code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def __init__(self, endpoints, interpolation=linear_interpolation, outside_value=None): """Piecewise schedule. endpoints: [(int, int)] list of pairs `(time, value)` meanining that schedule should output `value` when `t==time`. All the values for time must be sorted in an increasing order. When t is between two times, e.g. `(time_a, value_a)` and `(time_b, value_b)`, such that `time_a <= t < time_b` then value outputs `interpolation(value_a, value_b, alpha)` where alpha is a fraction of time passed between `time_a` and `time_b` for time `t`. interpolation: lambda float, float, float: float a function that takes value to the left and to the right of t according to the `endpoints`. Alpha is the fraction of distance from left endpoint to right endpoint that t has covered. See linear_interpolation for example. outside_value: float if the value is requested outside of all the intervals sepecified in `endpoints` this value is returned. If None then AssertionError is raised when outside value is requested. """ idxes = [e[0] for e in endpoints] assert idxes == sorted(idxes) self._interpolation = interpolation self._outside_value = outside_value self._endpoints = endpoints
Piecewise schedule. endpoints: [(int, int)] list of pairs `(time, value)` meanining that schedule should output `value` when `t==time`. All the values for time must be sorted in an increasing order. When t is between two times, e.g. `(time_a, value_a)` and `(time_b, value_b)`, such that `time_a <= t < time_b` then value outputs `interpolation(value_a, value_b, alpha)` where alpha is a fraction of time passed between `time_a` and `time_b` for time `t`. interpolation: lambda float, float, float: float a function that takes value to the left and to the right of t according to the `endpoints`. Alpha is the fraction of distance from left endpoint to right endpoint that t has covered. See linear_interpolation for example. outside_value: float if the value is requested outside of all the intervals sepecified in `endpoints` this value is returned. If None then AssertionError is raised when outside value is requested.
__init__
python
openai/baselines
baselines/common/schedules.py
https://github.com/openai/baselines/blob/master/baselines/common/schedules.py
MIT
def value(self, t): """See Schedule.value""" for (l_t, l), (r_t, r) in zip(self._endpoints[:-1], self._endpoints[1:]): if l_t <= t and t < r_t: alpha = float(t - l_t) / (r_t - l_t) return self._interpolation(l, r, alpha) # t does not belong to any of the pieces, so doom. assert self._outside_value is not None return self._outside_value
See Schedule.value
value
python
openai/baselines
baselines/common/schedules.py
https://github.com/openai/baselines/blob/master/baselines/common/schedules.py
MIT
def __init__(self, schedule_timesteps, final_p, initial_p=1.0): """Linear interpolation between initial_p and final_p over schedule_timesteps. After this many timesteps pass final_p is returned. Parameters ---------- schedule_timesteps: int Number of timesteps for which to linearly anneal initial_p to final_p initial_p: float initial output value final_p: float final output value """ self.schedule_timesteps = schedule_timesteps self.final_p = final_p self.initial_p = initial_p
Linear interpolation between initial_p and final_p over schedule_timesteps. After this many timesteps pass final_p is returned. Parameters ---------- schedule_timesteps: int Number of timesteps for which to linearly anneal initial_p to final_p initial_p: float initial output value final_p: float final output value
__init__
python
openai/baselines
baselines/common/schedules.py
https://github.com/openai/baselines/blob/master/baselines/common/schedules.py
MIT
def value(self, t): """See Schedule.value""" fraction = min(float(t) / self.schedule_timesteps, 1.0) return self.initial_p + fraction * (self.final_p - self.initial_p)
See Schedule.value
value
python
openai/baselines
baselines/common/schedules.py
https://github.com/openai/baselines/blob/master/baselines/common/schedules.py
MIT
def profile_tf_runningmeanstd(): import time from baselines.common import tf_util tf_util.get_session( config=tf.ConfigProto( inter_op_parallelism_threads=1, intra_op_parallelism_threads=1, allow_soft_placement=True )) x = np.random.random((376,)) n_trials = 10000 rms = RunningMeanStd() tfrms = TfRunningMeanStd() tic1 = time.time() for _ in range(n_trials): rms.update(x) tic2 = time.time() for _ in range(n_trials): tfrms.update(x) tic3 = time.time() print('rms update time ({} trials): {} s'.format(n_trials, tic2 - tic1)) print('tfrms update time ({} trials): {} s'.format(n_trials, tic3 - tic2)) tic1 = time.time() for _ in range(n_trials): z1 = rms.mean tic2 = time.time() for _ in range(n_trials): z2 = tfrms.mean assert z1 == z2 tic3 = time.time() print('rms get mean time ({} trials): {} s'.format(n_trials, tic2 - tic1)) print('tfrms get mean time ({} trials): {} s'.format(n_trials, tic3 - tic2)) ''' options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) #pylint: disable=E1101 run_metadata = tf.RunMetadata() profile_opts = dict(options=options, run_metadata=run_metadata) from tensorflow.python.client import timeline fetched_timeline = timeline.Timeline(run_metadata.step_stats) #pylint: disable=E1101 chrome_trace = fetched_timeline.generate_chrome_trace_format() outfile = '/tmp/timeline.json' with open(outfile, 'wt') as f: f.write(chrome_trace) print('Successfully saved profile to {}. Exiting.'.format(outfile)) exit(0) '''
options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) #pylint: disable=E1101 run_metadata = tf.RunMetadata() profile_opts = dict(options=options, run_metadata=run_metadata) from tensorflow.python.client import timeline fetched_timeline = timeline.Timeline(run_metadata.step_stats) #pylint: disable=E1101 chrome_trace = fetched_timeline.generate_chrome_trace_format() outfile = '/tmp/timeline.json' with open(outfile, 'wt') as f: f.write(chrome_trace) print('Successfully saved profile to {}. Exiting.'.format(outfile)) exit(0)
profile_tf_runningmeanstd
python
openai/baselines
baselines/common/running_mean_std.py
https://github.com/openai/baselines/blob/master/baselines/common/running_mean_std.py
MIT
def sync_from_root(sess, variables, comm=None): """ Send the root node's parameters to every worker. Arguments: sess: the TensorFlow session. variables: all parameter variables including optimizer's """ if comm is None: comm = MPI.COMM_WORLD import tensorflow as tf values = comm.bcast(sess.run(variables)) sess.run([tf.assign(var, val) for (var, val) in zip(variables, values)])
Send the root node's parameters to every worker. Arguments: sess: the TensorFlow session. variables: all parameter variables including optimizer's
sync_from_root
python
openai/baselines
baselines/common/mpi_util.py
https://github.com/openai/baselines/blob/master/baselines/common/mpi_util.py
MIT
def gpu_count(): """ Count the GPUs on this machine. """ if shutil.which('nvidia-smi') is None: return 0 output = subprocess.check_output(['nvidia-smi', '--query-gpu=gpu_name', '--format=csv']) return max(0, len(output.split(b'\n')) - 2)
Count the GPUs on this machine.
gpu_count
python
openai/baselines
baselines/common/mpi_util.py
https://github.com/openai/baselines/blob/master/baselines/common/mpi_util.py
MIT
def setup_mpi_gpus(): """ Set CUDA_VISIBLE_DEVICES to MPI rank if not already set """ if 'CUDA_VISIBLE_DEVICES' not in os.environ: if sys.platform == 'darwin': # This Assumes if you're on OSX you're just ids = [] # doing a smoke test and don't want GPUs else: lrank, _lsize = get_local_rank_size(MPI.COMM_WORLD) ids = [lrank] os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, ids))
Set CUDA_VISIBLE_DEVICES to MPI rank if not already set
setup_mpi_gpus
python
openai/baselines
baselines/common/mpi_util.py
https://github.com/openai/baselines/blob/master/baselines/common/mpi_util.py
MIT
def get_local_rank_size(comm): """ Returns the rank of each process on its machine The processes on a given machine will be assigned ranks 0, 1, 2, ..., N-1, where N is the number of processes on this machine. Useful if you want to assign one gpu per machine """ this_node = platform.node() ranks_nodes = comm.allgather((comm.Get_rank(), this_node)) node2rankssofar = defaultdict(int) local_rank = None for (rank, node) in ranks_nodes: if rank == comm.Get_rank(): local_rank = node2rankssofar[node] node2rankssofar[node] += 1 assert local_rank is not None return local_rank, node2rankssofar[this_node]
Returns the rank of each process on its machine The processes on a given machine will be assigned ranks 0, 1, 2, ..., N-1, where N is the number of processes on this machine. Useful if you want to assign one gpu per machine
get_local_rank_size
python
openai/baselines
baselines/common/mpi_util.py
https://github.com/openai/baselines/blob/master/baselines/common/mpi_util.py
MIT
def share_file(comm, path): """ Copies the file from rank 0 to all other ranks Puts it in the same place on all machines """ localrank, _ = get_local_rank_size(comm) if comm.Get_rank() == 0: with open(path, 'rb') as fh: data = fh.read() comm.bcast(data) else: data = comm.bcast(None) if localrank == 0: os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, 'wb') as fh: fh.write(data) comm.Barrier()
Copies the file from rank 0 to all other ranks Puts it in the same place on all machines
share_file
python
openai/baselines
baselines/common/mpi_util.py
https://github.com/openai/baselines/blob/master/baselines/common/mpi_util.py
MIT
def dict_gather(comm, d, op='mean', assert_all_have_data=True): """ Perform a reduction operation over dicts """ if comm is None: return d alldicts = comm.allgather(d) size = comm.size k2li = defaultdict(list) for d in alldicts: for (k,v) in d.items(): k2li[k].append(v) result = {} for (k,li) in k2li.items(): if assert_all_have_data: assert len(li)==size, "only %i out of %i MPI workers have sent '%s'" % (len(li), size, k) if op=='mean': result[k] = np.mean(li, axis=0) elif op=='sum': result[k] = np.sum(li, axis=0) else: assert 0, op return result
Perform a reduction operation over dicts
dict_gather
python
openai/baselines
baselines/common/mpi_util.py
https://github.com/openai/baselines/blob/master/baselines/common/mpi_util.py
MIT
def mpi_weighted_mean(comm, local_name2valcount): """ Perform a weighted average over dicts that are each on a different node Input: local_name2valcount: dict mapping key -> (value, count) Returns: key -> mean """ all_name2valcount = comm.gather(local_name2valcount) if comm.rank == 0: name2sum = defaultdict(float) name2count = defaultdict(float) for n2vc in all_name2valcount: for (name, (val, count)) in n2vc.items(): try: val = float(val) except ValueError: if comm.rank == 0: warnings.warn('WARNING: tried to compute mean on non-float {}={}'.format(name, val)) else: name2sum[name] += val * count name2count[name] += count return {name : name2sum[name] / name2count[name] for name in name2sum} else: return {}
Perform a weighted average over dicts that are each on a different node Input: local_name2valcount: dict mapping key -> (value, count) Returns: key -> mean
mpi_weighted_mean
python
openai/baselines
baselines/common/mpi_util.py
https://github.com/openai/baselines/blob/master/baselines/common/mpi_util.py
MIT
def smooth(y, radius, mode='two_sided', valid_only=False): ''' Smooth signal y, where radius is determines the size of the window mode='twosided': average over the window [max(index - radius, 0), min(index + radius, len(y)-1)] mode='causal': average over the window [max(index - radius, 0), index] valid_only: put nan in entries where the full-sized window is not available ''' assert mode in ('two_sided', 'causal') if len(y) < 2*radius+1: return np.ones_like(y) * y.mean() elif mode == 'two_sided': convkernel = np.ones(2 * radius+1) out = np.convolve(y, convkernel,mode='same') / np.convolve(np.ones_like(y), convkernel, mode='same') if valid_only: out[:radius] = out[-radius:] = np.nan elif mode == 'causal': convkernel = np.ones(radius) out = np.convolve(y, convkernel,mode='full') / np.convolve(np.ones_like(y), convkernel, mode='full') out = out[:-radius+1] if valid_only: out[:radius] = np.nan return out
Smooth signal y, where radius is determines the size of the window mode='twosided': average over the window [max(index - radius, 0), min(index + radius, len(y)-1)] mode='causal': average over the window [max(index - radius, 0), index] valid_only: put nan in entries where the full-sized window is not available
smooth
python
openai/baselines
baselines/common/plot_util.py
https://github.com/openai/baselines/blob/master/baselines/common/plot_util.py
MIT
def one_sided_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_counts_threshold=1e-8): ''' perform one-sided (causal) EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid ''' low = xolds[0] if low is None else low high = xolds[-1] if high is None else high assert xolds[0] <= low, 'low = {} < xolds[0] = {} - extrapolation not permitted!'.format(low, xolds[0]) assert xolds[-1] >= high, 'high = {} > xolds[-1] = {} - extrapolation not permitted!'.format(high, xolds[-1]) assert len(xolds) == len(yolds), 'length of xolds ({}) and yolds ({}) do not match!'.format(len(xolds), len(yolds)) xolds = xolds.astype('float64') yolds = yolds.astype('float64') luoi = 0 # last unused old index sum_y = 0. count_y = 0. xnews = np.linspace(low, high, n) decay_period = (high - low) / (n - 1) * decay_steps interstep_decay = np.exp(- 1. / decay_steps) sum_ys = np.zeros_like(xnews) count_ys = np.zeros_like(xnews) for i in range(n): xnew = xnews[i] sum_y *= interstep_decay count_y *= interstep_decay while True: if luoi >= len(xolds): break xold = xolds[luoi] if xold <= xnew: decay = np.exp(- (xnew - xold) / decay_period) sum_y += decay * yolds[luoi] count_y += decay luoi += 1 else: break sum_ys[i] = sum_y count_ys[i] = count_y ys = sum_ys / count_ys ys[count_ys < low_counts_threshold] = np.nan return xnews, ys, count_ys
perform one-sided (causal) EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid
one_sided_ema
python
openai/baselines
baselines/common/plot_util.py
https://github.com/openai/baselines/blob/master/baselines/common/plot_util.py
MIT
def symmetric_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_counts_threshold=1e-8): ''' perform symmetric EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid ''' xs, ys1, count_ys1 = one_sided_ema(xolds, yolds, low, high, n, decay_steps, low_counts_threshold=0) _, ys2, count_ys2 = one_sided_ema(-xolds[::-1], yolds[::-1], -high, -low, n, decay_steps, low_counts_threshold=0) ys2 = ys2[::-1] count_ys2 = count_ys2[::-1] count_ys = count_ys1 + count_ys2 ys = (ys1 * count_ys1 + ys2 * count_ys2) / count_ys ys[count_ys < low_counts_threshold] = np.nan return xs, ys, count_ys
perform symmetric EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid
symmetric_ema
python
openai/baselines
baselines/common/plot_util.py
https://github.com/openai/baselines/blob/master/baselines/common/plot_util.py
MIT
def load_results(root_dir_or_dirs, enable_progress=True, enable_monitor=True, verbose=False): ''' load summaries of runs from a list of directories (including subdirectories) Arguments: enable_progress: bool - if True, will attempt to load data from progress.csv files (data saved by logger). Default: True enable_monitor: bool - if True, will attempt to load data from monitor.csv files (data saved by Monitor environment wrapper). Default: True verbose: bool - if True, will print out list of directories from which the data is loaded. Default: False Returns: List of Result objects with the following fields: - dirname - path to the directory data was loaded from - metadata - run metadata (such as command-line arguments and anything else in metadata.json file - monitor - if enable_monitor is True, this field contains pandas dataframe with loaded monitor.csv file (or aggregate of all *.monitor.csv files in the directory) - progress - if enable_progress is True, this field contains pandas dataframe with loaded progress.csv file ''' import re if isinstance(root_dir_or_dirs, str): rootdirs = [osp.expanduser(root_dir_or_dirs)] else: rootdirs = [osp.expanduser(d) for d in root_dir_or_dirs] allresults = [] for rootdir in rootdirs: assert osp.exists(rootdir), "%s doesn't exist"%rootdir for dirname, dirs, files in os.walk(rootdir): if '-proc' in dirname: files[:] = [] continue monitor_re = re.compile(r'(\d+\.)?(\d+\.)?monitor\.csv') if set(['metadata.json', 'monitor.json', 'progress.json', 'progress.csv']).intersection(files) or \ any([f for f in files if monitor_re.match(f)]): # also match monitor files like 0.1.monitor.csv # used to be uncommented, which means do not go deeper than current directory if any of the data files # are found # dirs[:] = [] result = {'dirname' : dirname} if "metadata.json" in files: with open(osp.join(dirname, "metadata.json"), "r") as fh: result['metadata'] = json.load(fh) progjson = osp.join(dirname, "progress.json") progcsv = osp.join(dirname, "progress.csv") if enable_progress: if osp.exists(progjson): result['progress'] = pandas.DataFrame(read_json(progjson)) elif osp.exists(progcsv): try: result['progress'] = read_csv(progcsv) except pandas.errors.EmptyDataError: print('skipping progress file in ', dirname, 'empty data') else: if verbose: print('skipping %s: no progress file'%dirname) if enable_monitor: try: result['monitor'] = pandas.DataFrame(monitor.load_results(dirname)) except monitor.LoadMonitorResultsError: print('skipping %s: no monitor files'%dirname) except Exception as e: print('exception loading monitor file in %s: %s'%(dirname, e)) if result.get('monitor') is not None or result.get('progress') is not None: allresults.append(Result(**result)) if verbose: print('successfully loaded %s'%dirname) if verbose: print('loaded %i results'%len(allresults)) return allresults
load summaries of runs from a list of directories (including subdirectories) Arguments: enable_progress: bool - if True, will attempt to load data from progress.csv files (data saved by logger). Default: True enable_monitor: bool - if True, will attempt to load data from monitor.csv files (data saved by Monitor environment wrapper). Default: True verbose: bool - if True, will print out list of directories from which the data is loaded. Default: False Returns: List of Result objects with the following fields: - dirname - path to the directory data was loaded from - metadata - run metadata (such as command-line arguments and anything else in metadata.json file - monitor - if enable_monitor is True, this field contains pandas dataframe with loaded monitor.csv file (or aggregate of all *.monitor.csv files in the directory) - progress - if enable_progress is True, this field contains pandas dataframe with loaded progress.csv file
load_results
python
openai/baselines
baselines/common/plot_util.py
https://github.com/openai/baselines/blob/master/baselines/common/plot_util.py
MIT
def plot_results( allresults, *, xy_fn=default_xy_fn, split_fn=default_split_fn, group_fn=default_split_fn, average_group=False, shaded_std=True, shaded_err=True, figsize=None, legend_outside=False, resample=0, smooth_step=1.0, tiling='vertical', xlabel=None, ylabel=None ): ''' Plot multiple Results objects xy_fn: function Result -> x,y - function that converts results objects into tuple of x and y values. By default, x is cumsum of episode lengths, and y is episode rewards split_fn: function Result -> hashable - function that converts results objects into keys to split curves into sub-panels by. That is, the results r for which split_fn(r) is different will be put on different sub-panels. By default, the portion of r.dirname between last / and -<digits> is returned. The sub-panels are stacked vertically in the figure. group_fn: function Result -> hashable - function that converts results objects into keys to group curves by. That is, the results r for which group_fn(r) is the same will be put into the same group. Curves in the same group have the same color (if average_group is False), or averaged over (if average_group is True). The default value is the same as default value for split_fn average_group: bool - if True, will average the curves in the same group and plot the mean. Enables resampling (if resample = 0, will use 512 steps) shaded_std: bool - if True (default), the shaded region corresponding to standard deviation of the group of curves will be shown (only applicable if average_group = True) shaded_err: bool - if True (default), the shaded region corresponding to error in mean estimate of the group of curves (that is, standard deviation divided by square root of number of curves) will be shown (only applicable if average_group = True) figsize: tuple or None - size of the resulting figure (including sub-panels). By default, width is 6 and height is 6 times number of sub-panels. legend_outside: bool - if True, will place the legend outside of the sub-panels. resample: int - if not zero, size of the uniform grid in x direction to resample onto. Resampling is performed via symmetric EMA smoothing (see the docstring for symmetric_ema). Default is zero (no resampling). Note that if average_group is True, resampling is necessary; in that case, default value is 512. smooth_step: float - when resampling (i.e. when resample > 0 or average_group is True), use this EMA decay parameter (in units of the new grid step). See docstrings for decay_steps in symmetric_ema or one_sided_ema functions. ''' if split_fn is None: split_fn = lambda _ : '' if group_fn is None: group_fn = lambda _ : '' sk2r = defaultdict(list) # splitkey2results for result in allresults: splitkey = split_fn(result) sk2r[splitkey].append(result) assert len(sk2r) > 0 assert isinstance(resample, int), "0: don't resample. <integer>: that many samples" if tiling == 'vertical' or tiling is None: nrows = len(sk2r) ncols = 1 elif tiling == 'horizontal': ncols = len(sk2r) nrows = 1 elif tiling == 'symmetric': import math N = len(sk2r) largest_divisor = 1 for i in range(1, int(math.sqrt(N))+1): if N % i == 0: largest_divisor = i ncols = largest_divisor nrows = N // ncols figsize = figsize or (6 * ncols, 6 * nrows) f, axarr = plt.subplots(nrows, ncols, sharex=False, squeeze=False, figsize=figsize) groups = list(set(group_fn(result) for result in allresults)) default_samples = 512 if average_group: resample = resample or default_samples for (isplit, sk) in enumerate(sorted(sk2r.keys())): g2l = {} g2c = defaultdict(int) sresults = sk2r[sk] gresults = defaultdict(list) idx_row = isplit // ncols idx_col = isplit % ncols ax = axarr[idx_row][idx_col] for result in sresults: group = group_fn(result) g2c[group] += 1 x, y = xy_fn(result) if x is None: x = np.arange(len(y)) x, y = map(np.asarray, (x, y)) if average_group: gresults[group].append((x,y)) else: if resample: x, y, counts = symmetric_ema(x, y, x[0], x[-1], resample, decay_steps=smooth_step) l, = ax.plot(x, y, color=COLORS[groups.index(group) % len(COLORS)]) g2l[group] = l if average_group: for group in sorted(groups): xys = gresults[group] if not any(xys): continue color = COLORS[groups.index(group) % len(COLORS)] origxs = [xy[0] for xy in xys] minxlen = min(map(len, origxs)) def allequal(qs): return all((q==qs[0]).all() for q in qs[1:]) if resample: low = max(x[0] for x in origxs) high = min(x[-1] for x in origxs) usex = np.linspace(low, high, resample) ys = [] for (x, y) in xys: ys.append(symmetric_ema(x, y, low, high, resample, decay_steps=smooth_step)[1]) else: assert allequal([x[:minxlen] for x in origxs]),\ 'If you want to average unevenly sampled data, set resample=<number of samples you want>' usex = origxs[0] ys = [xy[1][:minxlen] for xy in xys] ymean = np.mean(ys, axis=0) ystd = np.std(ys, axis=0) ystderr = ystd / np.sqrt(len(ys)) l, = axarr[idx_row][idx_col].plot(usex, ymean, color=color) g2l[group] = l if shaded_err: ax.fill_between(usex, ymean - ystderr, ymean + ystderr, color=color, alpha=.4) if shaded_std: ax.fill_between(usex, ymean - ystd, ymean + ystd, color=color, alpha=.2) # https://matplotlib.org/users/legend_guide.html plt.tight_layout() if any(g2l.keys()): ax.legend( g2l.values(), ['%s (%i)'%(g, g2c[g]) for g in g2l] if average_group else g2l.keys(), loc=2 if legend_outside else None, bbox_to_anchor=(1,1) if legend_outside else None) ax.set_title(sk) # add xlabels, but only to the bottom row if xlabel is not None: for ax in axarr[-1]: plt.sca(ax) plt.xlabel(xlabel) # add ylabels, but only to left column if ylabel is not None: for ax in axarr[:,0]: plt.sca(ax) plt.ylabel(ylabel) return f, axarr
Plot multiple Results objects xy_fn: function Result -> x,y - function that converts results objects into tuple of x and y values. By default, x is cumsum of episode lengths, and y is episode rewards split_fn: function Result -> hashable - function that converts results objects into keys to split curves into sub-panels by. That is, the results r for which split_fn(r) is different will be put on different sub-panels. By default, the portion of r.dirname between last / and -<digits> is returned. The sub-panels are stacked vertically in the figure. group_fn: function Result -> hashable - function that converts results objects into keys to group curves by. That is, the results r for which group_fn(r) is the same will be put into the same group. Curves in the same group have the same color (if average_group is False), or averaged over (if average_group is True). The default value is the same as default value for split_fn average_group: bool - if True, will average the curves in the same group and plot the mean. Enables resampling (if resample = 0, will use 512 steps) shaded_std: bool - if True (default), the shaded region corresponding to standard deviation of the group of curves will be shown (only applicable if average_group = True) shaded_err: bool - if True (default), the shaded region corresponding to error in mean estimate of the group of curves (that is, standard deviation divided by square root of number of curves) will be shown (only applicable if average_group = True) figsize: tuple or None - size of the resulting figure (including sub-panels). By default, width is 6 and height is 6 times number of sub-panels. legend_outside: bool - if True, will place the legend outside of the sub-panels. resample: int - if not zero, size of the uniform grid in x direction to resample onto. Resampling is performed via symmetric EMA smoothing (see the docstring for symmetric_ema). Default is zero (no resampling). Note that if average_group is True, resampling is necessary; in that case, default value is 512. smooth_step: float - when resampling (i.e. when resample > 0 or average_group is True), use this EMA decay parameter (in units of the new grid step). See docstrings for decay_steps in symmetric_ema or one_sided_ema functions.
plot_results
python
openai/baselines
baselines/common/plot_util.py
https://github.com/openai/baselines/blob/master/baselines/common/plot_util.py
MIT
def __init__(self, env, observations, latent, estimate_q=False, vf_latent=None, sess=None, **tensors): """ Parameters: ---------- env RL environment observations tensorflow placeholder in which the observations will be fed latent latent state from which policy distribution parameters should be inferred vf_latent latent state from which value function should be inferred (if None, then latent is used) sess tensorflow session to run calculations in (if None, default session is used) **tensors tensorflow tensors for additional attributes such as state or mask """ self.X = observations self.state = tf.constant([]) self.initial_state = None self.__dict__.update(tensors) vf_latent = vf_latent if vf_latent is not None else latent vf_latent = tf.layers.flatten(vf_latent) latent = tf.layers.flatten(latent) # Based on the action space, will select what probability distribution type self.pdtype = make_pdtype(env.action_space) self.pd, self.pi = self.pdtype.pdfromlatent(latent, init_scale=0.01) # Take an action self.action = self.pd.sample() # Calculate the neg log of our probability self.neglogp = self.pd.neglogp(self.action) self.sess = sess or tf.get_default_session() if estimate_q: assert isinstance(env.action_space, gym.spaces.Discrete) self.q = fc(vf_latent, 'q', env.action_space.n) self.vf = self.q else: self.vf = fc(vf_latent, 'vf', 1) self.vf = self.vf[:,0]
Parameters: ---------- env RL environment observations tensorflow placeholder in which the observations will be fed latent latent state from which policy distribution parameters should be inferred vf_latent latent state from which value function should be inferred (if None, then latent is used) sess tensorflow session to run calculations in (if None, default session is used) **tensors tensorflow tensors for additional attributes such as state or mask
__init__
python
openai/baselines
baselines/common/policies.py
https://github.com/openai/baselines/blob/master/baselines/common/policies.py
MIT
def step(self, observation, **extra_feed): """ Compute next action(s) given the observation(s) Parameters: ---------- observation observation data (either single or a batch) **extra_feed additional data such as state or mask (names of the arguments should match the ones in constructor, see __init__) Returns: ------- (action, value estimate, next state, negative log likelihood of the action under current policy parameters) tuple """ a, v, state, neglogp = self._evaluate([self.action, self.vf, self.state, self.neglogp], observation, **extra_feed) if state.size == 0: state = None return a, v, state, neglogp
Compute next action(s) given the observation(s) Parameters: ---------- observation observation data (either single or a batch) **extra_feed additional data such as state or mask (names of the arguments should match the ones in constructor, see __init__) Returns: ------- (action, value estimate, next state, negative log likelihood of the action under current policy parameters) tuple
step
python
openai/baselines
baselines/common/policies.py
https://github.com/openai/baselines/blob/master/baselines/common/policies.py
MIT
def value(self, ob, *args, **kwargs): """ Compute value estimate(s) given the observation(s) Parameters: ---------- observation observation data (either single or a batch) **extra_feed additional data such as state or mask (names of the arguments should match the ones in constructor, see __init__) Returns: ------- value estimate """ return self._evaluate(self.vf, ob, *args, **kwargs)
Compute value estimate(s) given the observation(s) Parameters: ---------- observation observation data (either single or a batch) **extra_feed additional data such as state or mask (names of the arguments should match the ones in constructor, see __init__) Returns: ------- value estimate
value
python
openai/baselines
baselines/common/policies.py
https://github.com/openai/baselines/blob/master/baselines/common/policies.py
MIT
def check_synced(localval, comm=None): """ It's common to forget to initialize your variables to the same values, or (less commonly) if you update them in some other way than adam, to get them out of sync. This function checks that variables on all MPI workers are the same, and raises an AssertionError otherwise Arguments: comm: MPI communicator localval: list of local variables (list of variables on current worker to be compared with the other workers) """ comm = comm or MPI.COMM_WORLD vals = comm.gather(localval) if comm.rank == 0: assert all(val==vals[0] for val in vals[1:]),\ 'MpiAdamOptimizer detected that different workers have different weights: {}'.format(vals)
It's common to forget to initialize your variables to the same values, or (less commonly) if you update them in some other way than adam, to get them out of sync. This function checks that variables on all MPI workers are the same, and raises an AssertionError otherwise Arguments: comm: MPI communicator localval: list of local variables (list of variables on current worker to be compared with the other workers)
check_synced
python
openai/baselines
baselines/common/mpi_adam_optimizer.py
https://github.com/openai/baselines/blob/master/baselines/common/mpi_adam_optimizer.py
MIT
def switch(condition, then_expression, else_expression): """Switches between two operations depending on a scalar value (int or bool). Note that both `then_expression` and `else_expression` should be symbolic tensors of the *same shape*. # Arguments condition: scalar tensor. then_expression: TensorFlow operation. else_expression: TensorFlow operation. """ x_shape = copy.copy(then_expression.get_shape()) x = tf.cond(tf.cast(condition, 'bool'), lambda: then_expression, lambda: else_expression) x.set_shape(x_shape) return x
Switches between two operations depending on a scalar value (int or bool). Note that both `then_expression` and `else_expression` should be symbolic tensors of the *same shape*. # Arguments condition: scalar tensor. then_expression: TensorFlow operation. else_expression: TensorFlow operation.
switch
python
openai/baselines
baselines/common/tf_util.py
https://github.com/openai/baselines/blob/master/baselines/common/tf_util.py
MIT
def huber_loss(x, delta=1.0): """Reference: https://en.wikipedia.org/wiki/Huber_loss""" return tf.where( tf.abs(x) < delta, tf.square(x) * 0.5, delta * (tf.abs(x) - 0.5 * delta) )
Reference: https://en.wikipedia.org/wiki/Huber_loss
huber_loss
python
openai/baselines
baselines/common/tf_util.py
https://github.com/openai/baselines/blob/master/baselines/common/tf_util.py
MIT
def get_session(config=None): """Get default session or create one with a given config""" sess = tf.get_default_session() if sess is None: sess = make_session(config=config, make_default=True) return sess
Get default session or create one with a given config
get_session
python
openai/baselines
baselines/common/tf_util.py
https://github.com/openai/baselines/blob/master/baselines/common/tf_util.py
MIT
def make_session(config=None, num_cpu=None, make_default=False, graph=None): """Returns a session that will use <num_cpu> CPU's only""" if num_cpu is None: num_cpu = int(os.getenv('RCALL_NUM_CPU', multiprocessing.cpu_count())) if config is None: config = tf.ConfigProto( allow_soft_placement=True, inter_op_parallelism_threads=num_cpu, intra_op_parallelism_threads=num_cpu) config.gpu_options.allow_growth = True if make_default: return tf.InteractiveSession(config=config, graph=graph) else: return tf.Session(config=config, graph=graph)
Returns a session that will use <num_cpu> CPU's only
make_session
python
openai/baselines
baselines/common/tf_util.py
https://github.com/openai/baselines/blob/master/baselines/common/tf_util.py
MIT
def single_threaded_session(): """Returns a session which will only use a single CPU""" return make_session(num_cpu=1)
Returns a session which will only use a single CPU
single_threaded_session
python
openai/baselines
baselines/common/tf_util.py
https://github.com/openai/baselines/blob/master/baselines/common/tf_util.py
MIT
def initialize(): """Initialize all the uninitialized variables in the global scope.""" new_variables = set(tf.global_variables()) - ALREADY_INITIALIZED get_session().run(tf.variables_initializer(new_variables)) ALREADY_INITIALIZED.update(new_variables)
Initialize all the uninitialized variables in the global scope.
initialize
python
openai/baselines
baselines/common/tf_util.py
https://github.com/openai/baselines/blob/master/baselines/common/tf_util.py
MIT
def function(inputs, outputs, updates=None, givens=None): """Just like Theano function. Take a bunch of tensorflow placeholders and expressions computed based on those placeholders and produces f(inputs) -> outputs. Function f takes values to be fed to the input's placeholders and produces the values of the expressions in outputs. Input values can be passed in the same order as inputs or can be provided as kwargs based on placeholder name (passed to constructor or accessible via placeholder.op.name). Example: x = tf.placeholder(tf.int32, (), name="x") y = tf.placeholder(tf.int32, (), name="y") z = 3 * x + 2 * y lin = function([x, y], z, givens={y: 0}) with single_threaded_session(): initialize() assert lin(2) == 6 assert lin(x=3) == 9 assert lin(2, 2) == 10 assert lin(x=2, y=3) == 12 Parameters ---------- inputs: [tf.placeholder, tf.constant, or object with make_feed_dict method] list of input arguments outputs: [tf.Variable] or tf.Variable list of outputs or a single output to be returned from function. Returned value will also have the same shape. updates: [tf.Operation] or tf.Operation list of update functions or single update function that will be run whenever the function is called. The return is ignored. """ if isinstance(outputs, list): return _Function(inputs, outputs, updates, givens=givens) elif isinstance(outputs, (dict, collections.OrderedDict)): f = _Function(inputs, outputs.values(), updates, givens=givens) return lambda *args, **kwargs: type(outputs)(zip(outputs.keys(), f(*args, **kwargs))) else: f = _Function(inputs, [outputs], updates, givens=givens) return lambda *args, **kwargs: f(*args, **kwargs)[0]
Just like Theano function. Take a bunch of tensorflow placeholders and expressions computed based on those placeholders and produces f(inputs) -> outputs. Function f takes values to be fed to the input's placeholders and produces the values of the expressions in outputs. Input values can be passed in the same order as inputs or can be provided as kwargs based on placeholder name (passed to constructor or accessible via placeholder.op.name). Example: x = tf.placeholder(tf.int32, (), name="x") y = tf.placeholder(tf.int32, (), name="y") z = 3 * x + 2 * y lin = function([x, y], z, givens={y: 0}) with single_threaded_session(): initialize() assert lin(2) == 6 assert lin(x=3) == 9 assert lin(2, 2) == 10 assert lin(x=2, y=3) == 12 Parameters ---------- inputs: [tf.placeholder, tf.constant, or object with make_feed_dict method] list of input arguments outputs: [tf.Variable] or tf.Variable list of outputs or a single output to be returned from function. Returned value will also have the same shape. updates: [tf.Operation] or tf.Operation list of update functions or single update function that will be run whenever the function is called. The return is ignored.
function
python
openai/baselines
baselines/common/tf_util.py
https://github.com/openai/baselines/blob/master/baselines/common/tf_util.py
MIT
def adjust_shape(placeholder, data): ''' adjust shape of the data to the shape of the placeholder if possible. If shape is incompatible, AssertionError is thrown Parameters: placeholder tensorflow input placeholder data input data to be (potentially) reshaped to be fed into placeholder Returns: reshaped data ''' if not isinstance(data, np.ndarray) and not isinstance(data, list): return data if isinstance(data, list): data = np.array(data) placeholder_shape = [x or -1 for x in placeholder.shape.as_list()] assert _check_shape(placeholder_shape, data.shape), \ 'Shape of data {} is not compatible with shape of the placeholder {}'.format(data.shape, placeholder_shape) return np.reshape(data, placeholder_shape)
adjust shape of the data to the shape of the placeholder if possible. If shape is incompatible, AssertionError is thrown Parameters: placeholder tensorflow input placeholder data input data to be (potentially) reshaped to be fed into placeholder Returns: reshaped data
adjust_shape
python
openai/baselines
baselines/common/tf_util.py
https://github.com/openai/baselines/blob/master/baselines/common/tf_util.py
MIT
def _check_shape(placeholder_shape, data_shape): ''' check if two shapes are compatible (i.e. differ only by dimensions of size 1, or by the batch dimension)''' return True squeezed_placeholder_shape = _squeeze_shape(placeholder_shape) squeezed_data_shape = _squeeze_shape(data_shape) for i, s_data in enumerate(squeezed_data_shape): s_placeholder = squeezed_placeholder_shape[i] if s_placeholder != -1 and s_data != s_placeholder: return False return True
check if two shapes are compatible (i.e. differ only by dimensions of size 1, or by the batch dimension)
_check_shape
python
openai/baselines
baselines/common/tf_util.py
https://github.com/openai/baselines/blob/master/baselines/common/tf_util.py
MIT
def launch_tensorboard_in_background(log_dir): ''' To log the Tensorflow graph when using rl-algs algorithms, you can run the following code in your main script: import threading, time def start_tensorboard(session): time.sleep(10) # Wait until graph is setup tb_path = osp.join(logger.get_dir(), 'tb') summary_writer = tf.summary.FileWriter(tb_path, graph=session.graph) summary_op = tf.summary.merge_all() launch_tensorboard_in_background(tb_path) session = tf.get_default_session() t = threading.Thread(target=start_tensorboard, args=([session])) t.start() ''' import subprocess subprocess.Popen(['tensorboard', '--logdir', log_dir])
To log the Tensorflow graph when using rl-algs algorithms, you can run the following code in your main script: import threading, time def start_tensorboard(session): time.sleep(10) # Wait until graph is setup tb_path = osp.join(logger.get_dir(), 'tb') summary_writer = tf.summary.FileWriter(tb_path, graph=session.graph) summary_op = tf.summary.merge_all() launch_tensorboard_in_background(tb_path) session = tf.get_default_session() t = threading.Thread(target=start_tensorboard, args=([session])) t.start()
launch_tensorboard_in_background
python
openai/baselines
baselines/common/tf_util.py
https://github.com/openai/baselines/blob/master/baselines/common/tf_util.py
MIT
def __init__(self, env, k, channel=1): """ Stack one channel (channel keyword) from previous frames """ gym.Wrapper.__init__(self, env) shp = env.observation_space.shape self.channel = channel self.observation_space = gym.spaces.Box(low=0, high=255, shape=(shp[0], shp[1], shp[2] + k - 1), dtype=env.observation_space.dtype) self.k = k self.frames = deque([], maxlen=k) shp = env.observation_space.shape
Stack one channel (channel keyword) from previous frames
__init__
python
openai/baselines
baselines/common/retro_wrappers.py
https://github.com/openai/baselines/blob/master/baselines/common/retro_wrappers.py
MIT
def __init__(self, env, ratio): """ Downsample images by a factor of ratio """ gym.ObservationWrapper.__init__(self, env) (oldh, oldw, oldc) = env.observation_space.shape newshape = (oldh//ratio, oldw//ratio, oldc) self.observation_space = gym.spaces.Box(low=0, high=255, shape=newshape, dtype=np.uint8)
Downsample images by a factor of ratio
__init__
python
openai/baselines
baselines/common/retro_wrappers.py
https://github.com/openai/baselines/blob/master/baselines/common/retro_wrappers.py
MIT
def __init__(self, env): """ Downsample images by a factor of ratio """ gym.ObservationWrapper.__init__(self, env) (oldh, oldw, _oldc) = env.observation_space.shape self.observation_space = gym.spaces.Box(low=0, high=255, shape=(oldh, oldw, 1), dtype=np.uint8)
Downsample images by a factor of ratio
__init__
python
openai/baselines
baselines/common/retro_wrappers.py
https://github.com/openai/baselines/blob/master/baselines/common/retro_wrappers.py
MIT
def wrap_deepmind_retro(env, scale=True, frame_stack=4): """ Configure environment for retro games, using config similar to DeepMind-style Atari in wrap_deepmind """ env = WarpFrame(env) env = ClipRewardEnv(env) if frame_stack > 1: env = FrameStack(env, frame_stack) if scale: env = ScaledFloatFrame(env) return env
Configure environment for retro games, using config similar to DeepMind-style Atari in wrap_deepmind
wrap_deepmind_retro
python
openai/baselines
baselines/common/retro_wrappers.py
https://github.com/openai/baselines/blob/master/baselines/common/retro_wrappers.py
MIT
def cg(f_Ax, b, cg_iters=10, callback=None, verbose=False, residual_tol=1e-10): """ Demmel p 312 """ p = b.copy() r = b.copy() x = np.zeros_like(b) rdotr = r.dot(r) fmtstr = "%10i %10.3g %10.3g" titlestr = "%10s %10s %10s" if verbose: print(titlestr % ("iter", "residual norm", "soln norm")) for i in range(cg_iters): if callback is not None: callback(x) if verbose: print(fmtstr % (i, rdotr, np.linalg.norm(x))) z = f_Ax(p) v = rdotr / p.dot(z) x += v*p r -= v*z newrdotr = r.dot(r) mu = newrdotr/rdotr p = r + mu*p rdotr = newrdotr if rdotr < residual_tol: break if callback is not None: callback(x) if verbose: print(fmtstr % (i+1, rdotr, np.linalg.norm(x))) # pylint: disable=W0631 return x
Demmel p 312
cg
python
openai/baselines
baselines/common/cg.py
https://github.com/openai/baselines/blob/master/baselines/common/cg.py
MIT
def pretty_eta(seconds_left): """Print the number of seconds in human readable format. Examples: 2 days 2 hours and 37 minutes less than a minute Paramters --------- seconds_left: int Number of seconds to be converted to the ETA Returns ------- eta: str String representing the pretty ETA. """ minutes_left = seconds_left // 60 seconds_left %= 60 hours_left = minutes_left // 60 minutes_left %= 60 days_left = hours_left // 24 hours_left %= 24 def helper(cnt, name): return "{} {}{}".format(str(cnt), name, ('s' if cnt > 1 else '')) if days_left > 0: msg = helper(days_left, 'day') if hours_left > 0: msg += ' and ' + helper(hours_left, 'hour') return msg if hours_left > 0: msg = helper(hours_left, 'hour') if minutes_left > 0: msg += ' and ' + helper(minutes_left, 'minute') return msg if minutes_left > 0: return helper(minutes_left, 'minute') return 'less than a minute'
Print the number of seconds in human readable format. Examples: 2 days 2 hours and 37 minutes less than a minute Paramters --------- seconds_left: int Number of seconds to be converted to the ETA Returns ------- eta: str String representing the pretty ETA.
pretty_eta
python
openai/baselines
baselines/common/misc_util.py
https://github.com/openai/baselines/blob/master/baselines/common/misc_util.py
MIT
def __init__(self, gamma, init_value=None): """Keep a running estimate of a quantity. This is a bit like mean but more sensitive to recent changes. Parameters ---------- gamma: float Must be between 0 and 1, where 0 is the most sensitive to recent changes. init_value: float or None Initial value of the estimate. If None, it will be set on the first update. """ self._value = init_value self._gamma = gamma
Keep a running estimate of a quantity. This is a bit like mean but more sensitive to recent changes. Parameters ---------- gamma: float Must be between 0 and 1, where 0 is the most sensitive to recent changes. init_value: float or None Initial value of the estimate. If None, it will be set on the first update.
__init__
python
openai/baselines
baselines/common/misc_util.py
https://github.com/openai/baselines/blob/master/baselines/common/misc_util.py
MIT
def update(self, new_val): """Update the estimate. Parameters ---------- new_val: float new observated value of estimated quantity. """ if self._value is None: self._value = new_val else: self._value = self._gamma * self._value + (1.0 - self._gamma) * new_val
Update the estimate. Parameters ---------- new_val: float new observated value of estimated quantity.
update
python
openai/baselines
baselines/common/misc_util.py
https://github.com/openai/baselines/blob/master/baselines/common/misc_util.py
MIT
def __float__(self): """Get the current estimate""" return self._value
Get the current estimate
__float__
python
openai/baselines
baselines/common/misc_util.py
https://github.com/openai/baselines/blob/master/baselines/common/misc_util.py
MIT
def boolean_flag(parser, name, default=False, help=None): """Add a boolean flag to argparse parser. Parameters ---------- parser: argparse.Parser parser to add the flag to name: str --<name> will enable the flag, while --no-<name> will disable it default: bool or None default value of the flag help: str help string for the flag """ dest = name.replace('-', '_') parser.add_argument("--" + name, action="store_true", default=default, dest=dest, help=help) parser.add_argument("--no-" + name, action="store_false", dest=dest)
Add a boolean flag to argparse parser. Parameters ---------- parser: argparse.Parser parser to add the flag to name: str --<name> will enable the flag, while --no-<name> will disable it default: bool or None default value of the flag help: str help string for the flag
boolean_flag
python
openai/baselines
baselines/common/misc_util.py
https://github.com/openai/baselines/blob/master/baselines/common/misc_util.py
MIT
def get_wrapper_by_name(env, classname): """Given an a gym environment possibly wrapped multiple times, returns a wrapper of class named classname or raises ValueError if no such wrapper was applied Parameters ---------- env: gym.Env of gym.Wrapper gym environment classname: str name of the wrapper Returns ------- wrapper: gym.Wrapper wrapper named classname """ currentenv = env while True: if classname == currentenv.class_name(): return currentenv elif isinstance(currentenv, gym.Wrapper): currentenv = currentenv.env else: raise ValueError("Couldn't find wrapper named %s" % classname)
Given an a gym environment possibly wrapped multiple times, returns a wrapper of class named classname or raises ValueError if no such wrapper was applied Parameters ---------- env: gym.Env of gym.Wrapper gym environment classname: str name of the wrapper Returns ------- wrapper: gym.Wrapper wrapper named classname
get_wrapper_by_name
python
openai/baselines
baselines/common/misc_util.py
https://github.com/openai/baselines/blob/master/baselines/common/misc_util.py
MIT
def relatively_safe_pickle_dump(obj, path, compression=False): """This is just like regular pickle dump, except from the fact that failure cases are different: - It's never possible that we end up with a pickle in corrupted state. - If a there was a different file at the path, that file will remain unchanged in the even of failure (provided that filesystem rename is atomic). - it is sometimes possible that we end up with useless temp file which needs to be deleted manually (it will be removed automatically on the next function call) The indended use case is periodic checkpoints of experiment state, such that we never corrupt previous checkpoints if the current one fails. Parameters ---------- obj: object object to pickle path: str path to the output file compression: bool if true pickle will be compressed """ temp_storage = path + ".relatively_safe" if compression: # Using gzip here would be simpler, but the size is limited to 2GB with tempfile.NamedTemporaryFile() as uncompressed_file: pickle.dump(obj, uncompressed_file) uncompressed_file.file.flush() with zipfile.ZipFile(temp_storage, "w", compression=zipfile.ZIP_DEFLATED) as myzip: myzip.write(uncompressed_file.name, "data") else: with open(temp_storage, "wb") as f: pickle.dump(obj, f) os.rename(temp_storage, path)
This is just like regular pickle dump, except from the fact that failure cases are different: - It's never possible that we end up with a pickle in corrupted state. - If a there was a different file at the path, that file will remain unchanged in the even of failure (provided that filesystem rename is atomic). - it is sometimes possible that we end up with useless temp file which needs to be deleted manually (it will be removed automatically on the next function call) The indended use case is periodic checkpoints of experiment state, such that we never corrupt previous checkpoints if the current one fails. Parameters ---------- obj: object object to pickle path: str path to the output file compression: bool if true pickle will be compressed
relatively_safe_pickle_dump
python
openai/baselines
baselines/common/misc_util.py
https://github.com/openai/baselines/blob/master/baselines/common/misc_util.py
MIT
def pickle_load(path, compression=False): """Unpickle a possible compressed pickle. Parameters ---------- path: str path to the output file compression: bool if true assumes that pickle was compressed when created and attempts decompression. Returns ------- obj: object the unpickled object """ if compression: with zipfile.ZipFile(path, "r", compression=zipfile.ZIP_DEFLATED) as myzip: with myzip.open("data") as f: return pickle.load(f) else: with open(path, "rb") as f: return pickle.load(f)
Unpickle a possible compressed pickle. Parameters ---------- path: str path to the output file compression: bool if true assumes that pickle was compressed when created and attempts decompression. Returns ------- obj: object the unpickled object
pickle_load
python
openai/baselines
baselines/common/misc_util.py
https://github.com/openai/baselines/blob/master/baselines/common/misc_util.py
MIT
def nature_cnn(unscaled_images, **conv_kwargs): """ CNN from Nature paper. """ scaled_images = tf.cast(unscaled_images, tf.float32) / 255. activ = tf.nn.relu h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2), **conv_kwargs)) h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs)) h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs)) h3 = conv_to_fc(h3) return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
CNN from Nature paper.
nature_cnn
python
openai/baselines
baselines/common/models.py
https://github.com/openai/baselines/blob/master/baselines/common/models.py
MIT
def build_impala_cnn(unscaled_images, depths=[16,32,32], **conv_kwargs): """ Model used in the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" https://arxiv.org/abs/1802.01561 """ layer_num = 0 def get_layer_num_str(): nonlocal layer_num num_str = str(layer_num) layer_num += 1 return num_str def conv_layer(out, depth): return tf.layers.conv2d(out, depth, 3, padding='same', name='layer_' + get_layer_num_str()) def residual_block(inputs): depth = inputs.get_shape()[-1].value out = tf.nn.relu(inputs) out = conv_layer(out, depth) out = tf.nn.relu(out) out = conv_layer(out, depth) return out + inputs def conv_sequence(inputs, depth): out = conv_layer(inputs, depth) out = tf.layers.max_pooling2d(out, pool_size=3, strides=2, padding='same') out = residual_block(out) out = residual_block(out) return out out = tf.cast(unscaled_images, tf.float32) / 255. for depth in depths: out = conv_sequence(out, depth) out = tf.layers.flatten(out) out = tf.nn.relu(out) out = tf.layers.dense(out, 256, activation=tf.nn.relu, name='layer_' + get_layer_num_str()) return out
Model used in the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" https://arxiv.org/abs/1802.01561
build_impala_cnn
python
openai/baselines
baselines/common/models.py
https://github.com/openai/baselines/blob/master/baselines/common/models.py
MIT
def mlp(num_layers=2, num_hidden=64, activation=tf.tanh, layer_norm=False): """ Stack of fully-connected layers to be used in a policy / q-function approximator Parameters: ---------- num_layers: int number of fully-connected layers (default: 2) num_hidden: int size of fully-connected layers (default: 64) activation: activation function (default: tf.tanh) Returns: ------- function that builds fully connected network with a given input tensor / placeholder """ def network_fn(X): h = tf.layers.flatten(X) for i in range(num_layers): h = fc(h, 'mlp_fc{}'.format(i), nh=num_hidden, init_scale=np.sqrt(2)) if layer_norm: h = tf.contrib.layers.layer_norm(h, center=True, scale=True) h = activation(h) return h return network_fn
Stack of fully-connected layers to be used in a policy / q-function approximator Parameters: ---------- num_layers: int number of fully-connected layers (default: 2) num_hidden: int size of fully-connected layers (default: 64) activation: activation function (default: tf.tanh) Returns: ------- function that builds fully connected network with a given input tensor / placeholder
mlp
python
openai/baselines
baselines/common/models.py
https://github.com/openai/baselines/blob/master/baselines/common/models.py
MIT
def lstm(nlstm=128, layer_norm=False): """ Builds LSTM (Long-Short Term Memory) network to be used in a policy. Note that the resulting function returns not only the output of the LSTM (i.e. hidden state of lstm for each step in the sequence), but also a dictionary with auxiliary tensors to be set as policy attributes. Specifically, S is a placeholder to feed current state (LSTM state has to be managed outside policy) M is a placeholder for the mask (used to mask out observations after the end of the episode, but can be used for other purposes too) initial_state is a numpy array containing initial lstm state (usually zeros) state is the output LSTM state (to be fed into S at the next call) An example of usage of lstm-based policy can be found here: common/tests/test_doc_examples.py/test_lstm_example Parameters: ---------- nlstm: int LSTM hidden state size layer_norm: bool if True, layer-normalized version of LSTM is used Returns: ------- function that builds LSTM with a given input tensor / placeholder """ def network_fn(X, nenv=1): nbatch = X.shape[0] nsteps = nbatch // nenv h = tf.layers.flatten(X) M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1) S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states xs = batch_to_seq(h, nenv, nsteps) ms = batch_to_seq(M, nenv, nsteps) if layer_norm: h5, snew = utils.lnlstm(xs, ms, S, scope='lnlstm', nh=nlstm) else: h5, snew = utils.lstm(xs, ms, S, scope='lstm', nh=nlstm) h = seq_to_batch(h5) initial_state = np.zeros(S.shape.as_list(), dtype=float) return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state} return network_fn
Builds LSTM (Long-Short Term Memory) network to be used in a policy. Note that the resulting function returns not only the output of the LSTM (i.e. hidden state of lstm for each step in the sequence), but also a dictionary with auxiliary tensors to be set as policy attributes. Specifically, S is a placeholder to feed current state (LSTM state has to be managed outside policy) M is a placeholder for the mask (used to mask out observations after the end of the episode, but can be used for other purposes too) initial_state is a numpy array containing initial lstm state (usually zeros) state is the output LSTM state (to be fed into S at the next call) An example of usage of lstm-based policy can be found here: common/tests/test_doc_examples.py/test_lstm_example Parameters: ---------- nlstm: int LSTM hidden state size layer_norm: bool if True, layer-normalized version of LSTM is used Returns: ------- function that builds LSTM with a given input tensor / placeholder
lstm
python
openai/baselines
baselines/common/models.py
https://github.com/openai/baselines/blob/master/baselines/common/models.py
MIT
def conv_only(convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], **conv_kwargs): ''' convolutions-only net Parameters: ---------- conv: list of triples (filter_number, filter_size, stride) specifying parameters for each layer. Returns: function that takes tensorflow tensor as input and returns the output of the last convolutional layer ''' def network_fn(X): out = tf.cast(X, tf.float32) / 255. with tf.variable_scope("convnet"): for num_outputs, kernel_size, stride in convs: out = tf.contrib.layers.convolution2d(out, num_outputs=num_outputs, kernel_size=kernel_size, stride=stride, activation_fn=tf.nn.relu, **conv_kwargs) return out return network_fn
convolutions-only net Parameters: ---------- conv: list of triples (filter_number, filter_size, stride) specifying parameters for each layer. Returns: function that takes tensorflow tensor as input and returns the output of the last convolutional layer
conv_only
python
openai/baselines
baselines/common/models.py
https://github.com/openai/baselines/blob/master/baselines/common/models.py
MIT
def get_network_builder(name): """ If you want to register your own network outside models.py, you just need: Usage Example: ------------- from baselines.common.models import register @register("your_network_name") def your_network_define(**net_kwargs): ... return network_fn """ if callable(name): return name elif name in mapping: return mapping[name] else: raise ValueError('Unknown network type: {}'.format(name))
If you want to register your own network outside models.py, you just need: Usage Example: ------------- from baselines.common.models import register @register("your_network_name") def your_network_define(**net_kwargs): ... return network_fn
get_network_builder
python
openai/baselines
baselines/common/models.py
https://github.com/openai/baselines/blob/master/baselines/common/models.py
MIT
def test_fixed_sequence(alg, rnn): ''' Test if the algorithm (with a given policy) can learn an identity transformation (i.e. return observation as an action) ''' kwargs = learn_kwargs[alg] kwargs.update(common_kwargs) env_fn = lambda: FixedSequenceEnv(n_actions=10, episode_len=5) learn = lambda e: get_learn_function(alg)( env=e, network=rnn, **kwargs ) simple_test(env_fn, learn, 0.7)
Test if the algorithm (with a given policy) can learn an identity transformation (i.e. return observation as an action)
test_fixed_sequence
python
openai/baselines
baselines/common/tests/test_fixed_sequence.py
https://github.com/openai/baselines/blob/master/baselines/common/tests/test_fixed_sequence.py
MIT
def test_serialization(learn_fn, network_fn): ''' Test if the trained model can be serialized ''' if network_fn.endswith('lstm') and learn_fn in ['acer', 'acktr', 'trpo_mpi', 'deepq']: # TODO make acktr work with recurrent policies # and test # github issue: https://github.com/openai/baselines/issues/660 return def make_env(): env = MnistEnv(episode_len=100) env.seed(10) return env env = DummyVecEnv([make_env]) ob = env.reset().copy() learn = get_learn_function(learn_fn) kwargs = {} kwargs.update(network_kwargs[network_fn]) kwargs.update(learn_kwargs[learn_fn]) learn = partial(learn, env=env, network=network_fn, seed=0, **kwargs) with tempfile.TemporaryDirectory() as td: model_path = os.path.join(td, 'serialization_test_model') with tf.Graph().as_default(), make_session().as_default(): model = learn(total_timesteps=100) model.save(model_path) mean1, std1 = _get_action_stats(model, ob) variables_dict1 = _serialize_variables() with tf.Graph().as_default(), make_session().as_default(): model = learn(total_timesteps=0, load_path=model_path) mean2, std2 = _get_action_stats(model, ob) variables_dict2 = _serialize_variables() for k, v in variables_dict1.items(): np.testing.assert_allclose(v, variables_dict2[k], atol=0.01, err_msg='saved and loaded variable {} value mismatch'.format(k)) np.testing.assert_allclose(mean1, mean2, atol=0.5) np.testing.assert_allclose(std1, std2, atol=0.5)
Test if the trained model can be serialized
test_serialization
python
openai/baselines
baselines/common/tests/test_serialization.py
https://github.com/openai/baselines/blob/master/baselines/common/tests/test_serialization.py
MIT
def test_coexistence(learn_fn, network_fn): ''' Test if more than one model can exist at a time ''' if learn_fn == 'deepq': # TODO enable multiple DQN models to be useable at the same time # github issue https://github.com/openai/baselines/issues/656 return if network_fn.endswith('lstm') and learn_fn in ['acktr', 'trpo_mpi', 'deepq']: # TODO make acktr work with recurrent policies # and test # github issue: https://github.com/openai/baselines/issues/660 return env = DummyVecEnv([lambda: gym.make('CartPole-v0')]) learn = get_learn_function(learn_fn) kwargs = {} kwargs.update(network_kwargs[network_fn]) kwargs.update(learn_kwargs[learn_fn]) learn = partial(learn, env=env, network=network_fn, total_timesteps=0, **kwargs) make_session(make_default=True, graph=tf.Graph()) model1 = learn(seed=1) make_session(make_default=True, graph=tf.Graph()) model2 = learn(seed=2) model1.step(env.observation_space.sample()) model2.step(env.observation_space.sample())
Test if more than one model can exist at a time
test_coexistence
python
openai/baselines
baselines/common/tests/test_serialization.py
https://github.com/openai/baselines/blob/master/baselines/common/tests/test_serialization.py
MIT
def test_fetchreach(alg): ''' Test if the algorithm (with an mlp policy) can learn the FetchReach task ''' kwargs = common_kwargs.copy() kwargs.update(learn_kwargs[alg]) learn_fn = lambda e: get_learn_function(alg)(env=e, **kwargs) def env_fn(): env = gym.make('FetchReach-v1') env.seed(0) return env reward_per_episode_test(env_fn, learn_fn, -15)
Test if the algorithm (with an mlp policy) can learn the FetchReach task
test_fetchreach
python
openai/baselines
baselines/common/tests/test_fetchreach.py
https://github.com/openai/baselines/blob/master/baselines/common/tests/test_fetchreach.py
MIT
def test_mnist(alg): ''' Test if the algorithm can learn to classify MNIST digits. Uses CNN policy. ''' learn_kwargs = learn_args[alg] learn_kwargs.update(common_kwargs) learn = get_learn_function(alg) learn_fn = lambda e: learn(env=e, **learn_kwargs) env_fn = lambda: MnistEnv(episode_len=100) simple_test(env_fn, learn_fn, 0.6)
Test if the algorithm can learn to classify MNIST digits. Uses CNN policy.
test_mnist
python
openai/baselines
baselines/common/tests/test_mnist.py
https://github.com/openai/baselines/blob/master/baselines/common/tests/test_mnist.py
MIT
def test_cartpole(alg): ''' Test if the algorithm (with an mlp policy) can learn to balance the cartpole ''' kwargs = common_kwargs.copy() kwargs.update(learn_kwargs[alg]) learn_fn = lambda e: get_learn_function(alg)(env=e, **kwargs) def env_fn(): env = gym.make('CartPole-v0') env.seed(0) return env reward_per_episode_test(env_fn, learn_fn, 100)
Test if the algorithm (with an mlp policy) can learn to balance the cartpole
test_cartpole
python
openai/baselines
baselines/common/tests/test_cartpole.py
https://github.com/openai/baselines/blob/master/baselines/common/tests/test_cartpole.py
MIT
def test_discrete_identity(alg): ''' Test if the algorithm (with an mlp policy) can learn an identity transformation (i.e. return observation as an action) ''' kwargs = learn_kwargs[alg] kwargs.update(common_kwargs) learn_fn = lambda e: get_learn_function(alg)(env=e, **kwargs) env_fn = lambda: DiscreteIdentityEnv(10, episode_len=100) simple_test(env_fn, learn_fn, 0.9)
Test if the algorithm (with an mlp policy) can learn an identity transformation (i.e. return observation as an action)
test_discrete_identity
python
openai/baselines
baselines/common/tests/test_identity.py
https://github.com/openai/baselines/blob/master/baselines/common/tests/test_identity.py
MIT
def test_multidiscrete_identity(alg): ''' Test if the algorithm (with an mlp policy) can learn an identity transformation (i.e. return observation as an action) ''' kwargs = learn_kwargs[alg] kwargs.update(common_kwargs) learn_fn = lambda e: get_learn_function(alg)(env=e, **kwargs) env_fn = lambda: MultiDiscreteIdentityEnv((3,3), episode_len=100) simple_test(env_fn, learn_fn, 0.9)
Test if the algorithm (with an mlp policy) can learn an identity transformation (i.e. return observation as an action)
test_multidiscrete_identity
python
openai/baselines
baselines/common/tests/test_identity.py
https://github.com/openai/baselines/blob/master/baselines/common/tests/test_identity.py
MIT
def test_continuous_identity(alg): ''' Test if the algorithm (with an mlp policy) can learn an identity transformation (i.e. return observation as an action) to a required precision ''' kwargs = learn_kwargs[alg] kwargs.update(common_kwargs) learn_fn = lambda e: get_learn_function(alg)(env=e, **kwargs) env_fn = lambda: BoxIdentityEnv((1,), episode_len=100) simple_test(env_fn, learn_fn, -0.1)
Test if the algorithm (with an mlp policy) can learn an identity transformation (i.e. return observation as an action) to a required precision
test_continuous_identity
python
openai/baselines
baselines/common/tests/test_identity.py
https://github.com/openai/baselines/blob/master/baselines/common/tests/test_identity.py
MIT
def reset(self): """ Reset all the environments and return an array of observations, or a dict of observation arrays. If step_async is still doing work, that work will be cancelled and step_wait() should not be called until step_async() is invoked again. """ pass
Reset all the environments and return an array of observations, or a dict of observation arrays. If step_async is still doing work, that work will be cancelled and step_wait() should not be called until step_async() is invoked again.
reset
python
openai/baselines
baselines/common/vec_env/vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/vec_env.py
MIT
def step_async(self, actions): """ Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of the step. You should not call this if a step_async run is already pending. """ pass
Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of the step. You should not call this if a step_async run is already pending.
step_async
python
openai/baselines
baselines/common/vec_env/vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/vec_env.py
MIT
def step_wait(self): """ Wait for the step taken with step_async(). Returns (obs, rews, dones, infos): - obs: an array of observations, or a dict of arrays of observations. - rews: an array of rewards - dones: an array of "episode done" booleans - infos: a sequence of info objects """ pass
Wait for the step taken with step_async(). Returns (obs, rews, dones, infos): - obs: an array of observations, or a dict of arrays of observations. - rews: an array of rewards - dones: an array of "episode done" booleans - infos: a sequence of info objects
step_wait
python
openai/baselines
baselines/common/vec_env/vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/vec_env.py
MIT
def close_extras(self): """ Clean up the extra resources, beyond what's in this base class. Only runs when not self.closed. """ pass
Clean up the extra resources, beyond what's in this base class. Only runs when not self.closed.
close_extras
python
openai/baselines
baselines/common/vec_env/vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/vec_env.py
MIT
def step(self, actions): """ Step the environments synchronously. This is available for backwards compatibility. """ self.step_async(actions) return self.step_wait()
Step the environments synchronously. This is available for backwards compatibility.
step
python
openai/baselines
baselines/common/vec_env/vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/vec_env.py
MIT
def get_images(self): """ Return RGB images from each environment """ raise NotImplementedError
Return RGB images from each environment
get_images
python
openai/baselines
baselines/common/vec_env/vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/vec_env.py
MIT
def clear_mpi_env_vars(): """ from mpi4py import MPI will call MPI_Init by default. If the child process has MPI environment variables, MPI will think that the child process is an MPI process just like the parent and do bad things such as hang. This context manager is a hacky way to clear those environment variables temporarily such as when we are starting multiprocessing Processes. """ removed_environment = {} for k, v in list(os.environ.items()): for prefix in ['OMPI_', 'PMI_']: if k.startswith(prefix): removed_environment[k] = v del os.environ[k] try: yield finally: os.environ.update(removed_environment)
from mpi4py import MPI will call MPI_Init by default. If the child process has MPI environment variables, MPI will think that the child process is an MPI process just like the parent and do bad things such as hang. This context manager is a hacky way to clear those environment variables temporarily such as when we are starting multiprocessing Processes.
clear_mpi_env_vars
python
openai/baselines
baselines/common/vec_env/vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/vec_env.py
MIT
def __init__(self, env_fns, spaces=None, context='spawn'): """ If you don't specify observation_space, we'll have to create a dummy environment to get it. """ ctx = mp.get_context(context) if spaces: observation_space, action_space = spaces else: logger.log('Creating dummy env object to get spaces') with logger.scoped_configure(format_strs=[]): dummy = env_fns[0]() observation_space, action_space = dummy.observation_space, dummy.action_space dummy.close() del dummy VecEnv.__init__(self, len(env_fns), observation_space, action_space) self.obs_keys, self.obs_shapes, self.obs_dtypes = obs_space_info(observation_space) self.obs_bufs = [ {k: ctx.Array(_NP_TO_CT[self.obs_dtypes[k].type], int(np.prod(self.obs_shapes[k]))) for k in self.obs_keys} for _ in env_fns] self.parent_pipes = [] self.procs = [] with clear_mpi_env_vars(): for env_fn, obs_buf in zip(env_fns, self.obs_bufs): wrapped_fn = CloudpickleWrapper(env_fn) parent_pipe, child_pipe = ctx.Pipe() proc = ctx.Process(target=_subproc_worker, args=(child_pipe, parent_pipe, wrapped_fn, obs_buf, self.obs_shapes, self.obs_dtypes, self.obs_keys)) proc.daemon = True self.procs.append(proc) self.parent_pipes.append(parent_pipe) proc.start() child_pipe.close() self.waiting_step = False self.viewer = None
If you don't specify observation_space, we'll have to create a dummy environment to get it.
__init__
python
openai/baselines
baselines/common/vec_env/shmem_vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/shmem_vec_env.py
MIT
def _subproc_worker(pipe, parent_pipe, env_fn_wrapper, obs_bufs, obs_shapes, obs_dtypes, keys): """ Control a single environment instance using IPC and shared memory. """ def _write_obs(maybe_dict_obs): flatdict = obs_to_dict(maybe_dict_obs) for k in keys: dst = obs_bufs[k].get_obj() dst_np = np.frombuffer(dst, dtype=obs_dtypes[k]).reshape(obs_shapes[k]) # pylint: disable=W0212 np.copyto(dst_np, flatdict[k]) env = env_fn_wrapper.x() parent_pipe.close() try: while True: cmd, data = pipe.recv() if cmd == 'reset': pipe.send(_write_obs(env.reset())) elif cmd == 'step': obs, reward, done, info = env.step(data) if done: obs = env.reset() pipe.send((_write_obs(obs), reward, done, info)) elif cmd == 'render': pipe.send(env.render(mode='rgb_array')) elif cmd == 'close': pipe.send(None) break else: raise RuntimeError('Got unrecognized cmd %s' % cmd) except KeyboardInterrupt: print('ShmemVecEnv worker: got KeyboardInterrupt') finally: env.close()
Control a single environment instance using IPC and shared memory.
_subproc_worker
python
openai/baselines
baselines/common/vec_env/shmem_vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/shmem_vec_env.py
MIT
def test_video_recorder(klass, num_envs, video_length, video_interval): """ Wrap an existing VecEnv with VevVideoRecorder, Make (video_interval + video_length + 1) steps, then check that the file is present """ def make_fn(): env = gym.make('PongNoFrameskip-v4') return env fns = [make_fn for _ in range(num_envs)] env = klass(fns) with tempfile.TemporaryDirectory() as video_path: env = VecVideoRecorder(env, video_path, record_video_trigger=lambda x: x % video_interval == 0, video_length=video_length) env.reset() for _ in range(video_interval + video_length + 1): env.step([0] * num_envs) env.close() recorded_video = glob.glob(os.path.join(video_path, "*.mp4")) # first and second step assert len(recorded_video) == 2 # Files are not empty assert all(os.stat(p).st_size != 0 for p in recorded_video)
Wrap an existing VecEnv with VevVideoRecorder, Make (video_interval + video_length + 1) steps, then check that the file is present
test_video_recorder
python
openai/baselines
baselines/common/vec_env/test_video_recorder.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/test_video_recorder.py
MIT
def assert_venvs_equal(venv1, venv2, num_steps): """ Compare two environments over num_steps steps and make sure that the observations produced by each are the same when given the same actions. """ assert venv1.num_envs == venv2.num_envs assert venv1.observation_space.shape == venv2.observation_space.shape assert venv1.observation_space.dtype == venv2.observation_space.dtype assert venv1.action_space.shape == venv2.action_space.shape assert venv1.action_space.dtype == venv2.action_space.dtype try: obs1, obs2 = venv1.reset(), venv2.reset() assert np.array(obs1).shape == np.array(obs2).shape assert np.array(obs1).shape == (venv1.num_envs,) + venv1.observation_space.shape assert np.allclose(obs1, obs2) venv1.action_space.seed(1337) for _ in range(num_steps): actions = np.array([venv1.action_space.sample() for _ in range(venv1.num_envs)]) for venv in [venv1, venv2]: venv.step_async(actions) outs1 = venv1.step_wait() outs2 = venv2.step_wait() for out1, out2 in zip(outs1[:3], outs2[:3]): assert np.array(out1).shape == np.array(out2).shape assert np.allclose(out1, out2) assert list(outs1[3]) == list(outs2[3]) finally: venv1.close() venv2.close()
Compare two environments over num_steps steps and make sure that the observations produced by each are the same when given the same actions.
assert_venvs_equal
python
openai/baselines
baselines/common/vec_env/test_vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/test_vec_env.py
MIT
def make_fn(seed): """ Get an environment constructor with a seed. """ return lambda: SimpleEnv(seed, shape, dtype)
Get an environment constructor with a seed.
test_vec_env.make_fn
python
openai/baselines
baselines/common/vec_env/test_vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/test_vec_env.py
MIT
def test_vec_env(klass, dtype): # pylint: disable=R0914 """ Test that a vectorized environment is equivalent to DummyVecEnv, since DummyVecEnv is less likely to be error prone. """ num_envs = 3 num_steps = 100 shape = (3, 8) def make_fn(seed): """ Get an environment constructor with a seed. """ return lambda: SimpleEnv(seed, shape, dtype) fns = [make_fn(i) for i in range(num_envs)] env1 = DummyVecEnv(fns) env2 = klass(fns) assert_venvs_equal(env1, env2, num_steps=num_steps)
Test that a vectorized environment is equivalent to DummyVecEnv, since DummyVecEnv is less likely to be error prone.
test_vec_env
python
openai/baselines
baselines/common/vec_env/test_vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/test_vec_env.py
MIT
def make_fn(seed): """ Get an environment constructor with a seed. """ return lambda: SimpleEnv(seed, shape, dtype)
Get an environment constructor with a seed.
test_sync_sampling.make_fn
python
openai/baselines
baselines/common/vec_env/test_vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/test_vec_env.py
MIT
def test_sync_sampling(dtype, num_envs_in_series): """ Test that a SubprocVecEnv running with envs in series outputs the same as DummyVecEnv. """ num_envs = 12 num_steps = 100 shape = (3, 8) def make_fn(seed): """ Get an environment constructor with a seed. """ return lambda: SimpleEnv(seed, shape, dtype) fns = [make_fn(i) for i in range(num_envs)] env1 = DummyVecEnv(fns) env2 = SubprocVecEnv(fns, in_series=num_envs_in_series) assert_venvs_equal(env1, env2, num_steps=num_steps)
Test that a SubprocVecEnv running with envs in series outputs the same as DummyVecEnv.
test_sync_sampling
python
openai/baselines
baselines/common/vec_env/test_vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/test_vec_env.py
MIT
def make_fn(seed): """ Get an environment constructor with a seed. """ return lambda: SimpleEnv(seed, shape, dtype)
Get an environment constructor with a seed.
test_sync_sampling_sanity.make_fn
python
openai/baselines
baselines/common/vec_env/test_vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/test_vec_env.py
MIT
def test_sync_sampling_sanity(dtype, num_envs_in_series): """ Test that a SubprocVecEnv running with envs in series outputs the same as SubprocVecEnv without running in series. """ num_envs = 12 num_steps = 100 shape = (3, 8) def make_fn(seed): """ Get an environment constructor with a seed. """ return lambda: SimpleEnv(seed, shape, dtype) fns = [make_fn(i) for i in range(num_envs)] env1 = SubprocVecEnv(fns) env2 = SubprocVecEnv(fns, in_series=num_envs_in_series) assert_venvs_equal(env1, env2, num_steps=num_steps)
Test that a SubprocVecEnv running with envs in series outputs the same as SubprocVecEnv without running in series.
test_sync_sampling_sanity
python
openai/baselines
baselines/common/vec_env/test_vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/test_vec_env.py
MIT
def __init__(self, env_fns, spaces=None, context='spawn', in_series=1): """ Arguments: env_fns: iterable of callables - functions that create environments to run in subprocesses. Need to be cloud-pickleable in_series: number of environments to run in series in a single process (e.g. when len(env_fns) == 12 and in_series == 3, it will run 4 processes, each running 3 envs in series) """ self.waiting = False self.closed = False self.in_series = in_series nenvs = len(env_fns) assert nenvs % in_series == 0, "Number of envs must be divisible by number of envs to run in series" self.nremotes = nenvs // in_series env_fns = np.array_split(env_fns, self.nremotes) ctx = mp.get_context(context) self.remotes, self.work_remotes = zip(*[ctx.Pipe() for _ in range(self.nremotes)]) self.ps = [ctx.Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn))) for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)] for p in self.ps: p.daemon = True # if the main process crashes, we should not cause things to hang with clear_mpi_env_vars(): p.start() for remote in self.work_remotes: remote.close() self.remotes[0].send(('get_spaces_spec', None)) observation_space, action_space, self.spec = self.remotes[0].recv().x self.viewer = None VecEnv.__init__(self, nenvs, observation_space, action_space)
Arguments: env_fns: iterable of callables - functions that create environments to run in subprocesses. Need to be cloud-pickleable in_series: number of environments to run in series in a single process (e.g. when len(env_fns) == 12 and in_series == 3, it will run 4 processes, each running 3 envs in series)
__init__
python
openai/baselines
baselines/common/vec_env/subproc_vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/subproc_vec_env.py
MIT
def __init__(self, env_fns): """ Arguments: env_fns: iterable of callables functions that build environments """ self.envs = [fn() for fn in env_fns] env = self.envs[0] VecEnv.__init__(self, len(env_fns), env.observation_space, env.action_space) obs_space = env.observation_space self.keys, shapes, dtypes = obs_space_info(obs_space) self.buf_obs = { k: np.zeros((self.num_envs,) + tuple(shapes[k]), dtype=dtypes[k]) for k in self.keys } self.buf_dones = np.zeros((self.num_envs,), dtype=np.bool) self.buf_rews = np.zeros((self.num_envs,), dtype=np.float32) self.buf_infos = [{} for _ in range(self.num_envs)] self.actions = None self.spec = self.envs[0].spec
Arguments: env_fns: iterable of callables functions that build environments
__init__
python
openai/baselines
baselines/common/vec_env/dummy_vec_env.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/dummy_vec_env.py
MIT
def copy_obs_dict(obs): """ Deep-copy an observation dict. """ return {k: np.copy(v) for k, v in obs.items()}
Deep-copy an observation dict.
copy_obs_dict
python
openai/baselines
baselines/common/vec_env/util.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/util.py
MIT
def dict_to_obs(obs_dict): """ Convert an observation dict into a raw array if the original observation space was not a Dict space. """ if set(obs_dict.keys()) == {None}: return obs_dict[None] return obs_dict
Convert an observation dict into a raw array if the original observation space was not a Dict space.
dict_to_obs
python
openai/baselines
baselines/common/vec_env/util.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/util.py
MIT
def obs_space_info(obs_space): """ Get dict-structured information about a gym.Space. Returns: A tuple (keys, shapes, dtypes): keys: a list of dict keys. shapes: a dict mapping keys to shapes. dtypes: a dict mapping keys to dtypes. """ if isinstance(obs_space, gym.spaces.Dict): assert isinstance(obs_space.spaces, OrderedDict) subspaces = obs_space.spaces elif isinstance(obs_space, gym.spaces.Tuple): assert isinstance(obs_space.spaces, tuple) subspaces = {i: obs_space.spaces[i] for i in range(len(obs_space.spaces))} else: subspaces = {None: obs_space} keys = [] shapes = {} dtypes = {} for key, box in subspaces.items(): keys.append(key) shapes[key] = box.shape dtypes[key] = box.dtype return keys, shapes, dtypes
Get dict-structured information about a gym.Space. Returns: A tuple (keys, shapes, dtypes): keys: a list of dict keys. shapes: a dict mapping keys to shapes. dtypes: a dict mapping keys to dtypes.
obs_space_info
python
openai/baselines
baselines/common/vec_env/util.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/util.py
MIT
def obs_to_dict(obs): """ Convert an observation into a dict. """ if isinstance(obs, dict): return obs return {None: obs}
Convert an observation into a dict.
obs_to_dict
python
openai/baselines
baselines/common/vec_env/util.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/util.py
MIT
def __init__(self, venv, directory, record_video_trigger, video_length=200): """ # Arguments venv: VecEnv to wrap directory: Where to save videos record_video_trigger: Function that defines when to start recording. The function takes the current number of step, and returns whether we should start recording or not. video_length: Length of recorded video """ VecEnvWrapper.__init__(self, venv) self.record_video_trigger = record_video_trigger self.video_recorder = None self.directory = os.path.abspath(directory) if not os.path.exists(self.directory): os.mkdir(self.directory) self.file_prefix = "vecenv" self.file_infix = '{}'.format(os.getpid()) self.step_id = 0 self.video_length = video_length self.recording = False self.recorded_frames = 0
# Arguments venv: VecEnv to wrap directory: Where to save videos record_video_trigger: Function that defines when to start recording. The function takes the current number of step, and returns whether we should start recording or not. video_length: Length of recorded video
__init__
python
openai/baselines
baselines/common/vec_env/vec_video_recorder.py
https://github.com/openai/baselines/blob/master/baselines/common/vec_env/vec_video_recorder.py
MIT
def q_retrace(R, D, q_i, v, rho_i, nenvs, nsteps, gamma): """ Calculates q_retrace targets :param R: Rewards :param D: Dones :param q_i: Q values for actions taken :param v: V values :param rho_i: Importance weight for each action :return: Q_retrace values """ rho_bar = batch_to_seq(tf.minimum(1.0, rho_i), nenvs, nsteps, True) # list of len steps, shape [nenvs] rs = batch_to_seq(R, nenvs, nsteps, True) # list of len steps, shape [nenvs] ds = batch_to_seq(D, nenvs, nsteps, True) # list of len steps, shape [nenvs] q_is = batch_to_seq(q_i, nenvs, nsteps, True) vs = batch_to_seq(v, nenvs, nsteps + 1, True) v_final = vs[-1] qret = v_final qrets = [] for i in range(nsteps - 1, -1, -1): check_shape([qret, ds[i], rs[i], rho_bar[i], q_is[i], vs[i]], [[nenvs]] * 6) qret = rs[i] + gamma * qret * (1.0 - ds[i]) qrets.append(qret) qret = (rho_bar[i] * (qret - q_is[i])) + vs[i] qrets = qrets[::-1] qret = seq_to_batch(qrets, flat=True) return qret
Calculates q_retrace targets :param R: Rewards :param D: Dones :param q_i: Q values for actions taken :param v: V values :param rho_i: Importance weight for each action :return: Q_retrace values
q_retrace
python
openai/baselines
baselines/acer/acer.py
https://github.com/openai/baselines/blob/master/baselines/acer/acer.py
MIT
def apply_stats(self, statsUpdates): """ compute stats and update/apply the new stats to the running average """ def updateAccumStats(): if self._full_stats_init: return tf.cond(tf.greater(self.sgd_step, self._cold_iter), lambda: tf.group(*self._apply_stats(statsUpdates, accumulate=True, accumulateCoeff=1. / self._stats_accum_iter)), tf.no_op) else: return tf.group(*self._apply_stats(statsUpdates, accumulate=True, accumulateCoeff=1. / self._stats_accum_iter)) def updateRunningAvgStats(statsUpdates, fac_iter=1): # return tf.cond(tf.greater_equal(self.factor_step, # tf.convert_to_tensor(fac_iter)), lambda: # tf.group(*self._apply_stats(stats_list, varlist)), tf.no_op) return tf.group(*self._apply_stats(statsUpdates)) if self._async_stats: # asynchronous stats update update_stats = self._apply_stats(statsUpdates) queue = tf.FIFOQueue(1, [item.dtype for item in update_stats], shapes=[ item.get_shape() for item in update_stats]) enqueue_op = queue.enqueue(update_stats) def dequeue_stats_op(): return queue.dequeue() self.qr_stats = tf.train.QueueRunner(queue, [enqueue_op]) update_stats_op = tf.cond(tf.equal(queue.size(), tf.convert_to_tensor( 0)), tf.no_op, lambda: tf.group(*[dequeue_stats_op(), ])) else: # synchronous stats update update_stats_op = tf.cond(tf.greater_equal( self.stats_step, self._stats_accum_iter), lambda: updateRunningAvgStats(statsUpdates), updateAccumStats) self._update_stats_op = update_stats_op return update_stats_op
compute stats and update/apply the new stats to the running average
apply_stats
python
openai/baselines
baselines/acktr/kfac.py
https://github.com/openai/baselines/blob/master/baselines/acktr/kfac.py
MIT
def computeStatsEigen(self): """ compute the eigen decomp using copied var stats to avoid concurrent read/write from other queue """ # TO-DO: figure out why this op has delays (possibly moving # eigenvectors around?) with tf.device('/cpu:0'): def removeNone(tensor_list): local_list = [] for item in tensor_list: if item is not None: local_list.append(item) return local_list def copyStats(var_list): print("copying stats to buffer tensors before eigen decomp") redundant_stats = {} copied_list = [] for item in var_list: if item is not None: if item not in redundant_stats: if self._use_float64: redundant_stats[item] = tf.cast( tf.identity(item), tf.float64) else: redundant_stats[item] = tf.identity(item) copied_list.append(redundant_stats[item]) else: copied_list.append(None) return copied_list #stats = [copyStats(self.fStats), copyStats(self.bStats)] #stats = [self.fStats, self.bStats] stats_eigen = self.stats_eigen computedEigen = {} eigen_reverse_lookup = {} updateOps = [] # sync copied stats # with tf.control_dependencies(removeNone(stats[0]) + # removeNone(stats[1])): with tf.control_dependencies([]): for stats_var in stats_eigen: if stats_var not in computedEigen: eigens = tf.self_adjoint_eig(stats_var) e = eigens[0] Q = eigens[1] if self._use_float64: e = tf.cast(e, tf.float32) Q = tf.cast(Q, tf.float32) updateOps.append(e) updateOps.append(Q) computedEigen[stats_var] = {'e': e, 'Q': Q} eigen_reverse_lookup[e] = stats_eigen[stats_var]['e'] eigen_reverse_lookup[Q] = stats_eigen[stats_var]['Q'] self.eigen_reverse_lookup = eigen_reverse_lookup self.eigen_update_list = updateOps if KFAC_DEBUG: self.eigen_update_list = [item for item in updateOps] with tf.control_dependencies(updateOps): updateOps.append(tf.Print(tf.constant( 0.), [tf.convert_to_tensor('computed factor eigen')])) return updateOps
compute the eigen decomp using copied var stats to avoid concurrent read/write from other queue
computeStatsEigen
python
openai/baselines
baselines/acktr/kfac.py
https://github.com/openai/baselines/blob/master/baselines/acktr/kfac.py
MIT
def add_vtarg_and_adv(seg, gamma, lam): """ Compute target value using TD(lambda) estimator, and advantage with GAE(lambda) """ new = np.append(seg["new"], 0) # last element is only used for last vtarg, but we already zeroed it if last new = 1 vpred = np.append(seg["vpred"], seg["nextvpred"]) T = len(seg["rew"]) seg["adv"] = gaelam = np.empty(T, 'float32') rew = seg["rew"] lastgaelam = 0 for t in reversed(range(T)): nonterminal = 1-new[t+1] delta = rew[t] + gamma * vpred[t+1] * nonterminal - vpred[t] gaelam[t] = lastgaelam = delta + gamma * lam * nonterminal * lastgaelam seg["tdlamret"] = seg["adv"] + seg["vpred"]
Compute target value using TD(lambda) estimator, and advantage with GAE(lambda)
add_vtarg_and_adv
python
openai/baselines
baselines/ppo1/pposgd_simple.py
https://github.com/openai/baselines/blob/master/baselines/ppo1/pposgd_simple.py
MIT
def __init__(self, input_dims, buffer_size, hidden, layers, network_class, polyak, batch_size, Q_lr, pi_lr, norm_eps, norm_clip, max_u, action_l2, clip_obs, scope, T, rollout_batch_size, subtract_goals, relative_goals, clip_pos_returns, clip_return, bc_loss, q_filter, num_demo, demo_batch_size, prm_loss_weight, aux_loss_weight, sample_transitions, gamma, reuse=False, **kwargs): """Implementation of DDPG that is used in combination with Hindsight Experience Replay (HER). Added functionality to use demonstrations for training to Overcome exploration problem. Args: input_dims (dict of ints): dimensions for the observation (o), the goal (g), and the actions (u) buffer_size (int): number of transitions that are stored in the replay buffer hidden (int): number of units in the hidden layers layers (int): number of hidden layers network_class (str): the network class that should be used (e.g. 'baselines.her.ActorCritic') polyak (float): coefficient for Polyak-averaging of the target network batch_size (int): batch size for training Q_lr (float): learning rate for the Q (critic) network pi_lr (float): learning rate for the pi (actor) network norm_eps (float): a small value used in the normalizer to avoid numerical instabilities norm_clip (float): normalized inputs are clipped to be in [-norm_clip, norm_clip] max_u (float): maximum action magnitude, i.e. actions are in [-max_u, max_u] action_l2 (float): coefficient for L2 penalty on the actions clip_obs (float): clip observations before normalization to be in [-clip_obs, clip_obs] scope (str): the scope used for the TensorFlow graph T (int): the time horizon for rollouts rollout_batch_size (int): number of parallel rollouts per DDPG agent subtract_goals (function): function that subtracts goals from each other relative_goals (boolean): whether or not relative goals should be fed into the network clip_pos_returns (boolean): whether or not positive returns should be clipped clip_return (float): clip returns to be in [-clip_return, clip_return] sample_transitions (function) function that samples from the replay buffer gamma (float): gamma used for Q learning updates reuse (boolean): whether or not the networks should be reused bc_loss: whether or not the behavior cloning loss should be used as an auxilliary loss q_filter: whether or not a filter on the q value update should be used when training with demonstartions num_demo: Number of episodes in to be used in the demonstration buffer demo_batch_size: number of samples to be used from the demonstrations buffer, per mpi thread prm_loss_weight: Weight corresponding to the primary loss aux_loss_weight: Weight corresponding to the auxilliary loss also called the cloning loss """ if self.clip_return is None: self.clip_return = np.inf self.create_actor_critic = import_function(self.network_class) input_shapes = dims_to_shapes(self.input_dims) self.dimo = self.input_dims['o'] self.dimg = self.input_dims['g'] self.dimu = self.input_dims['u'] # Prepare staging area for feeding data to the model. stage_shapes = OrderedDict() for key in sorted(self.input_dims.keys()): if key.startswith('info_'): continue stage_shapes[key] = (None, *input_shapes[key]) for key in ['o', 'g']: stage_shapes[key + '_2'] = stage_shapes[key] stage_shapes['r'] = (None,) self.stage_shapes = stage_shapes # Create network. with tf.variable_scope(self.scope): self.staging_tf = StagingArea( dtypes=[tf.float32 for _ in self.stage_shapes.keys()], shapes=list(self.stage_shapes.values())) self.buffer_ph_tf = [ tf.placeholder(tf.float32, shape=shape) for shape in self.stage_shapes.values()] self.stage_op = self.staging_tf.put(self.buffer_ph_tf) self._create_network(reuse=reuse) # Configure the replay buffer. buffer_shapes = {key: (self.T-1 if key != 'o' else self.T, *input_shapes[key]) for key, val in input_shapes.items()} buffer_shapes['g'] = (buffer_shapes['g'][0], self.dimg) buffer_shapes['ag'] = (self.T, self.dimg) buffer_size = (self.buffer_size // self.rollout_batch_size) * self.rollout_batch_size self.buffer = ReplayBuffer(buffer_shapes, buffer_size, self.T, self.sample_transitions) global DEMO_BUFFER DEMO_BUFFER = ReplayBuffer(buffer_shapes, buffer_size, self.T, self.sample_transitions) #initialize the demo buffer; in the same way as the primary data buffer
Implementation of DDPG that is used in combination with Hindsight Experience Replay (HER). Added functionality to use demonstrations for training to Overcome exploration problem. Args: input_dims (dict of ints): dimensions for the observation (o), the goal (g), and the actions (u) buffer_size (int): number of transitions that are stored in the replay buffer hidden (int): number of units in the hidden layers layers (int): number of hidden layers network_class (str): the network class that should be used (e.g. 'baselines.her.ActorCritic') polyak (float): coefficient for Polyak-averaging of the target network batch_size (int): batch size for training Q_lr (float): learning rate for the Q (critic) network pi_lr (float): learning rate for the pi (actor) network norm_eps (float): a small value used in the normalizer to avoid numerical instabilities norm_clip (float): normalized inputs are clipped to be in [-norm_clip, norm_clip] max_u (float): maximum action magnitude, i.e. actions are in [-max_u, max_u] action_l2 (float): coefficient for L2 penalty on the actions clip_obs (float): clip observations before normalization to be in [-clip_obs, clip_obs] scope (str): the scope used for the TensorFlow graph T (int): the time horizon for rollouts rollout_batch_size (int): number of parallel rollouts per DDPG agent subtract_goals (function): function that subtracts goals from each other relative_goals (boolean): whether or not relative goals should be fed into the network clip_pos_returns (boolean): whether or not positive returns should be clipped clip_return (float): clip returns to be in [-clip_return, clip_return] sample_transitions (function) function that samples from the replay buffer gamma (float): gamma used for Q learning updates reuse (boolean): whether or not the networks should be reused bc_loss: whether or not the behavior cloning loss should be used as an auxilliary loss q_filter: whether or not a filter on the q value update should be used when training with demonstartions num_demo: Number of episodes in to be used in the demonstration buffer demo_batch_size: number of samples to be used from the demonstrations buffer, per mpi thread prm_loss_weight: Weight corresponding to the primary loss aux_loss_weight: Weight corresponding to the auxilliary loss also called the cloning loss
__init__
python
openai/baselines
baselines/her/ddpg.py
https://github.com/openai/baselines/blob/master/baselines/her/ddpg.py
MIT
def store_episode(self, episode_batch, update_stats=True): """ episode_batch: array of batch_size x (T or T+1) x dim_key 'o' is of size T+1, others are of size T """ self.buffer.store_episode(episode_batch) if update_stats: # add transitions to normalizer episode_batch['o_2'] = episode_batch['o'][:, 1:, :] episode_batch['ag_2'] = episode_batch['ag'][:, 1:, :] num_normalizing_transitions = transitions_in_episode_batch(episode_batch) transitions = self.sample_transitions(episode_batch, num_normalizing_transitions) o, g, ag = transitions['o'], transitions['g'], transitions['ag'] transitions['o'], transitions['g'] = self._preprocess_og(o, ag, g) # No need to preprocess the o_2 and g_2 since this is only used for stats self.o_stats.update(transitions['o']) self.g_stats.update(transitions['g']) self.o_stats.recompute_stats() self.g_stats.recompute_stats()
episode_batch: array of batch_size x (T or T+1) x dim_key 'o' is of size T+1, others are of size T
store_episode
python
openai/baselines
baselines/her/ddpg.py
https://github.com/openai/baselines/blob/master/baselines/her/ddpg.py
MIT
def __getstate__(self): """Our policies can be loaded from pkl, but after unpickling you cannot continue training. """ excluded_subnames = ['_tf', '_op', '_vars', '_adam', 'buffer', 'sess', '_stats', 'main', 'target', 'lock', 'env', 'sample_transitions', 'stage_shapes', 'create_actor_critic'] state = {k: v for k, v in self.__dict__.items() if all([not subname in k for subname in excluded_subnames])} state['buffer_size'] = self.buffer_size state['tf'] = self.sess.run([x for x in self._global_vars('') if 'buffer' not in x.name]) return state
Our policies can be loaded from pkl, but after unpickling you cannot continue training.
__getstate__
python
openai/baselines
baselines/her/ddpg.py
https://github.com/openai/baselines/blob/master/baselines/her/ddpg.py
MIT
def __init__(self, venv, policy, dims, logger, T, rollout_batch_size=1, exploit=False, use_target_net=False, compute_Q=False, noise_eps=0, random_eps=0, history_len=100, render=False, monitor=False, **kwargs): """Rollout worker generates experience by interacting with one or many environments. Args: venv: vectorized gym environments. policy (object): the policy that is used to act dims (dict of ints): the dimensions for observations (o), goals (g), and actions (u) logger (object): the logger that is used by the rollout worker rollout_batch_size (int): the number of parallel rollouts that should be used exploit (boolean): whether or not to exploit, i.e. to act optimally according to the current policy without any exploration use_target_net (boolean): whether or not to use the target net for rollouts compute_Q (boolean): whether or not to compute the Q values alongside the actions noise_eps (float): scale of the additive Gaussian noise random_eps (float): probability of selecting a completely random action history_len (int): length of history for statistics smoothing render (boolean): whether or not to render the rollouts """ assert self.T > 0 self.info_keys = [key.replace('info_', '') for key in dims.keys() if key.startswith('info_')] self.success_history = deque(maxlen=history_len) self.Q_history = deque(maxlen=history_len) self.n_episodes = 0 self.reset_all_rollouts() self.clear_history()
Rollout worker generates experience by interacting with one or many environments. Args: venv: vectorized gym environments. policy (object): the policy that is used to act dims (dict of ints): the dimensions for observations (o), goals (g), and actions (u) logger (object): the logger that is used by the rollout worker rollout_batch_size (int): the number of parallel rollouts that should be used exploit (boolean): whether or not to exploit, i.e. to act optimally according to the current policy without any exploration use_target_net (boolean): whether or not to use the target net for rollouts compute_Q (boolean): whether or not to compute the Q values alongside the actions noise_eps (float): scale of the additive Gaussian noise random_eps (float): probability of selecting a completely random action history_len (int): length of history for statistics smoothing render (boolean): whether or not to render the rollouts
__init__
python
openai/baselines
baselines/her/rollout.py
https://github.com/openai/baselines/blob/master/baselines/her/rollout.py
MIT
def generate_rollouts(self): """Performs `rollout_batch_size` rollouts in parallel for time horizon `T` with the current policy acting on it accordingly. """ self.reset_all_rollouts() # compute observations o = np.empty((self.rollout_batch_size, self.dims['o']), np.float32) # observations ag = np.empty((self.rollout_batch_size, self.dims['g']), np.float32) # achieved goals o[:] = self.initial_o ag[:] = self.initial_ag # generate episodes obs, achieved_goals, acts, goals, successes = [], [], [], [], [] dones = [] info_values = [np.empty((self.T - 1, self.rollout_batch_size, self.dims['info_' + key]), np.float32) for key in self.info_keys] Qs = [] for t in range(self.T): policy_output = self.policy.get_actions( o, ag, self.g, compute_Q=self.compute_Q, noise_eps=self.noise_eps if not self.exploit else 0., random_eps=self.random_eps if not self.exploit else 0., use_target_net=self.use_target_net) if self.compute_Q: u, Q = policy_output Qs.append(Q) else: u = policy_output if u.ndim == 1: # The non-batched case should still have a reasonable shape. u = u.reshape(1, -1) o_new = np.empty((self.rollout_batch_size, self.dims['o'])) ag_new = np.empty((self.rollout_batch_size, self.dims['g'])) success = np.zeros(self.rollout_batch_size) # compute new states and observations obs_dict_new, _, done, info = self.venv.step(u) o_new = obs_dict_new['observation'] ag_new = obs_dict_new['achieved_goal'] success = np.array([i.get('is_success', 0.0) for i in info]) if any(done): # here we assume all environments are done is ~same number of steps, so we terminate rollouts whenever any of the envs returns done # trick with using vecenvs is not to add the obs from the environments that are "done", because those are already observations # after a reset break for i, info_dict in enumerate(info): for idx, key in enumerate(self.info_keys): info_values[idx][t, i] = info[i][key] if np.isnan(o_new).any(): self.logger.warn('NaN caught during rollout generation. Trying again...') self.reset_all_rollouts() return self.generate_rollouts() dones.append(done) obs.append(o.copy()) achieved_goals.append(ag.copy()) successes.append(success.copy()) acts.append(u.copy()) goals.append(self.g.copy()) o[...] = o_new ag[...] = ag_new obs.append(o.copy()) achieved_goals.append(ag.copy()) episode = dict(o=obs, u=acts, g=goals, ag=achieved_goals) for key, value in zip(self.info_keys, info_values): episode['info_{}'.format(key)] = value # stats successful = np.array(successes)[-1, :] assert successful.shape == (self.rollout_batch_size,) success_rate = np.mean(successful) self.success_history.append(success_rate) if self.compute_Q: self.Q_history.append(np.mean(Qs)) self.n_episodes += self.rollout_batch_size return convert_episode_to_batch_major(episode)
Performs `rollout_batch_size` rollouts in parallel for time horizon `T` with the current policy acting on it accordingly.
generate_rollouts
python
openai/baselines
baselines/her/rollout.py
https://github.com/openai/baselines/blob/master/baselines/her/rollout.py
MIT
def clear_history(self): """Clears all histories that are used for statistics """ self.success_history.clear() self.Q_history.clear()
Clears all histories that are used for statistics
clear_history
python
openai/baselines
baselines/her/rollout.py
https://github.com/openai/baselines/blob/master/baselines/her/rollout.py
MIT
def save_policy(self, path): """Pickles the current policy for later inspection. """ with open(path, 'wb') as f: pickle.dump(self.policy, f)
Pickles the current policy for later inspection.
save_policy
python
openai/baselines
baselines/her/rollout.py
https://github.com/openai/baselines/blob/master/baselines/her/rollout.py
MIT
def logs(self, prefix='worker'): """Generates a dictionary that contains all collected statistics. """ logs = [] logs += [('success_rate', np.mean(self.success_history))] if self.compute_Q: logs += [('mean_Q', np.mean(self.Q_history))] logs += [('episode', self.n_episodes)] if prefix != '' and not prefix.endswith('/'): return [(prefix + '/' + key, val) for key, val in logs] else: return logs
Generates a dictionary that contains all collected statistics.
logs
python
openai/baselines
baselines/her/rollout.py
https://github.com/openai/baselines/blob/master/baselines/her/rollout.py
MIT
def __init__(self, inputs_tf, dimo, dimg, dimu, max_u, o_stats, g_stats, hidden, layers, **kwargs): """The actor-critic network and related training code. Args: inputs_tf (dict of tensors): all necessary inputs for the network: the observation (o), the goal (g), and the action (u) dimo (int): the dimension of the observations dimg (int): the dimension of the goals dimu (int): the dimension of the actions max_u (float): the maximum magnitude of actions; action outputs will be scaled accordingly o_stats (baselines.her.Normalizer): normalizer for observations g_stats (baselines.her.Normalizer): normalizer for goals hidden (int): number of hidden units that should be used in hidden layers layers (int): number of hidden layers """ self.o_tf = inputs_tf['o'] self.g_tf = inputs_tf['g'] self.u_tf = inputs_tf['u'] # Prepare inputs for actor and critic. o = self.o_stats.normalize(self.o_tf) g = self.g_stats.normalize(self.g_tf) input_pi = tf.concat(axis=1, values=[o, g]) # for actor # Networks. with tf.variable_scope('pi'): self.pi_tf = self.max_u * tf.tanh(nn( input_pi, [self.hidden] * self.layers + [self.dimu])) with tf.variable_scope('Q'): # for policy training input_Q = tf.concat(axis=1, values=[o, g, self.pi_tf / self.max_u]) self.Q_pi_tf = nn(input_Q, [self.hidden] * self.layers + [1]) # for critic training input_Q = tf.concat(axis=1, values=[o, g, self.u_tf / self.max_u]) self._input_Q = input_Q # exposed for tests self.Q_tf = nn(input_Q, [self.hidden] * self.layers + [1], reuse=True)
The actor-critic network and related training code. Args: inputs_tf (dict of tensors): all necessary inputs for the network: the observation (o), the goal (g), and the action (u) dimo (int): the dimension of the observations dimg (int): the dimension of the goals dimu (int): the dimension of the actions max_u (float): the maximum magnitude of actions; action outputs will be scaled accordingly o_stats (baselines.her.Normalizer): normalizer for observations g_stats (baselines.her.Normalizer): normalizer for goals hidden (int): number of hidden units that should be used in hidden layers layers (int): number of hidden layers
__init__
python
openai/baselines
baselines/her/actor_critic.py
https://github.com/openai/baselines/blob/master/baselines/her/actor_critic.py
MIT
def _sample_her_transitions(episode_batch, batch_size_in_transitions): """episode_batch is {key: array(buffer_size x T x dim_key)} """ T = episode_batch['u'].shape[1] rollout_batch_size = episode_batch['u'].shape[0] batch_size = batch_size_in_transitions # Select which episodes and time steps to use. episode_idxs = np.random.randint(0, rollout_batch_size, batch_size) t_samples = np.random.randint(T, size=batch_size) transitions = {key: episode_batch[key][episode_idxs, t_samples].copy() for key in episode_batch.keys()} # Select future time indexes proportional with probability future_p. These # will be used for HER replay by substituting in future goals. her_indexes = np.where(np.random.uniform(size=batch_size) < future_p) future_offset = np.random.uniform(size=batch_size) * (T - t_samples) future_offset = future_offset.astype(int) future_t = (t_samples + 1 + future_offset)[her_indexes] # Replace goal with achieved goal but only for the previously-selected # HER transitions (as defined by her_indexes). For the other transitions, # keep the original goal. future_ag = episode_batch['ag'][episode_idxs[her_indexes], future_t] transitions['g'][her_indexes] = future_ag # Reconstruct info dictionary for reward computation. info = {} for key, value in transitions.items(): if key.startswith('info_'): info[key.replace('info_', '')] = value # Re-compute reward since we may have substituted the goal. reward_params = {k: transitions[k] for k in ['ag_2', 'g']} reward_params['info'] = info transitions['r'] = reward_fun(**reward_params) transitions = {k: transitions[k].reshape(batch_size, *transitions[k].shape[1:]) for k in transitions.keys()} assert(transitions['u'].shape[0] == batch_size_in_transitions) return transitions
episode_batch is {key: array(buffer_size x T x dim_key)}
make_sample_her_transitions._sample_her_transitions
python
openai/baselines
baselines/her/her_sampler.py
https://github.com/openai/baselines/blob/master/baselines/her/her_sampler.py
MIT
def make_sample_her_transitions(replay_strategy, replay_k, reward_fun): """Creates a sample function that can be used for HER experience replay. Args: replay_strategy (in ['future', 'none']): the HER replay strategy; if set to 'none', regular DDPG experience replay is used replay_k (int): the ratio between HER replays and regular replays (e.g. k = 4 -> 4 times as many HER replays as regular replays are used) reward_fun (function): function to re-compute the reward with substituted goals """ if replay_strategy == 'future': future_p = 1 - (1. / (1 + replay_k)) else: # 'replay_strategy' == 'none' future_p = 0 def _sample_her_transitions(episode_batch, batch_size_in_transitions): """episode_batch is {key: array(buffer_size x T x dim_key)} """ T = episode_batch['u'].shape[1] rollout_batch_size = episode_batch['u'].shape[0] batch_size = batch_size_in_transitions # Select which episodes and time steps to use. episode_idxs = np.random.randint(0, rollout_batch_size, batch_size) t_samples = np.random.randint(T, size=batch_size) transitions = {key: episode_batch[key][episode_idxs, t_samples].copy() for key in episode_batch.keys()} # Select future time indexes proportional with probability future_p. These # will be used for HER replay by substituting in future goals. her_indexes = np.where(np.random.uniform(size=batch_size) < future_p) future_offset = np.random.uniform(size=batch_size) * (T - t_samples) future_offset = future_offset.astype(int) future_t = (t_samples + 1 + future_offset)[her_indexes] # Replace goal with achieved goal but only for the previously-selected # HER transitions (as defined by her_indexes). For the other transitions, # keep the original goal. future_ag = episode_batch['ag'][episode_idxs[her_indexes], future_t] transitions['g'][her_indexes] = future_ag # Reconstruct info dictionary for reward computation. info = {} for key, value in transitions.items(): if key.startswith('info_'): info[key.replace('info_', '')] = value # Re-compute reward since we may have substituted the goal. reward_params = {k: transitions[k] for k in ['ag_2', 'g']} reward_params['info'] = info transitions['r'] = reward_fun(**reward_params) transitions = {k: transitions[k].reshape(batch_size, *transitions[k].shape[1:]) for k in transitions.keys()} assert(transitions['u'].shape[0] == batch_size_in_transitions) return transitions return _sample_her_transitions
Creates a sample function that can be used for HER experience replay. Args: replay_strategy (in ['future', 'none']): the HER replay strategy; if set to 'none', regular DDPG experience replay is used replay_k (int): the ratio between HER replays and regular replays (e.g. k = 4 -> 4 times as many HER replays as regular replays are used) reward_fun (function): function to re-compute the reward with substituted goals
make_sample_her_transitions
python
openai/baselines
baselines/her/her_sampler.py
https://github.com/openai/baselines/blob/master/baselines/her/her_sampler.py
MIT
def __init__(self, size, eps=1e-2, default_clip_range=np.inf, sess=None): """A normalizer that ensures that observations are approximately distributed according to a standard Normal distribution (i.e. have mean zero and variance one). Args: size (int): the size of the observation to be normalized eps (float): a small constant that avoids underflows default_clip_range (float): normalized observations are clipped to be in [-default_clip_range, default_clip_range] sess (object): the TensorFlow session to be used """ self.size = size self.eps = eps self.default_clip_range = default_clip_range self.sess = sess if sess is not None else tf.get_default_session() self.local_sum = np.zeros(self.size, np.float32) self.local_sumsq = np.zeros(self.size, np.float32) self.local_count = np.zeros(1, np.float32) self.sum_tf = tf.get_variable( initializer=tf.zeros_initializer(), shape=self.local_sum.shape, name='sum', trainable=False, dtype=tf.float32) self.sumsq_tf = tf.get_variable( initializer=tf.zeros_initializer(), shape=self.local_sumsq.shape, name='sumsq', trainable=False, dtype=tf.float32) self.count_tf = tf.get_variable( initializer=tf.ones_initializer(), shape=self.local_count.shape, name='count', trainable=False, dtype=tf.float32) self.mean = tf.get_variable( initializer=tf.zeros_initializer(), shape=(self.size,), name='mean', trainable=False, dtype=tf.float32) self.std = tf.get_variable( initializer=tf.ones_initializer(), shape=(self.size,), name='std', trainable=False, dtype=tf.float32) self.count_pl = tf.placeholder(name='count_pl', shape=(1,), dtype=tf.float32) self.sum_pl = tf.placeholder(name='sum_pl', shape=(self.size,), dtype=tf.float32) self.sumsq_pl = tf.placeholder(name='sumsq_pl', shape=(self.size,), dtype=tf.float32) self.update_op = tf.group( self.count_tf.assign_add(self.count_pl), self.sum_tf.assign_add(self.sum_pl), self.sumsq_tf.assign_add(self.sumsq_pl) ) self.recompute_op = tf.group( tf.assign(self.mean, self.sum_tf / self.count_tf), tf.assign(self.std, tf.sqrt(tf.maximum( tf.square(self.eps), self.sumsq_tf / self.count_tf - tf.square(self.sum_tf / self.count_tf) ))), ) self.lock = threading.Lock()
A normalizer that ensures that observations are approximately distributed according to a standard Normal distribution (i.e. have mean zero and variance one). Args: size (int): the size of the observation to be normalized eps (float): a small constant that avoids underflows default_clip_range (float): normalized observations are clipped to be in [-default_clip_range, default_clip_range] sess (object): the TensorFlow session to be used
__init__
python
openai/baselines
baselines/her/normalizer.py
https://github.com/openai/baselines/blob/master/baselines/her/normalizer.py
MIT
def __init__(self, buffer_shapes, size_in_transitions, T, sample_transitions): """Creates a replay buffer. Args: buffer_shapes (dict of ints): the shape for all buffers that are used in the replay buffer size_in_transitions (int): the size of the buffer, measured in transitions T (int): the time horizon for episodes sample_transitions (function): a function that samples from the replay buffer """ self.buffer_shapes = buffer_shapes self.size = size_in_transitions // T self.T = T self.sample_transitions = sample_transitions # self.buffers is {key: array(size_in_episodes x T or T+1 x dim_key)} self.buffers = {key: np.empty([self.size, *shape]) for key, shape in buffer_shapes.items()} # memory management self.current_size = 0 self.n_transitions_stored = 0 self.lock = threading.Lock()
Creates a replay buffer. Args: buffer_shapes (dict of ints): the shape for all buffers that are used in the replay buffer size_in_transitions (int): the size of the buffer, measured in transitions T (int): the time horizon for episodes sample_transitions (function): a function that samples from the replay buffer
__init__
python
openai/baselines
baselines/her/replay_buffer.py
https://github.com/openai/baselines/blob/master/baselines/her/replay_buffer.py
MIT