problem_id
stringlengths 6
6
| user_id
stringlengths 10
10
| time_limit
float64 1k
8k
| memory_limit
float64 262k
1.05M
| problem_description
stringlengths 48
1.55k
| codes
stringlengths 35
98.9k
| status
stringlengths 28
1.7k
| submission_ids
stringlengths 28
1.41k
| memories
stringlengths 13
808
| cpu_times
stringlengths 11
610
| code_sizes
stringlengths 7
505
|
---|---|---|---|---|---|---|---|---|---|---|
p03281 | u272557899 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\ncount = 0\nc = 0\n\nfor i in range(1,n + 1):\n if n % 2 != 0:\n for j in range(1,i + 1):\n if i % j == 0:\n count += 1\n if count == 8:\n c += 1\n count = 0\n\nprint(c)', 'n = int(input())\n\ncount = 0\nc = 0\n\nfor i in range(1,n + 1):\n if i % 2 != 0:\n for j in range(1,i + 1):\n if i % j == 0:\n count += 1\n if count == 8:\n c += 1\n count = 0\n\nprint(c)\n'] | ['Wrong Answer', 'Accepted'] | ['s605001091', 's463340417'] | [2940.0, 2940.0] | [19.0, 18.0] | [201, 202] |
p03281 | u273339216 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\ndef make_divisors(n):\n lower_divisors , upper_divisors = [], []\n i = 1\n while i*i <= n:\n if n % i == 0:\n lower_divisors.append(i)\n if i != n // i:\n upper_divisors.append(n//i)\n i += 1\n return lower_divisors + upper_divisors[::-1]\n\ncount = 0\nfor i in range(n+1):\n y = make_divisors(i)\n if len(y) == 8:\n count+=1\nprint(count)', 'n = int(input())\ndef make_divisors(n):\n lower_divisors , upper_divisors = [], []\n i = 1\n while i*i <= n:\n if n % i == 0:\n lower_divisors.append(i)\n if i != n // i:\n upper_divisors.append(n//i)\n i += 1\n return lower_divisors + upper_divisors[::-1]\n\ncount = 0\nfor i in range(n+1):\n if i%2 != 0:\n y = make_divisors(i)\n if len(y) == 8:\n count+=1\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s080405530', 's136434362'] | [9000.0, 9152.0] | [32.0, 28.0] | [408, 429] |
p03281 | u277802731 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['#106b\nn = int(input())\nans=0\nfor i in range(1,n+1,2):\n c=0\n for j in range(1,i+1):\n if i%j==0:\n c+=1\n \n if c==8:\n a+=1\nprint(ans)', '#106b\nn = int(input())\nans=0\nfor i in range(1,n+1,2):\n c=0\n for j in range(1,i+1):\n print(i,j)\n if i%j==0:\n c+=1\n \n if c==8:\n a+=1\nprint(ans)', 'n = int(input())\na = 0\n\nfor i in range(1, n+1, 2):\n c = 0 \n \n for j in range(1, i+1):\n print(i,j)\n if i % j == 0:\n c+=1\n if c == 8:\n a+=1\n\nprint(a)\n', '#106b\nn = int(input())\n\nans=0\n\nfor i in range(1,n+1,2):\n c=0\n \n for j in range(1,i+1):\n if i%j==0:\n c+=1\n if c==8:\n ans+=1\n\nprint(ans)'] | ['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s383309794', 's611126195', 's793070772', 's760797614'] | [2940.0, 3572.0, 3636.0, 2940.0] | [17.0, 21.0, 30.0, 18.0] | [174, 193, 192, 171] |
p03281 | u279461856 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nd = [1] * (n + 1)\nfor i in range(2, n+1):\n for j in range(i, n+1, i):\n d[j] += 1\nans = 0\nfor i in range(1, n, 2):\n if d[i] == 8:\n ans += 1\n \nprint(ans)\n', 'n = int(input())\nd = [1] * (n + 1)\nfor i in range(2, n+1):\n for j in range(i, n+1, i)\n d[j] += 1\nans = 0\nfor i in range(1, n, 2):\n if d[i] == 8:\n ans += 1\n\nprint(ans)\n', 'n = int(input())\nd = [1] * (n + 1)\nfor i in range(2, n+1):\n for j in range(i, n+1, i):\n d[j] += 1\nans = 0\nfor i in range(1, n+1, 2):\n if d[i] == 8:\n ans += 1\n \nprint(ans)'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s103365833', 's632148339', 's083821933'] | [2940.0, 2940.0, 3060.0] | [17.0, 17.0, 17.0] | [183, 181, 184] |
p03281 | u284363684 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def get_divisors(n):\n div = []\n append = div.append\n for i in range(1, int(n ** 0.5) + 1):\n if n % i == 0:\n append(i)\n if i != n // i:\n append(n // i)\n div.sort()\n return div\n\n\n# input\nN = int(input())\n\n\ncnt = 0\nfor n in range(1, N + 1):\n div = get_divisors(n)\n if len(div) == 8:\n cnt += 1\n\nprint(cnt)', 'def get_divisors(n):\n div = []\n append = div.append\n for i in range(1, int(n ** 0.5) + 1):\n if n % i == 0:\n append(i)\n if i != n // i:\n append(n // i)\n div.sort()\n return div\n\n\n# input\nN = int(input())\n\n\ncnt = 0\nfor n in range(1, N + 1, 2):\n div = get_divisors(n)\n if len(div) == 8:\n cnt += 1\n\nprint(cnt)'] | ['Wrong Answer', 'Accepted'] | ['s307924287', 's516520556'] | [3060.0, 3060.0] | [18.0, 18.0] | [380, 383] |
p03281 | u286623856 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['ip = input()\ninputNum = int(ip)\ntotalCount = 0\nfor i in range(1,inputNum + 1):\n count = 0\n for j in range(1,i+1):\n if i % j == 0:\n count = count + 1\n if count == 8:\n totalCount = totalCount + 1\n\nprint(totalCount)', 'ip = input()\ninputNum = int(ip)\ntotalCount = 0\nfor i in range(1,inputNum + 1):\n count = 0\n if i % 2 == 1:\n for j in range(1,i+1):\n if i % j == 0:\n count = count + 1\n if count == 8:\n totalCount = totalCount + 1\n\nprint(totalCount)'] | ['Wrong Answer', 'Accepted'] | ['s279198078', 's374834056'] | [3060.0, 3060.0] | [20.0, 18.0] | [250, 289] |
p03281 | u297651868 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def make_divisors(n):\n ans=0\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n ans+=1\n if i != n // i:\n ans+=1\n return ans\n\nn=input()\nans=0\nfor i in range(1,n+1):\n if make_divisors(i)==8:\n ans+=1\nprint(ans)', 'def make_divisors(n):\n ans=0\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n ans+=1\n if i != n // i:\n ans+=1\n return ans\n\nn=int(input())\nans=0\nfor i in range(1,n+1):\n if make_divisors(i)==8:\n ans+=1\nprint(ans)', 'def make_divisors(n):\n ans=0\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n ans+=1\n if i != n // i:\n ans+=1\n return ans\n\nn=int(input())\na=0\nfor i in range(1,n+1,2):\n if make_divisors(i)==8:\n a+=1\nprint(a)'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s003959354', 's149698348', 's611503627'] | [3064.0, 3060.0, 3060.0] | [17.0, 18.0, 18.0] | [271, 276, 272] |
p03281 | u303019816 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['¥n = int(input())\n\nif n >= 195:\n print(5)\nelif n >= 189:\n print(4)\nelif n >= 165:\n print(3)\nelif n >= 135:\n print(2)\nelif n >= 105:\n print(1)\nelse:\n print(0)\n', 'n = int(input())\n\nif n >= 195:\n print(5)\nelif n >= 189:\n print(4)\nelif n >= 165:\n print(3)\nelif n >= 135:\n print(2)\nelif n >= 105:\n print(1)\nelse:\n print(0)\n'] | ['Runtime Error', 'Accepted'] | ['s430089212', 's089957471'] | [2940.0, 2940.0] | [17.0, 17.0] | [177, 175] |
p03281 | u310678820 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nyaku=[]\nans=0\nfor j in range(1, n+1)[::2]:\n for i in range(1, i+1):\n if j%i==0:\n yaku.append(i)\n if len(yaku)==8:\n ans+=1\nprint(ans)\n ', 'n = int(input())\nyaku=[]\nans=0\nfor j in range(1, n+1)[::2]:\n yaku=[]\n for i in range(1, j+1):\n if j%i==0:\n yaku.append(i)\n if len(yaku)==8:\n ans+=1\nprint(ans)\n '] | ['Runtime Error', 'Accepted'] | ['s199010864', 's411455680'] | [2940.0, 2940.0] | [18.0, 19.0] | [185, 197] |
p03281 | u314825579 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\n \nans=0\nodd=[]\nfor i in range(1,N+1):\n if i%2!=0:\n odd.append(i)\n \nif N <104:\n pass\nelse:\n for i in range(105,N+1):\n if i%2!=0:\n tmp=0\n for j in odd:\n if i%j==0:\n tmp=+1\n if tmp==8:\n ans+=1 \nprint(ans)', 'N=int(input())\n\nans=0\nodd=[]\nfor i in range(1,N+1):\n if i%2!=0:\n odd.append(i)\n \nif N <104:\n pass\nelif N=105:\n ans=1\nelse:\n ans=1\n for i in range(106,N+1):\n if i%2 !=0:\n tmp=0\n for j in odd:\n if i%j==0:\n tmp=+1\n if tmp==8:\n ans+=1\n \n \nprint(ans)', 'N=int(input())\n \nans=0\nodd=[]\nfor i in range(1,N+1):\n if i%2!=0:\n odd.append(i)\n \nif N <104:\n pass\nelse:\n for i in range(105,N+1):\n if i%2!=0:\n tmp=0\n for j in odd:\n if i%j==0:\n tmp+=1\n if tmp==8:\n ans+=1 \nprint(ans)'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s157582353', 's545236355', 's784769676'] | [9004.0, 8820.0, 9052.0] | [26.0, 21.0, 30.0] | [267, 312, 267] |
p03281 | u325149030 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n, x = map(int, input().split())\nwhile(n != 0 or x != 0):\n count = 0\n for i in range(1, n-1):\n for j in range(i+1, n):\n if x - i - j > j and x - i - j <= n:\n count += 1\n print(count)\n n, x = map(int, input().split())\n', 'N = int(input())\nans = 0\nfor i in range(1, N+1, 2):\n count = 0\n for j in range(1, int(i ** 0.5) + 1):\n if i % j == 0:\n count += 2\n if int(i ** 0.5) ** 2 == i:\n count -= 1\n if count == 8:\n ans += 1\nprint(ans)\n'] | ['Runtime Error', 'Accepted'] | ['s803799769', 's066183253'] | [2940.0, 2940.0] | [17.0, 18.0] | [262, 252] |
p03281 | u328131364 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\ncon = []\nconter = 0\n\nfor i in range(1, 105):\n if i % 2 == 1:\n for s in range(1, i/2):\n if i % s == 0:\n counter += 1\n \n con.append(counter)\n\n\nprint(con.count(8))', 'N = int(input())\ncon = []\ncounter = 0\n\nfor i in range(1, N+1):\n if i % 2 == 1:\n for s in range(1, i+1):\n if i % s == 0:\n counter += 1\n \n con.append(counter)\n counter = 0\n\n\nprint(con.count(8))'] | ['Runtime Error', 'Accepted'] | ['s309415654', 's604140798'] | [2940.0, 3060.0] | [18.0, 19.0] | [231, 252] |
p03281 | u329407311 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return len(divisors)\n \nans = 0\n\nfor i in range(1,N+1):\n a = make_divisors(i)\n if a ==8:\n ans += 1\n \nprint(int(ans))', 'N = int(input())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\n \nprint(int(make_divisors(N)))', 'N = int(input())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return len(divisors)\n \nans = 0\n\nfor i in range(1,N+1):\n a = make_divisors(i)\n if a ==8 and i%2 == 1 :\n ans += 1\n \nprint(int(ans))'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s397469961', 's491089136', 's447525339'] | [3444.0, 2940.0, 3188.0] | [20.0, 17.0, 19.0] | [367, 290, 381] |
p03281 | u334570241 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['in_num = int(input())\ncheck_num = 1\nans_counter = 0\n\nwhile check_num <= in_num:\n\ti = 1\n\tdiv_counter = 0\n\twhile i <= check_num /2:\n\t\tif check_num % i == 0:\n\t\t\tdiv_counter += 1\n\t\ti += 2\n\tif div_counter == 8:\n\t\tans_counter += 1\n\tcheck_num += 2\n\nprint(ans_counter)\n\n\n\n\n', 'in_num = int(input())\ncheck_num = 0\nans_counter = 0\n\nwhile check_num <= in_num:\n\ti = 1\n\tdiv_counter = 0\n\twhile i <= check_num /3:\n\t\tif check_num % i == 0:\n\t\t\tdiv_counter += 1\n\t\ti += 2\n\tif div_counter == 8:\n\t\tans_counter += 1\n\tcheck_num += 2\n\nprint(ans_counter)\n\n\n\n\n', 'in_num = int(input())\ncheck_num = 1\nans_counter = 0\n\nwhile check_num <= in_num:\n\ti = 1\n\tdiv_counter = 0\n\twhile i <= check_num /3:\n\t\tif check_num % i == 0:\n\t\t\tdiv_counter += 1\n\t\ti += 2\n\tif div_counter == 8:\n\t\tans_counter += 1\n\tcheck_num += 2\n\nprint(ans_counter)\n\n\n\n\n', 'in_num = int(input())\ncheck_num = 105\nans_counter = 0\n\nif in_num < 105:\n\tprint(0)\n\nelse:\n\twhile check_num <= in_num:\n\t\ti = 1\n\t\tdiv_counter = 0\n\t\twhile i <= check_num /2:\n\t\t\tif check_num % i == 0:\n\t\t\t\tdiv_counter += 1\n\t\t\ti += 2\n\t\tif div_counter == 8:\n\t\t\tans_counter += 1\n\t\tcheck_num += 2\n\n\tprint(ans_counter)\n\n\n\n\n', 'in_num = int(input())\ncheck_num = 0\nans_counter = 0\n\n\n\nwhile check_num <= in_num:\n\ti = 1\n\tdiv_counter = 0\n\twhile i <= check_num :\n\t\tif check_num % i == 0:\n\t\t\tdiv_counter += 1\n\t\ti += 2\n\tif div_counter == 8:\n\t\tans_counter += 1\n\tcheck_num += 2\n\nprint(ans_counter)\n\n\n\n\n', 'in_num = int(input())\ncheck_num = 0\nans_counter = 0\n\nwhile check_num <= in_num:\n\ti = 1\n\tdiv_counter = 0\n\twhile i < check_num /2:\n\t\tif check_num % i == 0:\n\t\t\tdiv_counter += 1\n\t\ti += 2\n\tif div_counter == 8:\n\t\tans_counter += 1\n\nprint(ans_counter)\n\n\n\n\n', 'in_num = int(input())\ncheck_num = 1\nans_counter = 0\n\n\n\nwhile check_num <= in_num:\n\ti = 1\n\tdiv_counter = 0\n\twhile i <= check_num :\n\t\tif check_num % i == 0:\n\t\t\tdiv_counter += 1\n\t\ti += 2\n\tif div_counter == 8:\n\t\tans_counter += 1\n\tcheck_num += 2\n\nprint(ans_counter)\n\n\n\n\n'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Time Limit Exceeded', 'Accepted'] | ['s590143116', 's663863538', 's759042086', 's783674978', 's838967578', 's921493531', 's696836082'] | [9172.0, 9148.0, 9044.0, 9136.0, 9000.0, 9012.0, 9176.0] | [30.0, 25.0, 26.0, 27.0, 27.0, 2206.0, 26.0] | [265, 265, 265, 312, 265, 248, 265] |
p03281 | u336564899 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['\ndef make_divisors(n):\n \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\n\n\n\nn = int(input())\nfor i in range(1, n+1, 2):\n if len(make_divisors(i)) == 8:\n print(i)\nelse:\n print(0)\n', '\ndef make_divisors(n):\n \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\n\n\n\nn = int(input())\nans = 0\nfor i in range(1, n+1, 2):\n if len(make_divisors(i)) == 8:\n ans += 1\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s691392305', 's956731370'] | [3188.0, 3064.0] | [17.0, 17.0] | [427, 427] |
p03281 | u340947941 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\nc8=0 \n\n\nfor n in range((N-1)//2+1):\n c=0 \n\n for i in range(1,n+1): \n c+=int(n%i==0)\n\n if c==8: \n c8+=1\n\nprint(c8)', 'N=int(input())\nc8=0 \n\n\nfor ni in range((N-1)//2+1):\n n=ni*2+1\n c=0 \n\n for i in range(1,n+1): \n c+=int(n%i==0)\n\n if c==8: \n c8+=1\n\nprint(c8)'] | ['Wrong Answer', 'Accepted'] | ['s742683009', 's484708297'] | [2940.0, 3060.0] | [18.0, 19.0] | [310, 324] |
p03281 | u345621867 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def make_divisors(n: int) -> list:\n return_list = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n return_list.append(i)\n if i != n // i:\n return_list.append(n//i)\n\n return return_list\nN = int(input())\ncnt = 0\nfor i in range(1,N+1,2):\n if len(make_divisors(i)) == 8:\n cnt += 1\n print(i)\nprint(cnt)', 'def make_divisors(n: int) -> list:\n return_list = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n return_list.append(i)\n if i != n // i:\n return_list.append(n//i)\n\n return return_list\nN = int(input())\ncnt = 0\nfor i in range(1,N+1,2):\n if len(make_divisors(i)) == 8:\n cnt += 1\nprint(cnt)'] | ['Wrong Answer', 'Accepted'] | ['s303523525', 's038566033'] | [9380.0, 9308.0] | [27.0, 27.0] | [373, 356] |
p03281 | u345702587 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import sys\n\nn = int(sys.stdin.readline().rstrip("\\n"))\ncount = 0\nfor num in range(27, n+1, 2):\n divisor = 1\n for p in range(1, num, 2):\n if num % p == 0:\n print(f"num: {num}, p: {p}")\n divisor += 1\n if divisor == 8:\n count += 1\nprint(count)\n', 'import sys\n\nn = int(sys.stdin.readline().rstrip("\\n"))\ncount = 0\nfor num in range(24, n+1):\n divisor = 0\n for p in range(1, num):\n if num % p == 0:\n q = int((num - num % p)/ p)\n if q > p:\n divisor += 1\n else:\n break\n if divisor == 8:\n count += 1\nprint(count)\n', 'import sys\n\nn = int(sys.stdin.readline().rstrip("\\n"))\ncount = 0\nfor num in range(24, n+1):\n divisor = 0\n for p in range(1, num):\n if num % p == 0:\n q = int((num - num % p)/ p)\n if q >= p:\n divisor += 1\n else:\n break\n if divisor == 8:\n count += 1\nprint(count)', 'import sys\n\nn = int(sys.stdin.readline().rstrip("\\n"))\ncount = 0\nfor num in range(27, n+1, 2):\n divisor = 0\n for p in range(1, num, 2):\n if num % p == 0:\n q = int((num - num % p)/ p)\n if q > p:\n divisor += 1\n else:\n break\n if divisor == 8:\n count += 1\nprint(count)\n', 'import sys\n\nn = int(sys.stdin.readline().rstrip("\\n"))\ncount = 0\nfor num in range(27, n+1, 2):\n divisor = 0\n for p in range(1, num, 2):\n if num % p == 0:\n q = int((num - num % p)/ p)\n if q >= p:\n divisor += 1\n else:\n break\n if divisor == 8:\n count += 1\nprint(count)\n', 'import sys\n\nn = int(sys.stdin.readline().rstrip("\\n"))\ncount = 0\nfor num in range(27, n+1, 2):\n divisor = 1\n for p in range(1, num, 2):\n if num % p == 0:\n divisor += 1\n if divisor == 8:\n count += 1\nprint(count)\n'] | ['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s143069972', 's718772692', 's787312134', 's924611925', 's928556832', 's457508952'] | [2940.0, 2940.0, 3060.0, 3060.0, 3060.0, 2940.0] | [17.0, 18.0, 18.0, 17.0, 17.0, 18.0] | [286, 345, 345, 351, 352, 245] |
p03281 | u350049649 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import math\nN=int(input())\ndef dnum(n):\n ret=0\n for i in range(1,int(math.sqrt(n))):\n if n%i==0:\n ret+=1\n return ret\n\nans=0\n\nfor i in range(N+1):\n if i%2==1 and dnum(i)==8:\n ans+=1\n\nprint(ans)', 'N=int(input())\ndef dnum(n):\n ret=0\n for i in range(1,n+1):\n if n%i==0:\n ret+=1\n return ret\n\nans=0\n\nfor i in range(1,N+1):\n if i%2==1 and dnum(i)==8:\n ans+=1\n\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s294552601', 's481425452'] | [3060.0, 2940.0] | [18.0, 18.0] | [207, 184] |
p03281 | u350093546 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nans=0\nfor i in range(105,n+1,2):\n cnt=0\n for j in range(3,i):\n if i%j==0:\n cnt+=1\n if cnt==8:\n ans+=1\nprint(ans)', 'n=int(input())\nif 104>=n:\n print(0)\nelif 105<=n<=134:\n print(1)\nelif 135<=n<=164:\n print(2)\nelif 165<=n<=188:\n print(3)\nelif 189<=n<=194:\n print(4)\nelse:\n print(5)'] | ['Wrong Answer', 'Accepted'] | ['s968587437', 's938379790'] | [9048.0, 9076.0] | [32.0, 24.0] | [141, 169] |
p03281 | u352429976 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nl = [i for i in range(1, n + 1) if i % 2 == 1]\ncnt = 0\nfor w in l:\n i = w\n fct = []\n b, e = 3, 0\nwhile b * b < w:\n while i % b == 0:\n i = i // b\n e = e + 1\n if e > 0:\n fct.append((b, e))\n b, e = b + 1, 0\nif i > 1:\n fct.append((i, 1))\nif len(fct) > 1:\n r = 1\n for j in fct:\n r = r * (j[1] + 1)\nelif len(fct) == 1:\n r = fct[0][1] + 1\nelse:\n r = 0\nif r == 8:\n cnt += 1\nprint(cnt)', 'n = int(input())\nl = [i for i in range(1, n + 1) if i % 2 == 1]\nprint(l)\ncnt = 0\nfor w in l:\ni = w\nfct = []\nb, e = 3, 0\nwhile b * b < w:\n while i % b == 0:\n i = i // b\n e = e + 1\n if e > 0:\n fct.append((b, e))\n b, e = b + 1, 0\nif i > 1:\n fct.append((i, 1))\nif len(fct) > 1:\n r = 1\n for j in fct:\n r = r * (j[1] + 1)\nelif len(fct) == 1:\n r = fct[0][1] + 1\nelse:\n r = 0\nif r == 8:\n print(w, fct, r)\n cnt += 1\nprint(cnt)', 'n = int(input())\nl = [i for i in range(1, n + 1) if i % 2 == 1]\nprint(l)\ncnt = 0\nfor w in l:\n i = w\n fct = []\n b, e = 3, 0\nwhile b * b < w:\n while i % b == 0:\n i = i // b\n e = e + 1\n if e > 0:\n fct.append((b, e))\n b, e = b + 1, 0\nif i > 1:\n fct.append((i, 1))\nif len(fct) > 1:\n r = 1\n for j in fct:\n r = r * (j[1] + 1)\nelif len(fct) == 1:\n r = fct[0][1] + 1\nelse:\n r = 0\nif r == 8:\n cnt += 1\nprint(cnt)', 'n = int(input())\ncnt = 0\nfor i in range(1, n + 1, 2):\n num_fact = 0\n for j in range(1, i + 1):\n if i % j == 0:\n num_fact += 1\n if num_fact == 8:\n cnt += 1\nprint(cnt)'] | ['Time Limit Exceeded', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s054444114', 's209268768', 's404416666', 's947109718'] | [3064.0, 2940.0, 3064.0, 2940.0] | [2104.0, 17.0, 2104.0, 18.0] | [473, 515, 482, 199] |
p03281 | u352676541 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\n\nans = 0\ncount = 0\nfor i in range(1,N+1):\n if i%2==1:\n for j in range(1,i+1):\n if i%j==0:\n ans += 1\n if ans == 8:\n count += 1\nprint(count)', 'N=int(input())\n\nans = 0\ncount = 0\nfor i in range(1,N+1):\n if i%2==1:\n for j in range(1,i+1):\n if i%j==0:\n ans += 1\n if ans == 8:\n count += 1\n ans = 0\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s859518514', 's569815141'] | [9116.0, 9120.0] | [31.0, 25.0] | [177, 187] |
p03281 | u362560965 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\ndef divlist(n):\n if n < 1:\n return []\n elif n == 1:\n return [1]\n else:\n div = [1]\n for i in range(2, n // 2 + 1):\n if n % i == 0:\n div.append(i)\n return div\n\n\nans = []\n\nfor i in range(1,N+1):\n if len(divlist(i)) == 8:\n ans.append(i)\n\nprint(len(ans))', 'N = int(input())\n\ndef divlist(n):\n if n < 1:\n return []\n elif n == 1:\n return [1]\n else:\n div = [1]\n for i in range(2, n // 2 + 1):\n if n % i == 0:\n div.append(i)\n return div\n\n\nans = []\n\nfor i in range(1,N+1):\n if i % 2 == 0:\n pass\n elif len(divlist(i)) == 8:\n ans.append(i)\n\nprint(len(ans))', 'N = 100\n\ndef divlist(n):\n if n < 1:\n return []\n elif n == 1:\n return [1]\n else:\n div = [1]\n for i in range(2, n // 2 + 1):\n if n % i == 0:\n div.append(i)\n return div\n\n\nans = []\n\nfor i in range(1,N+1):\n if i % 2 == 0:\n pass\n elif len(divlist(i)) == 8:\n ans.append(i)\n\nprint(len(ans))', 'N = int(input())\n\ndef divlist(n):\n if n < 1:\n return []\n elif n == 1:\n return [1]\n else:\n div = [1]\n for i in range(2, n + 1):\n if n % i == 0:\n div.append(i)\n return div\n\n\nans = []\n\nfor i in range(1,N+1):\n if i % 2 == 0:\n pass\n elif len(divlist(i)) == 8:\n ans.append(i)\n\nprint(len(ans))'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s484127805', 's563861078', 's670692938', 's071045932'] | [3064.0, 3064.0, 3064.0, 3064.0] | [20.0, 17.0, 17.0, 18.0] | [347, 381, 372, 376] |
p03281 | u364386647 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def resolve():\n N = int(input())\n ans = 0\n for i in range(1, N+1, 2):\n tmp = make_divisors(i)\n if len(tmp) == 8:\n ans += 1\n print(ans)\n return\n\nresolve()\n', 'def resolve():\n N = int(input())\n ans = 0\n for i in range(1, N+1, 2):\n tmp = 0\n for j in range(1, N+1):\n if i % j == 0:\n tmp += 1\n\n if tmp == 8:\n ans += 1\n print(ans)\n return\n\nresolve()'] | ['Runtime Error', 'Accepted'] | ['s969985695', 's365965752'] | [9092.0, 9176.0] | [20.0, 27.0] | [194, 258] |
p03281 | u366939485 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['\n\n\n\n\nn = int(input())\nif n < 105: print(0)\nelif n < 135: print(1)\nelif n < 165: print(2)\nelif n < 195: print(3)\nelse print(4)', '\n\n\n\n\n\nn = int(input())\nif n < 105: print(0)\nelif n < 135: print(1)\nelif n < 165: print(2)\nelif n < 189: print(3)\nelif n < 195: print(4)\nelse: print(5)'] | ['Runtime Error', 'Accepted'] | ['s053705051', 's752155248'] | [9036.0, 9100.0] | [29.0, 32.0] | [275, 320] |
p03281 | u367130284 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['a=[s for s in range(int(input())+1)]\nprint(a.count(30)+a.count(105))', 'a=[s for s in range(int(input())+1)]\nprint(a.count(105)+a.count(165)+a.count(195)+a.count(189)+a.count(135))'] | ['Wrong Answer', 'Accepted'] | ['s668102445', 's045930463'] | [2940.0, 2940.0] | [17.0, 17.0] | [68, 108] |
p03281 | u367510440 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=input("n=")\n\ns=0\nyakusu=0\n\n\n\nfor i in range(1,int(n)+1):\n s=0\n if i%2!=0:\n for k in range(1,i):\n if i%k==0:\n s+=1 \n if s==8:\n yakusu+=1 \n\nprint(yakusu)', 'n=input("n=")\n\ns=0\nyakusu=0\n\n\n\nfor i in range(1,int(n)+1):\n s=0\n if i%2!=0:\n for k in range(1,i+1):\n if i%k==0:\n s+=1 \n if s==8:\n yakusu+=1 \n\nprint(yakusu)', 'n=input()\n\ns=0\nyakusu=0\n\n\n\nfor i in range(1,int(n)+1):\n s=0\n if i%2!=0:\n for k in range(1,i+1):\n if i%k==0:\n s+=1 \n if s==8:\n yakusu+=1 \n\nprint(yakusu)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s055861932', 's323393107', 's964117419'] | [9044.0, 9120.0, 9084.0] | [30.0, 25.0, 29.0] | [213, 215, 211] |
p03281 | u369094007 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\nans = 0\nfor i in range(1, 200, 2):\n cnt = 0\n for j in range(1, i + 1):\n if i % j == 0:\n cnt += 1\n print(j)\n if cnt == 8:\n ans += 1\nprint(ans)', 'N = int(input())\nans = 0\nfor i in range(1, N + 1, 2):\n cnt = 0\n for j in range(1, i + 1):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s910455376', 's256272710'] | [3060.0, 2940.0] | [18.0, 18.0] | [173, 164] |
p03281 | u371467115 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nans=0\ntotal=0\nfor i in range(n+1):\n for j in range(201):\n if i%j==0:\n ans+=1\n if ans==8:\n total+=1\nprint(total)', 'n=int(input())\nans=0\ntotal=0\nfor i in range(1,n+1,2):\n for j in range(1,i+1):\n if i%j==0:\n ans+=1\n if ans==8:\n total+=1\nprint(total)\n', 'n=int(input())\ntotal=0\nfor i in range(1,n+1,2):\n ans=0\n for j in range(1,i+1):\n if i%j==0:\n ans+=1\n if ans==8:\n total+=1\nprint(total)\n'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s372871098', 's785835119', 's370370343'] | [2940.0, 2940.0, 2940.0] | [18.0, 19.0, 19.0] | [139, 146, 148] |
p03281 | u375695365 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\ncount=0\nfor i in range(1,n+1):\n if n%1==0:\n count+=1\nif count==8:\n print("1")\nelse:\n print("0") ', 'n=int(input())\nans=0\nfor j in range(1,n+1,2):\n count=0\n for i in range(1,j+1):\n if j%i==0:\n count+=1\n if count==8:\n ans+=1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s400257248', 's712649968'] | [2940.0, 2940.0] | [17.0, 18.0] | [130, 167] |
p03281 | u377219748 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['\n\n\n\n\nN = int(input())\n\n\n\n\nans_num = 0\n\n\nfor a in range(1, N + 1):\n yakusuu = []\n for i in range(1, a+1):\n if a % i == 0:\n yakusuu.append(i)\n if len(yakusuu) == 8:\n ans_num = ans_num + 1\n\nprint(ans_num)', '\n\n\n\n\nN = int(input())\n\n\n\n\nans_num = 0\n\n\nfor a in range(1, N + 1):\n yakusuu = []\n if a % 2 == 0:\n continue\n for i in range(1, a+1):\n if a % i == 0:\n yakusuu.append(i)\n if len(yakusuu) == 8:\n ans_num = ans_num + 1\n\nprint(ans_num)'] | ['Wrong Answer', 'Accepted'] | ['s337643474', 's401118639'] | [3060.0, 3060.0] | [20.0, 19.0] | [587, 617] |
p03281 | u380761558 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int( input() )\na = 1\nfor i in range(1,N):\n if N % i == 0:\n a += 1\nprint(a)', 'N = int( input() )\na = 0\n\nfor j in range(1,N+1):\n b = 0\n for i in range(1,j+1):\n if j % i == 0:\n b += 1\n if b == 8 and j % 2 == 1:\n a+=1\n \nprint(a)'] | ['Wrong Answer', 'Accepted'] | ['s923692226', 's847899751'] | [3068.0, 2940.0] | [18.0, 19.0] | [82, 164] |
p03281 | u382431597 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import sys\n\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\nn = int(input())\ncount =0\nfor i in range(1,n+1,2):\n tmp = search_divisor_num_1(i)\n if tmp == 8:\n count+=1\nprint(count)', 'import sys\nimport math\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\ndef make_prime_list_2(num):\n if num < 2:\n return []\n\n \n prime_list = [i for i in range(num + 1)]\n prime_list[1] = 0 \n num_sqrt = math.sqrt(num)\n\n for prime in prime_list:\n if prime == 0:\n continue\n if prime > num_sqrt:\n break\n\n for non_prime in range(2 * prime, num, prime):\n prime_list[non_prime] = 0\n\n return [prime for prime in prime_list if prime != 0]\n \nn = int(input())\ncount =0\nfor i in range(1,n+1,2):\n tmp = search_divisor_num_1(i)\n if tmp == 8:\n count+=1\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s610238708', 's278164432'] | [3064.0, 3064.0] | [18.0, 18.0] | [637, 1158] |
p03281 | u382639013 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\ndef make_divisors(n):\n ans = 0\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n ans += 1\n if i != n // i:\n ans += 1\n return ans\n\nfor i in range(1,N+1):\n if (i %2 ==1) and (make_divisors(i) ==8):\n ans += 1\n\nprint(ans)', 'N = int(input())\n\ndef make_divisors(n):\n ans = 0\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n ans += 1\n if i != n // i:\n ans += 1\n return ans\n\nans = 0\nfor i in range(1,N+1):\n if (i %2 ==1) and (make_divisors(i) ==8):\n ans += 1\n\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s519988923', 's348657048'] | [9440.0, 9368.0] | [22.0, 32.0] | [300, 308] |
p03281 | u386819480 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\nl = []\nfor i in range(1,201,2):\n if i%2 == 0 and i%3 == 0 \\\n and i%5 == 0 and i%7 == 0 \\\n and i%11 == 0 and i%13 == 0 \\\n and i%17 == 0 and i%19 == 0:\n print(i)\n else:\n continue\n', 'n = int(input())\n\ndef prime_decomposition(n):\n i = 2\n table = []\n while i * i <= n:\n while n % i == 0:\n n /= int(i)\n table.append(int(i))\n i += 1\n if n > 1:\n table.append(n)\n return table\n\na = [1]*(n+1)\nfor i in range(3,n+1,2):\n il = mymath.prime_decomposition(i)\n il_unique = list(set(il))\n ans = 1\n for j in il_unique:\n ans *= (il.count(j)+1)\n a[i] = max(a[i],ans)\n\n\nprint(a.count(8))', 'n = int(input())\n\ndef prime_decomposition(n):\n i = 2\n table = []\n while i * i <= n:\n while n % i == 0:\n n /= int(i)\n table.append(int(i))\n i += 1\n if n > 1:\n table.append(n)\n return table\n\na = [1]*(n+1)\nfor i in range(3,n+1,2):\n il = prime_decomposition(i)\n il_unique = list(set(il))\n ans = 1\n for j in il_unique:\n ans *= (il.count(j)+1)\n a[i] = max(a[i],ans)\n\n\nprint(a.count(8))'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s000374532', 's059028871', 's378365555'] | [2940.0, 3064.0, 3188.0] | [17.0, 18.0, 18.0] | [224, 432, 425] |
p03281 | u391066416 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\n\nx=0\nfor i in range(1,N+1,2):\n y=0\n for j in range(i//2):\n if i % (j+1) == 0:\n y+=1\n if y+1 == 8:\n x+=1\n print(i,y+1)', 'N = int(input())\n\nx = 0\nfor i in range(1, N + 1, 2):\n y = 0\n for j in range(i // 2):\n if i % (j + 1) == 0:\n y += 1\n if y + 1 == 8:\n x += 1\n\nprint(x)\n'] | ['Wrong Answer', 'Accepted'] | ['s366577820', 's646903451'] | [3060.0, 2940.0] | [18.0, 18.0] | [169, 183] |
p03281 | u391675400 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\nresult = 0\n\nfor i in range(1,n+1,2):\n if i > 200:\n break\n print(i)\n if len(make_divisors(i)) == 8:\n result += 1\n \n\nprint(result)\n', 'n = int(input())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\nresult = 0\n\nfor i in range(1,n+1,2):\n if i > 200:\n break\n #print(i)\n if len(make_divisors(i)) == 8:\n result += 1\n \n\nprint(result)\n'] | ['Wrong Answer', 'Accepted'] | ['s612332450', 's593795818'] | [3444.0, 3060.0] | [20.0, 17.0] | [414, 415] |
p03281 | u392423112 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\nif N < 105:\n print(0)\nif N >= 105 and N < 135:\n print(1)\nif N >= 135 and N < 165:\n print(2)\nelse:\n print(3)', 'N = int(input())\n\nif N < 105:\n print(0)\nelif N >= 105 and N < 135:\n print(1)\nelif N >= 135 and N < 165:\n print(2)\nelif N >= 165 and N < 189:\n print(3)\nelif N >= 189 and N < 195:\n print(4)\nelse:\n print(5)'] | ['Wrong Answer', 'Accepted'] | ['s719796059', 's896264551'] | [2940.0, 3060.0] | [17.0, 17.0] | [137, 221] |
p03281 | u393512980 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['from collections import defaultdict\nN = int(input())\nans = 0\nfor i in range(N + 1):\n if i % 2 == 0:\n continue\n t, j, dic, r = i, 2, defaultdict(int), 1\n while True:\n while t % j == 0:\n t /= j\n dic[j] += 1\n if j * j > i:\n break\n if t > 1:\n dic[t] += 1\n for key in dic:\n r *= dic[key] + 1\n if r == 8:\n ans += 1\nprint(ans)', 'from collections import defaultdict\nN = int(input())\nans = 0\nfor i in range(N + 1):\n if i % 2 == 0:\n continue\n t, j, dic, r = i, 2, defaultdict(int), 1\n while True:\n while t % j == 0:\n t /= j\n dic[j] += 1\n j += 1\n if j * j > i:\n break\n if t > 1:\n dic[t] += 1\n for key in dic:\n r *= dic[key] + 1\n if r == 8:\n ans += 1\nprint(ans)\n'] | ['Time Limit Exceeded', 'Accepted'] | ['s178147703', 's238290579'] | [3316.0, 3828.0] | [2104.0, 81.0] | [358, 370] |
p03281 | u395202850 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nnSum = 0\nfor i in range(n):\n cnt = 0\n for j in range(i + 1):\n if (i + 1) % (j + 1) == 0:\n cnt += 1\n if cnt == 8 and (i + 1) % 2 != 0:\n nSum += 1\n a.append(i + 1)\n\nprint(nSum)\n', 'n = int(input())\na = [105, 135, 165, 189, 195]\nfor i in range(5):\n a[i] = 1 if n >= a[i] else 0\nprint(sum(a))\n'] | ['Runtime Error', 'Accepted'] | ['s861912453', 's933135818'] | [2940.0, 3064.0] | [18.0, 18.0] | [233, 113] |
p03281 | u395816772 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\na = n//2\nans = 0\nfor j in range(1,n+1):\n \tcount = 1\n\tfor i in range(a):\n \tif n % i == 0:\n \t\tcount += 1\n if count >= 8:\n ans +=1\nprint(ans)\n\n \n', 'n = int(input())\na = n//2\nans = 0\nfor j in range(1,n+1):\n count = 1\n for i in range(1,a+1):\n if n % i == 0:\n count += 1\n if count >= 8 and j % 2 == 1:\n ans +=1\nprint(ans)', 'n = int(input())\na = n//2\nans = 0\nfor j in range(1,n+1):\n \tcount = 1\n\tfor i in range(a):\n \tif n % i == 0:\n \t\tcount += 1\n if count >= 8:\n ans +=1\nprint(ans)\n\n \n', 'n = int(input())\n\nans = 0\nfor j in range(1,n+1):\n \tcount = 1\n\tfor i in range(n//2):\n \tif n % i == 0:\n \t\tcount += 1\n if count >= 8:\n ans +=1\nprint(ans)\n\n ', 'n = int(input())\na = n//2\nans = 0\nfor j in range(1,n+1):\n count = 1\n for i in range(1,a+1):\n if n % i == 0:\n count += 1\n if count >= 8:\n ans +=1\nprint(ans)\n\n \n', 'n = int(input())\na = n//2\nans = 0\nfor j in range(1,n+1):\n count = 1\n for i in range(a):\n if n % i == 0:\n count += 1\n if count >= 8:\n ans +=1\nprint(ans)\n', 'n = int(input())\na = n//2\nans = 0\nfor j in range(1,n+1):\n count = 1\n for i in range(1,a+1):\n if n % i == 0:\n count += 1\n if count >= 8 and i % 2 == 1:\n ans +=1\nprint(ans)', 'n = int(input())\na = n//2\nans = 0\nfor j in range(1,n+1):\n count = 0\n for i in range(1,j+1):\n if j % i == 0:\n count += 1\n if count >= 8 and j % 2 == 1:\n ans +=1\nprint(ans)\n'] | ['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s339577244', 's540075921', 's554689945', 's641503387', 's678480720', 's744654701', 's964728821', 's868743930'] | [2940.0, 3060.0, 2940.0, 2940.0, 2940.0, 2940.0, 3060.0, 2940.0] | [17.0, 21.0, 17.0, 17.0, 21.0, 18.0, 22.0, 21.0] | [195, 212, 195, 189, 212, 194, 212, 213] |
p03281 | u396971285 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\n\nn=0\nm=0\nfor i in range(N):\n for j in range(N):\n if (i+1)%(j+1)==0:\n n+=1\n if n==8:\n m+=1\n n=0\n \nprint(m)', 'N=int(input())\n\nn=0\nm=0\nfor i in range(N+1):\n for j in range(N):\n if i%(j+1)==0:\n n+=1\n if n==8:\n m+=1\n \nprint(m)', 'N=int(input())\n\nn=0\nm=0\nfor i in range(N):\n\n n = 0\n for j in range(N):\n if (i+1)%(j+1)==0:\n \n n+=1\n # print("\\tn: ", n, "m:", m)\n if n==8 and (i+1)%2!=0:\n m+=1\n # n=0\n \nprint(m)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s399991795', 's678778583', 's464907838'] | [2940.0, 2940.0, 2940.0] | [22.0, 22.0, 23.0] | [154, 144, 257] |
p03281 | u398942100 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=input()\ns=0\na=[105,135,165,195,189]\nfor i in a:\n if n>=i:\n s+=1\nprint(s)', 'n=int(input())\ns=0\na=[105,135,165,195,189]\nfor i in a:\n if n>=i:\n s+=1\nprint(s)'] | ['Runtime Error', 'Accepted'] | ['s998605649', 's263541104'] | [2940.0, 2940.0] | [18.0, 17.0] | [78, 80] |
p03281 | u403331159 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nif n<104:\n print(0)\nif n<135:\n print(1)\nif n<165:\n print(2)\nif n<189:\n print(3)\nif n<195:\n print(4)', 'n=int(input())\nif n<105:\n print(0)\nelif n<135:\n print(1)\nelif n<165:\n print(2)\nelif n<189:\n print(3)\nelif n<195:\n print(4)\nelse:\n print(5)\n'] | ['Wrong Answer', 'Accepted'] | ['s822513990', 's357281514'] | [2940.0, 2940.0] | [17.0, 17.0] | [119, 145] |
p03281 | u403984573 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\nans=0\nfor i in range(1,N + 1,2):\n cnt=0\n for j in range(1,i,1):\n if not i%j:\n cnt+=1\n if cnt==8:\n ans += 1\nprint(ans)\n', 'N=int(input())\nif N < 105:\n print(0)\nelif N < 135:\n print(1)\nelif N < 165\n print(2)\nelif N < 189:\n print(3)\nelif N < 195:\n print(4)\nelse:\n ptint(5)', 'N=int(input())\nans=0\nfor i in range(1,N + 1,2):\n cnt=0\n for j in range(1,i+1):\n if not i%j:\n cnt+=1\n if cnt==8:\n ans += 1\nprint(ans)\n'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s267444537', 's885960696', 's417362692'] | [2940.0, 2940.0, 2940.0] | [19.0, 17.0, 18.0] | [163, 153, 163] |
p03281 | u404034840 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nif n < 105:\n print(0)\nelse:\n ans = 0\n for i in range(n,103,-2):\n count = 1\n for j in range(1,99,2):\n nj = n%j\n if nj == 0:\n count += 1\n if count == 9:\n ans -= 1\n if count == 8:\n ans += 1\n print(ans)', 'n = int(input())\nif n %2 == 0:\n n -= 1\nif n < 105:\n print(0)\nelse:\n ans = 0\n for i in range(n,103,-2):\n count = 1\n for j in range(1,101,2):\n nj = n%j\n if nj == 0:\n count += 1\n if count == 9:\n ans -= 1\n if count == 8:\n ans += 1\n print(ans)', 'n = int(input())\na = 0\nfor i in range(1,n+1,2):\n c = 0\n for j in range(1,n+1):\n if i%j == 0:\n c += 1\n if c == 8:\n a +=1\nprint(a)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s153867357', 's366039471', 's150214189'] | [3060.0, 3060.0, 9156.0] | [17.0, 18.0, 31.0] | [266, 290, 142] |
p03281 | u404676457 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\ncount = 0\nfor i in range(105, n + 1):\n insu = 0\n if i % 2 != 0:\n continue\n for j in range(1, i + 1):\n if i % j == 0:\n insu += 1\n if insu == 8:\n count += 1\nprint(count)\n', 'n = int(input())\ncount = 0\nfor i in range(105, n + 1):\n insu = 0\n if i % 2 == 0:\n continue\n for j in range(1, i + 1):\n if i % j == 0:\n insu += 1\n if insu == 8:\n count += 1\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s704272732', 's342593659'] | [2940.0, 2940.0] | [18.0, 18.0] | [229, 229] |
p03281 | u405864101 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def divisor(n): \n i = 1\n table = []\n while i * i <= n:\n if n % i == 0:\n table.append(i)\n table.append(n//i)\n i += 1\n table = list(set(table))\n return table\n\nN = int(input())\ntotal = 0\n\nfor n in range(1, N + 1, 2):\n print(n)\n if len(divisor(n)) == 8:\n total += 1\n\nprint(total)', 'def divisor(n): \n i = 1\n table = []\n while i * i <= n:\n if n % i == 0:\n table.append(i)\n table.append(n//i)\n i += 1\n table = list(set(table))\n return table\n\nN = int(input())\ntotal = 0\n\nfor n in range(1, N + 1, 2):\n if len(divisor(n)) == 8:\n total += 1\n\nprint(total)'] | ['Wrong Answer', 'Accepted'] | ['s207321924', 's005747636'] | [9224.0, 9184.0] | [27.0, 31.0] | [339, 326] |
p03281 | u410118019 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nc=0\nfor i in range(1,n+1,2):\n count=0\n for j in range(1,i**0.5):\n if i%j==0:\n count+=1\n if count==8:\n c+=1\nprint(c)', 'n=int(input())\nc=0\nfor i in range(1,n+2,2):\n count=0\n for j in range(1,int(i**0.5)):\n if i%j==0:\n count+=1\n if count==8:\n c+=1\nprint(c)\n', 'n=int(input())\nc=0\nfor i in range(1,n+1,2):\n count=0\n for j in range(1,i+1):\n if i%j==0:\n count+=1\n if count==8:\n c+=1\nprint(c)\n'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s498088420', 's730432149', 's672248672'] | [3060.0, 2940.0, 2940.0] | [18.0, 17.0, 19.0] | [144, 150, 142] |
p03281 | u412481017 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\n\nresult=0\nfor i in range(1,n):\n cnt=0\n if i%2==0:\n for j in range(1,i+1):\n if i%j==0:\n cnt+=1\n if cnt==8:\n result+=1\n \nprint(result)\n \n ', 'n=int(input())\n\nresult=0\nfor i in range(1,n+1):\n cnt=0\n if i%2==1:\n for j in range(1,i+1):\n if i%j==0:\n cnt+=1\n #print(i,j)\n if cnt==8:\n #print(">>",i)\n result+=1\n \nprint(result)\n \n \n'] | ['Wrong Answer', 'Accepted'] | ['s984881408', 's766939751'] | [2940.0, 2940.0] | [19.0, 18.0] | [181, 223] |
p03281 | u414558682 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['# import sympy\n\ndef prime_factorize(n):\n a = []\n while n % 2 == 0:\n a.append(2)\n n //= 2\n f = 3\n while f * f <= n:\n if n % f == 0:\n a.append(f)\n n //= f\n else:\n f += 2\n if n != 1:\n a.append(n)\n return a\n\nn = int(input())\n# print(f"{n}")\n\nans = 0\nfor i in range(1, n + 1):\n if i % 2 == 0:\n continue\n \n \n a = prime_factorize(i)\n # print(a)\n d_count = len(a)\n # print(f"{i} {d_count}")\n if d_count == 8:\n ans += 1\nprint(ans)', 'def make_divisors(n: int) -> list:\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n \n return divisors\n \nn = int(input())\n# print(f"{n}")\n\nans = 0\nfor i in range(1, n + 1, 2):\n divisors = make_divisors(i)\n if len(divisors) == 8:\n \n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s350571885', 's301561355'] | [9164.0, 9336.0] | [26.0, 26.0] | [579, 451] |
p03281 | u414877092 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\ncount=0\nfor i in range(1):\n for j in range(1):\n for k in range(1):\n for l in range(1):\n for m in range(1):\n if i*3+j*5+k*7+l*11+m*13<=N and i+j+k+l+m==3:\n count+=1\nprint(count)', 'N=int(input())\nans=0\nfor i in range(1,N+1):\n if i%2==0:\n continue\n count=0\n for j in range(1,i+1):\n if i%j==0:\n count+=1\n if count==8:\n ans+=1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s128348517', 's687188461'] | [3060.0, 2940.0] | [17.0, 18.0] | [269, 197] |
p03281 | u416223629 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\ncount=0\nanswer=0\nfor i in range(N):\n for j in range(i+1):\n if (i+1)%(j+1)==0:\n count=count+1\n if count==8:\n answer=answer+1\n count=0\n\nprint(answer)\n', 'n = int(input())\nif 105>n: print(0)\nelif 135>n: print(1)\nelif 165>n: print(2)\nelif 189>n: print(3)\nelif 195>n: print(4)\nelse: print(5)'] | ['Wrong Answer', 'Accepted'] | ['s138255403', 's623019654'] | [2940.0, 2940.0] | [20.0, 17.0] | [201, 134] |
p03281 | u416915042 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['a = input()\nans = 0\nif a >= 105:\n ans+=1\nif a >= 135:\n ans+=1\nif a >= 165:\n ans+=1\nif a >= 189:\n ans+=1\nif a >= 195:\n ans+=1\nprint(ans)', 'a = int(input())\nans = 0\nif a >= 105:\n ans+=1\nif a >= 135:\n ans+=1\nif a >= 165:\n ans+=1\nif a >= 189:\n ans+=1\nif a >= 195:\n ans+=1\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s604681692', 's074282370'] | [3060.0, 3060.0] | [17.0, 17.0] | [150, 155] |
p03281 | u433080052 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(inut())\nif N<105:\n print(0)\nelif N<135:\n print(1)\nelif N<165:\n print(2)\nelif N<189:\n print(3)\nelif N<195:\n print(4)\nelse:\n print(5)', 'N = int(input())\nif N<105:\n print(0)\nelif N<135:\n print(1)\nelif N<165:\n print(2)\nelif N<189:\n print(3)\nelif N<195:\n print(4)\nelse:\n print(5)\n'] | ['Runtime Error', 'Accepted'] | ['s011335309', 's049674336'] | [2940.0, 3064.0] | [18.0, 17.0] | [145, 147] |
p03281 | u437351386 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\ndef yakusuu(n):\n num=0\n for i in range(1,n):\n if n%i==0:\n num=num+1\n return num==8\nans=0\nfor i in range(n):\n if def(i):\n ans=ans+1\nprint(ans)\n \n ', '#import math\nN=int(input())\ndef yakusuu(n):\n num=_0\n for i in range(1,n):\n if n%i==0:\n num=num+1\n return num==8\nans=0\nfor i in range(n):\n if def(i):\n ans=ans+1\nprint(ans)\n \n ', 'n=int(input())\ndef yakusuu(n):\n num=0\n if n%2==1:\n for i in range(1,n+1):\n if n%i==0:\n num=num+1\n return num \n\nans=0\nfor i in range(n+1):\n if yakusuu(i)==8:\n ans=ans+1\nprint(ans)\n \n '] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s114570250', 's875828052', 's923429960'] | [2940.0, 2940.0, 2940.0] | [18.0, 17.0, 18.0] | [181, 195, 210] |
p03281 | u437638594 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\ncount = 0\n\nfor i in range(1, N+1, 2):\n tmp = 0\n for j in range(1, i):\n if i % j == 0:\n tmp += 1\n if tmp == 8:\n count += 1\n \nprint(count)\n ', 'N = int(input())\n\ncount = 0\n\nfor i in range(1, N+1, 2):\n tmp = 0\n for j in range(1, i+1):\n if i % j == 0:\n tmp += 1\n # print(tmp)\n if tmp == 8:\n count += 1\n \nprint(count)\n '] | ['Wrong Answer', 'Accepted'] | ['s091413469', 's960991109'] | [2940.0, 2940.0] | [18.0, 18.0] | [174, 191] |
p03281 | u437723389 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ["import math\n\ndef countDividers(n):\n divisors = []\n for i in range(1, int(math.sqrt(n))):\n if n % i == 0:\n divisors.append(i)\n divisors.append(int(n/i))\n return len(divisors)\n\nif __name__ == '__main__':\n n = int(input())\n count = 0\n for i in range(1,n+1):\n if countDividers(i) == 8:\n count += 1\n print(count)", "import math\n\ndef countDividers(n):\n divisors = []\n for i in range(1, int(math.sqrt(n))):\n if n % i == 0:\n divisors.append(i)\n divisors.append(int(n/i))\n return len(divisors)\n\nif __name__ == '__main__':\n n = int(input())\n print(countDividers(n))\n \n ", "import math\n\ndef countDividers(n):\n divisors = []\n for i in range(1, int(math.sqrt(n))+1):\n if n % i == 0:\n divisors.append(i)\n divisors.append(int(n/i))\n return len(divisors)\n\n\nif __name__ == '__main__':\n n = int(input())\n count = 0\n for i in range(1,n+1):\n if i %2 ==1 and countDividers(i) == 8:\n count += 1\n \n print(count)\n"] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s147654027', 's824190777', 's121223842'] | [8916.0, 9016.0, 9100.0] | [30.0, 29.0, 36.0] | [369, 296, 404] |
p03281 | u440129511 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nl=list(range(1,n+1))\nk=[27,105,125,165,195]\nlk=set(l) & set(k)\nprint(len(lk))', 'n=int(input())\nl=list(range(1,n+1))\nk=[105,135,165,189,195]\nlk=set(l) & set(k)\nprint(len(lk))'] | ['Wrong Answer', 'Accepted'] | ['s804661098', 's923933846'] | [3444.0, 3060.0] | [28.0, 18.0] | [94, 95] |
p03281 | u445628522 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=int(input())\ncount=0\n\nfor i in range(1,N+1):\n a=[]\n if i%2==0:\n continue\n for j in range(1,i+1):\n if i%j==0:\n a.append(j)\n\n if len(a)==8:\n count+=1\n\nprint(count)', 'N=in(input())\nconut=0\n\nfor i in range(1,N+1):\n a=[]\n if i%2==0:\n continue\n for j in range(1,i+1):\n if i%j==0:\n a.append(j)\n\n if len(a)==8:\n count+=1\n\nprint(count)', 'N=int(input())\nconut=0\n\nfor i in range(1,N+1):\n a=[]\n if i%2==0:\n continue\n for j in range(1,i+1):\n if i%j==0:\n a.append(j)\n\n if len(a)==8:\n count+=1\n\nprint(count)', '# -*- coding: utf-8 -*-\n\nN = int(input())\ncount = 0\n\nfor i in range(1, N + 1):\n a = []\n if i % 2 == 0:\n continue\n\n for j in range(1, i + 1):\n if i % j == 0:\n a.append(j)\n\n if len(a) == 8:\n count += 1\n\nprint(count)\n\n\n'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s154583550', 's518703803', 's704042921', 's758318612'] | [2940.0, 2940.0, 2940.0, 2940.0] | [17.0, 17.0, 17.0, 18.0] | [210, 209, 210, 260] |
p03281 | u448655578 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\ncount1 = 0\nfor i in range(1,N+1):\n if i % 2 != 0:\n \tcount2 = 0 \n for j in range(1,i+1):\n if i % j == 0:\n count2 += 1\n if count2 == 8:\n count1 += 1\nprint(count1)\n \n ', 'N = int(input())\ncount1 = 0\nfor i in range(1,N+1):\n if i % 2 != 0: #Odd Number\n count2 = 0 \n for j in range(1,i+1):\n if i % j == 0:\n count2 += 1\n if count2 == 8:\n count1 += 1\nprint(count1)'] | ['Runtime Error', 'Accepted'] | ['s021636997', 's102608859'] | [2940.0, 3064.0] | [17.0, 18.0] | [219, 220] |
p03281 | u454714837 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\nAns = 0\n\nfor i in range(1,N,2):\n count = 0\n for j in range(1,i,2):\n if i % j == 0:\n count += 1\n if count == 7:\n Ans += 1\n\nprint(Ans)', 'N = int(input())\n\nAns = 0\n\nfor i in range(1,N+1,2):\n count = 0\n for j in range(1,i,2):\n if i % j == 0:\n count += 1\n if count == 7:\n Ans += 1\n\nprint(Ans)'] | ['Wrong Answer', 'Accepted'] | ['s368527921', 's703305442'] | [3060.0, 2940.0] | [18.0, 17.0] | [184, 186] |
p03281 | u455317716 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nif !n%2:\n n += 1\n\nresult = 0\n\nfor i in range(1,n+2,2):\n print(i)\n cnt = 0\n\n for ii in range(1,i+2,2):\n if i%ii == 0:\n cnt += 1\n\n if cnt >= 8:\n result += 1\n\nprint(result)', 'n = int(input())\nif !n%2:\n n += 1\n\nresult = 0\n\nfor i in range(1,n+2,2):\n cnt = 0\n\n for ii in range(1,i+2,2):\n if i%ii == 0:\n cnt += 1\n\n if cnt >= 8:\n result += 1\n\nprint(result)', 'n = int(input())\nif not n%2:\n n -= 1\n\nresult = 0\n\nfor i in range(1,n+2,2):\n cnt = 0\n\n for ii in range(1,i+2,2):\n if i%ii == 0:\n cnt += 1\n\n if cnt >= 8:\n result += 1\n\nprint(result)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s186680042', 's509373379', 's244765811'] | [2940.0, 2940.0, 3060.0] | [17.0, 17.0, 17.0] | [226, 213, 216] |
p03281 | u456806668 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n\n\nN = int(input())\n\ncount=0\nmitasuN=[]\nfor i in range(1,N,2):\n tmp_s = make_divisors(i)\n # print(tmp_s)\n if len(tmp_s)==8:\n count+=1\n mitasuN.append(i)\n# print(mitasuN)\nprint(count)\n', '\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n\n\nN = int(input())\n\ncount=0\nmitasuN=[]\nfor i in range(1,N+1,2):\n tmp_s = make_divisors(i)\n # print(tmp_s)\n if len(tmp_s)==8:\n count+=1\n mitasuN.append(i)\n# print(mitasuN)\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s062786613', 's156773506'] | [3060.0, 3060.0] | [17.0, 17.0] | [494, 496] |
p03281 | u460245024 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\n\ncount = 0\nfor n in range(1, N+1, 2):\n count_fact = 0\n for i in range(1, n+1):\n if n%i == 0:\n count_fact += 1\n else:\n if count_fact == 8:\n print(n)\n count += 1\n\nprint(count)\n', 'N = int(input())\n\ncount = 0\nfor n in range(1, N+1, 2):\n count_fact = 0\n for i in range(1, n+1):\n if n%i == 0:\n count_fact += 1\n else:\n if count_fact == 8:\n count += 1\n\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s828575336', 's713950862'] | [3060.0, 2940.0] | [18.0, 19.0] | [247, 226] |
p03281 | u460737328 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['from math import sqrt, ceil\n\nN = int(input())\nans = 0\nfor n in range(1, N+1, 2):\n count = 0\n for i in range(1, ceil(sqrt(n))+1):\n if n%i == 0:\n count += 2\n if count == 8:\n print(n)\n ans += 1\nprint(ans)\n', 'from math import sqrt, ceil\n\nN = int(input())\nans = 0\nfor n in range(1, N+1, 2):\n count = 0\n for i in range(1, ceil(sqrt(n))+1):\n if n%i == 0:\n count += 2\n if count == 8:\n ans += 1\nprint(ans)\n\n'] | ['Wrong Answer', 'Accepted'] | ['s450985173', 's936559667'] | [2940.0, 2940.0] | [17.0, 18.0] | [243, 227] |
p03281 | u464205401 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\ncnt=0\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n \n return divisors\n\nfor i in range(n+1):\n if len(make_divisors(i))==8:\n cnt+=1\nprint(cnt)\n', 'n=int(input())\ncnt=0\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n \n return divisors\n\nfor i in range(1,n+1,2):\n if len(make_divisors(i))==8:\n cnt+=1\nprint(cnt)\n'] | ['Wrong Answer', 'Accepted'] | ['s511276423', 's816272320'] | [3060.0, 3060.0] | [18.0, 17.0] | [337, 341] |
p03281 | u466917094 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=input()\nans=0\nfor i in range(1,n):\n cnt=0\n for j in range(1,n):\n if i%j==0:\n cnt=cnt+1\n if cnt==8:\n ans+=1\nprint(int(ans))', 'n=int(input())\nans=0\nfor i in range(1,n+1):\n cnt=0\n for j in range(1,n+1):\n if i%j==0:\n cnt=cnt+1\n if cnt==8:\n ans+=1\nprint(int(ans))', 'n=int(input())\nans=0\nfor i in range(1,n+1):\n if i % 2==0:\n continue\n cnt=0\n for j in range(1,n+1):\n if i%j==0:\n cnt=cnt+1\n if cnt==8:\n ans+=1\nprint(int(ans))'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s034472667', 's191917375', 's991091942'] | [2940.0, 2940.0, 3060.0] | [20.0, 20.0, 19.0] | [138, 147, 175] |
p03281 | u468972478 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nb = 0\nfor i in range(1, n+1):\n if i % 2 == 1:\n a = 0\n for j in range(1, i+1):\n if i % j == 0:\n a += 1\n if a == 8:\n b += 1', 'n = int(input())\nt = 0\nfor i in range(1, n+1):\n if i % 2 == 1:\n s = 1\n for j in range(1, i//2 + 1):\n if i % j == 0:\n s += 1\n if s == 8:\n t += 1\nprint(t)'] | ['Wrong Answer', 'Accepted'] | ['s358006040', 's085040590'] | [9176.0, 9108.0] | [25.0, 28.0] | [165, 179] |
p03281 | u469953228 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\nif n >= 189:\n print(2)\nelif n>=135:\n print(1)\nelse:\n print(0)', 'n = int(input())\nif n >= 195:\n print(5)\nelif n >= 189:\n print(4)\nelif n >= 165:\n print(3)\nelif n >= 135:\n print(2)\nelif n >= 105:\n print(1)\nelse:\n print(0)\n'] | ['Wrong Answer', 'Accepted'] | ['s299167492', 's685626727'] | [2940.0, 2940.0] | [18.0, 17.0] | [82, 162] |
p03281 | u471684875 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import sys\ninput = sys.stdin.readline\nn=int(input())\nimport fractions\n\nans=0\nif n<=104:\n print(0)\nelse:\n ans=0\n for i in range(105,n+1,2):\n c=0\n for j in range(1,i+1):\n if i%j==0:\n c+=1\n if c==8:\n ans+=1\n print(i)\n print(ans)', 'import sys\ninput = sys.stdin.readline\nn=int(input())\n\nans=0\nif n<=104:\n print(0)\nelse:\n ans=0\n for i in range(105,n+1,2):\n c=0\n for j in range(1,i+1):\n if i%j==0:\n c+=1\n if c==8:\n ans+=1\n print(ans)'] | ['Wrong Answer', 'Accepted'] | ['s170891335', 's881818109'] | [5304.0, 3064.0] | [38.0, 19.0] | [306, 268] |
p03281 | u474270503 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nb=[3*5*7, 3*5*9, 3*5*11, 27*7, 3*5*13]\nprint(b)\na=0\nfor i in range(len(b)):\n if b[i]<=n:\n a+=1\nprint(a)\n', 'n=int(input())\nb=[3*5*7, 3*5*9, 3*5*11, 27*7, 3*5*13]\na=0\nfor i in range(len(b)):\n if b[i]<=n:\n a+=1\nprint(a)\n'] | ['Wrong Answer', 'Accepted'] | ['s201972506', 's310507763'] | [2940.0, 2940.0] | [17.0, 17.0] | [129, 120] |
p03281 | u475675023 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N=input()\ndiv=0\nA=0\nB=0\ncount=0\nanswer=0\nfor i in range(1,N+1,2):\n div=0\n count=0\n while True:\n div+=1\n if i%div==0:\n A=div\n B=N/siv\n count+=1\n if B=count:\n if A<B and count==4:\n answer+=1 \n break\nprint(answer)', 'N=int(input())\ndiv=0\nA=0\nB=N\ncount=0\nanswer=0\nfor i in range(1,N+1,2):\n div=0\n count=0\n while True:\n div+=1\n if i%div==0:\n A=div\n B=i/div\n if A<B:\n count+=1\n if A>=B:\n if count==4:\n answer+=1 \n break\nprint(answer)'] | ['Runtime Error', 'Accepted'] | ['s293236985', 's951713990'] | [2940.0, 3064.0] | [17.0, 19.0] | [255, 265] |
p03281 | u482157295 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\ncount = 0\nfor i in range(1,n+1):\n if n%i == 0:\n count = count + 1\nprint(count)', 'n = int(input())\nans = 0\nfor i in range(1,n+1,2):\n count = 0\n for j in range(1,i+1):\n if i%j == 0:\n count = count + 1\n if count == 8:\n ans = ans + 1 \nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s893228120', 's966454391'] | [2940.0, 2940.0] | [17.0, 19.0] | [99, 174] |
p03281 | u484216426 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['s = list(map(int, list(input())))\nk = int(input())\n\ncnt1 = 0\nif s[0]==1:\n cnt1 += 1\n \nfor i in range(1, len(s)):\n if s[0] == 1 and s[i-1] == 1 and s[i] == s[i-1]:\n cnt1 += 1\n \nif k <= cnt1:\n print(1)\nelif cnt1 == 0:\n print(s[0])\nelse:\n print(s[cnt1])', 'import sys\nn = int(input())\n\n\ncn = 0\n\ncy = 0\n\nif n < 105:\n print(0)\n sys.exit()\n \nfor i in range(105, n+1):\n if i % 2 == 0:\n continue\n\n for j in range(1, i+1):\n if i % j == 0:\n cy += 1\n if cy == 8:\n cn += 1\n cy = 0\nprint(cn)'] | ['Runtime Error', 'Accepted'] | ['s426431158', 's424409907'] | [3064.0, 3064.0] | [18.0, 18.0] | [282, 327] |
p03281 | u486448566 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\ncount = 0\nfor i in range(1,n+1):\n temp_count = 0\n for j in range(1,i+1):\n if i%j == 0:\n temp_count += 1\n if temp_count == 8:\n count += 1\n \nprint(count)\n \n\n', 'n = int(input())\ncounter = 0\nfor i in range(1, n+1, 2):\n divisor_counter = 0\n for j in range(1, i+1):\n if i % j == 0:\n divisor_counter += 1\n\n if divisor_counter == 8:\n counter += 1\nprint(counter)'] | ['Wrong Answer', 'Accepted'] | ['s918107371', 's012763592'] | [9152.0, 9040.0] | [32.0, 31.0] | [193, 229] |
p03281 | u501163846 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nc=0\na=3\nwhile a<=n:\n b=a*(a+2)*(a+4)\n if b==\n elif b<=n:\n c+=1\n a+=2\n else:\n break\nprint(c)\n', 'n=int(input())\nl=[]\nfor i in range(3,n+1,2):\n c=0\n for k in range(1,i+1):\n if i%k==0:\n c+=1\n else:\n pass\n l.append(c)\nprint(l.count(8))\n'] | ['Runtime Error', 'Accepted'] | ['s682525869', 's501227582'] | [2940.0, 2940.0] | [17.0, 18.0] | [140, 181] |
p03281 | u503221936 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\ncount = 0\nfor i in range(1, N + 1):\n c = 0\n while i*i <= N:\n if i*i == N:\n c += 1\n elif N % i == 0:\n c += 2\n if c == 8:\n count += 1\nprint(count)', 'N = int(input())\ncount = 0\nfor i in range(1, N + 1, 2):\n c = 0\n j = 1\n while j*j <= i:\n if j*j == i:\n c += 1\n elif i % j == 0:\n c += 2\n j += 1\n if c == 8:\n count += 1\nprint(count)'] | ['Time Limit Exceeded', 'Accepted'] | ['s079793269', 's416640152'] | [2940.0, 3060.0] | [2104.0, 17.0] | [213, 241] |
p03281 | u506302470 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['A=int(input())\nans = 0\nfor i in range(1,A+1):\n cnt = 0\n for j in range(1,i+1):\n if i % j == 0:\n cnt+=1\n if cnt == 8:\n ans += 1\nprint(ans)', 'A=int(input())\nans = 0\nfor i in range(1,A+1):\n if i % 2 == 1:\n cnt = 0\n for j in range(1,i+1):\n if i % j == 0:\n cnt+=1\n if cnt == 8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s299863927', 's732377194'] | [2940.0, 2940.0] | [19.0, 18.0] | [171, 214] |
p03281 | u506689504 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nans = 0\nfor m in range(1, n+1):\n\tif m%2 != 1:\n\t\tcontinue\n\tcnt = 0\n\tfor k in range(1,m+1):\n\t\tif m%k == 0:\n\t\t\tcnt += 1\n\t\tif cnt>8:\n\t\t\tbreak\n\tif cnt == 8:\n\t\tprint(m)\n\t\tans += 1\n\nprint(ans)', 'n = int(input())\nans = 0\nfor m in range(1, n+1):\n\tif m%2 != 1:\n\t\tcontinue\n\tcnt = 0\n\tfor k in range(1,m+1):\n\t\tif m%k == 0:\n\t\t\tcnt += 1\n\t\tif cnt>8:\n\t\t\tbreak\n\tif cnt == 8:\n\t\t# print(m)\n\t\tans += 1\n\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s800653336', 's686608586'] | [3060.0, 3060.0] | [19.0, 18.0] | [202, 204] |
p03281 | u514678698 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nres = 0\nfor i in range(1,n+1, 2):\n\tif i % 1:\n\t\tcnt = 0\n\t\tfor j in range(i+1):\n\t\t\tif i % j == 0:\n\t\t\t\tcnt += 1\n\t\tif cnt == 8:\n\t\t\tres += 1\n\nprint(res)', 'n = int(input())\nres = 0\n\nfor i in range(1, n+1, 2):\n\tcnt = 0\n\tfor j in range(1, i+1):\n\t\tif i % j == 0:\n\t\t\tcnt += 1\n\tif cnt == 8:\n\t\tres += 1\nprint(res)\n'] | ['Wrong Answer', 'Accepted'] | ['s298653717', 's498231930'] | [9112.0, 9164.0] | [31.0, 30.0] | [164, 152] |
p03281 | u518378780 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import sys\n\nN = float(input())\nt = 3\nprime_number = []\nwhile t <= N / 15.0:\n l = []\n for i in range(t+1):\n if i != 0:\n if t % i == 0:\n l.append(i)\n if l == [1, t]:\n prime_number.append(t)\n t += 1\nn = len(prime_number)\nans = 0\nif n < 3:\n print(0)\n sys.exit()\nelse:\n for i in prime_number:\n for j in prime_number:\n if j != i:\n for k in prime_number:\n if k != i and k != j:\n if i * j * k <= N:\n ans += 1\nans = ans / 6\nprint(ans)\nif N >= 189:\n ans += 2\nelif N >= 135:\n ans += 1\nprint(int(ans))\n', 'n = int(input())\nans = 0\nfor i in range(n+1):\n t = 0\n if i % 2 == 0:\n continue\n else:\n for j in range(i+1):\n if j != 0:\n if i % j == 0:\n t += 1\n if t == 8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s042907707', 's303856676'] | [3064.0, 2940.0] | [17.0, 18.0] | [659, 254] |
p03281 | u518556834 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nans = 0\nfor i in range(1,n):\n c = 0\n for j in range(1,n+1,2):\n if j % i == 0:\n c += 1 \n if c == 8:\n ans += 1\nprint(ans)', 'n = int(input())\nc = 0\nd = 0\nfor i in range(n):\n for j in range(1,n,2):\n if j % i == 0:\n c += 1\n if c == 8:\n d += 1\nprint(d)\n \n \n ', 'n = int(input())\nans = 0\ndef cou(n):\n d = 0\n for i in range(1,n+1):\n if n % i == 0:\n d += 1\n return(d)\nfor j in range(1,n+1,2):\n if cou(j) == 8:\n ans += 1\nprint(ans)\n \n \n\n'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s001450348', 's043927140', 's309698849'] | [2940.0, 3064.0, 3060.0] | [19.0, 17.0, 18.0] | [158, 168, 188] |
p03281 | u518891382 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\n\ndef solve(num):\n cnt = 0\n for i in range(1,num+1):\n if num % i == 0:\n cnt += 1\n return cnt\n\nans = 0\nfor i in range(1,n+1):\n if i % 2 == 0:\n continue\n if solve(i) == 8:\n ans += 1\n\nprint(ans', 'n = int(input())\n\ndef solve(num):\n cnt = 0\n for i in range(1,num+1):\n if num % i == 0:\n cnt += 1\n return cnt\n\nans = 0\nfor i in range(1,n+1):\n if i % 2 == 0:\n continue\n if solve(i) == 8:\n ans += 1\n\nprint(ans)\n\n'] | ['Runtime Error', 'Accepted'] | ['s770730976', 's485800877'] | [8980.0, 9076.0] | [31.0, 29.0] | [253, 256] |
p03281 | u518987899 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input().strip())\n\n\ndef divisor(n):\n result = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n result.append(i)\n if i != n // i:\n result.append(n//i)\n return result\n\ncount = 0\nfor j in range(N):\n if N%2==0:\n continue\n if len(divisor(j)) == 8:\n count += 1\nprint(count)', 'N = int(input().strip())\n\n\ndef divisor(n):\n result = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n result.append(i)\n if i != n // i:\n result.append(n//i)\n return result\n\ncount = 0\nfor j in range(1,N+1):\n if j % 2 == 0:\n continue\n if len(divisor(j)) == 8:\n count += 1\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s650968057', 's094039386'] | [3060.0, 3060.0] | [17.0, 17.0] | [325, 334] |
p03281 | u519452411 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import math\nn = int(input())\n\ndef make_prime_list_2(num):\n if num < 2:\n return []\n\n \n prime_list = [i for i in range(num + 1)]\n prime_list[1] = 0 \n num_sqrt = math.sqrt(num)\n\n for prime in prime_list:\n if prime == 0:\n continue\n if prime > num_sqrt:\n break\n\n for non_prime in range(2 * prime, num, prime):\n prime_list[non_prime] = 0\n\n return [prime for prime in prime_list if prime != 0]\n\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\n\nsum = 0\nfor i in range(n+1):\n if n % 2 !=0 and search_divisor_num_1(n) == 8:\n sum += 1\nprint(sum)', 'n = int(input())\n\nans = 0\nfor i in range(1,n+1,2):\n sum = 0\n for j in range(1,i+1):\n if i % j == 0:\n sum += 1\n if sum == 8:\n ans += 1\n\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s732152152', 's315139750'] | [3064.0, 2940.0] | [19.0, 18.0] | [1132, 159] |
p03281 | u519849839 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['answer = 0\nfor i in range(1, n+1, 2):\n num_of_divisor = 0\n for j in range(1, i+1):\n if i % j == 0:\n num_of_divisor += 1\n if num_of_divisor == 8:\n answer += 1\nprint(answer)', 'n = int(input())\nanswer = 0\nfor i in range(1, n+1, 2):\n num_of_divisor = 0\n for j in range(1, i+1):\n if i % j == 0:\n num_of_divisor += 1\n if num_of_divisor == 8:\n answer += 1\nprint(answer)'] | ['Runtime Error', 'Accepted'] | ['s682856571', 's381788704'] | [2940.0, 3060.0] | [17.0, 18.0] | [205, 222] |
p03281 | u519939795 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ["c = 0\nn = int(input())\nif n%2==1:\n for i in range(1,n+1):\n n%i == 0\n c += 1\n if c == 8:\n print('1')\n else:\n print('0')", 'n=int(input())\nl=[]\nans1=0\nfor i in range(1,n+1):\n if i%2!=0:\n l.append(i)\nfor j in range(len(l)):\n ans=0\n for k in range(1,l[j]+1):\n if l[j]%k==0:\n ans+=1\n if ans==8:\n ans1+=1\nprint(ans1)'] | ['Wrong Answer', 'Accepted'] | ['s172574437', 's335333293'] | [3060.0, 3060.0] | [17.0, 19.0] | [163, 232] |
p03281 | u521323621 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nans = []\nfor i in range(n):\n temp = []\n for j in range(1, i + 1, 2):\n if i % j == 0:\n temp.append(j)\n if len(temp) == 8:\n ans.append(i)\n \nprint(len(ans))', 'n = int(input())\nans = []\nfor i in range(1, n + 1):\n temp = []\n for j in range(1, i + 1, 2):\n if i % j == 0:\n temp.append(j)\n if len(temp) == 8:\n ans.append(i)\n \nprint(len(ans))'] | ['Wrong Answer', 'Accepted'] | ['s360047589', 's013577308'] | [2940.0, 3060.0] | [18.0, 18.0] | [187, 194] |
p03281 | u527261492 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def yakusu(m):\n cnt=0\n for i in range(m//2):\n if m%i==0:\n cnt+=1\n return cnt\nans=0\nn=int(input())\nfor j in range(1,n+1):\n if yakusu(j)==8 and n%2!=0:\n ans+=1\nprint(ans)\n \n\n ', 'def yakusu(m):\n cnt=1\n for i in range(1,(m//2)+1):\n if m%i==0:\n cnt+=1\n return cnt\nans=0\nn=int(input())\nfor j in range(1,n+1):\n if yakusu(j)==8 and n%2!=0:\n ans+=1\nprint(ans)\n \n\n \n', 'def yakusu(m):\n cnt=1\n for i in range(1,(m//2)+1):\n if m%i==0:\n cnt+=1\n return cnt\nans=0\nn=int(input())\nfor j in range(1,n+1):\n if yakusu(j)==8 and j%2!=0:\n ans+=1\nprint(ans)\n \n\n \n'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s833399463', 's985023416', 's887950962'] | [2940.0, 2940.0, 2940.0] | [18.0, 18.0, 18.0] | [205, 212, 212] |
p03281 | u531002842 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['# -*- coding: utf-8 -*-\nN = int(input())\n\nif N < 105:\n ans = 0\nelse:\n ans = 0\n for i in range(103,N,2):\n cnt = 0\n\n for j in range(1,N):\n if i % j == 0:\n cnt += 1\n\n if cnt == 8:\n ans += 1\n\n\nprint(ans)', '# -*- coding: utf-8 -*-\nN = int(input())\n\nif N < 105:\n ans = 0\nelse:\n ans = 1\n for i in range(107, N+2, 2):\n cnt = 0\n for j in range(1, N+1):\n if i % j == 0:\n cnt += 1\n\n if cnt == 8:\n ans += 1\n\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s860857897', 's341104370'] | [3060.0, 3060.0] | [19.0, 18.0] | [266, 271] |
p03281 | u533482278 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def f(n):\n a = []\n for i in range(1,n+1):\n if n%i == 0:\n a.append(i)\n return a\n\nn = int(input())\ncount = 0\nfor i in range(1,n+1):\n ff = f(i)\n if len(ff) == 8:\n count+=1\nprint(count)\n', 'def f(n):\n a = []\n for i in range(1,n+1):\n if n%i == 0:\n a.append(i)\n return a\n\nn = int(input())\ncount = 0\nfor i in range(1,n+1,2):\n ff = f(i)\n #print(ff)\n if len(ff) == 8:\n count+=1\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s447913284', 's912839894'] | [2940.0, 2940.0] | [19.0, 18.0] | [222, 239] |
p03281 | u535555850 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def count(n):\n ans = 0\n for i in range(1,n+1):\n if n % i == 0:\n ans += 1\n return ans\n\nans = 0\na = (int(i) for i in input().split())\nfor i in range(1,n+1):\n if count(i) == 8:\n ans += 1\nprint(ans)\n\n ', 'def count(n):\n ans = 0\n for i in range(1,n+1):\n if n % i == 0:\n ans += 1\n return ans\n\nans = 0\nN = (int(i) for i in input().split())\nfor i in range(1,N+1):\n if count(i) == 8:\n ans += 1\nprint(ans)\n\n ', 'def count(n):\n ans = 0\n for i in range(1,n+1):\n if n % i == 0:\n ans += 1\n return ans\n\nans = 0\nN = int(input())\nfor i in range(1,N + 1):\n if i % 2 == 0:\n \tcontinue\n if count(i) == 8:\n ans += 1\nprint(ans)\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s426585977', 's860647286', 's353646706'] | [2940.0, 2940.0, 2940.0] | [17.0, 17.0, 18.0] | [215, 215, 220] |
p03281 | u537497369 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N, = list(map(int,input().split()))\n\nans = 0\n\nfor i in range(N):\n num = 0\n for j in range(200):\n if N % j == 0:\n num += 1\n if num == 8:\n ans += 1\n\nprint(ans)\n\n', 'N, = list(map(int,input().split()))\n\nans = 0\n\nfor i in range(N+1):\n if i % 2 == 1:\n num = 0\n for j in range(1,201):\n if i % j == 0:\n num += 1\n if num == 8:\n ans += 1\n \nprint(ans)\n'] | ['Runtime Error', 'Accepted'] | ['s319706567', 's333772993'] | [2940.0, 2940.0] | [17.0, 30.0] | [187, 266] |
p03281 | u538909258 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nprint(n)\n\ndef divisor(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n return divisors\n\nl = len(divisor(n))\n\nif l == 8:\n print(1)\nelse:\n print(0)', 'n = int(input())\n\ndef divisor(n):\n res = 0\n for i in range(1,n+1):\n if n % i == 0:\n res += 1\n if i != n//i:\n res += 1\n return res\n\nans = 0\nfor i in range(1, n+1, 2):\n if divisor(i) == 8:\n ans += 1\nprint(ans)', 'n = int(input())\n\ndef divisor(n):\n res = 0\n for i in range(1,int(n**0.5)+1):\n if n % i == 0:\n res += 1\n if i != n//i:\n res += 1\n return res\n\nans = 0\nfor i in range(1, n+1, 2):\n if divisor(i) == 8:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s222319414', 's900826037', 's166539440'] | [3060.0, 3060.0, 3060.0] | [17.0, 18.0, 17.0] | [304, 271, 281] |
p03281 | u538956308 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['N = int(input())\ncnt=0\nif N <105:\n print(0)\nelse:\n for i in range(105,N,2):\n temp=0\n for j in range(3,15,2):\n if i%j==0:\n temp+=1\n if temp==3:\n cnt+=1\nprint(cnt)', 'N =int(input())\ncnt =0\ntemp = 0\nif N <105:\n print(0)\nelse:\n if N%2 ==0:\n n = N-1\n for i in range(107,N,2):\n for j in range(3,14,2):\n if i%j==0:\n temp+=1\n if temp==4:\n cnt+=1\nprint(cnt)\n ', 'N = int(input())\ncnt=0\nif N <105:\n print(0)\nelse:\n for i in range(107,N,2):\n temp=0\n for j in range(3,15,2):\n if i%j==0:\n temp+=1\n if temp==3:\n cnt+=1\nprint(cnt)', 'N = int(input())\nif N <105:\n print(0)\nelse:\n for i in range(105,N,2):\n temp=0\n for j in range(3,15,2):\n if i%j==0:\n temp+=1\n if temp==3:\n cnt+=1\nprint(cnt)', 'N = int(input())\ncnt=0\nif N <105:\n cnt =0\nelse:\n if N%2==0:\n for i in range(105,N+1,2):\n temp=0\n for j in range(1,N+1,2):\n if i%j==0:\n temp+=1\n if temp==8:\n cnt+=1\n else:\n for i in range(105,N+1,2):\n temp=0\n for j in range(1,N+3,2):\n if i%j==0:\n temp+=1\n if temp==8:\n cnt+=1\n\nprint(cnt)\n'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted'] | ['s207984360', 's566575906', 's664165389', 's905450401', 's249923843'] | [2940.0, 3060.0, 3060.0, 3060.0, 3064.0] | [17.0, 18.0, 17.0, 17.0, 18.0] | [197, 236, 197, 191, 372] |
p03281 | u539123425 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['def make_divisors(n):\n lower_divisors , upper_divisors = [], []\n i = 1\n while i*i <= n:\n if n % i == 0:\n lower_divisors.append(i)\n if i != n // i:\n upper_divisors.append(n//i)\n i += 1\n return lower_divisors + upper_divisors[::-1]\n\nN = int(input())\ncounter = 0\nfor i in range(1,N+1,1):\n if(len(make_divisors(i)) == 8):\n counter+=1\nprint(counter)', 'def make_divisors(n):\n lower_divisors , upper_divisors = [], []\n i = 1\n while i*i <= n:\n if n % i == 0:\n lower_divisors.append(i)\n if i != n // i:\n upper_divisors.append(n//i)\n i += 1\n return lower_divisors + upper_divisors[::-1]\n\nN = int(input())\ncounter = 0\nfor i in range(1,N+1,2):\n if(len(make_divisors(i)) == 8):\n counter+=1\nprint(counter)'] | ['Wrong Answer', 'Accepted'] | ['s683802713', 's734852719'] | [9136.0, 9080.0] | [28.0, 23.0] | [417, 417] |
p03281 | u539517139 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n=int(input())\nc=0\nfor j in range(105,n+1,2) \n d=[]\n for i in range(1,int(j**0.5)+1):\n if j%i==0:\n d.append(i)\n if i!=n//i:\n d.append(n//i)\n if len(d)==8:\n c+=1\nprint(c)', 'n=int(input())\nc=0\nfor i in range(1,n+1,2):\n if i%(i**0.5)==0:\n continue\n t=0\n for j in range(1,i+1):\n if i%j==0:\n t+=1\n c+=(t==8)\nprint(c)'] | ['Runtime Error', 'Accepted'] | ['s579845878', 's469945339'] | [2940.0, 3060.0] | [18.0, 18.0] | [220, 154] |
p03281 | u540290227 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['n = int(input())\nc = 0\nfor i in range(1, n, 2):\n tmp = 0\n for j in range(1, n, 2):\n if i % j == 0:\n tmp += 1\n if tmp == 8:\n c += 1\nprint(c)', 'n = int(input())\nc = 0\nfor i in range(1, n+1, 2):\n tmp = 0\n for j in range(1, n+1, 2):\n if i % j == 0:\n tmp += 1\n if tmp == 8:\n c += 1\nprint(c)'] | ['Wrong Answer', 'Accepted'] | ['s374588053', 's621113174'] | [9112.0, 9012.0] | [31.0, 29.0] | [173, 177] |
p03281 | u541017633 | 2,000 | 1,024,000 | The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)? | ['import sympy\n\nN=int(input())\ncount=0\nfor i in range(N):\n if sympy.divisor_count(i+1)==8 and (i+1)%2==1:\n count+=1\ninput(count)\n', 'N=int(input())\ncount=0\nif N>=195:\n print(5)\nelif N>=189:\n print(4)\nelif N>=165:\n print(3)\nelif N>=135:\n print(2)\nelif N>=105:\n print(1)\nelse:\n print(0)\n'] | ['Runtime Error', 'Accepted'] | ['s171485846', 's353349561'] | [2940.0, 2940.0] | [17.0, 17.0] | [137, 170] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.