problem_id
stringlengths 6
6
| user_id
stringlengths 10
10
| time_limit
float64 1k
8k
| memory_limit
float64 262k
1.05M
| problem_description
stringlengths 48
1.55k
| codes
stringlengths 35
98.9k
| status
stringlengths 28
1.7k
| submission_ids
stringlengths 28
1.41k
| memories
stringlengths 13
808
| cpu_times
stringlengths 11
610
| code_sizes
stringlengths 7
505
|
---|---|---|---|---|---|---|---|---|---|---|
p03281 | u546853743 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\ncnt=0\ny=[]\n\nfor i in range(1,N+1,2):\n for j in range(1,i+1):\n if i%j == 0:\n y.append(j)\n if len(y)==8:\n cnt += 1\n y.clear()\nprint(cnt)', 'N = int(input())\ncnt=0\ny=[]\n\nfor i in range(1,N+1,2):\n for j in range(1,i):\n if i%j == 0:\n y.append(j)\n if len(y)==8:\n cnt += 1\n y.clear()\nprint(cnt)', 'N = int(input())\ncnt=0\ny=[]\n\nfor i in range(1,N+1,2):\n for j in range(1,i+1):\n if i%j == 0:\n y.append(j)\n if len(y)==8:\n cnt += 1\n print(y)\n y.clear()\nprint(cnt)', 'N = int(input())\ncnt=0\ny=[]\n\nfor i in range(1,N+1,2):\n for j in range(1,i+1):\n if i%j == 0:\n y.append(j)\n if len(y)==8:\n cnt += 1\n y.clear()\nprint(cnt)\n'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s086830349', 's204906607', 's460881104', 's909569303'] | [9048.0, 9072.0, 8996.0, 9196.0] | [29.0, 28.0, 28.0, 31.0] | [189, 187, 202, 186] |
p03281 | u548624367 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['print([[i%j==0 for j in range(1,i)].count(0) for i in range(1,int(input())+1,2)].count(7))', 'print([[i%j for j in range(1,i)].count(0) for i in range(1,int(input())+1,2)].count(7))'] | ['Wrong Answer', 'Accepted'] | ['s213062301', 's968517323'] | [2940.0, 2940.0] | [18.0, 18.0] | [90, 87] |
p03281 | u550146922 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\nli = [3,5,7,11,13]\nans = 0\nfor i in range(1,n+1):\n cnt = 0\n for j in range(10):\n if i%li[j]==0:\n cnt += 1\n if cnt ==3:\n ans +=1\n\nif n>=135:\n ans += 1\nif n>=189:\n ans += 1\n\nprint(ans)', 'n = int(input())\n\nli = [3,5,7,11,13]\nans = 0\nfor i in range(1,n+1):\n cnt = 0\n for j in range(5):\n if i%li[j]==0:\n cnt += 1\n if cnt ==3:\n ans +=1\n\nif n>=135:\n ans += 1\nif n>=189:\n ans += 1\n\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s737807979', 's845598949'] | [9176.0, 9172.0] | [27.0, 24.0] | [240, 239] |
p03281 | u553070631 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nelif n<105:\n print(0)\nelif n<135:\n print(1)\nelif n<165:\n print(2)\nelse:\n print(3)\n', 'n=int(input())\nif n<105:\n print(0)\nelif n<135:\n print(1)\nelif n<165:\n print(2)\nelif n<189:\n print(3)\nelif n<195:\n print(4)\nelse:\n print(5)\n'] | ['Runtime Error', 'Accepted'] | ['s012476904', 's769002207'] | [2940.0, 2940.0] | [17.0, 17.0] | [101, 145] |
p03281 | u556086333 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\ncount = 0\ndivi_count = 0\nfor n in range(1, N+1, 2):\n for divi in range(1, n+1):\n if n%divi == 0:\n divi_count += 1\n if divi_count == 8:\n count += 1\nprint(count)\n', 'N = int(input())\n\ncount = 0\nfor n in range(105, N+1, 2):\n divi_count = 0\n for divi in range(1, n+1, 2):\n if n%divi == 0:\n divi_count += 1\n if divi_count == 8:\n count += 1\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s807332300', 's069314959'] | [2940.0, 2940.0] | [19.0, 18.0] | [209, 218] |
p03281 | u556225812 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import math\nN = int(input())\ncnt = 0\nfor j in range(1, N+1, 2):\n ans = []\n for i in range(1, math.ceil(j**0.5)+1):\n if j%i == 0:\n if j//i == i:\n ans.append(i)\n else:\n ans.append(i)\n ans.append(j//i)\n if len(ans) == 8:\n cnt += 1\n print(ans)\n ans = []\nprint(cnt)', 'import math\nN = int(input())\ncnt = 0\nfor j in range(1, N+1, 2):\n ans = []\n for i in range(1, math.ceil(j**0.5)+1):\n if j%i == 0:\n if j//i == i:\n ans.append(i)\n else:\n ans.append(i)\n ans.append(j//i)\n if len(ans) == 8:\n cnt += 1\n ans = []\nprint(cnt)'] | ['Wrong Answer', 'Accepted'] | ['s450072695', 's172434426'] | [3188.0, 3188.0] | [18.0, 18.0] | [356, 341] |
p03281 | u558782626 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = inpt(input())\nans = 0\nfor i in range(1, n+1):\n stock = 0\n for j in range(1, n+1):\n if i % j == 0:\n stock += 1\n if stock == 8 and i % 2:\n ans += 1\nprint(ans)', 'n = int(input())\nans = 0\nfor i in range(1, n+1):\n stock = 0\n for j in range(1, n+1):\n if i % j == 0:\n stock += 1\n if stock == 8 and i % 2:\n ans += 1\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s542910562', 's480956652'] | [2940.0, 3060.0] | [17.0, 21.0] | [174, 173] |
p03281 | u560464565 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\ncnt = 0\nfor i in range(1, n, 2):\n if n % i == 0:\n cnt += 1\nif cnt == 8:\n print(1)\nelse:\n print(0)\n', 'n = int(input())\nans = 0\nfor i in range(1, n+1, 2):\n cnt = 0\n for j in range(1, i+1):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s042625198', 's051486434'] | [2940.0, 2940.0] | [18.0, 18.0] | [131, 181] |
p03281 | u561992253 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['\ndef countDiv(x):\n count = 0\n for i in range(1,n+1):\n if x % i == 0:\n count += 1\n return count\n\nn = int(input())\nans = 0\nfor i in range(1,n+1):\n if countDiv(i) == 8:\n ans += 1\n\nprint(ans)', 'def countDiv(x):\n count = 0\n for i in range(1,x+1):\n if x % i == 0:\n count += 1\n return count\n \nn = int(input())\nans = 0\nfor i in range(1,n+1,2):\n #print(i, countDiv(i))\n if countDiv(i) == 8:\n ans += 1\n \nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s808817243', 's879947219'] | [3060.0, 2940.0] | [19.0, 18.0] | [202, 230] |
p03281 | u566428756 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\n\nif N<105:\n print(0)\n exit()\n\nans=1\nfor i in range(1,N+1):\n if i%2!=0:\n res=0\n for j in range(1,i+1):\n if i%j==0:\n res+=1\n if res==8:\n ans+=1\nprint(ans)\n', 'N=int(input())\n\nif N<105:\n print(0)\n exit()\n\nans=1\nfor i in range(106,N+1):\n if i%2!=0:\n res=0\n for j in range(1,i+1):\n if i%j==0:\n res+=1\n if res==8:\n ans+=1\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s145073646', 's758256393'] | [2940.0, 2940.0] | [18.0, 20.0] | [235, 237] |
p03281 | u569970656 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nint a = 0\nif n >= 105:\n a += 1\nif n >= 165:\n a += 1\nif n >= 195:\n a += 1\nprint(a)\n', 'n = int(input().split())\nif n >= 105:\n print(1)\nelse:\n print(0)\n', 'n = int(input())\na = 0\nif n >= 105:\n a += 1\nif n >= 135:\n a += 1\nif n >= 165:\n a += 1\nif n >= 189:\n a += 1\nif n >= 195:\n a += 1\nprint(a)\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s536105423', 's984668425', 's115748269'] | [2940.0, 2940.0, 2940.0] | [18.0, 17.0, 17.0] | [104, 68, 152] |
p03281 | u571395477 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import sys\n\ndef main():\n N = int(input())\n \n cnt = 0\n for i in range(1, N+1, 2):\n prime_l = []\n for j in range(1, i+1, 2):\n if i%j==0:\n prime_l.append()\n if len(prime_l)==8:\n cnt+=1\n print(cnt)\nmain()', 'import sys\n\ndef main():\n N = int(input())\n \n cnt = 0\n for i in range(1, N+1, 2):\n prime_l = []\n for j in range(1, i+1, 2):\n if i%j==0:\n prime_l.append(j)\n if len(prime_l)==8:\n cnt+=1\n print(cnt)\nmain()'] | ['Runtime Error', 'Accepted'] | ['s549584278', 's628598609'] | [2940.0, 2940.0] | [17.0, 17.0] | [273, 274] |
p03281 | u580697892 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['#coding: utf-8\nimport collections\nN = int(input())\ninner = 2\ndef factorize(n):\n b = 2\n fct = []\n while b * b <= n:\n while n % b == 0:\n n //= b\n fct.append(b)\n b = b + 1\n if n > 1:\n fct.append(n)\n return fct\ncount_dict = collections.Counter(factorize(N))\nprint(count_dict)\nfor i in count_dict.keys():\n inner += (count_dict[i] + 1)\nprint(1 if inner == 8 else 0)', '#coding: utf-8\nimport collections\nN = int(input())\ninner = 2\ndef factorize(n):\n b = 2\n fct = []\n while b * b <= n:\n while n % b == 0:\n n //= b\n fct.append(b)\n b = b + 1\n if n > 1:\n fct.append(n)\n return fct\ncount_dict = collections.Counter(factorize(N))\nprint(count_dict)\nfor i in count_dict.keys():\n inner += (count_dict[i] + 1)\nprint(inner)', '#coding: utf-8\nimport collections\nN = int(input())\ninner = 1\ndef factorize(n):\n b = 2\n fct = []\n while b * b <= n:\n while n % b == 0:\n n //= b\n fct.append(b)\n b = b + 1\n if n > 1:\n fct.append(n)\n return fct\ncount_dict = collections.Counter(factorize(N))\nfor i in count_dict.keys():\n inner *= (count_dict[i] + 1) \nprint(inner)', '#coding: utf-8\nimport collections\nN = int(input())\ninner = 2\ndef factorize(n):\n b = 2\n fct = []\n while b * b <= n:\n while n % b == 0:\n n //= b\n fct.append(b)\n b = b + 1\n if n > 1:\n fct.append(n)\n return fct\ncount_dict = collections.Counter(factorize(N))\nprint(count_dict)\nfor i in count_dict.keys():\n inner += (count_dict[i] + 1)\nif N % 2 == 0 and inner == 8:\n print(1)\nelse:\n print(0)', '#coding: utf-8\nimport collections\nN = int(input())\ninner = 2\ndef factorize(n):\n b = 2\n fct = []\n while b * b <= n:\n while n % b == 0:\n n //= b\n fct.append(b)\n b = b + 1\n if n > 1:\n fct.append(n)\n return fct\ncount_dict = collections.Counter(factorize(N))\nprint(count_dict)\nfor i in count_dict.keys():\n inner += (count_dict[i] + 1)\nif N % 2 != 0 and inner == 8:\n print(1)\nelse:\n print(0)', '#coding: utf-8\nN = int(input())\nans = 0\nfor num in range(1, N+1):\n cnt = 0\n for i in range(1, num+1):\n if num % i == 0 and num % 2 == 1:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s253506817', 's446996165', 's550389507', 's708259952', 's810524812', 's564965786'] | [3316.0, 3316.0, 3316.0, 3316.0, 3316.0, 2940.0] | [20.0, 21.0, 21.0, 21.0, 21.0, 19.0] | [420, 403, 386, 452, 452, 215] |
p03281 | u583276018 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['iog = [105, 135, 165, 189, 195]\n\nn = int(input())\niog.append(n)\niog.sort()\nprint(iog.index(n))', 'iog = [105, 135, 165, 189, 195]\n\nn = int(input())\nif(n in iog):\n print(iog.index(n) + 1)\nelse:\n iog.append(n)\n iog.sort()\n print(iog.index(n))\n'] | ['Wrong Answer', 'Accepted'] | ['s749057596', 's321202973'] | [3060.0, 2940.0] | [17.0, 17.0] | [94, 155] |
p03281 | u583285098 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\n\ndef count_divisors(target):\n _i = 1\n _count = 0\n while _i*_i <= target:\n if target % _i == 0:\n _count += 1\n if _i != target // _i:\n _count += 1\n _i += 1\n return _count\n\n\ncount = 0\nfor i in range(1, n+1):\n if count_divisors(i) == 8:\n count += 1\n\nprint(count)\n', 'n = int(input())\n\n\ndef count_divisors(target):\n _i = 1\n _count = 0\n while _i*_i <= target:\n if target % _i == 0:\n _count += 1\n if _i != target // _i:\n _count += 1\n _i += 1\n return _count\n\n\ncount = 0\nfor i in range(1, n+1, 2):\n if count_divisors(i) == 8:\n count += 1\n\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s899870158', 's961799584'] | [9152.0, 9040.0] | [28.0, 25.0] | [350, 353] |
p03281 | u584083761 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nif n >= 195:\n print(3)\nif n >= 165:\n print(2)\nif n >= 105:\n print(1)\nif n > 104:\n print(0)', 'n = int(input())\na = [105, 135, 165, 189, 195]\nfor i in range(5):\n a[i] = 1 if n >= a[i] else 0\nprint(sum(a))'] | ['Wrong Answer', 'Accepted'] | ['s255273567', 's156312696'] | [2940.0, 3060.0] | [17.0, 17.0] | [107, 112] |
p03281 | u586478468 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\ncount=0\nans=0\nfor i in range(105, N+1):\n if(i%3==0):\n count+=1\n if(i%5==0):\n count+=1\n if(i%7==0):\n count+=1\n if(i%11==0):\n count+=1\n if(i%13==0):\n count+=1\n if(i%2==0):\n count=0\n if(count==3):\n print(i)\n ans+=1', 'n = int(input())\n\ncount=0\ni = 1\nA= []\nfor j in range(1, n+1, 2):\n while(i*i<=j):\n if(j%i==0):\n count+=1\n i+=1\n if(count==4):\n A.append(j)\n i = 1\n count=0\n\nprint(len(A))'] | ['Wrong Answer', 'Accepted'] | ['s254563526', 's892196236'] | [3064.0, 3064.0] | [19.0, 18.0] | [305, 212] |
p03281 | u586639900 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\nres = 0\n\nfor i in range(1, N+1, 2):\n count = 0\n for j in range(1, N+1):\n if i % j == 0:\n count += 1\n print(i, count)\n if count == 8:\n print(i)\n res += 1\n\nprint(res)', 'N = int(input())\n\nres = 0\n\nfor i in range(1, N+1, 2):\n count = 0\n for j in range(1, N+1):\n if i % j == 0:\n count += 1\n if count == 8:\n res += 1\n\nprint(res)'] | ['Wrong Answer', 'Accepted'] | ['s615346172', 's964454219'] | [3060.0, 3060.0] | [19.0, 18.0] | [226, 189] |
p03281 | u602252807 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nif n < 105:\n print(0)\nelif n >= 105 and n < 165:\n print(1)\nelif 10n >= 165 and n < 195:\n print(2)\nelse:\n print(3)', 'n = int(input())\nresult = 0\nl = list(range(1,n+1,2))\nfor i in l:\n s = 1\n for j in range(1,i,2):\n if i % j == 0:\n s += 1\n if s == 8:\n result += 1\nprint(result)'] | ['Runtime Error', 'Accepted'] | ['s062127134', 's934223148'] | [2940.0, 3060.0] | [18.0, 18.0] | [142, 192] |
p03281 | u607729897 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ["def prime_factorize(n):\n a = []\n if n=1:\n return 1\n while n % 2 == 0:\n a.append(2)\n n //= 2\n f = 3\n while f * f <= n:\n if n % f == 0:\n a.append(f)\n n //= f\n else:\n f += 2\n if n != 1:\n a.append(n)\n return a\nif __name__=='__main__':\n print(prime_factorize(N))", 'N=int(input())\ncnt=0\nL=[3*5*7,3*5*9,3*5*11,3*5*13,3*7*9]\nfor l in L:\n cnt+=(l<=N)\nprint(cnt)'] | ['Runtime Error', 'Accepted'] | ['s524934767', 's233881806'] | [2940.0, 2940.0] | [17.0, 17.0] | [352, 93] |
p03281 | u617515020 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\nans=0\nfor i in range(1,N+1,2):\n cnt=2\n for j in range(3,int(i**0.5)+1,2):\n if i%j==0:\n print(i,j)\n cnt+=2\n if cnt==8:\n ans+=1\nprint(ans)', 'N=int(input())\nans=0\nfor i in range(1,N+1,2):\n cnt=2\n for j in range(3,int(i**0.5)+1,2):\n if i%j==0:\n cnt+=2\n if cnt==8:\n ans+=1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s728532947', 's578129718'] | [9416.0, 9344.0] | [28.0, 26.0] | [170, 153] |
p03281 | u618512227 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import math\n\nn = int(input())\n\ncnt = 0\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\nfor i in range(n+1):\n if i%2==0 and search_divisor_num_1(i) == 8:\n cnt += 1\n\nprint(cnt)', 'n = int(input())\n\ncnt = 0\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\nfor i in range(n):\n if (i+1)%2==0 and search_divisor_num_1(i+1) == 8:\n cnt += 1\n\nprint(cnt)', 'n = int(input())\n\ncnt = 0\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\nfor i in range(n+1):\n if i%2==0 and search_divisor_num_1(i) == 8:\n cnt += 1\n\nprint(cnt)', 'import math\n\nn = int(input())\n\ncnt = 0\n\ndef make_prime_list_2(num):\n if num < 2:\n return []\n\n \n prime_list = [i for i in range(num + 1)]\n prime_list[1] = 0 \n num_sqrt = math.sqrt(num)\n\n for prime in prime_list:\n if prime == 0:\n continue\n if prime > num_sqrt:\n break\n\n for non_prime in range(2 * prime, num, prime):\n prime_list[non_prime] = 0\n\n return [prime for prime in prime_list if prime != 0]\n\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\nfor i in range(n+1):\n if i%2==1 and search_divisor_num_1(i) == 8:\n cnt += 1\n\nprint(cnt)'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s162680641', 's325255049', 's860241247', 's270427604'] | [3064.0, 3064.0, 3064.0, 3064.0] | [17.0, 17.0, 17.0, 18.0] | [630, 621, 617, 1137] |
p03281 | u619379081 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nlst = [105, 135, 165, 189, 195, 201]\nfor i in range(6):\n if n < lst(i):\n print(i)\n break', 'n = int(input())\nlst = [105, 135, 165, 189, 195, 201]\nfor i in range(6):\n if n < lst[i]:\n print(i)\n break'] | ['Runtime Error', 'Accepted'] | ['s735364431', 's327217840'] | [2940.0, 3060.0] | [17.0, 17.0] | [122, 122] |
p03281 | u623065116 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\nresult = 0\n\n\nfor i in range(1, N+1):\n cnt = 0\n if i % 2 ==0:\n continue\n for x in range(1, N+1):\n if i % x == 0:\n cnt += 1\n print(i)\n print(cnt)\n if cnt == 8:\n result += 1\nprint(result)', 'N = int(input())\n\nresult = 0\n\n\nfor i in range(1, N+1):\n cnt = 0\n if i % 2 ==0:\n continue\n for x in range(1, N+1):\n if i % x == 0:\n cnt += 1\n #print(i)\n #print(cnt)\n if cnt == 8:\n result += 1\nprint(result)'] | ['Wrong Answer', 'Accepted'] | ['s863115390', 's130891366'] | [3064.0, 2940.0] | [19.0, 19.0] | [252, 254] |
p03281 | u623349537 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\ndef divisor_num(n):\n ans = 0\n for i in range(1, n):\n if ans % i == 0:\n ans += 1\n return ans\n\nans = 0\nfor i in range(1, N + 1):\n if i % 2 == 0 and divisor_num(i) == 8:\n ans += 1\n \nprint(ans)', 'N = int(input())\n\ndef divisor_num(n):\n ans = 0\n for i in range(1, n):\n if ans % i == 0:\n ans += 1\n return ans\n\nans = 0\nfor i in range(1, N):\n if divisor_num(i) == 8:\n ans += 1\n \nprint(ans)', 'N = int(input())\n \ndef divisor_num(n):\n ans = 0\n for i in range(1, n + 1):\n if n % i == 0:\n ans += 1\n return ans\n \nans = 0\nfor i in range(1, N + 1):\n if i % 2 != 0 and divisor_num(i) == 8:\n ans += 1\n \nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s223284378', 's683752147', 's499723377'] | [3060.0, 3060.0, 3060.0] | [18.0, 18.0, 18.0] | [251, 232, 255] |
p03281 | u623601489 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['print(len(list(filter(lambda x:x<=int(input()),[105, 135, 165, 189, 195]))))', 'n=int(input())\nansList=[105, 135, 165, 189, 195]\nm=len(list(filter(lambda x:x<=n,ansList)))\nprint(m)'] | ['Runtime Error', 'Accepted'] | ['s938194587', 's427363234'] | [2940.0, 2940.0] | [17.0, 17.0] | [76, 100] |
p03281 | u625007136 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def is_odd(n):\n if n % 2 == 1:\n return True\n else:\n return False\n \ndef p105(n):\n count = 0\n for s in range(n,0,-1):\n if is_odd(s):\n\n divisors = [s]\n\n for i in range(1,s):\n if s % i == 0:\n divisors.append(i)\n if len(divisors) == 8:\n print(divisors)\n count += 1\n return count\n\nif __name__ == "__main__":\n n = int(input())\n print(p105(n))\n', 'def is_odd(n):\n if n % 2 == 1:\n return True\n else:\n return False\n \ndef p105(n):\n count = 0\n for s in range(n,0,-1):\n if is_odd(s):\n\n divisors = [s]\n\n for i in range(1,s):\n if s % i == 0:\n divisors.append(i)\n if len(divisors) == 8:\n \n count += 1\n return count\n\nif __name__ == "__main__":\n n = int(input())\n print(p105(n))\n'] | ['Wrong Answer', 'Accepted'] | ['s876931224', 's654191112'] | [3060.0, 3060.0] | [18.0, 18.0] | [478, 479] |
p03281 | u626228246 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\ncnt,lcnt = 0,0\n\nfor i in range(1,N+1):\n for j in range(1,i+1):\n if i%j == 0:\n cnt += 1\n if cnt == 8:\n lcnt += 1\n cnt = 0\nprint(lcnt)', 'N = int(input())\ncnt,lcnt = 0,0\n\nfor i in range(1,N+1,2):\n\tfor j in range(1,i+1):\n\t\tif i%j == 0:\n\t\t\tcnt += 1\n\t\t\tif cnt == 8:\n\t\t\t\tlcnt += 1\n\t\t\t\tcnt = 0\n\tcnt = 0\nprint(lcnt)'] | ['Wrong Answer', 'Accepted'] | ['s788664983', 's693768790'] | [9044.0, 9096.0] | [28.0, 29.0] | [177, 171] |
p03281 | u628335443 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\ncount = 0\n\nif n < 105:\n count = 0\nelse:\n for i in range(105, n + 1, 2):\n div_count = 0\n for j in range(1, i + 1):\n if i % j == 0:\n div_count += 1\n if div_count == 8:\n print(i)\n count += 1\n\nprint(count)\n', 'n = int(input())\ncount = 0\n\nif n < 105:\n count = 0\nelse:\n for i in range(105, n + 1, 2):\n div_count = 0\n for j in range(1, i + 1):\n if i % j == 0:\n div_count += 1\n if div_count == 8:\n count += 1\n\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s411726647', 's352576636'] | [2940.0, 2940.0] | [20.0, 18.0] | [294, 273] |
p03281 | u629540524 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nif n = 105:\n print(1)\nelse:\n print(0)', 'import sympy\nn = int(input())\nif n % 2 == 0 and len(sympy.divisors(n))==8:\n print(1)\nelse:\n print(0)', 'import sympy\nif i % 2 == 0 and len(sympy.divisors(int(input())))==8:\n print(1)\nelse:\n print(0)', 'def make_divisors(n):\n a,b =[],[]\n i = 1\n while i*i<=n:\n if n%i == 0:\n a.append(i)\n if i != n//i:\n b.append(n//i)\n i+= 1\n return a+b[::-1]\n\nn = int(input())\nc = len(make_divisors(n))\nif n % 2 == 1 and c== 8 and c == 16 :\n print(1)\nelse:\n print(0)', 'def make_divisors(n):\n a,b =[],[]\n i = 1\n while i*i<=n:\n if n%i == 0:\n a.append(i)\n if i != n//i:\n b.append(n//i)\n i+= 1\n return a+b[::-1]\n\nn = int(input())\nc = 0\nfor i in range(1,n+1):\n if len(make_divisors(i))== 8 and i%2==1:\n c+=1\nprint(c)'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s135527696', 's230887524', 's601474283', 's798313788', 's175505839'] | [8832.0, 9084.0, 8924.0, 9176.0, 9192.0] | [22.0, 25.0, 28.0, 28.0, 29.0] | [56, 106, 100, 315, 315] |
p03281 | u629607744 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nif n<105:\n\tprint(0)\nelif 105<=n<135:\n\tprint(1)\nelif 135<=n<189:\n\tprint(2)\n"""\nelif 189<=n:\n"""\n\tprint(3)', 'def i():\n\treturn int(input())\ndef i2():\n\treturn map(int,input().split())\ndef s():\n\treturn str(input())\ndef l():\n\treturn list(input())\ndef intl():\n\treturn list(int(k) for k in input().split())\n\nn = i()\n\ncnt = 0\nans = 0\nfor j in range(1,n+1,2):\n\tfor i in range(1,j+1):\n\t\tif j%i == 0:\n\t\t\tcnt += 1\n\tif cnt == 8:\n\t\tans += 1\n\tcnt = 0\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s029606056', 's002044524'] | [2940.0, 8860.0] | [17.0, 30.0] | [119, 338] |
p03281 | u638902622 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['from sys import stdin\nN = int(stdin.readline().rstrip())\n\ncount = 0\nif N < 105:\n pass\nelse:\n for i in range(105, N+1):\n if i % 2 == 0:\n pass\n else:\n divisor = 0\n for j in range(1, i+1):\n if i % j == 0:\n divisor += 1\n if divisor == 8:\n print(i)\n count += 1\nprint(count)\n', 'from sys import stdin\nN = int(stdin.readline().rstrip())\n\ncount = 0\nif N < 105:\n pass\nelse:\n for i in range(105, N+1):\n if i % 2 == 0:\n pass\n else:\n divisor = 0\n for j in range(1, i+1):\n if i % j == 0:\n divisor += 1\n if divisor == 8:\n count += 1\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s011326258', 's996680386'] | [3060.0, 3060.0] | [19.0, 19.0] | [397, 372] |
p03281 | u640922335 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=input()\nans=0\nfor i in range(1,N):\n count=0\n for j in range(i):\n if i%j==0:\n count+=1\n if count==9:\n ans+=1\n \nprint(ans)', 'N=int(input())\nans=0\nfor i in range(1,N):\n count=0\n for j in range(i):\n if i%j==0:\n count+=1\n if count==9:\n ans+=1\n \nprint(ans)', 'N=int(input())\nans=0\nfor i in range(1,N+1):\n count=0\n for j in range(1,i+1):\n if i%j==0:\n count+=1\n if count==8 and i%2!=0:\n ans+=1\n \nprint(ans)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s090913903', 's302137861', 's892182996'] | [8952.0, 9144.0, 9128.0] | [27.0, 26.0, 29.0] | [163, 168, 185] |
p03281 | u650932312 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\nans = 0\nfor n in range(1,int(N/2)+1):\n if 2*n+1 > N:\n break\n for i in range(1,int(N**(1/2)/2)+1):\n for j in range(i+1,int(N**(1/2)/2)+1):\n for k in range(j+1,int(N**(1/2)/2)+1):\n if 2*n+1 == (2*i+1)*(2*j+1)*(2*k+1):\n print(i,j,k,n)\n ans += 1\n\nprint(ans)\n', 'N = int(input())\n\nans = 0\nfor n in range(1,int(N/2)+1):\n if 2*n+1 > N:\n break\n for i in range(1,int(N**(1/2)/2)+1):\n for j in range(i+1,int(N**(1/2)/2)+1):\n for k in range(j+1,int(N**(1/2)/2)+1):\n if 2*n+1 == (2*i+1)*(2*j+1)*(2*k+1):\n ans += 1\n\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s260699241', 's419276846'] | [9388.0, 9360.0] | [29.0, 32.0] | [356, 321] |
p03281 | u652081898 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = input()\n\nif N <= 104:\n print(0)\nelse:\n print(1)', 'N = int(input())\nif N < 105:\n print("0")\nelif N < 135:\n print("1")\nelif N < 165:\n print("2")\nelif N < 189:\n print("3")\nelif N < 195:\n print("4")\nelse:\n print("5")\n'] | ['Runtime Error', 'Accepted'] | ['s395681456', 's142838186'] | [2940.0, 2940.0] | [18.0, 17.0] | [53, 181] |
p03281 | u652445326 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nresult = 0\nfor i in range(1,N+1,2):\n count = 0\n for j in range(1,i,2):\n if i %j ==0:\n count+=1\n \n if count ==8:\n result +=1\nprint(result)\n\n', 'N = int(input())\nresult = 0\nfor i in range(1,N+1,2):\n count = 0\n for j in range(1,i+1,2):\n if i %j ==0:\n count+=1\n \n if count ==8:\n result +=1\nprint(result)\n\n'] | ['Wrong Answer', 'Accepted'] | ['s140378969', 's790433850'] | [2940.0, 2940.0] | [18.0, 18.0] | [197, 199] |
p03281 | u652656291 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nans = 0\nA = [i for i in range(n+1)]\nA = A[1:n+1:2]\nfor i in range(len(A)):\n a=0\n for j in range(len(A)):\n if A[i] % (j+1) == 0:\n a += 1\n if a == 8:\n ans += 1\nprint(ans)\n', 'n = int(input())\nans = 0\nA = [i for i in range(n+1)]\nA = A[1::2]\nfor i in range(len(A)):\n a=0\n for j in range(len(A)):\n if A[i] % j == 0:\n a += 1\n if a == 8:\n ans += 1\nprint(ans)\n', 'n = int(input())\nA = [i for i in range(n)]\nA = A[1::2]\nans = 0\nfor i in range(len(A)):\n a = 0\n for j in range(len(A)//2):\n if A[i] % j == 0:\n a += 1\n if a == 8:\n ans += 1\n if a == 9:\n ans -= 1\n break\nprint(ans)', 'n = int(input())\nans = 0\nA = [i for i in range(n+1)]\nA = A[1:n+1:2]\nfor i in range(len(A)):\n a=0\n for j in range(len(A)//2+1):\n if A[i] % (j+1) == 0:\n a += 1\n if a == 8:\n ans += 1\nprint(ans)\n', 'n = int(input())\nans=0\nfor i in range(1,N+1,2):\n a=0\n for j in range(1,i+1,2):\n if i%j==0:\n a+=1\n if a==8:\n ans+=1\nprint(ans)\n', 'n = int(input())\n\nX = [int(x) for x in range(1,n+1,2)]\n\nans = 0\nfor x in X:\n a = 0\n for i in range(1,n+1):\n if x % i == 0:\n a += 1\n if a == 8 :\n ans += 1 \nprint(ans)\n'] | ['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted'] | ['s170188876', 's404325137', 's591774438', 's644859025', 's666906091', 's998197882'] | [3060.0, 3060.0, 3060.0, 3060.0, 2940.0, 2940.0] | [19.0, 17.0, 17.0, 18.0, 17.0, 18.0] | [220, 213, 251, 225, 160, 200] |
p03281 | u653807637 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ["def main():\n\tn = int(input())\n\n\tif n <= 104:\n\t\tprint(0):\n\telif n <= 134:\n\t\tprint(1)\n\telif n <= 188:\n\t\tprint(2)\n\telse:\n\t\tprint(3)\n\n\nif __name__ == '__main__':\n\tmain()", "def main():\n\tn = int(input())\n\n\tif n <= 104:\n\t\tprint(0)\n\telif n <= 134:\n\t\tprint(1)\n\telif n <= 164:\n\t\tprint(2)\n\telif n <= 188:\n\t\tprint(3)\n\telif n <= 194:\n\t\tprint(4)\n\telse:\n\t\tprint(5)\n\n\nif __name__ == '__main__':\n\tmain()"] | ['Runtime Error', 'Accepted'] | ['s264319230', 's769152539'] | [2940.0, 3064.0] | [18.0, 17.0] | [165, 218] |
p03281 | u655048024 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nans = 0\nfor i in range(1,n+1):\n if(n%i==0):\n ans += 1\nprint(ans)', 'n = int(input())\nans = 0\nfor i in range(1,n+1):\n if(i%2 == 1):\n cou = 2\n for j in range(2,i):\n if(i%j==0):\n cou += 1\n if(cou==8):\n ans +=1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s623313378', 's380024525'] | [2940.0, 3060.0] | [17.0, 18.0] | [85, 176] |
p03281 | u655975843 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nans = 0\ncount = 0\nfor j in range(1, n + 1):\n\tfor i in range(1, j + 1):\n\t\tif n % i == 0:\n\t\t\tans += 1\n\tif ans == 8:\n\t\tcount += 1\nprint(count)', 'n = int(input())\nif n % 2 == 0:\n\tn = n - 1\ncount = 0\nfor j in range(1, n + 1, 2):\n\tans = 0\n\tfor i in range(1, j + 1, 2):\n\t\tif j % i == 0:\n\t\t\tans += 1\n\tif ans == 8:\n\t\tcount += 1\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s195526210', 's360236317'] | [2940.0, 3060.0] | [19.0, 18.0] | [156, 189] |
p03281 | u656330453 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import collections\n\ndef prime_factorize(n):\n a = []\n while n % 2 == 0:\n a.append(2)\n n //= 2\n f = 3\n while f * f <= n:\n if n % f == 0:\n a.append(f)\n n //= f\n else:\n f += 2\n if n != 1:\n a.append(n)\n return a\ncount=0\nn=int(input())\nfor i in range(1, n+1):\n ans=1\n c=collections.Counter(prime_factorize(i))\n clist = c.values()\n for j in clist:\n ans *= (j+1)\n if ans == 8:\n count += 1\n \nprint(count)', 'import collections\n\ndef prime_factorize(n):\n a = []\n while n % 2 == 0:\n a.append(2)\n n //= 2\n f = 3\n while f * f <= n:\n if n % f == 0:\n a.append(f)\n n //= f\n else:\n f += 2\n if n != 1:\n a.append(n)\n return a\ncount=0\nn=int(input())\nfor i in range(1, n+1):\n ans=1\n c=collections.Counter(prime_factorize(i))\n clist = c.values()\n for i in clist:\n ans *= (i+1)\n if ans == 8:\n count += 1\n \nprint(count)', 'import collections\n\ndef prime_factorize(n):\n a = []\n while n % 2 == 0:\n a.append(2)\n n //= 2\n f = 3\n while f * f <= n:\n if n % f == 0:\n a.append(f)\n n //= f\n else:\n f += 2\n if n != 1:\n a.append(n)\n return a\n\ncount=0\nn=int(input())\nfor i in range(1, n+1, 2):\n ans=1\n c=collections.Counter(prime_factorize(i))\n clist = c.values()\n for j in clist:\n ans *= (j+1)\n if ans == 8:\n count += 1\n \nprint(count)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s099386182', 's461209131', 's142230644'] | [3316.0, 3316.0, 3316.0] | [22.0, 22.0, 21.0] | [495, 495, 499] |
p03281 | u656643475 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['# B\nimport math\nN = int(input())\n\ndef make_prime_list(num):\n if num < 2:\n return []\n\n prime_list = [i for i in range(num + 1)]\n prime_list[1] = 0 \n num_sqrt = math.sqrt(num)\n\n for prime in prime_list:\n if prime == 0:\n continue\n if prime > num_sqrt:\n break\n\n for non_prime in range(2 * prime, num, prime):\n prime_list[non_prime] = 0\n\n return [prime for prime in prime_list if prime != 0]\n\ndef search_divisor_num(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\nre = 0\nfor i in range(1, N+1, 2):\n num = search_divisor_num(i)\n if num == 8:\n re += 1\n \nprint(re)', 'import math\nN = int(input())\n\ndef make_prime_list(num):\n if num < 2:\n return []\n\n prime_list = [i for i in range(num + 1)]\n prime_list[1] = 0 \n num_sqrt = math.sqrt(num)\n\n for prime in prime_list:\n if prime == 0:\n continue\n if prime > num_sqrt:\n break\n\n for non_prime in range(2 * prime, num, prime):\n prime_list[non_prime] = 0\n\n return [prime for prime in prime_list if prime != 0]\n\ndef search_divisor_num(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\nre = 0\nfor i in range(1, N+1, 2):\n num = search_divisor_num(i)\n if num == 8:\n re += 1\n \nprint(re)'] | ['Runtime Error', 'Accepted'] | ['s242225248', 's114297994'] | [3064.0, 3064.0] | [18.0, 18.0] | [1100, 1094] |
p03281 | u656803083 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\ncount = 0\nfor i in range(1,n+1):\n if n % i == 0:\n count += 1\nif count == 8:\n print("Yes")\nelse:\n print("No")', 'n = int(input())\ncount = 0\nfor i in range(1,n+1,2):\n ans = 0\n for j in range(1,n+1):\n if i % j == 0:\n ans += 1\n if ans == 8:\n count += 1\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s135846724', 's050718084'] | [8988.0, 9028.0] | [32.0, 28.0] | [131, 163] |
p03281 | u663014688 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nans = 0\n\n\nfor i in range(1, N+1, 2):\n cnt = 0\n \n for j in range(1, i+1):\n if j % i == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\n\nprint(ans)\n \n\n', 'N = int(input())\nans = 0\n\n\nfor i in range(1, N+1, 2):\n cnt = 0\n \n for j in range(1, i+1):\n if i % j == 0:\n cnt += 1\n \n if cnt == 8:\n ans += 1\n\nprint(ans)\n \n\n'] | ['Wrong Answer', 'Accepted'] | ['s375109278', 's556841112'] | [2940.0, 2940.0] | [18.0, 18.0] | [233, 234] |
p03281 | u665038048 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import sys\nfrom collection import defaultdict\nimport math\n\ndef calc(num):\n if num<=1:\n return 1\n else:\n num_sqrt=math.floor(math.sqrt(num))\n prime_list=make_prime_list_2(num_sqrt)\n\n dict_counter=defaultdict(int)\n for prime in prime_list:\n while num % prime==0:\n dict_counter[prime]+=1\n num //=prime\n if num !=1:\n dict_counter[num]+=1\n\n dict_counter=dict(dict_counter)\n\n return dict_counter\ndef main():\n argvs=sys.argv\n num=int(argvs[1])\n eight_counter=[]\n for i in range(num):\n if calc(num)==8:\n eight_counter.append(num)\n else:\n pass\n print(len(eight_counter))\n\nmain()', 'import sys\nfrom collection import defaultdict\nimport math\n\ndef calc(num):\n if num<=1:\n return 1\n else:\n num_sqrt=math.floor(math.sqrt(num))\n prime_list=make_prime_list_2(num_sqrt)\n\n dict_counter=defaultdict(int)\n for prime in prime_list:\n while num % prime==0:\n dict_counter[prime]+=1\n num //=prime\n if num !=1:\n dict_counter[num]+=1\n\n dict_counter=dict(dict_counter)\n\n return dict_counter\ndef main():\n num=input()\n eight_counter=[]\n calc_result=calc(num)\n for i in range(num):\n if calc_result==8:\n eight_counter.append(num)\n else:\n pass\n print(len(eight_counter))\n\nmain()', 'import sys\nfrom collection import defaultdict\nimport math\n\ndef calc(num):\n if num<=1:\n return 1\n else:\n num_sqrt=math.floor(math.sqrt(num))\n prime_list=make_prime_list_2(num_sqrt)\n\n dict_counter=defaultdict(int)\n for prime in prime_list:\n while num % prime==0:\n dict_counter[prime]+=1\n num //=prime\n if num !=1:\n dict_counter[num]+=1\n\n dict_counter=dict(dict_counter)\n\n return dict_counter\ndef main():\n num=input()\n eight_counter=[]\n for i in range(num):\n if calc(num)==8:\n eight_counter.append(num)\n else:\n pass\n print(len(eight_counter))\n\nmain()', 'def calculate_num_of_divisor(N):\n yakusuu = []\n for i in range(1, N+1):\n if N % i == 0:\n yakusuu.append(i)\n return len(yakusuu)\n\nN = int(input())\ncount = []\nfor i in range(N+1):\n if i % 2 == 1 and calculate_num_of_divisor(i) == 8:\n count.append(i)\nprint(len(count))'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s231750576', 's362234995', 's900410499', 's514196278'] | [3188.0, 3064.0, 3188.0, 3060.0] | [21.0, 17.0, 20.0, 18.0] | [734, 737, 709, 302] |
p03281 | u670961163 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\ncount = 0\nans = 0\nj = 1\n\nfor i in range(1, n+1, 2):\n while j <= i:\n print(i, j)\n if i % j == 0:\n count += 1\n j += 1\n print(i, j, count)\n if count == 8:\n ans += 1\n count = 0\n j = 1\n \nprint(ans)', 'n = int(input())\ncount = 0\nans = 0\nj = 1\n\nfor i in range(1, n+1, 2):\n while j <= i:\n if i % j == 0:\n count += 1\n j += 1\n if count == 8:\n ans += 1\n count = 0\n j = 1\n \nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s539107394', 's680818885'] | [3728.0, 3060.0] | [48.0, 20.0] | [278, 231] |
p03281 | u672316981 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nlst = [135, 189, 105, 165, 195]\ntmp = 0\n\nfor i in range(5):\n if n<=lst[i]:\n tmp += 1\n\nprint(tmp)', 'n = int(input())\nlst = [135, 189, 105, 165, 195]\ntmp = 0\n\nfor i in range(6):\n if n<=lst[i]:\n tmp += 1\n\nprint(tmp)', 'n = int(input())\nlst = [135, 189, 105, 165, 195]\ntmp = 0\nx = []\n\nfor i in range(5):\n x.append(n-lst[i])\n\nfor i in range(5):\n if x[i]>=0:\n tmp += 1\n\nprint(tmp)'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s078181307', 's337041485', 's544653172'] | [3060.0, 3060.0, 3060.0] | [18.0, 17.0, 17.0] | [123, 123, 171] |
p03281 | u678167152 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nans = 0\nfor i in range(1,N+1,2):\n cnt = 0\n for j in range(i):\n if i%j==0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)\n ', 'N = int(input())\nans = 0\nfor n in range(1,N+1,2):\n cnt = 0\n for p in range(1,n+1):\n if n%p==0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s761553555', 's248132485'] | [2940.0, 2940.0] | [17.0, 18.0] | [152, 153] |
p03281 | u678594774 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\nresult = 0\nfor i in range(1, n+1, 2):\n count = 0\n for j in range(1, i // 2):\n if i % j == 0:\n count += 1\n if count == 8:\n result += 1\n\nprint(result)\n', 'n = int(input())\n\nresult = 0\nfor i in range(1, n, 2):\n count = 0\n for j in range(1, i // 2):\n if i % j == 0:\n count += 1\n if count == 8:\n result += 1\n\nprint(result)\n', 'n = int(input())\n\nresult = 0\nfor i in range(1, n, 2):\n count = 0\n for j in range(i//2):\n if i % j == 0:\n count += 1\n if count == 8:\n result += 1\n\nprint(result)', 'n = int(input())\n\nresult = 0\nfor i in range(1, n+1, 2):\n count = 0\n for j in range(1, i//2+1):\n if i % j == 0:\n count += 1\n if count == 8:\n result += 1\n\nprint(result)\n', 'n = int(input())\n\nresult = 0\nfor i in range(1, n+1, 2):\n count = 0\n for j in range(1, i+1):\n if i % j == 0:\n count += 1\n if count == 8:\n result += 1\n\nprint(result)\n'] | ['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s156474759', 's272291725', 's305201890', 's436806549', 's422108331'] | [2940.0, 2940.0, 2940.0, 2940.0, 2940.0] | [17.0, 17.0, 17.0, 18.0, 18.0] | [201, 199, 193, 201, 198] |
p03281 | u685263709 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\nprime = [3, 5, 7, 11, 13]\n\n\nzero_seven = 0\none_three = [a * (b ** 3) for a in prime for b in prime if a != b]\none_three = [i for i in one_three if i <= 200]\none_one_one = [a * b * c for a in prime for b in prime for c in prime\n if a != b and b != c and c != a]\none_one_one = [i for i in one_one_one if i <= 200]\n\nans = sorted(set(one_three + one_one_one))\ni = 0\nif ans[-1] <= N:\n print(len(ans))\n quit()\nelse:\n while ans[i] < N:\n i += 1\n if ans[i] > N:\n print(i)\n quit()\n\nprint(i)', 'N = int(input())\n\nprime = [3, 5, 7, 11, 13]\n\n\nzero_seven = 0\none_three = [a * (b ** 3) for a in prime for b in prime if a != b]\none_three = [i for i in one_three if i <= 200]\none_one_one = [a * b * c for a in prime for b in prime for c in prime\n if a != b and b != c and c != a]\none_one_one = [i for i in one_one_one if i <= 200]\n\nans = sorted(set(one_three + one_one_one))\nif N <= 104:\n print(0)\nelif 105 <= N <= 134:\n print(1)\nelif 135 <= N <= 164:\n print(2)\nelif 165 <= N <= 188:\n print(3)\nelif 189 <= N <= 194:\n print(4)\nelif 195 <= N:\n print(5)'] | ['Wrong Answer', 'Accepted'] | ['s561201792', 's298745735'] | [3064.0, 3064.0] | [18.0, 17.0] | [677, 701] |
p03281 | u685662874 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\ndef make_divisors(n): \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n\ncnt=0\nfor i in range(1, N+1):\n divsors = make_divisors(i)\n if i % 2 != 0:\n if len(divsors) == 8:\n print(i, divsors)\n cnt += 1\n\nprint(cnt)', 'N=int(input())\ndef make_divisors(n): \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n \n return divisors\n\ncnt=0\nfor i in range(N):\n divsors = make_divisors(i)\n if i % 2 != 0 and len(divsors) == 8:\n cnt += 1\n\nprint(cnt)', 'N=int(input())\ndef make_divisors(n): \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n \n return divisors\n\ncnt=0\nfor i in range(N):\n divsors = make_divisors(i)\n if len(divsors) == 8:\n cnt += 1\n\nprint(cnt)', 'N=int(input())\ndef make_divisors(n): \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n \n return divisors\n\ncnt=0\nfor i in range(1,N+1):\n divsors = make_divisors(i)\n if i % 2 != 0 and len(divsors) == 8:\n cnt += 1\n\nprint(cnt)', 'N=int(input())\ndef make_divisors(n): \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n\ncnt=0\nfor i in range(1, N+1):\n divsors = make_divisors(i)\n if i % 2 != 0 and len(divsors) == 8:\n cnt += 1\n\nprint(cnt)'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s109983676', 's389211330', 's804765881', 's834636865', 's410621490'] | [3060.0, 3060.0, 3060.0, 3188.0, 3064.0] | [18.0, 18.0, 18.0, 18.0, 18.0] | [427, 374, 359, 378, 385] |
p03281 | u686461495 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['# coding:utf-8\nlist=[0]*1000\nfor i in range(1,201,1):\n m=1\n while m*i<=200:\n print(m*i)\n list[m*i]+=1\n m+=1\nn=int(input())\nct=0\nfor i in range(1,n+1,2):\n if list[i]==8:\n ct+=1\nprint(ct)', '# coding:utf-8\nlist=[0]*200\nfor i in range(2,201,1):\n m=1\n while m*i<=200:\n list[m*i]+=1\n m+=1\nn=int(input())\nct=0\nfor i in range(1,n+1,2):\n if list[i]==8:\n ct+=1\nprint(ct)', '# coding:utf-8\nlist=[0]*1000\nfor i in range(1,201,1):\n m=1\n while m*i<=200:\n list[m*i]+=1\n m+=1\nn=int(input())\nct=0\nfor i in range(1,n+1,2):\n if list[i]==8:\n ct+=1\nprint(ct)'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s598754041', 's865925002', 's662266628'] | [3188.0, 3060.0, 3060.0] | [18.0, 17.0, 18.0] | [222, 202, 203] |
p03281 | u687041133 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\ncounter = 0\nans = 0\nfor i in range(1,N+1):\n for j in range(1, N+1):\n if i % j == 0:\n counter += 1\n \n if counter == 8:\n ans += 1\n\n counter = 0\n\n\nprint(ans)\n\n', 'N = int(input())\n\nans = 0\nfor i in range(1, N+1, 2):\n divisor = []\n for j in range(1, N+1):\n if i % j == 0:\n divisor.append(j)\n \n if len(divisor) == 8:\n ans += 1\n\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s245389968', 's598877921'] | [2940.0, 2940.0] | [21.0, 19.0] | [210, 211] |
p03281 | u690037900 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\nans=0\nN=int(input())\nif N<105:\n print(0)\n exit(0)\nfor i in range(104,N):\n if i%2==1 and len(make_divisors(i))==8:\n ans+=1\nprint(ans)', 'def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\nans=0\nN=int(input())\nif N<105:\n print(0)\n exit(0)\nfor i in range(105,N)[::2]:\n if len(make_divisors(i))==8:\n ans+=1\nprint(ans)', 'def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\nans=0\nN=int(input())\nif N<105:\n print(0)\n exit(0)\nfor i in range(104,N+1):\n if i%2==1 and len(make_divisors(i))==8:\n ans+=1\nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s658644353', 's982030182', 's084607516'] | [3064.0, 3060.0, 3064.0] | [17.0, 17.0, 17.0] | [389, 383, 391] |
p03281 | u690145987 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\n\n# cnt = 0\n\n# for idx1, x in enumerate(candidate_prime_num):\n# \n# if idx1+1 > LENGTH_CANDIDADE:\n# continue\n# \n# idx2 = idx1+1\n# for y in candidate_prime_num[idx2:]:\n# \n# if idx2 + 1 > LENGTH_CANDIDADE:\n# continue\n# idx3 = idx2 +1\n\n\n# cnt +=1\n# print(cnt)\nNUM_YAKUSU = 8\ncnt_8_yakusu=0\nfor n in range(1,N+1,2):\n cnt_yakusu = 0\n for x in range(1,n,2):\n if n % x == 0:\n cnt_yakusu+=1\n if cnt_yakusu == NUM_YAKUSU:\n cnt_8_yakusu +=1\nprint(cnt_8_yakusu)', 'N=int(input())\n\n# cnt = 0\n\n# for idx1, x in enumerate(candidate_prime_num):\n#\n# if idx1+1 > LENGTH_CANDIDADE:\n# continue\n#\n# idx2 = idx1+1\n# for y in candidate_prime_num[idx2:]:\n#\n# if idx2 + 1 > LENGTH_CANDIDADE:\n# continue\n# idx3 = idx2 +1\n\n\n# cnt +=1\n# print(cnt)\nNUM_YAKUSU = 8\ncnt_8_yakusu=0\nfor n in range(1,N+1,2):\n\n cnt_yakusu = 0\n for x in range(1,n+1,2):\n if n % x == 0:\n # print(n,x)\n cnt_yakusu+=1\n if cnt_yakusu == NUM_YAKUSU:\n cnt_8_yakusu +=1\nprint(cnt_8_yakusu)'] | ['Wrong Answer', 'Accepted'] | ['s287700575', 's776962312'] | [3064.0, 3060.0] | [17.0, 18.0] | [719, 744] |
p03281 | u693953100 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['str=input()\nn=int(str)\nc=0\nans=0\nfor num in range(1,n):\n for number in range(1,num):\n if num%number==0:\n c+=1\n if c==8:\n d+=1\nprint(d)\n', 'str=input()\nn=int(str)\nc=0\nfor num in range(1,n):\n if n%num==0:\n c+=1\nprint(c)\n', 'def solve():\n n = int(input())\n ans = 0\n for i in range(1,n+1):\n if i%2==0:\n continue\n d = 0\n for j in range(1,i+1):\n if i%j==0:\n d+=1\n if d==8:\n ans+=1\n print(ans)\nif __name__ == "__main__":\n solve()'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s462121532', 's631085614', 's196764489'] | [2940.0, 2940.0, 3060.0] | [17.0, 18.0, 18.0] | [166, 89, 291] |
p03281 | u694422786 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\ncount = 0\nans = 0\nfor i in range(1,n,2):\n for j in range(1,n,2):\n if (i) % (j) == 0:\n count += 1\n if count == 8:\n ans += 1\n count = 0\n\nprint(ans)', 'n = int(input())\ncount = 0\nans = 0\nfor i in range(0,n,2):\n for j in range(0,n,2):\n if (i+1) % (j+1) == 0:\n count += 1\n if count == 8:\n ans += 1\n count = 0\n\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s380049184', 's811244568'] | [2940.0, 3060.0] | [18.0, 19.0] | [196, 200] |
p03281 | u698416089 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())+1\nyakusuu = 0\nfor i in range(1,int((N-N%2)/2)+2):\n cnt = 0\n ii = 1+ 2*(i-2)\n for j in range(1,ii):\n if ii % j == 0:\n cnt = cnt+1\n cnt = cnt+1\n print(str(ii)+"の約数は"+str(cnt)+"個")\n if cnt == 8:\n yakusuu = yakusuu + 1\nprint(yakusuu)', 'N = int(input())+1\nyakusuu = 0\nfor i in range(1,int((N-N%2)/2)+2):\n cnt = 0\n ii = 1+ 2*(i-2)\n for j in range(1,ii):\n if ii % j == 0:\n cnt = cnt+1\n cnt = cnt+1\n if cnt == 8:\n yakusuu = yakusuu + 1\nprint(yakusuu)'] | ['Wrong Answer', 'Accepted'] | ['s425163804', 's542045088'] | [3064.0, 3060.0] | [18.0, 18.0] | [299, 250] |
p03281 | u701318346 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nans = 0\n\nfor i in range(N):\n if (i + 1) % 2 == 0:\n d = 0\n for j in range(i + 1):\n if (i + 1) % (j + 1) == 0:\n d += 1\n if d == 8:\n ans += 1\n\nprint(ans)\n ', 'N = int(input())\nans = 0\n\nfor i in range(N):\n if (i + 1) % 2 == 1:\n d = 0\n for j in range(i + 1):\n if (i + 1) % (j + 1) == 0:\n d += 1\n if d == 8:\n ans += 1\n\nprint(ans)\n \n'] | ['Wrong Answer', 'Accepted'] | ['s471005607', 's382369397'] | [2940.0, 2940.0] | [19.0, 18.0] | [203, 204] |
p03281 | u702686470 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\ncount=0\nfor i in range(2,sprt(n)+1):\n if(n%i == 0):\n count += 1\n if(count == 7):\n break\nprint(count)\n\n', 'import numpy as np\nn = int(input())\nfor i in range(n): \n if(n%2==0):\n break\n count=0\n for j in range(2,int(np.sqrt(i))+1):\n if(i%j == 0):\n count += 1\n if(count == 7):\n break\nprint(count)\n\n', 'import numpy as np\nn = int(input())\nans =0\nfor i in range(1,n+1): \n if(i%2==0):\n continue\n count=0\n for j in range(1,i+1):\n if(i%j == 0):\n count += 1\n if(count == 8):\n ans+=1\nprint(ans)\n\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s088178978', 's218323429', 's831856662'] | [2940.0, 12392.0, 12396.0] | [17.0, 153.0, 148.0] | [139, 241, 236] |
p03281 | u706330549 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\na = [0] * 100\nb = [0] * 100\nans = 0\n\nfor i in range(100):\n a[i] = 2 * i + 1\n\nfor i in range(100):\n for j in range(2, 200):\n if a[i] % j == 0:\n b[i] += 1\n\nfor k in range(n+1):\n if b[k] == 7:\n ans += 1\n\nprint(ans)\n', 'n = int(input())\n\na = [0] * 100\nb = [0] * 100\nans = 0\n\nfor i in range(100):\n a[i] = 2 * i + 1\n\nfor i in range(100):\n for j in range(2, 200):\n if a[i] % j == 0:\n b[i] += 1\n\nfor k in range(100):\n if b[k] == 7 and a[k] <= n:\n ans += 1\n\nprint(ans)\n'] | ['Runtime Error', 'Accepted'] | ['s590401570', 's883992390'] | [3060.0, 3060.0] | [20.0, 21.0] | [264, 278] |
p03281 | u706828591 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n#h, w = map(int,input().split())\n#ls = list(map(int,input().split()))\n\n\n\nans = 0\nfor i in range(1,n+1):\n if i%2 == 1:\n yakusuu = 0\n for j in range(1,i + 1):\n if i%j == 0:\n yakusuu += 0\n if yakusuu == 8:\n ans += 1\nprint(ans)\n ', 'n = int(input())\n#h, w = map(int,input().split())\n#ls = list(map(int,input().split()))\n\n\n\nans = 0\nfor i in range(1,n+1):\n if i%2 == 1:\n yakusuu = 0\n for j in range(1,i + 1):\n if i%j == 0:\n yakusuu += 1\n if yakusuu == 8:\n ans += 1\nprint(ans)\n '] | ['Wrong Answer', 'Accepted'] | ['s456327616', 's674090903'] | [2940.0, 2940.0] | [18.0, 18.0] | [361, 361] |
p03281 | u707659359 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['\nN = int(input())\n\nif N => 195:\n print("4")\nelif N => 165:\n print("3")\nelif N => 135:\n print("2")\nelif N => 105:\n print("1")\nelse:\n print("0")', 'N = int(input())\n\nif N >= 195:\n print("5")\nelif N >= 189:\n print("4")\nelif N >= 165:\n print("3")\nelif N >= 135:\n print("2")\nelif N >= 105:\n print("1")\nelse:\n print("0")'] | ['Runtime Error', 'Accepted'] | ['s731161688', 's328550219'] | [2940.0, 2940.0] | [17.0, 17.0] | [157, 186] |
p03281 | u724687935 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\ncnt = 0\nfor i in range(1, N + 1):\n k = 0\n for j in range(1, N + 1):\n \tif i % j == 0:\n k += 1\n if k == 8:\n cnt += 1\n\nprint(cnt)\n ', 'N = int(input())\ncnt = 0\nfor i in range(1, N + 1):\n k = 0\n for j in range(1, N + 1):\n if i % j == 0:\n k += 1\n if k == 8:\n cnt += 1', 'N = int(input())\ncnt = 0\nfor i in range(1, N + 1):\n k = 0\n for j in range(1, N + 1):\n if i % j == 0:\n k += 1\n if k == 8:\n cnt += 1\nprint(cnt)', 'N = int(input())\ncnt = 0\nfor i in range(1, N + 1, 2):\n k = 0\n for j in range(1, i + 1):\n if i % j == 0:\n k += 1\n if k == 8:\n cnt += 1\nprint(cnt)'] | ['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted'] | ['s020289325', 's182629704', 's356258475', 's303509382'] | [9024.0, 9168.0, 8968.0, 9108.0] | [21.0, 30.0, 21.0, 28.0] | [159, 164, 171, 178] |
p03281 | u726444300 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n \ndef check_divisor(number):\n divisors = 0\n for j in range(1, number+1, 2):\n if not (number%j):\n divisors += 1\n if divisors == 9: return False\n if divisors == 8: return True\n else: return False\n\ncount = 0\nfor i in range(1, N+1, 2):\n if check_divisor(i):\n count += 1', 'N = int(input())\n \ndef check_divisor(number):\n divisors = 0\n for j in range(1, number+1, 2):\n if not (number%j):\n divisors += 1\n if divisors == 9: return False\n if divisors == 8: return True\n else: return False\n\ncount = 0\nfor i in range(1, N+1, 2):\n\tif check_divisor(i):\n\t\tcount += 1', 'N = int(input())\n\ndef check_divisor(number):\n\tdivisors = 0\n\tfor j in range(1, number+1, 2):\n\t\tif not (number%j):\n\t\t\tdivisors += 1\n\t\t\tif divisors == 9: return False\n\tif divisors == 8: return True\n\telse: return False\n\ncount = 0\nfor i in range(1, N+1, 2):\n\tif check_divisor(i):\n\t\tcount += 1\nprint(count)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s066335460', 's390618002', 's898612336'] | [9188.0, 9212.0, 9000.0] | [24.0, 28.0, 29.0] | [307, 324, 300] |
p03281 | u728120584 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def hantei(x):\n \n\nN = int(input())\nif N >= 105:\n print(1)\nelse:\n print(0) ', 'N = int(input())\nans = 0\nfor i in range(N + 1):\n if i % 2 == 0:\n continue\n c = 0\n for j in range(1, i + 1):\n if i % j == 0:\n c += 1\n if c == 8:\n ans += 1\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s399904988', 's176233448'] | [2940.0, 2940.0] | [17.0, 18.0] | [86, 208] |
p03281 | u729939940 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['from math import floor, sqrt\n\nN = int(input())\nans = 0\nfor o in range(1, N + 1, 2):\n\tcnt = 0\n for n in range(1, 1 + floor(sqrt(o))):\n \tif o % n == 0:\n cnt += 2\n if cnt == 8:\n ans += 1\nprint(ans)\n ', 'from math import floor, sqrt\nN = int(input())\nans = 0\nfor o in range(1, N + 1, 2):\n cnt = 0\n for n in range(1, o + 1):\n if o % n == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s272163025', 's633853713'] | [2940.0, 3060.0] | [17.0, 18.0] | [228, 193] |
p03281 | u731448038 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\ntotal = 0\nfor i in range(1, n+1):\n if i%2==0: continue\n cnt = 0\n for j in range(1, j+1):\n if i%j ==0: cnt+=1\n \n if cnt==8:\n total += 1\n\nprint(total)', 'n = int(input())\n \ntotal = 0\nfor i in range(1, n+1):\n if i%2==0: continue\n cnt = 0\n for j in range(1, j+1):\n if i%j ==0: cnt+=1\n \n if cnt==8:\n total += 1\n \nprint(total)', 'n = int(input())\n \ntotal = 0\nfor i in range(1, n+1):\n if i%2==0: continue\n cnt = 0\n for j in range(1, n+1):\n if i%j ==0: cnt+=1\n \n if cnt==8:\n total += 1\n \nprint(total)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s595967319', 's903713568', 's898795940'] | [2940.0, 2940.0, 2940.0] | [19.0, 17.0, 19.0] | [177, 179, 179] |
p03281 | u732870425 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nans = []\n\nfor i in range(1, n+1):\n cnt = 0\n for j in range(1, i):\n if i % 2 == 1 and i % j == 0:\n cnt += 1\n if cnt == 8:\n ans.append(i)\n\nprint(len(ans))', 'def cnt_prime(x):\n cnt = 0\n for i in range(1, int(x ** 0.5 // 1) + 1):\n if x % i == 0:\n cnt += 1\n \n return cnt\n\n\nN = int(input())\nans = 0\n\nfor i in range(1, N+1):\n if i % 2 == 1:\n c = cnt_prime(i)\n if c == 8:\n ans += 1\n\nprint(ans)', 'N = int(input())\n\nans = 0\n\nfor i in range(1, N+1):\n cnt = 0\n for j in range(1, i+1):\n if i % j == 0:\n cnt += 1\n \n if cnt == 8:\n ans += 1\n\nprint(ans)', 'N = int(input())\n\nans = 0\n\nfor i in range(1, N+1):\n cnt = 0\n for j in range(1, i):\n if i % j == 0:\n cnt += 1\n \n if cnt == 8:\n ans += 1\n\nprint(ans)', 'N = int(input())\n\nans = 0\n\nfor i in range(1, N+1):\n if i % 2 == 1:\n cnt = 0\n for j in range(1, i+1):\n if i % j == 0:\n cnt += 1\n \n if cnt == 8:\n ans += 1\n\nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s365394915', 's430033415', 's552908705', 's680067936', 's410798030'] | [2940.0, 9408.0, 9148.0, 9172.0, 9148.0] | [20.0, 27.0, 26.0, 29.0, 30.0] | [203, 288, 185, 183, 232] |
p03281 | u735008991 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nans = 0\nfor i in range(1, N+1):\n ans += len([j for j in range(1, i) if i % j == 0]) == 8\nprint(ans)\n', 'N = int(input())\nans = 0\nfor i in range(1, N+1, 2):\n ans += len([j for j in range(1, i+1) if i % j == 0]) == 8\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s847353982', 's372878932'] | [2940.0, 2940.0] | [19.0, 19.0] | [120, 125] |
p03281 | u740284863 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nif N >= 195:\n print("4")\nelif N >= 185:\n print("3")\nelif N >= 165:\n print("2")\nelif N >= 135:\n print("1")\nelse:\n print("0")\n', 'n = int(input())\nc = []\nfor i in range(n):\n k = []\n for j in range(i):\n if i % j == 0:\n k.append(j)\n if len(k) == 8:\n c.append(i)\nprint(len(c))', 'def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n return len(divisors)\n\nn = int(input())\nans = 0\nfor i in range(1,n+1,2):\n if make_divisors(i) == 8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s267356637', 's901503888', 's133347362'] | [2940.0, 2940.0, 9384.0] | [17.0, 17.0, 31.0] | [148, 177, 331] |
p03281 | u748311048 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\na=0\n\nfor i in range(1, N):\n if i%2!=0:\n c=0\n for j in range(1,i):\n if i%j==0:\n c+=1\n if c==8:\n a+-1\n \nprint(a)', 'N=int(input())\na=0\n \nfor i in range(1, N+1):\n if i%2!=0:\n c=0\n for j in range(1,i+1):\n if i%j==0:\n c+=1\n if c==8:\n a+=1\n \nprint(a)'] | ['Wrong Answer', 'Accepted'] | ['s917606960', 's886736725'] | [2940.0, 2940.0] | [18.0, 18.0] | [157, 162] |
p03281 | u752700460 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\ncnt = 0\ncnt2 = 0\nfor i in (1, range(N+1), 2):\n cnt = 0\n for j in (1, range(N+1)):\n if j > i:\n cnt = 0\n break\n if i % j == 0:\n cnt += 1\n\n if cnt == 8:\n cnt2 += 1\n\nprint(cnt2)\n', 'N = int(input())\n\ncnt = 0\ncnt2 = 0\nfor i in range(1, N+1, 2):\n cnt = 0\n for j in range(1, N+1):\n if j > i:\n break\n if i % j == 0:\n cnt += 1\n\n if cnt == 8:\n cnt2 += 1\n\n\nprint(cnt2)\n'] | ['Runtime Error', 'Accepted'] | ['s748835640', 's775880622'] | [2940.0, 2940.0] | [17.0, 19.0] | [255, 232] |
p03281 | u754076673 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\ncount = 1\nfor N in range(106,200):\n for s in range(1,N):\n if N % 2 != 0 and N % s == 0:\n count += 1\n if count == 8:\n print(N)\n', 'N = int(input())\n\nif 200 >= N >= 195:\n print(5)\nif 195 > N >= 189:\n print(4)\nif 189 > N >= 165:\n print(3)\nif 165 > N >= 135:\n print(2)\nif 135 > N >= 105:\n print(1)\nif N < 105:\n print(0)\n'] | ['Wrong Answer', 'Accepted'] | ['s025321429', 's298203827'] | [2940.0, 2940.0] | [20.0, 17.0] | [183, 204] |
p03281 | u759412327 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\na = 0\n\nfor i in range(1,1+N,2):\n b = 0\n for j in range(1,1+i,2):\n if i%j==0:\n b+=1\n if n==8:\n a+=1\n\nprint(a)', 'N = int(input())\na = 0\n\nfor i in range(1,1+N,2):\n b = 0\n for j in range(1,1+i,2):\n if i%j==0:\n b+=1\n if b==8:\n a+=1\n\nprint(a)'] | ['Runtime Error', 'Accepted'] | ['s793998206', 's984373701'] | [9100.0, 9052.0] | [27.0, 29.0] | [143, 143] |
p03281 | u761087127 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nans = 0\nfor i in range(1, N, 2):\n c = 0\n for j in range(1, N+1):\n if i%j==0:\n c += 1\n if c==8:\n ans += 1\nprint(ans)\n', 'N = int(input())\nans = 0\nfor i in range(1, N+1, 2):\n c = 0\n for j in range(1, N+1):\n if i%j==0:\n c += 1\n if c==8:\n ans += 1\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s943072416', 's064482357'] | [2940.0, 2940.0] | [19.0, 19.0] | [167, 169] |
p03281 | u762420987 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\n\ndef yakusuu(num):\n counter = 0\n for i in range(1, num + 1):\n if num % i == 0:\n counter += 1\n return counter\n\n\nfor num in range(N):\n counter = 0\n if yakusuu(num) == 8:\n print(counter)\n\nprint(counter)\n', 'def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5) + 1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n // i)\n\n divisors.sort()\n return divisors\n\nN = int(input())\nans = 0\nfor i in range(1, N + 1):\n if i % 2 == 0:\n if len(make_divisors(i)) == 8:\n ans += 1\nprint(ans)\n', 'N = int(input())\n\n\ndef yakusuu(num):\n counter = 0\n for i in range(1, num + 1):\n if num % i == 0:\n counter += 1\n return counter\n\n\ncounter = 0\nfor num in range(N):\n if yakusuu(num) == 8:\n counter += 1\n\nprint(counter)\n', 'def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5) + 1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n // i)\n\n divisors.sort()\n return divisors\n\nN = int(input())\nans = 0\nfor i in range(1, N + 1):\n if i % 2 == 1:\n if len(make_divisors(i)) == 8:\n ans += 1\nprint(ans)\n'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s238772676', 's439226067', 's735357176', 's289863526'] | [2940.0, 3060.0, 2940.0, 3060.0] | [18.0, 18.0, 18.0, 17.0] | [258, 385, 252, 385] |
p03281 | u762955009 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\ncnt = 0\nfor i in list(filter(lambda x: x % 2 != 1, range(1, N + 1))):\n divisor = 0\n for j in range(1, i + 1):\n if N % j == 0:\n divisor += 1\n if divisor == 8:\n cnt += 1\n\nprint(cnt)\n', 'N = int(input())\n\ncnt = 0\nfor i in range(1, N + 1):\n if i % 2 != 0:\n divisor = 0\n for j in range(1, i + 1):\n if i % j == 0:\n divisor += 1\n if divisor == 8:\n cnt += 1\n\nprint(cnt)\n'] | ['Wrong Answer', 'Accepted'] | ['s110596475', 's180824718'] | [2940.0, 2940.0] | [19.0, 19.0] | [232, 239] |
p03281 | u764401543 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\nans = []\nfor i in range(1, N + 1, 2):\n count = 0\n if i == 105:\n print(105)\n for j in range(1, i // 2 + 1):\n if i % j == 0:\n count += 1\n if count == 7:\n ans.append(1)\n\nprint(sum(ans))', 'N = int(input())\n\nans = []\nfor i in range(1, N + 1, 2):\n count = 0\n for j in range(1, i // 2 + 1):\n if i % j == 0:\n count += 1\n if count == 7:\n ans.append(1)\n\nprint(sum(ans))'] | ['Wrong Answer', 'Accepted'] | ['s682007299', 's462169864'] | [3060.0, 2940.0] | [18.0, 18.0] | [244, 208] |
p03281 | u764956288 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\ns = 0\nfor i in range(1,N,2):\n\tt = 0\n for j in range(1,N,2):\n\t\tif not N%n:\n\t\t\tt+=1\n if t==8:\n\t\ts+=1\n\nprint(s)\n\n', 'N = int(input())\ns = 0\nfor i in range(1,N,2):\n t = 0\n for j in range(1,i+1,2):\n if not i%j:\n t+=1\n if t==8:\n s+=1\n\nprint(s)', 'N = int(input())\ns = 0\nfor i in range(1,N+1,2):\n t = 0\n for j in range(1,i+1,2):\n if not i%j:\n t+=1\n if t==8:\n s+=1\n\nprint(s)'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s286752372', 's654639010', 's318297199'] | [2940.0, 3060.0, 2940.0] | [17.0, 17.0, 18.0] | [133, 137, 139] |
p03281 | u767432305 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['if N>=189:\n print(3)\nelif N>=165:\n print(2)\nelif N>=105:\n print(1)\nelse:\n print(0) ', 'N=int(input())\nif N>=195:\n print(5)\nelif N>=189:\n print(4)\nelif N>=165:\n print(3)\nelif N>=135:\n print(2)\nelif N>=105:\n print(1)\nelse:\n print(0) '] | ['Runtime Error', 'Accepted'] | ['s059676394', 's885612156'] | [2940.0, 2940.0] | [18.0, 17.0] | [96, 163] |
p03281 | u778700306 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['\n\nn = map(int,input().split())\n\ndef count(x):\n res = 0\n for i in range(1, x + 1):\n if x % i == 0:\n res += 1\n return res\n\nres = 0\nfor x in range(1, n+1, 2):\n if count(x) == 8:\n res += 1\n\nprint(res)\n', '\n\nn = int(input())\n\ndef count(x):\n res = 0\n for i in range(1, x + 1):\n if x % i == 0:\n res += 1\n return res\n\nres = 0\nfor x in range(1, n+1, 2):\n if count(x) == 8:\n res += 1\n\nprint(res)\n'] | ['Runtime Error', 'Accepted'] | ['s358428588', 's357215033'] | [2940.0, 2940.0] | [17.0, 18.0] | [234, 222] |
p03281 | u779170803 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ["INT = lambda: int(input())\nINTM = lambda: map(int,input().split())\nSTRM = lambda: map(str,input().split())\nSTR = lambda: str(input())\nLIST = lambda: list(map(int,input().split()))\nLISTS = lambda: list(map(str,input().split()))\ndef do():\n n=INT()\n flg=0\n for i in range(n//7+1):\n if (n-i*7)%4==0:\n flg=1\n if flg==1:\n print('Yes')\n else:\n print('No')\nif __name__ == '__main__':\n do()", "INT = lambda: int(input())\nINTM = lambda: map(int,input().split())\nSTRM = lambda: map(str,input().split())\nSTR = lambda: str(input())\nLIST = lambda: list(map(int,input().split()))\nLISTS = lambda: list(map(str,input().split()))\ndef do():\n lista=[105,135,165,189,195]\n n=INT()\n ct=0\n for i in range(1,n+1,2):\n if i in lista:\n ct+=1\n print(ct)\nif __name__ == '__main__':\n do()"] | ['Wrong Answer', 'Accepted'] | ['s865234200', 's198240313'] | [3060.0, 3064.0] | [17.0, 17.0] | [431, 409] |
p03281 | u779728630 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\ndef num_p(n):\n r = 0\n for i in range(1,n+1):\n if n % i == 0:\n r += 1\n return r\n\nans = 0\nfor i in range(1, N+1):\n if num_p(i) == 8:\n ans += 1\nprint(ans)', 'N = int(input())\n\ndef num_p(n):\n r = 0\n for i in range(1,n+1):\n if n % i == 0:\n r += 1\n return r\n\nans = 0\nfor i in range(1, N+1, 2):\n if num_p(i) == 8:\n ans += 1\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s913730092', 's410036528'] | [9136.0, 9128.0] | [30.0, 27.0] | [184, 188] |
p03281 | u782654209 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['#ABC106 B\n\n\nimport math\n\ndef allprimes(N):\n\tprimes = []\n\tfor i in range(N):\n\t\tprimes.append(i+1)\n\ti = 2\n\twhile i <= math.sqrt(N):\n\t\tindex = 0\n\t\twhile True:\n\t\t\tindex += 1\n\t\t\tif index == 1:\n\t\t\t\tcontinue\n\t\t\telse:\n\t\t\t\tif index * i <= N:\n\t\t\t\t\t\n\t\t\t\t\tprimes[index*i-1] = 0\n\t\t\t\telse:\n\t\t\t\t\tbreak\n\t\ti += 1\n\treturn sorted(list(set(primes)))[2:]\n\n\n\nprimes = allprimes(200)\n\ndef factor(k):\n\t\n\tnprimes = {}\n\tfor prime in primes:\n\t\tnprimes[prime] = 0\n\tfor prime in primes:\n\t\tif k < prime:\n\t\t\tbreak\n\t\telse:\n\t\t\twhile True:\n\t\t\t\tif k % prime != 0:\n\t\t\t\t\tbreak\n\t\t\t\telse:\n\t\t\t\t\tk = int(k / prime)\n\t\t\t\t\tnprimes[prime] += 1\n\treturn nprimes\n\n\nresult = 0\nfor n in range(int(input())):\n\tif n+1 == 1 or (n+1) % 2 == 0:\n\t\t\n\t\tcontinue\n\t\n\telse:\n\t\tnps = sorted(factor(n+1).values())\n\t\tprint(n+1,nps[:-5:-1],result)\n\t\tif nps[:-3:-1] == [7,0] or nps[:-4:-1] == [3,1,0] or nps[:-5:-1] == [1,1,1,0]:\n\t\t\tresult += 1\n\nprint(result)', '#ABC106 B\n\n\nimport math\n\ndef allprimes(N):\n\tprimes = []\n\tfor i in range(N):\n\t\tprimes.append(i+1)\n\ti = 2\n\twhile i <= math.sqrt(N):\n\t\tindex = 0\n\t\twhile True:\n\t\t\tindex += 1\n\t\t\tif index == 1:\n\t\t\t\tcontinue\n\t\t\telse:\n\t\t\t\tif index * i <= N:\n\t\t\t\t\t\n\t\t\t\t\tprimes[index*i-1] = 0\n\t\t\t\telse:\n\t\t\t\t\tbreak\n\t\ti += 1\n\treturn sorted(list(set(primes)))[2:]\n\n\n\nprimes = allprimes(200)\n\ndef factor(k):\n\t\n\tnprimes = {}\n\tfor prime in primes:\n\t\tnprimes[prime] = 0\n\tfor prime in primes:\n\t\tif k < prime:\n\t\t\tbreak\n\t\telse:\n\t\t\twhile True:\n\t\t\t\tif k % prime != 0:\n\t\t\t\t\tbreak\n\t\t\t\telse:\n\t\t\t\t\tk = int(k / prime)\n\t\t\t\t\tnprimes[prime] += 1\n\treturn nprimes\n\n\nresult = 0\nfor n in range(int(input())):\n\tif n+1 == 1 or (n+1) % 2 == 0:\n\t\t\n\t\tcontinue\n\t\n\telse:\n\t\tnps = sorted(factor(n+1).values())\n\t\tif nps[:-3:-1] == [7,0] or nps[:-4:-1] == [3,1,0] or nps[:-5:-1] == [1,1,1,0]:\n\t\t\tresult += 1\n\nprint(result)'] | ['Wrong Answer', 'Accepted'] | ['s722692477', 's253963492'] | [3064.0, 3188.0] | [20.0, 20.0] | [1362, 1330] |
p03281 | u788023488 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['a = int(input())\n\nb=0\n\nfor i in range(1,a+1, 2):\n \n yakusuu = 0\n for j in range(1,i+1):\n if i+1 % j == 0:\n yakusuu += 1\n if yakusuu == 8:\n \tb += 1\nprint(b)', 'a = int(input())\n\nb=0\n\nfor i in range(1,a+1):\n \n yakusuu = 1\n for j in range(1,i+1):\n if i+1 % j == 0:\n yakusuu += 1\n if yakusuu == 8:\n \tb += 1\nprint(b)', 'a = int(input())\n\nb=0\n\nfor i in range(1,a+1, 2):\n \n\tyakusuu_array = []\n\n\tfor i in range(1,num):\n\t if num % i == 0:\n yakusuu_array.append(i)\n \n \tif len(yakusuu_array) == 8:\n \t\tb += 1\nprint(b)', 'a = int(input())\n \nb=0\n \nfor i in range(1,a+1):\n if i % 2 == 1:\n \n yakusuu = 0\n for j in range(1,i+1):\n if i+1 % j == 0:\n yakusuu += 1\n if yakusuu == 8:\n b += 1\nprint(b)', 'a = int(input())\n\nb=0\n\nfor i in range(1,a+1, 2):\n \n yakusuu_array = []\n\n for i in range(1,num):\n if num % i == 0:\n \t yakusuu_array.append(i)\n \n if len(yakusuu_array) == 8:\n \t b += 1\nprint(b)', 'a = int(input())\n\nb=0\n\nfor i in range(1,a+1, 2):\n \n\tyakusuu_array = []\n\n\tfor i in range(1,num):\n\t if num % i == 0:\n \t yakusuu_array.append(i)\n \n \tif len(yakusuu_array) == 8:\n \t\tb += 1\nprint(b)', 'a = int(input())\n\nb=0\n\nfor i in range(1,a+1, 2):\n \n\tyakusuu_array = []\n\n\tfor i in range(1,num):\n\t if num % i == 0:\n \t yakusuu_array.append(i)\n \n \tif len(yakusuu_array) == 8:\n \t\tb += 1\nprint(b)', 'a = int(input())\n \nb=0\n \nfor num in range(1,a+1):\n if num % 2 == 1:\n \n yakusuu = 0\n for i in range(1,num):\n if num % i == 0:\n yakusuu += 1\n if yakusuu == 7:\n b += 1\nprint(b)'] | ['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s039637320', 's167276246', 's261616624', 's284364683', 's526982260', 's528888025', 's993218382', 's651177241'] | [2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0] | [18.0, 19.0, 17.0, 18.0, 18.0, 17.0, 17.0, 18.0] | [257, 239, 305, 286, 315, 302, 302, 288] |
p03281 | u789199225 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['_=input();r=0 if _=="7"else int(_[0:2])//3-3;print(r)', 'import re;print(int(re.sub(\'¥D\',"",__file__))/2)', 'print(int(__file__[5])/2)', 'print(int(__file__[6])/2)', 'from random import*;print(randint(0,5))', 'print(2)', 'print(int(__file__[4])/2)', 'import sys;print(int(sys.argv[1][-6:-5])/2)', 'print __file__', 'print(0)', 'print(3)', 'print(int(__file__[-6:-5])/2)', 'print(int(__file__[4])/2)', 'print(4)', "a=int(input());print(sum(a>ord(x)for x in'h\x86¤¼Â'))"] | ['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s038039097', 's079315156', 's105333362', 's180726726', 's355984879', 's451213379', 's525604575', 's538906710', 's585701046', 's659820547', 's914655999', 's920002815', 's974039042', 's978249527', 's523876990'] | [2940.0, 3188.0, 3064.0, 2940.0, 4208.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0] | [17.0, 19.0, 17.0, 17.0, 32.0, 17.0, 17.0, 18.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0] | [53, 49, 25, 25, 39, 8, 25, 43, 14, 8, 8, 29, 25, 8, 54] |
p03281 | u789565565 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nans = 0\nfor i in range(1,n+1):\n res = 0\n for j in range(i+1):\n if i % j ==0:\n res +=1\n if res == 8 :\n ans +=1\n\nprint(ans)\n ', 'n = int(input())\nans = 0\nfor i in range(1,n+1,2):\n res = 0\n for j in range(1,i+1):\n if i % j == 0:\n res +=1\n if res == 8:\n ans +=1\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s628705841', 's254295237'] | [9020.0, 9028.0] | [27.0, 32.0] | [161, 159] |
p03281 | u790812284 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\ncnt = 0\ncnt_i = 0\nfor i in range(1,n+1):\n for j in range(1,n+1):\n if n%j==0:\n cnt+=1\n if cnt==8:\n cnt_i+=1\n cnt = 0\nprint(cnt_i)', 'n=int(input())\ncnt = 0\ncnt_i = 0\nfor i in range(1,n+1,2):\n for j in range(1,i+1):\n \n if i%j==0:\n cnt+=1\n \n\n if cnt==8:\n cnt_i+=1\n \n cnt = 0\n\nprint(cnt_i)'] | ['Wrong Answer', 'Accepted'] | ['s816374532', 's824925814'] | [3060.0, 3060.0] | [21.0, 18.0] | [177, 208] |
p03281 | u791664126 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nif n<105:print(0)\nelif n<3*5*7:print(1)\nelif n<3*5*9:print(2)\nelif n<3*5*11:print(3)\nelse:print(4)\n', 'n=int(input())\nif n<=105:print(0)\nelif n<=3*5*7:print(1)\nelif n<=3*5*9:print(2)\nelif n<=3*5*11:print(3)\nelse:print(4)', 'n=int(input())\nif n<105:print(0)\nelif n<3*5*9:print(1)\nelif n<3*5*11:print(2)\nelif n<3*7*9:print(3)\nelif n<3*5*13:print(4)\nelse:print(5)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s533952657', 's888077593', 's120452089'] | [2940.0, 2940.0, 2940.0] | [17.0, 17.0, 17.0] | [114, 117, 136] |
p03281 | u796708718 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\ncnt = 0\ncnt_cnt = 0\n\n\nfor i in (1,N+1):\n for j in (1,N+1):\n if i%j == 0:\n cnt += 1\n if cnt == 8:\n cnt_cnt += 1\n cnt = 0\n \nprint(cnt_cnt)\n \n ', 'N = int(input())\n\ncnt = 0\ncnt_cnt = 0\n\n\nfor i in range(1,N+1):\n for j in range(1,i+1):\n if i%j == 0 and i%2 !=0:\n cnt += 1\n if cnt == 8:\n cnt_cnt += 1\n cnt = 0\n \nprint(cnt_cnt)\n \n \n'] | ['Wrong Answer', 'Accepted'] | ['s441801468', 's246718390'] | [2940.0, 2940.0] | [17.0, 19.0] | [181, 204] |
p03281 | u801512570 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\n\nfor i in range(1,N+1):\n tmp=0\n for j in range(1,int(sqrt(i))+1):\n if i%j==0:\n tmp+=1\n \n if sqrt(i)-int(sqrt(i))<=1e-3:\n if tmp*2-1==8:\n ans+=1\n \n else:\n if tmp*2==8:\n ans+=1\n \nprint(ans) ', 'N=int(input())\n\nfor i in range(1,N+1):\n tmp=0\n t=i**(1/2)\n for j in range(1,int(t)+1):\n if i%j==0:\n tmp+=1\n \n if t-int(t)<=1e-3:\n if tmp*2-1==8:\n ans+=1\n \n else:\n if tmp*2==8:\n ans+=1\n \nprint(ans) ', 'N=int(input())\n\nans=0\nfor i in range(1,N+1,2):\n tmp=0\n t=i**(1/2)\n for j in range(1,int(t)+1):\n if i%j==0:\n tmp+=1\n \n tmp=tmp*2\n if t-int(t)<=1e-3:\n tmp-=1\n\n if tmp==8:\n ans+=1\n \nprint(ans) \n\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s210481151', 's909295717', 's006757536'] | [3064.0, 3060.0, 3060.0] | [18.0, 18.0, 18.0] | [249, 244, 225] |
p03281 | u806403461 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\nodd = list()\n\ncount_list = list()\ncount = 0\n\nfor a in range(1, N+1):\n if a % 2 != 0:\n odd.append(a)\n\nl = len(odd)\n\nfor a in range(0, l):\n for b in range(1, a+1):\n if a % b == 0:\n count += 1\n count_list.append(count)\n count = 0\n\nprint(len(list(filter(lambda x: x == 8, count_list))))\n', 'N = int(input())\n\nodd = list()\n\ncount_list = list()\ncount = 0\n\nfor a in range(1, N+1):\n if a % 2 != 0:\n odd.append(a)\n\nl = len(odd)\n\nfor a in range(0, l):\n for b in range(1, odd[a]+1):\n if odd[a] % b == 0:\n count += 1\n count_list.append(count)\n count = 0\n\nprint(len(list(filter(lambda x: x == 8, count_list))))\n'] | ['Wrong Answer', 'Accepted'] | ['s813959539', 's003124112'] | [3060.0, 3064.0] | [18.0, 18.0] | [338, 348] |
p03281 | u811000506 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\ncount = 0\nfor i in range(105,n+1,2):\n x = 0\n for j in range(1,i+1):\n if i%j==0:\n c+=1\n if x == 8:\n count += 1\nprint(count)', 'n = int(input())\ncount = 0\nfor i in range(105,n+1,2):\n x = 0\n for j in range(1,i+1):\n if i%j==0:\n x+=1\n if x == 8:\n count += 1\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s864620106', 's543939087'] | [2940.0, 3060.0] | [18.0, 18.0] | [153, 153] |
p03281 | u818283165 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nans = 0\nfor i in range(1,N+1):\n a = 0\n if i%2 == 1: \n for j in range(1,i+1):\n if i%j == 0:\n a += 1\n if a == 8:\n ans += 1\n print(i)\nprint(ans)', 'N = int(input())\nans = 0\nfor i in range(1,N+1):\n a = 0\n if i%2 == 1: \n for j in range(1,i+1):\n if i%j == 0:\n a += 1\n if a == 8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s971431876', 's458781872'] | [3060.0, 2940.0] | [18.0, 18.0] | [229, 208] |
p03281 | u819529201 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nif N < 105:\n print(int(0))\nelif 105<=N<135:\n print(int(1))\nelif 135<=N<165:\n print(int(2))\nelif 165<=N<189\n print(int(3))\nelif 189<=N<195\n print(int(4))\nelse:\n print(int(4))', 'N = int(input())\nif N < 105:\n print(int(0))\nelif 105<=N<135:\n print(int(1))\nelif 135<=N<165:\n print(int(2))\nelif 165<=N<189:\n print(int(3))\nelif 189<=N<195:\n print(int(4))\nelse:\n print(int(5))'] | ['Runtime Error', 'Accepted'] | ['s064398848', 's698695340'] | [3064.0, 3060.0] | [19.0, 18.0] | [208, 210] |
p03281 | u820180033 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def main():\n N = int(input())\n ans = 0\n for i in range(1,N+1):\n div = 0\n for c in range(1,i+1):\n if i%c == 0:\n div = div +1\n if div == 8 and (i%2)==1:\n print(i)\n ans = ans+1\n print(ans)\nmain()', 'def main():\n N = int(input())\n ans = 0\n for i in range(1,N+1):\n div = 0\n for c in range(1,i+1):\n if i%c == 0:\n div = div +1\n if div == 8 and (i%2)==1:\n ans = ans+1\n print(ans)\nmain()'] | ['Wrong Answer', 'Accepted'] | ['s863841606', 's548583490'] | [2940.0, 2940.0] | [19.0, 19.0] | [273, 252] |
p03281 | u821588465 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\ndef make_divisor(n):\n divisors = []\n for i in range(1, int(n**.5) + 1):\n if n%i == 0:\n divisors.append(i)\n if i != n//i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n\nfor i in range(1, N+1):\n if len(make_divisor(i)) == 8 and i%2 == 1:\n print(i)\n exit()\nprint(0)\n', 'N = int(input())\n\ndef make_divisor(n):\n divisors = []\n for i in range(1, int(n**.5) + 1):\n if n%i == 0:\n divisors.append(i)\n if i != n//i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\ncnt = 0\nfor i in range(1, N+1):\n if len(make_divisor(i)) == 8 and i%2 == 1:\n cnt += 1\nprint(cnt)\n\n\n'] | ['Wrong Answer', 'Accepted'] | ['s271262721', 's659578506'] | [9336.0, 9268.0] | [28.0, 27.0] | [366, 362] |
p03281 | u823585596 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\nans=0\nfor i in range(1,N+1,2):\n if i>1:\n div_list=[1,i]\n for j in range(2,int(i**0.5)+1):\n if i%j==0:\n div_list.append(j)\n if len(div_list)==8:\n ans+=1\nprint(ans)', 'N=int(input())\nans=0\nfor i in range(N+1):\n if i>1 and i%2==1:\n div=[1,i]\n for j in range(2,int(i**0.5)+1):\n if i%j==0:\n div.append(j)\n div.append(i//j)\n if len(div)==8:\n ans+=1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s778804898', 's789394818'] | [9140.0, 9256.0] | [27.0, 28.0] | [238, 263] |
p03281 | u826637752 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nans = 0\ncnt = 0\n\nfor i in range(1,n+1):\n for j in range(1,n+1):\n if i%j = 0:\n ans += 1\n if ans = 8:\n \n cnt += 1\n\nprint(cnt)\n \n', 'n = int(input())\nans = 0\ncnt = 0\n\nfor i in range(1,n+1):\n for j in range(1,n+1):\n if i%j = 0:\n ans += 1\n if ans = 8:\n cnt += 1\n\nprint(cnt)\n \n', 'n = int(input())\nans = 0\ncnt = 0\n\nfor i in range(1,n+1):\n for j in range(1,n+1):\n if i%j = 0:\n ans += 1\n if ans = 8:\n cnt += 1\n\nprint(cnt)\n ', 'N=int(input())\n\nresult=0\nfor i in range(1,N+1):\n if i%2!=0:\n divisor=0\n for j in range(1,i+1):\n if i%j==0:\n divisor+=1\n if divisor==8:\n result+=1\nprint(result)\n'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s031599722', 's457237813', 's868270597', 's870031371'] | [8952.0, 8884.0, 8812.0, 9060.0] | [26.0, 23.0, 28.0, 28.0] | [166, 159, 162, 221] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.