problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p03281
u546853743
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\ncnt=0\ny=[]\n\nfor i in range(1,N+1,2):\n for j in range(1,i+1):\n if i%j == 0:\n y.append(j)\n if len(y)==8:\n cnt += 1\n y.clear()\nprint(cnt)', 'N = int(input())\ncnt=0\ny=[]\n\nfor i in range(1,N+1,2):\n for j in range(1,i):\n if i%j == 0:\n y.append(j)\n if len(y)==8:\n cnt += 1\n y.clear()\nprint(cnt)', 'N = int(input())\ncnt=0\ny=[]\n\nfor i in range(1,N+1,2):\n for j in range(1,i+1):\n if i%j == 0:\n y.append(j)\n if len(y)==8:\n cnt += 1\n print(y)\n y.clear()\nprint(cnt)', 'N = int(input())\ncnt=0\ny=[]\n\nfor i in range(1,N+1,2):\n for j in range(1,i+1):\n if i%j == 0:\n y.append(j)\n if len(y)==8:\n cnt += 1\n y.clear()\nprint(cnt)\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s086830349', 's204906607', 's460881104', 's909569303']
[9048.0, 9072.0, 8996.0, 9196.0]
[29.0, 28.0, 28.0, 31.0]
[189, 187, 202, 186]
p03281
u548624367
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['print([[i%j==0 for j in range(1,i)].count(0) for i in range(1,int(input())+1,2)].count(7))', 'print([[i%j for j in range(1,i)].count(0) for i in range(1,int(input())+1,2)].count(7))']
['Wrong Answer', 'Accepted']
['s213062301', 's968517323']
[2940.0, 2940.0]
[18.0, 18.0]
[90, 87]
p03281
u550146922
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\n\nli = [3,5,7,11,13]\nans = 0\nfor i in range(1,n+1):\n cnt = 0\n for j in range(10):\n if i%li[j]==0:\n cnt += 1\n if cnt ==3:\n ans +=1\n\nif n>=135:\n ans += 1\nif n>=189:\n ans += 1\n\nprint(ans)', 'n = int(input())\n\nli = [3,5,7,11,13]\nans = 0\nfor i in range(1,n+1):\n cnt = 0\n for j in range(5):\n if i%li[j]==0:\n cnt += 1\n if cnt ==3:\n ans +=1\n\nif n>=135:\n ans += 1\nif n>=189:\n ans += 1\n\nprint(ans)']
['Runtime Error', 'Accepted']
['s737807979', 's845598949']
[9176.0, 9172.0]
[27.0, 24.0]
[240, 239]
p03281
u553070631
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=int(input())\nelif n<105:\n print(0)\nelif n<135:\n print(1)\nelif n<165:\n print(2)\nelse:\n print(3)\n', 'n=int(input())\nif n<105:\n print(0)\nelif n<135:\n print(1)\nelif n<165:\n print(2)\nelif n<189:\n print(3)\nelif n<195:\n print(4)\nelse:\n print(5)\n']
['Runtime Error', 'Accepted']
['s012476904', 's769002207']
[2940.0, 2940.0]
[17.0, 17.0]
[101, 145]
p03281
u556086333
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\ncount = 0\ndivi_count = 0\nfor n in range(1, N+1, 2):\n for divi in range(1, n+1):\n if n%divi == 0:\n divi_count += 1\n if divi_count == 8:\n count += 1\nprint(count)\n', 'N = int(input())\n\ncount = 0\nfor n in range(105, N+1, 2):\n divi_count = 0\n for divi in range(1, n+1, 2):\n if n%divi == 0:\n divi_count += 1\n if divi_count == 8:\n count += 1\nprint(count)\n']
['Wrong Answer', 'Accepted']
['s807332300', 's069314959']
[2940.0, 2940.0]
[19.0, 18.0]
[209, 218]
p03281
u556225812
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['import math\nN = int(input())\ncnt = 0\nfor j in range(1, N+1, 2):\n ans = []\n for i in range(1, math.ceil(j**0.5)+1):\n if j%i == 0:\n if j//i == i:\n ans.append(i)\n else:\n ans.append(i)\n ans.append(j//i)\n if len(ans) == 8:\n cnt += 1\n print(ans)\n ans = []\nprint(cnt)', 'import math\nN = int(input())\ncnt = 0\nfor j in range(1, N+1, 2):\n ans = []\n for i in range(1, math.ceil(j**0.5)+1):\n if j%i == 0:\n if j//i == i:\n ans.append(i)\n else:\n ans.append(i)\n ans.append(j//i)\n if len(ans) == 8:\n cnt += 1\n ans = []\nprint(cnt)']
['Wrong Answer', 'Accepted']
['s450072695', 's172434426']
[3188.0, 3188.0]
[18.0, 18.0]
[356, 341]
p03281
u558782626
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = inpt(input())\nans = 0\nfor i in range(1, n+1):\n stock = 0\n for j in range(1, n+1):\n if i % j == 0:\n stock += 1\n if stock == 8 and i % 2:\n ans += 1\nprint(ans)', 'n = int(input())\nans = 0\nfor i in range(1, n+1):\n stock = 0\n for j in range(1, n+1):\n if i % j == 0:\n stock += 1\n if stock == 8 and i % 2:\n ans += 1\nprint(ans)']
['Runtime Error', 'Accepted']
['s542910562', 's480956652']
[2940.0, 3060.0]
[17.0, 21.0]
[174, 173]
p03281
u560464565
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\ncnt = 0\nfor i in range(1, n, 2):\n if n % i == 0:\n cnt += 1\nif cnt == 8:\n print(1)\nelse:\n print(0)\n', 'n = int(input())\nans = 0\nfor i in range(1, n+1, 2):\n cnt = 0\n for j in range(1, i+1):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s042625198', 's051486434']
[2940.0, 2940.0]
[18.0, 18.0]
[131, 181]
p03281
u561992253
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['\ndef countDiv(x):\n count = 0\n for i in range(1,n+1):\n if x % i == 0:\n count += 1\n return count\n\nn = int(input())\nans = 0\nfor i in range(1,n+1):\n if countDiv(i) == 8:\n ans += 1\n\nprint(ans)', 'def countDiv(x):\n count = 0\n for i in range(1,x+1):\n if x % i == 0:\n count += 1\n return count\n \nn = int(input())\nans = 0\nfor i in range(1,n+1,2):\n #print(i, countDiv(i))\n if countDiv(i) == 8:\n ans += 1\n \nprint(ans)']
['Wrong Answer', 'Accepted']
['s808817243', 's879947219']
[3060.0, 2940.0]
[19.0, 18.0]
[202, 230]
p03281
u566428756
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\n\nif N<105:\n print(0)\n exit()\n\nans=1\nfor i in range(1,N+1):\n if i%2!=0:\n res=0\n for j in range(1,i+1):\n if i%j==0:\n res+=1\n if res==8:\n ans+=1\nprint(ans)\n', 'N=int(input())\n\nif N<105:\n print(0)\n exit()\n\nans=1\nfor i in range(106,N+1):\n if i%2!=0:\n res=0\n for j in range(1,i+1):\n if i%j==0:\n res+=1\n if res==8:\n ans+=1\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s145073646', 's758256393']
[2940.0, 2940.0]
[18.0, 20.0]
[235, 237]
p03281
u569970656
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nint a = 0\nif n >= 105:\n a += 1\nif n >= 165:\n a += 1\nif n >= 195:\n a += 1\nprint(a)\n', 'n = int(input().split())\nif n >= 105:\n print(1)\nelse:\n print(0)\n', 'n = int(input())\na = 0\nif n >= 105:\n a += 1\nif n >= 135:\n a += 1\nif n >= 165:\n a += 1\nif n >= 189:\n a += 1\nif n >= 195:\n a += 1\nprint(a)\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s536105423', 's984668425', 's115748269']
[2940.0, 2940.0, 2940.0]
[18.0, 17.0, 17.0]
[104, 68, 152]
p03281
u571395477
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['import sys\n\ndef main():\n N = int(input())\n \n cnt = 0\n for i in range(1, N+1, 2):\n prime_l = []\n for j in range(1, i+1, 2):\n if i%j==0:\n prime_l.append()\n if len(prime_l)==8:\n cnt+=1\n print(cnt)\nmain()', 'import sys\n\ndef main():\n N = int(input())\n \n cnt = 0\n for i in range(1, N+1, 2):\n prime_l = []\n for j in range(1, i+1, 2):\n if i%j==0:\n prime_l.append(j)\n if len(prime_l)==8:\n cnt+=1\n print(cnt)\nmain()']
['Runtime Error', 'Accepted']
['s549584278', 's628598609']
[2940.0, 2940.0]
[17.0, 17.0]
[273, 274]
p03281
u580697892
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['#coding: utf-8\nimport collections\nN = int(input())\ninner = 2\ndef factorize(n):\n b = 2\n fct = []\n while b * b <= n:\n while n % b == 0:\n n //= b\n fct.append(b)\n b = b + 1\n if n > 1:\n fct.append(n)\n return fct\ncount_dict = collections.Counter(factorize(N))\nprint(count_dict)\nfor i in count_dict.keys():\n inner += (count_dict[i] + 1)\nprint(1 if inner == 8 else 0)', '#coding: utf-8\nimport collections\nN = int(input())\ninner = 2\ndef factorize(n):\n b = 2\n fct = []\n while b * b <= n:\n while n % b == 0:\n n //= b\n fct.append(b)\n b = b + 1\n if n > 1:\n fct.append(n)\n return fct\ncount_dict = collections.Counter(factorize(N))\nprint(count_dict)\nfor i in count_dict.keys():\n inner += (count_dict[i] + 1)\nprint(inner)', '#coding: utf-8\nimport collections\nN = int(input())\ninner = 1\ndef factorize(n):\n b = 2\n fct = []\n while b * b <= n:\n while n % b == 0:\n n //= b\n fct.append(b)\n b = b + 1\n if n > 1:\n fct.append(n)\n return fct\ncount_dict = collections.Counter(factorize(N))\nfor i in count_dict.keys():\n inner *= (count_dict[i] + 1) \nprint(inner)', '#coding: utf-8\nimport collections\nN = int(input())\ninner = 2\ndef factorize(n):\n b = 2\n fct = []\n while b * b <= n:\n while n % b == 0:\n n //= b\n fct.append(b)\n b = b + 1\n if n > 1:\n fct.append(n)\n return fct\ncount_dict = collections.Counter(factorize(N))\nprint(count_dict)\nfor i in count_dict.keys():\n inner += (count_dict[i] + 1)\nif N % 2 == 0 and inner == 8:\n print(1)\nelse:\n print(0)', '#coding: utf-8\nimport collections\nN = int(input())\ninner = 2\ndef factorize(n):\n b = 2\n fct = []\n while b * b <= n:\n while n % b == 0:\n n //= b\n fct.append(b)\n b = b + 1\n if n > 1:\n fct.append(n)\n return fct\ncount_dict = collections.Counter(factorize(N))\nprint(count_dict)\nfor i in count_dict.keys():\n inner += (count_dict[i] + 1)\nif N % 2 != 0 and inner == 8:\n print(1)\nelse:\n print(0)', '#coding: utf-8\nN = int(input())\nans = 0\nfor num in range(1, N+1):\n cnt = 0\n for i in range(1, num+1):\n if num % i == 0 and num % 2 == 1:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s253506817', 's446996165', 's550389507', 's708259952', 's810524812', 's564965786']
[3316.0, 3316.0, 3316.0, 3316.0, 3316.0, 2940.0]
[20.0, 21.0, 21.0, 21.0, 21.0, 19.0]
[420, 403, 386, 452, 452, 215]
p03281
u583276018
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['iog = [105, 135, 165, 189, 195]\n\nn = int(input())\niog.append(n)\niog.sort()\nprint(iog.index(n))', 'iog = [105, 135, 165, 189, 195]\n\nn = int(input())\nif(n in iog):\n print(iog.index(n) + 1)\nelse:\n iog.append(n)\n iog.sort()\n print(iog.index(n))\n']
['Wrong Answer', 'Accepted']
['s749057596', 's321202973']
[3060.0, 2940.0]
[17.0, 17.0]
[94, 155]
p03281
u583285098
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\n\n\ndef count_divisors(target):\n _i = 1\n _count = 0\n while _i*_i <= target:\n if target % _i == 0:\n _count += 1\n if _i != target // _i:\n _count += 1\n _i += 1\n return _count\n\n\ncount = 0\nfor i in range(1, n+1):\n if count_divisors(i) == 8:\n count += 1\n\nprint(count)\n', 'n = int(input())\n\n\ndef count_divisors(target):\n _i = 1\n _count = 0\n while _i*_i <= target:\n if target % _i == 0:\n _count += 1\n if _i != target // _i:\n _count += 1\n _i += 1\n return _count\n\n\ncount = 0\nfor i in range(1, n+1, 2):\n if count_divisors(i) == 8:\n count += 1\n\nprint(count)\n']
['Wrong Answer', 'Accepted']
['s899870158', 's961799584']
[9152.0, 9040.0]
[28.0, 25.0]
[350, 353]
p03281
u584083761
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nif n >= 195:\n print(3)\nif n >= 165:\n print(2)\nif n >= 105:\n print(1)\nif n > 104:\n print(0)', 'n = int(input())\na = [105, 135, 165, 189, 195]\nfor i in range(5):\n a[i] = 1 if n >= a[i] else 0\nprint(sum(a))']
['Wrong Answer', 'Accepted']
['s255273567', 's156312696']
[2940.0, 3060.0]
[17.0, 17.0]
[107, 112]
p03281
u586478468
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\ncount=0\nans=0\nfor i in range(105, N+1):\n if(i%3==0):\n count+=1\n if(i%5==0):\n count+=1\n if(i%7==0):\n count+=1\n if(i%11==0):\n count+=1\n if(i%13==0):\n count+=1\n if(i%2==0):\n count=0\n if(count==3):\n print(i)\n ans+=1', 'n = int(input())\n\ncount=0\ni = 1\nA= []\nfor j in range(1, n+1, 2):\n while(i*i<=j):\n if(j%i==0):\n count+=1\n i+=1\n if(count==4):\n A.append(j)\n i = 1\n count=0\n\nprint(len(A))']
['Wrong Answer', 'Accepted']
['s254563526', 's892196236']
[3064.0, 3064.0]
[19.0, 18.0]
[305, 212]
p03281
u586639900
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\nres = 0\n\nfor i in range(1, N+1, 2):\n count = 0\n for j in range(1, N+1):\n if i % j == 0:\n count += 1\n print(i, count)\n if count == 8:\n print(i)\n res += 1\n\nprint(res)', 'N = int(input())\n\nres = 0\n\nfor i in range(1, N+1, 2):\n count = 0\n for j in range(1, N+1):\n if i % j == 0:\n count += 1\n if count == 8:\n res += 1\n\nprint(res)']
['Wrong Answer', 'Accepted']
['s615346172', 's964454219']
[3060.0, 3060.0]
[19.0, 18.0]
[226, 189]
p03281
u602252807
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nif n < 105:\n print(0)\nelif n >= 105 and n < 165:\n print(1)\nelif 10n >= 165 and n < 195:\n print(2)\nelse:\n print(3)', 'n = int(input())\nresult = 0\nl = list(range(1,n+1,2))\nfor i in l:\n s = 1\n for j in range(1,i,2):\n if i % j == 0:\n s += 1\n if s == 8:\n result += 1\nprint(result)']
['Runtime Error', 'Accepted']
['s062127134', 's934223148']
[2940.0, 3060.0]
[18.0, 18.0]
[142, 192]
p03281
u607729897
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
["def prime_factorize(n):\n a = []\n if n=1:\n return 1\n while n % 2 == 0:\n a.append(2)\n n //= 2\n f = 3\n while f * f <= n:\n if n % f == 0:\n a.append(f)\n n //= f\n else:\n f += 2\n if n != 1:\n a.append(n)\n return a\nif __name__=='__main__':\n print(prime_factorize(N))", 'N=int(input())\ncnt=0\nL=[3*5*7,3*5*9,3*5*11,3*5*13,3*7*9]\nfor l in L:\n cnt+=(l<=N)\nprint(cnt)']
['Runtime Error', 'Accepted']
['s524934767', 's233881806']
[2940.0, 2940.0]
[17.0, 17.0]
[352, 93]
p03281
u617515020
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\nans=0\nfor i in range(1,N+1,2):\n cnt=2\n for j in range(3,int(i**0.5)+1,2):\n if i%j==0:\n print(i,j)\n cnt+=2\n if cnt==8:\n ans+=1\nprint(ans)', 'N=int(input())\nans=0\nfor i in range(1,N+1,2):\n cnt=2\n for j in range(3,int(i**0.5)+1,2):\n if i%j==0:\n cnt+=2\n if cnt==8:\n ans+=1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s728532947', 's578129718']
[9416.0, 9344.0]
[28.0, 26.0]
[170, 153]
p03281
u618512227
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['import math\n\nn = int(input())\n\ncnt = 0\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\nfor i in range(n+1):\n if i%2==0 and search_divisor_num_1(i) == 8:\n cnt += 1\n\nprint(cnt)', 'n = int(input())\n\ncnt = 0\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\nfor i in range(n):\n if (i+1)%2==0 and search_divisor_num_1(i+1) == 8:\n cnt += 1\n\nprint(cnt)', 'n = int(input())\n\ncnt = 0\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\nfor i in range(n+1):\n if i%2==0 and search_divisor_num_1(i) == 8:\n cnt += 1\n\nprint(cnt)', 'import math\n\nn = int(input())\n\ncnt = 0\n\ndef make_prime_list_2(num):\n if num < 2:\n return []\n\n \n prime_list = [i for i in range(num + 1)]\n prime_list[1] = 0 \n num_sqrt = math.sqrt(num)\n\n for prime in prime_list:\n if prime == 0:\n continue\n if prime > num_sqrt:\n break\n\n for non_prime in range(2 * prime, num, prime):\n prime_list[non_prime] = 0\n\n return [prime for prime in prime_list if prime != 0]\n\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\nfor i in range(n+1):\n if i%2==1 and search_divisor_num_1(i) == 8:\n cnt += 1\n\nprint(cnt)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s162680641', 's325255049', 's860241247', 's270427604']
[3064.0, 3064.0, 3064.0, 3064.0]
[17.0, 17.0, 17.0, 18.0]
[630, 621, 617, 1137]
p03281
u619379081
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nlst = [105, 135, 165, 189, 195, 201]\nfor i in range(6):\n if n < lst(i):\n print(i)\n break', 'n = int(input())\nlst = [105, 135, 165, 189, 195, 201]\nfor i in range(6):\n if n < lst[i]:\n print(i)\n break']
['Runtime Error', 'Accepted']
['s735364431', 's327217840']
[2940.0, 3060.0]
[17.0, 17.0]
[122, 122]
p03281
u623065116
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\nresult = 0\n\n\nfor i in range(1, N+1):\n cnt = 0\n if i % 2 ==0:\n continue\n for x in range(1, N+1):\n if i % x == 0:\n cnt += 1\n print(i)\n print(cnt)\n if cnt == 8:\n result += 1\nprint(result)', 'N = int(input())\n\nresult = 0\n\n\nfor i in range(1, N+1):\n cnt = 0\n if i % 2 ==0:\n continue\n for x in range(1, N+1):\n if i % x == 0:\n cnt += 1\n #print(i)\n #print(cnt)\n if cnt == 8:\n result += 1\nprint(result)']
['Wrong Answer', 'Accepted']
['s863115390', 's130891366']
[3064.0, 2940.0]
[19.0, 19.0]
[252, 254]
p03281
u623349537
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\ndef divisor_num(n):\n ans = 0\n for i in range(1, n):\n if ans % i == 0:\n ans += 1\n return ans\n\nans = 0\nfor i in range(1, N + 1):\n if i % 2 == 0 and divisor_num(i) == 8:\n ans += 1\n \nprint(ans)', 'N = int(input())\n\ndef divisor_num(n):\n ans = 0\n for i in range(1, n):\n if ans % i == 0:\n ans += 1\n return ans\n\nans = 0\nfor i in range(1, N):\n if divisor_num(i) == 8:\n ans += 1\n \nprint(ans)', 'N = int(input())\n \ndef divisor_num(n):\n ans = 0\n for i in range(1, n + 1):\n if n % i == 0:\n ans += 1\n return ans\n \nans = 0\nfor i in range(1, N + 1):\n if i % 2 != 0 and divisor_num(i) == 8:\n ans += 1\n \nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s223284378', 's683752147', 's499723377']
[3060.0, 3060.0, 3060.0]
[18.0, 18.0, 18.0]
[251, 232, 255]
p03281
u623601489
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['print(len(list(filter(lambda x:x<=int(input()),[105, 135, 165, 189, 195]))))', 'n=int(input())\nansList=[105, 135, 165, 189, 195]\nm=len(list(filter(lambda x:x<=n,ansList)))\nprint(m)']
['Runtime Error', 'Accepted']
['s938194587', 's427363234']
[2940.0, 2940.0]
[17.0, 17.0]
[76, 100]
p03281
u625007136
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['def is_odd(n):\n if n % 2 == 1:\n return True\n else:\n return False\n \ndef p105(n):\n count = 0\n for s in range(n,0,-1):\n if is_odd(s):\n\n divisors = [s]\n\n for i in range(1,s):\n if s % i == 0:\n divisors.append(i)\n if len(divisors) == 8:\n print(divisors)\n count += 1\n return count\n\nif __name__ == "__main__":\n n = int(input())\n print(p105(n))\n', 'def is_odd(n):\n if n % 2 == 1:\n return True\n else:\n return False\n \ndef p105(n):\n count = 0\n for s in range(n,0,-1):\n if is_odd(s):\n\n divisors = [s]\n\n for i in range(1,s):\n if s % i == 0:\n divisors.append(i)\n if len(divisors) == 8:\n \n count += 1\n return count\n\nif __name__ == "__main__":\n n = int(input())\n print(p105(n))\n']
['Wrong Answer', 'Accepted']
['s876931224', 's654191112']
[3060.0, 3060.0]
[18.0, 18.0]
[478, 479]
p03281
u626228246
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\ncnt,lcnt = 0,0\n\nfor i in range(1,N+1):\n for j in range(1,i+1):\n if i%j == 0:\n cnt += 1\n if cnt == 8:\n lcnt += 1\n cnt = 0\nprint(lcnt)', 'N = int(input())\ncnt,lcnt = 0,0\n\nfor i in range(1,N+1,2):\n\tfor j in range(1,i+1):\n\t\tif i%j == 0:\n\t\t\tcnt += 1\n\t\t\tif cnt == 8:\n\t\t\t\tlcnt += 1\n\t\t\t\tcnt = 0\n\tcnt = 0\nprint(lcnt)']
['Wrong Answer', 'Accepted']
['s788664983', 's693768790']
[9044.0, 9096.0]
[28.0, 29.0]
[177, 171]
p03281
u628335443
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\ncount = 0\n\nif n < 105:\n count = 0\nelse:\n for i in range(105, n + 1, 2):\n div_count = 0\n for j in range(1, i + 1):\n if i % j == 0:\n div_count += 1\n if div_count == 8:\n print(i)\n count += 1\n\nprint(count)\n', 'n = int(input())\ncount = 0\n\nif n < 105:\n count = 0\nelse:\n for i in range(105, n + 1, 2):\n div_count = 0\n for j in range(1, i + 1):\n if i % j == 0:\n div_count += 1\n if div_count == 8:\n count += 1\n\nprint(count)\n']
['Wrong Answer', 'Accepted']
['s411726647', 's352576636']
[2940.0, 2940.0]
[20.0, 18.0]
[294, 273]
p03281
u629540524
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nif n = 105:\n print(1)\nelse:\n print(0)', 'import sympy\nn = int(input())\nif n % 2 == 0 and len(sympy.divisors(n))==8:\n print(1)\nelse:\n print(0)', 'import sympy\nif i % 2 == 0 and len(sympy.divisors(int(input())))==8:\n print(1)\nelse:\n print(0)', 'def make_divisors(n):\n a,b =[],[]\n i = 1\n while i*i<=n:\n if n%i == 0:\n a.append(i)\n if i != n//i:\n b.append(n//i)\n i+= 1\n return a+b[::-1]\n\nn = int(input())\nc = len(make_divisors(n))\nif n % 2 == 1 and c== 8 and c == 16 :\n print(1)\nelse:\n print(0)', 'def make_divisors(n):\n a,b =[],[]\n i = 1\n while i*i<=n:\n if n%i == 0:\n a.append(i)\n if i != n//i:\n b.append(n//i)\n i+= 1\n return a+b[::-1]\n\nn = int(input())\nc = 0\nfor i in range(1,n+1):\n if len(make_divisors(i))== 8 and i%2==1:\n c+=1\nprint(c)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s135527696', 's230887524', 's601474283', 's798313788', 's175505839']
[8832.0, 9084.0, 8924.0, 9176.0, 9192.0]
[22.0, 25.0, 28.0, 28.0, 29.0]
[56, 106, 100, 315, 315]
p03281
u629607744
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=int(input())\nif n<105:\n\tprint(0)\nelif 105<=n<135:\n\tprint(1)\nelif 135<=n<189:\n\tprint(2)\n"""\nelif 189<=n:\n"""\n\tprint(3)', 'def i():\n\treturn int(input())\ndef i2():\n\treturn map(int,input().split())\ndef s():\n\treturn str(input())\ndef l():\n\treturn list(input())\ndef intl():\n\treturn list(int(k) for k in input().split())\n\nn = i()\n\ncnt = 0\nans = 0\nfor j in range(1,n+1,2):\n\tfor i in range(1,j+1):\n\t\tif j%i == 0:\n\t\t\tcnt += 1\n\tif cnt == 8:\n\t\tans += 1\n\tcnt = 0\nprint(ans)']
['Runtime Error', 'Accepted']
['s029606056', 's002044524']
[2940.0, 8860.0]
[17.0, 30.0]
[119, 338]
p03281
u638902622
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['from sys import stdin\nN = int(stdin.readline().rstrip())\n\ncount = 0\nif N < 105:\n pass\nelse:\n for i in range(105, N+1):\n if i % 2 == 0:\n pass\n else:\n divisor = 0\n for j in range(1, i+1):\n if i % j == 0:\n divisor += 1\n if divisor == 8:\n print(i)\n count += 1\nprint(count)\n', 'from sys import stdin\nN = int(stdin.readline().rstrip())\n\ncount = 0\nif N < 105:\n pass\nelse:\n for i in range(105, N+1):\n if i % 2 == 0:\n pass\n else:\n divisor = 0\n for j in range(1, i+1):\n if i % j == 0:\n divisor += 1\n if divisor == 8:\n count += 1\nprint(count)\n']
['Wrong Answer', 'Accepted']
['s011326258', 's996680386']
[3060.0, 3060.0]
[19.0, 19.0]
[397, 372]
p03281
u640922335
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=input()\nans=0\nfor i in range(1,N):\n count=0\n for j in range(i):\n if i%j==0:\n count+=1\n if count==9:\n ans+=1\n \nprint(ans)', 'N=int(input())\nans=0\nfor i in range(1,N):\n count=0\n for j in range(i):\n if i%j==0:\n count+=1\n if count==9:\n ans+=1\n \nprint(ans)', 'N=int(input())\nans=0\nfor i in range(1,N+1):\n count=0\n for j in range(1,i+1):\n if i%j==0:\n count+=1\n if count==8 and i%2!=0:\n ans+=1\n \nprint(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s090913903', 's302137861', 's892182996']
[8952.0, 9144.0, 9128.0]
[27.0, 26.0, 29.0]
[163, 168, 185]
p03281
u650932312
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\nans = 0\nfor n in range(1,int(N/2)+1):\n if 2*n+1 > N:\n break\n for i in range(1,int(N**(1/2)/2)+1):\n for j in range(i+1,int(N**(1/2)/2)+1):\n for k in range(j+1,int(N**(1/2)/2)+1):\n if 2*n+1 == (2*i+1)*(2*j+1)*(2*k+1):\n print(i,j,k,n)\n ans += 1\n\nprint(ans)\n', 'N = int(input())\n\nans = 0\nfor n in range(1,int(N/2)+1):\n if 2*n+1 > N:\n break\n for i in range(1,int(N**(1/2)/2)+1):\n for j in range(i+1,int(N**(1/2)/2)+1):\n for k in range(j+1,int(N**(1/2)/2)+1):\n if 2*n+1 == (2*i+1)*(2*j+1)*(2*k+1):\n ans += 1\n\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s260699241', 's419276846']
[9388.0, 9360.0]
[29.0, 32.0]
[356, 321]
p03281
u652081898
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = input()\n\nif N <= 104:\n print(0)\nelse:\n print(1)', 'N = int(input())\nif N < 105:\n print("0")\nelif N < 135:\n print("1")\nelif N < 165:\n print("2")\nelif N < 189:\n print("3")\nelif N < 195:\n print("4")\nelse:\n print("5")\n']
['Runtime Error', 'Accepted']
['s395681456', 's142838186']
[2940.0, 2940.0]
[18.0, 17.0]
[53, 181]
p03281
u652445326
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\nresult = 0\nfor i in range(1,N+1,2):\n count = 0\n for j in range(1,i,2):\n if i %j ==0:\n count+=1\n \n if count ==8:\n result +=1\nprint(result)\n\n', 'N = int(input())\nresult = 0\nfor i in range(1,N+1,2):\n count = 0\n for j in range(1,i+1,2):\n if i %j ==0:\n count+=1\n \n if count ==8:\n result +=1\nprint(result)\n\n']
['Wrong Answer', 'Accepted']
['s140378969', 's790433850']
[2940.0, 2940.0]
[18.0, 18.0]
[197, 199]
p03281
u652656291
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nans = 0\nA = [i for i in range(n+1)]\nA = A[1:n+1:2]\nfor i in range(len(A)):\n a=0\n for j in range(len(A)):\n if A[i] % (j+1) == 0:\n a += 1\n if a == 8:\n ans += 1\nprint(ans)\n', 'n = int(input())\nans = 0\nA = [i for i in range(n+1)]\nA = A[1::2]\nfor i in range(len(A)):\n a=0\n for j in range(len(A)):\n if A[i] % j == 0:\n a += 1\n if a == 8:\n ans += 1\nprint(ans)\n', 'n = int(input())\nA = [i for i in range(n)]\nA = A[1::2]\nans = 0\nfor i in range(len(A)):\n a = 0\n for j in range(len(A)//2):\n if A[i] % j == 0:\n a += 1\n if a == 8:\n ans += 1\n if a == 9:\n ans -= 1\n break\nprint(ans)', 'n = int(input())\nans = 0\nA = [i for i in range(n+1)]\nA = A[1:n+1:2]\nfor i in range(len(A)):\n a=0\n for j in range(len(A)//2+1):\n if A[i] % (j+1) == 0:\n a += 1\n if a == 8:\n ans += 1\nprint(ans)\n', 'n = int(input())\nans=0\nfor i in range(1,N+1,2):\n a=0\n for j in range(1,i+1,2):\n if i%j==0:\n a+=1\n if a==8:\n ans+=1\nprint(ans)\n', 'n = int(input())\n\nX = [int(x) for x in range(1,n+1,2)]\n\nans = 0\nfor x in X:\n a = 0\n for i in range(1,n+1):\n if x % i == 0:\n a += 1\n if a == 8 :\n ans += 1 \nprint(ans)\n']
['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s170188876', 's404325137', 's591774438', 's644859025', 's666906091', 's998197882']
[3060.0, 3060.0, 3060.0, 3060.0, 2940.0, 2940.0]
[19.0, 17.0, 17.0, 18.0, 17.0, 18.0]
[220, 213, 251, 225, 160, 200]
p03281
u653807637
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
["def main():\n\tn = int(input())\n\n\tif n <= 104:\n\t\tprint(0):\n\telif n <= 134:\n\t\tprint(1)\n\telif n <= 188:\n\t\tprint(2)\n\telse:\n\t\tprint(3)\n\n\nif __name__ == '__main__':\n\tmain()", "def main():\n\tn = int(input())\n\n\tif n <= 104:\n\t\tprint(0)\n\telif n <= 134:\n\t\tprint(1)\n\telif n <= 164:\n\t\tprint(2)\n\telif n <= 188:\n\t\tprint(3)\n\telif n <= 194:\n\t\tprint(4)\n\telse:\n\t\tprint(5)\n\n\nif __name__ == '__main__':\n\tmain()"]
['Runtime Error', 'Accepted']
['s264319230', 's769152539']
[2940.0, 3064.0]
[18.0, 17.0]
[165, 218]
p03281
u655048024
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nans = 0\nfor i in range(1,n+1):\n if(n%i==0):\n ans += 1\nprint(ans)', 'n = int(input())\nans = 0\nfor i in range(1,n+1):\n if(i%2 == 1):\n cou = 2\n for j in range(2,i):\n if(i%j==0):\n cou += 1\n if(cou==8):\n ans +=1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s623313378', 's380024525']
[2940.0, 3060.0]
[17.0, 18.0]
[85, 176]
p03281
u655975843
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nans = 0\ncount = 0\nfor j in range(1, n + 1):\n\tfor i in range(1, j + 1):\n\t\tif n % i == 0:\n\t\t\tans += 1\n\tif ans == 8:\n\t\tcount += 1\nprint(count)', 'n = int(input())\nif n % 2 == 0:\n\tn = n - 1\ncount = 0\nfor j in range(1, n + 1, 2):\n\tans = 0\n\tfor i in range(1, j + 1, 2):\n\t\tif j % i == 0:\n\t\t\tans += 1\n\tif ans == 8:\n\t\tcount += 1\nprint(count)']
['Wrong Answer', 'Accepted']
['s195526210', 's360236317']
[2940.0, 3060.0]
[19.0, 18.0]
[156, 189]
p03281
u656330453
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['import collections\n\ndef prime_factorize(n):\n a = []\n while n % 2 == 0:\n a.append(2)\n n //= 2\n f = 3\n while f * f <= n:\n if n % f == 0:\n a.append(f)\n n //= f\n else:\n f += 2\n if n != 1:\n a.append(n)\n return a\ncount=0\nn=int(input())\nfor i in range(1, n+1):\n ans=1\n c=collections.Counter(prime_factorize(i))\n clist = c.values()\n for j in clist:\n ans *= (j+1)\n if ans == 8:\n count += 1\n \nprint(count)', 'import collections\n\ndef prime_factorize(n):\n a = []\n while n % 2 == 0:\n a.append(2)\n n //= 2\n f = 3\n while f * f <= n:\n if n % f == 0:\n a.append(f)\n n //= f\n else:\n f += 2\n if n != 1:\n a.append(n)\n return a\ncount=0\nn=int(input())\nfor i in range(1, n+1):\n ans=1\n c=collections.Counter(prime_factorize(i))\n clist = c.values()\n for i in clist:\n ans *= (i+1)\n if ans == 8:\n count += 1\n \nprint(count)', 'import collections\n\ndef prime_factorize(n):\n a = []\n while n % 2 == 0:\n a.append(2)\n n //= 2\n f = 3\n while f * f <= n:\n if n % f == 0:\n a.append(f)\n n //= f\n else:\n f += 2\n if n != 1:\n a.append(n)\n return a\n\ncount=0\nn=int(input())\nfor i in range(1, n+1, 2):\n ans=1\n c=collections.Counter(prime_factorize(i))\n clist = c.values()\n for j in clist:\n ans *= (j+1)\n if ans == 8:\n count += 1\n \nprint(count)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s099386182', 's461209131', 's142230644']
[3316.0, 3316.0, 3316.0]
[22.0, 22.0, 21.0]
[495, 495, 499]
p03281
u656643475
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['# B\nimport math\nN = int(input())\n\ndef make_prime_list(num):\n if num < 2:\n return []\n\n prime_list = [i for i in range(num + 1)]\n prime_list[1] = 0 \n num_sqrt = math.sqrt(num)\n\n for prime in prime_list:\n if prime == 0:\n continue\n if prime > num_sqrt:\n break\n\n for non_prime in range(2 * prime, num, prime):\n prime_list[non_prime] = 0\n\n return [prime for prime in prime_list if prime != 0]\n\ndef search_divisor_num(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\nre = 0\nfor i in range(1, N+1, 2):\n num = search_divisor_num(i)\n if num == 8:\n re += 1\n \nprint(re)', 'import math\nN = int(input())\n\ndef make_prime_list(num):\n if num < 2:\n return []\n\n prime_list = [i for i in range(num + 1)]\n prime_list[1] = 0 \n num_sqrt = math.sqrt(num)\n\n for prime in prime_list:\n if prime == 0:\n continue\n if prime > num_sqrt:\n break\n\n for non_prime in range(2 * prime, num, prime):\n prime_list[non_prime] = 0\n\n return [prime for prime in prime_list if prime != 0]\n\ndef search_divisor_num(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\nre = 0\nfor i in range(1, N+1, 2):\n num = search_divisor_num(i)\n if num == 8:\n re += 1\n \nprint(re)']
['Runtime Error', 'Accepted']
['s242225248', 's114297994']
[3064.0, 3064.0]
[18.0, 18.0]
[1100, 1094]
p03281
u656803083
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\ncount = 0\nfor i in range(1,n+1):\n if n % i == 0:\n count += 1\nif count == 8:\n print("Yes")\nelse:\n print("No")', 'n = int(input())\ncount = 0\nfor i in range(1,n+1,2):\n ans = 0\n for j in range(1,n+1):\n if i % j == 0:\n ans += 1\n if ans == 8:\n count += 1\nprint(count)']
['Wrong Answer', 'Accepted']
['s135846724', 's050718084']
[8988.0, 9028.0]
[32.0, 28.0]
[131, 163]
p03281
u663014688
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\nans = 0\n\n\nfor i in range(1, N+1, 2):\n cnt = 0\n \n for j in range(1, i+1):\n if j % i == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\n\nprint(ans)\n \n\n', 'N = int(input())\nans = 0\n\n\nfor i in range(1, N+1, 2):\n cnt = 0\n \n for j in range(1, i+1):\n if i % j == 0:\n cnt += 1\n \n if cnt == 8:\n ans += 1\n\nprint(ans)\n \n\n']
['Wrong Answer', 'Accepted']
['s375109278', 's556841112']
[2940.0, 2940.0]
[18.0, 18.0]
[233, 234]
p03281
u665038048
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['import sys\nfrom collection import defaultdict\nimport math\n\ndef calc(num):\n if num<=1:\n return 1\n else:\n num_sqrt=math.floor(math.sqrt(num))\n prime_list=make_prime_list_2(num_sqrt)\n\n dict_counter=defaultdict(int)\n for prime in prime_list:\n while num % prime==0:\n dict_counter[prime]+=1\n num //=prime\n if num !=1:\n dict_counter[num]+=1\n\n dict_counter=dict(dict_counter)\n\n return dict_counter\ndef main():\n argvs=sys.argv\n num=int(argvs[1])\n eight_counter=[]\n for i in range(num):\n if calc(num)==8:\n eight_counter.append(num)\n else:\n pass\n print(len(eight_counter))\n\nmain()', 'import sys\nfrom collection import defaultdict\nimport math\n\ndef calc(num):\n if num<=1:\n return 1\n else:\n num_sqrt=math.floor(math.sqrt(num))\n prime_list=make_prime_list_2(num_sqrt)\n\n dict_counter=defaultdict(int)\n for prime in prime_list:\n while num % prime==0:\n dict_counter[prime]+=1\n num //=prime\n if num !=1:\n dict_counter[num]+=1\n\n dict_counter=dict(dict_counter)\n\n return dict_counter\ndef main():\n num=input()\n eight_counter=[]\n calc_result=calc(num)\n for i in range(num):\n if calc_result==8:\n eight_counter.append(num)\n else:\n pass\n print(len(eight_counter))\n\nmain()', 'import sys\nfrom collection import defaultdict\nimport math\n\ndef calc(num):\n if num<=1:\n return 1\n else:\n num_sqrt=math.floor(math.sqrt(num))\n prime_list=make_prime_list_2(num_sqrt)\n\n dict_counter=defaultdict(int)\n for prime in prime_list:\n while num % prime==0:\n dict_counter[prime]+=1\n num //=prime\n if num !=1:\n dict_counter[num]+=1\n\n dict_counter=dict(dict_counter)\n\n return dict_counter\ndef main():\n num=input()\n eight_counter=[]\n for i in range(num):\n if calc(num)==8:\n eight_counter.append(num)\n else:\n pass\n print(len(eight_counter))\n\nmain()', 'def calculate_num_of_divisor(N):\n yakusuu = []\n for i in range(1, N+1):\n if N % i == 0:\n yakusuu.append(i)\n return len(yakusuu)\n\nN = int(input())\ncount = []\nfor i in range(N+1):\n if i % 2 == 1 and calculate_num_of_divisor(i) == 8:\n count.append(i)\nprint(len(count))']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s231750576', 's362234995', 's900410499', 's514196278']
[3188.0, 3064.0, 3188.0, 3060.0]
[21.0, 17.0, 20.0, 18.0]
[734, 737, 709, 302]
p03281
u670961163
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\ncount = 0\nans = 0\nj = 1\n\nfor i in range(1, n+1, 2):\n while j <= i:\n print(i, j)\n if i % j == 0:\n count += 1\n j += 1\n print(i, j, count)\n if count == 8:\n ans += 1\n count = 0\n j = 1\n \nprint(ans)', 'n = int(input())\ncount = 0\nans = 0\nj = 1\n\nfor i in range(1, n+1, 2):\n while j <= i:\n if i % j == 0:\n count += 1\n j += 1\n if count == 8:\n ans += 1\n count = 0\n j = 1\n \nprint(ans)']
['Wrong Answer', 'Accepted']
['s539107394', 's680818885']
[3728.0, 3060.0]
[48.0, 20.0]
[278, 231]
p03281
u672316981
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nlst = [135, 189, 105, 165, 195]\ntmp = 0\n\nfor i in range(5):\n if n<=lst[i]:\n tmp += 1\n\nprint(tmp)', 'n = int(input())\nlst = [135, 189, 105, 165, 195]\ntmp = 0\n\nfor i in range(6):\n if n<=lst[i]:\n tmp += 1\n\nprint(tmp)', 'n = int(input())\nlst = [135, 189, 105, 165, 195]\ntmp = 0\nx = []\n\nfor i in range(5):\n x.append(n-lst[i])\n\nfor i in range(5):\n if x[i]>=0:\n tmp += 1\n\nprint(tmp)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s078181307', 's337041485', 's544653172']
[3060.0, 3060.0, 3060.0]
[18.0, 17.0, 17.0]
[123, 123, 171]
p03281
u678167152
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\nans = 0\nfor i in range(1,N+1,2):\n cnt = 0\n for j in range(i):\n if i%j==0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)\n ', 'N = int(input())\nans = 0\nfor n in range(1,N+1,2):\n cnt = 0\n for p in range(1,n+1):\n if n%p==0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)']
['Runtime Error', 'Accepted']
['s761553555', 's248132485']
[2940.0, 2940.0]
[17.0, 18.0]
[152, 153]
p03281
u678594774
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\n\nresult = 0\nfor i in range(1, n+1, 2):\n count = 0\n for j in range(1, i // 2):\n if i % j == 0:\n count += 1\n if count == 8:\n result += 1\n\nprint(result)\n', 'n = int(input())\n\nresult = 0\nfor i in range(1, n, 2):\n count = 0\n for j in range(1, i // 2):\n if i % j == 0:\n count += 1\n if count == 8:\n result += 1\n\nprint(result)\n', 'n = int(input())\n\nresult = 0\nfor i in range(1, n, 2):\n count = 0\n for j in range(i//2):\n if i % j == 0:\n count += 1\n if count == 8:\n result += 1\n\nprint(result)', 'n = int(input())\n\nresult = 0\nfor i in range(1, n+1, 2):\n count = 0\n for j in range(1, i//2+1):\n if i % j == 0:\n count += 1\n if count == 8:\n result += 1\n\nprint(result)\n', 'n = int(input())\n\nresult = 0\nfor i in range(1, n+1, 2):\n count = 0\n for j in range(1, i+1):\n if i % j == 0:\n count += 1\n if count == 8:\n result += 1\n\nprint(result)\n']
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s156474759', 's272291725', 's305201890', 's436806549', 's422108331']
[2940.0, 2940.0, 2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0, 18.0, 18.0]
[201, 199, 193, 201, 198]
p03281
u685263709
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\nprime = [3, 5, 7, 11, 13]\n\n\nzero_seven = 0\none_three = [a * (b ** 3) for a in prime for b in prime if a != b]\none_three = [i for i in one_three if i <= 200]\none_one_one = [a * b * c for a in prime for b in prime for c in prime\n if a != b and b != c and c != a]\none_one_one = [i for i in one_one_one if i <= 200]\n\nans = sorted(set(one_three + one_one_one))\ni = 0\nif ans[-1] <= N:\n print(len(ans))\n quit()\nelse:\n while ans[i] < N:\n i += 1\n if ans[i] > N:\n print(i)\n quit()\n\nprint(i)', 'N = int(input())\n\nprime = [3, 5, 7, 11, 13]\n\n\nzero_seven = 0\none_three = [a * (b ** 3) for a in prime for b in prime if a != b]\none_three = [i for i in one_three if i <= 200]\none_one_one = [a * b * c for a in prime for b in prime for c in prime\n if a != b and b != c and c != a]\none_one_one = [i for i in one_one_one if i <= 200]\n\nans = sorted(set(one_three + one_one_one))\nif N <= 104:\n print(0)\nelif 105 <= N <= 134:\n print(1)\nelif 135 <= N <= 164:\n print(2)\nelif 165 <= N <= 188:\n print(3)\nelif 189 <= N <= 194:\n print(4)\nelif 195 <= N:\n print(5)']
['Wrong Answer', 'Accepted']
['s561201792', 's298745735']
[3064.0, 3064.0]
[18.0, 17.0]
[677, 701]
p03281
u685662874
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\ndef make_divisors(n): \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n\ncnt=0\nfor i in range(1, N+1):\n divsors = make_divisors(i)\n if i % 2 != 0:\n if len(divsors) == 8:\n print(i, divsors)\n cnt += 1\n\nprint(cnt)', 'N=int(input())\ndef make_divisors(n): \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n \n return divisors\n\ncnt=0\nfor i in range(N):\n divsors = make_divisors(i)\n if i % 2 != 0 and len(divsors) == 8:\n cnt += 1\n\nprint(cnt)', 'N=int(input())\ndef make_divisors(n): \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n \n return divisors\n\ncnt=0\nfor i in range(N):\n divsors = make_divisors(i)\n if len(divsors) == 8:\n cnt += 1\n\nprint(cnt)', 'N=int(input())\ndef make_divisors(n): \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n \n return divisors\n\ncnt=0\nfor i in range(1,N+1):\n divsors = make_divisors(i)\n if i % 2 != 0 and len(divsors) == 8:\n cnt += 1\n\nprint(cnt)', 'N=int(input())\ndef make_divisors(n): \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n\ncnt=0\nfor i in range(1, N+1):\n divsors = make_divisors(i)\n if i % 2 != 0 and len(divsors) == 8:\n cnt += 1\n\nprint(cnt)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s109983676', 's389211330', 's804765881', 's834636865', 's410621490']
[3060.0, 3060.0, 3060.0, 3188.0, 3064.0]
[18.0, 18.0, 18.0, 18.0, 18.0]
[427, 374, 359, 378, 385]
p03281
u686461495
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['# coding:utf-8\nlist=[0]*1000\nfor i in range(1,201,1):\n m=1\n while m*i<=200:\n print(m*i)\n list[m*i]+=1\n m+=1\nn=int(input())\nct=0\nfor i in range(1,n+1,2):\n if list[i]==8:\n ct+=1\nprint(ct)', '# coding:utf-8\nlist=[0]*200\nfor i in range(2,201,1):\n m=1\n while m*i<=200:\n list[m*i]+=1\n m+=1\nn=int(input())\nct=0\nfor i in range(1,n+1,2):\n if list[i]==8:\n ct+=1\nprint(ct)', '# coding:utf-8\nlist=[0]*1000\nfor i in range(1,201,1):\n m=1\n while m*i<=200:\n list[m*i]+=1\n m+=1\nn=int(input())\nct=0\nfor i in range(1,n+1,2):\n if list[i]==8:\n ct+=1\nprint(ct)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s598754041', 's865925002', 's662266628']
[3188.0, 3060.0, 3060.0]
[18.0, 17.0, 18.0]
[222, 202, 203]
p03281
u687041133
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\ncounter = 0\nans = 0\nfor i in range(1,N+1):\n for j in range(1, N+1):\n if i % j == 0:\n counter += 1\n \n if counter == 8:\n ans += 1\n\n counter = 0\n\n\nprint(ans)\n\n', 'N = int(input())\n\nans = 0\nfor i in range(1, N+1, 2):\n divisor = []\n for j in range(1, N+1):\n if i % j == 0:\n divisor.append(j)\n \n if len(divisor) == 8:\n ans += 1\n\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s245389968', 's598877921']
[2940.0, 2940.0]
[21.0, 19.0]
[210, 211]
p03281
u690037900
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\nans=0\nN=int(input())\nif N<105:\n print(0)\n exit(0)\nfor i in range(104,N):\n if i%2==1 and len(make_divisors(i))==8:\n ans+=1\nprint(ans)', 'def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\nans=0\nN=int(input())\nif N<105:\n print(0)\n exit(0)\nfor i in range(105,N)[::2]:\n if len(make_divisors(i))==8:\n ans+=1\nprint(ans)', 'def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\nans=0\nN=int(input())\nif N<105:\n print(0)\n exit(0)\nfor i in range(104,N+1):\n if i%2==1 and len(make_divisors(i))==8:\n ans+=1\nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s658644353', 's982030182', 's084607516']
[3064.0, 3060.0, 3064.0]
[17.0, 17.0, 17.0]
[389, 383, 391]
p03281
u690145987
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\n\n# cnt = 0\n\n# for idx1, x in enumerate(candidate_prime_num):\n# \n# if idx1+1 > LENGTH_CANDIDADE:\n# continue\n# \n# idx2 = idx1+1\n# for y in candidate_prime_num[idx2:]:\n# \n# if idx2 + 1 > LENGTH_CANDIDADE:\n# continue\n# idx3 = idx2 +1\n\n\n# cnt +=1\n# print(cnt)\nNUM_YAKUSU = 8\ncnt_8_yakusu=0\nfor n in range(1,N+1,2):\n cnt_yakusu = 0\n for x in range(1,n,2):\n if n % x == 0:\n cnt_yakusu+=1\n if cnt_yakusu == NUM_YAKUSU:\n cnt_8_yakusu +=1\nprint(cnt_8_yakusu)', 'N=int(input())\n\n# cnt = 0\n\n# for idx1, x in enumerate(candidate_prime_num):\n#\n# if idx1+1 > LENGTH_CANDIDADE:\n# continue\n#\n# idx2 = idx1+1\n# for y in candidate_prime_num[idx2:]:\n#\n# if idx2 + 1 > LENGTH_CANDIDADE:\n# continue\n# idx3 = idx2 +1\n\n\n# cnt +=1\n# print(cnt)\nNUM_YAKUSU = 8\ncnt_8_yakusu=0\nfor n in range(1,N+1,2):\n\n cnt_yakusu = 0\n for x in range(1,n+1,2):\n if n % x == 0:\n # print(n,x)\n cnt_yakusu+=1\n if cnt_yakusu == NUM_YAKUSU:\n cnt_8_yakusu +=1\nprint(cnt_8_yakusu)']
['Wrong Answer', 'Accepted']
['s287700575', 's776962312']
[3064.0, 3060.0]
[17.0, 18.0]
[719, 744]
p03281
u693953100
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['str=input()\nn=int(str)\nc=0\nans=0\nfor num in range(1,n):\n for number in range(1,num):\n if num%number==0:\n c+=1\n if c==8:\n d+=1\nprint(d)\n', 'str=input()\nn=int(str)\nc=0\nfor num in range(1,n):\n if n%num==0:\n c+=1\nprint(c)\n', 'def solve():\n n = int(input())\n ans = 0\n for i in range(1,n+1):\n if i%2==0:\n continue\n d = 0\n for j in range(1,i+1):\n if i%j==0:\n d+=1\n if d==8:\n ans+=1\n print(ans)\nif __name__ == "__main__":\n solve()']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s462121532', 's631085614', 's196764489']
[2940.0, 2940.0, 3060.0]
[17.0, 18.0, 18.0]
[166, 89, 291]
p03281
u694422786
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\ncount = 0\nans = 0\nfor i in range(1,n,2):\n for j in range(1,n,2):\n if (i) % (j) == 0:\n count += 1\n if count == 8:\n ans += 1\n count = 0\n\nprint(ans)', 'n = int(input())\ncount = 0\nans = 0\nfor i in range(0,n,2):\n for j in range(0,n,2):\n if (i+1) % (j+1) == 0:\n count += 1\n if count == 8:\n ans += 1\n count = 0\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s380049184', 's811244568']
[2940.0, 3060.0]
[18.0, 19.0]
[196, 200]
p03281
u698416089
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())+1\nyakusuu = 0\nfor i in range(1,int((N-N%2)/2)+2):\n cnt = 0\n ii = 1+ 2*(i-2)\n for j in range(1,ii):\n if ii % j == 0:\n cnt = cnt+1\n cnt = cnt+1\n print(str(ii)+"の約数は"+str(cnt)+"個")\n if cnt == 8:\n yakusuu = yakusuu + 1\nprint(yakusuu)', 'N = int(input())+1\nyakusuu = 0\nfor i in range(1,int((N-N%2)/2)+2):\n cnt = 0\n ii = 1+ 2*(i-2)\n for j in range(1,ii):\n if ii % j == 0:\n cnt = cnt+1\n cnt = cnt+1\n if cnt == 8:\n yakusuu = yakusuu + 1\nprint(yakusuu)']
['Wrong Answer', 'Accepted']
['s425163804', 's542045088']
[3064.0, 3060.0]
[18.0, 18.0]
[299, 250]
p03281
u701318346
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\nans = 0\n\nfor i in range(N):\n if (i + 1) % 2 == 0:\n d = 0\n for j in range(i + 1):\n if (i + 1) % (j + 1) == 0:\n d += 1\n if d == 8:\n ans += 1\n\nprint(ans)\n ', 'N = int(input())\nans = 0\n\nfor i in range(N):\n if (i + 1) % 2 == 1:\n d = 0\n for j in range(i + 1):\n if (i + 1) % (j + 1) == 0:\n d += 1\n if d == 8:\n ans += 1\n\nprint(ans)\n \n']
['Wrong Answer', 'Accepted']
['s471005607', 's382369397']
[2940.0, 2940.0]
[19.0, 18.0]
[203, 204]
p03281
u702686470
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\ncount=0\nfor i in range(2,sprt(n)+1):\n if(n%i == 0):\n count += 1\n if(count == 7):\n break\nprint(count)\n\n', 'import numpy as np\nn = int(input())\nfor i in range(n): \n if(n%2==0):\n break\n count=0\n for j in range(2,int(np.sqrt(i))+1):\n if(i%j == 0):\n count += 1\n if(count == 7):\n break\nprint(count)\n\n', 'import numpy as np\nn = int(input())\nans =0\nfor i in range(1,n+1): \n if(i%2==0):\n continue\n count=0\n for j in range(1,i+1):\n if(i%j == 0):\n count += 1\n if(count == 8):\n ans+=1\nprint(ans)\n\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s088178978', 's218323429', 's831856662']
[2940.0, 12392.0, 12396.0]
[17.0, 153.0, 148.0]
[139, 241, 236]
p03281
u706330549
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\n\na = [0] * 100\nb = [0] * 100\nans = 0\n\nfor i in range(100):\n a[i] = 2 * i + 1\n\nfor i in range(100):\n for j in range(2, 200):\n if a[i] % j == 0:\n b[i] += 1\n\nfor k in range(n+1):\n if b[k] == 7:\n ans += 1\n\nprint(ans)\n', 'n = int(input())\n\na = [0] * 100\nb = [0] * 100\nans = 0\n\nfor i in range(100):\n a[i] = 2 * i + 1\n\nfor i in range(100):\n for j in range(2, 200):\n if a[i] % j == 0:\n b[i] += 1\n\nfor k in range(100):\n if b[k] == 7 and a[k] <= n:\n ans += 1\n\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s590401570', 's883992390']
[3060.0, 3060.0]
[20.0, 21.0]
[264, 278]
p03281
u706828591
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\n#h, w = map(int,input().split())\n#ls = list(map(int,input().split()))\n\n\n\nans = 0\nfor i in range(1,n+1):\n if i%2 == 1:\n yakusuu = 0\n for j in range(1,i + 1):\n if i%j == 0:\n yakusuu += 0\n if yakusuu == 8:\n ans += 1\nprint(ans)\n ', 'n = int(input())\n#h, w = map(int,input().split())\n#ls = list(map(int,input().split()))\n\n\n\nans = 0\nfor i in range(1,n+1):\n if i%2 == 1:\n yakusuu = 0\n for j in range(1,i + 1):\n if i%j == 0:\n yakusuu += 1\n if yakusuu == 8:\n ans += 1\nprint(ans)\n ']
['Wrong Answer', 'Accepted']
['s456327616', 's674090903']
[2940.0, 2940.0]
[18.0, 18.0]
[361, 361]
p03281
u707659359
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['\nN = int(input())\n\nif N => 195:\n print("4")\nelif N => 165:\n print("3")\nelif N => 135:\n print("2")\nelif N => 105:\n print("1")\nelse:\n print("0")', 'N = int(input())\n\nif N >= 195:\n print("5")\nelif N >= 189:\n print("4")\nelif N >= 165:\n print("3")\nelif N >= 135:\n print("2")\nelif N >= 105:\n print("1")\nelse:\n print("0")']
['Runtime Error', 'Accepted']
['s731161688', 's328550219']
[2940.0, 2940.0]
[17.0, 17.0]
[157, 186]
p03281
u724687935
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\ncnt = 0\nfor i in range(1, N + 1):\n k = 0\n for j in range(1, N + 1):\n \tif i % j == 0:\n k += 1\n if k == 8:\n cnt += 1\n\nprint(cnt)\n ', 'N = int(input())\ncnt = 0\nfor i in range(1, N + 1):\n k = 0\n for j in range(1, N + 1):\n if i % j == 0:\n k += 1\n if k == 8:\n cnt += 1', 'N = int(input())\ncnt = 0\nfor i in range(1, N + 1):\n k = 0\n for j in range(1, N + 1):\n if i % j == 0:\n k += 1\n if k == 8:\n cnt += 1\nprint(cnt)', 'N = int(input())\ncnt = 0\nfor i in range(1, N + 1, 2):\n k = 0\n for j in range(1, i + 1):\n if i % j == 0:\n k += 1\n if k == 8:\n cnt += 1\nprint(cnt)']
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s020289325', 's182629704', 's356258475', 's303509382']
[9024.0, 9168.0, 8968.0, 9108.0]
[21.0, 30.0, 21.0, 28.0]
[159, 164, 171, 178]
p03281
u726444300
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n \ndef check_divisor(number):\n divisors = 0\n for j in range(1, number+1, 2):\n if not (number%j):\n divisors += 1\n if divisors == 9: return False\n if divisors == 8: return True\n else: return False\n\ncount = 0\nfor i in range(1, N+1, 2):\n if check_divisor(i):\n count += 1', 'N = int(input())\n \ndef check_divisor(number):\n divisors = 0\n for j in range(1, number+1, 2):\n if not (number%j):\n divisors += 1\n if divisors == 9: return False\n if divisors == 8: return True\n else: return False\n\ncount = 0\nfor i in range(1, N+1, 2):\n\tif check_divisor(i):\n\t\tcount += 1', 'N = int(input())\n\ndef check_divisor(number):\n\tdivisors = 0\n\tfor j in range(1, number+1, 2):\n\t\tif not (number%j):\n\t\t\tdivisors += 1\n\t\t\tif divisors == 9: return False\n\tif divisors == 8: return True\n\telse: return False\n\ncount = 0\nfor i in range(1, N+1, 2):\n\tif check_divisor(i):\n\t\tcount += 1\nprint(count)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s066335460', 's390618002', 's898612336']
[9188.0, 9212.0, 9000.0]
[24.0, 28.0, 29.0]
[307, 324, 300]
p03281
u728120584
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['def hantei(x):\n \n\nN = int(input())\nif N >= 105:\n print(1)\nelse:\n print(0) ', 'N = int(input())\nans = 0\nfor i in range(N + 1):\n if i % 2 == 0:\n continue\n c = 0\n for j in range(1, i + 1):\n if i % j == 0:\n c += 1\n if c == 8:\n ans += 1\nprint(ans)']
['Runtime Error', 'Accepted']
['s399904988', 's176233448']
[2940.0, 2940.0]
[17.0, 18.0]
[86, 208]
p03281
u729939940
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['from math import floor, sqrt\n\nN = int(input())\nans = 0\nfor o in range(1, N + 1, 2):\n\tcnt = 0\n for n in range(1, 1 + floor(sqrt(o))):\n \tif o % n == 0:\n cnt += 2\n if cnt == 8:\n ans += 1\nprint(ans)\n ', 'from math import floor, sqrt\nN = int(input())\nans = 0\nfor o in range(1, N + 1, 2):\n cnt = 0\n for n in range(1, o + 1):\n if o % n == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)']
['Runtime Error', 'Accepted']
['s272163025', 's633853713']
[2940.0, 3060.0]
[17.0, 18.0]
[228, 193]
p03281
u731448038
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\n\ntotal = 0\nfor i in range(1, n+1):\n if i%2==0: continue\n cnt = 0\n for j in range(1, j+1):\n if i%j ==0: cnt+=1\n \n if cnt==8:\n total += 1\n\nprint(total)', 'n = int(input())\n \ntotal = 0\nfor i in range(1, n+1):\n if i%2==0: continue\n cnt = 0\n for j in range(1, j+1):\n if i%j ==0: cnt+=1\n \n if cnt==8:\n total += 1\n \nprint(total)', 'n = int(input())\n \ntotal = 0\nfor i in range(1, n+1):\n if i%2==0: continue\n cnt = 0\n for j in range(1, n+1):\n if i%j ==0: cnt+=1\n \n if cnt==8:\n total += 1\n \nprint(total)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s595967319', 's903713568', 's898795940']
[2940.0, 2940.0, 2940.0]
[19.0, 17.0, 19.0]
[177, 179, 179]
p03281
u732870425
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nans = []\n\nfor i in range(1, n+1):\n cnt = 0\n for j in range(1, i):\n if i % 2 == 1 and i % j == 0:\n cnt += 1\n if cnt == 8:\n ans.append(i)\n\nprint(len(ans))', 'def cnt_prime(x):\n cnt = 0\n for i in range(1, int(x ** 0.5 // 1) + 1):\n if x % i == 0:\n cnt += 1\n \n return cnt\n\n\nN = int(input())\nans = 0\n\nfor i in range(1, N+1):\n if i % 2 == 1:\n c = cnt_prime(i)\n if c == 8:\n ans += 1\n\nprint(ans)', 'N = int(input())\n\nans = 0\n\nfor i in range(1, N+1):\n cnt = 0\n for j in range(1, i+1):\n if i % j == 0:\n cnt += 1\n \n if cnt == 8:\n ans += 1\n\nprint(ans)', 'N = int(input())\n\nans = 0\n\nfor i in range(1, N+1):\n cnt = 0\n for j in range(1, i):\n if i % j == 0:\n cnt += 1\n \n if cnt == 8:\n ans += 1\n\nprint(ans)', 'N = int(input())\n\nans = 0\n\nfor i in range(1, N+1):\n if i % 2 == 1:\n cnt = 0\n for j in range(1, i+1):\n if i % j == 0:\n cnt += 1\n \n if cnt == 8:\n ans += 1\n\nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s365394915', 's430033415', 's552908705', 's680067936', 's410798030']
[2940.0, 9408.0, 9148.0, 9172.0, 9148.0]
[20.0, 27.0, 26.0, 29.0, 30.0]
[203, 288, 185, 183, 232]
p03281
u735008991
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\nans = 0\nfor i in range(1, N+1):\n ans += len([j for j in range(1, i) if i % j == 0]) == 8\nprint(ans)\n', 'N = int(input())\nans = 0\nfor i in range(1, N+1, 2):\n ans += len([j for j in range(1, i+1) if i % j == 0]) == 8\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s847353982', 's372878932']
[2940.0, 2940.0]
[19.0, 19.0]
[120, 125]
p03281
u740284863
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\nif N >= 195:\n print("4")\nelif N >= 185:\n print("3")\nelif N >= 165:\n print("2")\nelif N >= 135:\n print("1")\nelse:\n print("0")\n', 'n = int(input())\nc = []\nfor i in range(n):\n k = []\n for j in range(i):\n if i % j == 0:\n k.append(j)\n if len(k) == 8:\n c.append(i)\nprint(len(c))', 'def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n return len(divisors)\n\nn = int(input())\nans = 0\nfor i in range(1,n+1,2):\n if make_divisors(i) == 8:\n ans += 1\nprint(ans)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s267356637', 's901503888', 's133347362']
[2940.0, 2940.0, 9384.0]
[17.0, 17.0, 31.0]
[148, 177, 331]
p03281
u748311048
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\na=0\n\nfor i in range(1, N):\n if i%2!=0:\n c=0\n for j in range(1,i):\n if i%j==0:\n c+=1\n if c==8:\n a+-1\n \nprint(a)', 'N=int(input())\na=0\n \nfor i in range(1, N+1):\n if i%2!=0:\n c=0\n for j in range(1,i+1):\n if i%j==0:\n c+=1\n if c==8:\n a+=1\n \nprint(a)']
['Wrong Answer', 'Accepted']
['s917606960', 's886736725']
[2940.0, 2940.0]
[18.0, 18.0]
[157, 162]
p03281
u752700460
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\ncnt = 0\ncnt2 = 0\nfor i in (1, range(N+1), 2):\n cnt = 0\n for j in (1, range(N+1)):\n if j > i:\n cnt = 0\n break\n if i % j == 0:\n cnt += 1\n\n if cnt == 8:\n cnt2 += 1\n\nprint(cnt2)\n', 'N = int(input())\n\ncnt = 0\ncnt2 = 0\nfor i in range(1, N+1, 2):\n cnt = 0\n for j in range(1, N+1):\n if j > i:\n break\n if i % j == 0:\n cnt += 1\n\n if cnt == 8:\n cnt2 += 1\n\n\nprint(cnt2)\n']
['Runtime Error', 'Accepted']
['s748835640', 's775880622']
[2940.0, 2940.0]
[17.0, 19.0]
[255, 232]
p03281
u754076673
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\ncount = 1\nfor N in range(106,200):\n for s in range(1,N):\n if N % 2 != 0 and N % s == 0:\n count += 1\n if count == 8:\n print(N)\n', 'N = int(input())\n\nif 200 >= N >= 195:\n print(5)\nif 195 > N >= 189:\n print(4)\nif 189 > N >= 165:\n print(3)\nif 165 > N >= 135:\n print(2)\nif 135 > N >= 105:\n print(1)\nif N < 105:\n print(0)\n']
['Wrong Answer', 'Accepted']
['s025321429', 's298203827']
[2940.0, 2940.0]
[20.0, 17.0]
[183, 204]
p03281
u759412327
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\na = 0\n\nfor i in range(1,1+N,2):\n b = 0\n for j in range(1,1+i,2):\n if i%j==0:\n b+=1\n if n==8:\n a+=1\n\nprint(a)', 'N = int(input())\na = 0\n\nfor i in range(1,1+N,2):\n b = 0\n for j in range(1,1+i,2):\n if i%j==0:\n b+=1\n if b==8:\n a+=1\n\nprint(a)']
['Runtime Error', 'Accepted']
['s793998206', 's984373701']
[9100.0, 9052.0]
[27.0, 29.0]
[143, 143]
p03281
u761087127
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\nans = 0\nfor i in range(1, N, 2):\n c = 0\n for j in range(1, N+1):\n if i%j==0:\n c += 1\n if c==8:\n ans += 1\nprint(ans)\n', 'N = int(input())\nans = 0\nfor i in range(1, N+1, 2):\n c = 0\n for j in range(1, N+1):\n if i%j==0:\n c += 1\n if c==8:\n ans += 1\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s943072416', 's064482357']
[2940.0, 2940.0]
[19.0, 19.0]
[167, 169]
p03281
u762420987
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\n\ndef yakusuu(num):\n counter = 0\n for i in range(1, num + 1):\n if num % i == 0:\n counter += 1\n return counter\n\n\nfor num in range(N):\n counter = 0\n if yakusuu(num) == 8:\n print(counter)\n\nprint(counter)\n', 'def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5) + 1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n // i)\n\n divisors.sort()\n return divisors\n\nN = int(input())\nans = 0\nfor i in range(1, N + 1):\n if i % 2 == 0:\n if len(make_divisors(i)) == 8:\n ans += 1\nprint(ans)\n', 'N = int(input())\n\n\ndef yakusuu(num):\n counter = 0\n for i in range(1, num + 1):\n if num % i == 0:\n counter += 1\n return counter\n\n\ncounter = 0\nfor num in range(N):\n if yakusuu(num) == 8:\n counter += 1\n\nprint(counter)\n', 'def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5) + 1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n // i)\n\n divisors.sort()\n return divisors\n\nN = int(input())\nans = 0\nfor i in range(1, N + 1):\n if i % 2 == 1:\n if len(make_divisors(i)) == 8:\n ans += 1\nprint(ans)\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s238772676', 's439226067', 's735357176', 's289863526']
[2940.0, 3060.0, 2940.0, 3060.0]
[18.0, 18.0, 18.0, 17.0]
[258, 385, 252, 385]
p03281
u762955009
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\ncnt = 0\nfor i in list(filter(lambda x: x % 2 != 1, range(1, N + 1))):\n divisor = 0\n for j in range(1, i + 1):\n if N % j == 0:\n divisor += 1\n if divisor == 8:\n cnt += 1\n\nprint(cnt)\n', 'N = int(input())\n\ncnt = 0\nfor i in range(1, N + 1):\n if i % 2 != 0:\n divisor = 0\n for j in range(1, i + 1):\n if i % j == 0:\n divisor += 1\n if divisor == 8:\n cnt += 1\n\nprint(cnt)\n']
['Wrong Answer', 'Accepted']
['s110596475', 's180824718']
[2940.0, 2940.0]
[19.0, 19.0]
[232, 239]
p03281
u764401543
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\nans = []\nfor i in range(1, N + 1, 2):\n count = 0\n if i == 105:\n print(105)\n for j in range(1, i // 2 + 1):\n if i % j == 0:\n count += 1\n if count == 7:\n ans.append(1)\n\nprint(sum(ans))', 'N = int(input())\n\nans = []\nfor i in range(1, N + 1, 2):\n count = 0\n for j in range(1, i // 2 + 1):\n if i % j == 0:\n count += 1\n if count == 7:\n ans.append(1)\n\nprint(sum(ans))']
['Wrong Answer', 'Accepted']
['s682007299', 's462169864']
[3060.0, 2940.0]
[18.0, 18.0]
[244, 208]
p03281
u764956288
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\ns = 0\nfor i in range(1,N,2):\n\tt = 0\n for j in range(1,N,2):\n\t\tif not N%n:\n\t\t\tt+=1\n if t==8:\n\t\ts+=1\n\nprint(s)\n\n', 'N = int(input())\ns = 0\nfor i in range(1,N,2):\n t = 0\n for j in range(1,i+1,2):\n if not i%j:\n t+=1\n if t==8:\n s+=1\n\nprint(s)', 'N = int(input())\ns = 0\nfor i in range(1,N+1,2):\n t = 0\n for j in range(1,i+1,2):\n if not i%j:\n t+=1\n if t==8:\n s+=1\n\nprint(s)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s286752372', 's654639010', 's318297199']
[2940.0, 3060.0, 2940.0]
[17.0, 17.0, 18.0]
[133, 137, 139]
p03281
u767432305
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['if N>=189:\n print(3)\nelif N>=165:\n print(2)\nelif N>=105:\n print(1)\nelse:\n print(0) ', 'N=int(input())\nif N>=195:\n print(5)\nelif N>=189:\n print(4)\nelif N>=165:\n print(3)\nelif N>=135:\n print(2)\nelif N>=105:\n print(1)\nelse:\n print(0) ']
['Runtime Error', 'Accepted']
['s059676394', 's885612156']
[2940.0, 2940.0]
[18.0, 17.0]
[96, 163]
p03281
u778700306
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['\n\nn = map(int,input().split())\n\ndef count(x):\n res = 0\n for i in range(1, x + 1):\n if x % i == 0:\n res += 1\n return res\n\nres = 0\nfor x in range(1, n+1, 2):\n if count(x) == 8:\n res += 1\n\nprint(res)\n', '\n\nn = int(input())\n\ndef count(x):\n res = 0\n for i in range(1, x + 1):\n if x % i == 0:\n res += 1\n return res\n\nres = 0\nfor x in range(1, n+1, 2):\n if count(x) == 8:\n res += 1\n\nprint(res)\n']
['Runtime Error', 'Accepted']
['s358428588', 's357215033']
[2940.0, 2940.0]
[17.0, 18.0]
[234, 222]
p03281
u779170803
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
["INT = lambda: int(input())\nINTM = lambda: map(int,input().split())\nSTRM = lambda: map(str,input().split())\nSTR = lambda: str(input())\nLIST = lambda: list(map(int,input().split()))\nLISTS = lambda: list(map(str,input().split()))\ndef do():\n n=INT()\n flg=0\n for i in range(n//7+1):\n if (n-i*7)%4==0:\n flg=1\n if flg==1:\n print('Yes')\n else:\n print('No')\nif __name__ == '__main__':\n do()", "INT = lambda: int(input())\nINTM = lambda: map(int,input().split())\nSTRM = lambda: map(str,input().split())\nSTR = lambda: str(input())\nLIST = lambda: list(map(int,input().split()))\nLISTS = lambda: list(map(str,input().split()))\ndef do():\n lista=[105,135,165,189,195]\n n=INT()\n ct=0\n for i in range(1,n+1,2):\n if i in lista:\n ct+=1\n print(ct)\nif __name__ == '__main__':\n do()"]
['Wrong Answer', 'Accepted']
['s865234200', 's198240313']
[3060.0, 3064.0]
[17.0, 17.0]
[431, 409]
p03281
u779728630
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\ndef num_p(n):\n r = 0\n for i in range(1,n+1):\n if n % i == 0:\n r += 1\n return r\n\nans = 0\nfor i in range(1, N+1):\n if num_p(i) == 8:\n ans += 1\nprint(ans)', 'N = int(input())\n\ndef num_p(n):\n r = 0\n for i in range(1,n+1):\n if n % i == 0:\n r += 1\n return r\n\nans = 0\nfor i in range(1, N+1, 2):\n if num_p(i) == 8:\n ans += 1\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s913730092', 's410036528']
[9136.0, 9128.0]
[30.0, 27.0]
[184, 188]
p03281
u782654209
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['#ABC106 B\n\n\nimport math\n\ndef allprimes(N):\n\tprimes = []\n\tfor i in range(N):\n\t\tprimes.append(i+1)\n\ti = 2\n\twhile i <= math.sqrt(N):\n\t\tindex = 0\n\t\twhile True:\n\t\t\tindex += 1\n\t\t\tif index == 1:\n\t\t\t\tcontinue\n\t\t\telse:\n\t\t\t\tif index * i <= N:\n\t\t\t\t\t\n\t\t\t\t\tprimes[index*i-1] = 0\n\t\t\t\telse:\n\t\t\t\t\tbreak\n\t\ti += 1\n\treturn sorted(list(set(primes)))[2:]\n\n\n\nprimes = allprimes(200)\n\ndef factor(k):\n\t\n\tnprimes = {}\n\tfor prime in primes:\n\t\tnprimes[prime] = 0\n\tfor prime in primes:\n\t\tif k < prime:\n\t\t\tbreak\n\t\telse:\n\t\t\twhile True:\n\t\t\t\tif k % prime != 0:\n\t\t\t\t\tbreak\n\t\t\t\telse:\n\t\t\t\t\tk = int(k / prime)\n\t\t\t\t\tnprimes[prime] += 1\n\treturn nprimes\n\n\nresult = 0\nfor n in range(int(input())):\n\tif n+1 == 1 or (n+1) % 2 == 0:\n\t\t\n\t\tcontinue\n\t\n\telse:\n\t\tnps = sorted(factor(n+1).values())\n\t\tprint(n+1,nps[:-5:-1],result)\n\t\tif nps[:-3:-1] == [7,0] or nps[:-4:-1] == [3,1,0] or nps[:-5:-1] == [1,1,1,0]:\n\t\t\tresult += 1\n\nprint(result)', '#ABC106 B\n\n\nimport math\n\ndef allprimes(N):\n\tprimes = []\n\tfor i in range(N):\n\t\tprimes.append(i+1)\n\ti = 2\n\twhile i <= math.sqrt(N):\n\t\tindex = 0\n\t\twhile True:\n\t\t\tindex += 1\n\t\t\tif index == 1:\n\t\t\t\tcontinue\n\t\t\telse:\n\t\t\t\tif index * i <= N:\n\t\t\t\t\t\n\t\t\t\t\tprimes[index*i-1] = 0\n\t\t\t\telse:\n\t\t\t\t\tbreak\n\t\ti += 1\n\treturn sorted(list(set(primes)))[2:]\n\n\n\nprimes = allprimes(200)\n\ndef factor(k):\n\t\n\tnprimes = {}\n\tfor prime in primes:\n\t\tnprimes[prime] = 0\n\tfor prime in primes:\n\t\tif k < prime:\n\t\t\tbreak\n\t\telse:\n\t\t\twhile True:\n\t\t\t\tif k % prime != 0:\n\t\t\t\t\tbreak\n\t\t\t\telse:\n\t\t\t\t\tk = int(k / prime)\n\t\t\t\t\tnprimes[prime] += 1\n\treturn nprimes\n\n\nresult = 0\nfor n in range(int(input())):\n\tif n+1 == 1 or (n+1) % 2 == 0:\n\t\t\n\t\tcontinue\n\t\n\telse:\n\t\tnps = sorted(factor(n+1).values())\n\t\tif nps[:-3:-1] == [7,0] or nps[:-4:-1] == [3,1,0] or nps[:-5:-1] == [1,1,1,0]:\n\t\t\tresult += 1\n\nprint(result)']
['Wrong Answer', 'Accepted']
['s722692477', 's253963492']
[3064.0, 3188.0]
[20.0, 20.0]
[1362, 1330]
p03281
u788023488
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['a = int(input())\n\nb=0\n\nfor i in range(1,a+1, 2):\n \n yakusuu = 0\n for j in range(1,i+1):\n if i+1 % j == 0:\n yakusuu += 1\n if yakusuu == 8:\n \tb += 1\nprint(b)', 'a = int(input())\n\nb=0\n\nfor i in range(1,a+1):\n \n yakusuu = 1\n for j in range(1,i+1):\n if i+1 % j == 0:\n yakusuu += 1\n if yakusuu == 8:\n \tb += 1\nprint(b)', 'a = int(input())\n\nb=0\n\nfor i in range(1,a+1, 2):\n \n\tyakusuu_array = []\n\n\tfor i in range(1,num):\n\t if num % i == 0:\n yakusuu_array.append(i)\n \n \tif len(yakusuu_array) == 8:\n \t\tb += 1\nprint(b)', 'a = int(input())\n \nb=0\n \nfor i in range(1,a+1):\n if i % 2 == 1:\n \n yakusuu = 0\n for j in range(1,i+1):\n if i+1 % j == 0:\n yakusuu += 1\n if yakusuu == 8:\n b += 1\nprint(b)', 'a = int(input())\n\nb=0\n\nfor i in range(1,a+1, 2):\n \n yakusuu_array = []\n\n for i in range(1,num):\n if num % i == 0:\n \t yakusuu_array.append(i)\n \n if len(yakusuu_array) == 8:\n \t b += 1\nprint(b)', 'a = int(input())\n\nb=0\n\nfor i in range(1,a+1, 2):\n \n\tyakusuu_array = []\n\n\tfor i in range(1,num):\n\t if num % i == 0:\n \t yakusuu_array.append(i)\n \n \tif len(yakusuu_array) == 8:\n \t\tb += 1\nprint(b)', 'a = int(input())\n\nb=0\n\nfor i in range(1,a+1, 2):\n \n\tyakusuu_array = []\n\n\tfor i in range(1,num):\n\t if num % i == 0:\n \t yakusuu_array.append(i)\n \n \tif len(yakusuu_array) == 8:\n \t\tb += 1\nprint(b)', 'a = int(input())\n \nb=0\n \nfor num in range(1,a+1):\n if num % 2 == 1:\n \n yakusuu = 0\n for i in range(1,num):\n if num % i == 0:\n yakusuu += 1\n if yakusuu == 7:\n b += 1\nprint(b)']
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s039637320', 's167276246', 's261616624', 's284364683', 's526982260', 's528888025', 's993218382', 's651177241']
[2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0]
[18.0, 19.0, 17.0, 18.0, 18.0, 17.0, 17.0, 18.0]
[257, 239, 305, 286, 315, 302, 302, 288]
p03281
u789199225
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['_=input();r=0 if _=="7"else int(_[0:2])//3-3;print(r)', 'import re;print(int(re.sub(\'¥D\',"",__file__))/2)', 'print(int(__file__[5])/2)', 'print(int(__file__[6])/2)', 'from random import*;print(randint(0,5))', 'print(2)', 'print(int(__file__[4])/2)', 'import sys;print(int(sys.argv[1][-6:-5])/2)', 'print __file__', 'print(0)', 'print(3)', 'print(int(__file__[-6:-5])/2)', 'print(int(__file__[4])/2)', 'print(4)', "a=int(input());print(sum(a>ord(x)for x in'h\x86¤¼Â'))"]
['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s038039097', 's079315156', 's105333362', 's180726726', 's355984879', 's451213379', 's525604575', 's538906710', 's585701046', 's659820547', 's914655999', 's920002815', 's974039042', 's978249527', 's523876990']
[2940.0, 3188.0, 3064.0, 2940.0, 4208.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0]
[17.0, 19.0, 17.0, 17.0, 32.0, 17.0, 17.0, 18.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0]
[53, 49, 25, 25, 39, 8, 25, 43, 14, 8, 8, 29, 25, 8, 54]
p03281
u789565565
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nans = 0\nfor i in range(1,n+1):\n res = 0\n for j in range(i+1):\n if i % j ==0:\n res +=1\n if res == 8 :\n ans +=1\n\nprint(ans)\n ', 'n = int(input())\nans = 0\nfor i in range(1,n+1,2):\n res = 0\n for j in range(1,i+1):\n if i % j == 0:\n res +=1\n if res == 8:\n ans +=1\nprint(ans)']
['Runtime Error', 'Accepted']
['s628705841', 's254295237']
[9020.0, 9028.0]
[27.0, 32.0]
[161, 159]
p03281
u790812284
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=int(input())\ncnt = 0\ncnt_i = 0\nfor i in range(1,n+1):\n for j in range(1,n+1):\n if n%j==0:\n cnt+=1\n if cnt==8:\n cnt_i+=1\n cnt = 0\nprint(cnt_i)', 'n=int(input())\ncnt = 0\ncnt_i = 0\nfor i in range(1,n+1,2):\n for j in range(1,i+1):\n \n if i%j==0:\n cnt+=1\n \n\n if cnt==8:\n cnt_i+=1\n \n cnt = 0\n\nprint(cnt_i)']
['Wrong Answer', 'Accepted']
['s816374532', 's824925814']
[3060.0, 3060.0]
[21.0, 18.0]
[177, 208]
p03281
u791664126
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=int(input())\nif n<105:print(0)\nelif n<3*5*7:print(1)\nelif n<3*5*9:print(2)\nelif n<3*5*11:print(3)\nelse:print(4)\n', 'n=int(input())\nif n<=105:print(0)\nelif n<=3*5*7:print(1)\nelif n<=3*5*9:print(2)\nelif n<=3*5*11:print(3)\nelse:print(4)', 'n=int(input())\nif n<105:print(0)\nelif n<3*5*9:print(1)\nelif n<3*5*11:print(2)\nelif n<3*7*9:print(3)\nelif n<3*5*13:print(4)\nelse:print(5)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s533952657', 's888077593', 's120452089']
[2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0]
[114, 117, 136]
p03281
u796708718
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\ncnt = 0\ncnt_cnt = 0\n\n\nfor i in (1,N+1):\n for j in (1,N+1):\n if i%j == 0:\n cnt += 1\n if cnt == 8:\n cnt_cnt += 1\n cnt = 0\n \nprint(cnt_cnt)\n \n ', 'N = int(input())\n\ncnt = 0\ncnt_cnt = 0\n\n\nfor i in range(1,N+1):\n for j in range(1,i+1):\n if i%j == 0 and i%2 !=0:\n cnt += 1\n if cnt == 8:\n cnt_cnt += 1\n cnt = 0\n \nprint(cnt_cnt)\n \n \n']
['Wrong Answer', 'Accepted']
['s441801468', 's246718390']
[2940.0, 2940.0]
[17.0, 19.0]
[181, 204]
p03281
u801512570
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\n\nfor i in range(1,N+1):\n tmp=0\n for j in range(1,int(sqrt(i))+1):\n if i%j==0:\n tmp+=1\n \n if sqrt(i)-int(sqrt(i))<=1e-3:\n if tmp*2-1==8:\n ans+=1\n \n else:\n if tmp*2==8:\n ans+=1\n \nprint(ans) ', 'N=int(input())\n\nfor i in range(1,N+1):\n tmp=0\n t=i**(1/2)\n for j in range(1,int(t)+1):\n if i%j==0:\n tmp+=1\n \n if t-int(t)<=1e-3:\n if tmp*2-1==8:\n ans+=1\n \n else:\n if tmp*2==8:\n ans+=1\n \nprint(ans) ', 'N=int(input())\n\nans=0\nfor i in range(1,N+1,2):\n tmp=0\n t=i**(1/2)\n for j in range(1,int(t)+1):\n if i%j==0:\n tmp+=1\n \n tmp=tmp*2\n if t-int(t)<=1e-3:\n tmp-=1\n\n if tmp==8:\n ans+=1\n \nprint(ans) \n\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s210481151', 's909295717', 's006757536']
[3064.0, 3060.0, 3060.0]
[18.0, 18.0, 18.0]
[249, 244, 225]
p03281
u806403461
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\nodd = list()\n\ncount_list = list()\ncount = 0\n\nfor a in range(1, N+1):\n if a % 2 != 0:\n odd.append(a)\n\nl = len(odd)\n\nfor a in range(0, l):\n for b in range(1, a+1):\n if a % b == 0:\n count += 1\n count_list.append(count)\n count = 0\n\nprint(len(list(filter(lambda x: x == 8, count_list))))\n', 'N = int(input())\n\nodd = list()\n\ncount_list = list()\ncount = 0\n\nfor a in range(1, N+1):\n if a % 2 != 0:\n odd.append(a)\n\nl = len(odd)\n\nfor a in range(0, l):\n for b in range(1, odd[a]+1):\n if odd[a] % b == 0:\n count += 1\n count_list.append(count)\n count = 0\n\nprint(len(list(filter(lambda x: x == 8, count_list))))\n']
['Wrong Answer', 'Accepted']
['s813959539', 's003124112']
[3060.0, 3064.0]
[18.0, 18.0]
[338, 348]
p03281
u811000506
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\ncount = 0\nfor i in range(105,n+1,2):\n x = 0\n for j in range(1,i+1):\n if i%j==0:\n c+=1\n if x == 8:\n count += 1\nprint(count)', 'n = int(input())\ncount = 0\nfor i in range(105,n+1,2):\n x = 0\n for j in range(1,i+1):\n if i%j==0:\n x+=1\n if x == 8:\n count += 1\nprint(count)']
['Runtime Error', 'Accepted']
['s864620106', 's543939087']
[2940.0, 3060.0]
[18.0, 18.0]
[153, 153]
p03281
u818283165
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\nans = 0\nfor i in range(1,N+1):\n a = 0\n if i%2 == 1: \n for j in range(1,i+1):\n if i%j == 0:\n a += 1\n if a == 8:\n ans += 1\n print(i)\nprint(ans)', 'N = int(input())\nans = 0\nfor i in range(1,N+1):\n a = 0\n if i%2 == 1: \n for j in range(1,i+1):\n if i%j == 0:\n a += 1\n if a == 8:\n ans += 1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s971431876', 's458781872']
[3060.0, 2940.0]
[18.0, 18.0]
[229, 208]
p03281
u819529201
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\nif N < 105:\n print(int(0))\nelif 105<=N<135:\n print(int(1))\nelif 135<=N<165:\n print(int(2))\nelif 165<=N<189\n print(int(3))\nelif 189<=N<195\n print(int(4))\nelse:\n print(int(4))', 'N = int(input())\nif N < 105:\n print(int(0))\nelif 105<=N<135:\n print(int(1))\nelif 135<=N<165:\n print(int(2))\nelif 165<=N<189:\n print(int(3))\nelif 189<=N<195:\n print(int(4))\nelse:\n print(int(5))']
['Runtime Error', 'Accepted']
['s064398848', 's698695340']
[3064.0, 3060.0]
[19.0, 18.0]
[208, 210]
p03281
u820180033
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['def main():\n N = int(input())\n ans = 0\n for i in range(1,N+1):\n div = 0\n for c in range(1,i+1):\n if i%c == 0:\n div = div +1\n if div == 8 and (i%2)==1:\n print(i)\n ans = ans+1\n print(ans)\nmain()', 'def main():\n N = int(input())\n ans = 0\n for i in range(1,N+1):\n div = 0\n for c in range(1,i+1):\n if i%c == 0:\n div = div +1\n if div == 8 and (i%2)==1:\n ans = ans+1\n print(ans)\nmain()']
['Wrong Answer', 'Accepted']
['s863841606', 's548583490']
[2940.0, 2940.0]
[19.0, 19.0]
[273, 252]
p03281
u821588465
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\ndef make_divisor(n):\n divisors = []\n for i in range(1, int(n**.5) + 1):\n if n%i == 0:\n divisors.append(i)\n if i != n//i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n\nfor i in range(1, N+1):\n if len(make_divisor(i)) == 8 and i%2 == 1:\n print(i)\n exit()\nprint(0)\n', 'N = int(input())\n\ndef make_divisor(n):\n divisors = []\n for i in range(1, int(n**.5) + 1):\n if n%i == 0:\n divisors.append(i)\n if i != n//i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\ncnt = 0\nfor i in range(1, N+1):\n if len(make_divisor(i)) == 8 and i%2 == 1:\n cnt += 1\nprint(cnt)\n\n\n']
['Wrong Answer', 'Accepted']
['s271262721', 's659578506']
[9336.0, 9268.0]
[28.0, 27.0]
[366, 362]
p03281
u823585596
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\nans=0\nfor i in range(1,N+1,2):\n if i>1:\n div_list=[1,i]\n for j in range(2,int(i**0.5)+1):\n if i%j==0:\n div_list.append(j)\n if len(div_list)==8:\n ans+=1\nprint(ans)', 'N=int(input())\nans=0\nfor i in range(N+1):\n if i>1 and i%2==1:\n div=[1,i]\n for j in range(2,int(i**0.5)+1):\n if i%j==0:\n div.append(j)\n div.append(i//j)\n if len(div)==8:\n ans+=1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s778804898', 's789394818']
[9140.0, 9256.0]
[27.0, 28.0]
[238, 263]
p03281
u826637752
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nans = 0\ncnt = 0\n\nfor i in range(1,n+1):\n for j in range(1,n+1):\n if i%j = 0:\n ans += 1\n if ans = 8:\n \n cnt += 1\n\nprint(cnt)\n \n', 'n = int(input())\nans = 0\ncnt = 0\n\nfor i in range(1,n+1):\n for j in range(1,n+1):\n if i%j = 0:\n ans += 1\n if ans = 8:\n cnt += 1\n\nprint(cnt)\n \n', 'n = int(input())\nans = 0\ncnt = 0\n\nfor i in range(1,n+1):\n for j in range(1,n+1):\n if i%j = 0:\n ans += 1\n if ans = 8:\n cnt += 1\n\nprint(cnt)\n ', 'N=int(input())\n\nresult=0\nfor i in range(1,N+1):\n if i%2!=0:\n divisor=0\n for j in range(1,i+1):\n if i%j==0:\n divisor+=1\n if divisor==8:\n result+=1\nprint(result)\n']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s031599722', 's457237813', 's868270597', 's870031371']
[8952.0, 8884.0, 8812.0, 9060.0]
[26.0, 23.0, 28.0, 28.0]
[166, 159, 162, 221]