code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
194
url
stringlengths
46
254
license
stringclasses
4 values
def trans_forward(self, motion_codes, qids, cond, padding_mask, force_mask=False): ''' :param motion_codes: (b, seqlen, d) :padding_mask: (b, seqlen), all pad positions are TRUE else FALSE :param qids: (b), quantizer layer ids :param cond: (b, embed_dim) for text, (b, num_actions) for action :return: -logits: (b, num_token, seqlen) ''' cond = self.mask_cond(cond, force_mask=force_mask) # (b, seqlen, d) -> (seqlen, b, latent_dim) x = self.input_process(motion_codes) # (b, num_quantizer) q_onehot = self.encode_quant(qids).float().to(x.device) q_emb = self.quant_emb(q_onehot).unsqueeze(0) # (1, b, latent_dim) cond = self.cond_emb(cond).unsqueeze(0) # (1, b, latent_dim) x = self.position_enc(x) xseq = torch.cat([cond, q_emb, x], dim=0) # (seqlen+2, b, latent_dim) padding_mask = torch.cat([torch.zeros_like(padding_mask[:, 0:2]), padding_mask], dim=1) # (b, seqlen+2) output = self.seqTransEncoder(xseq, src_key_padding_mask=padding_mask)[2:] # (seqlen, b, e) logits = self.output_process(output) return logits
:param motion_codes: (b, seqlen, d) :padding_mask: (b, seqlen), all pad positions are TRUE else FALSE :param qids: (b), quantizer layer ids :param cond: (b, embed_dim) for text, (b, num_actions) for action :return: -logits: (b, num_token, seqlen)
trans_forward
python
EricGuo5513/momask-codes
models/mask_transformer/transformer.py
https://github.com/EricGuo5513/momask-codes/blob/master/models/mask_transformer/transformer.py
MIT
def forward(self, all_indices, y, m_lens): ''' :param all_indices: (b, n, q) :param y: raw text for cond_mode=text, (b, ) for cond_mode=action :m_lens: (b,) :return: ''' self.process_embed_proj_weight() bs, ntokens, num_quant_layers = all_indices.shape device = all_indices.device # Positions that are PADDED are ALL FALSE non_pad_mask = lengths_to_mask(m_lens, ntokens) # (b, n) q_non_pad_mask = repeat(non_pad_mask, 'b n -> b n q', q=num_quant_layers) all_indices = torch.where(q_non_pad_mask, all_indices, self.pad_id) #(b, n, q) # randomly sample quantization layers to work on, [1, num_q) active_q_layers = q_schedule(bs, low=1, high=num_quant_layers, device=device) # print(self.token_embed_weight.shape, all_indices.shape) token_embed = repeat(self.token_embed_weight, 'q c d-> b c d q', b=bs) gather_indices = repeat(all_indices[..., :-1], 'b n q -> b n d q', d=token_embed.shape[2]) # print(token_embed.shape, gather_indices.shape) all_codes = token_embed.gather(1, gather_indices) # (b, n, d, q-1) cumsum_codes = torch.cumsum(all_codes, dim=-1) #(b, n, d, q-1) active_indices = all_indices[torch.arange(bs), :, active_q_layers] # (b, n) history_sum = cumsum_codes[torch.arange(bs), :, :, active_q_layers - 1] force_mask = False if self.cond_mode == 'text': with torch.no_grad(): cond_vector = self.encode_text(y) elif self.cond_mode == 'action': cond_vector = self.enc_action(y).to(device).float() elif self.cond_mode == 'uncond': cond_vector = torch.zeros(bs, self.latent_dim).float().to(device) force_mask = True else: raise NotImplementedError("Unsupported condition mode!!!") logits = self.trans_forward(history_sum, active_q_layers, cond_vector, ~non_pad_mask, force_mask) logits = self.output_project(logits, active_q_layers-1) ce_loss, pred_id, acc = cal_performance(logits, active_indices, ignore_index=self.pad_id) return ce_loss, pred_id, acc
:param all_indices: (b, n, q) :param y: raw text for cond_mode=text, (b, ) for cond_mode=action :m_lens: (b,) :return:
forward
python
EricGuo5513/momask-codes
models/mask_transformer/transformer.py
https://github.com/EricGuo5513/momask-codes/blob/master/models/mask_transformer/transformer.py
MIT
def initialize(self): BaseOptions.initialize(self) self.parser.add_argument('--batch_size', type=int, default=64, help='Batch size') self.parser.add_argument('--max_epoch', type=int, default=500, help='Maximum number of epoch for training') # self.parser.add_argument('--max_iters', type=int, default=150_000, help='Training iterations') '''LR scheduler''' self.parser.add_argument('--lr', type=float, default=2e-4, help='Learning rate') self.parser.add_argument('--gamma', type=float, default=0.1, help='Learning rate schedule factor') self.parser.add_argument('--milestones', default=[50_000], nargs="+", type=int, help="learning rate schedule (iterations)") self.parser.add_argument('--warm_up_iter', default=2000, type=int, help='number of total iterations for warmup') '''Condition''' self.parser.add_argument('--cond_drop_prob', type=float, default=0.1, help='Drop ratio of condition, for classifier-free guidance') self.parser.add_argument("--seed", default=3407, type=int, help="Seed") self.parser.add_argument('--is_continue', action="store_true", help='Is this trial continuing previous state?') self.parser.add_argument('--gumbel_sample', action="store_true", help='Strategy for token sampling, True: Gumbel sampling, False: Categorical sampling') self.parser.add_argument('--share_weight', action="store_true", help='Whether to share weight for projection/embedding, for residual transformer.') self.parser.add_argument('--log_every', type=int, default=50, help='Frequency of printing training progress, (iteration)') # self.parser.add_argument('--save_every_e', type=int, default=100, help='Frequency of printing training progress') self.parser.add_argument('--eval_every_e', type=int, default=10, help='Frequency of animating eval results, (epoch)') self.parser.add_argument('--save_latest', type=int, default=500, help='Frequency of saving checkpoint, (iteration)') self.is_train = True
LR scheduler
initialize
python
EricGuo5513/momask-codes
options/train_option.py
https://github.com/EricGuo5513/momask-codes/blob/master/options/train_option.py
MIT
def smpl2bvh(model_path:str, poses:str, output:str, mirror:bool, model_type="smpl", gender="MALE", num_betas=10, fps=60) -> None: """Save bvh file created by smpl parameters. Args: model_path (str): Path to smpl models. poses (str): Path to npz or pkl file. output (str): Where to save bvh. mirror (bool): Whether save mirror motion or not. model_type (str, optional): I prepared "smpl" only. Defaults to "smpl". gender (str, optional): Gender Information. Defaults to "MALE". num_betas (int, optional): How many pca parameters to use in SMPL. Defaults to 10. fps (int, optional): Frame per second. Defaults to 30. """ # names = [ # "Pelvis", # "Left_hip", # "Right_hip", # "Spine1", # "Left_knee", # "Right_knee", # "Spine2", # "Left_ankle", # "Right_ankle", # "Spine3", # "Left_foot", # "Right_foot", # "Neck", # "Left_collar", # "Right_collar", # "Head", # "Left_shoulder", # "Right_shoulder", # "Left_elbow", # "Right_elbow", # "Left_wrist", # "Right_wrist", # "Left_palm", # "Right_palm", # ] names = [ "Hips", "LeftUpLeg", "RightUpLeg", "Spine", "LeftLeg", "RightLeg", "Spine1", "LeftFoot", "RightFoot", "Spine2", "LeftToe", "RightToe", "Neck", "LeftShoulder", "RightShoulder", "Head", "LeftArm", "RightArm", "LeftForeArm", "RightForeArm", "LeftHand", "RightHand", "LeftThumb", "RightThumb", ] # I prepared smpl models only, # but I will release for smplx models recently. model = smplx.create(model_path=model_path, model_type=model_type, gender=gender, batch_size=1) parents = model.parents.detach().cpu().numpy() # You can define betas like this.(default betas are 0 at all.) rest = model( # betas = torch.randn([1, num_betas], dtype=torch.float32) ) rest_pose = rest.joints.detach().cpu().numpy().squeeze()[:24,:] root_offset = rest_pose[0] offsets = rest_pose - rest_pose[parents] offsets[0] = root_offset offsets *= 1 scaling = None # Pose setting. if poses.endswith(".npz"): poses = np.load(poses) rots = np.squeeze(poses["poses"], axis=0) # (N, 24, 3) trans = np.squeeze(poses["trans"], axis=0) # (N, 3) elif poses.endswith(".pkl"): with open(poses, "rb") as f: poses = pickle.load(f) rots = poses["smpl_poses"] # (N, 72) rots = rots.reshape(rots.shape[0], -1, 3) # (N, 24, 3) scaling = poses["smpl_scaling"] # (1,) trans = poses["smpl_trans"] # (N, 3) else: raise Exception("This file type is not supported!") if scaling is not None: trans /= scaling # to quaternion rots = quat.from_axis_angle(rots) order = "zyx" pos = offsets[None].repeat(len(rots), axis=0) positions = pos.copy() # positions[:,0] += trans * 10 positions[:, 0] += trans rotations = np.degrees(quat.to_euler(rots, order=order)) bvh_data ={ "rotations": rotations[:, :22], "positions": positions[:, :22], "offsets": offsets[:22], "parents": parents[:22], "names": names[:22], "order": order, "frametime": 1 / fps, } if not output.endswith(".bvh"): output = output + ".bvh" bvh.save(output, bvh_data) if mirror: rots_mirror, trans_mirror = mirror_rot_trans( rots, trans, names, parents) positions_mirror = pos.copy() positions_mirror[:,0] += trans_mirror rotations_mirror = np.degrees( quat.to_euler(rots_mirror, order=order)) bvh_data ={ "rotations": rotations_mirror, "positions": positions_mirror, "offsets": offsets, "parents": parents, "names": names, "order": order, "frametime": 1 / fps, } output_mirror = output.split(".")[0] + "_mirror.bvh" bvh.save(output_mirror, bvh_data)
Save bvh file created by smpl parameters. Args: model_path (str): Path to smpl models. poses (str): Path to npz or pkl file. output (str): Where to save bvh. mirror (bool): Whether save mirror motion or not. model_type (str, optional): I prepared "smpl" only. Defaults to "smpl". gender (str, optional): Gender Information. Defaults to "MALE". num_betas (int, optional): How many pca parameters to use in SMPL. Defaults to 10. fps (int, optional): Frame per second. Defaults to 30.
smpl2bvh
python
EricGuo5513/momask-codes
visualization/smpl2bvh.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/smpl2bvh.py
MIT
def __mul__(self, other): """ Quaternion multiplication has three main methods. When multiplying a Quaternions array by Quaternions normal quater multiplication is performed. When multiplying a Quaternions array by a vector array of the same shape, where the last axis is 3, it is assumed to be a Quaternion by 3D-Vector multiplication and the 3D-Vectors are rotated in space by the Quaternions. When multipplying a Quaternions array by a scalar or vector of different shape it is assumed to be a Quaternions by Scalars multiplication and the Quaternions are scaled using Slerp and the identity quaternions. """ """ If Quaternions type do Quaternions * Quaternions """ if isinstance(other, Quaternions): sqs, oqs = Quaternions._broadcast(self.qs, other.qs) q0 = sqs[..., 0]; q1 = sqs[..., 1]; q2 = sqs[..., 2]; q3 = sqs[..., 3]; r0 = oqs[..., 0]; r1 = oqs[..., 1]; r2 = oqs[..., 2]; r3 = oqs[..., 3]; qs = np.empty(sqs.shape) qs[..., 0] = r0 * q0 - r1 * q1 - r2 * q2 - r3 * q3 qs[..., 1] = r0 * q1 + r1 * q0 - r2 * q3 + r3 * q2 qs[..., 2] = r0 * q2 + r1 * q3 + r2 * q0 - r3 * q1 qs[..., 3] = r0 * q3 - r1 * q2 + r2 * q1 + r3 * q0 return Quaternions(qs) """ If array type do Quaternions * Vectors """ if isinstance(other, np.ndarray) and other.shape[-1] == 3: vs = Quaternions(np.concatenate([np.zeros(other.shape[:-1] + (1,)), other], axis=-1)) return (self * (vs * -self)).imaginaries """ If float do Quaternions * Scalars """ if isinstance(other, np.ndarray) or isinstance(other, float): return Quaternions.slerp(Quaternions.id_like(self), self, other) raise TypeError('Cannot multiply/add Quaternions with type %s' % str(type(other)))
Quaternion multiplication has three main methods. When multiplying a Quaternions array by Quaternions normal quater multiplication is performed. When multiplying a Quaternions array by a vector array of the same shape, where the last axis is 3, it is assumed to be a Quaternion by 3D-Vector multiplication and the 3D-Vectors are rotated in space by the Quaternions. When multipplying a Quaternions array by a scalar or vector of different shape it is assumed to be a Quaternions by Scalars multiplication and the Quaternions are scaled using Slerp and the identity quaternions.
__mul__
python
EricGuo5513/momask-codes
visualization/Quaternions.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/Quaternions.py
MIT
def __div__(self, other): """ When a Quaternion type is supplied, division is defined as multiplication by the inverse of that Quaternion. When a scalar or vector is supplied it is defined as multiplicaion of one over the supplied value. Essentially a scaling. """ if isinstance(other, Quaternions): return self * (-other) if isinstance(other, np.ndarray): return self * (1.0 / other) if isinstance(other, float): return self * (1.0 / other) raise TypeError('Cannot divide/subtract Quaternions with type %s' + str(type(other)))
When a Quaternion type is supplied, division is defined as multiplication by the inverse of that Quaternion. When a scalar or vector is supplied it is defined as multiplicaion of one over the supplied value. Essentially a scaling.
__div__
python
EricGuo5513/momask-codes
visualization/Quaternions.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/Quaternions.py
MIT
def __neg__(self): """ Invert Quaternions """ return Quaternions(self.qs * np.array([[1, -1, -1, -1]]))
Invert Quaternions
__neg__
python
EricGuo5513/momask-codes
visualization/Quaternions.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/Quaternions.py
MIT
def __abs__(self): """ Unify Quaternions To Single Pole """ qabs = self.normalized().copy() top = np.sum((qabs.qs) * np.array([1, 0, 0, 0]), axis=-1) bot = np.sum((-qabs.qs) * np.array([1, 0, 0, 0]), axis=-1) qabs.qs[top < bot] = -qabs.qs[top < bot] return qabs
Unify Quaternions To Single Pole
__abs__
python
EricGuo5513/momask-codes
visualization/Quaternions.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/Quaternions.py
MIT
def euler(self, order='xyz'): # fix the wrong convert, this should convert to world euler by default. q = self.normalized().qs q0 = q[..., 0] q1 = q[..., 1] q2 = q[..., 2] q3 = q[..., 3] es = np.zeros(self.shape + (3,)) if order == 'xyz': es[..., 0] = np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) es[..., 1] = np.arcsin((2 * (q0 * q2 - q3 * q1)).clip(-1, 1)) es[..., 2] = np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)) elif order == 'yzx': es[..., 0] = np.arctan2(2 * (q1 * q0 - q2 * q3), -q1 * q1 + q2 * q2 - q3 * q3 + q0 * q0) es[..., 1] = np.arctan2(2 * (q2 * q0 - q1 * q3), q1 * q1 - q2 * q2 - q3 * q3 + q0 * q0) es[..., 2] = np.arcsin((2 * (q1 * q2 + q3 * q0)).clip(-1, 1)) else: raise NotImplementedError('Cannot convert from ordering %s' % order) """ # These conversion don't appear to work correctly for Maya. # http://bediyap.com/programming/convert-quaternion-to-euler-rotations/ if order == 'xyz': es[fa + (0,)] = np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) es[fa + (1,)] = np.arcsin((2 * (q1 * q3 + q0 * q2)).clip(-1,1)) es[fa + (2,)] = np.arctan2(2 * (q0 * q1 - q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) elif order == 'yzx': es[fa + (0,)] = np.arctan2(2 * (q0 * q1 - q2 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) es[fa + (1,)] = np.arcsin((2 * (q1 * q2 + q0 * q3)).clip(-1,1)) es[fa + (2,)] = np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) elif order == 'zxy': es[fa + (0,)] = np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) es[fa + (1,)] = np.arcsin((2 * (q0 * q1 + q2 * q3)).clip(-1,1)) es[fa + (2,)] = np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) elif order == 'xzy': es[fa + (0,)] = np.arctan2(2 * (q0 * q2 + q1 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) es[fa + (1,)] = np.arcsin((2 * (q0 * q3 - q1 * q2)).clip(-1,1)) es[fa + (2,)] = np.arctan2(2 * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) elif order == 'yxz': es[fa + (0,)] = np.arctan2(2 * (q1 * q2 + q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) es[fa + (1,)] = np.arcsin((2 * (q0 * q1 - q2 * q3)).clip(-1,1)) es[fa + (2,)] = np.arctan2(2 * (q1 * q3 + q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) elif order == 'zyx': es[fa + (0,)] = np.arctan2(2 * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) es[fa + (1,)] = np.arcsin((2 * (q0 * q2 - q1 * q3)).clip(-1,1)) es[fa + (2,)] = np.arctan2(2 * (q0 * q3 + q1 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) else: raise KeyError('Unknown ordering %s' % order) """ # https://github.com/ehsan/ogre/blob/master/OgreMain/src/OgreMatrix3.cpp # Use this class and convert from matrix return es
# These conversion don't appear to work correctly for Maya. # http://bediyap.com/programming/convert-quaternion-to-euler-rotations/ if order == 'xyz': es[fa + (0,)] = np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) es[fa + (1,)] = np.arcsin((2 * (q1 * q3 + q0 * q2)).clip(-1,1)) es[fa + (2,)] = np.arctan2(2 * (q0 * q1 - q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) elif order == 'yzx': es[fa + (0,)] = np.arctan2(2 * (q0 * q1 - q2 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) es[fa + (1,)] = np.arcsin((2 * (q1 * q2 + q0 * q3)).clip(-1,1)) es[fa + (2,)] = np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) elif order == 'zxy': es[fa + (0,)] = np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) es[fa + (1,)] = np.arcsin((2 * (q0 * q1 + q2 * q3)).clip(-1,1)) es[fa + (2,)] = np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) elif order == 'xzy': es[fa + (0,)] = np.arctan2(2 * (q0 * q2 + q1 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) es[fa + (1,)] = np.arcsin((2 * (q0 * q3 - q1 * q2)).clip(-1,1)) es[fa + (2,)] = np.arctan2(2 * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) elif order == 'yxz': es[fa + (0,)] = np.arctan2(2 * (q1 * q2 + q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) es[fa + (1,)] = np.arcsin((2 * (q0 * q1 - q2 * q3)).clip(-1,1)) es[fa + (2,)] = np.arctan2(2 * (q1 * q3 + q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) elif order == 'zyx': es[fa + (0,)] = np.arctan2(2 * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) es[fa + (1,)] = np.arcsin((2 * (q0 * q2 - q1 * q3)).clip(-1,1)) es[fa + (2,)] = np.arctan2(2 * (q0 * q3 + q1 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) else: raise KeyError('Unknown ordering %s' % order)
euler
python
EricGuo5513/momask-codes
visualization/Quaternions.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/Quaternions.py
MIT
def transforms_local(anim): """ Computes Animation Local Transforms As well as a number of other uses this can be used to compute global joint transforms, which in turn can be used to compete global joint positions Parameters ---------- anim : Animation Input animation Returns ------- transforms : (F, J, 4, 4) ndarray For each frame F, joint local transforms for each joint J """ transforms = anim.rotations.transforms() transforms = np.concatenate([transforms, np.zeros(transforms.shape[:2] + (3, 1))], axis=-1) transforms = np.concatenate([transforms, np.zeros(transforms.shape[:2] + (1, 4))], axis=-2) # the last column is filled with the joint positions! transforms[:, :, 0:3, 3] = anim.positions transforms[:, :, 3:4, 3] = 1.0 return transforms
Computes Animation Local Transforms As well as a number of other uses this can be used to compute global joint transforms, which in turn can be used to compete global joint positions Parameters ---------- anim : Animation Input animation Returns ------- transforms : (F, J, 4, 4) ndarray For each frame F, joint local transforms for each joint J
transforms_local
python
EricGuo5513/momask-codes
visualization/Animation.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/Animation.py
MIT
def transforms_multiply(t0s, t1s): """ Transforms Multiply Multiplies two arrays of animation transforms Parameters ---------- t0s, t1s : (F, J, 4, 4) ndarray Two arrays of transforms for each frame F and each joint J Returns ------- transforms : (F, J, 4, 4) ndarray Array of transforms for each frame F and joint J multiplied together """ return ut.matrix_multiply(t0s, t1s)
Transforms Multiply Multiplies two arrays of animation transforms Parameters ---------- t0s, t1s : (F, J, 4, 4) ndarray Two arrays of transforms for each frame F and each joint J Returns ------- transforms : (F, J, 4, 4) ndarray Array of transforms for each frame F and joint J multiplied together
transforms_multiply
python
EricGuo5513/momask-codes
visualization/Animation.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/Animation.py
MIT
def transforms_blank(anim): """ Blank Transforms Parameters ---------- anim : Animation Input animation Returns ------- transforms : (F, J, 4, 4) ndarray Array of identity transforms for each frame F and joint J """ ts = np.zeros(anim.shape + (4, 4)) ts[:, :, 0, 0] = 1.0; ts[:, :, 1, 1] = 1.0; ts[:, :, 2, 2] = 1.0; ts[:, :, 3, 3] = 1.0; return ts
Blank Transforms Parameters ---------- anim : Animation Input animation Returns ------- transforms : (F, J, 4, 4) ndarray Array of identity transforms for each frame F and joint J
transforms_blank
python
EricGuo5513/momask-codes
visualization/Animation.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/Animation.py
MIT
def transforms_global(anim): """ Global Animation Transforms This relies on joint ordering being incremental. That means a joint J1 must not be a ancestor of J0 if J0 appears before J1 in the joint ordering. Parameters ---------- anim : Animation Input animation Returns ------ transforms : (F, J, 4, 4) ndarray Array of global transforms for each frame F and joint J """ locals = transforms_local(anim) globals = transforms_blank(anim) globals[:, 0] = locals[:, 0] for i in range(1, anim.shape[1]): globals[:, i] = transforms_multiply(globals[:, anim.parents[i]], locals[:, i]) return globals
Global Animation Transforms This relies on joint ordering being incremental. That means a joint J1 must not be a ancestor of J0 if J0 appears before J1 in the joint ordering. Parameters ---------- anim : Animation Input animation Returns ------ transforms : (F, J, 4, 4) ndarray Array of global transforms for each frame F and joint J
transforms_global
python
EricGuo5513/momask-codes
visualization/Animation.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/Animation.py
MIT
def positions_global(anim): """ Global Joint Positions Given an animation compute the global joint positions at at every frame Parameters ---------- anim : Animation Input animation Returns ------- positions : (F, J, 3) ndarray Positions for every frame F and joint position J """ # get the last column -- corresponding to the coordinates positions = transforms_global(anim)[:, :, :, 3] return positions[:, :, :3] / positions[:, :, 3, np.newaxis]
Global Joint Positions Given an animation compute the global joint positions at at every frame Parameters ---------- anim : Animation Input animation Returns ------- positions : (F, J, 3) ndarray Positions for every frame F and joint position J
positions_global
python
EricGuo5513/momask-codes
visualization/Animation.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/Animation.py
MIT
def rotations_global(anim): """ Global Animation Rotations This relies on joint ordering being incremental. That means a joint J1 must not be a ancestor of J0 if J0 appears before J1 in the joint ordering. Parameters ---------- anim : Animation Input animation Returns ------- points : (F, J) Quaternions global rotations for every frame F and joint J """ joints = np.arange(anim.shape[1]) parents = np.arange(anim.shape[1]) locals = anim.rotations globals = Quaternions.id(anim.shape) globals[:, 0] = locals[:, 0] for i in range(1, anim.shape[1]): globals[:, i] = globals[:, anim.parents[i]] * locals[:, i] return globals
Global Animation Rotations This relies on joint ordering being incremental. That means a joint J1 must not be a ancestor of J0 if J0 appears before J1 in the joint ordering. Parameters ---------- anim : Animation Input animation Returns ------- points : (F, J) Quaternions global rotations for every frame F and joint J
rotations_global
python
EricGuo5513/momask-codes
visualization/Animation.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/Animation.py
MIT
def remove_fs_old(anim, glb, foot_contact, fid_l=(3, 4), fid_r=(7, 8), interp_length=5, force_on_floor=True): # glb_height = 2.06820832 Not the case, may be use upper leg length scale = 1. #glb_height / 1.65 #scale to meter # fps = 20 # # velocity_thres = 10. # m/s height_thres = [0.06, 0.03] #[ankle, toe] meter if foot_contact is None: def foot_detect(positions, velfactor, heightfactor): feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2 feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2 feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2 feet_l_h = positions[:-1, fid_l, 1] feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float) feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2 feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2 feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2 feet_r_h = positions[:-1, fid_r, 1] feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float) return feet_l, feet_r # feet_thre = 0.002 # feet_vel_thre = np.array([velocity_thres**2, velocity_thres**2]) * scale**2 / fps**2 feet_vel_thre = np.array([0.05, 0.2]) # height_thre = np.array([0.06, 0.04]) * scale feet_h_thre = np.array(height_thres) * scale feet_l, feet_r = foot_detect(glb, velfactor=feet_vel_thre, heightfactor=feet_h_thre) foot = np.concatenate([feet_l, feet_r], axis=-1).transpose(1, 0) # [4, T-1] foot = np.concatenate([foot, foot[:, -1:]], axis=-1) else: foot = foot_contact.transpose(1, 0) T = len(glb) fid = list(fid_l) + list(fid_r) fid_l, fid_r = np.array(fid_l), np.array(fid_r) foot_heights = np.minimum(glb[:, fid_l, 1], glb[:, fid_r, 1]).min(axis=1) # [T, 2] -> [T] # print(foot_heights) # floor_height = softmin(foot_heights, softness=0.03, axis=0) sort_height = np.sort(foot_heights) temp_len = len(sort_height) floor_height = np.mean(sort_height[int(0.25*temp_len):int(0.5*temp_len)]) if floor_height > 0.5: # for motion like swim floor_height = 0 # print(floor_height) # floor_height = foot_heights.min() # print(floor_height) # print(foot) # print(foot_heights.min()) # print(floor_height) glb[:, :, 1] -= floor_height anim.positions[:, 0, 1] -= floor_height for i, fidx in enumerate(fid): fixed = foot[i] # [T] """ for t in range(T): glb[t, fidx][1] = max(glb[t, fidx][1], 0.25) """ s = 0 while s < T: while s < T and fixed[s] == 0: s += 1 if s >= T: break t = s avg = glb[t, fidx].copy() while t + 1 < T and fixed[t + 1] == 1: t += 1 avg += glb[t, fidx].copy() avg /= (t - s + 1) if force_on_floor: avg[1] = 0.0 for j in range(s, t + 1): glb[j, fidx] = avg.copy() s = t + 1 for s in range(T): if fixed[s] == 1: continue l, r = None, None consl, consr = False, False for k in range(interp_length): if s - k - 1 < 0: break if fixed[s - k - 1]: l = s - k - 1 consl = True break for k in range(interp_length): if s + k + 1 >= T: break if fixed[s + k + 1]: r = s + k + 1 consr = True break if not consl and not consr: continue if consl and consr: litp = lerp(alpha(1.0 * (s - l + 1) / (interp_length + 1)), glb[s, fidx], glb[l, fidx]) ritp = lerp(alpha(1.0 * (r - s + 1) / (interp_length + 1)), glb[s, fidx], glb[r, fidx]) itp = lerp(alpha(1.0 * (s - l + 1) / (r - l + 1)), ritp, litp) glb[s, fidx] = itp.copy() continue if consl: litp = lerp(alpha(1.0 * (s - l + 1) / (interp_length + 1)), glb[s, fidx], glb[l, fidx]) glb[s, fidx] = litp.copy() continue if consr: ritp = lerp(alpha(1.0 * (r - s + 1) / (interp_length + 1)), glb[s, fidx], glb[r, fidx]) glb[s, fidx] = ritp.copy() targetmap = {} for j in range(glb.shape[1]): targetmap[j] = glb[:, j] # ik = BasicInverseKinematics(anim, glb, iterations=5, # silent=True) # slightly larger loss, but better visual ik = JacobianInverseKinematics(anim, targetmap, iterations=30, damping=5, recalculate=False, silent=True) anim = ik() return anim
for t in range(T): glb[t, fidx][1] = max(glb[t, fidx][1], 0.25)
remove_fs_old
python
EricGuo5513/momask-codes
visualization/remove_fs.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/remove_fs.py
MIT
def remove_fs(glb, foot_contact, fid_l=(3, 4), fid_r=(7, 8), interp_length=5, force_on_floor=True): # glb_height = 2.06820832 Not the case, may be use upper leg length scale = 1. #glb_height / 1.65 #scale to meter # fps = 20 # # velocity_thres = 10. # m/s height_thres = [0.06, 0.03] #[ankle, toe] meter if foot_contact is None: def foot_detect(positions, velfactor, heightfactor): feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2 feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2 feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2 feet_l_h = positions[:-1, fid_l, 1] feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float) feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2 feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2 feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2 feet_r_h = positions[:-1, fid_r, 1] feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float) return feet_l, feet_r # feet_thre = 0.002 # feet_vel_thre = np.array([velocity_thres**2, velocity_thres**2]) * scale**2 / fps**2 feet_vel_thre = np.array([0.05, 0.2]) # height_thre = np.array([0.06, 0.04]) * scale feet_h_thre = np.array(height_thres) * scale feet_l, feet_r = foot_detect(glb, velfactor=feet_vel_thre, heightfactor=feet_h_thre) foot = np.concatenate([feet_l, feet_r], axis=-1).transpose(1, 0) # [4, T-1] foot = np.concatenate([foot, foot[:, -1:]], axis=-1) else: foot = foot_contact.transpose(1, 0) T = len(glb) fid = list(fid_l) + list(fid_r) fid_l, fid_r = np.array(fid_l), np.array(fid_r) foot_heights = np.minimum(glb[:, fid_l, 1], glb[:, fid_r, 1]).min(axis=1) # [T, 2] -> [T] # print(foot_heights) # floor_height = softmin(foot_heights, softness=0.03, axis=0) sort_height = np.sort(foot_heights) temp_len = len(sort_height) floor_height = np.mean(sort_height[int(0.25*temp_len):int(0.5*temp_len)]) if floor_height > 0.5: # for motion like swim floor_height = 0 # print(floor_height) # floor_height = foot_heights.min() # print(floor_height) # print(foot) # print(foot_heights.min()) # print(floor_height) glb[:, :, 1] -= floor_height # anim.positions[:, 0, 1] -= floor_height for i, fidx in enumerate(fid): fixed = foot[i] # [T] """ for t in range(T): glb[t, fidx][1] = max(glb[t, fidx][1], 0.25) """ s = 0 while s < T: while s < T and fixed[s] == 0: s += 1 if s >= T: break t = s avg = glb[t, fidx].copy() while t + 1 < T and fixed[t + 1] == 1: t += 1 avg += glb[t, fidx].copy() avg /= (t - s + 1) if force_on_floor: avg[1] = 0.0 for j in range(s, t + 1): glb[j, fidx] = avg.copy() s = t + 1 for s in range(T): if fixed[s] == 1: continue l, r = None, None consl, consr = False, False for k in range(interp_length): if s - k - 1 < 0: break if fixed[s - k - 1]: l = s - k - 1 consl = True break for k in range(interp_length): if s + k + 1 >= T: break if fixed[s + k + 1]: r = s + k + 1 consr = True break if not consl and not consr: continue if consl and consr: litp = lerp(alpha(1.0 * (s - l + 1) / (interp_length + 1)), glb[s, fidx], glb[l, fidx]) ritp = lerp(alpha(1.0 * (r - s + 1) / (interp_length + 1)), glb[s, fidx], glb[r, fidx]) itp = lerp(alpha(1.0 * (s - l + 1) / (r - l + 1)), ritp, litp) glb[s, fidx] = itp.copy() continue if consl: litp = lerp(alpha(1.0 * (s - l + 1) / (interp_length + 1)), glb[s, fidx], glb[l, fidx]) glb[s, fidx] = litp.copy() continue if consr: ritp = lerp(alpha(1.0 * (r - s + 1) / (interp_length + 1)), glb[s, fidx], glb[r, fidx]) glb[s, fidx] = ritp.copy() targetmap = {} for j in range(glb.shape[1]): targetmap[j] = glb[:, j] # ik = BasicInverseKinematics(anim, glb, iterations=5, # silent=True) # slightly larger loss, but better visual # ik = JacobianInverseKinematics(anim, targetmap, iterations=30, damping=5, recalculate=False, silent=True) # anim = ik() return glb
for t in range(T): glb[t, fidx][1] = max(glb[t, fidx][1], 0.25)
remove_fs
python
EricGuo5513/momask-codes
visualization/remove_fs.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/remove_fs.py
MIT
def load(filename, start=None, end=None, world=False, need_quater=True): """ Reads a BVH file and constructs an animation Parameters ---------- filename: str File to be opened start : int Optional Starting Frame end : int Optional Ending Frame order : str Optional Specifier for joint order. Given as string E.G 'xyz', 'zxy' world : bool If set to true euler angles are applied together in world space rather than local space Returns ------- (animation, joint_names, frametime) Tuple of loaded animation and joint names """ f = open(filename, "r") i = 0 active = -1 end_site = False names = [] orients = Quaterions.id(0) offsets = np.array([]).reshape((0, 3)) parents = np.array([], dtype=int) orders = [] for line in f: if "HIERARCHY" in line: continue if "MOTION" in line: continue # """ Modified line read to handle mixamo data """ rmatch = re.match(r"ROOT (\w+)", line) # rmatch = re.match(r"ROOT (\w+:?\w+)", line) if rmatch: names.append(rmatch.group(1)) offsets = np.append(offsets, np.array([[0, 0, 0]]), axis=0) orients = np.append(orients, np.array([[1, 0, 0, 0]]), axis=0) parents = np.append(parents, active) active = (len(parents) - 1) continue if "{" in line: continue if "}" in line: if end_site: end_site = False else: active = parents[active] continue offmatch = re.match(r"\s*OFFSET\s+([\-\d\.e]+)\s+([\-\d\.e]+)\s+([\-\d\.e]+)", line) if offmatch: if not end_site: offsets[active] = np.array([list(map(float, offmatch.groups()))]) continue chanmatch = re.match(r"\s*CHANNELS\s+(\d+)", line) if chanmatch: channels = int(chanmatch.group(1)) channelis = 0 if channels == 3 else 3 channelie = 3 if channels == 3 else 6 parts = line.split()[2 + channelis:2 + channelie] if any([p not in channelmap for p in parts]): continue order = "".join([channelmap[p] for p in parts]) orders.append(order) continue # """ Modified line read to handle mixamo data """ jmatch = re.match("\s*JOINT\s+(\w+)", line) # jmatch = re.match("\s*JOINT\s+(\w+:?\w+)", line) if jmatch: names.append(jmatch.group(1)) offsets = np.append(offsets, np.array([[0, 0, 0]]), axis=0) orients = np.append(orients, np.array([[1, 0, 0, 0]]), axis=0) parents = np.append(parents, active) active = (len(parents) - 1) continue if "End Site" in line: end_site = True continue fmatch = re.match("\s*Frames:\s+(\d+)", line) if fmatch: if start and end: fnum = (end - start) - 1 else: fnum = int(fmatch.group(1)) jnum = len(parents) positions = offsets[np.newaxis].repeat(fnum, axis=0) rotations = np.zeros((fnum, len(orients), 3)) continue fmatch = re.match("\s*Frame Time:\s+([\d\.]+)", line) if fmatch: frametime = float(fmatch.group(1)) continue if (start and end) and (i < start or i >= end - 1): i += 1 continue # dmatch = line.strip().split(' ') dmatch = line.strip().split() if dmatch: data_block = np.array(list(map(float, dmatch))) N = len(parents) fi = i - start if start else i if channels == 3: positions[fi, 0:1] = data_block[0:3] rotations[fi, :] = data_block[3:].reshape(N, 3) elif channels == 6: data_block = data_block.reshape(N, 6) positions[fi, :] = data_block[:, 0:3] rotations[fi, :] = data_block[:, 3:6] elif channels == 9: positions[fi, 0] = data_block[0:3] data_block = data_block[3:].reshape(N - 1, 9) rotations[fi, 1:] = data_block[:, 3:6] positions[fi, 1:] += data_block[:, 0:3] * data_block[:, 6:9] else: raise Exception("Too many channels! %i" % channels) i += 1 f.close() all_rotations = [] canonical_order = 'xyz' for i, order in enumerate(orders): rot = rotations[:, i:i + 1] if need_quater: quat = euler_to_quat_np(np.radians(rot), order=order, world=world) all_rotations.append(quat) continue elif order != canonical_order: quat = euler_to_quat_np(np.radians(rot), order=order, world=world) rot = np.degrees(qeuler_np(quat, order=canonical_order)) all_rotations.append(rot) rotations = np.concatenate(all_rotations, axis=1) return Animation(rotations, positions, orients, offsets, parents, names, frametime)
Reads a BVH file and constructs an animation Parameters ---------- filename: str File to be opened start : int Optional Starting Frame end : int Optional Ending Frame order : str Optional Specifier for joint order. Given as string E.G 'xyz', 'zxy' world : bool If set to true euler angles are applied together in world space rather than local space Returns ------- (animation, joint_names, frametime) Tuple of loaded animation and joint names
load
python
EricGuo5513/momask-codes
visualization/BVH.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/BVH.py
MIT
def write(self, filename, rot, r_pos, order, offset=None, names=None, repr='quat'): """ Write animation to bvh file :param filename: :param rot: Quaternion as (w, x, y, z) :param pos: :param offset: :return: """ if repr not in ['euler', 'quat', 'quaternion', 'cont6d']: raise Exception('Unknown rotation representation') if offset is None: offset = self.offset if not isinstance(offset, torch.Tensor): offset = torch.tensor(offset) n_bone = offset.shape[0] if repr == 'cont6d': rot = rot.reshape(rot.shape[0], -1, 6) rot = cont6d_to_quat_np(rot) if repr == 'cont6d' or repr == 'quat' or repr == 'quaternion': # rot = rot.reshape(rot.shape[0], -1, 4) # rot /= rot.norm(dim=-1, keepdim=True) ** 0.5 euler = qeuler_np(rot, order=order) rot = euler if names is None: if self.names is None: names = ['%02d' % i for i in range(n_bone)] else: names = self.names write_bvh(self.parents, offset, rot, r_pos, names, self.frametime, order, filename)
Write animation to bvh file :param filename: :param rot: Quaternion as (w, x, y, z) :param pos: :param offset: :return:
write
python
EricGuo5513/momask-codes
visualization/BVH.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/BVH.py
MIT
def convert(self, positions, filename, iterations=10, foot_ik=True): ''' Convert the SMPL joint positions to Mocap BVH :param positions: (N, 22, 3) :param filename: Save path for resulting BVH :param iterations: iterations for optimizing rotations, 10 is usually enough :param foot_ik: whether to enfore foot inverse kinematics, removing foot slide issue. :return: ''' positions = positions[:, self.re_order] new_anim = self.template.copy() new_anim.rotations = Quaternions.id(positions.shape[:-1]) new_anim.positions = new_anim.positions[0:1].repeat(positions.shape[0], axis=-0) new_anim.positions[:, 0] = positions[:, 0] if foot_ik: positions = remove_fs(positions, None, fid_l=(3, 4), fid_r=(7, 8), interp_length=5, force_on_floor=True) ik_solver = BasicInverseKinematics(new_anim, positions, iterations=iterations, silent=True) new_anim = ik_solver() # BVH.save(filename, new_anim, names=new_anim.names, frametime=1 / 20, order='zyx', quater=True) glb = Animation.positions_global(new_anim)[:, self.re_order_inv] if filename is not None: BVH.save(filename, new_anim, names=new_anim.names, frametime=1 / 20, order='zyx', quater=True) return new_anim, glb
Convert the SMPL joint positions to Mocap BVH :param positions: (N, 22, 3) :param filename: Save path for resulting BVH :param iterations: iterations for optimizing rotations, 10 is usually enough :param foot_ik: whether to enfore foot inverse kinematics, removing foot slide issue. :return:
convert
python
EricGuo5513/momask-codes
visualization/joints2bvh.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/joints2bvh.py
MIT
def convert_sgd(self, positions, filename, iterations=100, foot_ik=True): ''' Convert the SMPL joint positions to Mocap BVH :param positions: (N, 22, 3) :param filename: Save path for resulting BVH :param iterations: iterations for optimizing rotations, 10 is usually enough :param foot_ik: whether to enfore foot inverse kinematics, removing foot slide issue. :return: ''' ## Positional Foot locking ## glb = positions[:, self.re_order] if foot_ik: glb = remove_fs(glb, None, fid_l=(3, 4), fid_r=(7, 8), interp_length=2, force_on_floor=True) ## Fit BVH ## new_anim = self.template.copy() new_anim.rotations = Quaternions.id(glb.shape[:-1]) new_anim.positions = new_anim.positions[0:1].repeat(glb.shape[0], axis=-0) new_anim.positions[:, 0] = glb[:, 0] anim = new_anim.copy() rot = torch.tensor(anim.rotations.qs, dtype=torch.float) pos = torch.tensor(anim.positions[:, 0, :], dtype=torch.float) offset = torch.tensor(anim.offsets, dtype=torch.float) glb = torch.tensor(glb, dtype=torch.float) ik_solver = InverseKinematics(rot, pos, offset, anim.parents, glb) print('Fixing foot contact using IK...') for i in tqdm(range(iterations)): mse = ik_solver.step() # print(i, mse) rotations = ik_solver.rotations.detach().cpu() norm = torch.norm(rotations, dim=-1, keepdim=True) rotations /= norm anim.rotations = Quaternions(rotations.numpy()) anim.rotations[:, self.end_points] = Quaternions.id((anim.rotations.shape[0], len(self.end_points))) anim.positions[:, 0, :] = ik_solver.position.detach().cpu().numpy() if filename is not None: BVH.save(filename, anim, names=new_anim.names, frametime=1 / 20, order='zyx', quater=True) # BVH.save(filename[:-3] + 'bvh', anim, names=new_anim.names, frametime=1 / 20, order='zyx', quater=True) glb = Animation.positions_global(anim)[:, self.re_order_inv] return anim, glb
Convert the SMPL joint positions to Mocap BVH :param positions: (N, 22, 3) :param filename: Save path for resulting BVH :param iterations: iterations for optimizing rotations, 10 is usually enough :param foot_ik: whether to enfore foot inverse kinematics, removing foot slide issue. :return:
convert_sgd
python
EricGuo5513/momask-codes
visualization/joints2bvh.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/joints2bvh.py
MIT
def jacobian(self, x, fp, fr, ts, dsc, tdsc): """ Find parent rotations """ prs = fr[:, self.animation.parents] prs[:, 0] = Quaternions.id((1)) """ Find global positions of target joints """ tps = fp[:, np.array(list(ts.keys()))] """ Get partial rotations """ qys = Quaternions.from_angle_axis(x[:, 1:prs.shape[1] * 3:3], np.array([[[0, 1, 0]]])) qzs = Quaternions.from_angle_axis(x[:, 2:prs.shape[1] * 3:3], np.array([[[0, 0, 1]]])) """ Find axis of rotations """ es = np.empty((len(x), fr.shape[1] * 3, 3)) es[:, 0::3] = ((prs * qzs) * qys) * np.array([[[1, 0, 0]]]) es[:, 1::3] = ((prs * qzs) * np.array([[[0, 1, 0]]])) es[:, 2::3] = ((prs * np.array([[[0, 0, 1]]]))) """ Construct Jacobian """ j = fp.repeat(3, axis=1) j = dsc[np.newaxis, :, :, np.newaxis] * (tps[:, np.newaxis, :] - j[:, :, np.newaxis]) j = self.cross(es[:, :, np.newaxis, :], j) j = np.swapaxes(j.reshape((len(x), fr.shape[1] * 3, len(ts) * 3)), 1, 2) if self.translate: es = np.empty((len(x), fr.shape[1] * 3, 3)) es[:, 0::3] = prs * np.array([[[1, 0, 0]]]) es[:, 1::3] = prs * np.array([[[0, 1, 0]]]) es[:, 2::3] = prs * np.array([[[0, 0, 1]]]) jt = tdsc[np.newaxis, :, :, np.newaxis] * es[:, :, np.newaxis, :].repeat(tps.shape[1], axis=2) jt = np.swapaxes(jt.reshape((len(x), fr.shape[1] * 3, len(ts) * 3)), 1, 2) j = np.concatenate([j, jt], axis=-1) return j
Find parent rotations
jacobian
python
EricGuo5513/momask-codes
visualization/InverseKinematics.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/InverseKinematics.py
MIT
def __call__(self, descendants=None, gamma=1.0): self.descendants = descendants """ Calculate Masses """ if self.weights is None: self.weights = np.ones(self.animation.shape[1]) if self.weights_translate is None: self.weights_translate = np.ones(self.animation.shape[1]) """ Calculate Descendants """ if self.descendants is None: self.descendants = AnimationStructure.descendants_mask(self.animation.parents) self.tdescendants = np.eye(self.animation.shape[1]) + self.descendants self.first_descendants = self.descendants[:, np.array(list(self.targets.keys()))].repeat(3, axis=0).astype(int) self.first_tdescendants = self.tdescendants[:, np.array(list(self.targets.keys()))].repeat(3, axis=0).astype( int) """ Calculate End Effectors """ self.endeff = np.array(list(self.targets.values())) self.endeff = np.swapaxes(self.endeff, 0, 1) if not self.references is None: self.second_descendants = self.descendants.repeat(3, axis=0).astype(int) self.second_tdescendants = self.tdescendants.repeat(3, axis=0).astype(int) self.second_targets = dict([(i, self.references[:, i]) for i in range(self.references.shape[1])]) nf = len(self.animation) nj = self.animation.shape[1] if not self.silent: gp = Animation.positions_global(self.animation) gp = gp[:, np.array(list(self.targets.keys()))] error = np.mean(np.sqrt(np.sum((self.endeff - gp) ** 2.0, axis=2))) print('[JacobianInverseKinematics] Start | Error: %f' % error) for i in range(self.iterations): """ Get Global Rotations & Positions """ gt = Animation.transforms_global(self.animation) gp = gt[:, :, :, 3] gp = gp[:, :, :3] / gp[:, :, 3, np.newaxis] gr = Quaternions.from_transforms(gt) x = self.animation.rotations.euler().reshape(nf, -1) w = self.weights.repeat(3) if self.translate: x = np.hstack([x, self.animation.positions.reshape(nf, -1)]) w = np.hstack([w, self.weights_translate.repeat(3)]) """ Generate Jacobian """ if self.recalculate or i == 0: j = self.jacobian(x, gp, gr, self.targets, self.first_descendants, self.first_tdescendants) """ Update Variables """ l = self.damping * (1.0 / (w + 0.001)) d = (l * l) * np.eye(x.shape[1]) e = gamma * (self.endeff.reshape(nf, -1) - gp[:, np.array(list(self.targets.keys()))].reshape(nf, -1)) x += np.array(list(map(lambda jf, ef: linalg.lu_solve(linalg.lu_factor(jf.T.dot(jf) + d), jf.T.dot(ef)), j, e))) """ Generate Secondary Jacobian """ if self.references is not None: ns = np.array(list(map(lambda jf: np.eye(x.shape[1]) - linalg.solve(jf.T.dot(jf) + d, jf.T.dot(jf)), j))) if self.recalculate or i == 0: j2 = self.jacobian(x, gp, gr, self.second_targets, self.second_descendants, self.second_tdescendants) e2 = self.secondary * (self.references.reshape(nf, -1) - gp.reshape(nf, -1)) x += np.array(list(map(lambda nsf, j2f, e2f: nsf.dot(linalg.lu_solve(linalg.lu_factor(j2f.T.dot(j2f) + d), j2f.T.dot(e2f))), ns, j2, e2))) """ Set Back Rotations / Translations """ self.animation.rotations = Quaternions.from_euler( x[:, :nj * 3].reshape((nf, nj, 3)), order='xyz', world=True) if self.translate: self.animation.positions = x[:, nj * 3:].reshape((nf, nj, 3)) """ Generate Error """ if not self.silent: gp = Animation.positions_global(self.animation) gp = gp[:, np.array(list(self.targets.keys()))] error = np.mean(np.sum((self.endeff - gp) ** 2.0, axis=2) ** 0.5) print('[JacobianInverseKinematics] Iteration %i | Error: %f' % (i + 1, error)) return self.animation
Calculate Masses
__call__
python
EricGuo5513/momask-codes
visualization/InverseKinematics.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/InverseKinematics.py
MIT
def jacobian(self, x, fp, fr, goal, weights, des_r, des_t): """ Find parent rotations """ prs = fr[:, self.animation.parents] prs[:, 0] = Quaternions.id((1)) """ Get partial rotations """ qys = Quaternions.from_angle_axis(x[:, 1:prs.shape[1] * 3:3], np.array([[[0, 1, 0]]])) qzs = Quaternions.from_angle_axis(x[:, 2:prs.shape[1] * 3:3], np.array([[[0, 0, 1]]])) """ Find axis of rotations """ es = np.empty((len(x), fr.shape[1] * 3, 3)) es[:, 0::3] = ((prs * qzs) * qys) * np.array([[[1, 0, 0]]]) es[:, 1::3] = ((prs * qzs) * np.array([[[0, 1, 0]]])) es[:, 2::3] = ((prs * np.array([[[0, 0, 1]]]))) """ Construct Jacobian """ j = fp.repeat(3, axis=1) j = des_r[np.newaxis, :, :, :, np.newaxis] * ( goal[:, np.newaxis, :, np.newaxis] - j[:, :, np.newaxis, np.newaxis]) j = np.sum(j * weights[np.newaxis, np.newaxis, :, :, np.newaxis], 3) j = self.cross(es[:, :, np.newaxis, :], j) j = np.swapaxes(j.reshape((len(x), fr.shape[1] * 3, goal.shape[1] * 3)), 1, 2) if self.translate: es = np.empty((len(x), fr.shape[1] * 3, 3)) es[:, 0::3] = prs * np.array([[[1, 0, 0]]]) es[:, 1::3] = prs * np.array([[[0, 1, 0]]]) es[:, 2::3] = prs * np.array([[[0, 0, 1]]]) jt = des_t[np.newaxis, :, :, :, np.newaxis] * es[:, :, np.newaxis, np.newaxis, :].repeat(goal.shape[1], axis=2) jt = np.sum(jt * weights[np.newaxis, np.newaxis, :, :, np.newaxis], 3) jt = np.swapaxes(jt.reshape((len(x), fr.shape[1] * 3, goal.shape[1] * 3)), 1, 2) j = np.concatenate([j, jt], axis=-1) return j
Find parent rotations
jacobian
python
EricGuo5513/momask-codes
visualization/InverseKinematics.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/InverseKinematics.py
MIT
def __call__(self, descendants=None, maxjoints=4, gamma=1.0, transpose=False): """ Calculate Masses """ if self.weights is None: self.weights = np.ones(self.animation.shape[1]) if self.weights_translate is None: self.weights_translate = np.ones(self.animation.shape[1]) nf = len(self.animation) nj = self.animation.shape[1] nv = self.goal.shape[1] weightids = np.argsort(-self.vweights, axis=1)[:, :maxjoints] weightvls = np.array(list(map(lambda w, i: w[i], self.vweights, weightids))) weightvls = weightvls / weightvls.sum(axis=1)[..., np.newaxis] if descendants is None: self.descendants = AnimationStructure.descendants_mask(self.animation.parents) else: self.descendants = descendants des_r = np.eye(nj) + self.descendants des_r = des_r[:, weightids].repeat(3, axis=0) des_t = np.eye(nj) + self.descendants des_t = des_t[:, weightids].repeat(3, axis=0) if not self.silent: curr = Animation.skin(self.animation, self.rest, self.vweights, self.mesh, maxjoints=maxjoints) error = np.mean(np.sqrt(np.sum((curr - self.goal) ** 2.0, axis=-1))) print('[ICP] Start | Error: %f' % error) for i in range(self.iterations): """ Get Global Rotations & Positions """ gt = Animation.transforms_global(self.animation) gp = gt[:, :, :, 3] gp = gp[:, :, :3] / gp[:, :, 3, np.newaxis] gr = Quaternions.from_transforms(gt) x = self.animation.rotations.euler().reshape(nf, -1) w = self.weights.repeat(3) if self.translate: x = np.hstack([x, self.animation.positions.reshape(nf, -1)]) w = np.hstack([w, self.weights_translate.repeat(3)]) """ Get Current State """ curr = Animation.skin(self.animation, self.rest, self.vweights, self.mesh, maxjoints=maxjoints) """ Find Cloest Points """ if self.find_closest: mapping = np.argmin( (curr[:, :, np.newaxis] - self.goal[:, np.newaxis, :]) ** 2.0, axis=2) e = gamma * (np.array(list(map(lambda g, m: g[m], self.goal, mapping))) - curr).reshape(nf, -1) else: e = gamma * (self.goal - curr).reshape(nf, -1) """ Generate Jacobian """ if self.recalculate or i == 0: j = self.jacobian(x, gp, gr, self.goal, weightvls, des_r, des_t) """ Update Variables """ l = self.damping * (1.0 / (w + 1e-10)) d = (l * l) * np.eye(x.shape[1]) if transpose: x += np.array(list(map(lambda jf, ef: jf.T.dot(ef), j, e))) else: x += np.array(list(map(lambda jf, ef: linalg.lu_solve(linalg.lu_factor(jf.T.dot(jf) + d), jf.T.dot(ef)), j, e))) """ Set Back Rotations / Translations """ self.animation.rotations = Quaternions.from_euler( x[:, :nj * 3].reshape((nf, nj, 3)), order='xyz', world=True) if self.translate: self.animation.positions = x[:, nj * 3:].reshape((nf, nj, 3)) if not self.silent: curr = Animation.skin(self.animation, self.rest, self.vweights, self.mesh) error = np.mean(np.sqrt(np.sum((curr - self.goal) ** 2.0, axis=-1))) print('[ICP] Iteration %i | Error: %f' % (i + 1, error))
Calculate Masses
__call__
python
EricGuo5513/momask-codes
visualization/InverseKinematics.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/InverseKinematics.py
MIT
def forward(self, rotation: torch.Tensor, position: torch.Tensor, offset: torch.Tensor, order='xyz', quater=False, world=True): ''' if not quater and rotation.shape[-2] != 3: raise Exception('Unexpected shape of rotation') if quater and rotation.shape[-2] != 4: raise Exception('Unexpected shape of rotation') rotation = rotation.permute(0, 3, 1, 2) position = position.permute(0, 2, 1) ''' result = torch.empty(rotation.shape[:-1] + (3,), device=position.device) norm = torch.norm(rotation, dim=-1, keepdim=True) rotation = rotation / norm # if quater: transform = self.transform_from_quaternion(rotation) # else: # transform = self.transform_from_euler(rotation, order) offset = offset.reshape((-1, 1, offset.shape[-2], offset.shape[-1], 1)) result[..., 0, :] = position for i, pi in enumerate(self.parents): if pi == -1: assert i == 0 continue result[..., i, :] = torch.matmul(transform[..., pi, :, :], offset[..., i, :, :]).squeeze() transform[..., i, :, :] = torch.matmul(transform[..., pi, :, :].clone(), transform[..., i, :, :].clone()) if world: result[..., i, :] += result[..., pi, :] return result
if not quater and rotation.shape[-2] != 3: raise Exception('Unexpected shape of rotation') if quater and rotation.shape[-2] != 4: raise Exception('Unexpected shape of rotation') rotation = rotation.permute(0, 3, 1, 2) position = position.permute(0, 2, 1)
forward
python
EricGuo5513/momask-codes
visualization/InverseKinematics.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/InverseKinematics.py
MIT
def load(filename, start=None, end=None, order=None, world=False, need_quater=True): """ Reads a BVH file and constructs an animation Parameters ---------- filename: str File to be opened start : int Optional Starting Frame end : int Optional Ending Frame order : str Optional Specifier for joint order. Given as string E.G 'xyz', 'zxy' world : bool If set to true euler angles are applied together in world space rather than local space Returns ------- (animation, joint_names, frametime) Tuple of loaded animation and joint names """ f = open(filename, "r") i = 0 active = -1 end_site = False names = [] orients = Quaternions.id(0) offsets = np.array([]).reshape((0, 3)) parents = np.array([], dtype=int) for line in f: if "HIERARCHY" in line: continue if "MOTION" in line: continue """ Modified line read to handle mixamo data """ # rmatch = re.match(r"ROOT (\w+)", line) rmatch = re.match(r"ROOT (\w+:?\w+)", line) if rmatch: names.append(rmatch.group(1)) offsets = np.append(offsets, np.array([[0, 0, 0]]), axis=0) orients.qs = np.append(orients.qs, np.array([[1, 0, 0, 0]]), axis=0) parents = np.append(parents, active) active = (len(parents) - 1) continue if "{" in line: continue if "}" in line: if end_site: end_site = False else: active = parents[active] continue offmatch = re.match(r"\s*OFFSET\s+([\-\d\.e]+)\s+([\-\d\.e]+)\s+([\-\d\.e]+)", line) if offmatch: if not end_site: offsets[active] = np.array([list(map(float, offmatch.groups()))]) continue chanmatch = re.match(r"\s*CHANNELS\s+(\d+)", line) if chanmatch: channels = int(chanmatch.group(1)) if order is None: channelis = 0 if channels == 3 else 3 channelie = 3 if channels == 3 else 6 parts = line.split()[2 + channelis:2 + channelie] if any([p not in channelmap for p in parts]): continue order = "".join([channelmap[p] for p in parts]) continue """ Modified line read to handle mixamo data """ # jmatch = re.match("\s*JOINT\s+(\w+)", line) jmatch = re.match("\s*JOINT\s+(\w+:?\w+)", line) if jmatch: names.append(jmatch.group(1)) offsets = np.append(offsets, np.array([[0, 0, 0]]), axis=0) orients.qs = np.append(orients.qs, np.array([[1, 0, 0, 0]]), axis=0) parents = np.append(parents, active) active = (len(parents) - 1) continue if "End Site" in line: end_site = True continue fmatch = re.match("\s*Frames:\s+(\d+)", line) if fmatch: if start and end: fnum = (end - start) - 1 else: fnum = int(fmatch.group(1)) jnum = len(parents) positions = offsets[np.newaxis].repeat(fnum, axis=0) rotations = np.zeros((fnum, len(orients), 3)) continue fmatch = re.match("\s*Frame Time:\s+([\d\.]+)", line) if fmatch: frametime = float(fmatch.group(1)) continue if (start and end) and (i < start or i >= end - 1): i += 1 continue # dmatch = line.strip().split(' ') dmatch = line.strip().split() if dmatch: data_block = np.array(list(map(float, dmatch))) N = len(parents) fi = i - start if start else i if channels == 3: positions[fi, 0:1] = data_block[0:3] rotations[fi, :] = data_block[3:].reshape(N, 3) elif channels == 6: data_block = data_block.reshape(N, 6) positions[fi, :] = data_block[:, 0:3] rotations[fi, :] = data_block[:, 3:6] elif channels == 9: positions[fi, 0] = data_block[0:3] data_block = data_block[3:].reshape(N - 1, 9) rotations[fi, 1:] = data_block[:, 3:6] positions[fi, 1:] += data_block[:, 0:3] * data_block[:, 6:9] else: raise Exception("Too many channels! %i" % channels) i += 1 f.close() if need_quater: rotations = Quaternions.from_euler(np.radians(rotations), order=order, world=world) elif order != 'xyz': rotations = Quaternions.from_euler(np.radians(rotations), order=order, world=world) rotations = np.degrees(rotations.euler()) return Animation(rotations, positions, orients, offsets, parents, names, frametime)
Reads a BVH file and constructs an animation Parameters ---------- filename: str File to be opened start : int Optional Starting Frame end : int Optional Ending Frame order : str Optional Specifier for joint order. Given as string E.G 'xyz', 'zxy' world : bool If set to true euler angles are applied together in world space rather than local space Returns ------- (animation, joint_names, frametime) Tuple of loaded animation and joint names
load
python
EricGuo5513/momask-codes
visualization/BVH_mod.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/BVH_mod.py
MIT
def save(filename, anim, names=None, frametime=1.0 / 24.0, order='zyx', positions=False, mask=None, quater=False): """ Saves an Animation to file as BVH Parameters ---------- filename: str File to be saved to anim : Animation Animation to save names : [str] List of joint names order : str Optional Specifier for joint order. Given as string E.G 'xyz', 'zxy' frametime : float Optional Animation Frame time positions : bool Optional specfier to save bone positions for each frame orients : bool Multiply joint orients to the rotations before saving. """ if names is None: names = ["joint_" + str(i) for i in range(len(anim.parents))] with open(filename, 'w') as f: t = "" f.write("%sHIERARCHY\n" % t) f.write("%sROOT %s\n" % (t, names[0])) f.write("%s{\n" % t) t += '\t' f.write("%sOFFSET %f %f %f\n" % (t, anim.offsets[0, 0], anim.offsets[0, 1], anim.offsets[0, 2])) f.write("%sCHANNELS 6 Xposition Yposition Zposition %s %s %s \n" % (t, channelmap_inv[order[0]], channelmap_inv[order[1]], channelmap_inv[order[2]])) for i in range(anim.shape[1]): if anim.parents[i] == 0: t = save_joint(f, anim, names, t, i, order=order, positions=positions) t = t[:-1] f.write("%s}\n" % t) f.write("MOTION\n") f.write("Frames: %i\n" % anim.shape[0]); f.write("Frame Time: %f\n" % frametime); # if orients: # rots = np.degrees((-anim.orients[np.newaxis] * anim.rotations).euler(order=order[::-1])) # else: # rots = np.degrees(anim.rotations.euler(order=order[::-1])) # rots = np.degrees(anim.rotations.euler(order=order[::-1])) if quater: rots = np.degrees(anim.rotations.euler(order=order[::-1])) else: rots = anim.rotations poss = anim.positions for i in range(anim.shape[0]): for j in range(anim.shape[1]): if positions or j == 0: f.write("%f %f %f %f %f %f " % ( poss[i, j, 0], poss[i, j, 1], poss[i, j, 2], rots[i, j, ordermap[order[0]]], rots[i, j, ordermap[order[1]]], rots[i, j, ordermap[order[2]]])) else: if mask == None or mask[j] == 1: f.write("%f %f %f " % ( rots[i, j, ordermap[order[0]]], rots[i, j, ordermap[order[1]]], rots[i, j, ordermap[order[2]]])) else: f.write("%f %f %f " % (0, 0, 0)) f.write("\n")
Saves an Animation to file as BVH Parameters ---------- filename: str File to be saved to anim : Animation Animation to save names : [str] List of joint names order : str Optional Specifier for joint order. Given as string E.G 'xyz', 'zxy' frametime : float Optional Animation Frame time positions : bool Optional specfier to save bone positions for each frame orients : bool Multiply joint orients to the rotations before saving.
save
python
EricGuo5513/momask-codes
visualization/BVH_mod.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/BVH_mod.py
MIT
def joints(parents): """ Parameters ---------- parents : (J) ndarray parents array Returns ------- joints : (J) ndarray Array of joint indices """ return np.arange(len(parents), dtype=int)
Parameters ---------- parents : (J) ndarray parents array Returns ------- joints : (J) ndarray Array of joint indices
joints
python
EricGuo5513/momask-codes
visualization/AnimationStructure.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/AnimationStructure.py
MIT
def joints_list(parents): """ Parameters ---------- parents : (J) ndarray parents array Returns ------- joints : [ndarray] List of arrays of joint idices for each joint """ return list(joints(parents)[:, np.newaxis])
Parameters ---------- parents : (J) ndarray parents array Returns ------- joints : [ndarray] List of arrays of joint idices for each joint
joints_list
python
EricGuo5513/momask-codes
visualization/AnimationStructure.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/AnimationStructure.py
MIT
def parents_list(parents): """ Parameters ---------- parents : (J) ndarray parents array Returns ------- parents : [ndarray] List of arrays of joint idices for the parents of each joint """ return list(parents[:, np.newaxis])
Parameters ---------- parents : (J) ndarray parents array Returns ------- parents : [ndarray] List of arrays of joint idices for the parents of each joint
parents_list
python
EricGuo5513/momask-codes
visualization/AnimationStructure.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/AnimationStructure.py
MIT
def children_list(parents): """ Parameters ---------- parents : (J) ndarray parents array Returns ------- children : [ndarray] List of arrays of joint indices for the children of each joint """ def joint_children(i): return [j for j, p in enumerate(parents) if p == i] return list(map(lambda j: np.array(joint_children(j)), joints(parents)))
Parameters ---------- parents : (J) ndarray parents array Returns ------- children : [ndarray] List of arrays of joint indices for the children of each joint
children_list
python
EricGuo5513/momask-codes
visualization/AnimationStructure.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/AnimationStructure.py
MIT
def descendants_list(parents): """ Parameters ---------- parents : (J) ndarray parents array Returns ------- descendants : [ndarray] List of arrays of joint idices for the descendants of each joint """ children = children_list(parents) def joint_descendants(i): return sum([joint_descendants(j) for j in children[i]], list(children[i])) return list(map(lambda j: np.array(joint_descendants(j)), joints(parents)))
Parameters ---------- parents : (J) ndarray parents array Returns ------- descendants : [ndarray] List of arrays of joint idices for the descendants of each joint
descendants_list
python
EricGuo5513/momask-codes
visualization/AnimationStructure.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/AnimationStructure.py
MIT
def ancestors_list(parents): """ Parameters ---------- parents : (J) ndarray parents array Returns ------- ancestors : [ndarray] List of arrays of joint idices for the ancestors of each joint """ decendants = descendants_list(parents) def joint_ancestors(i): return [j for j in joints(parents) if i in decendants[j]] return list(map(lambda j: np.array(joint_ancestors(j)), joints(parents)))
Parameters ---------- parents : (J) ndarray parents array Returns ------- ancestors : [ndarray] List of arrays of joint idices for the ancestors of each joint
ancestors_list
python
EricGuo5513/momask-codes
visualization/AnimationStructure.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/AnimationStructure.py
MIT
def mask(parents, filter): """ Constructs a Mask for a give filter A mask is a (J, J) ndarray truth table for a given condition over J joints. For example there may be a mask specifying if a joint N is a child of another joint M. This could be constructed into a mask using `m = mask(parents, children_list)` and the condition of childhood tested using `m[N, M]`. Parameters ---------- parents : (J) ndarray parents array filter : (J) ndarray -> [ndarray] function that outputs a list of arrays of joint indices for some condition Returns ------- mask : (N, N) ndarray boolean truth table of given condition """ m = np.zeros((len(parents), len(parents))).astype(bool) jnts = joints(parents) fltr = filter(parents) for i, f in enumerate(fltr): m[i, :] = np.any(jnts[:, np.newaxis] == f[np.newaxis, :], axis=1) return m
Constructs a Mask for a give filter A mask is a (J, J) ndarray truth table for a given condition over J joints. For example there may be a mask specifying if a joint N is a child of another joint M. This could be constructed into a mask using `m = mask(parents, children_list)` and the condition of childhood tested using `m[N, M]`. Parameters ---------- parents : (J) ndarray parents array filter : (J) ndarray -> [ndarray] function that outputs a list of arrays of joint indices for some condition Returns ------- mask : (N, N) ndarray boolean truth table of given condition
mask
python
EricGuo5513/momask-codes
visualization/AnimationStructure.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/AnimationStructure.py
MIT
def constraints(anim, **kwargs): """ Constraint list for Animation This constraint list can be used in the VerletParticle solver to constrain a animation global joint positions. Parameters ---------- anim : Animation Input animation masses : (F, J) ndarray Optional list of masses for joints J across frames F defaults to weighting by vertical height Returns ------- constraints : [(int, int, (F, J) ndarray, (F, J) ndarray, (F, J) ndarray)] A list of constraints in the format: (Joint1, Joint2, Masses1, Masses2, Lengths) """ masses = kwargs.pop('masses', None) children = children_list(anim.parents) constraints = [] points_offsets = Animation.offsets_global(anim) points = Animation.positions_global(anim) if masses is None: masses = 1.0 / (0.1 + np.absolute(points_offsets[:, 1])) masses = masses[np.newaxis].repeat(len(anim), axis=0) for j in range(anim.shape[1]): """ Add constraints between all joints and their children """ for c0 in children[j]: dists = np.sum((points[:, c0] - points[:, j]) ** 2.0, axis=1) ** 0.5 constraints.append((c0, j, masses[:, c0], masses[:, j], dists)) """ Add constraints between all children of joint """ for c1 in children[j]: if c0 == c1: continue dists = np.sum((points[:, c0] - points[:, c1]) ** 2.0, axis=1) ** 0.5 constraints.append((c0, c1, masses[:, c0], masses[:, c1], dists)) return constraints
Constraint list for Animation This constraint list can be used in the VerletParticle solver to constrain a animation global joint positions. Parameters ---------- anim : Animation Input animation masses : (F, J) ndarray Optional list of masses for joints J across frames F defaults to weighting by vertical height Returns ------- constraints : [(int, int, (F, J) ndarray, (F, J) ndarray, (F, J) ndarray)] A list of constraints in the format: (Joint1, Joint2, Masses1, Masses2, Lengths)
constraints
python
EricGuo5513/momask-codes
visualization/AnimationStructure.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/AnimationStructure.py
MIT
def graph(anim): """ Generates a weighted adjacency matrix using local joint distances along the skeletal structure. Joints which are not connected are assigned the weight `0`. Joints which actually have zero distance between them, but are still connected, are perturbed by some minimal amount. The output of this routine can be used with the `scipy.sparse.csgraph` routines for graph analysis. Parameters ---------- anim : Animation input animation Returns ------- graph : (N, N) ndarray weight adjacency matrix using local distances along the skeletal structure from joint N to joint M. If joints are not directly connected are assigned the weight `0`. """ graph = np.zeros(anim.shape[1], anim.shape[1]) lengths = np.sum(anim.offsets ** 2.0, axis=1) ** 0.5 + 0.001 for i, p in enumerate(anim.parents): if p == -1: continue graph[i, p] = lengths[p] graph[p, i] = lengths[p] return graph
Generates a weighted adjacency matrix using local joint distances along the skeletal structure. Joints which are not connected are assigned the weight `0`. Joints which actually have zero distance between them, but are still connected, are perturbed by some minimal amount. The output of this routine can be used with the `scipy.sparse.csgraph` routines for graph analysis. Parameters ---------- anim : Animation input animation Returns ------- graph : (N, N) ndarray weight adjacency matrix using local distances along the skeletal structure from joint N to joint M. If joints are not directly connected are assigned the weight `0`.
graph
python
EricGuo5513/momask-codes
visualization/AnimationStructure.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/AnimationStructure.py
MIT
def find_distance(distances, generated, prev, i, j): """ If root, identity, or already generated, return """ if j == -1: return (0.0, True) if j == i: return (0.0, True) if generated[i, j]: return (distances[i, j], True) """ Find best distances along parents and children """ par_dists = [(joint_lengths[j], find_distance(distances, generated, j, i, p)) for p in joint_parents[j] if p != prev] out_dists = [(joint_lengths[c], find_distance(distances, generated, j, i, c)) for c in joint_children[j] if c != prev] """ Check valid distance and not dead end """ par_dists = [a + d for (a, (d, f)) in par_dists if f] out_dists = [a + d for (a, (d, f)) in out_dists if f] """ All dead ends """ if (out_dists + par_dists) == []: return (0.0, False) """ Get minimum path """ dist = min(out_dists + par_dists) distances[i, j] = dist; distances[j, i] = dist generated[i, j] = True; generated[j, i] = True
If root, identity, or already generated, return
distances.find_distance
python
EricGuo5513/momask-codes
visualization/AnimationStructure.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/AnimationStructure.py
MIT
def distances(anim): """ Generates a distance matrix for pairwise joint distances along the skeletal structure Parameters ---------- anim : Animation input animation Returns ------- distances : (N, N) ndarray array of pairwise distances along skeletal structure from some joint N to some joint M """ distances = np.zeros((anim.shape[1], anim.shape[1])) generated = distances.copy().astype(bool) joint_lengths = np.sum(anim.offsets ** 2.0, axis=1) ** 0.5 joint_children = children_list(anim) joint_parents = parents_list(anim) def find_distance(distances, generated, prev, i, j): """ If root, identity, or already generated, return """ if j == -1: return (0.0, True) if j == i: return (0.0, True) if generated[i, j]: return (distances[i, j], True) """ Find best distances along parents and children """ par_dists = [(joint_lengths[j], find_distance(distances, generated, j, i, p)) for p in joint_parents[j] if p != prev] out_dists = [(joint_lengths[c], find_distance(distances, generated, j, i, c)) for c in joint_children[j] if c != prev] """ Check valid distance and not dead end """ par_dists = [a + d for (a, (d, f)) in par_dists if f] out_dists = [a + d for (a, (d, f)) in out_dists if f] """ All dead ends """ if (out_dists + par_dists) == []: return (0.0, False) """ Get minimum path """ dist = min(out_dists + par_dists) distances[i, j] = dist; distances[j, i] = dist generated[i, j] = True; generated[j, i] = True for i in range(anim.shape[1]): for j in range(anim.shape[1]): find_distance(distances, generated, -1, i, j) return distances
Generates a distance matrix for pairwise joint distances along the skeletal structure Parameters ---------- anim : Animation input animation Returns ------- distances : (N, N) ndarray array of pairwise distances along skeletal structure from some joint N to some joint M
distances
python
EricGuo5513/momask-codes
visualization/AnimationStructure.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/AnimationStructure.py
MIT
def edges(parents): """ Animation structure edges Parameters ---------- parents : (J) ndarray parents array Returns ------- edges : (M, 2) ndarray array of pairs where each pair contains two indices of a joints which corrisponds to an edge in the joint structure going from parent to child. """ return np.array(list(zip(parents, joints(parents)))[1:])
Animation structure edges Parameters ---------- parents : (J) ndarray parents array Returns ------- edges : (M, 2) ndarray array of pairs where each pair contains two indices of a joints which corrisponds to an edge in the joint structure going from parent to child.
edges
python
EricGuo5513/momask-codes
visualization/AnimationStructure.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/AnimationStructure.py
MIT
def incidence(parents): """ Incidence Matrix Parameters ---------- parents : (J) ndarray parents array Returns ------- incidence : (N, M) ndarray Matrix of N joint positions by M edges which each entry is either 1 or -1 and multiplication by the joint positions returns the an array of vectors along each edge of the structure """ es = edges(parents) inc = np.zeros((len(parents) - 1, len(parents))).astype(np.int) for i, e in enumerate(es): inc[i, e[0]] = 1 inc[i, e[1]] = -1 return inc.T
Incidence Matrix Parameters ---------- parents : (J) ndarray parents array Returns ------- incidence : (N, M) ndarray Matrix of N joint positions by M edges which each entry is either 1 or -1 and multiplication by the joint positions returns the an array of vectors along each edge of the structure
incidence
python
EricGuo5513/momask-codes
visualization/AnimationStructure.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/AnimationStructure.py
MIT
def load(filename:str, order:str=None) -> dict: """Loads a BVH file. Args: filename (str): Path to the BVH file. order (str): The order of the rotation channels. (i.e."xyz") Returns: dict: A dictionary containing the following keys: * names (list)(jnum): The names of the joints. * parents (list)(jnum): The parent indices. * offsets (np.ndarray)(jnum, 3): The offsets of the joints. * rotations (np.ndarray)(fnum, jnum, 3) : The local coordinates of rotations of the joints. * positions (np.ndarray)(fnum, jnum, 3) : The positions of the joints. * order (str): The order of the channels. * frametime (float): The time between two frames. """ f = open(filename, "r") i = 0 active = -1 end_site = False # Create empty lists for saving parameters names = [] offsets = np.array([]).reshape((0, 3)) parents = np.array([], dtype=int) # Parse the file, line by line for line in f: if "HIERARCHY" in line: continue if "MOTION" in line: continue rmatch = re.match(r"ROOT (\w+)", line) if rmatch: names.append(rmatch.group(1)) offsets = np.append(offsets, np.array([[0, 0, 0]]), axis=0) parents = np.append(parents, active) active = (len(parents) - 1) continue if "{" in line: continue if "}" in line: if end_site: end_site = False else: active = parents[active] continue offmatch = re.match(r"\s*OFFSET\s+([\-\d\.e]+)\s+([\-\d\.e]+)\s+([\-\d\.e]+)", line) if offmatch: if not end_site: offsets[active] = np.array([list(map(float, offmatch.groups()))]) continue chanmatch = re.match(r"\s*CHANNELS\s+(\d+)", line) if chanmatch: channels = int(chanmatch.group(1)) if order is None: channelis = 0 if channels == 3 else 3 channelie = 3 if channels == 3 else 6 parts = line.split()[2 + channelis:2 + channelie] if any([p not in channelmap for p in parts]): continue order = "".join([channelmap[p] for p in parts]) continue jmatch = re.match("\s*JOINT\s+(\w+)", line) if jmatch: names.append(jmatch.group(1)) offsets = np.append(offsets, np.array([[0, 0, 0]]), axis=0) parents = np.append(parents, active) active = (len(parents) - 1) continue if "End Site" in line: end_site = True continue fmatch = re.match("\s*Frames:\s+(\d+)", line) if fmatch: fnum = int(fmatch.group(1)) positions = offsets[None].repeat(fnum, axis=0) rotations = np.zeros((fnum, len(offsets), 3)) continue fmatch = re.match("\s*Frame Time:\s+([\d\.]+)", line) if fmatch: frametime = float(fmatch.group(1)) continue dmatch = line.strip().split(' ') if dmatch: data_block = np.array(list(map(float, dmatch))) N = len(parents) fi = i if channels == 3: positions[fi, 0:1] = data_block[0:3] rotations[fi, :] = data_block[3:].reshape(N, 3) elif channels == 6: data_block = data_block.reshape(N, 6) positions[fi, :] = data_block[:, 0:3] rotations[fi, :] = data_block[:, 3:6] elif channels == 9: positions[fi, 0] = data_block[0:3] data_block = data_block[3:].reshape(N - 1, 9) rotations[fi, 1:] = data_block[:, 3:6] positions[fi, 1:] += data_block[:, 0:3] * data_block[:, 6:9] else: raise Exception("Too many channels! %i" % channels) i += 1 f.close() return { 'rotations': rotations, 'positions': positions, 'offsets': offsets, 'parents': parents, 'names': names, 'order': order, 'frametime': frametime }
Loads a BVH file. Args: filename (str): Path to the BVH file. order (str): The order of the rotation channels. (i.e."xyz") Returns: dict: A dictionary containing the following keys: * names (list)(jnum): The names of the joints. * parents (list)(jnum): The parent indices. * offsets (np.ndarray)(jnum, 3): The offsets of the joints. * rotations (np.ndarray)(fnum, jnum, 3) : The local coordinates of rotations of the joints. * positions (np.ndarray)(fnum, jnum, 3) : The positions of the joints. * order (str): The order of the channels. * frametime (float): The time between two frames.
load
python
EricGuo5513/momask-codes
visualization/utils/bvh.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/utils/bvh.py
MIT
def save(filename, data, save_positions=False): """ Save a joint hierarchy to a file. Args: filename (str): The output will save on the bvh file. data (dict): The data to save.(rotations, positions, offsets, parents, names, order, frametime) save_positions (bool): Whether to save all of joint positions on MOTION. (False is recommended.) """ order = data['order'] frametime = data['frametime'] with open(filename, 'w') as f: t = "" f.write("%sHIERARCHY\n" % t) f.write("%sROOT %s\n" % (t, data['names'][0])) f.write("%s{\n" % t) t += '\t' f.write("%sOFFSET %f %f %f\n" % (t, data['offsets'][0,0], data['offsets'][0,1], data['offsets'][0,2]) ) f.write("%sCHANNELS 6 Xposition Yposition Zposition %s %s %s \n" % (t, channelmap_inv[order[0]], channelmap_inv[order[1]], channelmap_inv[order[2]])) save_order = [0] for i in range(len(data['parents'])): if data['parents'][i] == 0: t = save_joint(f, data, t, i, save_order, order=order, save_positions=save_positions) t = t[:-1] f.write("%s}\n" % t) rots, poss = data['rotations'], data['positions'] f.write("MOTION\n") f.write("Frames: %i\n" % len(rots)); f.write("Frame Time: %f\n" % frametime); for i in range(rots.shape[0]): for j in save_order: if save_positions or j == 0: f.write("%f %f %f %f %f %f " % ( poss[i,j,0], poss[i,j,1], poss[i,j,2], rots[i,j,0], rots[i,j,1], rots[i,j,2])) else: f.write("%f %f %f " % ( rots[i,j,0], rots[i,j,1], rots[i,j,2])) f.write("\n")
Save a joint hierarchy to a file. Args: filename (str): The output will save on the bvh file. data (dict): The data to save.(rotations, positions, offsets, parents, names, order, frametime) save_positions (bool): Whether to save all of joint positions on MOTION. (False is recommended.)
save
python
EricGuo5513/momask-codes
visualization/utils/bvh.py
https://github.com/EricGuo5513/momask-codes/blob/master/visualization/utils/bvh.py
MIT
def qmul(q, r): """ Multiply quaternion(s) q with quaternion(s) r. Expects two equally-sized tensors of shape (*, 4), where * denotes any number of dimensions. Returns q*r as a tensor of shape (*, 4). """ assert q.shape[-1] == 4 assert r.shape[-1] == 4 original_shape = q.shape # Compute outer product terms = torch.bmm(r.view(-1, 4, 1), q.view(-1, 1, 4)) w = terms[:, 0, 0] - terms[:, 1, 1] - terms[:, 2, 2] - terms[:, 3, 3] x = terms[:, 0, 1] + terms[:, 1, 0] - terms[:, 2, 3] + terms[:, 3, 2] y = terms[:, 0, 2] + terms[:, 1, 3] + terms[:, 2, 0] - terms[:, 3, 1] z = terms[:, 0, 3] - terms[:, 1, 2] + terms[:, 2, 1] + terms[:, 3, 0] return torch.stack((w, x, y, z), dim=1).view(original_shape)
Multiply quaternion(s) q with quaternion(s) r. Expects two equally-sized tensors of shape (*, 4), where * denotes any number of dimensions. Returns q*r as a tensor of shape (*, 4).
qmul
python
EricGuo5513/momask-codes
common/quaternion.py
https://github.com/EricGuo5513/momask-codes/blob/master/common/quaternion.py
MIT
def qrot(q, v): """ Rotate vector(s) v about the rotation described by quaternion(s) q. Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v, where * denotes any number of dimensions. Returns a tensor of shape (*, 3). """ assert q.shape[-1] == 4 assert v.shape[-1] == 3 assert q.shape[:-1] == v.shape[:-1] original_shape = list(v.shape) # print(q.shape) q = q.contiguous().view(-1, 4) v = v.contiguous().view(-1, 3) qvec = q[:, 1:] uv = torch.cross(qvec, v, dim=1) uuv = torch.cross(qvec, uv, dim=1) return (v + 2 * (q[:, :1] * uv + uuv)).view(original_shape)
Rotate vector(s) v about the rotation described by quaternion(s) q. Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v, where * denotes any number of dimensions. Returns a tensor of shape (*, 3).
qrot
python
EricGuo5513/momask-codes
common/quaternion.py
https://github.com/EricGuo5513/momask-codes/blob/master/common/quaternion.py
MIT
def qeuler(q, order, epsilon=0, deg=True): """ Convert quaternion(s) q to Euler angles. Expects a tensor of shape (*, 4), where * denotes any number of dimensions. Returns a tensor of shape (*, 3). """ assert q.shape[-1] == 4 original_shape = list(q.shape) original_shape[-1] = 3 q = q.view(-1, 4) q0 = q[:, 0] q1 = q[:, 1] q2 = q[:, 2] q3 = q[:, 3] if order == 'xyz': x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) y = torch.asin(torch.clamp(2 * (q1 * q3 + q0 * q2), -1 + epsilon, 1 - epsilon)) z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)) elif order == 'yzx': x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3)) y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3)) z = torch.asin(torch.clamp(2 * (q1 * q2 + q0 * q3), -1 + epsilon, 1 - epsilon)) elif order == 'zxy': x = torch.asin(torch.clamp(2 * (q0 * q1 + q2 * q3), -1 + epsilon, 1 - epsilon)) y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q1 * q1 + q3 * q3)) elif order == 'xzy': x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3)) y = torch.atan2(2 * (q0 * q2 + q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3)) z = torch.asin(torch.clamp(2 * (q0 * q3 - q1 * q2), -1 + epsilon, 1 - epsilon)) elif order == 'yxz': x = torch.asin(torch.clamp(2 * (q0 * q1 - q2 * q3), -1 + epsilon, 1 - epsilon)) y = torch.atan2(2 * (q1 * q3 + q0 * q2), 1 - 2 * (q1 * q1 + q2 * q2)) z = torch.atan2(2 * (q1 * q2 + q0 * q3), 1 - 2 * (q1 * q1 + q3 * q3)) elif order == 'zyx': x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2)) y = torch.asin(torch.clamp(2 * (q0 * q2 - q1 * q3), -1 + epsilon, 1 - epsilon)) z = torch.atan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)) else: raise if deg: return torch.stack((x, y, z), dim=1).view(original_shape) * 180 / np.pi else: return torch.stack((x, y, z), dim=1).view(original_shape)
Convert quaternion(s) q to Euler angles. Expects a tensor of shape (*, 4), where * denotes any number of dimensions. Returns a tensor of shape (*, 3).
qeuler
python
EricGuo5513/momask-codes
common/quaternion.py
https://github.com/EricGuo5513/momask-codes/blob/master/common/quaternion.py
MIT
def qfix(q): """ Enforce quaternion continuity across the time dimension by selecting the representation (q or -q) with minimal distance (or, equivalently, maximal dot product) between two consecutive frames. Expects a tensor of shape (L, J, 4), where L is the sequence length and J is the number of joints. Returns a tensor of the same shape. """ assert len(q.shape) == 3 assert q.shape[-1] == 4 result = q.copy() dot_products = np.sum(q[1:] * q[:-1], axis=2) mask = dot_products < 0 mask = (np.cumsum(mask, axis=0) % 2).astype(bool) result[1:][mask] *= -1 return result
Enforce quaternion continuity across the time dimension by selecting the representation (q or -q) with minimal distance (or, equivalently, maximal dot product) between two consecutive frames. Expects a tensor of shape (L, J, 4), where L is the sequence length and J is the number of joints. Returns a tensor of the same shape.
qfix
python
EricGuo5513/momask-codes
common/quaternion.py
https://github.com/EricGuo5513/momask-codes/blob/master/common/quaternion.py
MIT
def euler2quat(e, order, deg=True): """ Convert Euler angles to quaternions. """ assert e.shape[-1] == 3 original_shape = list(e.shape) original_shape[-1] = 4 e = e.view(-1, 3) ## if euler angles in degrees if deg: e = e * np.pi / 180. x = e[:, 0] y = e[:, 1] z = e[:, 2] rx = torch.stack((torch.cos(x / 2), torch.sin(x / 2), torch.zeros_like(x), torch.zeros_like(x)), dim=1) ry = torch.stack((torch.cos(y / 2), torch.zeros_like(y), torch.sin(y / 2), torch.zeros_like(y)), dim=1) rz = torch.stack((torch.cos(z / 2), torch.zeros_like(z), torch.zeros_like(z), torch.sin(z / 2)), dim=1) result = None for coord in order: if coord == 'x': r = rx elif coord == 'y': r = ry elif coord == 'z': r = rz else: raise if result is None: result = r else: result = qmul(result, r) # Reverse antipodal representation to have a non-negative "w" if order in ['xyz', 'yzx', 'zxy']: result *= -1 return result.view(original_shape)
Convert Euler angles to quaternions.
euler2quat
python
EricGuo5513/momask-codes
common/quaternion.py
https://github.com/EricGuo5513/momask-codes/blob/master/common/quaternion.py
MIT
def expmap_to_quaternion(e): """ Convert axis-angle rotations (aka exponential maps) to quaternions. Stable formula from "Practical Parameterization of Rotations Using the Exponential Map". Expects a tensor of shape (*, 3), where * denotes any number of dimensions. Returns a tensor of shape (*, 4). """ assert e.shape[-1] == 3 original_shape = list(e.shape) original_shape[-1] = 4 e = e.reshape(-1, 3) theta = np.linalg.norm(e, axis=1).reshape(-1, 1) w = np.cos(0.5 * theta).reshape(-1, 1) xyz = 0.5 * np.sinc(0.5 * theta / np.pi) * e return np.concatenate((w, xyz), axis=1).reshape(original_shape)
Convert axis-angle rotations (aka exponential maps) to quaternions. Stable formula from "Practical Parameterization of Rotations Using the Exponential Map". Expects a tensor of shape (*, 3), where * denotes any number of dimensions. Returns a tensor of shape (*, 4).
expmap_to_quaternion
python
EricGuo5513/momask-codes
common/quaternion.py
https://github.com/EricGuo5513/momask-codes/blob/master/common/quaternion.py
MIT
def euler_to_quaternion(e, order): """ Convert Euler angles to quaternions. """ assert e.shape[-1] == 3 original_shape = list(e.shape) original_shape[-1] = 4 e = e.reshape(-1, 3) x = e[:, 0] y = e[:, 1] z = e[:, 2] rx = np.stack((np.cos(x / 2), np.sin(x / 2), np.zeros_like(x), np.zeros_like(x)), axis=1) ry = np.stack((np.cos(y / 2), np.zeros_like(y), np.sin(y / 2), np.zeros_like(y)), axis=1) rz = np.stack((np.cos(z / 2), np.zeros_like(z), np.zeros_like(z), np.sin(z / 2)), axis=1) result = None for coord in order: if coord == 'x': r = rx elif coord == 'y': r = ry elif coord == 'z': r = rz else: raise if result is None: result = r else: result = qmul_np(result, r) # Reverse antipodal representation to have a non-negative "w" if order in ['xyz', 'yzx', 'zxy']: result *= -1 return result.reshape(original_shape)
Convert Euler angles to quaternions.
euler_to_quaternion
python
EricGuo5513/momask-codes
common/quaternion.py
https://github.com/EricGuo5513/momask-codes/blob/master/common/quaternion.py
MIT
def quaternion_to_matrix(quaternions): """ Convert rotations given as quaternions to rotation matrices. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotation matrices as tensor of shape (..., 3, 3). """ r, i, j, k = torch.unbind(quaternions, -1) two_s = 2.0 / (quaternions * quaternions).sum(-1) o = torch.stack( ( 1 - two_s * (j * j + k * k), two_s * (i * j - k * r), two_s * (i * k + j * r), two_s * (i * j + k * r), 1 - two_s * (i * i + k * k), two_s * (j * k - i * r), two_s * (i * k - j * r), two_s * (j * k + i * r), 1 - two_s * (i * i + j * j), ), -1, ) return o.reshape(quaternions.shape[:-1] + (3, 3))
Convert rotations given as quaternions to rotation matrices. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotation matrices as tensor of shape (..., 3, 3).
quaternion_to_matrix
python
EricGuo5513/momask-codes
common/quaternion.py
https://github.com/EricGuo5513/momask-codes/blob/master/common/quaternion.py
MIT
def qpow(q0, t, dtype=torch.float): ''' q0 : tensor of quaternions t: tensor of powers ''' q0 = qnormalize(q0) theta0 = torch.acos(q0[..., 0]) ## if theta0 is close to zero, add epsilon to avoid NaNs mask = (theta0 <= 10e-10) * (theta0 >= -10e-10) theta0 = (1 - mask) * theta0 + mask * 10e-10 v0 = q0[..., 1:] / torch.sin(theta0).view(-1, 1) if isinstance(t, torch.Tensor): q = torch.zeros(t.shape + q0.shape) theta = t.view(-1, 1) * theta0.view(1, -1) else: ## if t is a number q = torch.zeros(q0.shape) theta = t * theta0 q[..., 0] = torch.cos(theta) q[..., 1:] = v0 * torch.sin(theta).unsqueeze(-1) return q.to(dtype)
q0 : tensor of quaternions t: tensor of powers
qpow
python
EricGuo5513/momask-codes
common/quaternion.py
https://github.com/EricGuo5513/momask-codes/blob/master/common/quaternion.py
MIT
def qslerp(q0, q1, t): ''' q0: starting quaternion q1: ending quaternion t: array of points along the way Returns: Tensor of Slerps: t.shape + q0.shape ''' q0 = qnormalize(q0) q1 = qnormalize(q1) q_ = qpow(qmul(q1, qinv(q0)), t) return qmul(q_, q0.contiguous().view(torch.Size([1] * len(t.shape)) + q0.shape).expand(t.shape + q0.shape).contiguous())
q0: starting quaternion q1: ending quaternion t: array of points along the way Returns: Tensor of Slerps: t.shape + q0.shape
qslerp
python
EricGuo5513/momask-codes
common/quaternion.py
https://github.com/EricGuo5513/momask-codes/blob/master/common/quaternion.py
MIT
def qbetween(v0, v1): ''' find the quaternion used to rotate v0 to v1 ''' assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)' assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)' v = torch.cross(v0, v1) w = torch.sqrt((v0 ** 2).sum(dim=-1, keepdim=True) * (v1 ** 2).sum(dim=-1, keepdim=True)) + (v0 * v1).sum(dim=-1, keepdim=True) return qnormalize(torch.cat([w, v], dim=-1))
find the quaternion used to rotate v0 to v1
qbetween
python
EricGuo5513/momask-codes
common/quaternion.py
https://github.com/EricGuo5513/momask-codes/blob/master/common/quaternion.py
MIT
def qbetween_np(v0, v1): ''' find the quaternion used to rotate v0 to v1 ''' assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)' assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)' v0 = torch.from_numpy(v0).float() v1 = torch.from_numpy(v1).float() return qbetween(v0, v1).numpy()
find the quaternion used to rotate v0 to v1
qbetween_np
python
EricGuo5513/momask-codes
common/quaternion.py
https://github.com/EricGuo5513/momask-codes/blob/master/common/quaternion.py
MIT
def inverse_kinematics_np(self, joints, face_joint_idx, smooth_forward=False): assert len(face_joint_idx) == 4 '''Get Forward Direction''' l_hip, r_hip, sdr_r, sdr_l = face_joint_idx across1 = joints[:, r_hip] - joints[:, l_hip] across2 = joints[:, sdr_r] - joints[:, sdr_l] across = across1 + across2 across = across / np.sqrt((across**2).sum(axis=-1))[:, np.newaxis] # print(across1.shape, across2.shape) # forward (batch_size, 3) forward = np.cross(np.array([[0, 1, 0]]), across, axis=-1) if smooth_forward: forward = filters.gaussian_filter1d(forward, 20, axis=0, mode='nearest') # forward (batch_size, 3) forward = forward / np.sqrt((forward**2).sum(axis=-1))[..., np.newaxis] '''Get Root Rotation''' target = np.array([[0,0,1]]).repeat(len(forward), axis=0) root_quat = qbetween_np(forward, target) '''Inverse Kinematics''' # quat_params (batch_size, joints_num, 4) # print(joints.shape[:-1]) quat_params = np.zeros(joints.shape[:-1] + (4,)) # print(quat_params.shape) root_quat[0] = np.array([[1.0, 0.0, 0.0, 0.0]]) quat_params[:, 0] = root_quat # quat_params[0, 0] = np.array([[1.0, 0.0, 0.0, 0.0]]) for chain in self._kinematic_tree: R = root_quat for j in range(len(chain) - 1): # (batch, 3) u = self._raw_offset_np[chain[j+1]][np.newaxis,...].repeat(len(joints), axis=0) # print(u.shape) # (batch, 3) v = joints[:, chain[j+1]] - joints[:, chain[j]] v = v / np.sqrt((v**2).sum(axis=-1))[:, np.newaxis] # print(u.shape, v.shape) rot_u_v = qbetween_np(u, v) R_loc = qmul_np(qinv_np(R), rot_u_v) quat_params[:,chain[j + 1], :] = R_loc R = qmul_np(R, R_loc) return quat_params
Get Forward Direction
inverse_kinematics_np
python
EricGuo5513/momask-codes
common/skeleton.py
https://github.com/EricGuo5513/momask-codes/blob/master/common/skeleton.py
MIT
def uniform_skeleton(positions, target_offset): src_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu') src_offset = src_skel.get_offsets_joints(torch.from_numpy(positions[0])) src_offset = src_offset.numpy() tgt_offset = target_offset.numpy() # print(src_offset) # print(tgt_offset) '''Calculate Scale Ratio as the ratio of legs''' src_leg_len = np.abs(src_offset[l_idx1]).max() + np.abs(src_offset[l_idx2]).max() tgt_leg_len = np.abs(tgt_offset[l_idx1]).max() + np.abs(tgt_offset[l_idx2]).max() scale_rt = tgt_leg_len / src_leg_len # print(scale_rt) src_root_pos = positions[:, 0] tgt_root_pos = src_root_pos * scale_rt '''Inverse Kinematics''' quat_params = src_skel.inverse_kinematics_np(positions, face_joint_indx) # print(quat_params.shape) '''Forward Kinematics''' src_skel.set_offset(target_offset) new_joints = src_skel.forward_kinematics_np(quat_params, tgt_root_pos) return new_joints
Calculate Scale Ratio as the ratio of legs
uniform_skeleton
python
EricGuo5513/momask-codes
utils/motion_process.py
https://github.com/EricGuo5513/momask-codes/blob/master/utils/motion_process.py
MIT
def get_rifke(positions): '''Local pose''' positions[..., 0] -= positions[:, 0:1, 0] positions[..., 2] -= positions[:, 0:1, 2] '''All pose face Z+''' positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions) return positions
Local pose
extract_features.get_rifke
python
EricGuo5513/momask-codes
utils/motion_process.py
https://github.com/EricGuo5513/momask-codes/blob/master/utils/motion_process.py
MIT
def get_quaternion(positions): skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") # (seq_len, joints_num, 4) quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False) '''Fix Quaternion Discontinuity''' quat_params = qfix(quat_params) # (seq_len, 4) r_rot = quat_params[:, 0].copy() # print(r_rot[0]) '''Root Linear Velocity''' # (seq_len - 1, 3) velocity = (positions[1:, 0] - positions[:-1, 0]).copy() # print(r_rot.shape, velocity.shape) velocity = qrot_np(r_rot[1:], velocity) '''Root Angular Velocity''' # (seq_len - 1, 4) r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) quat_params[1:, 0] = r_velocity # (seq_len, joints_num, 4) return quat_params, r_velocity, velocity, r_rot
Fix Quaternion Discontinuity
extract_features.get_quaternion
python
EricGuo5513/momask-codes
utils/motion_process.py
https://github.com/EricGuo5513/momask-codes/blob/master/utils/motion_process.py
MIT
def get_cont6d_params(positions): skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") # (seq_len, joints_num, 4) quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True) '''Quaternion to continuous 6D''' cont_6d_params = quaternion_to_cont6d_np(quat_params) # (seq_len, 4) r_rot = quat_params[:, 0].copy() # print(r_rot[0]) '''Root Linear Velocity''' # (seq_len - 1, 3) velocity = (positions[1:, 0] - positions[:-1, 0]).copy() # print(r_rot.shape, velocity.shape) velocity = qrot_np(r_rot[1:], velocity) '''Root Angular Velocity''' # (seq_len - 1, 4) r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) # (seq_len, joints_num, 4) return cont_6d_params, r_velocity, velocity, r_rot
Quaternion to continuous 6D
extract_features.get_cont6d_params
python
EricGuo5513/momask-codes
utils/motion_process.py
https://github.com/EricGuo5513/momask-codes/blob/master/utils/motion_process.py
MIT
def extract_features(positions, feet_thre, n_raw_offsets, kinematic_chain, face_joint_indx, fid_r, fid_l): global_positions = positions.copy() """ Get Foot Contacts """ def foot_detect(positions, thres): velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0]) feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2 feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2 feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2 # feet_l_h = positions[:-1,fid_l,1] # feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float) feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float) feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2 feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2 feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2 # feet_r_h = positions[:-1,fid_r,1] # feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float) feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float) return feet_l, feet_r # feet_l, feet_r = foot_detect(positions, feet_thre) # feet_l, feet_r = foot_detect(positions, 0.002) '''Quaternion and Cartesian representation''' r_rot = None def get_rifke(positions): '''Local pose''' positions[..., 0] -= positions[:, 0:1, 0] positions[..., 2] -= positions[:, 0:1, 2] '''All pose face Z+''' positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions) return positions def get_quaternion(positions): skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") # (seq_len, joints_num, 4) quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False) '''Fix Quaternion Discontinuity''' quat_params = qfix(quat_params) # (seq_len, 4) r_rot = quat_params[:, 0].copy() # print(r_rot[0]) '''Root Linear Velocity''' # (seq_len - 1, 3) velocity = (positions[1:, 0] - positions[:-1, 0]).copy() # print(r_rot.shape, velocity.shape) velocity = qrot_np(r_rot[1:], velocity) '''Root Angular Velocity''' # (seq_len - 1, 4) r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) quat_params[1:, 0] = r_velocity # (seq_len, joints_num, 4) return quat_params, r_velocity, velocity, r_rot def get_cont6d_params(positions): skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") # (seq_len, joints_num, 4) quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True) '''Quaternion to continuous 6D''' cont_6d_params = quaternion_to_cont6d_np(quat_params) # (seq_len, 4) r_rot = quat_params[:, 0].copy() # print(r_rot[0]) '''Root Linear Velocity''' # (seq_len - 1, 3) velocity = (positions[1:, 0] - positions[:-1, 0]).copy() # print(r_rot.shape, velocity.shape) velocity = qrot_np(r_rot[1:], velocity) '''Root Angular Velocity''' # (seq_len - 1, 4) r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) # (seq_len, joints_num, 4) return cont_6d_params, r_velocity, velocity, r_rot cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions) positions = get_rifke(positions) # trejec = np.cumsum(np.concatenate([np.array([[0, 0, 0]]), velocity], axis=0), axis=0) # r_rotations, r_pos = recover_ric_glo_np(r_velocity, velocity[:, [0, 2]]) # plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*') # plt.plot(ground_positions[:, 0, 0], ground_positions[:, 0, 2], marker='o', color='r') # plt.plot(trejec[:, 0], trejec[:, 2], marker='^', color='g') # plt.plot(r_pos[:, 0], r_pos[:, 2], marker='s', color='y') # plt.xlabel('x') # plt.ylabel('z') # plt.axis('equal') # plt.show() '''Root height''' root_y = positions[:, 0, 1:2] '''Root rotation and linear velocity''' # (seq_len-1, 1) rotation velocity along y-axis # (seq_len-1, 2) linear velovity on xz plane r_velocity = np.arcsin(r_velocity[:, 2:3]) l_velocity = velocity[:, [0, 2]] # print(r_velocity.shape, l_velocity.shape, root_y.shape) root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1) '''Get Joint Rotation Representation''' # (seq_len, (joints_num-1) *6) quaternion for skeleton joints rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1) '''Get Joint Rotation Invariant Position Represention''' # (seq_len, (joints_num-1)*3) local joint position ric_data = positions[:, 1:].reshape(len(positions), -1) '''Get Joint Velocity Representation''' # (seq_len-1, joints_num*3) local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1), global_positions[1:] - global_positions[:-1]) local_vel = local_vel.reshape(len(local_vel), -1) data = root_data data = np.concatenate([data, ric_data[:-1]], axis=-1) data = np.concatenate([data, rot_data[:-1]], axis=-1) # print(data.shape, local_vel.shape) data = np.concatenate([data, local_vel], axis=-1) data = np.concatenate([data, feet_l, feet_r], axis=-1) return data
Get Foot Contacts
extract_features
python
EricGuo5513/momask-codes
utils/motion_process.py
https://github.com/EricGuo5513/momask-codes/blob/master/utils/motion_process.py
MIT
def get_rifke(positions): '''Local pose''' positions[..., 0] -= positions[:, 0:1, 0] positions[..., 2] -= positions[:, 0:1, 2] '''All pose face Z+''' positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions) return positions
Local pose
process_file.get_rifke
python
EricGuo5513/momask-codes
utils/motion_process.py
https://github.com/EricGuo5513/momask-codes/blob/master/utils/motion_process.py
MIT
def get_quaternion(positions): skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") # (seq_len, joints_num, 4) quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False) '''Fix Quaternion Discontinuity''' quat_params = qfix(quat_params) # (seq_len, 4) r_rot = quat_params[:, 0].copy() # print(r_rot[0]) '''Root Linear Velocity''' # (seq_len - 1, 3) velocity = (positions[1:, 0] - positions[:-1, 0]).copy() # print(r_rot.shape, velocity.shape) velocity = qrot_np(r_rot[1:], velocity) '''Root Angular Velocity''' # (seq_len - 1, 4) r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) quat_params[1:, 0] = r_velocity # (seq_len, joints_num, 4) return quat_params, r_velocity, velocity, r_rot
Fix Quaternion Discontinuity
process_file.get_quaternion
python
EricGuo5513/momask-codes
utils/motion_process.py
https://github.com/EricGuo5513/momask-codes/blob/master/utils/motion_process.py
MIT
def get_cont6d_params(positions): skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") # (seq_len, joints_num, 4) quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True) '''Quaternion to continuous 6D''' cont_6d_params = quaternion_to_cont6d_np(quat_params) # (seq_len, 4) r_rot = quat_params[:, 0].copy() # print(r_rot[0]) '''Root Linear Velocity''' # (seq_len - 1, 3) velocity = (positions[1:, 0] - positions[:-1, 0]).copy() # print(r_rot.shape, velocity.shape) velocity = qrot_np(r_rot[1:], velocity) '''Root Angular Velocity''' # (seq_len - 1, 4) r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) # (seq_len, joints_num, 4) return cont_6d_params, r_velocity, velocity, r_rot
Quaternion to continuous 6D
process_file.get_cont6d_params
python
EricGuo5513/momask-codes
utils/motion_process.py
https://github.com/EricGuo5513/momask-codes/blob/master/utils/motion_process.py
MIT
def process_file(positions, feet_thre): # (seq_len, joints_num, 3) # '''Down Sample''' # positions = positions[::ds_num] '''Uniform Skeleton''' positions = uniform_skeleton(positions, tgt_offsets) '''Put on Floor''' floor_height = positions.min(axis=0).min(axis=0)[1] positions[:, :, 1] -= floor_height # print(floor_height) # plot_3d_motion("./positions_1.mp4", kinematic_chain, positions, 'title', fps=20) '''XZ at origin''' root_pos_init = positions[0] root_pose_init_xz = root_pos_init[0] * np.array([1, 0, 1]) positions = positions - root_pose_init_xz # '''Move the first pose to origin ''' # root_pos_init = positions[0] # positions = positions - root_pos_init[0] '''All initially face Z+''' r_hip, l_hip, sdr_r, sdr_l = face_joint_indx across1 = root_pos_init[r_hip] - root_pos_init[l_hip] across2 = root_pos_init[sdr_r] - root_pos_init[sdr_l] across = across1 + across2 across = across / np.sqrt((across ** 2).sum(axis=-1))[..., np.newaxis] # forward (3,), rotate around y-axis forward_init = np.cross(np.array([[0, 1, 0]]), across, axis=-1) # forward (3,) forward_init = forward_init / np.sqrt((forward_init ** 2).sum(axis=-1))[..., np.newaxis] # print(forward_init) target = np.array([[0, 0, 1]]) root_quat_init = qbetween_np(forward_init, target) root_quat_init = np.ones(positions.shape[:-1] + (4,)) * root_quat_init positions_b = positions.copy() positions = qrot_np(root_quat_init, positions) # plot_3d_motion("./positions_2.mp4", kinematic_chain, positions, 'title', fps=20) '''New ground truth positions''' global_positions = positions.copy() # plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*') # plt.plot(positions[:, 0, 0], positions[:, 0, 2], marker='o', color='r') # plt.xlabel('x') # plt.ylabel('z') # plt.axis('equal') # plt.show() """ Get Foot Contacts """ def foot_detect(positions, thres): velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0]) feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2 feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2 feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2 # feet_l_h = positions[:-1,fid_l,1] # feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float) feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float) feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2 feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2 feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2 # feet_r_h = positions[:-1,fid_r,1] # feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float) feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float) return feet_l, feet_r # feet_l, feet_r = foot_detect(positions, feet_thre) # feet_l, feet_r = foot_detect(positions, 0.002) '''Quaternion and Cartesian representation''' r_rot = None def get_rifke(positions): '''Local pose''' positions[..., 0] -= positions[:, 0:1, 0] positions[..., 2] -= positions[:, 0:1, 2] '''All pose face Z+''' positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions) return positions def get_quaternion(positions): skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") # (seq_len, joints_num, 4) quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False) '''Fix Quaternion Discontinuity''' quat_params = qfix(quat_params) # (seq_len, 4) r_rot = quat_params[:, 0].copy() # print(r_rot[0]) '''Root Linear Velocity''' # (seq_len - 1, 3) velocity = (positions[1:, 0] - positions[:-1, 0]).copy() # print(r_rot.shape, velocity.shape) velocity = qrot_np(r_rot[1:], velocity) '''Root Angular Velocity''' # (seq_len - 1, 4) r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) quat_params[1:, 0] = r_velocity # (seq_len, joints_num, 4) return quat_params, r_velocity, velocity, r_rot def get_cont6d_params(positions): skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") # (seq_len, joints_num, 4) quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True) '''Quaternion to continuous 6D''' cont_6d_params = quaternion_to_cont6d_np(quat_params) # (seq_len, 4) r_rot = quat_params[:, 0].copy() # print(r_rot[0]) '''Root Linear Velocity''' # (seq_len - 1, 3) velocity = (positions[1:, 0] - positions[:-1, 0]).copy() # print(r_rot.shape, velocity.shape) velocity = qrot_np(r_rot[1:], velocity) '''Root Angular Velocity''' # (seq_len - 1, 4) r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) # (seq_len, joints_num, 4) return cont_6d_params, r_velocity, velocity, r_rot cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions) positions = get_rifke(positions) # trejec = np.cumsum(np.concatenate([np.array([[0, 0, 0]]), velocity], axis=0), axis=0) # r_rotations, r_pos = recover_ric_glo_np(r_velocity, velocity[:, [0, 2]]) # plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*') # plt.plot(ground_positions[:, 0, 0], ground_positions[:, 0, 2], marker='o', color='r') # plt.plot(trejec[:, 0], trejec[:, 2], marker='^', color='g') # plt.plot(r_pos[:, 0], r_pos[:, 2], marker='s', color='y') # plt.xlabel('x') # plt.ylabel('z') # plt.axis('equal') # plt.show() '''Root height''' root_y = positions[:, 0, 1:2] '''Root rotation and linear velocity''' # (seq_len-1, 1) rotation velocity along y-axis # (seq_len-1, 2) linear velovity on xz plane r_velocity = np.arcsin(r_velocity[:, 2:3]) l_velocity = velocity[:, [0, 2]] # print(r_velocity.shape, l_velocity.shape, root_y.shape) root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1) '''Get Joint Rotation Representation''' # (seq_len, (joints_num-1) *6) quaternion for skeleton joints rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1) '''Get Joint Rotation Invariant Position Represention''' # (seq_len, (joints_num-1)*3) local joint position ric_data = positions[:, 1:].reshape(len(positions), -1) '''Get Joint Velocity Representation''' # (seq_len-1, joints_num*3) local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1), global_positions[1:] - global_positions[:-1]) local_vel = local_vel.reshape(len(local_vel), -1) data = root_data data = np.concatenate([data, ric_data[:-1]], axis=-1) data = np.concatenate([data, rot_data[:-1]], axis=-1) # print(data.shape, local_vel.shape) data = np.concatenate([data, local_vel], axis=-1) data = np.concatenate([data, feet_l, feet_r], axis=-1) return data, global_positions, positions, l_velocity
Uniform Skeleton
process_file
python
EricGuo5513/momask-codes
utils/motion_process.py
https://github.com/EricGuo5513/momask-codes/blob/master/utils/motion_process.py
MIT
def recover_root_rot_pos(data): rot_vel = data[..., 0] r_rot_ang = torch.zeros_like(rot_vel).to(data.device) '''Get Y-axis rotation from rotation velocity''' r_rot_ang[..., 1:] = rot_vel[..., :-1] r_rot_ang = torch.cumsum(r_rot_ang, dim=-1) r_rot_quat = torch.zeros(data.shape[:-1] + (4,)).to(data.device) r_rot_quat[..., 0] = torch.cos(r_rot_ang) r_rot_quat[..., 2] = torch.sin(r_rot_ang) r_pos = torch.zeros(data.shape[:-1] + (3,)).to(data.device) r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3] '''Add Y-axis rotation to root position''' r_pos = qrot(qinv(r_rot_quat), r_pos) r_pos = torch.cumsum(r_pos, dim=-2) r_pos[..., 1] = data[..., 3] return r_rot_quat, r_pos
Get Y-axis rotation from rotation velocity
recover_root_rot_pos
python
EricGuo5513/momask-codes
utils/motion_process.py
https://github.com/EricGuo5513/momask-codes/blob/master/utils/motion_process.py
MIT
def recover_from_ric(data, joints_num): r_rot_quat, r_pos = recover_root_rot_pos(data) positions = data[..., 4:(joints_num - 1) * 3 + 4] positions = positions.view(positions.shape[:-1] + (-1, 3)) '''Add Y-axis rotation to local joints''' positions = qrot(qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4,)), positions) '''Add root XZ to joints''' positions[..., 0] += r_pos[..., 0:1] positions[..., 2] += r_pos[..., 2:3] '''Concate root and joints''' positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2) return positions
Add Y-axis rotation to local joints
recover_from_ric
python
EricGuo5513/momask-codes
utils/motion_process.py
https://github.com/EricGuo5513/momask-codes/blob/master/utils/motion_process.py
MIT
def calculate_mpjpe(gt_joints, pred_joints): """ gt_joints: num_poses x num_joints(22) x 3 pred_joints: num_poses x num_joints(22) x 3 (obtained from recover_from_ric()) """ assert gt_joints.shape == pred_joints.shape, f"GT shape: {gt_joints.shape}, pred shape: {pred_joints.shape}" # Align by root (pelvis) pelvis = gt_joints[:, [0]].mean(1) gt_joints = gt_joints - torch.unsqueeze(pelvis, dim=1) pelvis = pred_joints[:, [0]].mean(1) pred_joints = pred_joints - torch.unsqueeze(pelvis, dim=1) # Compute MPJPE mpjpe = torch.linalg.norm(pred_joints - gt_joints, dim=-1) # num_poses x num_joints=22 mpjpe_seq = mpjpe.mean(-1) # num_poses return mpjpe_seq
gt_joints: num_poses x num_joints(22) x 3 pred_joints: num_poses x num_joints(22) x 3 (obtained from recover_from_ric())
calculate_mpjpe
python
EricGuo5513/momask-codes
utils/metrics.py
https://github.com/EricGuo5513/momask-codes/blob/master/utils/metrics.py
MIT
def euclidean_distance_matrix(matrix1, matrix2): """ Params: -- matrix1: N1 x D -- matrix2: N2 x D Returns: -- dist: N1 x N2 dist[i, j] == distance(matrix1[i], matrix2[j]) """ assert matrix1.shape[1] == matrix2.shape[1] d1 = -2 * np.dot(matrix1, matrix2.T) # shape (num_test, num_train) d2 = np.sum(np.square(matrix1), axis=1, keepdims=True) # shape (num_test, 1) d3 = np.sum(np.square(matrix2), axis=1) # shape (num_train, ) dists = np.sqrt(d1 + d2 + d3) # broadcasting return dists
Params: -- matrix1: N1 x D -- matrix2: N2 x D Returns: -- dist: N1 x N2 dist[i, j] == distance(matrix1[i], matrix2[j])
euclidean_distance_matrix
python
EricGuo5513/momask-codes
utils/metrics.py
https://github.com/EricGuo5513/momask-codes/blob/master/utils/metrics.py
MIT
def calculate_activation_statistics(activations): """ Params: -- activation: num_samples x dim_feat Returns: -- mu: dim_feat -- sigma: dim_feat x dim_feat """ mu = np.mean(activations, axis=0) cov = np.cov(activations, rowvar=False) return mu, cov
Params: -- activation: num_samples x dim_feat Returns: -- mu: dim_feat -- sigma: dim_feat x dim_feat
calculate_activation_statistics
python
EricGuo5513/momask-codes
utils/metrics.py
https://github.com/EricGuo5513/momask-codes/blob/master/utils/metrics.py
MIT
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): """Numpy implementation of the Frechet Distance. The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). Stable version by Dougal J. Sutherland. Params: -- mu1 : Numpy array containing the activations of a layer of the inception net (like returned by the function 'get_predictions') for generated samples. -- mu2 : The sample mean over activations, precalculated on an representative data set. -- sigma1: The covariance matrix over activations for generated samples. -- sigma2: The covariance matrix over activations, precalculated on an representative data set. Returns: -- : The Frechet Distance. """ mu1 = np.atleast_1d(mu1) mu2 = np.atleast_1d(mu2) sigma1 = np.atleast_2d(sigma1) sigma2 = np.atleast_2d(sigma2) assert mu1.shape == mu2.shape, \ 'Training and test mean vectors have different lengths' assert sigma1.shape == sigma2.shape, \ 'Training and test covariances have different dimensions' diff = mu1 - mu2 # Product might be almost singular covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) if not np.isfinite(covmean).all(): msg = ('fid calculation produces singular product; ' 'adding %s to diagonal of cov estimates') % eps print(msg) offset = np.eye(sigma1.shape[0]) * eps covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) # Numerical error might give slight imaginary component if np.iscomplexobj(covmean): if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) raise ValueError('Imaginary component {}'.format(m)) covmean = covmean.real tr_covmean = np.trace(covmean) return (diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean)
Numpy implementation of the Frechet Distance. The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). Stable version by Dougal J. Sutherland. Params: -- mu1 : Numpy array containing the activations of a layer of the inception net (like returned by the function 'get_predictions') for generated samples. -- mu2 : The sample mean over activations, precalculated on an representative data set. -- sigma1: The covariance matrix over activations for generated samples. -- sigma2: The covariance matrix over activations, precalculated on an representative data set. Returns: -- : The Frechet Distance.
calculate_frechet_distance
python
EricGuo5513/momask-codes
utils/metrics.py
https://github.com/EricGuo5513/momask-codes/blob/master/utils/metrics.py
MIT
def fetch_requirements(paths) -> List[str]: """ This function reads the requirements file. Args: path (str): the path to the requirements file. Returns: The lines in the requirements file. """ if not isinstance(paths, list): paths = [paths] requirements = [] for path in paths: with open(path, "r") as fd: requirements += [r.strip() for r in fd.readlines()] return requirements
This function reads the requirements file. Args: path (str): the path to the requirements file. Returns: The lines in the requirements file.
fetch_requirements
python
hpcaitech/Open-Sora
setup.py
https://github.com/hpcaitech/Open-Sora/blob/master/setup.py
Apache-2.0
def fetch_readme() -> str: """ This function reads the README.md file in the current directory. Returns: The lines in the README file. """ with open("README.md", encoding="utf-8") as f: return f.read()
This function reads the README.md file in the current directory. Returns: The lines in the README file.
fetch_readme
python
hpcaitech/Open-Sora
setup.py
https://github.com/hpcaitech/Open-Sora/blob/master/setup.py
Apache-2.0
def build_module(module: dict | nn.Module, builder: Registry, **kwargs) -> nn.Module | None: """Build module from config or return the module itself. Args: module (dict | nn.Module): The module to build. builder (Registry): The registry to build module. *args, **kwargs: Arguments passed to build function. Returns: (None | nn.Module): The created model. """ if module is None: return None if isinstance(module, dict): cfg = deepcopy(module) for k, v in kwargs.items(): cfg[k] = v return builder.build(cfg) elif isinstance(module, nn.Module): return module elif module is None: return None else: raise TypeError(f"Only support dict and nn.Module, but got {type(module)}.")
Build module from config or return the module itself. Args: module (dict | nn.Module): The module to build. builder (Registry): The registry to build module. *args, **kwargs: Arguments passed to build function. Returns: (None | nn.Module): The created model.
build_module
python
hpcaitech/Open-Sora
opensora/registry.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/registry.py
Apache-2.0
def __init__(self, hidden_size, eps=1e-6): """ Construct a layernorm module in the T5 style. No bias and no subtraction of mean. """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
__init__
python
hpcaitech/Open-Sora
opensora/acceleration/shardformer/modeling/t5.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/acceleration/shardformer/modeling/t5.py
Apache-2.0
def prepare_block_inputs( self, img: Tensor, img_ids: Tensor, txt: Tensor, # t5 encoded vec txt_ids: Tensor, timesteps: Tensor, y_vec: Tensor, # clip encoded vec cond: Tensor = None, guidance: Tensor | None = None, ): """ obtain the processed: img: projected noisy img latent, txt: text context (from t5), vec: clip encoded vector, pe: the positional embeddings for concatenated img and txt """ if img.ndim != 3 or txt.ndim != 3: raise ValueError("Input img and txt tensors must have 3 dimensions.") # running on sequences img img = self.img_in(img) if self.config.cond_embed: if cond is None: raise ValueError("Didn't get conditional input for conditional model.") img = img + self.cond_in(cond) vec = self.time_in(timestep_embedding(timesteps, 256)) if self.config.guidance_embed: if guidance is None: raise ValueError( "Didn't get guidance strength for guidance distilled model." ) vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) vec = vec + self.vector_in(y_vec) txt = self.txt_in(txt) # concat: 4096 + t*h*2/4 ids = torch.cat((txt_ids, img_ids), dim=1) pe = self.pe_embedder(ids) if self._input_requires_grad: # we only apply lora to double/single blocks, thus we only need to enable grad for these inputs img.requires_grad_() txt.requires_grad_() return img, txt, vec, pe
obtain the processed: img: projected noisy img latent, txt: text context (from t5), vec: clip encoded vector, pe: the positional embeddings for concatenated img and txt
prepare_block_inputs
python
hpcaitech/Open-Sora
opensora/models/mmdit/model.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/mmdit/model.py
Apache-2.0
def enable_input_require_grads(self): """Fit peft lora. This method should not be called manually.""" self._input_requires_grad = True
Fit peft lora. This method should not be called manually.
enable_input_require_grads
python
hpcaitech/Open-Sora
opensora/models/mmdit/model.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/mmdit/model.py
Apache-2.0
def forward( ctx, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, sp_group: dist.ProcessGroup, sp_stream: torch.cuda.Stream, dropout_p: float = 0.0, softmax_scale: Optional[float] = None, deterministic: Optional[bool] = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """Ring attention forward Args: ctx (_type_): self q (torch.Tensor): shape [B, S, N, D] k (torch.Tensor): shape [B, S, N, D] v (torch.Tensor): shape [B, S, N, D] sp_group (dist.ProcessGroup): sequence parallel group sp_stream (torch.cuda.Stream): sequence parallel stream dropout_p (float, optional): dropout prob. Defaults to 0.0. softmax_scale (Optional[float], optional): softmax scale. Defaults to None. deterministic (Optional[bool], optional): backward deterministic mode. Defaults to False. Returns: Tuple[torch.Tensor, torch.Tensor]: output and log sum exp. Output's shape should be [B, S, N, D]. LSE's shape should be [B, N, S]. """ if softmax_scale is None: softmax_scale = q.shape[-1] ** (-0.5) sp_size = dist.get_world_size(sp_group) kv_comms: List[RingComm] = [RingComm(sp_group) for _ in range(2)] # [B, S, N, D] q, k, v = [x.contiguous() for x in [q, k, v]] # Pre-allocate double buffer for overlapping and receiving next step's inputs kv_buffers = [torch.stack((k, v))] # (2, B, S, N, D) kv_buffers.append(torch.empty_like(kv_buffers[0])) # outputs out = None block_out = [None, None] softmax_lse = [None, None] block_softmax_lse = [None, None] # log sum exp, the denominator of softmax in attention rng_states = [None for _ in range(sp_size)] sp_streams = [torch.cuda.current_stream(), sp_stream] def _kv_comm(i): # Avoid overwriting attn input when it shares mem with buffer if not RingAttention.ATTN_DONE.query(): kv_buffers[(i + 1) % 2] = torch.empty_like(kv_buffers[i % 2]) if i < sp_size - 1: kv_comms[i % 2].send_recv(kv_buffers[i % 2], kv_buffers[(i + 1) % 2]) for i in range(sp_size): with torch.cuda.stream(sp_streams[i % 2]): # Wait for current kv from prev rank # NOTE: waiting outside the current stream will NOT correctly synchronize. if i == 0: _kv_comm(i) else: kv_comms[(i + 1) % 2].wait() kv_block = kv_buffers[i % 2] q_block = q block_out[i % 2], block_softmax_lse[i % 2], rng_states[i] = _fa_forward( q_block, kv_block[0], kv_block[1], dropout_p, softmax_scale ) RingAttention.ATTN_DONE.record() # Pipeline the next KV comm with output correction instead of the next flash attn # to minimize idle time when comm takes longer than attn. _kv_comm(i + 1) block_softmax_lse[i % 2] = ( block_softmax_lse[i % 2].transpose(1, 2).unsqueeze(-1).contiguous().float() ) # [B, N, S] -> [B, S, N, 1] assert block_out[i % 2].shape[:-1] == block_softmax_lse[i % 2].shape[:-1] # Output and log sum exp correction. Ideally overlap this with the next flash attn kernel. # In reality this always finishes before next flash attn; no need for extra sync. if i == 0: out = block_out[0] softmax_lse = block_softmax_lse[0] else: out, softmax_lse = _rescale_out_lse(out, block_out[i % 2], softmax_lse, block_softmax_lse[i % 2]) torch.cuda.current_stream().wait_stream(sp_stream) out = out.to(q.dtype) softmax_lse = softmax_lse.squeeze(-1).transpose(1, 2).contiguous() ctx.dropout_p = dropout_p ctx.softmax_scale = softmax_scale ctx.deterministic = deterministic ctx.sp_group = sp_group ctx.save_for_backward(q, k, v, out, softmax_lse, *rng_states) # lse [B, N, S] return out, softmax_lse
Ring attention forward Args: ctx (_type_): self q (torch.Tensor): shape [B, S, N, D] k (torch.Tensor): shape [B, S, N, D] v (torch.Tensor): shape [B, S, N, D] sp_group (dist.ProcessGroup): sequence parallel group sp_stream (torch.cuda.Stream): sequence parallel stream dropout_p (float, optional): dropout prob. Defaults to 0.0. softmax_scale (Optional[float], optional): softmax scale. Defaults to None. deterministic (Optional[bool], optional): backward deterministic mode. Defaults to False. Returns: Tuple[torch.Tensor, torch.Tensor]: output and log sum exp. Output's shape should be [B, S, N, D]. LSE's shape should be [B, N, S].
forward
python
hpcaitech/Open-Sora
opensora/models/mmdit/distributed.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/mmdit/distributed.py
Apache-2.0
def attention( q, k, v, sp_group, dropout_p: float = 0.0, softmax_scale: Optional[float] = None, deterministic: bool = False, return_softmax: bool = False, ): """Ring attention Args: q (torch.Tensor): shape [B, S, N, D] k (torch.Tensor): shape [B, S, N, D] v (torch.Tensor): shape [B, S, N, D] sp_group (dist.ProcessGroup): sequence parallel group dropout_p (float, optional): dropout prob. Defaults to 0.0. softmax_scale (Optional[float], optional): softmax scale. Defaults to None. deterministic (Optional[bool], optional): backward deterministic mode. Defaults to False. return_softmax (bool, optional): return softmax or not. Defaults to False. Returns: Tuple[torch.Tensor, torch.Tensor]: output and log sum exp. Output's shape should be [B, S, N, D]. LSE's shape should be [B, N, S]. """ if RingAttention.ATTN_DONE is None: RingAttention.ATTN_DONE = torch.cuda.Event() if RingAttention.SP_STREAM is None: RingAttention.SP_STREAM = torch.cuda.Stream() out, softmax_lse = RingAttention.apply( q, k, v, sp_group, RingAttention.SP_STREAM, dropout_p, softmax_scale, deterministic ) if return_softmax: return out, softmax_lse return out
Ring attention Args: q (torch.Tensor): shape [B, S, N, D] k (torch.Tensor): shape [B, S, N, D] v (torch.Tensor): shape [B, S, N, D] sp_group (dist.ProcessGroup): sequence parallel group dropout_p (float, optional): dropout prob. Defaults to 0.0. softmax_scale (Optional[float], optional): softmax scale. Defaults to None. deterministic (Optional[bool], optional): backward deterministic mode. Defaults to False. return_softmax (bool, optional): return softmax or not. Defaults to False. Returns: Tuple[torch.Tensor, torch.Tensor]: output and log sum exp. Output's shape should be [B, S, N, D]. LSE's shape should be [B, N, S].
attention
python
hpcaitech/Open-Sora
opensora/models/mmdit/distributed.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/mmdit/distributed.py
Apache-2.0
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ t = time_factor * t half = dim // 2 freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) if torch.is_floating_point(t): embedding = embedding.to(t) return embedding
Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings.
timestep_embedding
python
hpcaitech/Open-Sora
opensora/models/mmdit/layers.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/mmdit/layers.py
Apache-2.0
def rearrange_tensor(tensor): """ Rearranges the last dimension (D) of the input tensor based on the specified mapping: 2d -> d, 2d+1 -> D/2 + d. Args: tensor (torch.Tensor): Input tensor of shape [B, H, L, D], where D is even. Returns: torch.Tensor: Tensor with rearranged last dimension, same shape as input. """ B, H, L, D = tensor.shape if D % 2 != 0: raise ValueError("The last dimension D must be even.") half_D = D // 2 indices = torch.empty(D, dtype=torch.long, device=tensor.device) # Fill the indices based on the mapping rule indices[:half_D] = torch.arange(0, D, 2, device=tensor.device) indices[half_D:] = torch.arange(1, D, 2, device=tensor.device) # Rearrange the tensor based on the computed indices return tensor.index_select(dim=-1, index=indices)
Rearranges the last dimension (D) of the input tensor based on the specified mapping: 2d -> d, 2d+1 -> D/2 + d. Args: tensor (torch.Tensor): Input tensor of shape [B, H, L, D], where D is even. Returns: torch.Tensor: Tensor with rearranged last dimension, same shape as input.
rearrange_tensor
python
hpcaitech/Open-Sora
opensora/models/mmdit/math.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/mmdit/math.py
Apache-2.0
def reverse_rearrange_tensor(tensor): """ Restores the original order of the last dimension (D) of the input tensor based on the reverse mapping: d -> 2d, D/2 + d -> 2d + 1. Args: tensor (torch.Tensor): Input tensor of shape [B, H, L, D], where D is even. Returns: torch.Tensor: Tensor with restored original last dimension order, same shape as input. """ B, H, L, D = tensor.shape if D % 2 != 0: raise ValueError("The last dimension D must be even.") half_D = D // 2 reverse_indices = torch.empty(D, dtype=torch.long, device=tensor.device) # Fill the reverse indices to restore the original order reverse_indices[::2] = torch.arange(half_D, device=tensor.device) reverse_indices[1::2] = torch.arange(half_D, D, device=tensor.device) # Rearrange the tensor based on the reverse indices return tensor.index_select(dim=-1, index=reverse_indices)
Restores the original order of the last dimension (D) of the input tensor based on the reverse mapping: d -> 2d, D/2 + d -> 2d + 1. Args: tensor (torch.Tensor): Input tensor of shape [B, H, L, D], where D is even. Returns: torch.Tensor: Tensor with restored original last dimension order, same shape as input.
reverse_rearrange_tensor
python
hpcaitech/Open-Sora
opensora/models/mmdit/math.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/mmdit/math.py
Apache-2.0
def build_downsample_block( block_type: str, in_channels: int, out_channels: int, shortcut: Optional[str], is_video: bool, temporal_downsample: bool = False, ) -> nn.Module: """ Spatial downsample is always performed. Temporal downsample is optional. """ if block_type == "Conv": if is_video: if temporal_downsample: stride = (2, 2, 2) else: stride = (1, 2, 2) else: stride = 2 block = ConvLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, use_bias=True, norm=None, act_func=None, is_video=is_video, ) elif block_type == "ConvPixelUnshuffle": if is_video: raise NotImplementedError("ConvPixelUnshuffle downsample is not supported for video") block = ConvPixelUnshuffleDownSampleLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=3, factor=2 ) else: raise ValueError(f"block_type {block_type} is not supported for downsampling") if shortcut is None: pass elif shortcut == "averaging": shortcut_block = PixelUnshuffleChannelAveragingDownSampleLayer( in_channels=in_channels, out_channels=out_channels, factor=2, temporal_downsample=temporal_downsample ) block = ResidualBlock(block, shortcut_block) else: raise ValueError(f"shortcut {shortcut} is not supported for downsample") return block
Spatial downsample is always performed. Temporal downsample is optional.
build_downsample_block
python
hpcaitech/Open-Sora
opensora/models/dc_ae/models/dc_ae.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/dc_ae/models/dc_ae.py
Apache-2.0
def pixel_shuffle_3d(x, upscale_factor): """ 3D pixelshuffle 操作。 """ B, C, T, H, W = x.shape r = upscale_factor assert C % (r * r * r) == 0, "通道数必须是上采样因子的立方倍数" C_new = C // (r * r * r) x = x.view(B, C_new, r, r, r, T, H, W) if VERBOSE: print("x.view:") print(x) print("x.view.shape:") print(x.shape) x = x.permute(0, 1, 5, 2, 6, 3, 7, 4) if VERBOSE: print("x.permute:") print(x) print("x.permute.shape:") print(x.shape) y = x.reshape(B, C_new, T * r, H * r, W * r) return y
3D pixelshuffle 操作。
pixel_shuffle_3d
python
hpcaitech/Open-Sora
opensora/models/dc_ae/models/nn/vo_ops.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/dc_ae/models/nn/vo_ops.py
Apache-2.0
def pixel_unshuffle_3d(x, downsample_factor): """ 3D pixel unshuffle 操作。 """ B, C, T, H, W = x.shape r = downsample_factor assert T % r == 0, f"时间维度必须是下采样因子的倍数, got shape {x.shape}" assert H % r == 0, f"高度维度必须是下采样因子的倍数, got shape {x.shape}" assert W % r == 0, f"宽度维度必须是下采样因子的倍数, got shape {x.shape}" T_new = T // r H_new = H // r W_new = W // r C_new = C * (r * r * r) x = x.view(B, C, T_new, r, H_new, r, W_new, r) x = x.permute(0, 1, 3, 5, 7, 2, 4, 6) y = x.reshape(B, C_new, T_new, H_new, W_new) return y
3D pixel unshuffle 操作。
pixel_unshuffle_3d
python
hpcaitech/Open-Sora
opensora/models/dc_ae/models/nn/vo_ops.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/dc_ae/models/nn/vo_ops.py
Apache-2.0
def chunked_interpolate(x, scale_factor, mode="nearest"): """ Interpolate large tensors by chunking along the channel dimension. https://discuss.pytorch.org/t/error-using-f-interpolate-for-large-3d-input/207859 Only supports 'nearest' interpolation mode. Args: x (torch.Tensor): Input tensor (B, C, D, H, W) scale_factor: Tuple of scaling factors (d, h, w) Returns: torch.Tensor: Interpolated tensor """ assert ( mode == "nearest" ), "Only the nearest mode is supported" # actually other modes are theoretically supported but not tested if len(x.shape) != 5: raise ValueError("Expected 5D input tensor (B, C, D, H, W)") # Calculate max chunk size to avoid int32 overflow. num_elements < max_int32 # Max int32 is 2^31 - 1 max_elements_per_chunk = 2**31 - 1 # Calculate output spatial dimensions out_d = math.ceil(x.shape[2] * scale_factor[0]) out_h = math.ceil(x.shape[3] * scale_factor[1]) out_w = math.ceil(x.shape[4] * scale_factor[2]) # Calculate max channels per chunk to stay under limit elements_per_channel = out_d * out_h * out_w max_channels = max_elements_per_chunk // (x.shape[0] * elements_per_channel) # Use smaller of max channels or input channels chunk_size = min(max_channels, x.shape[1]) # Ensure at least 1 channel per chunk chunk_size = max(1, chunk_size) if VERBOSE: print(f"Input channels: {x.shape[1]}") print(f"Chunk size: {chunk_size}") print(f"max_channels: {max_channels}") print(f"num_chunks: {math.ceil(x.shape[1] / chunk_size)}") chunks = [] for i in range(0, x.shape[1], chunk_size): start_idx = i end_idx = min(i + chunk_size, x.shape[1]) chunk = x[:, start_idx:end_idx, :, :, :] interpolated_chunk = F.interpolate(chunk, scale_factor=scale_factor, mode="nearest") chunks.append(interpolated_chunk) if not chunks: raise ValueError(f"No chunks were generated. Input shape: {x.shape}") # Concatenate chunks along channel dimension return torch.cat(chunks, dim=1)
Interpolate large tensors by chunking along the channel dimension. https://discuss.pytorch.org/t/error-using-f-interpolate-for-large-3d-input/207859 Only supports 'nearest' interpolation mode. Args: x (torch.Tensor): Input tensor (B, C, D, H, W) scale_factor: Tuple of scaling factors (d, h, w) Returns: torch.Tensor: Interpolated tensor
chunked_interpolate
python
hpcaitech/Open-Sora
opensora/models/dc_ae/models/nn/vo_ops.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/dc_ae/models/nn/vo_ops.py
Apache-2.0
def forward( ctx, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, sp_group: dist.ProcessGroup, sp_stream: torch.cuda.Stream, softmax_scale: Optional[float] = None, attn_mask: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """Ring attention forward Args: ctx (_type_): self q (torch.Tensor): shape [B, S/P, N, D] k (torch.Tensor): shape [B, S/P, N, D] v (torch.Tensor): shape [B, S/P, N, D] sp_group (dist.ProcessGroup): sequence parallel group sp_stream (torch.cuda.Stream): sequence parallel stream softmax_scale (Optional[float], optional): softmax scale. Defaults to None. attn_mask (Optional[torch.Tensor], optional): attention mask shape [B, N, S/P, S]. Defaults to None. Returns: Tuple[torch.Tensor, torch.Tensor]: output and log sum exp. Output's shape should be [B, S/P, N, D]. LSE's shape should be [B, N, S/P]. """ if softmax_scale is None: softmax_scale = q.shape[-1] ** (-0.5) sp_size = dist.get_world_size(sp_group) sp_rank = dist.get_rank(sp_group) kv_comms: List[RingComm] = [RingComm(sp_group) for _ in range(2)] block_attn_masks = [None] * sp_size if attn_mask is not None: # if attn_mask is splitted, uncomment the following line # attn_mask = attn_mask.chunk(sp_size, dim=2)[sp_rank] block_attn_masks = attn_mask.chunk(sp_size, dim=-1) # [B, S, N, D] q, k, v = [x.contiguous() for x in [q, k, v]] # Pre-allocate double buffer for overlapping and receiving next step's inputs kv_buffers = [torch.stack((k, v))] # (2, B, S, N, D) kv_buffers.append(torch.empty_like(kv_buffers[0])) # outputs out = None block_out = [None, None] softmax_lse = [None, None] block_softmax_lse = [None, None] # log sum exp, the denominator of softmax in attention rng_states = [None for _ in range(sp_size)] sp_streams = [torch.cuda.current_stream(), sp_stream] def _kv_comm(i): # Avoid overwriting attn input when it shares mem with buffer if not MemEfficientRingAttention.ATTN_DONE.query(): kv_buffers[(i + 1) % 2] = torch.empty_like(kv_buffers[i % 2]) if i < sp_size - 1: kv_comms[i % 2].send_recv(kv_buffers[i % 2], kv_buffers[(i + 1) % 2]) block_idx = sp_rank for i in range(sp_size): with torch.cuda.stream(sp_streams[i % 2]): # Wait for current kv from prev rank # NOTE: waiting outside the current stream will NOT correctly synchronize. if i == 0: _kv_comm(i) else: kv_comms[(i + 1) % 2].wait() kv_block = kv_buffers[i % 2] q_block = q block_out[i % 2], block_softmax_lse[i % 2], rng_states[i] = _attn_fwd( q_block, kv_block[0], kv_block[1], attn_bias=block_attn_masks[block_idx], scale=softmax_scale ) MemEfficientRingAttention.ATTN_DONE.record() # Pipeline the next KV comm with output correction instead of the next flash attn # to minimize idle time when comm takes longer than attn. _kv_comm(i + 1) block_softmax_lse[i % 2] = ( block_softmax_lse[i % 2].transpose(1, 2).unsqueeze(-1).contiguous().float() ) # [B, N, S] -> [B, S, N, 1] assert ( block_out[i % 2].shape[:-1] == block_softmax_lse[i % 2].shape[:-1] ), f"{block_out[i % 2].shape} != {block_softmax_lse[i % 2].shape}" # Output and log sum exp correction. Ideally overlap this with the next flash attn kernel. # In reality this always finishes before next flash attn; no need for extra sync. if i == 0: out = block_out[0] softmax_lse = block_softmax_lse[0] else: out, softmax_lse = _rescale_out_lse(out, block_out[i % 2], softmax_lse, block_softmax_lse[i % 2]) block_idx = (block_idx - 1) % sp_size torch.cuda.current_stream().wait_stream(sp_stream) out = out.to(q.dtype) softmax_lse = softmax_lse.squeeze(-1).transpose(1, 2).contiguous() ctx.softmax_scale = softmax_scale ctx.block_attn_masks = block_attn_masks ctx.sp_group = sp_group ctx.save_for_backward(q, k, v, out, softmax_lse, *rng_states) # lse [B, N, S] return out, softmax_lse
Ring attention forward Args: ctx (_type_): self q (torch.Tensor): shape [B, S/P, N, D] k (torch.Tensor): shape [B, S/P, N, D] v (torch.Tensor): shape [B, S/P, N, D] sp_group (dist.ProcessGroup): sequence parallel group sp_stream (torch.cuda.Stream): sequence parallel stream softmax_scale (Optional[float], optional): softmax scale. Defaults to None. attn_mask (Optional[torch.Tensor], optional): attention mask shape [B, N, S/P, S]. Defaults to None. Returns: Tuple[torch.Tensor, torch.Tensor]: output and log sum exp. Output's shape should be [B, S/P, N, D]. LSE's shape should be [B, N, S/P].
forward
python
hpcaitech/Open-Sora
opensora/models/hunyuan_vae/distributed.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/hunyuan_vae/distributed.py
Apache-2.0
def attention( q, k, v, sp_group, softmax_scale: Optional[float] = None, attn_mask: Optional[torch.Tensor] = None, return_softmax: bool = False, ): """Ring attention Args: q (torch.Tensor): shape [B, S, N, D] k (torch.Tensor): shape [B, S, N, D] v (torch.Tensor): shape [B, S, N, D] sp_group (dist.ProcessGroup): sequence parallel group softmax_scale (Optional[float], optional): softmax scale. Defaults to None. attn_mask (Optional[torch.Tensor], optional): attention mask. Defaults to None. return_softmax (bool, optional): return softmax or not. Defaults to False. Returns: Tuple[torch.Tensor, torch.Tensor]: output and log sum exp. Output's shape should be [B, S, N, D]. LSE's shape should be [B, N, S]. """ if MemEfficientRingAttention.ATTN_DONE is None: MemEfficientRingAttention.ATTN_DONE = torch.cuda.Event() if MemEfficientRingAttention.SP_STREAM is None: MemEfficientRingAttention.SP_STREAM = torch.cuda.Stream() out, softmax_lse = MemEfficientRingAttention.apply( q, k, v, sp_group, MemEfficientRingAttention.SP_STREAM, softmax_scale, attn_mask ) if return_softmax: return out, softmax_lse return out
Ring attention Args: q (torch.Tensor): shape [B, S, N, D] k (torch.Tensor): shape [B, S, N, D] v (torch.Tensor): shape [B, S, N, D] sp_group (dist.ProcessGroup): sequence parallel group softmax_scale (Optional[float], optional): softmax scale. Defaults to None. attn_mask (Optional[torch.Tensor], optional): attention mask. Defaults to None. return_softmax (bool, optional): return softmax or not. Defaults to False. Returns: Tuple[torch.Tensor, torch.Tensor]: output and log sum exp. Output's shape should be [B, S, N, D]. LSE's shape should be [B, N, S].
attention
python
hpcaitech/Open-Sora
opensora/models/hunyuan_vae/distributed.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/hunyuan_vae/distributed.py
Apache-2.0
def from_native_module(module: Attention, process_group, *args, **kwargs) -> Attention: """ Convert a native RMSNorm module to colossalai layer norm module, and optionally mark parameters for gradient aggregation. Args: module (nn.Module): The native RMSNorm module to be converted. sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism. Returns: nn.Module: The RMSNorm module. """ # Since gradients are computed using only a subset of the data, # aggregation of these gradients is necessary during backpropagation. # Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation. SeqParallelUtils.marked_as_sp_partial_derived_param(module.to_q.weight) SeqParallelUtils.marked_as_sp_partial_derived_param(module.to_k.weight) SeqParallelUtils.marked_as_sp_partial_derived_param(module.to_v.weight) if module.to_q.bias is not None: SeqParallelUtils.marked_as_sp_partial_derived_param(module.to_q.bias) SeqParallelUtils.marked_as_sp_partial_derived_param(module.to_k.bias) SeqParallelUtils.marked_as_sp_partial_derived_param(module.to_v.bias) module.set_processor(MemEfficientRingAttnProcessor(process_group)) return module
Convert a native RMSNorm module to colossalai layer norm module, and optionally mark parameters for gradient aggregation. Args: module (nn.Module): The native RMSNorm module to be converted. sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism. Returns: nn.Module: The RMSNorm module.
from_native_module
python
hpcaitech/Open-Sora
opensora/models/hunyuan_vae/distributed.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/hunyuan_vae/distributed.py
Apache-2.0
def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnAddedKVProcessor() elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor, _remove_lora=True)
Disables custom attention processors and sets the default attention implementation.
set_default_attn_processor
python
hpcaitech/Open-Sora
opensora/models/hunyuan_vae/autoencoder_kl_causal_3d.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/hunyuan_vae/autoencoder_kl_causal_3d.py
Apache-2.0
def encode( self, x: torch.FloatTensor, sample_posterior: bool = True, return_posterior: bool = False, generator: Optional[torch.Generator] = None, ) -> Union[torch.FloatTensor, Tuple[DiagonalGaussianDistribution]]: """ Encode a batch of images/videos into latents. Args: x (`torch.FloatTensor`): Input batch of images/videos. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. Returns: The latent representations of the encoded images/videos. If `return_dict` is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. """ assert len(x.shape) == 5, "The input tensor should have 5 dimensions." if self.use_temporal_tiling and x.shape[2] > self.tile_sample_min_tsize: posterior = self.temporal_tiled_encode(x) elif self.use_spatial_tiling and ( x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size ): posterior = self.spatial_tiled_encode(x) else: if self.use_slicing and x.shape[0] > 1: encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)] h = torch.cat(encoded_slices) else: h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) if sample_posterior: z = posterior.sample(generator=generator) else: z = posterior.mode() z = self.scale_factor * (z - self.shift_factor) # shift & scale if return_posterior: return z, posterior else: return z
Encode a batch of images/videos into latents. Args: x (`torch.FloatTensor`): Input batch of images/videos. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. Returns: The latent representations of the encoded images/videos. If `return_dict` is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
encode
python
hpcaitech/Open-Sora
opensora/models/hunyuan_vae/autoencoder_kl_causal_3d.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/hunyuan_vae/autoencoder_kl_causal_3d.py
Apache-2.0
def decode(self, z: torch.FloatTensor) -> torch.FloatTensor: """ Decode a batch of images/videos. Args: z (`torch.FloatTensor`): Input batch of latent vectors. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ z = z / self.scale_factor + self.shift_factor # scale & shift if self.use_slicing and z.shape[0] > 1: decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] decoded = torch.cat(decoded_slices) else: decoded = self._decode(z).sample return decoded
Decode a batch of images/videos. Args: z (`torch.FloatTensor`): Input batch of latent vectors. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned.
decode
python
hpcaitech/Open-Sora
opensora/models/hunyuan_vae/autoencoder_kl_causal_3d.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/hunyuan_vae/autoencoder_kl_causal_3d.py
Apache-2.0
def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True)
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is 🧪 experimental. </Tip>
fuse_qkv_projections
python
hpcaitech/Open-Sora
opensora/models/hunyuan_vae/autoencoder_kl_causal_3d.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/hunyuan_vae/autoencoder_kl_causal_3d.py
Apache-2.0
def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors)
Disables the fused QKV projection if enabled. <Tip warning={true}> This API is 🧪 experimental. </Tip>
unfuse_qkv_projections
python
hpcaitech/Open-Sora
opensora/models/hunyuan_vae/autoencoder_kl_causal_3d.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/hunyuan_vae/autoencoder_kl_causal_3d.py
Apache-2.0
def shardformer_t5(t5: T5EncoderModel) -> T5EncoderModel: """ Shardformer for T5 model Args: t5: T5 model to be optimized Returns: optimized T5 model """ dtype = t5.shared.weight.dtype shard_config = ShardConfig( enable_tensor_parallelism=False, enable_jit_fused=True, ) shard_former = ShardFormer(shard_config=shard_config) optim_model, _ = shard_former.optimize(t5, policy=T5EncoderPolicy()) optim_model = optim_model.to(dtype).eval().requires_grad_(False) return optim_model
Shardformer for T5 model Args: t5: T5 model to be optimized Returns: optimized T5 model
shardformer_t5
python
hpcaitech/Open-Sora
opensora/models/text/conditioner.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/text/conditioner.py
Apache-2.0
def shard_channelwise( tensor: torch.Tensor, group_or_device_mesh: Union[ProcessGroup, DeviceMesh] = None ) -> torch.Tensor: """ Shard the second dim of the given tensor. Args: tensor (torch.Tensor): The tensor to be sharded. group_or_device_mesh (Union[ProcessGroup, DeviceMesh], optional): The group or device mesh to shard the tensor. If None, the tensor will be sharded with respect to the global process group. Defaults to None. inplace (bool, optional): Whether to shard the tensor in-place. Defaults to False. Returns: torch.Tensor: The sharded tensor. """ # if the group_or_device_mesh is None, we shard the tensor with respect to the global process group if group_or_device_mesh is None: group_or_device_mesh = dist.GroupMember.WORLD if isinstance(group_or_device_mesh, ProcessGroup): device_mesh = DeviceMesh.from_process_group(group_or_device_mesh) else: assert len(group_or_device_mesh.shape) == 1, "Only 1D DeviceMesh is accepted for row-wise sharding." device_mesh = group_or_device_mesh sharding_spec = ShardingSpec(dim_size=tensor.dim(), dim_partition_dict={1: [0]}) return distribute_tensor(tensor, device_mesh, sharding_spec)
Shard the second dim of the given tensor. Args: tensor (torch.Tensor): The tensor to be sharded. group_or_device_mesh (Union[ProcessGroup, DeviceMesh], optional): The group or device mesh to shard the tensor. If None, the tensor will be sharded with respect to the global process group. Defaults to None. inplace (bool, optional): Whether to shard the tensor in-place. Defaults to False. Returns: torch.Tensor: The sharded tensor.
shard_channelwise
python
hpcaitech/Open-Sora
opensora/models/vae/tensor_parallel.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/vae/tensor_parallel.py
Apache-2.0
def __init__( self, input_nc=1, ndf=64, n_layers=5, norm_layer=nn.BatchNorm3d, conv_cls="conv3d", dropout=0.30, ): """ Construct a 3D PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input volumes ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator use_actnorm (bool) -- flag to use actnorm instead of batchnorm """ super(NLayerDiscriminator3D, self).__init__() assert conv_cls == "conv3d" use_bias = False kw = 3 padw = 1 sequence = [nn.Conv3d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2**n, 8) sequence += [ nn.Conv3d( ndf * nf_mult_prev, ndf * nf_mult, kernel_size=(kw, kw, kw), stride=2 if n == 1 else (1, 2, 2), padding=padw, bias=use_bias, ), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True), nn.Dropout(dropout), ] nf_mult_prev = nf_mult nf_mult = min(2**n_layers, 8) sequence += [ nn.Conv3d( ndf * nf_mult_prev, ndf * nf_mult, kernel_size=(kw, kw, kw), stride=1, padding=padw, bias=use_bias, ), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True), nn.Dropout(dropout), nn.Conv3d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw), ] self.main = nn.Sequential(*sequence)
Construct a 3D PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input volumes ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator use_actnorm (bool) -- flag to use actnorm instead of batchnorm
__init__
python
hpcaitech/Open-Sora
opensora/models/vae/discriminator.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/vae/discriminator.py
Apache-2.0
def forward(self, x): """Standard forward.""" return self.main(x)
Standard forward.
forward
python
hpcaitech/Open-Sora
opensora/models/vae/discriminator.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/vae/discriminator.py
Apache-2.0
def __init__( self, parameters, deterministic=False, ): """Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models""" self.parameters = parameters self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) self.logvar = torch.clamp(self.logvar, -30.0, 20.0) self.deterministic = deterministic self.std = torch.exp(0.5 * self.logvar) self.var = torch.exp(self.logvar) if self.deterministic: self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device, dtype=self.mean.dtype)
Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models
__init__
python
hpcaitech/Open-Sora
opensora/models/vae/utils.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/models/vae/utils.py
Apache-2.0
def collate_fn_batch(batch): """ Used only with BatchDistributedSampler """ # filter out None batch = [x for x in batch if x is not None] res = torch.utils.data.default_collate(batch) # squeeze the first dimension, which is due to torch.stack() in default_collate() if isinstance(res, collections.abc.Mapping): for k, v in res.items(): if isinstance(v, torch.Tensor): res[k] = v.squeeze(0) elif isinstance(res, collections.abc.Sequence): res = [x.squeeze(0) if isinstance(x, torch.Tensor) else x for x in res] elif isinstance(res, torch.Tensor): res = res.squeeze(0) else: raise TypeError return res
Used only with BatchDistributedSampler
collate_fn_batch
python
hpcaitech/Open-Sora
opensora/datasets/dataloader.py
https://github.com/hpcaitech/Open-Sora/blob/master/opensora/datasets/dataloader.py
Apache-2.0