problem_id
stringlengths 6
6
| user_id
stringlengths 10
10
| time_limit
float64 1k
8k
| memory_limit
float64 262k
1.05M
| problem_description
stringlengths 48
1.55k
| codes
stringlengths 35
98.9k
| status
stringlengths 28
1.7k
| submission_ids
stringlengths 28
1.41k
| memories
stringlengths 13
808
| cpu_times
stringlengths 11
610
| code_sizes
stringlengths 7
505
|
---|---|---|---|---|---|---|---|---|---|---|
p03280 | u992910889 | 2,000 | 1,024,000 | There is a farm whose length and width are A yard and B yard, respectively. A farmer, John, made a vertical road and a horizontal road inside the farm from one border to another, as shown below: (The gray part represents the roads.) What is the area of this yard excluding the roads? Find it. | ['A,B=map(int,input().split())\nprint((A-1)*(B-1)))\n', 'A,B=map(int,input().split())\nprint((A-1)*(B-1)))\n', 'A,B=map(int,input().split())\nprint((A-1)*(B-1)))\n', 'A,B=map(int,input().split())\nprint((A-1)*(B-1)))\n', 'A,B=map(int,input().split())\nprint((A-1)*(B-1))', 'A,B=map(int,input().split())\nprint((A-1)*(B-1))', 'A,B=map(int,input().split())\nprint((A-1)*(B-1))', 'A,B=map(int,input().split())\nprint((A-1)*(B-1))'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted', 'Accepted', 'Accepted', 'Accepted'] | ['s225668947', 's225668947', 's225668947', 's225668947', 's810865510', 's810865510', 's810865510', 's810865510'] | [2940.0, 2940.0, 2940.0, 2940.0, 3060.0, 3060.0, 3060.0, 3060.0] | [17.0, 17.0, 17.0, 17.0, 19.0, 19.0, 19.0, 19.0] | [49, 49, 49, 49, 47, 47, 47, 47] |
p03280 | u993642190 | 2,000 | 1,024,000 | There is a farm whose length and width are A yard and B yard, respectively. A farmer, John, made a vertical road and a horizontal road inside the farm from one border to another, as shown below: (The gray part represents the roads.) What is the area of this yard excluding the roads? Find it. | ['S = input()\nK = int(input())\n\np = 0\nfor i in range(len(S)) :\n\tif (S[i] != "1") :\n\t\tprint(S[i])\n\t\tp = 1\n\t\tbreak\n\t\nif (p == 0) :\n\tprint("1")', 'S = input()\nK = int(input())\n\np = 0\nfor i in range(len(S)) :\n\tif (S[i] != "1") :\n\t\tprint(S[i])\n\t\tp = 1\n\t\tbreak\n\t\nif (p == 0) :\n\tprint("1")', 'S = input()\nK = int(input())\n\np = 0\nfor i in range(len(S)) :\n\tif (S[i] != "1") :\n\t\tprint(S[i])\n\t\tp = 1\n\t\tbreak\n\t\nif (p == 0) :\n\tprint("1")', 'S = input()\nK = int(input())\n\np = 0\nfor i in range(len(S)) :\n\tif (S[i] != "1") :\n\t\tprint(S[i])\n\t\tp = 1\n\t\tbreak\n\t\nif (p == 0) :\n\tprint("1")', 'read_line = [int(i) for i in input().split()]\nA = read_line[0]\nB = read_line[1]\n\nprint(A*B-A-B+1)\n', 'read_line = [int(i) for i in input().split()]\nA = read_line[0]\nB = read_line[1]\n\nprint(A*B-A-B+1)\n', 'read_line = [int(i) for i in input().split()]\nA = read_line[0]\nB = read_line[1]\n\nprint(A*B-A-B+1)\n', 'read_line = [int(i) for i in input().split()]\nA = read_line[0]\nB = read_line[1]\n\nprint(A*B-A-B+1)\n'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted', 'Accepted', 'Accepted', 'Accepted'] | ['s871543719', 's871543719', 's871543719', 's871543719', 's892498165', 's892498165', 's892498165', 's892498165'] | [2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0] | [17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0] | [138, 138, 138, 138, 98, 98, 98, 98] |
p03280 | u999799597 | 2,000 | 1,024,000 | There is a farm whose length and width are A yard and B yard, respectively. A farmer, John, made a vertical road and a horizontal road inside the farm from one border to another, as shown below: (The gray part represents the roads.) What is the area of this yard excluding the roads? Find it. | ['source = input().split()\nA,B = int(source[0]), int(source[1])\nprint(A*B-(A+B))', 'source = input().split()\nA,B = int(source[0]), int(source[1])\nprint(A*B-(A+B))', 'source = input().split()\nA,B = int(source[0]), int(source[1])\nprint(A*B-(A+B))', 'source = input().split()\nA,B = int(source[0]), int(source[1])\nprint(A*B-(A+B))', 'source = input().split()\nA, B = int(source[0]), int(source[1])\nprint(A * B - (A + B - 1))', 'source = input().split()\nA, B = int(source[0]), int(source[1])\nprint(A * B - (A + B - 1))', 'source = input().split()\nA, B = int(source[0]), int(source[1])\nprint(A * B - (A + B - 1))', 'source = input().split()\nA, B = int(source[0]), int(source[1])\nprint(A * B - (A + B - 1))'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted', 'Accepted', 'Accepted', 'Accepted'] | ['s022496499', 's022496499', 's022496499', 's022496499', 's874471254', 's874471254', 's874471254', 's874471254'] | [2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0] | [18.0, 18.0, 18.0, 18.0, 17.0, 17.0, 17.0, 17.0] | [78, 78, 78, 78, 89, 89, 89, 89] |
p03281 | u010437136 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ["import sys\n\n\ndef solve(n):\n listc = []\n for i in range(1,201):\n lista = []\n for j in range(1,201):\n if i%j == 0:\n lista.append(j)\n if len(lista) >= 8 and lista[-1] %2 != 0:\n listc.append(lista[-1])\n \n for i in range(len(listc)):\n if n < listc[i]:\n return 0\n elif n >= listc[-(i+1)]:\n return len(listc)-i\n\n\ndef readQuestion():\n line = sys.stdin.readline().rstrip()\n return int(line)\n\ndef main():\n n = readQuestion()\n answer = solve(n)\n print(answer)\nif __name__ == '__main__':\n main()", "import sys\n\nlines='''105\n'''\nsys.stdin = io.StringIO(lines)\n\n\ndef solve(n):\n yakusuu_array=[] \n for x in range(1,n+1): \n if n%x == 0: \n yakusuu_array.append(x) \n a=len(yakusuu_array)\n \n if a >= 8 and n%2 != 0 and 1 <= n and n <=200:\n return 1 \n else: \n return 0\n\n\ndef readQuestion():\n line = sys.stdin.readline().rstrip()\n return int(line)\n\ndef main():\n n = readQuestion()\n answer = solve(n)\n print(answer)\nif __name__ == '__main__':\n main()", "import sys\n\n\ndef solve(n):\n listc = []\n for i in range(1,201):\n lista = []\n for j in range(1,201):\n if i%j == 0:\n lista.append(j)\n if len(lista) >= 8 and lista[-1] %2 != 0:\n listc.append(lista[-1])\n \n for i in range(len(listc)):\n if n < listc[0]:\n return 0\n elif n >= listc[-(i+1)]:\n return len(listc)-i\n\n\ndef readQuestion():\n line = sys.stdin.readline().rstrip()\n return int(line)\n\ndef main():\n n = readQuestion()\n answer = solve(n)\n print(answer)\nif __name__ == '__main__':\n main()"] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s187692835', 's241110413', 's969068870'] | [3064.0, 3064.0, 3064.0] | [20.0, 17.0, 20.0] | [797, 691, 797] |
p03281 | u013956357 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def hantei(n):\n root_n = int(n**0.5 +0.5)\n \n if root_n**2 == n:\n return 0\n \n total = 0\n for i in range(1,root_n):\n if n % i == 0:\n total += 2\n \n return total\n \nn = int(input())\n\ntotal = 0\nfor i in range(1,n+1,2):\n if hantei(i) == 8:\n print(i)\n total += 1\n\nprint(total)', 'def hantei(n):\n root_n = int(n**0.5 +0.5)\n \n if root_n**2 == n:\n return 0\n \n total = 0\n for i in range(1,root_n):\n if n % i == 0:\n total += 2\n \n return total\n \nn = int(input())\n\ntotal = 0\nfor i in range(1,n+1,2):\n if hantei(i) == 8:\n total += 1\n\nprint(total)\n '] | ['Wrong Answer', 'Accepted'] | ['s100241360', 's201440511'] | [3060.0, 2940.0] | [17.0, 18.0] | [345, 333] |
p03281 | u017415492 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\ncount=0\nans=0\nfor j in range(1,n+1,2):\n count=0\n for i in range(1,int(j**0.5)):\n if j%i==0 and j**0.5)==i:\n count+=1\n elif j%i==0 and j**0.5!=i:\n count+=2\n if count==8:\n ans+=1\nprint(ans)', 'n=int(input())\ncount=0\nans=0\nfor j in range(1,n+1,2):\n count=0\n for i in range(1,int(j**0.5)+1):\n if j%i==0:\n if j//i!=i:\n count+=2\n else:\n count+=1\n if count==8:\n ans+=1\nprint(ans)\n\n'] | ['Runtime Error', 'Accepted'] | ['s485828471', 's154314538'] | [2940.0, 3060.0] | [17.0, 17.0] | [224, 216] |
p03281 | u020390084 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\n\n\ndef divisor(n): \n i = 1\n table = []\n while i * i <= n:\n if n%i == 0:\n table.append(i)\n table.append(n//i)\n i += 1\n table = list(set(table))\n return len(table)\n \ni = 1\nanswer = 0\nwhile i < N:\n if divisor(i) == 8:\n answer += 1\n i += 2\nprint(answer)\n ', 'N = int(input())\n\n\n\ndef divisor(n): \n i = 1\n table = []\n while i * i <= n:\n if n%i == 0:\n table.append(i)\n table.append(n//i)\n i += 1\n table = list(set(table))\n return len(table)\n \ni = 1\nanswer = 0\nwhile i <= N:\n if divisor(i) == 8:\n answer += 1\n i += 2\nprint(answer)'] | ['Wrong Answer', 'Accepted'] | ['s871708013', 's968847260'] | [3060.0, 3064.0] | [17.0, 17.0] | [380, 378] |
p03281 | u023229441 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['x=2\ntry:\n print("10//x={}".format(10//x))\n print("tryη―γγγγγο½")\nexcept TypeError:\n print("Type Errorγγο½")\nelse:\n \n print("Errorγͺγγ£γγγο½γγγ§γ¨γγο½")\nfinally:\n \n print("γγγγγο½")', 'n=int(input())\nimport math\nans=0\ndef yakusu(n):\n ans_local=set()\n for i in range(1,int(math.sqrt(n))+1):\n if n%i==0:\n ans_local = ans_local | set([i,n//i]) \n return list(ans_local) \nfor i in range(1,n+1,2):\n if len(yakusu(i))==8:\n ans+=1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s328050642', 's249708162'] | [2940.0, 3060.0] | [17.0, 17.0] | [434, 323] |
p03281 | u023795241 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['\nn = int(input())\nans = 0\nfor i in range(n):\n if n % i == 0:\n if n % 2 == 1:\n ans += 1\nprint(ans)\n \n\n', 'n = int(input())\nans = 0\ni = 1\nfor i in range(1,n+1):\n eight = 0 \n if i % 2 == 1:\n for j in range(1,i+1):\n if i % j == 0:\n eight += 1\n\n if eight == 8:\n ans += 1\n\nprint(ans)\n '] | ['Runtime Error', 'Accepted'] | ['s712613194', 's070242982'] | [2940.0, 2940.0] | [17.0, 19.0] | [172, 226] |
p03281 | u023958502 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nans = 0\nfor i in range(1,n + 1):\n if n % 2 == 0:\n continue\n cnt = 0\n for j in range(1,i + 1):\n if i % j = 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)', 'n = int(input())\nans = 0\nfor i in range(1,n + 1):\n if i % 2 == 0:\n continue\n cnt = 0\n for j in range(1,i + 1):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s799427880', 's550430956'] | [2940.0, 3064.0] | [17.0, 18.0] | [188, 189] |
p03281 | u026155812 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nans = 0\nfor num in range(1, n):\n if num%2 == 1:\n continue\n ls = []\n for i in range(1, num+1):\n if num%i == 0:\n ls.append(i)\n if len(ls) == 8:\n ans += 1\nprint(ans)', 'n = int(input())\nans = 0\nfor num in range(1, n):\n if num%2 == 1:\n continue\n ls = []\n for i in range(num+1):\n if num%i == 0:\n ls.append(i)\n if len(ls) == 8:\n ans += 1\nprint(ans)', 'N = int(input())\nans = 0\nfor i in range(1, N+1):\n num = 0\n if i%2 == 1:\n for j in range(1, i+1):\n if i%i == 0:\n num += 1\n if num == 8:\n ans += 1\nprint(ans)', 'n = int(input())\nans = 0\nfor num in range(1, n+1):\n if num%2 == 1:\n continue\n ls = []\n for i in range(1, num+1):\n if num%i == 0:\n ls.append(i)\n if len(ls) == 8:\n ans += 1\nprint(ans)', 'n = int(input())\nans = 0\nfor num in range(1, n+1):\n if num%2 == 0:\n continue\n ls = []\n for i in range(1, num+1):\n if num%i == 0:\n ls.append(i)\n if len(ls) == 8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s054817229', 's117767411', 's138438376', 's245880073', 's258782018'] | [9076.0, 9172.0, 2940.0, 9176.0, 9180.0] | [29.0, 32.0, 19.0, 32.0, 28.0] | [223, 220, 180, 225, 225] |
p03281 | u030726788 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nx=0\nfor i in range(1,n+1,2):\n c=0\n for j in range(1,n//2+1):\n if(i%j==0):c+=1\n if(c==8):x+=1\nprint(x)', 'n=int(input())\nx=0\nfor i in range(1,n+1,2):\n c=0\n for j in range(1,n//2+1):\n if(i%j==0):c+=1\n if(c==7):x+=1\nprint(x)\n'] | ['Wrong Answer', 'Accepted'] | ['s117573359', 's405865487'] | [2940.0, 2940.0] | [18.0, 18.0] | [122, 123] |
p03281 | u033963510 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['# -*- coding: utf-8 -*-\n"""\nCreated on Tue Mar 31 09:15:46 2020\n\n@author: black\n"""\ndef check(x):\n div = [1]\n for j in range(1, x):\n if (x)%(j+1) == 0:\n div.extend([j+1])\n if (i+1)%(j+1) == 0:\n div.extend([j+1])\n return len(div)\n\n\n\n\nN = int(input())\nans = []\n\nfor x in range(1, N+1):\n if x%2 == 1:\n if check(x) == 8:\n ans.extend([x])\n\n\nprint(len(ans))', '# -*- coding: utf-8 -*-\n"""\nCreated on Tue Mar 31 09:15:46 2020\n\n@author: black\n"""\ndef check(x):\n div = [1]\n for j in range(1, x):\n if (x)%(j+1) == 0:\n div.extend([j+1])\n return len(div)\n\n\n\n\nN = int(input())\nans = []\n\nfor x in range(1, N+1):\n if x%2 == 1:\n if check(x) == 8:\n ans.extend([x])\n\n\nprint(len(ans))'] | ['Runtime Error', 'Accepted'] | ['s787770535', 's512627944'] | [3316.0, 3064.0] | [21.0, 18.0] | [425, 358] |
p03281 | u037098269 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['\n\nN = int(input())\nN_MAX = 200\nprime = [1 for i in range(N_MAX+1)]\nprime[0], prime[1] = 0, 0\nfor i in range(2, N_MAX+1):\n if prime[i] == 1:\n for j in range(2*i, N_MAX+1, i):\n prime[j] = 0\nps = []\nprime[2] = 0\nfor i in range(N_MAX+1):\n if prime[i] == 1:\n ps.append(i)\nprint(ps)\npl = len(ps)\nans = 0\nfor i in range(pl):\n for j in range(i+1, pl):\n for k in range(j+1, pl):\n if ps[i]*ps[j]*ps[k] <= N:\n #print(ps[i]*ps[j]*ps[k])\n ans += 1\nprint(ans)', '\n\nN = int(input())\nN_MAX = 200\nprime = [1 for i in range(N_MAX+1)]\nprime[0], prime[1] = 0, 0\nfor i in range(2, N_MAX+1):\n if prime[i] == 1:\n for j in range(2*i, N_MAX+1, i):\n prime[j] = 0\nprime[2] = 0\nps = []\nfor i in range(N_MAX+1):\n if prime[i] == 1:\n ps.append(i)\npl = len(ps)\nans = 0\nfor i in range(pl):\n for j in range(i+1, pl):\n if (ps[i]**3)*ps[j] <= N or ps[i]*(ps[j]**3) <= N:\n ans += 1\n for k in range(j+1, pl):\n if ps[i]*ps[j]*ps[k] <= N:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s103184790', 's014597440'] | [3064.0, 3064.0] | [23.0, 24.0] | [647, 675] |
p03281 | u039360403 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nans=0\nfor i in range(1,n+1):\n c=0\n for j in range(1,i+1):\n if i%j==0 and i%2==1:\n c+=1\n if c==8:\n ans+=1\n print(i)\nprint(ans)\n', 'n=int(input())\nans=0\nfor i in range(1,n+1):\n c=0\n for j in range(1,i+1):\n if i%j==0 and i%2==1:\n c+=1\n if c==8:\n ans+=1\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s478746627', 's647489961'] | [2940.0, 2940.0] | [19.0, 19.0] | [182, 165] |
p03281 | u039623862 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = 200\ncnt = [0 for _ in range(n+1)]\nfor i in range(1, n+1):\n for j in range(i, n+1, i):\n cnt[j] += 1\nprint(len([i for i in range(1,n+1, 2) if cnt[i]==8]))', 'n = int(input())\ncnt = [0 for _ in range(n+1)]\nfor i in range(1, n+1):\n for j in range(i, n+1, i):\n cnt[j] += 1\nprint(len([i for i in range(1,n+1, 2) if cnt[i]==8]))'] | ['Wrong Answer', 'Accepted'] | ['s021018427', 's722611831'] | [2940.0, 3060.0] | [17.0, 17.0] | [160, 169] |
p03281 | u054514819 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['from math import sqrt\nN = int(input())\nans = 0\nfor i in range(7, N+1):\n if i%2==0:\n continue\n c = 0\n for j in range(1, int(sqrt(i))+1):\n if i%j==0:\n if i%j==j:\n c+=1\n else:\n c+=2\n if c==8:\n ans += 1\n print(i)\nprint(ans)', 'from math import sqrt\nN = int(input())\nans = 0\nfor i in range(7, N+1):\n if i%2==0:\n continue\n c = 0\n for j in range(1, int(sqrt(i))+1):\n if i%j==0:\n c+=2\n if c==8:\n ans += 1\n print(i)\nprint(ans)', 'from math import sqrt\nN = int(input())\nans = 0\nfor i in range(7, N+1):\n if i%2==0:\n continue\n c = 0\n for j in range(1, int(sqrt(i))+1):\n if i%j==0:\n c+=2\n if c==8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s013597165', 's797392760', 's438277344'] | [3064.0, 3060.0, 3060.0] | [18.0, 18.0, 17.0] | [259, 215, 202] |
p03281 | u057429331 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['if N<=104:\n print(0)\nelif N<=134:\n print(1)\nelif N<=164:\n print(2)\nelif N<=188:\n print(3)\nelse:\n print(4)', 'N = int(input())\nif N<=104:\n print(0)\nelif N<=134:\n print(1)\nelif N<=164:\n print(2)\nelif N<=188:\n print(3)\nelif N<=194:\n print(4)\nelse:\n print(5)'] | ['Runtime Error', 'Accepted'] | ['s135190330', 's093316879'] | [2940.0, 3060.0] | [17.0, 17.0] | [120, 163] |
p03281 | u057455786 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\ncount = 0\n\nfor i in range(1, n):\n if i % 2 == 1:\n divisors_count = 0\n for a in range(1, i):\n if i % a == 0:\n divisors_count += 1\n if divisors_count == 8:\n count += 1\n\nprint(count)', 'n = int(input())\ncount = 0\n\nfor i in range(1, n + 1):\n if i % 2 == 1:\n divisors_count = 0\n for a in range(1, i + 1):\n if i % a == 0:\n divisors_count += 1\n if divisors_count == 8:\n count += 1\n\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s005887089', 's263722179'] | [2940.0, 2940.0] | [18.0, 18.0] | [223, 231] |
p03281 | u060564167 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=input()\n\nanswer=0\ncount=0\n \nfor i in range(1,N+1,2):\n for j in range(1,int(i**0.5)+1):\n if i%j==0:\n count+=1\n if count==4:\n answer+=1\n count=0\n \nprint(answer)', 'answer=0\ncount=0\n\nfor i in range(1,int(N**0.5)+1):\n if N%i==0:\n count+=1\nif count==4:\n answer+=1\n\nprint(answer)', 'answer=0\ncount=0\n \nfor i in range(1,N+1,2):\n for j in range(1,int(i**0.5)+1):\n if i%j==0:\n count+=1\n if count==4:\n answer+=1\n count=0\n \nprint(answer)', 'N=input()\n\nanswer=0\ncount=0\n\nfor i in range(1,int(N**0.5)+1):\n if N%i==0:\n count+=1\nif count==4:\n answer+=1\n\nprint(answer)', 'N = int(input())\n\nanswer=0\ncount=0\n \nfor i in range(1,N+1,2):\n for j in range(1,int(i**0.5)+1):\n if i%j==0:\n count+=1\n if count==4:\n answer+=1\n count=0\n \nprint(answer)'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s205230725', 's247801218', 's684702366', 's909957365', 's991694701'] | [3060.0, 2940.0, 2940.0, 2940.0, 3060.0] | [17.0, 18.0, 17.0, 17.0, 17.0] | [194, 124, 183, 135, 201] |
p03281 | u060569392 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\n\nans=0\nfor i in range(1,N+1):\n if i%2 != 0:\n count=0\n for j in range(1,i+1):\n if i % j ==0:\n count+=1\n else:\n if count==8:\n ans+=1\n\nprint(ans)', 'N=int(input())\n\nans=0\nfor i in range(1,N):\n if i%2 != 0:\n count=0\n for j in range(1,i):\n if i % j ==0:\n count+=1\n else:\n if count==8:\n ans+=1\n\nprint(ans)', 'N=int(input())\n\nans=0\nfor i in range(1,N+1):\n if i%2 != 0:\n count=0\n for j in range(1,i+1):\n if i % j ==0:\n count+=1\n if count==8:\n ans+=1\n\nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s666493724', 's677360887', 's766115166'] | [3060.0, 2940.0, 2940.0] | [19.0, 18.0, 18.0] | [245, 241, 223] |
p03281 | u060793972 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def ABC106C(n):\n a = 0\n for i in range(1,n+1):\n if n % i == 0:\n a += 1\n return a\n\na = 0\nfor i in range(1,int(input()),2):\n if ABC106C(i)==8:\n a += 1\nprint(a)', 'def ABC106C(n):\n a = 0\n for i in range(1,n+1):\n if n % i == 0:\n a += 1\n return a\n\na = 0\nfor i in range(1,int(input())+1,2):\n if ABC106C(i)==8:\n a += 1\nprint(a)'] | ['Wrong Answer', 'Accepted'] | ['s535940789', 's017959003'] | [2940.0, 2940.0] | [18.0, 18.0] | [194, 196] |
p03281 | u062680260 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import numpy as np\nfrom sys import stdinans=0\nc=0\nN = int(input().rstrip())\nfor i in range(N):\n c=0\n i+=1\n if i%2==1:\n for j in range(i):\n j+=1\n if i%j==0:\n c+=1\n if c==8:\n ans+=1\n\nprint(ans)', 'import numpy as np\nfrom sys import stdin\nans=0\nc=0\nN = int(input().rstrip())\nfor i in range(N):\n c=0\n i+=1\n if i%2==1:\n for j in range(i):\n j+=1\n if i%j==0:\n c+=1\n if c==8:\n ans+=1\n\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s191795313', 's095250030'] | [8988.0, 27172.0] | [29.0, 120.0] | [218, 219] |
p03281 | u063073794 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['hg\nn = int(input())\n\nans = 0\nfor i in range(n+1):\n count = 0\n for j in range(1,i+1):\n if i%j == 0:\n count+=1\n if count==8 and i%2 == 1:\n ans += 1\nprint(ans)\n', 'yandy\nN = int(input())\n\ncount = [0] * 201\ncount[105] = 1\nfor i in range(105, 201):\n if i % 2 == 1:\n num = 0\n for n in range(1, i+1):\n if i % n == 0:\n num += 1\n if num == 8:\n count[i] = count[i-1]+1\n else:\n count[i] = count[i-1]\n else:\n count[i] = count[i-1]\n\nprint(count[N])\n', 'n=int(input())\nans=0\ncount=0\nfor i in range(n+1): \n for j in range(1,i+1): \n if n%i==0:\n ans+=1\n if ans==8 and j%2==1:\n count+=1\nprint(count)', 'n=int(input())\nans=0\nfor i in range(1,n+1):\n count=0\n for j in range(1,i+1):\n if i%j==0:\n count+=1\n if count==8 and i%2==1:\n ans+=1\nprint(ans)'] | ['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s401722762', 's410969986', 's447732913', 's119290987'] | [2940.0, 3060.0, 3060.0, 2940.0] | [17.0, 18.0, 19.0, 19.0] | [191, 364, 157, 156] |
p03281 | u067267880 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import collections\n\nN = int(input())\ncount = 0\n\nfor k in range(1,N+1):\n \n num = []\n n = k\n if(n % 2 == 0):\n continue\n\n for i in range(2,k+1):\n if n % i == 0:\n n = int(n // i)\n num.append(i)\n\n\n num_counter = collections.Counter(num)\n print(num_counter)\n ans = 1\n for value in num_counter.values():\n ans *= value+1\n\n if(ans == 8):\n count += 1\n\n\n\nprint(count)', 'import collections\n\nN = int(input())\ncount = 0\n\nfor k in range(1,N+1):\n \n num = []\n n = k\n if(n % 2 == 0):\n continue\n\n for i in range(2,k+1):\n if n % i == 0:\n n = int(n // i)\n num.append(i)\n\n\n num_counter = collections.Counter(num)\n ans = 1\n for value in num_counter.values():\n ans *= value+1\n\n if(ans == 8):\n count += 1\n\n\n\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s364474166', 's567276952'] | [3316.0, 3316.0] | [23.0, 22.0] | [447, 424] |
p03281 | u076503518 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nans = 0\nfor i in range(1, N+1, 2):\n cnt = 0\n for j in range(1, i+1):\n if i % j == 0: cnt += 1\n if cnt == 8:\n print(i)\n ans += 1\nprint(ans)', 'N = int(input())\nans = 0\nfor i in range(1, N+1, 2):\n cnt = 0\n for j in range(1, i+1):\n if i % j == 0: cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s160049883', 's059078220'] | [3060.0, 2940.0] | [19.0, 18.0] | [185, 168] |
p03281 | u077291787 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['# ABC106B - 105\nn = int(input())\nodd = []\nodd_divs = []\n\nfor i in range(1, n + 1):\n if i % 2 == 1:\n odd.append(i)\n \nprint(odd)\nfor i in range(len(odd)):\n count = 0\n for j in range(1, odd[i] + 1):\n if odd[i] % j == 0:\n count += 1 \n odd_divs.append(count)\n \nprint(odd_divs.count(8))', '# ABC106B - 105\ndef divisors(x: int) -> set:\n """\n Compute divisors of a number.\n \n Args: x (int): an integer to be evaluated.\n Returns: divs (set): set of divisors\n """\n divs = set()\n for i in range(1, int(x ** 0.5) + 1):\n if x % i == 0:\n divs.add(i), divs.add(x // i)\n return divs\n\n\ndef main():\n N = int(input())\n ans = sum(len(divisors(i)) == 8 for i in range(1, N + 1, 2))\n print(ans)\n\n\nif __name__ == "__main__":\n main()'] | ['Wrong Answer', 'Accepted'] | ['s009189717', 's221723740'] | [3064.0, 3064.0] | [18.0, 17.0] | [338, 482] |
p03281 | u077337864 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input().strip())\n\nc = 0\nfor n in range(1, N+1):\n d = 0\n for i in range(1, n+1):\n if i * i > n:\n break\n if n % i == 0:\n d += 1\n if d >= 9:\n break\n if d == 8:\n c += 1\n\nprint(c)', 'N = int(input().strip())\n\nc = 0\nfor n in range(1, N+1, 2):\n d = 0\n for i in range(1, n+1):\n if i * i > n:\n break\n if n % i == 0:\n d += 2\n if d >= 9:\n break\n if d == 8:\n c += 1\n\nprint(c)\n'] | ['Wrong Answer', 'Accepted'] | ['s499942700', 's861508727'] | [2940.0, 2940.0] | [18.0, 17.0] | [216, 220] |
p03281 | u078214750 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nans = 0\nfor n in range(1, N+1):\n yakusuu = 0\n for i in range(1, n+1):\n if n%i==0:\n yakusuu+=1\n if yakusuu==8:\n ans += 1\nprint(ans)', 'N = int(input())\nans = 0\nfor n in range(1, N+1, 2):\n yaku = 0\n for i in range(1, n+1):\n if n%i == 0:\n yaku += 1\n if yaku == 8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s185765036', 's769326125'] | [9008.0, 8976.0] | [32.0, 28.0] | [161, 161] |
p03281 | u084968244 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ["if __name__ == '__main__':\n \n N = int(input())\n n = 0\n for i in range(N):\n k = 0\n for j in range(int(i/2)):\n if i % j == 0:\n k += 1\n if k > 8:\n break\n if k == 8:\n n += 1\n print(n)", "if __name__ == '__main__':\n \n N = int(input())\n n = 0\n for i in range(3,N+1,2):\n k = 1\n for j in range(2,i+1):\n if i % j == 0:\n k += 1\n if k > 8:\n break\n if k == 8:\n n += 1\n print(n)"] | ['Runtime Error', 'Accepted'] | ['s285290222', 's753079505'] | [3060.0, 3060.0] | [17.0, 18.0] | [317, 320] |
p03281 | u086503932 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\nans=0\nfor i in range(N+1):\n count=0\n for j in range(i+1):\n if i%j==0:\n count+=1\n if i%2==1 and count==8:\n ans+=1\nprint(ans)', 'N=int(input())\nans=0\nfor i in range(1,N+1):\n count=0\n for j in range(1,i+1):\n if i%j==0:\n count+=1\n if i%2==1 and count==8:\n ans+=1\nprint(ans)\n'] | ['Runtime Error', 'Accepted'] | ['s167564268', 's561445150'] | [2940.0, 2940.0] | [17.0, 19.0] | [152, 157] |
p03281 | u088063513 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['## coding: UTF-8\nfrom decimal import *\nfrom itertools import permutations, combinations,combinations_with_replacement,product\nimport math\n\n\n#input\n#N\n#A1 A2 ... AN\nN = int(input())\n\n\n\n\ndef yakusuu(n):\n \n l = []\n border = int(math.sqrt(n))\n \n for i in range(1, border+1):\n #print(i)\n if(n % i == 0):\n l.append(i)\n l.append(int(n/i))\n if(l[-1] == l[-2]):\n del l[-1]\n return l\n\ncounter = 0\nfor i in range(1, N+1, 2):\n print(i)\n if(len(yakusuu(i)) == 8):\n counter += 1\n\nprint(counter)', '## coding: UTF-8\nfrom decimal import *\nfrom itertools import permutations, combinations,combinations_with_replacement,product\nimport math\n\n\n#input\n#N\n#A1 A2 ... AN\nN = int(input())\n\n\n\n\ndef yakusuu(n):\n \n l = []\n border = int(math.sqrt(n))\n \n for i in range(1, border+1):\n #print(i)\n if(n % i == 0):\n l.append(i)\n l.append(int(n/i))\n if(l[-1] == l[-2]):\n del l[-1]\n return l\n\ncounter = 0\nfor i in range(1, N+1, 2):\n #print(i)\n if(len(yakusuu(i)) == 8):\n counter += 1\n\nprint(counter)'] | ['Wrong Answer', 'Accepted'] | ['s179019412', 's601849808'] | [5076.0, 5076.0] | [34.0, 34.0] | [768, 769] |
p03281 | u097121858 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def f(n):\n if n == 1:\n return 1\n ans = set()\n div = 3\n while n > 1:\n if n % div == 0:\n n //= div\n ans.add(div)\n else:\n div += 2\n return 2**len(ans)\n\n\nN = int(input())\nans = 0\nfor n in range(1, N + 1, 2):\n if f(n) == 8:\n print(n)\n ans += 1\nprint(ans)\n', 'def f(n):\n if n == 1:\n return 1\n divs = {}\n div = 3\n while n > 1:\n if n % div == 0:\n n //= div\n if div in divs:\n divs[div] += 1\n else:\n divs[div] = 1\n else:\n div += 2\n ans = 1\n for div in divs.values():\n ans *= div + 1\n return ans\n\n\nN = int(input())\nans = 0\nfor n in range(1, N + 1, 2):\n if f(n) == 8:\n ans += 1\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s239745268', 's538109787'] | [2940.0, 3064.0] | [18.0, 17.0] | [336, 456] |
p03281 | u101442050 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nresult = 0\nfor i in range(2,n+1):\n total = 0\n for j in range(i):\n if (i%j == 0):\n tatal += 1\n if(total == 8):\n result += 1\nprint(result)', 'n = int(input())\nresult = 0\nfor i in range(1,n+1,2):\n total = 0\n for j in range(1,i+1):\n if (i%j == 0):\n total += 1\n if(total == 8):\n result += 1\n #print(i,j)\nprint(result)\n'] | ['Runtime Error', 'Accepted'] | ['s991271552', 's757129212'] | [2940.0, 2940.0] | [18.0, 18.0] | [167, 190] |
p03281 | u102960641 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['print(5)', 'n = int(input())\na = [105,135,165,189,195]\nans = 0 \nfor i in a:\n if n >= i:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s778529671', 's339084462'] | [2940.0, 2940.0] | [18.0, 20.0] | [8, 100] |
p03281 | u111365362 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['ans = [105,135,165,189]\nn = input()\nif n < 105:\n print(0)\nelif n < 135:\n print(1)\nelif n < 165:\n print(2)\nelif n < 189:\n print(3)\nelse:\n print(4)', 'ans = [105,135,165,189,195]\nn = input()\nif n < 105:\n print(0)\nelif n < 135:\n print(1)\nelif n < 165:\n print(2)\nelif n < 189:\n print(3)\nelif n < 195:\n print(4)\nelse:\n print(5)', 'ans = [105,135,165,189]\nn = int(input())\nif n < 105:\n print(0)\nelif n < 135:\n print(1)\nelif n < 165:\n print(2)\nelif n < 189:\n print(3)\nelif n < 195:\n print(4)\nelse:\n print(5)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s743353280', 's786493390', 's581827337'] | [2940.0, 3060.0, 3060.0] | [17.0, 17.0, 17.0] | [150, 179, 180] |
p03281 | u111497285 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\nans = 0\nfor i in range(1, n+1):\n if i % 2 == 0:\n continue\n cnt = 0\n for j in range(1, i+1):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n print(i)\n ans += 1\nprint(ans)\n\n', 'n = int(input())\n\nans = 0\nfor i in range(1, n+1):\n if i % 2 == 0:\n continue\n cnt = 0\n for j in range(1, i+1):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)\n\n'] | ['Wrong Answer', 'Accepted'] | ['s264931615', 's859390490'] | [2940.0, 2940.0] | [18.0, 18.0] | [233, 216] |
p03281 | u111652094 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def yakusu(x):\n A=[]\n for i in range(1,x+1):\n if x%i==0:\n A.append(i)\n return(len(A))\n \nn=int(input())\nans=0\n\nfor j in range(1,n+1):\n if yakusu(n)==8:\n ans+=1\nprint(ans)', '\ndef yakusu(x):\n A=[]\n for i in range(1,x+1):\n if x%i==0:\n A.append()\n return(len(A))\n \nn=int(input())\n\nprint(yakusu(n))', '\ndef yakusu(x):\n A=[]\n for i in range(1,x+1):\n if x%i==0:\n A.append(i)\n return(len(A))\n \nn=int(input())\nans=0\n\nfor j in range(1,n+1):\n if yakusu(j)==8:\n ans+=1\nprint(ans)', 'def yakusu(x):\n A=[]\n for i in range(1,x+1):\n if x%i==0:\n A.append(i)\n return(len(A))\n \nn=int(input())\nans=0\n\nfor j in range(1,n+1,2):\n if yakusu(j)==8:\n ans+=1\nprint(ans)'] | ['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s104296782', 's566391318', 's614299819', 's903316830'] | [9120.0, 8888.0, 9084.0, 9144.0] | [27.0, 24.0, 28.0, 31.0] | [209, 150, 210, 211] |
p03281 | u112065131 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['# -*- coding: utf-8 -*-\n\ndef main():\n\n N = int(input())\n\n ans = 0\n count = 0\n\n for i in range(1, N+1):\n if i % 2 == 1:\n for j in range(1, i+1):\n if i % j == 0:\n count +=1\n if count == 8:\n ans += 1\n count = 0\n break\n \n print(ans)\n\n\nif __name__ == "__main__":\n main()', '# -*- coding: utf-8 -*-\n\ndef main():\n\n N = int(input())\n\n ans = 0\n\n for i in range(1, N+1):\n if i % 2 == 1:\n\n count = 0\n\n for j in range(1, i+1):\n if i % j == 0:\n count +=1\n if count == 8:\n ans += 1\n \n print(ans)\n\n\nif __name__ == "__main__":\n main()'] | ['Wrong Answer', 'Accepted'] | ['s600311766', 's383012410'] | [9100.0, 9116.0] | [32.0, 25.0] | [414, 368] |
p03281 | u112317104 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def solve():\n N = int(input())\n \n c = 0\n for i in range(1, N+1, 2):\n f = factorize(i)\n l = []\n for j in f:\n l.append(j)\n l.append(N // j)\n l.append(N)\n l.append(1)\n s = len(set(l))\n if s == 8:\n c += 1\n\n return c\n\nprint(solve())\n', 'def solve():\n N = int(input())\n \n ans = 0\n for i in range(1, N+1, 2):\n c = 0\n for j in range(1, i+1):\n if i % j == 0:\n c += 1\n if c == 8:\n ans += 1\n\n return ans\n\nprint(solve())'] | ['Runtime Error', 'Accepted'] | ['s726896087', 's290964118'] | [3060.0, 3316.0] | [17.0, 19.0] | [325, 249] |
p03281 | u121161758 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['from fractions import gcd\nfrom functools import reduce\nN = int(input())\na = list(map(int, input().split()))\n\nlist_ans = []\n\nfor i in range(N):\n remove_a = a.pop(0)\n #print("a is",a)\n ans = reduce(gcd, a)\n list_ans.append(ans)\n a.append(remove_a)\n #print("fix a is",a)\n\nprint(max(list_ans))', 'n = int(input())\n\ndiv_count = 0\nsum = 0\n\nfor i in range(3,n+1,2):\n a = i\n j = 2\n div_count = 0\n while(j <= a):\n #print("a is",a)\n #print("j is",j)\n if a % j == 0:\n div_count += 1\n a //= j\n j += 1\n else:\n j += 1\n if div_count == 3:\n sum += 1\n\nprint(sum)\n\n'] | ['Runtime Error', 'Accepted'] | ['s947339594', 's948029438'] | [5048.0, 3060.0] | [35.0, 19.0] | [307, 348] |
p03281 | u123745130 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nm=int(n**0.5)+1\ncon_num=0\nfor i in range(m):\n if n%i==0:\n con_num+=1\nif con_num==8 and n%2==1:\n print("1")\nelse:\n print("0")', '\n#include<algorithm>\n\n#include <cmath>\n#include<string>\n#define REP(i,n) for(int i=0;i<int (n);i++)\nusing namespace std;\n\nint main(){\n int n;\n int ans=1;\n cin>>n;\n if (n<105){\n cout<<0<<endl;\n return 0;\n }\n for (int i=106;i<=n;i++){\n int cnt=0;\n for (int j=1;j<=i;j++){\n \n if (i %j ==0){\n cnt++;\n } \n }\n if (cnt==8) ans++;\n }\n cout<<ans<<endl; \n \n return 0;\n}', 'def I(): return int(input())\nn = I()\nans = 0\nif n>=105:\n for i in range(105,n+1,2):\n cnt=0\n for j in range(1,int(i**0.5)+1):\n if i % j ==0:\n if j*j==i:\n cnt+=1\n else:\n cnt+=2\n if cnt==8:\n ans+=1\nprint(ans)\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s781232290', 's963675410', 's332508131'] | [2940.0, 2940.0, 9436.0] | [17.0, 18.0, 26.0] | [145, 514, 320] |
p03281 | u124271351 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nx = []\nres = 0\nfor i in range(3, N+1, 2):\n if len(x) == 0:\n x.append(i)\n else:\n y = i\n z = {}\n flag = True\n while flag:\n flag = False\n for j in x:\n if y % j == 0:\n y /= j\n z.setdefault(j, 0)\n z[j] += 1\n flag = True\n if y == i:\n x.append(i)\n else:\n yakusu = 1\n for j in z.values():\n yakusu *= j + 1\n if yakusu == 8:\n print(i)\n res += 1\nprint(res) ', 'N = int(input())\nx = []\nres = 0\nfor i in range(3, N+1, 2):\n if len(x) == 0:\n x.append(i)\n else:\n y = i\n z = {}\n flag = True\n while flag:\n flag = False\n for j in x:\n if y % j == 0:\n y /= j\n z.setdefault(j, 0)\n z[j] += 1\n flag = True\n if y == i:\n x.append(i)\n else:\n yakusu = 1\n for j in z.values():\n yakusu *= j + 1\n if yakusu == 8:\n res += 1\nprint(res) '] | ['Wrong Answer', 'Accepted'] | ['s807831798', 's736647838'] | [3064.0, 3064.0] | [19.0, 18.0] | [620, 595] |
p03281 | u128740947 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nans =0\nfor i in range(1,n+1):\n a = 0\n for l in range(1,i+1):\n if i%l == 0:\n a += 1\n if a == 8:\n ans += 1\nprint(ans)\n', 'n = int(input())\nans = 0\nfor i in range(1,n+1):\n a = 0\n for l in range(1,i+1):\n if i%l == 0:\n a += 1\n if a == 8 and i % 2 != 0:\n ans += 1\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s270399309', 's977162783'] | [2940.0, 2940.0] | [20.0, 20.0] | [167, 183] |
p03281 | u129315407 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\ndef count_divisors(n):\n count = 0\n for i in range(1, n + 1):\n if n % i == 0:\n count += 1\n return count\n\nans = 0\nfor i in range(1, N + 1, 2):\n if count_divisors(i) == 8:\n print(i)\n ans += 1\nprint(ans)\n', 'N = int(input())\n \ndef count_divisors(n):\n count = 0\n for i in range(1, n + 1):\n if n % i == 0:\n count += 1\n return count\n \nans = 0\nfor i in range(1, N + 1, 2):\n if count_divisors(i) == 8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s915783187', 's320533172'] | [2940.0, 2940.0] | [19.0, 18.0] | [262, 246] |
p03281 | u129978636 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nans=0\nfor i in range(1,n+1):\n count=0\n if(n%2==1):\n for j in range(1,n+1):\n if(i%j==0):\n count+=1\n else:\n continue\n if(count==8):\n ans+=1\n else:\n continue\n else:\n continue\nprint(ans)', 'a=0\nfor i in range(1,int(input())+1):\n c=0\n if(i%2==1):\n for j in range(1,i+1):\n if(i%j==0):\n c+=1\n if(c==8):\n a+=1\nprint(a)'] | ['Wrong Answer', 'Accepted'] | ['s205506794', 's830763507'] | [3060.0, 2940.0] | [21.0, 18.0] | [301, 181] |
p03281 | u130900604 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['anslist=(3*5*7,\n 3*5*11,\n 3*5*13,\n 3*5**3,5*3**3,7*3**3)\n\nn=int(input())\ncnt=0\nfor i in range(1,n,2):\n if i in anslist:\n cnt+=1\n \nprint(cnt)\n ', 'def divisor(x):\n ret=[]\n for i in range(1,x+1):\n if x%i==0:\n ret.append(i)\n return len(ret)\n\nans=0\nn=int(input())\nfor i in range(1,n+1):\n if divisor(i)==8:\n ans+=1\nprint(ans)', 'def divisor(x):\n ret=[]\n for i in range(1,x+1):\n if x%i==0:\n ret.append(i)\n return len(ret)\n\nans=0\nn=int(input())\nfor i in range(1,n+1):\n if divisor(i)==8 and i%2==1:\n ans+=1\nprint(ans)\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s720348352', 's950007497', 's544896018'] | [2940.0, 3060.0, 2940.0] | [18.0, 19.0, 19.0] | [173, 189, 201] |
p03281 | u131264627 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nans = 1\nfor i in range(1, n + 1, 2):\n cnt = 0\n for j in range(1, i + 1):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)', 'n = int(input())\nans = 0\nfor i in range(1, n + 1, 2):\n cnt = 0\n for j in range(1, i + 1):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s047884823', 's163027460'] | [2940.0, 2940.0] | [18.0, 18.0] | [185, 184] |
p03281 | u131406572 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\ns=0\nfor i in range(1,n):\n for j in range(1,i):\n a=0\n if i%j==0:\n a+=1\n if a==8:\n s+=1\nprint(s)', 'n=int(input())\ns=0\nfor i in range(1,n+1):\n for j in range(1,i+1):\n a=0\n if i%j==0:\n a+=1\n if a==8:\n s+=1\nprint(s)', 'n=int(input())\ns=0\nfor i in range(n):\n for j in range(i):\n a=0\n if i%j==0:\n a+=1\n if a==8:\n s+=1\nprint(s)', 'def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\n\nn=int(input())\n\ns=0\nfor i in range(1,n+1,2):\n if len(make_divisors(i))==8:\n s+=1\nprint(s)'] | ['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted'] | ['s316367562', 's620287188', 's962651992', 's344571884'] | [2940.0, 3064.0, 2940.0, 3188.0] | [18.0, 21.0, 17.0, 17.0] | [147, 151, 143, 365] |
p03281 | u132313362 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['\nn = int(input())\ncount = 0\nans = 0\n\nfor i in range(1, n+1) :\n print(i)\n if i % 2 == 0:\n continue\n for j in range(1, i+1):\n if i % j == 0:\n count = count + 1\n if count == 8 :\n ans = ans + 1\n count = 0\n\nprint(ans)', 'n = int(input())\ncount = 0\nans = 0\n\nfor i in range(1, n+1) :\n if i % 2 == 0:\n continue\n for j in range(1, i+1):\n if i % j == 0:\n count = count + 1\n if count == 8 :\n ans = ans + 1\n count = 0\n\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s549915418', 's481732334'] | [3060.0, 3060.0] | [18.0, 18.0] | [264, 250] |
p03281 | u135454978 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['\nimport sys\nimport math\n\nN = int(input())\n\n\ndef divisor(n):\n ans = 0\n for i in range(1, int(math.sqrt(n))):\n if n % i == 0:\n ans += 1\n if i != int(math.sqrt(n)):\n ans += 1\n\n return ans\n\n\nans = 0\nfor i in range(105, N + 1):\n if i % 2 == 0:\n continue\n\n if divisor(i) == 8:\n ans +=1\n\nprint(ans)\n', '\nimport sys\nimport math\n\nN = int(input())\n\n\ndef divisor(n):\n ans = 0\n for i in range(1, int(math.sqrt(n + 1)), 2): \n if n % i == 0:\n ans += 1\n if i != int(math.sqrt(n + 1)):\n ans += 1\n\n return ans\n\n\nans = 0\nfor i in range(105, N + 1, 2): \n if divisor(i) == 8:\n ans +=1\n\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s936350394', 's120718203'] | [3060.0, 3060.0] | [18.0, 17.0] | [398, 515] |
p03281 | u141786930 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['# B - 105\n\ndef yakusu_rekkyo(n):\n yakusu = set()\n for i in range(1, int(pow(n, 0.5)+1)):\n if n%i == 0:\n yakusu.add(i)\n if i!=n//i:\n yakusu.add(n//i)\n return yakusu\n\nN = int(input())\nans = 0\nfor i in range(1, N+1, 2):\n Y = yakusu_rekkyo(N)\n if len(Y) == 8:\n ans += 1\n \nprint(ans)', '# B - 105\n\ndef yakusu_rekkyo(n):\n yakusu = set()\n for i in range(1, int(pow(n, 0.5)+1)):\n if n%i == 0:\n yakusu.add(i)\n yakusu.add(n//i)\n return yakusu\n\nN = int(input())\nans = 0\nfor i in range(105, N+1, 2):\n Y = yakusu_rekkyo(i)\n if len(Y) == 8:\n ans += 1\n \nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s668348769', 's850093056'] | [9452.0, 9456.0] | [28.0, 26.0] | [351, 325] |
p03281 | u143492911 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nif n<105:\n print(0)\nelif 105<=n and n<135:\n print(1)\nelif 135=n and n<175:\n print(2)\nelif 175<=n and n<189:\n print(3)\nelse:\n print(4)\n\n ', 'n=int(input())\nans=0\nfor i in range(1,n+1,2):\n cnt=0\n for j in range(1,n+1):\n if i%j==0:\n cnt+=1\n if cnt==8:\n print(i)\n ans+=1\nprint(ans)\n', 'n=int(input())\nans=0\nfor i in range(1,n+1,2):\n cnt=0\n for j in range(1,n+1):\n if i%j==0:\n cnt+=1\n if cnt==8:\n ans+=1\nprint(ans)\n'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s047099454', 's543393586', 's918895734'] | [2940.0, 2940.0, 2940.0] | [17.0, 19.0, 19.0] | [169, 179, 162] |
p03281 | u150641538 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nif(n<27):\n print("0")\nelif(n<105):\n print("1")\nelif(n<125):\n print("2")\nelif(n<135):\n print("3")\nelif(n<165):\n print("4")\nelif(n<189):\n print("5")\nelse:\n print("6")\n\n', 'n = int(input())\nif(n<105):\n print("0")\nelif(n<135):\n print("1")\nelif(n<165):\n print("2")\nelif(n<189):\n print("3")\nelif(n<195):\n print("4")\nelse:\n print("5")\n\n'] | ['Wrong Answer', 'Accepted'] | ['s412384116', 's857295205'] | [2940.0, 3064.0] | [18.0, 30.0] | [204, 177] |
p03281 | u151625340 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def divisor_all(n): \n l = [1,n]\n for i in range(2,int(pow(n,1/2))+1):\n if n % i == 0:\n if i == n//i:\n l.append(i)\n else:\n l.append(i)\n l.append(n//i)\n l.sort()\n return l # list\nN = int(input())\nans = 0\nfor i in range(1,N+1):\n if len(divisor_all(i))==8:\n ans += 1\nprint(ans)', 'N = int(input())\ndef divisor_all(n): \n l = [1,n]\n for i in range(2,int(pow(n,1/2))+1):\n if n % i == 0:\n if i == n//i:\n l.append(i)\n else:\n l.append(i)\n l.append(n//i)\n l.sort()\n return l # list\nans = 0\nfor i in range(1,N+1,2):\n if len(divisor_all(i))==8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s772578877', 's329661195'] | [3064.0, 3188.0] | [18.0, 18.0] | [386, 388] |
p03281 | u157876329 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\ncnt=0\nfor i in range(1,n+1):\n if n%i == 0:\n cnt += 1\nprint(cnt)\n', 'n=int(input())\nans=0\nfor i in range(1,n+1,2):\n cnt=0\n for j in range(1,i+1):\n if i%j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s851947013', 's279093741'] | [2940.0, 2940.0] | [17.0, 18.0] | [89, 170] |
p03281 | u159335277 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import sympy\n\nsympy.divisors(10**9)\n\nn = int(input())\nprint(len(list(filter(lambda x: sympy.divisors(x) == 8, range(0, n + 1)))))', 'def make_divisors(n):\n lower_divisors , upper_divisors = [], []\n i = 1\n while i*i <= n:\n if n % i == 0:\n lower_divisors.append(i)\n if i != n // i:\n upper_divisors.append(n//i)\n i += 1\n return lower_divisors + upper_divisors[::-1]\n\nn = int(input())\nprint(len(list(filter(lambda x: len(make_divisors(x)) == 8, range(1, n + 1,2)))))\n'] | ['Runtime Error', 'Accepted'] | ['s974142605', 's189257272'] | [9028.0, 9180.0] | [27.0, 27.0] | [129, 393] |
p03281 | u163320134 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nif n<105:\n print(0)\nelif n<135:\n print(1)\nelif n<165:\n print(2):\nelif n<189:\n print(3)\nelif n<195:\n print(4)\nelse:\n print(5)', 'n=int(input())\nans=0\nfor i in range(1,n+1):\n if i%2==0:\n continue\n tmp=0\n for j in range(1,n+1):\n if i%j==0:\n tmp+=1\n if tmp==8:\n ans+=1\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s613326480', 's003742159'] | [2940.0, 2940.0] | [17.0, 19.0] | [145, 165] |
p03281 | u163449343 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nans = 0\nfor x in range(N):\n if x % 2 == 1:\n tx = x\n ac, bc, cc = 0, 0, 0 \n a,b,c = False, False, False\n while (x % 2 == 0) or (x % 3 == 0) or (x % 5 == 0):\n if x % 2 == 0:\n ac += 1\n x = x // 2\n a = True\n elif x % 3 == 0:\n bc += 1\n x = x // 3\n b = True\n elif x % 5 == 0:\n cc += 1\n x = x // 5\n c = True\n count = (ac + 1) * (bc + 1) * (cc + 1)\n if count == 4:\n \n ans += 1\nprint(ans) \n', 'N = int(input())\nif N > 105:\n print(1)\nelse:\n print(0)', 'N = int(input())\nprint([0, 1][if N > 105])', 'N = int(input())\nprint([0, 1][if N > 105]', 'N = int(input())\nans = 0\nfor x in range(1,N):\n if x % 2 == 1:\n ac, bc, cc = 0, 0, 0\n a,b,c = False, False, False\n while x % 2 == 0:\n ac += 1\n x = x // 2\n a = True\n while x % 3 == 0:\n bc += 1\n x = x // 3\n b = True\n while x % 5 == 0:\n cc += 1\n x = x // 5\n c = True\n count = (ac + a) * (bc + b) * (cc + c)\n if count == 8:\n ans += 1\nprint(ans) \n', 'n = int(input())\nans = 0\nfor i in range(1,n+1,2):\n co = 0\n for f in range(1,i+1):\n if i % f == 0:\n co += 1\n if co == 8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s008371742', 's086693043', 's187469719', 's397599878', 's968588479', 's765727828'] | [3064.0, 2940.0, 3064.0, 2940.0, 3064.0, 3060.0] | [17.0, 17.0, 17.0, 18.0, 22.0, 24.0] | [641, 56, 42, 41, 511, 174] |
p03281 | u167360450 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\nres = 0\nfor i in range(9,n+1,2):\n yakusu = 0\n for j in range(2,int(i/2)+1):\n if(i % j == 0):\n yakusu +=1\n if(yakusu == 8):\n res += 1\n\nprint(res)', 'n = int(input())\n\nres = 0\nfor i in range(8,n+1,2):\n yakusu = 0\n for j in range(2,int(i/2)+1):\n if(i % j == 0):\n yakusu +=1\n if(yakusu == 8):\n res += 1\n\nprint(res)', 'n = int(input())\n\nres = 0\nfor i in range(9, n+1, 2):\n yakusu = 0\n for j in range(1, i+1):\n if i % j == 0:\n yakusu += 1\n if yakusu == 8:\n res += 1\n\nprint(res)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s796452835', 's998154023', 's145510353'] | [2940.0, 3060.0, 2940.0] | [17.0, 18.0, 18.0] | [196, 196, 191] |
p03281 | u168416324 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def mkdiv(n):\n lower_divisors , upper_divisors = [], []\n i = 1\n while i*i <= n:\n if n % i == 0:\n lower_divisors.append(i)\n if i != n // i:\n upper_divisors.append(n//i)\n i += 1\n return lower_divisors + upper_divisors[::-1]\n\nif len(mkdiv(int(input())))==8:\n print("Yes")\nelse:\n print("No")', 'if int(input())>=105:\n print("Yes")\nelse:\n print("No")', 'def mkdiv(n):\n lower_divisors , upper_divisors = [], []\n i = 1\n while i*i <= n:\n if n % i == 0:\n lower_divisors.append(i)\n if i != n // i:\n upper_divisors.append(n//i)\n i += 1\n return lower_divisors + upper_divisors[::-1]\nans=0\nn=int(input())\n\nfor i in range(n+1):\n if len(mkdiv(i))==8 and i%2:\n ans+=1\nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s272427279', 's954696860', 's640954217'] | [9056.0, 9136.0, 9164.0] | [26.0, 26.0, 26.0] | [352, 56, 380] |
p03281 | u175746978 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\ncnt = 0\nl = []\nfor i in range(1, n+1):\n if i % 2 == 0:\n exit()\n else: \n if n % i == 0:\n l.append(i)\n if len(l) == 8:\n cnt += 1\nprint(cnt)\n', 'n = int(input())\ncnt = 0\nl = []\nfor i in range(1, n+1):\n if i % 2 == 1:\n for d in range(1, i+1):\n if i % d == 0:\n l.append(d)\n if len(l) == 8:\n cnt += 1\nprint(cnt)', 'n = int(input())\ncnt = 0\nl = []\nfor i in range(1, n+1):\n if i % 2 == 0:\n exit()\n else: \n for j in range(1,n+1):\n if n % j == 0:\n l.append(j)\n if len(l) == 8:\n cnt += 1\nprint(cnt)\n', 'n = int(input())\ncnt = 0\nl = []\nfor i in range(1, n+1):\n if i % 2 == 1:\n for d in (1, i+1):\n if n % i == 0:\n l.append(i)\n if len(l) == 8:\n cnt += 1\nprint(cnt)', 'n = int(input())\ncnt = 0\n\nfor i in range(1, n+1):\n if i % 2 == 1:\n l = []\n for d in range(1, i+1):\n if i % d == 0:\n l.append(d)\n if len(l) == 8:\n cnt += 1\nprint(cnt)'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s193979444', 's550637913', 's616982205', 's845232765', 's039172515'] | [2940.0, 3060.0, 2940.0, 3060.0, 3060.0] | [18.0, 19.0, 17.0, 17.0, 18.0] | [212, 217, 259, 212, 242] |
p03281 | u177756077 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import math\n\nN=int(input())\nend=int(math.sqrt(N))\ncnt=0\nfor i in range(1,N+1):\n if N%i==0 :\n cnt=cnt+1\n\nprint(cnt)', 'N=int(input())\nnum=0\nfor j in range(1,N+1,2):\n\tcnt=0\n\tfor i in range(1,j+1):\n# print(i)\n# print(j)\n if j%i==0 :\n cnt=cnt+1\n if cnt==8 :\n# print(cnt)\n num+=1\n# print("---")\nprint(num)\n', 'N=int(input())\nnum=0\nfor j in range(1,N+1,2):\n cnt=0\n for i in range(1,j+1):\n# print(i)\n# print(j)\n if j%i==0 :\n cnt=cnt+1\n if cnt==8 :\n# print(cnt)\n num+=1\n# print("---")\nprint(num)\n', 'import math\nN=int(input())\n\ncnt=0\nfor j in range(1,N+1,2):\n n=int(math.sqrt(j))\n yaku=0\n for i in range(n):\n if j%(i+1)==0:\n yaku+=1\n #print(j,yaku)\n if yaku*2==8:\n cnt+=1\nprint(cnt)'] | ['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s419823012', 's846952908', 's853764843', 's843623436'] | [3060.0, 2940.0, 2940.0, 3060.0] | [17.0, 17.0, 17.0, 18.0] | [125, 235, 239, 222] |
p03281 | u178192749 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\ncnt = 0\nfor i in range(1,n+1):\n num8 = 0\n for j in range(1,n+1):\n if i%j == 0:\n num8 +=1\n if num8 == 8:\n cnt +=1\nprint(cnt)', 'n = int(input())\ncnt = 0\nfor i in range(1,n+1,2):\n num8 = 0\n for j in range(1,n+1):\n if i%j == 0:\n num8 +=1\n if num8 == 8:\n cnt +=1\nprint(cnt)\n'] | ['Wrong Answer', 'Accepted'] | ['s918711964', 's900161780'] | [2940.0, 2940.0] | [21.0, 19.0] | [154, 157] |
p03281 | u178432859 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\ntotal, count = 0,0\nfor i in range(1, n+1, 2):\n for j in range(1, i+1):\n if i % j == 0:\n count += 1\n print(count)\n if count == 8:\n total += 1\n count = 0\nprint(total)\n\n\n', 'n = int(input())\nif n < 105:\n print(0)\n exit()\ntotal, count = 0,0\nfor i in range(1, n+1, 2):\n for j in range(1, i+1):\n if i % j == 0:\n count += 1\n print(count)\n if count == 8:\n total += 1\n count = 0\nprint(total)\n\n\n', 'n = int(input())\ntotal, count = 0,0\nfor i in range(1, n+1, 2):\n for j in range(1, i+1):\n if i % j == 0:\n count += 1\n if count == 8:\n total += 1\n count = 0\nprint(total)\n\n\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s309193220', 's595157284', 's149761345'] | [3060.0, 3060.0, 2940.0] | [18.0, 18.0, 18.0] | [221, 257, 204] |
p03281 | u179276813 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\nans = 0\nsqrt = 1\n\nfor i in range(1,n+1,2):\n if i == sqrt*sqrt:\n sqrt += 1\n continue\n elif i > sqrt*sqrt:\n sqrt += 1\n count = 0\n for j in range(1,sqrt,2):\n if i%j == 0:\n count += 1\n if count == 4:\n print(i,sqrt)\n ans += 1\n\nprint(ans)\n', 'n = int(input())\n\nans = 0\nsqrt = 1\n\nfor i in range(1,n+1,2):\n if i == sqrt*sqrt:\n sqrt += 1\n continue\n elif i > sqrt*sqrt:\n sqrt += 1\n count = 0\n for j in range(1,sqrt,2):\n if i%j == 0:\n count += 1\n if count == 4:\n ans += 1\n\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s519438203', 's890157031'] | [9060.0, 9108.0] | [27.0, 26.0] | [319, 297] |
p03281 | u181937133 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['a=int(input())\nc=[i for i in [I for I in range(2,100)] if a%i==0]\nprint(len(set([a//I for I in c]+c+[a,1])))', 'a=int(input())\nif a<105:print(0)\nelse:\n print(sum([1 for i in range(105,a+1,2) if len([I for I in range(1,a+1,2) if i%I==0])==8]))'] | ['Wrong Answer', 'Accepted'] | ['s631946830', 's777615607'] | [2940.0, 2940.0] | [17.0, 17.0] | [108, 133] |
p03281 | u185037583 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nans=0\nfor i in range(1,n,2):\n cnt=0\n for j in range(1,i+1):\n if i%j==0:\n cnt+=1\n if cnt==8:\n ans+=1\nprint(ans)', 'n=int(input())\nans=0\nfor i in range(1,n+1,2):\n cnt=0\n for j in range(1,i+1):\n if i%j==0:\n cnt+=1\n if cnt==8:\n ans+=1\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s817764568', 's956196483'] | [2940.0, 2940.0] | [18.0, 18.0] | [139, 142] |
p03281 | u186838327 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nd = {i: 0 for i in range(n+1)}\nfor i in range(1, n+1):\n for j in range(1, n+1):\n if j%i == 0:\n d[j] +=1\nfor k, v in d.items():\n if k%2 == 1 and v == 8:\n print(k)', 'n = int(input())\nd = {i: 0 for i in range(n+1)}\nfor i in range(1, n+1):\n for j in range(1, n+1):\n if j%i == 0:\n d[j] +=1\na = 0\nfor k, v in d.items():\n if k%2 == 1 and v == 8:\n a +=1\nprint(a)'] | ['Wrong Answer', 'Accepted'] | ['s429216920', 's851012530'] | [3060.0, 3060.0] | [21.0, 21.0] | [209, 221] |
p03281 | u187857228 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def test():\n n = int(input())\n count = 0\n a = []\n for i in range(1,n+1):\n if i % 2 != 0:\n for j in range(1,i+1):\n if i % j == 0:\n count += 1\n a.append(count)\n count = 0\n print(a)\n print(a.count(8))\n\n\nif __name__ == "__main__":\n test()\n', 'def test():\n n = int(input())\n count = 0\n a = []\n for i in range(1,n+1):\n if i % 2 != 0:\n for j in range(1,i+1):\n if i % j == 0:\n count += 1\n a.append(count)\n count = 0\n print(a.count(8))\n\n\nif __name__ == "__main__":\n test()\n'] | ['Wrong Answer', 'Accepted'] | ['s621790455', 's945954762'] | [3060.0, 2940.0] | [19.0, 19.0] | [322, 309] |
p03281 | u188138642 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nans = 0\nfor i in range(1, n+1, 2):\n count = 0\n for j in range(1, i+1):\n if i%j == 0:\n count += 1\n if count==8:\n print(i)\n ans+=1\nprint(ans)', 'n = int(input())\nans = 0\nfor i in range(1, n+1, 2):\n count = 0\n for j in range(1, i+1):\n if i%j == 0:\n count += 1\n if count==8:\n ans+=1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s850794432', 's838543968'] | [9084.0, 9136.0] | [27.0, 30.0] | [197, 180] |
p03281 | u189513668 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\ncount = 0\nfor i in range(1, N+1, 2):\n c = 0\n for j in range(1, i+1):\n if i % j == 0:\n c += 1\n \n if c == 8:\n print(i)\n count += 1\nelse:\n print(count)', 'N = int(input())\n\ncount = 0\nfor i in range(1, N+1, 2):\n c = 0\n for j in range(1, i+1):\n if i % j == 0:\n c += 1\n \n if c == 8:\n count += 1\nelse:\n print(count)'] | ['Wrong Answer', 'Accepted'] | ['s049513873', 's519179337'] | [3060.0, 3060.0] | [18.0, 18.0] | [213, 196] |
p03281 | u192908410 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nprint(4 if n >= 189 else 3 if n >= 135 else 2 if n >= 105 else 0)', '# a*b*c : 105, 165\n# a^3*b : 135, 189\n\nn = int(input())\nprint(4 if n >= 189 else 3 if n >= 165 else if 2 if n >=n 135 else 1 if n >= 105 else 0)', 'k = [104,134,164,188,194]\nn = int(input())\nk.append(n)\nprint(sorted(k).index(n))'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s061312761', 's468023373', 's001792698'] | [2940.0, 2940.0, 2940.0] | [17.0, 17.0, 17.0] | [82, 144, 80] |
p03281 | u195054737 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\nans = 0\nfor i in range(1, n+1, 2):\n tmp = 0\n for j in range(1, (n+1)/2):\n if i % j == 0:\n tmp += 1\n\n if tmp == 4:\n ans += 1\n\nprint(ans)\n', ' n = int(input())\n\nans = 0\nfor i in range(1, n+1):\n tmp = 0\n for j in range(1, i/2+1):\n if i % j == 0:\n tep += 1\n\n if tmp == 8:\n ans += 1\n\nprint(ans)', 'n = int(input())\n\nans = 0\nfor i in range(1, n+1, 2):\n tmp = 0\n for j in range(1, n/2):\n if i % j == 0:\n tmp += 1\n\n if tmp == 8:\n ans += 1\n\nprint(ans)\n', 'n = int(input())\n\nans = 0\nfor i in range(1, n+1, 2):\n tmp = 0\n for j in range(1, n/2):\n if i % j == 0:\n tmp += 1\n\n if tmp == 4:\n ans += 1\n\nprint(ans)\n', 'n = int(input())\n\nans = 0\nfor i in range(1, n+1):\n tmp = 0\n for j in range(1, i/2+1):\n if n % j == 0:\n tep += 1\n\n if tmp == 8:\n ans += 1\n\nprint(ans)', 'n = int(input())\n\nans = 0\nfor i in range(1, n+1, 2):\n tmp = 0\n for j in range(1, n+1):\n if i % j == 0:\n tmp += 1\n\n if tmp == 8:\n ans += 1\n\nprint(ans)\n'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s074390800', 's164430795', 's502155212', 's717120362', 's793237313', 's959667044'] | [2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0] | [17.0, 17.0, 17.0, 17.0, 17.0, 19.0] | [188, 183, 184, 184, 182, 184] |
p03281 | u198930868 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['i = int(input())\nlis = []\nfor n in range(1,i+1,2):\n ans = 0\n for m in range(1,n+1):\n if n % m == 0:\n ans += 1\n if ans == 8:\n print(n)\n lis.append(n)\nif len(lis) == 0:\n print(0)\n', 'i = int(input())\n\nfor n in range(1,i+1,2):\n ans = 0\n r = 0\n for m in range(1,n+1):\n if n % m == 0:\n ans += 1\n if ans == 8:\n r = n\n print(r)\nif r == 0:\n print(r)\n\n', 'i = int(input())\ntotal = 0\nfor n in range(1,i+1,2):\n ans = 0\n for m in range(1,n+1):\n if n % m == 0:\n ans += 1\n if ans == 8:\n total += 1\nprint(total)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s175491031', 's914734753', 's491012545'] | [9172.0, 9148.0, 9112.0] | [30.0, 26.0, 26.0] | [195, 181, 163] |
p03281 | u201387466 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nc = 0\nfor i in range(1,N+1):\n li = []\n if i < 10:\n continue\n else:\n k = i\n for j in range(2,int(i**(0.5)+1)):\n while k % j == 0:\n k = k/j\n li.append(j)\n if len(li) == 8:\n c += 1\nprint(c)\n', 'N = int(input())\nc = 0\nfor i in range(1,N+1):\n li = []\n if i < 10:\n continue\n else:\n k = i\n for j in range(2,int(i**(0.5)+3)):\n d = 1\n while k % j == 0:\n k = k/j\n d += 1\n if d != 1:\n li.append(d)\n ss = 1\n for x in li:\n ss *= x\n if ss == 8:\n #print(i)\n c += 1\n \nprint(c)\n', 'N = int(input())\nc = 0\nfor i in range(1,N+1):\n li = []\n if i < 10:\n continue\n else:\n k = i\n for j in range(2,int(i**(0.5)+1)):\n d = 1\n while k % j == 0:\n k = k/j\n d += 1\n if d != 1:\n li.append(d)\n ss = 1\n for x in li:\n ss *= x\n if ss == 8:\n c += 1\n \nprint(c)\n', 'N = int(input())\nc = 0\nfor i in rrange(1,N+1):\n li = []\n if i < 10:\n continue\n else:\n k = i\n for j in range(2,int(i**(0.5)+1)):\n while k % j == 0:\n k = k/j\n li.append(j)\n if len(li) == 8:\n c += 1\nprint(c)', 'N = int(input())\nc = 0\nfor i in range(1,N+1):\n if i % 2 == 0:\n continue\n li = []\n if i < 10:\n continue\n else:\n k = i\n for j in range(2,int(i**(0.5)+3)):\n d = 1\n while k % j == 0:\n k = k/j\n d += 1\n if d != 1:\n li.append(d)\n ss = 1\n for x in li:\n ss *= x\n if ss == 8:\n print(i)\n c += 1\n \nprint(c)\n', 'N = int(input())\nc = 0\nfor i in range(1,N+1):\n if i % 2 == 0:\n continue\n li = []\n if i < 10:\n continue\n else:\n k = i\n for j in range(2,int(i**(0.5)+3)):\n d = 1\n while k % j == 0:\n k = k/j\n d += 1\n if d != 1:\n li.append(d)\n ss = 1\n for x in li:\n ss *= x\n if ss == 8:\n #print(i)\n c += 1\n \nprint(c)\n'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s372118409', 's544612753', 's673168107', 's912167547', 's947272726', 's381246760'] | [3060.0, 3188.0, 3060.0, 3060.0, 3064.0, 3060.0] | [17.0, 18.0, 18.0, 18.0, 18.0, 21.0] | [244, 346, 330, 244, 375, 376] |
p03281 | u204616996 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\nans=0\nfor n in range(1,N+1):\n _ans=0\n for x in range(1,n+1):\n if n%x==0:\n _ans+=1\n if _ans==8:\n ans+=1\nprint(ans)', 'N=int(input())\nans=0\nfor n in range(1,N+1,2):\n _ans=0\n for x in range(1,n+1):\n if n%x==0:\n _ans+=1\n if _ans==8:\n ans+=1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s781650635', 's173188166'] | [2940.0, 2940.0] | [19.0, 18.0] | [142, 144] |
p03281 | u207241407 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\nif n < 105:\n print(0)\n exit()\n\ndp = [0] * 201\nans = 0\n\nfor i in range(1, n + 1):\n for j in range(105, n + 1):\n if j % i == 0:\n dp[j] += 1\n\nfor i in range(105, n + 1, 2):\n if dp[i] >= 8:\n print(i)\n ans += 1\n\nprint(ans)', 'import sys\n\n\ndef main():\n n = int(sys.stdin.readline())\n\n if n < 105:\n print(0)\n exit()\n\n dp = [0] * 201\n ans = 0\n\n for i in range(1, n + 1):\n for j in range(105, n + 1):\n if j % i == 0:\n dp[j] += 1\n\n for i in range(105, n + 1, 2):\n if dp[i] >= 8:\n ans += 1\n\n print(ans)\n\n\nif __name__ == "__main__":\n main()\n'] | ['Wrong Answer', 'Accepted'] | ['s461131846', 's169862298'] | [3060.0, 9192.0] | [19.0, 27.0] | [279, 397] |
p03281 | u209620426 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['\nfor i in range(107, 200, 2):\n divisors = []\n for j in range(1, 201):\n if i%j == 0:\n divisors.append(j)\n if len(divisors) == 8:\n divisors_8.append(i)\n\nn = int(input())\n\ndivisors_8.append(n)\ndivisors_8.sort()\nresult = divisors_8.index(n)\n\nif n not in divisors_8:\n print(result)\nelse:\n print(result+1)', 'a,b = map(int,input().split())\nif (a*b)%2 == 0:\n print("No")\nelse:\n print("Yes")', 'divisors_8 = [105]\n\nfor i in range(107, 200, 2):\n divisors = []\n for j in range(1, 201):\n if i%j == 0:\n divisors.append(j)\n if len(divisors) == 8:\n divisors_8.append(i)\n\nn = int(input())\n\ndivisors_8.append(n)\ndivisors_8.sort()\nresult = divisors_8.index(n)\ndivisors_8.remove(n)\n\nif n not in divisors_8:\n print(result)\nelse:\n print(result+1)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s078411484', 's833918694', 's696375268'] | [3060.0, 2940.0, 3316.0] | [17.0, 17.0, 22.0] | [339, 86, 379] |
p03281 | u215743476 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n// 3*5*7, 3*5*11, 3*5*13\nif n < 3*5*7:\n print(0)\nelif n < 3*5*11:\n print(1)\nelif n < 3*5*13:\n print(2)\nelse:\n print(3)', 'def fact(n):\n num = n\n cnt = [0]*(n+1)\n ans = 1\n for i in range(2, n+1):\n while num % i == 0:\n cnt[i] += 1\n num /= i\n for i in range(2, n+1):\n ans *= cnt[i] + 1\n return ans\n\nn = int(input())\n\nres = 0\nfor i in range(1, n+1):\n if i % 2 == 1 and fact(i) == 8:\n res += 1\nprint(res)\n'] | ['Runtime Error', 'Accepted'] | ['s726919509', 's364854642'] | [2940.0, 3188.0] | [17.0, 19.0] | [147, 342] |
p03281 | u220345792 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nans = 0\nif N < 105:\n pass\nelse:\n for i in range(1, N+1):\n cnt = 0\n for j in range(1, N+1):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\n \nprint(ans) \n\n', 'N = int(input())\nans = 0\nif N < 105:\n pass\nelse:\n for i in range(1, N+1):\n cnt = 0\n for j in range(1, N+1):\n\t if j % i == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\n \nprint(ans) ', 'N = int(input())\nans = 0\nif N < 105:\n pass\nelse:\n for i in range(105, N+1, 2):\n cnt = 0\n for j in range(1, N+1):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\n \nprint(ans) \n\n'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s529978772', 's655485190', 's395019367'] | [2940.0, 2940.0, 2940.0] | [20.0, 17.0, 18.0] | [207, 206, 212] |
p03281 | u220499476 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n =int(input()) \nt = 0\nfor k in range(1,n,2):\n K = k\n ans = 1\n for i in range(1,int(K/2)+1,2):\n if k % i == 0:\n ans += 1\n if ans == 8:\n t += 1\nprint(t)', 'n =int(input()) \nt = 0\nfor k in range(1,n+1,2):\n K = k\n ans = 1\n for i in range(1,int(K/2)+1,2):\n if k % i == 0:\n ans += 1\n if ans == 8:\n t += 1\nprint(t)'] | ['Wrong Answer', 'Accepted'] | ['s182621989', 's655366914'] | [2940.0, 2940.0] | [17.0, 17.0] | [167, 169] |
p03281 | u227082700 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def yakusu(n):\n a=[]\n for i in range(1,n+1):\n if n%i==0:a.append(i)\n return a\na=0;n=int(input())\nfor i in range(1,n+1):a+=(1if len(yakusu(i))==8else 0)\nprint(a)', 'def yakusu(n):\n a=[]\n for i in range(1,n+1):\n if n%i==0:a.append(i)\n return a\na=0;n=int(input())\nfor i in range(1,n+1):a+=(1if len(yakusu(i))==8and i%2==1else 0)\nprint(a)'] | ['Wrong Answer', 'Accepted'] | ['s030899832', 's986570948'] | [2940.0, 2940.0] | [19.0, 18.0] | [166, 176] |
p03281 | u235376569 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\ndef prime(n):\n cnt=0\n for i in range(2,n):\n if n%2==0:\n cnt+=1\n \n return cnt\n\nans=0\nfor i in range(1,N+1):\n if i%2==1 and prime(i)==8:\n ans+=1\nprint(ans)\n', 'N=int(input())\ndef prime(n):\n cnt=0\n for s in range(1,n+1):\n if n%s==0:\n cnt+=1\n \n return cnt\n\nans=0\nfor i in range(1,N+1):\n if i%2==1 and prime(i)==8:\n ans+=1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s921520377', 's937968785'] | [2940.0, 3060.0] | [18.0, 18.0] | [187, 188] |
p03281 | u236536206 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nc=0\nans=0\nfor i in range(1,n+1):\n for j in range(1,n+1):\n if i%j==0:\n c+=1\n if c==8:\n ans+=1\n c=0\nprint(ans)', 'n=int(input())\nc=0\nans=0\nfor i in range(1,n+1):\n if i%2==1:\n for j in range(1,n+1):\n if i%j==0:\n c+=1\n if c==8:\n ans+=1\n c=0\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s985118147', 's693907927'] | [3060.0, 3060.0] | [21.0, 19.0] | [157, 196] |
p03281 | u236823931 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ["if __name__ == '__main__':\n n = int(input())\n c = 0\n\n for i in range(1, n + 1):\n if i % 2 == 0:\n continue\n if count_divisor(i) == 8:\n c += 1\n print(c)", "import time, timeit\n\ndef count_divisor(n):\n a = 0\n for i in range(1, int(n ** 0.5) + 1):\n if n % i == 0:\n a += 1\n if i != n // i:\n a += 1\n return a\n\ndef list_divisor(n):\n a = []\n for i in range(1, int(n ** 0.5) + 1):\n if n % i == 0:\n a.append(i)\n if i != n // i:\n a.append(n//i)\n a.sort()\n return a\n\nif __name__ == '__main__':\n n = int(input())\n c = 0\n for i in range(1, n + 1):\n if count_divisor(i) == 8:\n c += 1", "def count_divisor(n):\n a = 0\n for i in range(1, int(n ** 0.5) + 1):\n if n % i == 0:\n a += 1\n if i != n // i:\n a += 1\n return a\n\nif __name__ == '__main__':\n n = int(input())\n c = 0\n\n for i in range(1, n + 1):\n if i % 2 == 0:\n continue\n if count_divisor(i) == 8:\n c += 1\n print(c)"] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s791464287', 's866232828', 's362653811'] | [2940.0, 3312.0, 3188.0] | [17.0, 21.0, 17.0] | [198, 549, 379] |
p03281 | u238704641 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\nfor i in range(1, n+1, 2):\n count = 0\n for j in range(1, n+1):\n if (i % j) == 0:\n count += 1\n if count == 8:\n print(i)\n', 'n = int(input())\n\ndiv8 = []\nfor i in range(1, n+1, 2):\n count = 0\n for j in range(1, n+1):\n if (i % j) == 0:\n count += 1\n if count == 8:\n div8.append(i)\n\nprint(len(div8))'] | ['Wrong Answer', 'Accepted'] | ['s247020727', 's238710149'] | [2940.0, 3060.0] | [19.0, 19.0] | [171, 204] |
p03281 | u239342230 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import sympy\nN = int(input())\nlist(map(sympy.divisor_count,list(range(1,N + 1))[:: 2])).count(8)', 'import math\n\nN = int(input())\n\ndef make_prime_list(num):\n if num < 2:\n return []\n\n prime_list = [i for i in range(num + 1)]\n prime_list[1] = 0 \n num_sqrt = math.sqrt(num)\n\n for prime in prime_list:\n if prime == 0:\n continue\n if prime > num_sqrt:\n break\n\n for non_prime in range(2 * prime, num, prime):\n prime_list[non_prime] = 0\n\n return [prime for prime in prime_list if prime != 0]\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\n\nlist(map(search_divisor_num_1,list(range(1,N + 1))[:: 2])).count(8)', 'import math\n\nN = int(input())\n\ndef make_prime_list(num):\n if num < 2:\n return []\n\n prime_list = [i for i in range(num + 1)]\n prime_list[1] = 0 \n num_sqrt = math.sqrt(num)\n\n for prime in prime_list:\n if prime == 0:\n continue\n if prime > num_sqrt:\n break\n\n for non_prime in range(2 * prime, num, prime):\n prime_list[non_prime] = 0\n\n return [prime for prime in prime_list if prime != 0]\n\ndef search_divisor_num(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\n\nlist(map(search_divisor_num,list(range(1,N + 1))[:: 2])).count(8)', 'import math\n\ndef make_prime_list_2(num):\n if num < 2:\n return []\n\n \n prime_list = [i for i in range(num + 1)]\n prime_list[1] = 0 \n num_sqrt = math.sqrt(num)\n\n for prime in prime_list:\n if prime == 0:\n continue\n if prime > num_sqrt:\n break\n\n for non_prime in range(2 * prime, num, prime):\n prime_list[non_prime] = 0\n\n return [prime for prime in prime_list if prime != 0]\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\nN = int(input())\nlist(map(search_divisor_num_1,list(range(1,N + 1))[:: 2])).count(8)', 'import math\n\nN = int(input())\n\ndef make_prime_list(num):\n if num < 2:\n return []\n\n prime_list = [i for i in range(num + 1)]\n prime_list[1] = 0 \n num_sqrt = math.sqrt(num)\n\n for prime in prime_list:\n if prime == 0:\n continue\n if prime > num_sqrt:\n break\n\n for non_prime in range(2 * prime, num, prime):\n prime_list[non_prime] = 0\n\n return [prime for prime in prime_list if prime != 0]\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\n\nlist(map(search_divisor_num_1,list(range(1,N + 1))[:: 2])).count(8)', 'import sympy\nN = int(input.())\nlist(map(sympy.divisor_count,list(range(1,N + 1))[:: 2])).count(8)', 'import math\n\nN = int(input())\n\ndef make_prime_list(num):\n if num < 2:\n return []\n\n prime_list = [i for i in range(num + 1)]\n prime_list[1] = 0 \n num_sqrt = math.sqrt(num)\n\n for prime in prime_list:\n if prime == 0:\n continue\n if prime > num_sqrt:\n break\n\n for non_prime in range(2 * prime, num, prime):\n prime_list[non_prime] = 0\n\n return [prime for prime in prime_list if prime != 0]\n\ndef search_divisor_num(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\n\nprint(int(list(map(search_divisor_num,list(range(1,N + 1))[:: 2])).count(8)))'] | ['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted'] | ['s273613049', 's298698013', 's528414469', 's565841602', 's743336960', 's833539059', 's637838243'] | [2940.0, 3192.0, 3064.0, 3064.0, 3064.0, 2940.0, 3064.0] | [17.0, 20.0, 18.0, 18.0, 18.0, 17.0, 18.0] | [96, 1047, 1020, 1096, 1047, 97, 1032] |
p03281 | u244836567 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['a=int(input())\nif a<105:\n print(0)\nelif 105<=a<135:\n print(1)\nelif 135<=a<165:\n print(2)\nelif 165<=a<189:\n print(3)\nelif:189<=a\n print(4)', 'a=int(input())\nif a<105:\n print(0)\nelif 105<=a<135:\n print(1)\nelif 135<=a<165:\n print(2)\nelif 165<=a<189:\n print(3)\nelif:189<=a:\n print(4)', 'a=int(input())\nif a<105:\n print(0)\nif 105<=a<135:\n print(1)\nif 135<=a<165:\n print(2)\nif 165<=a<189:\n print(3)\nif 189<=a<195:\n print(4)\nif 195<=a:\n print(5)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s463114126', 's943037641', 's092188905'] | [9024.0, 8944.0, 8924.0] | [25.0, 25.0, 28.0] | [142, 143, 161] |
p03281 | u244916949 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nR = 0\ncounter = 0\nfor i in range(1,N+1):\n R = N % i\n if R == 0:\n counter+=1\nprint(counter)', 'import sys\nn = int(input())\n\n\ncn = 0\n\ncy = 0\n\nif n < 105:\n print(0)\n sys.exit()\n\nfor i in range(105, n+1):\n if i % 2 == 0:\n continue\n\n for j in range(1, i+1):\n if i % j == 0:\n cy += 1\n if cy == 8:\n cn += 1\n cy = 0\nprint(cn)\n'] | ['Wrong Answer', 'Accepted'] | ['s161716976', 's531030781'] | [2940.0, 3060.0] | [17.0, 18.0] | [120, 324] |
p03281 | u245870380 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nans = 0\nfor i in range(1,N+1,2):\n cnt = 0\n for j in range(1,i):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)', 'N = int(input())\nans = 0\nfor i in range(1,N+1,2):\n cnt = 0\n print(i)\n for j in range(1,i):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)', 'N = int(input())\nans = 0\nfor i in range(1,N,2):\n cnt = 0\n for j in range(1,i):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)', 'N = int(input())\nans = 0\nfor i in range(1,N+1,2):\n cnt = 0\n for j in range(1,i+1):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s926290515', 's957705813', 's977901894', 's408959839'] | [3060.0, 3060.0, 2940.0, 2940.0] | [18.0, 18.0, 18.0, 18.0] | [175, 188, 173, 177] |
p03281 | u249727132 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nans = 0\nfor i in range(1, N+1, 2):\n count = 0\n for j in range(2, i):\n if i % j == 0:\n count += 1\n if count == 8:\n ans += 1\nprint(ans)', 'N = int(input())\nans = 0\n\nfor i in range(1, N+1, 2):\n count = 0\n for j in range(1, i+1, 2):\n if i % j == 0:\n count += 1\n if count == 8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s637121237', 's756791344'] | [2940.0, 2940.0] | [18.0, 19.0] | [184, 190] |
p03281 | u251017754 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nans = 0\ni = 3\nwhile i <= N:\n div = 0\n for j in range(2,i):\n if i % j == 0:\n div += 1\n if div == 8:\n ans += 1\n i += 2\nelse:\n print(ans)', 'n=int(input())\n \nans=0\n \nfor i in range(1, n+1, 2):\n c=0\n for j in range(1, i+1):\n if i%j==0:\n c+=1\n if c==8:\n ans+=1\n \nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s522271168', 's073220811'] | [2940.0, 2940.0] | [18.0, 18.0] | [167, 164] |
p03281 | u252828980 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nnum = 0\nfor i in range(1,n+1):\n cnt = 0\n for j in range(1,i+1):\n if n%i == 0:\n cnt += 1\n if cnt == 8:\n num +=1\nprint(num)\n ', 'n = int(input())\nnum = 0\nfor i in range(1,n+1):\n cnt = 0\n for j in range(1,i+1) and i%2 == 1:\n if i%j == 0:\n cnt += 1\n if cnt == 8:\n num +=1\nprint(num)', 'n = int(input())\nnum = 0\nfor i in range(1,n+1):\n cnt = 0\n for j in range(1,i+1):\n if n%i == 0 and i%2==1:\n cnt += 1\n if cnt == 8:\n num +=1\nprint(num)', 'n = int(input())\n\nans = 0\ni = 1\nwhile i <=n:\n j = 1\n cnt = 0\n while j <= i:\n if i%j == 0:\n cnt +=1\n #print(i,cnt,j)\n j +=1\n if cnt == 8 and i%2 ==1:\n #print(i)\n ans += 1\n i +=1\nprint(ans)'] | ['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s473764586', 's607195346', 's632917278', 's090401506'] | [2940.0, 2940.0, 3060.0, 9112.0] | [20.0, 18.0, 22.0, 27.0] | [155, 165, 163, 252] |
p03281 | u252964975 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import math\ndef countYakusu(n):\n count = 0\n for i in range(n):\n if n % (i+1) == 0:\n count = count + 1\n return count == 8\n\nN = int(input())\ncount = 0\nfor i in range(math.ceil(N/2)):\n count = count + countYakusu(i*2)\nprint(count)\n', 'import math\ndef countYakusu(n):\n count = 0\n for i in range(math.floor(n**0.5)):\n if n % i == 0:\n count = count + 1\n return count == 8\n\nN = int(input())\ncount = 0\nfor i in range(math.floor(N/2)):\n count = count + countYakusu(i*2+1)\nprint(count)', 'import math\ndef countYakusu(n):\n count = 0\n for i in range(n):\n if n % (i+1) == 0:\n count = count + 1\n# print(n,i+1)\n# if count == 8: print(n)\n return count == 8\n\nN = int(input())\ncount = 0\nfor i in range(math.ceil(N/2)):\n count = count + countYakusu(i*2+1)\n# print(i*2+1)\nprint(count)\n'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s018600194', 's830701833', 's334045113'] | [3060.0, 3060.0, 3060.0] | [18.0, 18.0, 18.0] | [240, 255, 305] |
p03281 | u255943004 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n return divisors\n\ncnt = 0 \nfor n in range(1,N+1):\n if len(make_divisiors(n)) == 8:\n cnt += 1\nprint(cnt)', 'N = int(input())\n \ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n \n return divisors\n \ncnt = 0 \nfor n in range(1,N+1):\n if len(make_divisors(n)) == 8 and n%2==1:\n cnt += 1\nprint(cnt)'] | ['Runtime Error', 'Accepted'] | ['s227006287', 's497011885'] | [3060.0, 3060.0] | [17.0, 18.0] | [328, 347] |
p03281 | u259580411 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['a = int(input())\nresult = 0\nfor i in range(0, a):\n tmp = 0\n for j in range(0, i):\n if i % j == 0:\n tmp += 1\n if tmp == 8:\n result += 1\n\nprint(result)', 'a = int(input())\nresult = 0\nfor i in range(0, a):\n tmp = 0\n if (i+1) % 2 != 0:\n for j in range(0, i):\n if (i + 1) % (j + 1) == 0:\n tmp += 1\n if tmp == 7:\n result += 1\n\nprint(result)'] | ['Runtime Error', 'Accepted'] | ['s447402275', 's861220228'] | [2940.0, 3060.0] | [17.0, 18.0] | [183, 238] |
p03281 | u261082314 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['https://atcoder.jp/contests/abc106/scoreN = int(input())\n#cnt = 0\nans = 0\nfor i in range(1, N+1, 2):\n cnt = 0 \n for j in range(1, i+1):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)\n', 'N = int(input())\ncnt= 0\nans =0\nfor i in range(1, N+1, 2):\n for j in range(1, i+1):\n if i % j == 0:\n cnt += 1\n if cnt == 0:\n ans += 1\nprint(ans)\n', 'N = int(input())\ncnt = 0\nans = 0\nfor i in range(1, N+1, 2):\n for j in range(1, i+1):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)\n', 'N = int(input())\n#cnt = 0\nans = 0\nfor i in range(1, N+1, 2):\n cnt = 0 \n for j in range(1, i+1):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)\n'] | ['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s380485723', 's391180240', 's961958650', 's257346393'] | [8860.0, 9028.0, 9064.0, 9040.0] | [25.0, 32.0, 27.0, 32.0] | [231, 176, 178, 191] |
p03281 | u263830634 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\nif N < 105:\n print (0)\nelse:\n if N < 135:\n print (1)\n if N < 165:\n print (2)\n else:\n if N < 189:\n print (3)\n else:\n if N < 195:\n print (4)\n else:\n print (5)', 'N = int(input())\n\nif N < 105:\n print (0)\nelse:\n if N < 135:\n print (1)\n if N < 165:\n print (2)\n else:\n if N < 195:\n print (3)\n else:\n print (4)', 'N = int(input())\n\nif N < 105:\n print (0)\nelse:\n if N < 135:\n print (1)\n if N < 165:\n print (2)\n else:\n if N < 195:\n print (3)\n else:\n print (3)', 'N = int(input())\n\nans = 0\nfor i in range(1,N+1):\n count = 0\n for j in range(1, N+1, 2):\n if i%j == 0:\n count += 1\n\n if count == 8:\n ans += 1\n\nprint (ans)'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s638562316', 's674148636', 's698954471', 's585161239'] | [3060.0, 2940.0, 2940.0, 2940.0] | [21.0, 17.0, 17.0, 19.0] | [317, 233, 233, 187] |
p03281 | u264271586 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def countFactors(n):\n count = 0\n for i in range(1, n + 1):\n if n % i == 0:\n count += 1\n return count\n\nX = int(input())\n\ncount = 0\nfor i in range(1, X + 1, 2):\n if countFactors(i) == 8:\n print(i)\n count += 1\n\nprint(count)\n', 'def countFactors(n):\n count = 0\n for i in range(1, n + 1):\n if n % i == 0:\n count += 1\n return count\n\nX = int(input())\n\ncount = 0\nfor i in range(1, X + 1, 2):\n if countFactors(i) == 8:\n count += 1\n\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s411815707', 's748905949'] | [2940.0, 2940.0] | [18.0, 19.0] | [239, 226] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.