations in the VAR times degree of freedom of a single equation. Test for Granger-causality as described in chapter 7.6.3 of [1]_. Test H0: "`causing` does not Granger-cause the remaining variables of the system" against H1: "`causing` is Granger-causal for the remaining variables". Returns ------- results : CausalityTestResults References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series* *Analysis*. Springer.
test_causality
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def test_inst_causality(self, causing, signif=0.05): """ Test for instantaneous causality Parameters ---------- causing : If int or str, test whether the corresponding variable is causing the variable(s) specified in caused. If sequence of int or str, test whether the corresponding variables are causing the variable(s) specified in caused. signif : float between 0 and 1, default 5 % Significance level for computing critical values for test, defaulting to standard 0.05 level verbose : bool If True, print a table with the results. Returns ------- results : dict A dict holding the test's results. The dict's keys are: "statistic" : float The calculated test statistic. "crit_value" : float The critical value of the Chi^2-distribution. "pvalue" : float The p-value corresponding to the test statistic. "df" : float The degrees of freedom of the Chi^2-distribution. "conclusion" : str {"reject", "fail to reject"} Whether H0 can be rejected or not. "signif" : float Significance level Notes ----- Test for instantaneous causality as described in chapters 3.6.3 and 7.6.4 of [1]_. Test H0: "No instantaneous causality between caused and causing" against H1: "Instantaneous causality between caused and causing exists". Instantaneous causality is a symmetric relation (i.e. if causing is "instantaneously causing" caused, then also caused is "instantaneously causing" causing), thus the naming of the parameters (which is chosen to be in accordance with test_granger_causality()) may be misleading. This method is not returning the same result as JMulTi. This is because the test is based on a VAR(k_ar) model in statsmodels (in accordance to pp. 104, 320-321 in [1]_) whereas JMulTi seems to be using a VAR(k_ar+1) model. References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series* *Analysis*. Springer. """ if not (0 < signif < 1): raise ValueError("signif has to be between 0 and 1") allowed_types = (str, int) if isinstance(causing, allowed_types): causing = [causing] if not all(isinstance(c, allowed_types) for c in causing): raise TypeError( "causing has to be of type string or int (or a " + "a sequence of these types)." ) causing = [self.names[c] if type(c) is int else c for c in causing] causing_ind = [util.get_index(self.names, c) for c in causing] caused_ind = [i for i in range(self.neqs) if i not in causing_ind] caused = [self.names[c] for c in caused_ind] # Note: JMulTi seems to be using k_ar+1 instead of k_ar k, t = self.neqs, self.nobs num_restr = len(causing) * len(caused) # called N in Lütkepohl sigma_u = self.sigma_u vech_sigma_u = util.vech(sigma_u) sig_mask = np.zeros(sigma_u.shape) # set =1 twice to ensure, that all the ones needed are below the main # diagonal: sig_mask[causing_ind, caused_ind] = 1 sig_mask[caused_ind, causing_ind] = 1 vech_sig_mask = util.vech(sig_mask) inds = np.nonzero(vech_sig_mask)[0] # Make restriction matrix C = np.zeros((num_restr, len(vech_sigma_u)), dtype=float) for row in range(num_restr): C[row, inds[row]] = 1 Cs = np.dot(C, vech_sigma_u) d = np.linalg.pinv(duplication_matrix(k)) Cd = np.dot(C, d) middle = np.linalg.inv(Cd @ np.kron(sigma_u, sigma_u) @ Cd.T) / 2 wald_statistic = t * (Cs.T @ middle @ Cs) df = num_restr dist = stats.chi2(df) pvalue = dist.sf(wald_statistic) crit_value = dist.ppf(1 - signif) return CausalityTestResults( causing, caused, wald_statistic, crit_value, pvalue, df, signif, test="inst", method="wald", )
Test for instantaneous causality Parameters ---------- causing : If int or str, test whether the corresponding variable is causing the variable(s) specified in caused. If sequence of int or str, test whether the corresponding variables are causing the variable(s) specified in caused. signif : float between 0 and 1, default 5 % Significance level for computing critical values for test, defaulting to standard 0.05 level verbose : bool If True, print a table with the results. Returns ------- results : dict A dict holding the test's results. The dict's keys are: "statistic" : float The calculated test statistic. "crit_value" : float The critical value of the Chi^2-distribution. "pvalue" : float The p-value corresponding to the test statistic. "df" : float The degrees of freedom of the Chi^2-distribution. "conclusion" : str {"reject", "fail to reject"} Whether H0 can be rejected or not. "signif" : float Significance level Notes ----- Test for instantaneous causality as described in chapters 3.6.3 and 7.6.4 of [1]_. Test H0: "No instantaneous causality between caused and causing" against H1: "Instantaneous causality between caused and causing exists". Instantaneous causality is a symmetric relation (i.e. if causing is "instantaneously causing" caused, then also caused is "instantaneously causing" causing), thus the naming of the parameters (which is chosen to be in accordance with test_granger_causality()) may be misleading. This method is not returning the same result as JMulTi. This is because the test is based on a VAR(k_ar) model in statsmodels (in accordance to pp. 104, 320-321 in [1]_) whereas JMulTi seems to be using a VAR(k_ar+1) model. References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series* *Analysis*. Springer.
test_inst_causality
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def test_whiteness(self, nlags=10, signif=0.05, adjusted=False): """ Residual whiteness tests using Portmanteau test Parameters ---------- nlags : int > 0 The number of lags tested must be larger than the number of lags included in the VAR model. signif : float, between 0 and 1 The significance level of the test. adjusted : bool, default False Flag indicating to apply small-sample adjustments. Returns ------- WhitenessTestResults The test results. Notes ----- Test the whiteness of the residuals using the Portmanteau test as described in [1]_, chapter 4.4.3. References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series* *Analysis*. Springer. """ if nlags - self.k_ar <= 0: raise ValueError( "The whiteness test can only be used when nlags " "is larger than the number of lags included in " f"the model ({self.k_ar})." ) statistic = 0 u = np.asarray(self.resid) acov_list = _compute_acov(u, nlags) cov0_inv = np.linalg.inv(acov_list[0]) for t in range(1, nlags + 1): ct = acov_list[t] to_add = np.trace(ct.T @ cov0_inv @ ct @ cov0_inv) if adjusted: to_add /= self.nobs - t statistic += to_add statistic *= self.nobs**2 if adjusted else self.nobs df = self.neqs**2 * (nlags - self.k_ar) dist = stats.chi2(df) pvalue = dist.sf(statistic) crit_value = dist.ppf(1 - signif) return WhitenessTestResults( statistic, crit_value, pvalue, df, signif, nlags, adjusted )
Residual whiteness tests using Portmanteau test Parameters ---------- nlags : int > 0 The number of lags tested must be larger than the number of lags included in the VAR model. signif : float, between 0 and 1 The significance level of the test. adjusted : bool, default False Flag indicating to apply small-sample adjustments. Returns ------- WhitenessTestResults The test results. Notes ----- Test the whiteness of the residuals using the Portmanteau test as described in [1]_, chapter 4.4.3. References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series* *Analysis*. Springer.
test_whiteness
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def test_normality(self, signif=0.05): """ Test assumption of normal-distributed errors using Jarque-Bera-style omnibus Chi^2 test. Parameters ---------- signif : float Test significance level. Returns ------- result : NormalityTestResults Notes ----- H0 (null) : data are generated by a Gaussian-distributed process """ return test_normality(self, signif=signif)
Test assumption of normal-distributed errors using Jarque-Bera-style omnibus Chi^2 test. Parameters ---------- signif : float Test significance level. Returns ------- result : NormalityTestResults Notes ----- H0 (null) : data are generated by a Gaussian-distributed process
test_normality
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def aic(self): """Akaike information criterion""" return self.info_criteria["aic"]
Akaike information criterion
aic
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def fpe(self): """Final Prediction Error (FPE) Lütkepohl p. 147, see info_criteria """ return self.info_criteria["fpe"]
Final Prediction Error (FPE) Lütkepohl p. 147, see info_criteria
fpe
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def hqic(self): """Hannan-Quinn criterion""" return self.info_criteria["hqic"]
Hannan-Quinn criterion
hqic
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def bic(self): """Bayesian a.k.a. Schwarz info criterion""" return self.info_criteria["bic"]
Bayesian a.k.a. Schwarz info criterion
bic
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def roots(self): """ The roots of the VAR process are the solution to (I - coefs[0]*z - coefs[1]*z**2 ... - coefs[p-1]*z**k_ar) = 0. Note that the inverse roots are returned, and stability requires that the roots lie outside the unit circle. """ neqs = self.neqs k_ar = self.k_ar p = neqs * k_ar arr = np.zeros((p, p)) arr[:neqs, :] = np.column_stack(self.coefs) arr[neqs:, :-neqs] = np.eye(p - neqs) roots = np.linalg.eig(arr)[0] ** -1 idx = np.argsort(np.abs(roots))[::-1] # sort by reverse modulus return roots[idx]
The roots of the VAR process are the solution to (I - coefs[0]*z - coefs[1]*z**2 ... - coefs[p-1]*z**k_ar) = 0. Note that the inverse roots are returned, and stability requires that the roots lie outside the unit circle.
roots
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def cov(self): """Compute asymptotic standard errors Returns ------- """ raise NotImplementedError
Compute asymptotic standard errors Returns -------
cov
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def plot(self, periods=None, figsize=(10, 10), **plot_kwds): """Plot graphical display of FEVD Parameters ---------- periods : int, default None Defaults to number originally specified. Can be at most that number """ import matplotlib.pyplot as plt k = self.neqs periods = periods or self.periods fig, axes = plt.subplots(nrows=k, figsize=figsize) fig.suptitle("Forecast error variance decomposition (FEVD)") colors = [str(c) for c in np.arange(k, dtype=float) / k] ticks = np.arange(periods) limits = self.decomp.cumsum(2) ax = axes[0] for i in range(k): ax = axes[i] this_limits = limits[i].T handles = [] for j in range(k): lower = this_limits[j - 1] if j > 0 else 0 upper = this_limits[j] handle = ax.bar( ticks, upper - lower, bottom=lower, color=colors[j], label=self.names[j], **plot_kwds, ) handles.append(handle) ax.set_title(self.names[i]) # just use the last axis to get handles for plotting handles, labels = ax.get_legend_handles_labels() fig.legend(handles, labels, loc="upper right") plotting.adjust_subplots(right=0.85) return fig
Plot graphical display of FEVD Parameters ---------- periods : int, default None Defaults to number originally specified. Can be at most that number
plot
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/var_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/var_model.py
BSD-3-Clause
def get_var_endog(y, lags, trend='c', has_constant='skip'): """ Make predictor matrix for VAR(p) process Z := (Z_0, ..., Z_T).T (T x Kp) Z_t = [1 y_t y_{t-1} ... y_{t - p + 1}] (Kp x 1) Ref: Lütkepohl p.70 (transposed) has_constant can be 'raise', 'add', or 'skip'. See add_constant. """ nobs = len(y) # Ravel C order, need to put in descending order Z = np.array([y[t-lags : t][::-1].ravel() for t in range(lags, nobs)]) # Add constant, trend, etc. if trend != 'n': Z = tsa.add_trend(Z, prepend=True, trend=trend, has_constant=has_constant) return Z
Make predictor matrix for VAR(p) process Z := (Z_0, ..., Z_T).T (T x Kp) Z_t = [1 y_t y_{t-1} ... y_{t - p + 1}] (Kp x 1) Ref: Lütkepohl p.70 (transposed) has_constant can be 'raise', 'add', or 'skip'. See add_constant.
get_var_endog
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/util.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/util.py
BSD-3-Clause
def make_lag_names(names, lag_order, trendorder=1, exog=None): """ Produce list of lag-variable names. Constant / trends go at the beginning Examples -------- >>> make_lag_names(['foo', 'bar'], 2, 1) ['const', 'L1.foo', 'L1.bar', 'L2.foo', 'L2.bar'] """ lag_names = [] if isinstance(names, str): names = [names] # take care of lagged endogenous names for i in range(1, lag_order + 1): for name in names: if not isinstance(name, str): name = str(name) # will need consistent unicode handling lag_names.append('L'+str(i)+'.'+name) # handle the constant name if trendorder != 0: lag_names.insert(0, 'const') if trendorder > 1: lag_names.insert(1, 'trend') if trendorder > 2: lag_names.insert(2, 'trend**2') if exog is not None: if isinstance(exog, pd.Series): exog = pd.DataFrame(exog) elif not hasattr(exog, 'ndim'): exog = np.asarray(exog) if exog.ndim == 1: exog = exog[:, None] for i in range(exog.shape[1]): if isinstance(exog, pd.DataFrame): exog_name = str(exog.columns[i]) else: exog_name = "exog" + str(i) lag_names.insert(trendorder + i, exog_name) return lag_names
Produce list of lag-variable names. Constant / trends go at the beginning Examples -------- >>> make_lag_names(['foo', 'bar'], 2, 1) ['const', 'L1.foo', 'L1.bar', 'L2.foo', 'L2.bar']
make_lag_names
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/util.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/util.py
BSD-3-Clause
def comp_matrix(coefs): """ Return compansion matrix for the VAR(1) representation for a VAR(p) process (companion form) A = [A_1 A_2 ... A_p-1 A_p I_K 0 0 0 0 I_K ... 0 0 0 ... I_K 0] """ p, k1, k2 = coefs.shape if k1 != k2: raise ValueError('coefs must be 3-d with shape (p, k, k).') kp = k1 * p result = np.zeros((kp, kp)) result[:k1] = np.concatenate(coefs, axis=1) # Set I_K matrices if p > 1: result[np.arange(k1, kp), np.arange(kp-k1)] = 1 return result
Return compansion matrix for the VAR(1) representation for a VAR(p) process (companion form) A = [A_1 A_2 ... A_p-1 A_p I_K 0 0 0 0 I_K ... 0 0 0 ... I_K 0]
comp_matrix
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/util.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/util.py
BSD-3-Clause
def parse_lutkepohl_data(path): # pragma: no cover """ Parse data files from Lütkepohl (2005) book Source for data files: www.jmulti.de """ from collections import deque from datetime import datetime import re regex = re.compile(asbytes(r'<(.*) (\w)([\d]+)>.*')) with open(path, 'rb') as f: lines = deque(f) to_skip = 0 while asbytes('*/') not in lines.popleft(): #while '*/' not in lines.popleft(): to_skip += 1 while True: to_skip += 1 line = lines.popleft() m = regex.match(line) if m: year, freq, start_point = m.groups() break data = (pd.read_csv(path, delimiter=r"\s+", header=to_skip+1) .to_records(index=False)) n = len(data) # generate the corresponding date range (using pandas for now) start_point = int(start_point) year = int(year) offsets = { asbytes('Q'): frequencies.BQuarterEnd(), asbytes('M'): frequencies.BMonthEnd(), asbytes('A'): frequencies.BYearEnd() } # create an instance offset = offsets[freq] inc = offset * (start_point - 1) start_date = offset.rollforward(datetime(year, 1, 1)) + inc offset = offsets[freq] date_range = pd.date_range(start=start_date, freq=offset, periods=n) return data, date_range
Parse data files from Lütkepohl (2005) book Source for data files: www.jmulti.de
parse_lutkepohl_data
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/util.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/util.py
BSD-3-Clause
def varsim(coefs, intercept, sig_u, steps=100, initial_values=None, seed=None, nsimulations=None): """ Simulate VAR(p) process, given coefficients and assuming Gaussian noise Parameters ---------- coefs : ndarray Coefficients for the VAR lags of endog. intercept : None or ndarray 1-D (neqs,) or (steps, neqs) This can be either the intercept for each equation or an offset. If None, then the VAR process has a zero intercept. If intercept is 1-D, then the same (endog specific) intercept is added to all observations. If intercept is 2-D, then it is treated as an offset and is added as an observation specific intercept to the autoregression. In this case, the intercept/offset should have same number of rows as steps, and the same number of columns as endogenous variables (neqs). sig_u : ndarray Covariance matrix of the residuals or innovations. If sig_u is None, then an identity matrix is used. steps : {None, int} number of observations to simulate, this includes the initial observations to start the autoregressive process. If offset is not None, then exog of the model are used if they were provided in the model initial_values : array_like, optional Initial values for use in the simulation. Shape should be (nlags, neqs) or (neqs,). Values should be ordered from less to most recent. Note that this values will be returned by the simulation as the first values of `endog_simulated` and they will count for the total number of steps. seed : {None, int} If seed is not None, then it will be used with for the random variables generated by numpy.random. nsimulations : {None, int} Number of simulations to perform. If `nsimulations` is None it will perform one simulation and return value will have shape (steps, neqs). Returns ------- endog_simulated : nd_array Endog of the simulated VAR process. Shape will be (nsimulations, steps, neqs) or (steps, neqs) if `nsimulations` is None. """ rs = np.random.RandomState(seed=seed) rmvnorm = rs.multivariate_normal p, k, k = coefs.shape nsimulations= int_like(nsimulations, "nsimulations", optional=True) if isinstance(nsimulations, int) and nsimulations <= 0: raise ValueError("nsimulations must be a positive integer if provided") if nsimulations is None: result_shape = (steps, k) nsimulations = 1 else: result_shape = (nsimulations, steps, k) if sig_u is None: sig_u = np.eye(k) ugen = rmvnorm(np.zeros(len(sig_u)), sig_u, steps*nsimulations).reshape(nsimulations, steps, k) result = np.zeros((nsimulations, steps, k)) if intercept is not None: # intercept can be 2-D like an offset variable if np.ndim(intercept) > 1: if not len(intercept) == ugen.shape[1]: raise ValueError('2-D intercept needs to have length `steps`') # add intercept/offset also to intial values result += intercept result[:,p:] += ugen[:,p:] else: result[:,p:] = ugen[:,p:] initial_values = array_like(initial_values, "initial_values", optional=True, maxdim=2) if initial_values is not None: if not (initial_values.shape == (p, k) or initial_values.shape == (k,)): raise ValueError("initial_values should have shape (p, k) or (k,) where p is the number of lags and k is the number of equations.") result[:,:p] = initial_values # add in AR terms for t in range(p, steps): ygen = result[:,t] for j in range(p): ygen += np.dot(coefs[j], result[:,t-j-1].T).T return result.reshape(result_shape)
Simulate VAR(p) process, given coefficients and assuming Gaussian noise Parameters ---------- coefs : ndarray Coefficients for the VAR lags of endog. intercept : None or ndarray 1-D (neqs,) or (steps, neqs) This can be either the intercept for each equation or an offset. If None, then the VAR process has a zero intercept. If intercept is 1-D, then the same (endog specific) intercept is added to all observations. If intercept is 2-D, then it is treated as an offset and is added as an observation specific intercept to the autoregression. In this case, the intercept/offset should have same number of rows as steps, and the same number of columns as endogenous variables (neqs). sig_u : ndarray Covariance matrix of the residuals or innovations. If sig_u is None, then an identity matrix is used. steps : {None, int} number of observations to simulate, this includes the initial observations to start the autoregressive process. If offset is not None, then exog of the model are used if they were provided in the model initial_values : array_like, optional Initial values for use in the simulation. Shape should be (nlags, neqs) or (neqs,). Values should be ordered from less to most recent. Note that this values will be returned by the simulation as the first values of `endog_simulated` and they will count for the total number of steps. seed : {None, int} If seed is not None, then it will be used with for the random variables generated by numpy.random. nsimulations : {None, int} Number of simulations to perform. If `nsimulations` is None it will perform one simulation and return value will have shape (steps, neqs). Returns ------- endog_simulated : nd_array Endog of the simulated VAR process. Shape will be (nsimulations, steps, neqs) or (steps, neqs) if `nsimulations` is None.
varsim
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/util.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/util.py
BSD-3-Clause
def eigval_decomp(sym_array): """ Returns ------- W: array of eigenvectors eigva: list of eigenvalues k: largest eigenvector """ #check if symmetric, do not include shock period eigva, W = linalg.eig(sym_array, left=True, right=False) k = np.argmax(eigva) return W, eigva, k
Returns ------- W: array of eigenvectors eigva: list of eigenvalues k: largest eigenvector
eigval_decomp
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/util.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/util.py
BSD-3-Clause
def vech(A): """ Simple vech operator Returns ------- vechvec: vector of all elements on and below diagonal """ length=A.shape[1] vechvec=[] for i in range(length): b=i while b < length: vechvec.append(A[b,i]) b=b+1 vechvec=np.asarray(vechvec) return vechvec
Simple vech operator Returns ------- vechvec: vector of all elements on and below diagonal
vech
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/util.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/util.py
BSD-3-Clause
def seasonal_dummies(n_seasons, len_endog, first_period=0, centered=False): """ Parameters ---------- n_seasons : int >= 0 Number of seasons (e.g. 12 for monthly data and 4 for quarterly data). len_endog : int >= 0 Total number of observations. first_period : int, default: 0 Season of the first observation. As an example, suppose we have monthly data and the first observation is in March (third month of the year). In this case we pass 2 as first_period. (0 for the first season, 1 for the second, ..., n_seasons-1 for the last season). An integer greater than n_seasons-1 are treated in the same way as the integer modulo n_seasons. centered : bool, default: False If True, center (demean) the dummy variables. That is useful in order to get seasonal dummies that are orthogonal to the vector of constant dummy variables (a vector of ones). Returns ------- seasonal_dummies : ndarray (len_endog x n_seasons-1) """ if n_seasons == 0: return np.empty((len_endog, 0)) if n_seasons > 0: season_exog = np.zeros((len_endog, n_seasons - 1)) for i in range(n_seasons - 1): season_exog[(i-first_period) % n_seasons::n_seasons, i] = 1 if centered: season_exog -= 1 / n_seasons return season_exog
Parameters ---------- n_seasons : int >= 0 Number of seasons (e.g. 12 for monthly data and 4 for quarterly data). len_endog : int >= 0 Total number of observations. first_period : int, default: 0 Season of the first observation. As an example, suppose we have monthly data and the first observation is in March (third month of the year). In this case we pass 2 as first_period. (0 for the first season, 1 for the second, ..., n_seasons-1 for the last season). An integer greater than n_seasons-1 are treated in the same way as the integer modulo n_seasons. centered : bool, default: False If True, center (demean) the dummy variables. That is useful in order to get seasonal dummies that are orthogonal to the vector of constant dummy variables (a vector of ones). Returns ------- seasonal_dummies : ndarray (len_endog x n_seasons-1)
seasonal_dummies
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/util.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/util.py
BSD-3-Clause
def select_order( data, maxlags: int, deterministic: str = "n", seasons: int = 0, exog=None, exog_coint=None, ): """ Compute lag order selections based on each of the available information criteria. Parameters ---------- data : array_like (nobs_tot x neqs) The observed data. maxlags : int All orders until maxlag will be compared according to the information criteria listed in the Results-section of this docstring. deterministic : str {"n", "co", "ci", "lo", "li"} * ``"n"`` - no deterministic terms * ``"co"`` - constant outside the cointegration relation * ``"ci"`` - constant within the cointegration relation * ``"lo"`` - linear trend outside the cointegration relation * ``"li"`` - linear trend within the cointegration relation Combinations of these are possible (e.g. ``"cili"`` or ``"colo"`` for linear trend with intercept). See the docstring of the :class:`VECM`-class for more information. seasons : int, default: 0 Number of periods in a seasonal cycle. exog : ndarray (nobs_tot x neqs) or `None`, default: `None` Deterministic terms outside the cointegration relation. exog_coint : ndarray (nobs_tot x neqs) or `None`, default: `None` Deterministic terms inside the cointegration relation. Returns ------- selected_orders : :class:`statsmodels.tsa.vector_ar.var_model.LagOrderResults` """ ic = defaultdict(list) deterministic = string_like(deterministic, "deterministic") for p in range(1, maxlags + 2): # +2 because k_ar_VECM == k_ar_VAR - 1 exogs = [] if "co" in deterministic or "ci" in deterministic: exogs.append(np.ones(len(data)).reshape(-1, 1)) if "lo" in deterministic or "li" in deterministic: exogs.append(1 + np.arange(len(data)).reshape(-1, 1)) if exog_coint is not None: exogs.append(exog_coint) if seasons > 0: exogs.append( seasonal_dummies(seasons, len(data)).reshape(-1, seasons - 1) ) if exog is not None: exogs.append(exog) exogs = hstack(exogs) if exogs else None var_model = VAR(data, exogs) # exclude some periods ==> same amount of data used for each lag order var_result = var_model._estimate_var(lags=p, offset=maxlags + 1 - p) for k, v in var_result.info_criteria.items(): ic[k].append(v) # -1+1 in the following line is only here for clarification. # -1 because k_ar_VECM == k_ar_VAR - 1 # +1 because p == index +1 (we start with p=1, not p=0) selected_orders = { ic_name: np.array(ic_value).argmin() - 1 + 1 for ic_name, ic_value in ic.items() } return LagOrderResults(ic, selected_orders, True)
Compute lag order selections based on each of the available information criteria. Parameters ---------- data : array_like (nobs_tot x neqs) The observed data. maxlags : int All orders until maxlag will be compared according to the information criteria listed in the Results-section of this docstring. deterministic : str {"n", "co", "ci", "lo", "li"} * ``"n"`` - no deterministic terms * ``"co"`` - constant outside the cointegration relation * ``"ci"`` - constant within the cointegration relation * ``"lo"`` - linear trend outside the cointegration relation * ``"li"`` - linear trend within the cointegration relation Combinations of these are possible (e.g. ``"cili"`` or ``"colo"`` for linear trend with intercept). See the docstring of the :class:`VECM`-class for more information. seasons : int, default: 0 Number of periods in a seasonal cycle. exog : ndarray (nobs_tot x neqs) or `None`, default: `None` Deterministic terms outside the cointegration relation. exog_coint : ndarray (nobs_tot x neqs) or `None`, default: `None` Deterministic terms inside the cointegration relation. Returns ------- selected_orders : :class:`statsmodels.tsa.vector_ar.var_model.LagOrderResults`
select_order
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def _linear_trend(nobs, k_ar, coint=False): """ Construct an ndarray representing a linear trend in a VECM. Parameters ---------- nobs : int Number of observations excluding the presample. k_ar : int Number of lags in levels. coint : bool, default: False If True (False), the returned array represents a linear trend inside (outside) the cointegration relation. Returns ------- ret : ndarray (nobs) An ndarray representing a linear trend in a VECM Notes ----- The returned array's size is nobs and not nobs_tot so it cannot be used to construct the exog-argument of VECM's __init__ method. """ ret = np.arange(nobs) + k_ar if not coint: ret += 1 return ret
Construct an ndarray representing a linear trend in a VECM. Parameters ---------- nobs : int Number of observations excluding the presample. k_ar : int Number of lags in levels. coint : bool, default: False If True (False), the returned array represents a linear trend inside (outside) the cointegration relation. Returns ------- ret : ndarray (nobs) An ndarray representing a linear trend in a VECM Notes ----- The returned array's size is nobs and not nobs_tot so it cannot be used to construct the exog-argument of VECM's __init__ method.
_linear_trend
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def _num_det_vars(det_string, seasons=0): """Gives the number of deterministic variables specified by det_string and seasons. Parameters ---------- det_string : str {"n", "co", "ci", "lo", "li"} * "n" - no deterministic terms * "co" - constant outside the cointegration relation * "ci" - constant within the cointegration relation * "lo" - linear trend outside the cointegration relation * "li" - linear trend within the cointegration relation Combinations of these are possible (e.g. "cili" or "colo" for linear trend with intercept). See the docstring of the :class:`VECM`-class for more information. seasons : int Number of periods in a seasonal cycle. Returns ------- num : int Number of deterministic terms and number dummy variables for seasonal terms. """ num = 0 det_string = string_like(det_string, "det_string") if "ci" in det_string or "co" in det_string: num += 1 if "li" in det_string or "lo" in det_string: num += 1 if seasons > 0: num += seasons - 1 return num
Gives the number of deterministic variables specified by det_string and seasons. Parameters ---------- det_string : str {"n", "co", "ci", "lo", "li"} * "n" - no deterministic terms * "co" - constant outside the cointegration relation * "ci" - constant within the cointegration relation * "lo" - linear trend outside the cointegration relation * "li" - linear trend within the cointegration relation Combinations of these are possible (e.g. "cili" or "colo" for linear trend with intercept). See the docstring of the :class:`VECM`-class for more information. seasons : int Number of periods in a seasonal cycle. Returns ------- num : int Number of deterministic terms and number dummy variables for seasonal terms.
_num_det_vars
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def _deterministic_to_exog( deterministic, seasons, nobs_tot, first_season=0, seasons_centered=False, exog=None, exog_coint=None, ): """ Translate all information about deterministic terms into a single array. These information is taken from `deterministic` and `seasons` as well as from the `exog` and `exog_coint` arrays. The resulting array form can then be used e.g. in VAR's __init__ method. Parameters ---------- deterministic : str A string specifying the deterministic terms in the model. See VECM's docstring for more information. seasons : int Number of periods in a seasonal cycle. nobs_tot : int Number of observations including the presample. first_season : int, default: 0 Season of the first observation. seasons_centered : bool, default: False If True, the seasonal dummy variables are demeaned such that they are orthogonal to an intercept term. exog : ndarray (nobs_tot x #det_terms) or None, default: None An ndarray representing deterministic terms outside the cointegration relation. exog_coint : ndarray (nobs_tot x #det_terms_coint) or None, default: None An ndarray representing deterministic terms inside the cointegration relation. Returns ------- exog : ndarray or None None, if the function's arguments do not contain deterministic terms. Otherwise, an ndarray representing these deterministic terms. """ exogs = [] deterministic = string_like(deterministic, "deterministic") if "co" in deterministic or "ci" in deterministic: exogs.append(np.ones(nobs_tot)) if exog_coint is not None: exogs.append(exog_coint) if "lo" in deterministic or "li" in deterministic: exogs.append(np.arange(nobs_tot)) if seasons > 0: exogs.append( seasonal_dummies( seasons, nobs_tot, first_period=first_season, centered=seasons_centered, ) ) if exog is not None: exogs.append(exog) return np.column_stack(exogs) if exogs else None
Translate all information about deterministic terms into a single array. These information is taken from `deterministic` and `seasons` as well as from the `exog` and `exog_coint` arrays. The resulting array form can then be used e.g. in VAR's __init__ method. Parameters ---------- deterministic : str A string specifying the deterministic terms in the model. See VECM's docstring for more information. seasons : int Number of periods in a seasonal cycle. nobs_tot : int Number of observations including the presample. first_season : int, default: 0 Season of the first observation. seasons_centered : bool, default: False If True, the seasonal dummy variables are demeaned such that they are orthogonal to an intercept term. exog : ndarray (nobs_tot x #det_terms) or None, default: None An ndarray representing deterministic terms outside the cointegration relation. exog_coint : ndarray (nobs_tot x #det_terms_coint) or None, default: None An ndarray representing deterministic terms inside the cointegration relation. Returns ------- exog : ndarray or None None, if the function's arguments do not contain deterministic terms. Otherwise, an ndarray representing these deterministic terms.
_deterministic_to_exog
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def _mat_sqrt(_2darray): """Calculates the square root of a matrix. Parameters ---------- _2darray : ndarray A 2-dimensional ndarray representing a square matrix. Returns ------- result : ndarray Square root of the matrix given as function argument. """ u_, s_, v_ = svd(_2darray, full_matrices=False) s_ = np.sqrt(s_) return u_.dot(s_[:, None] * v_)
Calculates the square root of a matrix. Parameters ---------- _2darray : ndarray A 2-dimensional ndarray representing a square matrix. Returns ------- result : ndarray Square root of the matrix given as function argument.
_mat_sqrt
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def _endog_matrices( endog, exog, exog_coint, diff_lags, deterministic, seasons=0, first_season=0, ): """ Returns different matrices needed for parameter estimation. Compare p. 186 in [1]_. The returned matrices consist of elements of the data as well as elements representing deterministic terms. A tuple of consisting of these matrices is returned. Parameters ---------- endog : ndarray (neqs x nobs_tot) The whole sample including the presample. exog : ndarray (nobs_tot x neqs) or None Deterministic terms outside the cointegration relation. exog_coint : ndarray (nobs_tot x neqs) or None Deterministic terms inside the cointegration relation. diff_lags : int Number of lags in the VEC representation. deterministic : str {``"n"``, ``"co"``, ``"ci"``, ``"lo"``, ``"li"``} * ``"n"`` - no deterministic terms * ``"co"`` - constant outside the cointegration relation * ``"ci"`` - constant within the cointegration relation * ``"lo"`` - linear trend outside the cointegration relation * ``"li"`` - linear trend within the cointegration relation Combinations of these are possible (e.g. ``"cili"`` or ``"colo"`` for linear trend with intercept). See the docstring of the :class:`VECM`-class for more information. seasons : int, default: 0 Number of periods in a seasonal cycle. 0 (default) means no seasons. first_season : int, default: 0 The season of the first observation. `0` means first season, `1` means second season, ..., `seasons-1` means the last season. Returns ------- y_1_T : ndarray (neqs x nobs) The (transposed) data without the presample. `.. math:: (y_1, \\ldots, y_T) delta_y_1_T : ndarray (neqs x nobs) The first differences of endog. `.. math:: (y_1, \\ldots, y_T) - (y_0, \\ldots, y_{T-1}) y_lag1 : ndarray (neqs x nobs) (dimensions assuming no deterministic terms are given) Endog of the previous period (lag 1). `.. math:: (y_0, \\ldots, y_{T-1}) delta_x : ndarray (k_ar_diff*neqs x nobs) (dimensions assuming no deterministic terms are given) Lagged differenced endog, used as regressor for the short term equation. References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer. """ deterministic = string_like(deterministic, "deterministic") # p. 286: p = diff_lags + 1 y = endog K = y.shape[0] y_1_T = y[:, p:] T = y_1_T.shape[1] delta_y = np.diff(y) delta_y_1_T = delta_y[:, p - 1 :] y_lag1 = y[:, p - 1 : -1] if "co" in deterministic and "ci" in deterministic: raise ValueError( "Both 'co' and 'ci' as deterministic terms given. " + "Please choose one of the two." ) y_lag1_stack = [y_lag1] if "ci" in deterministic: # pp. 257, 299, 306, 307 y_lag1_stack.append(np.ones(T)) if "li" in deterministic: # p. 299 y_lag1_stack.append(_linear_trend(T, p, coint=True)) if exog_coint is not None: y_lag1_stack.append(exog_coint[-T - 1 : -1].T) y_lag1 = np.vstack(y_lag1_stack) # p. 286: delta_x = np.zeros((diff_lags * K, T)) if diff_lags > 0: for j in range(delta_x.shape[1]): delta_x[:, j] = delta_y[ :, j + p - 2 : None if j - 1 < 0 else j - 1 : -1 ].T.reshape(K * (p - 1)) delta_x_stack = [delta_x] # p. 299, p. 303: if "co" in deterministic: delta_x_stack.append(np.ones(T)) if seasons > 0: delta_x_stack.append( seasonal_dummies( seasons, delta_x.shape[1], first_period=first_season + diff_lags + 1, centered=True, ).T ) if "lo" in deterministic: delta_x_stack.append(_linear_trend(T, p)) if exog is not None: delta_x_stack.append(exog[-T:].T) delta_x = np.vstack(delta_x_stack) return y_1_T, delta_y_1_T, y_lag1, delta_x
Returns different matrices needed for parameter estimation. Compare p. 186 in [1]_. The returned matrices consist of elements of the data as well as elements representing deterministic terms. A tuple of consisting of these matrices is returned. Parameters ---------- endog : ndarray (neqs x nobs_tot) The whole sample including the presample. exog : ndarray (nobs_tot x neqs) or None Deterministic terms outside the cointegration relation. exog_coint : ndarray (nobs_tot x neqs) or None Deterministic terms inside the cointegration relation. diff_lags : int Number of lags in the VEC representation. deterministic : str {``"n"``, ``"co"``, ``"ci"``, ``"lo"``, ``"li"``} * ``"n"`` - no deterministic terms * ``"co"`` - constant outside the cointegration relation * ``"ci"`` - constant within the cointegration relation * ``"lo"`` - linear trend outside the cointegration relation * ``"li"`` - linear trend within the cointegration relation Combinations of these are possible (e.g. ``"cili"`` or ``"colo"`` for linear trend with intercept). See the docstring of the :class:`VECM`-class for more information. seasons : int, default: 0 Number of periods in a seasonal cycle. 0 (default) means no seasons. first_season : int, default: 0 The season of the first observation. `0` means first season, `1` means second season, ..., `seasons-1` means the last season. Returns ------- y_1_T : ndarray (neqs x nobs) The (transposed) data without the presample. `.. math:: (y_1, \\ldots, y_T) delta_y_1_T : ndarray (neqs x nobs) The first differences of endog. `.. math:: (y_1, \\ldots, y_T) - (y_0, \\ldots, y_{T-1}) y_lag1 : ndarray (neqs x nobs) (dimensions assuming no deterministic terms are given) Endog of the previous period (lag 1). `.. math:: (y_0, \\ldots, y_{T-1}) delta_x : ndarray (k_ar_diff*neqs x nobs) (dimensions assuming no deterministic terms are given) Lagged differenced endog, used as regressor for the short term equation. References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
_endog_matrices
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def _r_matrices(delta_y_1_T, y_lag1, delta_x): """Returns two ndarrays needed for parameter estimation as well as the calculation of standard errors. Parameters ---------- delta_y_1_T : ndarray (neqs x nobs) The first differences of endog. `.. math:: (y_1, \\ldots, y_T) - (y_0, \\ldots, y_{T-1}) y_lag1 : ndarray (neqs x nobs) (dimensions assuming no deterministic terms are given) Endog of the previous period (lag 1). `.. math:: (y_0, \\ldots, y_{T-1}) delta_x : ndarray (k_ar_diff*neqs x nobs) (dimensions assuming no deterministic terms are given) Lagged differenced endog, used as regressor for the short term equation. Returns ------- result : tuple A tuple of two ndarrays. (See p. 292 in [1]_ for the definition of R_0 and R_1.) References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer. """ # todo: rewrite m such that a big (TxT) matrix is avoided nobs = y_lag1.shape[1] m = np.identity(nobs) - ( delta_x.T.dot(inv(delta_x.dot(delta_x.T))).dot(delta_x) ) # p. 291 r0 = delta_y_1_T.dot(m) # p. 292 r1 = y_lag1.dot(m) return r0, r1
Returns two ndarrays needed for parameter estimation as well as the calculation of standard errors. Parameters ---------- delta_y_1_T : ndarray (neqs x nobs) The first differences of endog. `.. math:: (y_1, \\ldots, y_T) - (y_0, \\ldots, y_{T-1}) y_lag1 : ndarray (neqs x nobs) (dimensions assuming no deterministic terms are given) Endog of the previous period (lag 1). `.. math:: (y_0, \\ldots, y_{T-1}) delta_x : ndarray (k_ar_diff*neqs x nobs) (dimensions assuming no deterministic terms are given) Lagged differenced endog, used as regressor for the short term equation. Returns ------- result : tuple A tuple of two ndarrays. (See p. 292 in [1]_ for the definition of R_0 and R_1.) References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
_r_matrices
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def _sij(delta_x, delta_y_1_T, y_lag1): """Returns matrices and eigenvalues and -vectors used for parameter estimation and the calculation of a models loglikelihood. Parameters ---------- delta_x : ndarray (k_ar_diff*neqs x nobs) (dimensions assuming no deterministic terms are given) delta_y_1_T : ndarray (neqs x nobs) :math:`(y_1, \\ldots, y_T) - (y_0, \\ldots, y_{T-1})` y_lag1 : ndarray (neqs x nobs) (dimensions assuming no deterministic terms are given) :math:`(y_0, \\ldots, y_{T-1})` Returns ------- result : tuple A tuple of five ndarrays as well as eigenvalues and -vectors of a certain (matrix) product of some of the returned ndarrays. (See pp. 294-295 in [1]_ for more information on :math:`S_0, S_1, \\lambda_i, \\v_i` for :math:`i \\in \\{1, \\dots, K\\}`.) References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer. """ nobs = y_lag1.shape[1] r0, r1 = _r_matrices(delta_y_1_T, y_lag1, delta_x) s00 = np.dot(r0, r0.T) / nobs s01 = np.dot(r0, r1.T) / nobs s10 = s01.T s11 = np.dot(r1, r1.T) / nobs s11_ = inv(_mat_sqrt(s11)) # p. 295: s01_s11_ = np.dot(s01, s11_) eig = np.linalg.eig(s01_s11_.T @ inv(s00) @ s01_s11_) lambd = eig[0] v = eig[1] # reorder eig_vals to make them decreasing (and order eig_vecs accordingly) lambd_order = np.argsort(lambd)[::-1] lambd = lambd[lambd_order] v = v[:, lambd_order] return s00, s01, s10, s11, s11_, lambd, v
Returns matrices and eigenvalues and -vectors used for parameter estimation and the calculation of a models loglikelihood. Parameters ---------- delta_x : ndarray (k_ar_diff*neqs x nobs) (dimensions assuming no deterministic terms are given) delta_y_1_T : ndarray (neqs x nobs) :math:`(y_1, \\ldots, y_T) - (y_0, \\ldots, y_{T-1})` y_lag1 : ndarray (neqs x nobs) (dimensions assuming no deterministic terms are given) :math:`(y_0, \\ldots, y_{T-1})` Returns ------- result : tuple A tuple of five ndarrays as well as eigenvalues and -vectors of a certain (matrix) product of some of the returned ndarrays. (See pp. 294-295 in [1]_ for more information on :math:`S_0, S_1, \\lambda_i, \\v_i` for :math:`i \\in \\{1, \\dots, K\\}`.) References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
_sij
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def select_coint_rank( endog, det_order, k_ar_diff, method="trace", signif=0.05 ): """Calculate the cointegration rank of a VECM. Parameters ---------- endog : array_like (nobs_tot x neqs) The data with presample. det_order : int * -1 - no deterministic terms * 0 - constant term * 1 - linear trend k_ar_diff : int, nonnegative Number of lagged differences in the model. method : str, {``"trace"``, ``"maxeig"``}, default: ``"trace"`` If ``"trace"``, the trace test statistic is used. If ``"maxeig"``, the maximum eigenvalue test statistic is used. signif : float, {0.1, 0.05, 0.01}, default: 0.05 The test's significance level. Returns ------- rank : :class:`CointRankResults` A :class:`CointRankResults` object containing the cointegration rank suggested by the test and allowing a summary to be printed. """ if method not in ["trace", "maxeig"]: raise ValueError( "The method argument has to be either 'trace' or" "'maximum eigenvalue'." ) if det_order not in [-1, 0, 1]: if type(det_order) is int and det_order > 1: raise ValueError( "A det_order greather than 1 is not supported." "Use a value of -1, 0, or 1." ) else: raise ValueError("det_order must be -1, 0, or 1.") possible_signif_values = [0.1, 0.05, 0.01] if signif not in possible_signif_values: raise ValueError( "Please choose a significance level from {0.1, 0.05," "0.01}" ) coint_result = coint_johansen(endog, det_order, k_ar_diff) test_stat = coint_result.lr1 if method == "trace" else coint_result.lr2 crit_vals = coint_result.cvt if method == "trace" else coint_result.cvm signif_index = possible_signif_values.index(signif) neqs = endog.shape[1] r_0 = 0 # rank in null hypothesis while r_0 < neqs: if test_stat[r_0] < crit_vals[r_0, signif_index]: break # we accept current rank else: r_0 += 1 # we reject current rank and test next possible rank return CointRankResults( r_0, neqs, test_stat[: r_0 + 1], crit_vals[: r_0 + 1, signif_index], method, signif, )
Calculate the cointegration rank of a VECM. Parameters ---------- endog : array_like (nobs_tot x neqs) The data with presample. det_order : int * -1 - no deterministic terms * 0 - constant term * 1 - linear trend k_ar_diff : int, nonnegative Number of lagged differences in the model. method : str, {``"trace"``, ``"maxeig"``}, default: ``"trace"`` If ``"trace"``, the trace test statistic is used. If ``"maxeig"``, the maximum eigenvalue test statistic is used. signif : float, {0.1, 0.05, 0.01}, default: 0.05 The test's significance level. Returns ------- rank : :class:`CointRankResults` A :class:`CointRankResults` object containing the cointegration rank suggested by the test and allowing a summary to be printed.
select_coint_rank
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def coint_johansen(endog, det_order, k_ar_diff): """ Johansen cointegration test of the cointegration rank of a VECM Parameters ---------- endog : array_like (nobs_tot x neqs) Data to test det_order : int * -1 - no deterministic terms * 0 - constant term * 1 - linear trend k_ar_diff : int, nonnegative Number of lagged differences in the model. Returns ------- result : JohansenTestResult An object containing the test's results. The most important attributes of the result class are: * trace_stat and trace_stat_crit_vals * max_eig_stat and max_eig_stat_crit_vals Notes ----- The implementation might change to make more use of the existing VECM framework. See Also -------- statsmodels.tsa.vector_ar.vecm.select_coint_rank References ---------- .. [1] Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. Springer. """ import warnings if det_order not in [-1, 0, 1]: warnings.warn( "Critical values are only available for a det_order of " "-1, 0, or 1.", category=HypothesisTestWarning, stacklevel=2, ) if endog.shape[1] > 12: # todo: test with a time series of 13 variables warnings.warn( "Critical values are only available for time series " "with 12 variables at most.", category=HypothesisTestWarning, stacklevel=2, ) from statsmodels.regression.linear_model import OLS def detrend(y, order): if order == -1: return y return ( OLS(y, np.vander(np.linspace(-1, 1, len(y)), order + 1)) .fit() .resid ) def resid(y, x): if x.size == 0: return y r = y - np.dot(x, np.dot(np.linalg.pinv(x), y)) return r endog = np.asarray(endog) nobs, neqs = endog.shape # why this? f is detrend transformed series, det_order is detrend data if det_order > -1: f = 0 else: f = det_order endog = detrend(endog, det_order) dx = np.diff(endog, 1, axis=0) z = lagmat(dx, k_ar_diff) z = z[k_ar_diff:] z = detrend(z, f) dx = dx[k_ar_diff:] dx = detrend(dx, f) r0t = resid(dx, z) # GH 5731, [:-0] does not work, need [:t-0] lx = endog[: (endog.shape[0] - k_ar_diff)] lx = lx[1:] dx = detrend(lx, f) rkt = resid(dx, z) # level on lagged diffs # Level covariance after filtering k_ar_diff skk = np.dot(rkt.T, rkt) / rkt.shape[0] # Covariacne between filtered and unfiltered sk0 = np.dot(rkt.T, r0t) / rkt.shape[0] s00 = np.dot(r0t.T, r0t) / r0t.shape[0] sig = np.dot(sk0, np.dot(inv(s00), sk0.T)) tmp = inv(skk) au, du = np.linalg.eig(np.dot(tmp, sig)) # au is eval, du is evec temp = inv(np.linalg.cholesky(np.dot(du.T, np.dot(skk, du)))) dt = np.dot(du, temp) # JP: the next part can be done much easier auind = np.argsort(au) aind = np.flipud(auind) a = au[aind] d = dt[:, aind] # Normalize by first non-zero element of d, usually [0, 0] # GH 5517 non_zero_d = d.flat != 0 if np.any(non_zero_d): d *= np.sign(d.flat[non_zero_d][0]) # Compute the trace and max eigenvalue statistics lr1 = np.zeros(neqs) lr2 = np.zeros(neqs) cvm = np.zeros((neqs, 3)) cvt = np.zeros((neqs, 3)) iota = np.ones(neqs) t, junk = rkt.shape for i in range(0, neqs): tmp = np.log(iota - a)[i:] lr1[i] = -t * np.sum(tmp, 0) lr2[i] = -t * np.log(1 - a[i]) cvm[i, :] = c_sja(neqs - i, det_order) cvt[i, :] = c_sjt(neqs - i, det_order) aind[i] = i return JohansenTestResult(rkt, r0t, a, d, lr1, lr2, cvt, cvm, aind)
Johansen cointegration test of the cointegration rank of a VECM Parameters ---------- endog : array_like (nobs_tot x neqs) Data to test det_order : int * -1 - no deterministic terms * 0 - constant term * 1 - linear trend k_ar_diff : int, nonnegative Number of lagged differences in the model. Returns ------- result : JohansenTestResult An object containing the test's results. The most important attributes of the result class are: * trace_stat and trace_stat_crit_vals * max_eig_stat and max_eig_stat_crit_vals Notes ----- The implementation might change to make more use of the existing VECM framework. See Also -------- statsmodels.tsa.vector_ar.vecm.select_coint_rank References ---------- .. [1] Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. Springer.
coint_johansen
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def rkt(self): """Residuals for :math:`Y_{-1}`""" return self._rkt
Residuals for :math:`Y_{-1}`
rkt
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def r0t(self): """Residuals for :math:`\\Delta Y`.""" return self._r0t
Residuals for :math:`\\Delta Y`.
r0t
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def eig(self): """Eigenvalues of VECM coefficient matrix""" return self._eig
Eigenvalues of VECM coefficient matrix
eig
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def evec(self): """Eigenvectors of VECM coefficient matrix""" return self._evec
Eigenvectors of VECM coefficient matrix
evec
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def trace_stat(self): """Trace statistic""" return self._lr1
Trace statistic
trace_stat
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def lr1(self): """Trace statistic""" return self._lr1
Trace statistic
lr1
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def max_eig_stat(self): """Maximum eigenvalue statistic""" return self._lr2
Maximum eigenvalue statistic
max_eig_stat
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def lr2(self): """Maximum eigenvalue statistic""" return self._lr2
Maximum eigenvalue statistic
lr2
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def trace_stat_crit_vals(self): """Critical values (90%, 95%, 99%) of trace statistic""" return self._cvt
Critical values (90%, 95%, 99%) of trace statistic
trace_stat_crit_vals
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def cvt(self): """Critical values (90%, 95%, 99%) of trace statistic""" return self._cvt
Critical values (90%, 95%, 99%) of trace statistic
cvt
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def cvm(self): """Critical values (90%, 95%, 99%) of maximum eigenvalue statistic.""" return self._cvm
Critical values (90%, 95%, 99%) of maximum eigenvalue statistic.
cvm
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def max_eig_stat_crit_vals(self): """Critical values (90%, 95%, 99%) of maximum eigenvalue statistic.""" return self._cvm
Critical values (90%, 95%, 99%) of maximum eigenvalue statistic.
max_eig_stat_crit_vals
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def ind(self): """Order of eigenvalues""" return self._ind
Order of eigenvalues
ind
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def meth(self): """Test method""" return self._meth
Test method
meth
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def fit(self, method="ml"): """ Estimates the parameters of a VECM. The estimation procedure is described on pp. 269-304 in [1]_. Parameters ---------- method : str {"ml"}, default: "ml" Estimation method to use. "ml" stands for Maximum Likelihood. Returns ------- est : :class:`VECMResults` References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer. """ if method == "ml": return self._estimate_vecm_ml() else: raise ValueError( "{} not recognized, must be among {}".format(method, "ml") )
Estimates the parameters of a VECM. The estimation procedure is described on pp. 269-304 in [1]_. Parameters ---------- method : str {"ml"}, default: "ml" Estimation method to use. "ml" stands for Maximum Likelihood. Returns ------- est : :class:`VECMResults` References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
fit
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def _lagged_param_names(self): """ Returns parameter names (for Gamma and deterministics) for the summary. Returns ------- param_names : list of str Returns a list of parameter names for the lagged endogenous parameters which are called :math:`\\Gamma` in [1]_ (see chapter 6). If present in the model, also names for deterministic terms outside the cointegration relation are returned. They name the elements of the matrix C in [1]_ (p. 299). References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer. """ param_names = [] # 1. Deterministic terms outside cointegration relation if "co" in self.deterministic: param_names += ["const.%s" % n for n in self.endog_names] if self.seasons > 0: param_names += [ "season%d.%s" % (s, n) for s in range(1, self.seasons) for n in self.endog_names ] if "lo" in self.deterministic: param_names += ["lin_trend.%s" % n for n in self.endog_names] if self.exog is not None: param_names += [ "exog%d.%s" % (exog_no, n) for exog_no in range(1, self.exog.shape[1] + 1) for n in self.endog_names ] # 2. lagged endogenous terms param_names += [ "L%d.%s.%s" % (i + 1, n1, n2) for n2 in self.endog_names for i in range(self.k_ar_diff) for n1 in self.endog_names ] return param_names
Returns parameter names (for Gamma and deterministics) for the summary. Returns ------- param_names : list of str Returns a list of parameter names for the lagged endogenous parameters which are called :math:`\\Gamma` in [1]_ (see chapter 6). If present in the model, also names for deterministic terms outside the cointegration relation are returned. They name the elements of the matrix C in [1]_ (p. 299). References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
_lagged_param_names
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def _load_coef_param_names(self): """ Returns parameter names (for alpha) for the summary. Returns ------- param_names : list of str Returns a list of parameter names for the loading coefficients which are called :math:`\\alpha` in [1]_ (see chapter 6). References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer. """ param_names = [] if self.coint_rank == 0: return None # loading coefficients (alpha) # called "ec" in JMulTi, "ECT" in tsDyn, param_names += [ # and "_ce" in Stata self.load_coef_repr + "%d.%s" % (i + 1, self.endog_names[j]) for j in range(self.neqs) for i in range(self.coint_rank) ] return param_names
Returns parameter names (for alpha) for the summary. Returns ------- param_names : list of str Returns a list of parameter names for the loading coefficients which are called :math:`\\alpha` in [1]_ (see chapter 6). References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
_load_coef_param_names
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def _coint_param_names(self): """ Returns parameter names (for beta and deterministics) for the summary. Returns ------- param_names : list of str Returns a list of parameter names for the cointegration matrix as well as deterministic terms inside the cointegration relation (if present in the model). """ # 1. cointegration matrix/vector param_names = [] param_names += [ ("beta.%d." + self.load_coef_repr + "%d") % (j + 1, i + 1) for i in range(self.coint_rank) for j in range(self.neqs) ] # 2. deterministic terms inside cointegration relation if "ci" in self.deterministic: param_names += [ "const." + self.load_coef_repr + "%d" % (i + 1) for i in range(self.coint_rank) ] if "li" in self.deterministic: param_names += [ "lin_trend." + self.load_coef_repr + "%d" % (i + 1) for i in range(self.coint_rank) ] if self.exog_coint is not None: param_names += [ "exog_coint%d.%s" % (n + 1, exog_no) for exog_no in range(1, self.exog_coint.shape[1] + 1) for n in range(self.neqs) ] return param_names
Returns parameter names (for beta and deterministics) for the summary. Returns ------- param_names : list of str Returns a list of parameter names for the cointegration matrix as well as deterministic terms inside the cointegration relation (if present in the model).
_coint_param_names
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def llf(self): # Lutkepohl p. 295 (7.2.20) """ Compute the VECM's loglikelihood. """ K = self.neqs T = self.nobs r = self.coint_rank s00, _, _, _, _, lambd, _ = _sij( self._delta_x, self._delta_y_1_T, self._y_lag1 ) return ( -K * T * np.log(2 * np.pi) / 2 - T * (np.log(np.linalg.det(s00)) + sum(np.log(1 - lambd)[:r])) / 2 - K * T / 2 )
Compute the VECM's loglikelihood.
llf
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def stderr_coint(self): """ Standard errors of beta and deterministic terms inside the cointegration relation. Notes ----- See p. 297 in [1]_. Using the rule .. math:: vec(B R) = (B' \\otimes I) vec(R) for two matrices B and R which are compatible for multiplication. This is rule (3) on p. 662 in [1]_. References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer. """ r = self.coint_rank _, r1 = _r_matrices(self._delta_y_1_T, self._y_lag1, self._delta_x) r12 = r1[r:] if r12.size == 0: return np.zeros((r, r)) mat1 = inv(r12.dot(r12.T)) mat1 = np.kron(mat1.T, np.identity(r)) det = self.det_coef_coint.shape[0] mat2 = np.kron( np.identity(self.neqs - r + det), inv(self.alpha.T @ inv(self.sigma_u) @ self.alpha), ) first_rows = np.zeros((r, r)) last_rows_1d = np.sqrt(np.diag(mat1.dot(mat2))) last_rows = last_rows_1d.reshape((self.neqs - r + det, r), order="F") return vstack((first_rows, last_rows))
Standard errors of beta and deterministic terms inside the cointegration relation. Notes ----- See p. 297 in [1]_. Using the rule .. math:: vec(B R) = (B' \\otimes I) vec(R) for two matrices B and R which are compatible for multiplication. This is rule (3) on p. 662 in [1]_. References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
stderr_coint
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def cov_var_repr(self): """ Gives the covariance matrix of the corresponding VAR-representation. More precisely, the covariance matrix of the vector consisting of the columns of the corresponding VAR coefficient matrices (i.e. vec(self.var_rep)). Returns ------- cov : array (neqs**2 * k_ar x neqs**2 * k_ar) """ # This implementation is using the fact that for a random variable x # with covariance matrix Sigma_x the following holds: # B @ x with B being a suitably sized matrix has the covariance matrix # B @ Sigma_x @ B.T. The arrays called vecm_var_transformation and # self.cov_params_wo_det in the code play the roles of B and Sigma_x # respectively. The elements of the random variable x are the elements # of the estimated matrices Pi (alpha @ beta.T) and Gamma. # Alternatively the following code (commented out) would yield the same # result (following p. 289 in Lutkepohl): # K, p = self.neqs, self.k_ar # w = np.identity(K * p) # w[np.arange(K, len(w)), np.arange(K, len(w))] *= (-1) # w[np.arange(K, len(w)), np.arange(len(w)-K)] = 1 # # w_eye = np.kron(w, np.identity(K)) # # return w_eye.T @ self.cov_params_default @ w_eye if self.k_ar - 1 == 0: return self.cov_params_wo_det vecm_var_transformation = np.zeros( (self.neqs ** 2 * self.k_ar, self.neqs ** 2 * self.k_ar) ) eye = np.identity(self.neqs ** 2) # for A_1: vecm_var_transformation[ : self.neqs ** 2, : 2 * self.neqs ** 2 ] = hstack((eye, eye)) # for A_i, where i = 2, ..., k_ar-1 for i in range(2, self.k_ar): start_row = self.neqs ** 2 + (i - 2) * self.neqs ** 2 start_col = self.neqs ** 2 + (i - 2) * self.neqs ** 2 vecm_var_transformation[ start_row : start_row + self.neqs ** 2, start_col : start_col + 2 * self.neqs ** 2, ] = hstack((-eye, eye)) # for A_p: vecm_var_transformation[-self.neqs ** 2 :, -self.neqs ** 2 :] = -eye vvt = vecm_var_transformation return vvt @ self.cov_params_wo_det @ vvt.T
Gives the covariance matrix of the corresponding VAR-representation. More precisely, the covariance matrix of the vector consisting of the columns of the corresponding VAR coefficient matrices (i.e. vec(self.var_rep)). Returns ------- cov : array (neqs**2 * k_ar x neqs**2 * k_ar)
cov_var_repr
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def orth_ma_rep(self, maxn=10, P=None): """Compute orthogonalized MA coefficient matrices. For this purpose a matrix P is used which fulfills :math:`\\Sigma_u = PP^\\prime`. P defaults to the Cholesky decomposition of :math:`\\Sigma_u` Parameters ---------- maxn : int Number of coefficient matrices to compute P : ndarray (neqs x neqs), optional Matrix such that :math:`\\Sigma_u = PP'`. Defaults to Cholesky decomposition. Returns ------- coefs : ndarray (maxn x neqs x neqs) """ return orth_ma_rep(self, maxn, P)
Compute orthogonalized MA coefficient matrices. For this purpose a matrix P is used which fulfills :math:`\\Sigma_u = PP^\\prime`. P defaults to the Cholesky decomposition of :math:`\\Sigma_u` Parameters ---------- maxn : int Number of coefficient matrices to compute P : ndarray (neqs x neqs), optional Matrix such that :math:`\\Sigma_u = PP'`. Defaults to Cholesky decomposition. Returns ------- coefs : ndarray (maxn x neqs x neqs)
orth_ma_rep
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def predict(self, steps=5, alpha=None, exog_fc=None, exog_coint_fc=None): """ Calculate future values of the time series. Parameters ---------- steps : int Prediction horizon. alpha : float, 0 < `alpha` < 1 or None If None, compute point forecast only. If float, compute confidence intervals too. In this case the argument stands for the confidence level. exog : ndarray (steps x self.exog.shape[1]) If self.exog is not None, then information about the future values of exog have to be passed via this parameter. The ndarray may be larger in it's first dimension. In this case only the first steps rows will be considered. Returns ------- forecast - ndarray (steps x neqs) or three ndarrays In case of a point forecast: each row of the returned ndarray represents the forecast of the neqs variables for a specific period. The first row (index [0]) is the forecast for the next period, the last row (index [steps-1]) is the steps-periods-ahead- forecast. """ if self.exog is not None and exog_fc is None: raise ValueError( "exog_fc is None: Please pass the future values " "of the VECM's exog terms via the exog_fc " "argument!" ) if self.exog is None and exog_fc is not None: raise ValueError( "This VECMResult-instance's exog attribute is " "None. Please do not pass a non-None value as the " "method's exog_fc-argument." ) if exog_fc is not None and exog_fc.shape[0] < steps: raise ValueError( "The argument exog_fc must have at least steps " "elements in its first dimension" ) if self.exog_coint is not None and exog_coint_fc is None: raise ValueError( "exog_coint_fc is None: Please pass the future " "values of the VECM's exog_coint terms via the " "exog_coint_fc argument!" ) if self.exog_coint is None and exog_coint_fc is not None: raise ValueError( "This VECMResult-instance's exog_coint attribute " "is None. Please do not pass a non-None value as " "the method's exog_coint_fc-argument." ) if exog_coint_fc is not None and exog_coint_fc.shape[0] < steps - 1: raise ValueError( "The argument exog_coint_fc must have at least " "steps elements in its first dimension" ) last_observations = self.y_all.T[-self.k_ar :] exog = [] trend_coefs = [] # adding deterministic terms outside cointegration relation exog_const = np.ones(steps) nobs_tot = self.nobs + self.k_ar if self.const.size > 0: exog.append(exog_const) trend_coefs.append(self.const.T) if self.seasons > 0: first_future_season = (self.first_season + nobs_tot) % self.seasons exog_seasonal = seasonal_dummies( self.seasons, steps, first_future_season, True ) exog.append(exog_seasonal) trend_coefs.append(self.seasonal.T) exog_lin_trend = _linear_trend(self.nobs, self.k_ar) exog_lin_trend = exog_lin_trend[-1] + 1 + np.arange(steps) if self.lin_trend.size > 0: exog.append(exog_lin_trend) trend_coefs.append(self.lin_trend.T) if exog_fc is not None: exog.append(exog_fc[:steps]) trend_coefs.append(self.exog_coefs.T) # adding deterministic terms inside cointegration relation if "ci" in self.deterministic: exog.append(exog_const) trend_coefs.append(self.alpha.dot(self.const_coint.T).T) exog_lin_trend_coint = _linear_trend(self.nobs, self.k_ar, coint=True) exog_lin_trend_coint = exog_lin_trend_coint[-1] + 1 + np.arange(steps) if "li" in self.deterministic: exog.append(exog_lin_trend_coint) trend_coefs.append(self.alpha.dot(self.lin_trend_coint.T).T) if exog_coint_fc is not None: if exog_coint_fc.ndim == 1: exog_coint_fc = exog_coint_fc[:, None] # make 2-D exog_coint_fc = np.vstack( (self.exog_coint[-1:], exog_coint_fc[: steps - 1]) ) exog.append(exog_coint_fc) trend_coefs.append(self.alpha.dot(self.exog_coint_coefs.T).T) # glueing all deterministics together exog = np.column_stack(exog) if exog != [] else None if trend_coefs != []: trend_coefs = np.vstack(trend_coefs) else: trend_coefs = None # call the forecasting function of the VAR-module if alpha is not None: return forecast_interval( last_observations, self.var_rep, trend_coefs, self.sigma_u, steps, alpha=alpha, exog=exog, ) else: return forecast( last_observations, self.var_rep, trend_coefs, steps, exog )
Calculate future values of the time series. Parameters ---------- steps : int Prediction horizon. alpha : float, 0 < `alpha` < 1 or None If None, compute point forecast only. If float, compute confidence intervals too. In this case the argument stands for the confidence level. exog : ndarray (steps x self.exog.shape[1]) If self.exog is not None, then information about the future values of exog have to be passed via this parameter. The ndarray may be larger in it's first dimension. In this case only the first steps rows will be considered. Returns ------- forecast - ndarray (steps x neqs) or three ndarrays In case of a point forecast: each row of the returned ndarray represents the forecast of the neqs variables for a specific period. The first row (index [0]) is the forecast for the next period, the last row (index [steps-1]) is the steps-periods-ahead- forecast.
predict
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def plot_forecast( self, steps, alpha=0.05, plot_conf_int=True, n_last_obs=None ): """ Plot the forecast. Parameters ---------- steps : int Prediction horizon. alpha : float, 0 < `alpha` < 1 The confidence level. plot_conf_int : bool, default: True If True, plot bounds of confidence intervals. n_last_obs : int or None, default: None If int, restrict plotted history to n_last_obs observations. If None, include the whole history in the plot. """ mid, lower, upper = self.predict(steps, alpha=alpha) y = self.y_all.T y = y[self.k_ar :] if n_last_obs is None else y[-n_last_obs:] plot.plot_var_forc( y, mid, lower, upper, names=self.names, plot_stderr=plot_conf_int, legend_options={"loc": "lower left"}, )
Plot the forecast. Parameters ---------- steps : int Prediction horizon. alpha : float, 0 < `alpha` < 1 The confidence level. plot_conf_int : bool, default: True If True, plot bounds of confidence intervals. n_last_obs : int or None, default: None If int, restrict plotted history to n_last_obs observations. If None, include the whole history in the plot.
plot_forecast
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def fittedvalues(self): """ Return the in-sample values of endog calculated by the model. Returns ------- fitted : array (nobs x neqs) The predicted in-sample values of the models' endogenous variables. """ beta = self.beta if self.det_coef_coint.size > 0: beta = vstack((beta, self.det_coef_coint)) pi = np.dot(self.alpha, beta.T) gamma = self.gamma if self.det_coef.size > 0: gamma = hstack((gamma, self.det_coef)) delta_y = np.dot(pi, self._y_lag1) + np.dot(gamma, self._delta_x) return (delta_y + self._y_lag1[: self.neqs]).T
Return the in-sample values of endog calculated by the model. Returns ------- fitted : array (nobs x neqs) The predicted in-sample values of the models' endogenous variables.
fittedvalues
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def resid(self): """ Return the difference between observed and fitted values. Returns ------- resid : array (nobs x neqs) The residuals. """ return self.y_all.T[self.k_ar :] - self.fittedvalues
Return the difference between observed and fitted values. Returns ------- resid : array (nobs x neqs) The residuals.
resid
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def test_whiteness(self, nlags=10, signif=0.05, adjusted=False): """ Test the whiteness of the residuals using the Portmanteau test. This test is described in [1]_, chapter 8.4.1. Parameters ---------- nlags : int > 0 signif : float, 0 < `signif` < 1 adjusted : bool, default False Returns ------- result : :class:`statsmodels.tsa.vector_ar.hypothesis_test_results.WhitenessTestResults` References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer. """ statistic = 0 u = np.asarray(self.resid) acov_list = _compute_acov(u, nlags) # self.sigma_u instead of cov(0) is necessary to get the same # result as JMulTi. The difference between the two is that sigma_u is # calculated with the usual residuals while in cov(0) the # residuals are demeaned. To me JMulTi's behaviour seems a bit strange # because it uses the usual residuals here but demeaned residuals in # the calculation of autocovariances with lag > 0. (used in the # argument of trace() four rows below this comment.) c0_inv = inv(self.sigma_u) # instead of inv(cov(0)) if c0_inv.dtype == np.complex128 and np.all(np.imag(c0_inv) == 0): c0_inv = np.real(c0_inv) for t in range(1, nlags + 1): ct = acov_list[t] to_add = np.trace(ct.T @ c0_inv @ ct @ c0_inv) if adjusted: to_add /= self.nobs - t statistic += to_add statistic *= self.nobs ** 2 if adjusted else self.nobs df = ( self.neqs ** 2 * (nlags - self.k_ar + 1) - self.neqs * self.coint_rank ) dist = scipy.stats.chi2(df) pvalue = dist.sf(statistic) crit_value = dist.ppf(1 - signif) return WhitenessTestResults( statistic, crit_value, pvalue, df, signif, nlags, adjusted )
Test the whiteness of the residuals using the Portmanteau test. This test is described in [1]_, chapter 8.4.1. Parameters ---------- nlags : int > 0 signif : float, 0 < `signif` < 1 adjusted : bool, default False Returns ------- result : :class:`statsmodels.tsa.vector_ar.hypothesis_test_results.WhitenessTestResults` References ---------- .. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
test_whiteness
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def plot_data(self, with_presample=False): """ Plot the input time series. Parameters ---------- with_presample : bool, default: `False` If `False`, the pre-sample data (the first `k_ar` values) will not be plotted. """ y = self.y_all if with_presample else self.y_all[:, self.k_ar :] names = self.names dates = self.dates if with_presample else self.dates[self.k_ar :] plot.plot_mts(y.T, names=names, index=dates)
Plot the input time series. Parameters ---------- with_presample : bool, default: `False` If `False`, the pre-sample data (the first `k_ar` values) will not be plotted.
plot_data
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def summary(self, alpha=0.05): """ Return a summary of the estimation results. Parameters ---------- alpha : float 0 < `alpha` < 1, default 0.05 Significance level of the shown confidence intervals. Returns ------- summary : :class:`statsmodels.iolib.summary.Summary` A summary containing information about estimated parameters. """ from statsmodels.iolib.summary import summary_params summary = Summary() def make_table( self, params, std_err, t_values, p_values, conf_int, mask, names, title, strip_end=True, ): res = ( self, params[mask], std_err[mask], t_values[mask], p_values[mask], conf_int[mask], ) param_names = [ ".".join(name.split(".")[:-1]) if strip_end else name for name in np.array(names)[mask].tolist() ] return summary_params( res, yname=None, xname=param_names, alpha=alpha, use_t=False, title=title, ) # --------------------------------------------------------------------- # Add tables with gamma and det_coef for each endogenous variable: lagged_params_components = [] stderr_lagged_params_components = [] tvalues_lagged_params_components = [] pvalues_lagged_params_components = [] conf_int_lagged_params_components = [] if self.det_coef.size > 0: lagged_params_components.append(self.det_coef.flatten(order="F")) stderr_lagged_params_components.append( self.stderr_det_coef.flatten(order="F") ) tvalues_lagged_params_components.append( self.tvalues_det_coef.flatten(order="F") ) pvalues_lagged_params_components.append( self.pvalues_det_coef.flatten(order="F") ) conf_int = self.conf_int_det_coef(alpha=alpha) lower = conf_int["lower"].flatten(order="F") upper = conf_int["upper"].flatten(order="F") conf_int_lagged_params_components.append( np.column_stack((lower, upper)) ) if self.k_ar - 1 > 0: lagged_params_components.append(self.gamma.flatten()) stderr_lagged_params_components.append(self.stderr_gamma.flatten()) tvalues_lagged_params_components.append( self.tvalues_gamma.flatten() ) pvalues_lagged_params_components.append( self.pvalues_gamma.flatten() ) conf_int = self.conf_int_gamma(alpha=alpha) lower = conf_int["lower"].flatten() upper = conf_int["upper"].flatten() conf_int_lagged_params_components.append( np.column_stack((lower, upper)) ) # if gamma or det_coef exists, then make a summary-table for them: if len(lagged_params_components) != 0: lagged_params = hstack(lagged_params_components) stderr_lagged_params = hstack(stderr_lagged_params_components) tvalues_lagged_params = hstack(tvalues_lagged_params_components) pvalues_lagged_params = hstack(pvalues_lagged_params_components) conf_int_lagged_params = vstack(conf_int_lagged_params_components) for i in range(self.neqs): masks = [] offset = 0 # 1. Deterministic terms outside cointegration relation if "co" in self.deterministic: masks.append(offset + np.array(i, ndmin=1)) offset += self.neqs if self.seasons > 0: for _ in range(self.seasons - 1): masks.append(offset + np.array(i, ndmin=1)) offset += self.neqs if "lo" in self.deterministic: masks.append(offset + np.array(i, ndmin=1)) offset += self.neqs if self.exog is not None: for _ in range(self.exog.shape[1]): masks.append(offset + np.array(i, ndmin=1)) offset += self.neqs # 2. Lagged endogenous terms if self.k_ar - 1 > 0: start = i * self.neqs * (self.k_ar - 1) end = (i + 1) * self.neqs * (self.k_ar - 1) masks.append(offset + np.arange(start, end)) # offset += self.neqs**2 * (self.k_ar-1) # Create the table mask = np.concatenate(masks) eq_name = self.model.endog_names[i] title = ( "Det. terms outside the coint. relation " + "& lagged endog. parameters for equation %s" % eq_name ) table = make_table( self, lagged_params, stderr_lagged_params, tvalues_lagged_params, pvalues_lagged_params, conf_int_lagged_params, mask, self.model._lagged_param_names, title, ) summary.tables.append(table) # --------------------------------------------------------------------- # Loading coefficients (alpha): a = self.alpha.flatten() se_a = self.stderr_alpha.flatten() t_a = self.tvalues_alpha.flatten() p_a = self.pvalues_alpha.flatten() ci_a = self.conf_int_alpha(alpha=alpha) lower = ci_a["lower"].flatten() upper = ci_a["upper"].flatten() ci_a = np.column_stack((lower, upper)) a_names = self.model._load_coef_param_names alpha_masks = [] for i in range(self.neqs): if self.coint_rank > 0: start = i * self.coint_rank end = start + self.coint_rank mask = np.arange(start, end) # Create the table alpha_masks.append(mask) eq_name = self.model.endog_names[i] title = "Loading coefficients (alpha) for equation %s" % eq_name table = make_table( self, a, se_a, t_a, p_a, ci_a, mask, a_names, title ) summary.tables.append(table) # --------------------------------------------------------------------- # Cointegration matrix/vector (beta) and det. terms inside coint. rel.: coint_components = [] stderr_coint_components = [] tvalues_coint_components = [] pvalues_coint_components = [] conf_int_coint_components = [] if self.coint_rank > 0: coint_components.append(self.beta.T.flatten()) stderr_coint_components.append(self.stderr_beta.T.flatten()) tvalues_coint_components.append(self.tvalues_beta.T.flatten()) pvalues_coint_components.append(self.pvalues_beta.T.flatten()) conf_int = self.conf_int_beta(alpha=alpha) lower = conf_int["lower"].T.flatten() upper = conf_int["upper"].T.flatten() conf_int_coint_components.append(np.column_stack((lower, upper))) if self.det_coef_coint.size > 0: coint_components.append(self.det_coef_coint.flatten()) stderr_coint_components.append( self.stderr_det_coef_coint.flatten() ) tvalues_coint_components.append( self.tvalues_det_coef_coint.flatten() ) pvalues_coint_components.append( self.pvalues_det_coef_coint.flatten() ) conf_int = self.conf_int_det_coef_coint(alpha=alpha) lower = conf_int["lower"].flatten() upper = conf_int["upper"].flatten() conf_int_coint_components.append(np.column_stack((lower, upper))) coint = hstack(coint_components) stderr_coint = hstack(stderr_coint_components) tvalues_coint = hstack(tvalues_coint_components) pvalues_coint = hstack(pvalues_coint_components) conf_int_coint = vstack(conf_int_coint_components) coint_names = self.model._coint_param_names for i in range(self.coint_rank): masks = [] offset = 0 # 1. Cointegration matrix (beta) if self.coint_rank > 0: start = i * self.neqs end = start + self.neqs masks.append(offset + np.arange(start, end)) offset += self.neqs * self.coint_rank # 2. Deterministic terms inside cointegration relation if "ci" in self.deterministic: masks.append(offset + np.array(i, ndmin=1)) offset += self.coint_rank if "li" in self.deterministic: masks.append(offset + np.array(i, ndmin=1)) offset += self.coint_rank if self.exog_coint is not None: for _ in range(self.exog_coint.shape[1]): masks.append(offset + np.array(i, ndmin=1)) offset += self.coint_rank # Create the table mask = np.concatenate(masks) title = ( "Cointegration relations for " + "loading-coefficients-column %d" % (i + 1) ) table = make_table( self, coint, stderr_coint, tvalues_coint, pvalues_coint, conf_int_coint, mask, coint_names, title, ) summary.tables.append(table) return summary
Return a summary of the estimation results. Parameters ---------- alpha : float 0 < `alpha` < 1, default 0.05 Significance level of the shown confidence intervals. Returns ------- summary : :class:`statsmodels.iolib.summary.Summary` A summary containing information about estimated parameters.
summary
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/vecm.py
BSD-3-Clause
def load_results_statsmodels_exog(dataset): """ Load data with seasonal terms in `exog`. Same as load_results_statsmodels() except that the seasonal term is provided to :class:`VECM`'s `__init__()` method via the `eoxg` parameter. This is to check whether the same results are produced no matter whether `exog` or `seasons` is being used. Parameters ---------- dataset : DataSet """ results_per_deterministic_terms = dict.fromkeys(dataset.dt_s_list) endog = data[dataset] for dt_s_tup in dataset.dt_s_list: det_string = dt_s_tup[0] seasons = dt_s_tup[1] first_season = dt_s_tup[2] if seasons == 0: exog = None else: exog = seasonal_dummies( seasons, len(data[dataset]), first_season, centered=True ) if "lo" in dt_s_tup[0]: exog = np.hstack( (exog, 1 + np.arange(len(endog)).reshape(-1, 1)) ) # remove "lo" since it's now already in exog. det_string = det_string[:-2] model = VECM( endog, exog, k_ar_diff=3, coint_rank=coint_rank, deterministic=det_string, ) results_per_deterministic_terms[dt_s_tup] = model.fit(method="ml") return results_per_deterministic_terms
Load data with seasonal terms in `exog`. Same as load_results_statsmodels() except that the seasonal term is provided to :class:`VECM`'s `__init__()` method via the `eoxg` parameter. This is to check whether the same results are produced no matter whether `exog` or `seasons` is being used. Parameters ---------- dataset : DataSet
load_results_statsmodels_exog
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/tests/test_vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/tests/test_vecm.py
BSD-3-Clause
def load_results_statsmodels_exog_coint(dataset): """ Load data with deterministic terms in `exog_coint`. Same as load_results_statsmodels() except that deterministic terms inside the cointegration relation are provided to :class:`VECM`'s `__init__()` method via the `eoxg_coint` parameter. This is to check whether the same results are produced no matter whether `exog_coint` or the `deterministic` argument is being used. Parameters ---------- dataset : DataSet """ results_per_deterministic_terms = dict.fromkeys(dataset.dt_s_list) endog = data[dataset] for dt_s_tup in dataset.dt_s_list: det_string = dt_s_tup[0] if "ci" not in det_string and "li" not in det_string: exog_coint = None else: exog_coint = [] if "li" in det_string: exog_coint.append(1 + np.arange(len(endog)).reshape(-1, 1)) det_string = det_string[:-2] if "ci" in det_string: exog_coint.append(np.ones(len(endog)).reshape(-1, 1)) det_string = det_string[:-2] # reversing (such that constant is first and linear is second) exog_coint = exog_coint[::-1] exog_coint = np.hstack(exog_coint) model = VECM( endog, exog=None, exog_coint=exog_coint, k_ar_diff=3, coint_rank=coint_rank, deterministic=det_string, seasons=dt_s_tup[1], first_season=dt_s_tup[2], ) results_per_deterministic_terms[dt_s_tup] = model.fit(method="ml") return results_per_deterministic_terms
Load data with deterministic terms in `exog_coint`. Same as load_results_statsmodels() except that deterministic terms inside the cointegration relation are provided to :class:`VECM`'s `__init__()` method via the `eoxg_coint` parameter. This is to check whether the same results are produced no matter whether `exog_coint` or the `deterministic` argument is being used. Parameters ---------- dataset : DataSet
load_results_statsmodels_exog_coint
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/tests/test_vecm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/tests/test_vecm.py
BSD-3-Clause
def reorder_jmultis_det_terms(jmulti_output, constant, seasons): """ In case of seasonal terms and a trend term we have to reorder them to make the outputs from JMulTi and statsmodels comparable. JMulTi's ordering is: [constant], [seasonal terms], [trend term] while in statsmodels it is: [constant], [trend term], [seasonal terms] Parameters ---------- jmulti_output : ndarray (neqs x number_of_deterministic_terms) constant : bool Indicates whether there is a constant term or not in jmulti_output. seasons : int Number of seasons in the model. That means there are seasons-1 columns for seasonal terms in jmulti_output Returns ------- reordered : ndarray (neqs x number_of_deterministic_terms) jmulti_output reordered such that the order of deterministic terms matches that of statsmodels. """ if seasons == 0: return jmulti_output constant = int(constant) const_column = jmulti_output[:, :constant] season_columns = jmulti_output[:, constant : constant + seasons - 1].copy() trend_columns = jmulti_output[:, constant + seasons - 1 :].copy() return np.hstack((const_column, trend_columns, season_columns))
In case of seasonal terms and a trend term we have to reorder them to make the outputs from JMulTi and statsmodels comparable. JMulTi's ordering is: [constant], [seasonal terms], [trend term] while in statsmodels it is: [constant], [trend term], [seasonal terms] Parameters ---------- jmulti_output : ndarray (neqs x number_of_deterministic_terms) constant : bool Indicates whether there is a constant term or not in jmulti_output. seasons : int Number of seasons in the model. That means there are seasons-1 columns for seasonal terms in jmulti_output Returns ------- reordered : ndarray (neqs x number_of_deterministic_terms) jmulti_output reordered such that the order of deterministic terms matches that of statsmodels.
reorder_jmultis_det_terms
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/tests/test_var_jmulti.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/tests/test_var_jmulti.py
BSD-3-Clause
def generate_exog_from_season(seasons, endog_len): """ Translate seasons to exog matrix. Parameters ---------- seasons : int Number of seasons. endog_len : int Number of observations. Returns ------- exog : ndarray or None If seasonal deterministic terms exist, the corresponding exog-matrix is returned. Otherwise, None is returned. """ exog_stack = [] if seasons > 0: season_exog = np.zeros((seasons - 1, endog_len)) for i in range(seasons - 1): season_exog[i, i::seasons] = 1 # season_exog = season_exog[:, ::-1] # season_exog = np.hstack((season_exog[:, 3:4], # season_exog[:, :-1])) # season_exog = np.hstack((season_exog[:, 2:4], # season_exog[:, :-2])) # season_exog = np.hstack((season_exog[:, 1:4], season_exog[:, :-3])) # season_exog[1] = -season_exog[1] # the following line is commented out because seasonal terms are # *not* centered in JMulTi's VAR-framework (in contrast to VECM) # season_exog -= 1 / seasons season_exog = season_exog.T exog_stack.append(season_exog) if exog_stack != []: exog = np.column_stack(exog_stack) else: exog = None return exog
Translate seasons to exog matrix. Parameters ---------- seasons : int Number of seasons. endog_len : int Number of observations. Returns ------- exog : ndarray or None If seasonal deterministic terms exist, the corresponding exog-matrix is returned. Otherwise, None is returned.
generate_exog_from_season
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/tests/test_var_jmulti.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/tests/test_var_jmulti.py
BSD-3-Clause
def bivariate_var_data(reset_randomstate): """A bivariate dataset for VAR estimation""" e = np.random.standard_normal((252, 2)) y = np.zeros_like(e) y[:2] = e[:2] for i in range(2, 252): y[i] = 0.2 * y[i - 1] + 0.1 * y[i - 2] + e[i] return y
A bivariate dataset for VAR estimation
bivariate_var_data
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/tests/test_var.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/tests/test_var.py
BSD-3-Clause
def bivariate_var_result(bivariate_var_data): """A bivariate VARResults for reuse""" mod = VAR(bivariate_var_data) return mod.fit()
A bivariate VARResults for reuse
bivariate_var_result
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/tests/test_var.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/tests/test_var.py
BSD-3-Clause
def sublists(lst, min_elmts=0, max_elmts=None): """Build a list of all possible sublists of a given list. Restrictions on the length of the sublists can be posed via the min_elmts and max_elmts parameters. All sublists have will have at least min_elmts elements and not more than max_elmts elements. Parameters ---------- lst : list Original list from which sublists are generated. min_elmts : int Lower bound for the length of sublists. max_elmts : int or None If int, then max_elmts are the upper bound for the length of sublists. If None, sublists' length is not restricted. In this case the longest sublist will be of the same length as the original list lst. Returns ------- result : list A list of all sublists of lst fulfilling the length restrictions. """ if max_elmts is None: max_elmts = len(lst) # for the following see also the definition of powerset() in # https://docs.python.org/dev/library/itertools.html#itertools-recipes result = itertools.chain.from_iterable( itertools.combinations(lst, sublist_len) for sublist_len in range(min_elmts, max_elmts+1)) if type(result) is not list: result = list(result) return result
Build a list of all possible sublists of a given list. Restrictions on the length of the sublists can be posed via the min_elmts and max_elmts parameters. All sublists have will have at least min_elmts elements and not more than max_elmts elements. Parameters ---------- lst : list Original list from which sublists are generated. min_elmts : int Lower bound for the length of sublists. max_elmts : int or None If int, then max_elmts are the upper bound for the length of sublists. If None, sublists' length is not restricted. In this case the longest sublist will be of the same length as the original list lst. Returns ------- result : list A list of all sublists of lst fulfilling the length restrictions.
sublists
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/tests/JMulTi_results/parse_jmulti_vecm_output.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/tests/JMulTi_results/parse_jmulti_vecm_output.py
BSD-3-Clause
def stringify_var_names(var_list, delimiter=""): """ Parameters ---------- var_list : list[str] Each list element is the name of a variable. Returns ------- result : str Concatenated variable names. """ result = var_list[0] for var_name in var_list[1:]: result += delimiter + var_name return result.lower()
Parameters ---------- var_list : list[str] Each list element is the name of a variable. Returns ------- result : str Concatenated variable names.
stringify_var_names
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/tests/JMulTi_results/parse_jmulti_vecm_output.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/tests/JMulTi_results/parse_jmulti_vecm_output.py
BSD-3-Clause
def load_results_jmulti(dataset): """ Parameters ---------- dataset : module A data module in the statsmodels/datasets directory that defines a __str__() method returning the dataset's name. dt_s_list : list A list of strings where each string represents a combination of deterministic terms. Returns ------- result : dict A dict (keys: tuples of deterministic terms and seasonal terms) of dicts (keys: strings "est" (for estimators), "se" (for standard errors), "t" (for t-values), "p" (for p-values)) of dicts (keys: strings "alpha", "beta", "Gamma" and other results) """ source = "jmulti" results_dict_per_det_terms = dict.fromkeys(dataset.dt_s_list) for dt_s in dataset.dt_s_list: dt_string = dt_s_tup_to_string(dt_s) params_file = "vecm_"+dataset.__str__()+"_"+source+"_"+dt_string+".txt" params_file = os.path.join(here, params_file) # sections in jmulti output: section_header = ["Lagged endogenous term", # Gamma "Deterministic term", # co, s, lo "Loading coefficients", # alpha "Estimated cointegration relation", # beta "Legend", "Lagged endogenous term", # VAR representation "Deterministic term"] # VAR representation # the following "sections" will serve as key for the corresponding # result values sections = ["Gamma", "C", # Here all deterministic term coefficients are # collected. (const and linear trend which belong # to cointegration relation as well as seasonal # components which are outside the cointegration # relation. Later, we will strip the terms related # to the cointegration relation from C. "alpha", "beta", "Legend", "VAR A", # VAR parameter matrices "VAR deterministic"] # VAR deterministic terms if "co" not in dt_string and "lo" not in dt_string \ and "s" not in dt_string: # JMulTi: no deterministic terms section in VEC representation del section_header[1] del sections[1] if "ci" not in dt_string and "li" not in dt_string: # JMulTi: no deterministic section in VAR repr. del section_header[-1] del sections[-1] results = dict() results["est"] = dict.fromkeys(sections) results["se"] = dict.fromkeys(sections) results["t"] = dict.fromkeys(sections) results["p"] = dict.fromkeys(sections) section = -1 result = [] result_se = [] result_t = [] result_p = [] rows = 0 started_reading_section = False start_end_mark = "-----" # --------------------------------------------------------------------- # parse information about \alpha, \beta, \Gamma, deterministic of VECM # and A_i and deterministic of corresponding VAR: params_file = open(params_file, encoding="latin_1") for line in params_file: if section == -1 and section_header[section+1] not in line: continue if section < len(section_header)-1 \ and section_header[section+1] in line: # new section section += 1 continue if not started_reading_section: if line.startswith(start_end_mark): started_reading_section = True continue if started_reading_section: if line.startswith(start_end_mark): if result == []: # no values collected in section "Legend" started_reading_section = False continue results["est"][sections[section]] = np.column_stack( result) result = [] results["se"][sections[section]] = np.column_stack( result_se) result_se = [] results["t"][sections[section]] = np.column_stack( result_t) result_t = [] results["p"][sections[section]] = np.column_stack( result_p) result_p = [] started_reading_section = False continue str_number = r"-?\d+\.\d{3}" regex_est = re.compile(str_number + r"[^\)\]\}]") est_col = re.findall(regex_est, line) # standard errors in parantheses in JMulTi output: regex_se = re.compile(r"\(" + str_number + r"\)") se_col = re.findall(regex_se, line) # t-values in brackets in JMulTi output: regex_t_value = re.compile(r"\[" + str_number + r"\]") t_col = re.findall(regex_t_value, line) # p-values in braces in JMulTi output: regex_p_value = re.compile(r"\{" + str_number + r"\}") p_col = re.findall(regex_p_value, line) if result == [] and est_col != []: rows = len(est_col) if est_col != []: est_col = [float(el) for el in est_col] result.append(est_col) elif se_col != []: for i in range(rows): se_col[i] = se_col[i].replace("(", "").replace(")", "") se_col = [float(el) for el in se_col] result_se.append(se_col) elif t_col != []: for i in range(rows): t_col[i] = t_col[i].replace("[", "").replace("]", "") t_col = [float(el) for el in t_col] result_t.append(t_col) elif p_col != []: for i in range(rows): p_col[i] = p_col[i].replace("{", "").replace("}", "") p_col = [float(el) for el in p_col] result_p.append(p_col) params_file.close() # delete "Legend"-section of JMulTi: del results["est"]["Legend"] del results["se"]["Legend"] del results["t"]["Legend"] del results["p"]["Legend"] # JMulTi outputs beta.T results["est"]["beta"] = results["est"]["beta"].T results["se"]["beta"] = results["se"]["beta"].T results["t"]["beta"] = results["t"]["beta"].T results["p"]["beta"] = results["p"]["beta"].T # split information about beta and deterministic terms inside coint. alpha = results["est"]["alpha"] beta = results["est"]["beta"] alpha_rows = alpha.shape[0] if beta.shape[0] > alpha_rows: results["est"]["beta"], results["est"]["det_coint"] = np.vsplit( results["est"]["beta"], [alpha_rows]) results["se"]["beta"], results["se"]["det_coint"] = np.vsplit( results["se"]["beta"], [alpha_rows]) results["t"]["beta"], results["t"]["det_coint"] = np.vsplit( results["t"]["beta"], [alpha_rows]) results["p"]["beta"], results["p"]["det_coint"] = np.vsplit( results["p"]["beta"], [alpha_rows]) # --------------------------------------------------------------------- # parse information regarding \Sigma_u sigmau_file = "vecm_" + dataset.__str__() + "_" + source + "_" + \ dt_string + "_Sigmau" + ".txt" sigmau_file = os.path.join(here, sigmau_file) rows_to_parse = 0 # all numbers of Sigma_u in notation with e (e.g. 2.283862e-05) regex_est = re.compile(r"\s+\S+e\S+") sigmau_section_reached = False sigmau_file = open(sigmau_file, encoding="latin_1") for line in sigmau_file: if line.startswith("Log Likelihood:"): line = line.split("Log Likelihood:")[1] results["log_like"] = float(re.findall(regex_est, line)[0]) if not sigmau_section_reached and "Covariance:" not in line: continue if "Covariance:" in line: sigmau_section_reached = True row = re.findall(regex_est, line) rows_to_parse = len(row) # Sigma_u quadratic ==> #rows==#cols sigma_u = np.empty((rows_to_parse, rows_to_parse)) row = re.findall(regex_est, line) rows_to_parse -= 1 sigma_u[rows_to_parse] = row # rows are added in reverse order if rows_to_parse == 0: break sigmau_file.close() results["est"]["Sigma_u"] = sigma_u[::-1] # --------------------------------------------------------------------- # parse forecast related output: fc_file = "vecm_" + dataset.__str__() + "_" + source + "_" + \ dt_string + "_fc5" + ".txt" fc_file = os.path.join(here, fc_file) fc, lower, upper, plu_min = [], [], [], [] fc_file = open(fc_file, encoding='latin_1') for line in fc_file: str_number = r"(\s+-?\d+\.\d{4}\s*?)" regex_number = re.compile(str_number) numbers = re.findall(regex_number, line) if numbers == []: continue fc.append(float(numbers[0])) lower.append(float(numbers[1])) upper.append(float(numbers[2])) plu_min.append(float(numbers[3])) fc_file.close() variables = alpha.shape[0] fc = np.hstack(np.vsplit(np.array(fc)[:, None], variables)) lower = np.hstack(np.vsplit(np.array(lower)[:, None], variables)) upper = np.hstack(np.vsplit(np.array(upper)[:, None], variables)) # plu_min = np.hstack(np.vsplit(np.array(plu_min)[:, None], variables)) results["fc"] = dict.fromkeys(["fc", "lower", "upper"]) results["fc"]["fc"] = fc results["fc"]["lower"] = lower results["fc"]["upper"] = upper # --------------------------------------------------------------------- # parse output related to Granger-causality: results["granger_caus"] = dict.fromkeys(["p", "test_stat"]) results["granger_caus"]["p"] = dict() results["granger_caus"]["test_stat"] = dict() vn = dataset.variable_names # all possible combinations of potentially causing variables # (at least 1 variable and not all variables together): var_combs = sublists(vn, 1, len(vn)-1) for causing in var_combs: caused = tuple(el for el in vn if el not in causing) granger_file = "vecm_" + dataset.__str__() + "_" + source + "_" \ + dt_string + "_granger_causality_" \ + stringify_var_names(causing) + "_" \ + stringify_var_names(caused) + ".txt" granger_file = os.path.join(here, granger_file) granger_file = open(granger_file, encoding="latin_1") granger_results = [] for line in granger_file: str_number = r"\d+\.\d{4}" regex_number = re.compile(str_number) number = re.search(regex_number, line) if number is None: continue number = float(number.group(0)) granger_results.append(number) granger_file.close() results["granger_caus"]["test_stat"][(causing, caused)] = \ granger_results[0] results["granger_caus"]["p"][(causing, caused)] =\ granger_results[1] # --------------------------------------------------------------------- # parse output related to instant causality: results["inst_caus"] = dict.fromkeys(["p", "test_stat"]) results["inst_caus"]["p"] = dict() results["inst_caus"]["test_stat"] = dict() vn = dataset.variable_names # all possible combinations of potentially causing variables # (at least 1 variable and not all variables together): var_combs = sublists(vn, 1, len(vn)-1) for causing in var_combs: caused = tuple(el for el in vn if el not in causing) # Though Granger- and instantaneous causality results are in the # same file we use two separate files, since JMulTi is basing both # tests on a VAR(p+1) model (where p is the number of lags in # levels). According to Lutkepohl, Granger-causality tests are # based on VAR(p+1) *but* tests for instantaneous causality are # based on VAR(p)! Thus we have this separate file with JMulTi # results for a VECM with the lag order reduced by one. inst_file = "vecm_" + dataset.__str__() + "_" + source + "_" \ + dt_string + "_inst_causality_" \ + stringify_var_names(causing) + "_" \ + stringify_var_names(caused) + ".txt" inst_file = os.path.join(here, inst_file) inst_file = open(inst_file, encoding="latin_1") inst_results = [] for line in inst_file: str_number = r"\d+\.\d{4}" regex_number = re.compile(str_number) number = re.search(regex_number, line) if number is None: continue number = float(number.group(0)) inst_results.append(number) inst_file.close() results["inst_caus"]["test_stat"][(causing, caused)] = \ inst_results[2] results["inst_caus"]["p"][(causing, caused)] = \ inst_results[3] # --------------------------------------------------------------------- # parse output related to impulse-response analysis: ir_file = "vecm_" + dataset.__str__() + "_" + source + "_" + \ dt_string + "_ir" + ".txt" ir_file = os.path.join(here, ir_file) ir_file = open(ir_file, encoding='latin_1') causing = None caused = None data = None regex_vars = re.compile(r"\w+") regex_vals = re.compile(r"-?\d+\.\d{4}") line_start_causing = "time" data_line_indicator = "point estimate" data_rows_read = 0 for line in ir_file: if causing is None and not line.startswith(line_start_causing): continue # no relevant info in the header if line.startswith(line_start_causing): line = line[4:] causing = re.findall(regex_vars, line) # 21 periods shown in JMulTi output data = np.empty((21, len(causing))) continue if caused is None: caused = re.findall(regex_vars, line) continue # now start collecting the values: if data_line_indicator not in line: continue start = line.find(data_line_indicator) + len(data_line_indicator) line = line[start:] data[data_rows_read] = re.findall(regex_vals, line) data_rows_read += 1 ir_file.close() results["ir"] = data # --------------------------------------------------------------------- # parse output related to lag order selection: lagorder_file = "vecm_" + dataset.__str__() + "_" + source + "_" + \ dt_string + "_lagorder" + ".txt" lagorder_file = os.path.join(here, lagorder_file) lagorder_file = open(lagorder_file, encoding='latin_1') results["lagorder"] = dict() aic_start = "Akaike Info Criterion:" fpe_start = "Final Prediction Error:" hqic_start = "Hannan-Quinn Criterion:" bic_start = "Schwarz Criterion:" for line in lagorder_file: if line.startswith(aic_start): results["lagorder"]["aic"] = int(line[len(aic_start):]) elif line.startswith(fpe_start): results["lagorder"]["fpe"] = int(line[len(fpe_start):]) elif line.startswith(hqic_start): results["lagorder"]["hqic"] = int(line[len(hqic_start):]) elif line.startswith(bic_start): results["lagorder"]["bic"] = int(line[len(bic_start):]) lagorder_file.close() # --------------------------------------------------------------------- # parse output related to non-normality-test: test_norm_file = "vecm_" + dataset.__str__() + "_" + source + "_" + \ dt_string + "_diag" + ".txt" test_norm_file = os.path.join(here, test_norm_file) test_norm_file = open(test_norm_file, encoding='latin_1') results["test_norm"] = dict() reading_values = False line_start_statistic = "joint test statistic:" line_start_pvalue = " p-value:" for line in test_norm_file: if not reading_values: if "Introduction to Multiple Time Series Analysis" in line: reading_values = True # section w/ relevant results found continue if "joint_pvalue" in results["test_norm"].keys(): break if line.startswith(line_start_statistic): line_end = line[len(line_start_statistic):] results["test_norm"]["joint_test_statistic"] = float(line_end) if line.startswith(line_start_pvalue): line_end = line[len(line_start_pvalue):] results["test_norm"]["joint_pvalue"] = float(line_end) test_norm_file.close() # --------------------------------------------------------------------- # parse output related to testing the whiteness of the residuals: whiteness_file = "vecm_" + dataset.__str__() + "_" + source + "_" + \ dt_string + "_diag" + ".txt" whiteness_file = os.path.join(here, whiteness_file) whiteness_file = open(whiteness_file, encoding='latin_1') results["whiteness"] = dict() section_start_marker = "PORTMANTEAU TEST" order_start = "tested order:" statistic_start = "test statistic:" p_start = " p-value:" adj_statistic_start = "adjusted test statistic:" unadjusted_finished = False in_section = False for line in whiteness_file: if not in_section and section_start_marker not in line: continue if not in_section and section_start_marker in line: in_section = True continue if line.startswith(order_start): results["whiteness"]["tested order"] = int( line[len(order_start):]) continue if line.startswith(statistic_start): results["whiteness"]["test statistic"] = float( line[len(statistic_start):]) continue if line.startswith(adj_statistic_start): results["whiteness"]["test statistic adj."] = float( line[len(adj_statistic_start):]) continue if line.startswith(p_start): # same for unadjusted and adjusted if not unadjusted_finished: results["whiteness"]["p-value"] = \ float(line[len(p_start):]) unadjusted_finished = True else: results["whiteness"]["p-value adjusted"] = \ float(line[len(p_start):]) break whiteness_file.close() # --------------------------------------------------------------------- if debug_mode: print_debug_output(results, dt_string) results_dict_per_det_terms[dt_s] = results return results_dict_per_det_terms
Parameters ---------- dataset : module A data module in the statsmodels/datasets directory that defines a __str__() method returning the dataset's name. dt_s_list : list A list of strings where each string represents a combination of deterministic terms. Returns ------- result : dict A dict (keys: tuples of deterministic terms and seasonal terms) of dicts (keys: strings "est" (for estimators), "se" (for standard errors), "t" (for t-values), "p" (for p-values)) of dicts (keys: strings "alpha", "beta", "Gamma" and other results)
load_results_jmulti
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/tests/JMulTi_results/parse_jmulti_vecm_output.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/tests/JMulTi_results/parse_jmulti_vecm_output.py
BSD-3-Clause
def dt_s_tup_to_string(dt_s_tup): """ Parameters ---------- dt_s_tup : tuple A tuple of length 2. The first entry is a string specifying the deterministic term without any information about seasonal terms (for example "nc" or "c"). The second entry is an int specifying the number of seasons. Returns ------- dt_string : str Returns dt_s_tup[0], if dt_s_tup[1] is 0 (i.e. no seasons). If dt_s_tup[1] is > 0 (i.e. there are seasons) add an "s" to the string in dt_s_tup[0] like in the following examples: "nc" --> "ncs" "c" --> "cs" "ct" --> "cst" """ dt_string = dt_s_tup[0] # string for identifying the file to parse. if dt_s_tup[1] > 0: # if there are seasons in the model if dt_string == "nc": dt_string = dt_string[:2] + "s" if dt_string == "c" or dt_string == "ct": dt_string = dt_string[:1] + "s" + dt_string[1:] return dt_string
Parameters ---------- dt_s_tup : tuple A tuple of length 2. The first entry is a string specifying the deterministic term without any information about seasonal terms (for example "nc" or "c"). The second entry is an int specifying the number of seasons. Returns ------- dt_string : str Returns dt_s_tup[0], if dt_s_tup[1] is 0 (i.e. no seasons). If dt_s_tup[1] is > 0 (i.e. there are seasons) add an "s" to the string in dt_s_tup[0] like in the following examples: "nc" --> "ncs" "c" --> "cs" "ct" --> "cst"
dt_s_tup_to_string
python
statsmodels/statsmodels
statsmodels/tsa/vector_ar/tests/JMulTi_results/parse_jmulti_var_output.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/vector_ar/tests/JMulTi_results/parse_jmulti_var_output.py
BSD-3-Clause