problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p03281
u272557899
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\n\ncount = 0\nc = 0\n\nfor i in range(1,n + 1):\n if n % 2 != 0:\n for j in range(1,i + 1):\n if i % j == 0:\n count += 1\n if count == 8:\n c += 1\n count = 0\n\nprint(c)', 'n = int(input())\n\ncount = 0\nc = 0\n\nfor i in range(1,n + 1):\n if i % 2 != 0:\n for j in range(1,i + 1):\n if i % j == 0:\n count += 1\n if count == 8:\n c += 1\n count = 0\n\nprint(c)\n']
['Wrong Answer', 'Accepted']
['s605001091', 's463340417']
[2940.0, 2940.0]
[19.0, 18.0]
[201, 202]
p03281
u273339216
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\ndef make_divisors(n):\n lower_divisors , upper_divisors = [], []\n i = 1\n while i*i <= n:\n if n % i == 0:\n lower_divisors.append(i)\n if i != n // i:\n upper_divisors.append(n//i)\n i += 1\n return lower_divisors + upper_divisors[::-1]\n\ncount = 0\nfor i in range(n+1):\n y = make_divisors(i)\n if len(y) == 8:\n count+=1\nprint(count)', 'n = int(input())\ndef make_divisors(n):\n lower_divisors , upper_divisors = [], []\n i = 1\n while i*i <= n:\n if n % i == 0:\n lower_divisors.append(i)\n if i != n // i:\n upper_divisors.append(n//i)\n i += 1\n return lower_divisors + upper_divisors[::-1]\n\ncount = 0\nfor i in range(n+1):\n if i%2 != 0:\n y = make_divisors(i)\n if len(y) == 8:\n count+=1\nprint(count)']
['Wrong Answer', 'Accepted']
['s080405530', 's136434362']
[9000.0, 9152.0]
[32.0, 28.0]
[408, 429]
p03281
u277802731
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['#106b\nn = int(input())\nans=0\nfor i in range(1,n+1,2):\n c=0\n for j in range(1,i+1):\n if i%j==0:\n c+=1\n \n if c==8:\n a+=1\nprint(ans)', '#106b\nn = int(input())\nans=0\nfor i in range(1,n+1,2):\n c=0\n for j in range(1,i+1):\n print(i,j)\n if i%j==0:\n c+=1\n \n if c==8:\n a+=1\nprint(ans)', 'n = int(input())\na = 0\n\nfor i in range(1, n+1, 2):\n c = 0 \n \n for j in range(1, i+1):\n print(i,j)\n if i % j == 0:\n c+=1\n if c == 8:\n a+=1\n\nprint(a)\n', '#106b\nn = int(input())\n\nans=0\n\nfor i in range(1,n+1,2):\n c=0\n \n for j in range(1,i+1):\n if i%j==0:\n c+=1\n if c==8:\n ans+=1\n\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s383309794', 's611126195', 's793070772', 's760797614']
[2940.0, 3572.0, 3636.0, 2940.0]
[17.0, 21.0, 30.0, 18.0]
[174, 193, 192, 171]
p03281
u279461856
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nd = [1] * (n + 1)\nfor i in range(2, n+1):\n for j in range(i, n+1, i):\n d[j] += 1\nans = 0\nfor i in range(1, n, 2):\n if d[i] == 8:\n ans += 1\n \nprint(ans)\n', 'n = int(input())\nd = [1] * (n + 1)\nfor i in range(2, n+1):\n for j in range(i, n+1, i)\n d[j] += 1\nans = 0\nfor i in range(1, n, 2):\n if d[i] == 8:\n ans += 1\n\nprint(ans)\n', 'n = int(input())\nd = [1] * (n + 1)\nfor i in range(2, n+1):\n for j in range(i, n+1, i):\n d[j] += 1\nans = 0\nfor i in range(1, n+1, 2):\n if d[i] == 8:\n ans += 1\n \nprint(ans)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s103365833', 's632148339', 's083821933']
[2940.0, 2940.0, 3060.0]
[17.0, 17.0, 17.0]
[183, 181, 184]
p03281
u284363684
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['def get_divisors(n):\n div = []\n append = div.append\n for i in range(1, int(n ** 0.5) + 1):\n if n % i == 0:\n append(i)\n if i != n // i:\n append(n // i)\n div.sort()\n return div\n\n\n# input\nN = int(input())\n\n\ncnt = 0\nfor n in range(1, N + 1):\n div = get_divisors(n)\n if len(div) == 8:\n cnt += 1\n\nprint(cnt)', 'def get_divisors(n):\n div = []\n append = div.append\n for i in range(1, int(n ** 0.5) + 1):\n if n % i == 0:\n append(i)\n if i != n // i:\n append(n // i)\n div.sort()\n return div\n\n\n# input\nN = int(input())\n\n\ncnt = 0\nfor n in range(1, N + 1, 2):\n div = get_divisors(n)\n if len(div) == 8:\n cnt += 1\n\nprint(cnt)']
['Wrong Answer', 'Accepted']
['s307924287', 's516520556']
[3060.0, 3060.0]
[18.0, 18.0]
[380, 383]
p03281
u286623856
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['ip = input()\ninputNum = int(ip)\ntotalCount = 0\nfor i in range(1,inputNum + 1):\n count = 0\n for j in range(1,i+1):\n if i % j == 0:\n count = count + 1\n if count == 8:\n totalCount = totalCount + 1\n\nprint(totalCount)', 'ip = input()\ninputNum = int(ip)\ntotalCount = 0\nfor i in range(1,inputNum + 1):\n count = 0\n if i % 2 == 1:\n for j in range(1,i+1):\n if i % j == 0:\n count = count + 1\n if count == 8:\n totalCount = totalCount + 1\n\nprint(totalCount)']
['Wrong Answer', 'Accepted']
['s279198078', 's374834056']
[3060.0, 3060.0]
[20.0, 18.0]
[250, 289]
p03281
u297651868
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['def make_divisors(n):\n ans=0\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n ans+=1\n if i != n // i:\n ans+=1\n return ans\n\nn=input()\nans=0\nfor i in range(1,n+1):\n if make_divisors(i)==8:\n ans+=1\nprint(ans)', 'def make_divisors(n):\n ans=0\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n ans+=1\n if i != n // i:\n ans+=1\n return ans\n\nn=int(input())\nans=0\nfor i in range(1,n+1):\n if make_divisors(i)==8:\n ans+=1\nprint(ans)', 'def make_divisors(n):\n ans=0\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n ans+=1\n if i != n // i:\n ans+=1\n return ans\n\nn=int(input())\na=0\nfor i in range(1,n+1,2):\n if make_divisors(i)==8:\n a+=1\nprint(a)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s003959354', 's149698348', 's611503627']
[3064.0, 3060.0, 3060.0]
[17.0, 18.0, 18.0]
[271, 276, 272]
p03281
u303019816
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['¥n = int(input())\n\nif n >= 195:\n print(5)\nelif n >= 189:\n print(4)\nelif n >= 165:\n print(3)\nelif n >= 135:\n print(2)\nelif n >= 105:\n print(1)\nelse:\n print(0)\n', 'n = int(input())\n\nif n >= 195:\n print(5)\nelif n >= 189:\n print(4)\nelif n >= 165:\n print(3)\nelif n >= 135:\n print(2)\nelif n >= 105:\n print(1)\nelse:\n print(0)\n']
['Runtime Error', 'Accepted']
['s430089212', 's089957471']
[2940.0, 2940.0]
[17.0, 17.0]
[177, 175]
p03281
u310678820
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nyaku=[]\nans=0\nfor j in range(1, n+1)[::2]:\n for i in range(1, i+1):\n if j%i==0:\n yaku.append(i)\n if len(yaku)==8:\n ans+=1\nprint(ans)\n ', 'n = int(input())\nyaku=[]\nans=0\nfor j in range(1, n+1)[::2]:\n yaku=[]\n for i in range(1, j+1):\n if j%i==0:\n yaku.append(i)\n if len(yaku)==8:\n ans+=1\nprint(ans)\n ']
['Runtime Error', 'Accepted']
['s199010864', 's411455680']
[2940.0, 2940.0]
[18.0, 19.0]
[185, 197]
p03281
u314825579
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\n \nans=0\nodd=[]\nfor i in range(1,N+1):\n if i%2!=0:\n odd.append(i)\n \nif N <104:\n pass\nelse:\n for i in range(105,N+1):\n if i%2!=0:\n tmp=0\n for j in odd:\n if i%j==0:\n tmp=+1\n if tmp==8:\n ans+=1 \nprint(ans)', 'N=int(input())\n\nans=0\nodd=[]\nfor i in range(1,N+1):\n if i%2!=0:\n odd.append(i)\n \nif N <104:\n pass\nelif N=105:\n ans=1\nelse:\n ans=1\n for i in range(106,N+1):\n if i%2 !=0:\n tmp=0\n for j in odd:\n if i%j==0:\n tmp=+1\n if tmp==8:\n ans+=1\n \n \nprint(ans)', 'N=int(input())\n \nans=0\nodd=[]\nfor i in range(1,N+1):\n if i%2!=0:\n odd.append(i)\n \nif N <104:\n pass\nelse:\n for i in range(105,N+1):\n if i%2!=0:\n tmp=0\n for j in odd:\n if i%j==0:\n tmp+=1\n if tmp==8:\n ans+=1 \nprint(ans)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s157582353', 's545236355', 's784769676']
[9004.0, 8820.0, 9052.0]
[26.0, 21.0, 30.0]
[267, 312, 267]
p03281
u325149030
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n, x = map(int, input().split())\nwhile(n != 0 or x != 0):\n count = 0\n for i in range(1, n-1):\n for j in range(i+1, n):\n if x - i - j > j and x - i - j <= n:\n count += 1\n print(count)\n n, x = map(int, input().split())\n', 'N = int(input())\nans = 0\nfor i in range(1, N+1, 2):\n count = 0\n for j in range(1, int(i ** 0.5) + 1):\n if i % j == 0:\n count += 2\n if int(i ** 0.5) ** 2 == i:\n count -= 1\n if count == 8:\n ans += 1\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s803799769', 's066183253']
[2940.0, 2940.0]
[17.0, 18.0]
[262, 252]
p03281
u328131364
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\ncon = []\nconter = 0\n\nfor i in range(1, 105):\n if i % 2 == 1:\n for s in range(1, i/2):\n if i % s == 0:\n counter += 1\n \n con.append(counter)\n\n\nprint(con.count(8))', 'N = int(input())\ncon = []\ncounter = 0\n\nfor i in range(1, N+1):\n if i % 2 == 1:\n for s in range(1, i+1):\n if i % s == 0:\n counter += 1\n \n con.append(counter)\n counter = 0\n\n\nprint(con.count(8))']
['Runtime Error', 'Accepted']
['s309415654', 's604140798']
[2940.0, 3060.0]
[18.0, 19.0]
[231, 252]
p03281
u329407311
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return len(divisors)\n \nans = 0\n\nfor i in range(1,N+1):\n a = make_divisors(i)\n if a ==8:\n ans += 1\n \nprint(int(ans))', 'N = int(input())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\n \nprint(int(make_divisors(N)))', 'N = int(input())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return len(divisors)\n \nans = 0\n\nfor i in range(1,N+1):\n a = make_divisors(i)\n if a ==8 and i%2 == 1 :\n ans += 1\n \nprint(int(ans))']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s397469961', 's491089136', 's447525339']
[3444.0, 2940.0, 3188.0]
[20.0, 17.0, 19.0]
[367, 290, 381]
p03281
u334570241
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['in_num = int(input())\ncheck_num = 1\nans_counter = 0\n\nwhile check_num <= in_num:\n\ti = 1\n\tdiv_counter = 0\n\twhile i <= check_num /2:\n\t\tif check_num % i == 0:\n\t\t\tdiv_counter += 1\n\t\ti += 2\n\tif div_counter == 8:\n\t\tans_counter += 1\n\tcheck_num += 2\n\nprint(ans_counter)\n\n\n\n\n', 'in_num = int(input())\ncheck_num = 0\nans_counter = 0\n\nwhile check_num <= in_num:\n\ti = 1\n\tdiv_counter = 0\n\twhile i <= check_num /3:\n\t\tif check_num % i == 0:\n\t\t\tdiv_counter += 1\n\t\ti += 2\n\tif div_counter == 8:\n\t\tans_counter += 1\n\tcheck_num += 2\n\nprint(ans_counter)\n\n\n\n\n', 'in_num = int(input())\ncheck_num = 1\nans_counter = 0\n\nwhile check_num <= in_num:\n\ti = 1\n\tdiv_counter = 0\n\twhile i <= check_num /3:\n\t\tif check_num % i == 0:\n\t\t\tdiv_counter += 1\n\t\ti += 2\n\tif div_counter == 8:\n\t\tans_counter += 1\n\tcheck_num += 2\n\nprint(ans_counter)\n\n\n\n\n', 'in_num = int(input())\ncheck_num = 105\nans_counter = 0\n\nif in_num < 105:\n\tprint(0)\n\nelse:\n\twhile check_num <= in_num:\n\t\ti = 1\n\t\tdiv_counter = 0\n\t\twhile i <= check_num /2:\n\t\t\tif check_num % i == 0:\n\t\t\t\tdiv_counter += 1\n\t\t\ti += 2\n\t\tif div_counter == 8:\n\t\t\tans_counter += 1\n\t\tcheck_num += 2\n\n\tprint(ans_counter)\n\n\n\n\n', 'in_num = int(input())\ncheck_num = 0\nans_counter = 0\n\n\n\nwhile check_num <= in_num:\n\ti = 1\n\tdiv_counter = 0\n\twhile i <= check_num :\n\t\tif check_num % i == 0:\n\t\t\tdiv_counter += 1\n\t\ti += 2\n\tif div_counter == 8:\n\t\tans_counter += 1\n\tcheck_num += 2\n\nprint(ans_counter)\n\n\n\n\n', 'in_num = int(input())\ncheck_num = 0\nans_counter = 0\n\nwhile check_num <= in_num:\n\ti = 1\n\tdiv_counter = 0\n\twhile i < check_num /2:\n\t\tif check_num % i == 0:\n\t\t\tdiv_counter += 1\n\t\ti += 2\n\tif div_counter == 8:\n\t\tans_counter += 1\n\nprint(ans_counter)\n\n\n\n\n', 'in_num = int(input())\ncheck_num = 1\nans_counter = 0\n\n\n\nwhile check_num <= in_num:\n\ti = 1\n\tdiv_counter = 0\n\twhile i <= check_num :\n\t\tif check_num % i == 0:\n\t\t\tdiv_counter += 1\n\t\ti += 2\n\tif div_counter == 8:\n\t\tans_counter += 1\n\tcheck_num += 2\n\nprint(ans_counter)\n\n\n\n\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Time Limit Exceeded', 'Accepted']
['s590143116', 's663863538', 's759042086', 's783674978', 's838967578', 's921493531', 's696836082']
[9172.0, 9148.0, 9044.0, 9136.0, 9000.0, 9012.0, 9176.0]
[30.0, 25.0, 26.0, 27.0, 27.0, 2206.0, 26.0]
[265, 265, 265, 312, 265, 248, 265]
p03281
u336564899
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['\ndef make_divisors(n):\n \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\n\n\n\nn = int(input())\nfor i in range(1, n+1, 2):\n if len(make_divisors(i)) == 8:\n print(i)\nelse:\n print(0)\n', '\ndef make_divisors(n):\n \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\n\n\n\nn = int(input())\nans = 0\nfor i in range(1, n+1, 2):\n if len(make_divisors(i)) == 8:\n ans += 1\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s691392305', 's956731370']
[3188.0, 3064.0]
[17.0, 17.0]
[427, 427]
p03281
u340947941
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\nc8=0 \n\n\nfor n in range((N-1)//2+1):\n c=0 \n\n for i in range(1,n+1): \n c+=int(n%i==0)\n\n if c==8: \n c8+=1\n\nprint(c8)', 'N=int(input())\nc8=0 \n\n\nfor ni in range((N-1)//2+1):\n n=ni*2+1\n c=0 \n\n for i in range(1,n+1): \n c+=int(n%i==0)\n\n if c==8: \n c8+=1\n\nprint(c8)']
['Wrong Answer', 'Accepted']
['s742683009', 's484708297']
[2940.0, 3060.0]
[18.0, 19.0]
[310, 324]
p03281
u345621867
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['def make_divisors(n: int) -> list:\n return_list = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n return_list.append(i)\n if i != n // i:\n return_list.append(n//i)\n\n return return_list\nN = int(input())\ncnt = 0\nfor i in range(1,N+1,2):\n if len(make_divisors(i)) == 8:\n cnt += 1\n print(i)\nprint(cnt)', 'def make_divisors(n: int) -> list:\n return_list = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n return_list.append(i)\n if i != n // i:\n return_list.append(n//i)\n\n return return_list\nN = int(input())\ncnt = 0\nfor i in range(1,N+1,2):\n if len(make_divisors(i)) == 8:\n cnt += 1\nprint(cnt)']
['Wrong Answer', 'Accepted']
['s303523525', 's038566033']
[9380.0, 9308.0]
[27.0, 27.0]
[373, 356]
p03281
u345702587
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['import sys\n\nn = int(sys.stdin.readline().rstrip("\\n"))\ncount = 0\nfor num in range(27, n+1, 2):\n divisor = 1\n for p in range(1, num, 2):\n if num % p == 0:\n print(f"num: {num}, p: {p}")\n divisor += 1\n if divisor == 8:\n count += 1\nprint(count)\n', 'import sys\n\nn = int(sys.stdin.readline().rstrip("\\n"))\ncount = 0\nfor num in range(24, n+1):\n divisor = 0\n for p in range(1, num):\n if num % p == 0:\n q = int((num - num % p)/ p)\n if q > p:\n divisor += 1\n else:\n break\n if divisor == 8:\n count += 1\nprint(count)\n', 'import sys\n\nn = int(sys.stdin.readline().rstrip("\\n"))\ncount = 0\nfor num in range(24, n+1):\n divisor = 0\n for p in range(1, num):\n if num % p == 0:\n q = int((num - num % p)/ p)\n if q >= p:\n divisor += 1\n else:\n break\n if divisor == 8:\n count += 1\nprint(count)', 'import sys\n\nn = int(sys.stdin.readline().rstrip("\\n"))\ncount = 0\nfor num in range(27, n+1, 2):\n divisor = 0\n for p in range(1, num, 2):\n if num % p == 0:\n q = int((num - num % p)/ p)\n if q > p:\n divisor += 1\n else:\n break\n if divisor == 8:\n count += 1\nprint(count)\n', 'import sys\n\nn = int(sys.stdin.readline().rstrip("\\n"))\ncount = 0\nfor num in range(27, n+1, 2):\n divisor = 0\n for p in range(1, num, 2):\n if num % p == 0:\n q = int((num - num % p)/ p)\n if q >= p:\n divisor += 1\n else:\n break\n if divisor == 8:\n count += 1\nprint(count)\n', 'import sys\n\nn = int(sys.stdin.readline().rstrip("\\n"))\ncount = 0\nfor num in range(27, n+1, 2):\n divisor = 1\n for p in range(1, num, 2):\n if num % p == 0:\n divisor += 1\n if divisor == 8:\n count += 1\nprint(count)\n']
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s143069972', 's718772692', 's787312134', 's924611925', 's928556832', 's457508952']
[2940.0, 2940.0, 3060.0, 3060.0, 3060.0, 2940.0]
[17.0, 18.0, 18.0, 17.0, 17.0, 18.0]
[286, 345, 345, 351, 352, 245]
p03281
u350049649
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['import math\nN=int(input())\ndef dnum(n):\n ret=0\n for i in range(1,int(math.sqrt(n))):\n if n%i==0:\n ret+=1\n return ret\n\nans=0\n\nfor i in range(N+1):\n if i%2==1 and dnum(i)==8:\n ans+=1\n\nprint(ans)', 'N=int(input())\ndef dnum(n):\n ret=0\n for i in range(1,n+1):\n if n%i==0:\n ret+=1\n return ret\n\nans=0\n\nfor i in range(1,N+1):\n if i%2==1 and dnum(i)==8:\n ans+=1\n\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s294552601', 's481425452']
[3060.0, 2940.0]
[18.0, 18.0]
[207, 184]
p03281
u350093546
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=int(input())\nans=0\nfor i in range(105,n+1,2):\n cnt=0\n for j in range(3,i):\n if i%j==0:\n cnt+=1\n if cnt==8:\n ans+=1\nprint(ans)', 'n=int(input())\nif 104>=n:\n print(0)\nelif 105<=n<=134:\n print(1)\nelif 135<=n<=164:\n print(2)\nelif 165<=n<=188:\n print(3)\nelif 189<=n<=194:\n print(4)\nelse:\n print(5)']
['Wrong Answer', 'Accepted']
['s968587437', 's938379790']
[9048.0, 9076.0]
[32.0, 24.0]
[141, 169]
p03281
u352429976
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nl = [i for i in range(1, n + 1) if i % 2 == 1]\ncnt = 0\nfor w in l:\n i = w\n fct = []\n b, e = 3, 0\nwhile b * b < w:\n while i % b == 0:\n i = i // b\n e = e + 1\n if e > 0:\n fct.append((b, e))\n b, e = b + 1, 0\nif i > 1:\n fct.append((i, 1))\nif len(fct) > 1:\n r = 1\n for j in fct:\n r = r * (j[1] + 1)\nelif len(fct) == 1:\n r = fct[0][1] + 1\nelse:\n r = 0\nif r == 8:\n cnt += 1\nprint(cnt)', 'n = int(input())\nl = [i for i in range(1, n + 1) if i % 2 == 1]\nprint(l)\ncnt = 0\nfor w in l:\ni = w\nfct = []\nb, e = 3, 0\nwhile b * b < w:\n while i % b == 0:\n i = i // b\n e = e + 1\n if e > 0:\n fct.append((b, e))\n b, e = b + 1, 0\nif i > 1:\n fct.append((i, 1))\nif len(fct) > 1:\n r = 1\n for j in fct:\n r = r * (j[1] + 1)\nelif len(fct) == 1:\n r = fct[0][1] + 1\nelse:\n r = 0\nif r == 8:\n print(w, fct, r)\n cnt += 1\nprint(cnt)', 'n = int(input())\nl = [i for i in range(1, n + 1) if i % 2 == 1]\nprint(l)\ncnt = 0\nfor w in l:\n i = w\n fct = []\n b, e = 3, 0\nwhile b * b < w:\n while i % b == 0:\n i = i // b\n e = e + 1\n if e > 0:\n fct.append((b, e))\n b, e = b + 1, 0\nif i > 1:\n fct.append((i, 1))\nif len(fct) > 1:\n r = 1\n for j in fct:\n r = r * (j[1] + 1)\nelif len(fct) == 1:\n r = fct[0][1] + 1\nelse:\n r = 0\nif r == 8:\n cnt += 1\nprint(cnt)', 'n = int(input())\ncnt = 0\nfor i in range(1, n + 1, 2):\n num_fact = 0\n for j in range(1, i + 1):\n if i % j == 0:\n num_fact += 1\n if num_fact == 8:\n cnt += 1\nprint(cnt)']
['Time Limit Exceeded', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s054444114', 's209268768', 's404416666', 's947109718']
[3064.0, 2940.0, 3064.0, 2940.0]
[2104.0, 17.0, 2104.0, 18.0]
[473, 515, 482, 199]
p03281
u352676541
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\n\nans = 0\ncount = 0\nfor i in range(1,N+1):\n if i%2==1:\n for j in range(1,i+1):\n if i%j==0:\n ans += 1\n if ans == 8:\n count += 1\nprint(count)', 'N=int(input())\n\nans = 0\ncount = 0\nfor i in range(1,N+1):\n if i%2==1:\n for j in range(1,i+1):\n if i%j==0:\n ans += 1\n if ans == 8:\n count += 1\n ans = 0\nprint(count)']
['Wrong Answer', 'Accepted']
['s859518514', 's569815141']
[9116.0, 9120.0]
[31.0, 25.0]
[177, 187]
p03281
u362560965
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\ndef divlist(n):\n if n < 1:\n return []\n elif n == 1:\n return [1]\n else:\n div = [1]\n for i in range(2, n // 2 + 1):\n if n % i == 0:\n div.append(i)\n return div\n\n\nans = []\n\nfor i in range(1,N+1):\n if len(divlist(i)) == 8:\n ans.append(i)\n\nprint(len(ans))', 'N = int(input())\n\ndef divlist(n):\n if n < 1:\n return []\n elif n == 1:\n return [1]\n else:\n div = [1]\n for i in range(2, n // 2 + 1):\n if n % i == 0:\n div.append(i)\n return div\n\n\nans = []\n\nfor i in range(1,N+1):\n if i % 2 == 0:\n pass\n elif len(divlist(i)) == 8:\n ans.append(i)\n\nprint(len(ans))', 'N = 100\n\ndef divlist(n):\n if n < 1:\n return []\n elif n == 1:\n return [1]\n else:\n div = [1]\n for i in range(2, n // 2 + 1):\n if n % i == 0:\n div.append(i)\n return div\n\n\nans = []\n\nfor i in range(1,N+1):\n if i % 2 == 0:\n pass\n elif len(divlist(i)) == 8:\n ans.append(i)\n\nprint(len(ans))', 'N = int(input())\n\ndef divlist(n):\n if n < 1:\n return []\n elif n == 1:\n return [1]\n else:\n div = [1]\n for i in range(2, n + 1):\n if n % i == 0:\n div.append(i)\n return div\n\n\nans = []\n\nfor i in range(1,N+1):\n if i % 2 == 0:\n pass\n elif len(divlist(i)) == 8:\n ans.append(i)\n\nprint(len(ans))']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s484127805', 's563861078', 's670692938', 's071045932']
[3064.0, 3064.0, 3064.0, 3064.0]
[20.0, 17.0, 17.0, 18.0]
[347, 381, 372, 376]
p03281
u364386647
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['def resolve():\n N = int(input())\n ans = 0\n for i in range(1, N+1, 2):\n tmp = make_divisors(i)\n if len(tmp) == 8:\n ans += 1\n print(ans)\n return\n\nresolve()\n', 'def resolve():\n N = int(input())\n ans = 0\n for i in range(1, N+1, 2):\n tmp = 0\n for j in range(1, N+1):\n if i % j == 0:\n tmp += 1\n\n if tmp == 8:\n ans += 1\n print(ans)\n return\n\nresolve()']
['Runtime Error', 'Accepted']
['s969985695', 's365965752']
[9092.0, 9176.0]
[20.0, 27.0]
[194, 258]
p03281
u366939485
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['\n\n\n\n\nn = int(input())\nif n < 105: print(0)\nelif n < 135: print(1)\nelif n < 165: print(2)\nelif n < 195: print(3)\nelse print(4)', '\n\n\n\n\n\nn = int(input())\nif n < 105: print(0)\nelif n < 135: print(1)\nelif n < 165: print(2)\nelif n < 189: print(3)\nelif n < 195: print(4)\nelse: print(5)']
['Runtime Error', 'Accepted']
['s053705051', 's752155248']
[9036.0, 9100.0]
[29.0, 32.0]
[275, 320]
p03281
u367130284
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['a=[s for s in range(int(input())+1)]\nprint(a.count(30)+a.count(105))', 'a=[s for s in range(int(input())+1)]\nprint(a.count(105)+a.count(165)+a.count(195)+a.count(189)+a.count(135))']
['Wrong Answer', 'Accepted']
['s668102445', 's045930463']
[2940.0, 2940.0]
[17.0, 17.0]
[68, 108]
p03281
u367510440
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=input("n=")\n\ns=0\nyakusu=0\n\n\n\nfor i in range(1,int(n)+1):\n s=0\n if i%2!=0:\n for k in range(1,i):\n if i%k==0:\n s+=1 \n if s==8:\n yakusu+=1 \n\nprint(yakusu)', 'n=input("n=")\n\ns=0\nyakusu=0\n\n\n\nfor i in range(1,int(n)+1):\n s=0\n if i%2!=0:\n for k in range(1,i+1):\n if i%k==0:\n s+=1 \n if s==8:\n yakusu+=1 \n\nprint(yakusu)', 'n=input()\n\ns=0\nyakusu=0\n\n\n\nfor i in range(1,int(n)+1):\n s=0\n if i%2!=0:\n for k in range(1,i+1):\n if i%k==0:\n s+=1 \n if s==8:\n yakusu+=1 \n\nprint(yakusu)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s055861932', 's323393107', 's964117419']
[9044.0, 9120.0, 9084.0]
[30.0, 25.0, 29.0]
[213, 215, 211]
p03281
u369094007
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\nans = 0\nfor i in range(1, 200, 2):\n cnt = 0\n for j in range(1, i + 1):\n if i % j == 0:\n cnt += 1\n print(j)\n if cnt == 8:\n ans += 1\nprint(ans)', 'N = int(input())\nans = 0\nfor i in range(1, N + 1, 2):\n cnt = 0\n for j in range(1, i + 1):\n if i % j == 0:\n cnt += 1\n if cnt == 8:\n ans += 1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s910455376', 's256272710']
[3060.0, 2940.0]
[18.0, 18.0]
[173, 164]
p03281
u371467115
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=int(input())\nans=0\ntotal=0\nfor i in range(n+1):\n for j in range(201):\n if i%j==0:\n ans+=1\n if ans==8:\n total+=1\nprint(total)', 'n=int(input())\nans=0\ntotal=0\nfor i in range(1,n+1,2):\n for j in range(1,i+1):\n if i%j==0:\n ans+=1\n if ans==8:\n total+=1\nprint(total)\n', 'n=int(input())\ntotal=0\nfor i in range(1,n+1,2):\n ans=0\n for j in range(1,i+1):\n if i%j==0:\n ans+=1\n if ans==8:\n total+=1\nprint(total)\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s372871098', 's785835119', 's370370343']
[2940.0, 2940.0, 2940.0]
[18.0, 19.0, 19.0]
[139, 146, 148]
p03281
u375695365
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=int(input())\ncount=0\nfor i in range(1,n+1):\n if n%1==0:\n count+=1\nif count==8:\n print("1")\nelse:\n print("0") ', 'n=int(input())\nans=0\nfor j in range(1,n+1,2):\n count=0\n for i in range(1,j+1):\n if j%i==0:\n count+=1\n if count==8:\n ans+=1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s400257248', 's712649968']
[2940.0, 2940.0]
[17.0, 18.0]
[130, 167]
p03281
u377219748
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['\n\n\n\n\nN = int(input())\n\n\n\n\nans_num = 0\n\n\nfor a in range(1, N + 1):\n yakusuu = []\n for i in range(1, a+1):\n if a % i == 0:\n yakusuu.append(i)\n if len(yakusuu) == 8:\n ans_num = ans_num + 1\n\nprint(ans_num)', '\n\n\n\n\nN = int(input())\n\n\n\n\nans_num = 0\n\n\nfor a in range(1, N + 1):\n yakusuu = []\n if a % 2 == 0:\n continue\n for i in range(1, a+1):\n if a % i == 0:\n yakusuu.append(i)\n if len(yakusuu) == 8:\n ans_num = ans_num + 1\n\nprint(ans_num)']
['Wrong Answer', 'Accepted']
['s337643474', 's401118639']
[3060.0, 3060.0]
[20.0, 19.0]
[587, 617]
p03281
u380761558
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int( input() )\na = 1\nfor i in range(1,N):\n if N % i == 0:\n a += 1\nprint(a)', 'N = int( input() )\na = 0\n\nfor j in range(1,N+1):\n b = 0\n for i in range(1,j+1):\n if j % i == 0:\n b += 1\n if b == 8 and j % 2 == 1:\n a+=1\n \nprint(a)']
['Wrong Answer', 'Accepted']
['s923692226', 's847899751']
[3068.0, 2940.0]
[18.0, 19.0]
[82, 164]
p03281
u382431597
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['import sys\n\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\nn = int(input())\ncount =0\nfor i in range(1,n+1,2):\n tmp = search_divisor_num_1(i)\n if tmp == 8:\n count+=1\nprint(count)', 'import sys\nimport math\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\ndef make_prime_list_2(num):\n if num < 2:\n return []\n\n \n prime_list = [i for i in range(num + 1)]\n prime_list[1] = 0 \n num_sqrt = math.sqrt(num)\n\n for prime in prime_list:\n if prime == 0:\n continue\n if prime > num_sqrt:\n break\n\n for non_prime in range(2 * prime, num, prime):\n prime_list[non_prime] = 0\n\n return [prime for prime in prime_list if prime != 0]\n \nn = int(input())\ncount =0\nfor i in range(1,n+1,2):\n tmp = search_divisor_num_1(i)\n if tmp == 8:\n count+=1\nprint(count)']
['Runtime Error', 'Accepted']
['s610238708', 's278164432']
[3064.0, 3064.0]
[18.0, 18.0]
[637, 1158]
p03281
u382639013
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\ndef make_divisors(n):\n ans = 0\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n ans += 1\n if i != n // i:\n ans += 1\n return ans\n\nfor i in range(1,N+1):\n if (i %2 ==1) and (make_divisors(i) ==8):\n ans += 1\n\nprint(ans)', 'N = int(input())\n\ndef make_divisors(n):\n ans = 0\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n ans += 1\n if i != n // i:\n ans += 1\n return ans\n\nans = 0\nfor i in range(1,N+1):\n if (i %2 ==1) and (make_divisors(i) ==8):\n ans += 1\n\nprint(ans)']
['Runtime Error', 'Accepted']
['s519988923', 's348657048']
[9440.0, 9368.0]
[22.0, 32.0]
[300, 308]
p03281
u386819480
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\n\nl = []\nfor i in range(1,201,2):\n if i%2 == 0 and i%3 == 0 \\\n and i%5 == 0 and i%7 == 0 \\\n and i%11 == 0 and i%13 == 0 \\\n and i%17 == 0 and i%19 == 0:\n print(i)\n else:\n continue\n', 'n = int(input())\n\ndef prime_decomposition(n):\n i = 2\n table = []\n while i * i <= n:\n while n % i == 0:\n n /= int(i)\n table.append(int(i))\n i += 1\n if n > 1:\n table.append(n)\n return table\n\na = [1]*(n+1)\nfor i in range(3,n+1,2):\n il = mymath.prime_decomposition(i)\n il_unique = list(set(il))\n ans = 1\n for j in il_unique:\n ans *= (il.count(j)+1)\n a[i] = max(a[i],ans)\n\n\nprint(a.count(8))', 'n = int(input())\n\ndef prime_decomposition(n):\n i = 2\n table = []\n while i * i <= n:\n while n % i == 0:\n n /= int(i)\n table.append(int(i))\n i += 1\n if n > 1:\n table.append(n)\n return table\n\na = [1]*(n+1)\nfor i in range(3,n+1,2):\n il = prime_decomposition(i)\n il_unique = list(set(il))\n ans = 1\n for j in il_unique:\n ans *= (il.count(j)+1)\n a[i] = max(a[i],ans)\n\n\nprint(a.count(8))']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s000374532', 's059028871', 's378365555']
[2940.0, 3064.0, 3188.0]
[17.0, 18.0, 18.0]
[224, 432, 425]
p03281
u391066416
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\n\nx=0\nfor i in range(1,N+1,2):\n y=0\n for j in range(i//2):\n if i % (j+1) == 0:\n y+=1\n if y+1 == 8:\n x+=1\n print(i,y+1)', 'N = int(input())\n\nx = 0\nfor i in range(1, N + 1, 2):\n y = 0\n for j in range(i // 2):\n if i % (j + 1) == 0:\n y += 1\n if y + 1 == 8:\n x += 1\n\nprint(x)\n']
['Wrong Answer', 'Accepted']
['s366577820', 's646903451']
[3060.0, 2940.0]
[18.0, 18.0]
[169, 183]
p03281
u391675400
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\nresult = 0\n\nfor i in range(1,n+1,2):\n if i > 200:\n break\n print(i)\n if len(make_divisors(i)) == 8:\n result += 1\n \n\nprint(result)\n', 'n = int(input())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\nresult = 0\n\nfor i in range(1,n+1,2):\n if i > 200:\n break\n #print(i)\n if len(make_divisors(i)) == 8:\n result += 1\n \n\nprint(result)\n']
['Wrong Answer', 'Accepted']
['s612332450', 's593795818']
[3444.0, 3060.0]
[20.0, 17.0]
[414, 415]
p03281
u392423112
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\nif N < 105:\n print(0)\nif N >= 105 and N < 135:\n print(1)\nif N >= 135 and N < 165:\n print(2)\nelse:\n print(3)', 'N = int(input())\n\nif N < 105:\n print(0)\nelif N >= 105 and N < 135:\n print(1)\nelif N >= 135 and N < 165:\n print(2)\nelif N >= 165 and N < 189:\n print(3)\nelif N >= 189 and N < 195:\n print(4)\nelse:\n print(5)']
['Wrong Answer', 'Accepted']
['s719796059', 's896264551']
[2940.0, 3060.0]
[17.0, 17.0]
[137, 221]
p03281
u393512980
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['from collections import defaultdict\nN = int(input())\nans = 0\nfor i in range(N + 1):\n if i % 2 == 0:\n continue\n t, j, dic, r = i, 2, defaultdict(int), 1\n while True:\n while t % j == 0:\n t /= j\n dic[j] += 1\n if j * j > i:\n break\n if t > 1:\n dic[t] += 1\n for key in dic:\n r *= dic[key] + 1\n if r == 8:\n ans += 1\nprint(ans)', 'from collections import defaultdict\nN = int(input())\nans = 0\nfor i in range(N + 1):\n if i % 2 == 0:\n continue\n t, j, dic, r = i, 2, defaultdict(int), 1\n while True:\n while t % j == 0:\n t /= j\n dic[j] += 1\n j += 1\n if j * j > i:\n break\n if t > 1:\n dic[t] += 1\n for key in dic:\n r *= dic[key] + 1\n if r == 8:\n ans += 1\nprint(ans)\n']
['Time Limit Exceeded', 'Accepted']
['s178147703', 's238290579']
[3316.0, 3828.0]
[2104.0, 81.0]
[358, 370]
p03281
u395202850
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nnSum = 0\nfor i in range(n):\n cnt = 0\n for j in range(i + 1):\n if (i + 1) % (j + 1) == 0:\n cnt += 1\n if cnt == 8 and (i + 1) % 2 != 0:\n nSum += 1\n a.append(i + 1)\n\nprint(nSum)\n', 'n = int(input())\na = [105, 135, 165, 189, 195]\nfor i in range(5):\n a[i] = 1 if n >= a[i] else 0\nprint(sum(a))\n']
['Runtime Error', 'Accepted']
['s861912453', 's933135818']
[2940.0, 3064.0]
[18.0, 18.0]
[233, 113]
p03281
u395816772
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\na = n//2\nans = 0\nfor j in range(1,n+1):\n \tcount = 1\n\tfor i in range(a):\n \tif n % i == 0:\n \t\tcount += 1\n if count >= 8:\n ans +=1\nprint(ans)\n\n \n', 'n = int(input())\na = n//2\nans = 0\nfor j in range(1,n+1):\n count = 1\n for i in range(1,a+1):\n if n % i == 0:\n count += 1\n if count >= 8 and j % 2 == 1:\n ans +=1\nprint(ans)', 'n = int(input())\na = n//2\nans = 0\nfor j in range(1,n+1):\n \tcount = 1\n\tfor i in range(a):\n \tif n % i == 0:\n \t\tcount += 1\n if count >= 8:\n ans +=1\nprint(ans)\n\n \n', 'n = int(input())\n\nans = 0\nfor j in range(1,n+1):\n \tcount = 1\n\tfor i in range(n//2):\n \tif n % i == 0:\n \t\tcount += 1\n if count >= 8:\n ans +=1\nprint(ans)\n\n ', 'n = int(input())\na = n//2\nans = 0\nfor j in range(1,n+1):\n count = 1\n for i in range(1,a+1):\n if n % i == 0:\n count += 1\n if count >= 8:\n ans +=1\nprint(ans)\n\n \n', 'n = int(input())\na = n//2\nans = 0\nfor j in range(1,n+1):\n count = 1\n for i in range(a):\n if n % i == 0:\n count += 1\n if count >= 8:\n ans +=1\nprint(ans)\n', 'n = int(input())\na = n//2\nans = 0\nfor j in range(1,n+1):\n count = 1\n for i in range(1,a+1):\n if n % i == 0:\n count += 1\n if count >= 8 and i % 2 == 1:\n ans +=1\nprint(ans)', 'n = int(input())\na = n//2\nans = 0\nfor j in range(1,n+1):\n count = 0\n for i in range(1,j+1):\n if j % i == 0:\n count += 1\n if count >= 8 and j % 2 == 1:\n ans +=1\nprint(ans)\n']
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s339577244', 's540075921', 's554689945', 's641503387', 's678480720', 's744654701', 's964728821', 's868743930']
[2940.0, 3060.0, 2940.0, 2940.0, 2940.0, 2940.0, 3060.0, 2940.0]
[17.0, 21.0, 17.0, 17.0, 21.0, 18.0, 22.0, 21.0]
[195, 212, 195, 189, 212, 194, 212, 213]
p03281
u396971285
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\n\nn=0\nm=0\nfor i in range(N):\n for j in range(N):\n if (i+1)%(j+1)==0:\n n+=1\n if n==8:\n m+=1\n n=0\n \nprint(m)', 'N=int(input())\n\nn=0\nm=0\nfor i in range(N+1):\n for j in range(N):\n if i%(j+1)==0:\n n+=1\n if n==8:\n m+=1\n \nprint(m)', 'N=int(input())\n\nn=0\nm=0\nfor i in range(N):\n\n n = 0\n for j in range(N):\n if (i+1)%(j+1)==0:\n \n n+=1\n # print("\\tn: ", n, "m:", m)\n if n==8 and (i+1)%2!=0:\n m+=1\n # n=0\n \nprint(m)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s399991795', 's678778583', 's464907838']
[2940.0, 2940.0, 2940.0]
[22.0, 22.0, 23.0]
[154, 144, 257]
p03281
u398942100
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=input()\ns=0\na=[105,135,165,195,189]\nfor i in a:\n if n>=i:\n s+=1\nprint(s)', 'n=int(input())\ns=0\na=[105,135,165,195,189]\nfor i in a:\n if n>=i:\n s+=1\nprint(s)']
['Runtime Error', 'Accepted']
['s998605649', 's263541104']
[2940.0, 2940.0]
[18.0, 17.0]
[78, 80]
p03281
u403331159
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=int(input())\nif n<104:\n print(0)\nif n<135:\n print(1)\nif n<165:\n print(2)\nif n<189:\n print(3)\nif n<195:\n print(4)', 'n=int(input())\nif n<105:\n print(0)\nelif n<135:\n print(1)\nelif n<165:\n print(2)\nelif n<189:\n print(3)\nelif n<195:\n print(4)\nelse:\n print(5)\n']
['Wrong Answer', 'Accepted']
['s822513990', 's357281514']
[2940.0, 2940.0]
[17.0, 17.0]
[119, 145]
p03281
u403984573
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\nans=0\nfor i in range(1,N + 1,2):\n cnt=0\n for j in range(1,i,1):\n if not i%j:\n cnt+=1\n if cnt==8:\n ans += 1\nprint(ans)\n', 'N=int(input())\nif N < 105:\n print(0)\nelif N < 135:\n print(1)\nelif N < 165\n print(2)\nelif N < 189:\n print(3)\nelif N < 195:\n print(4)\nelse:\n ptint(5)', 'N=int(input())\nans=0\nfor i in range(1,N + 1,2):\n cnt=0\n for j in range(1,i+1):\n if not i%j:\n cnt+=1\n if cnt==8:\n ans += 1\nprint(ans)\n']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s267444537', 's885960696', 's417362692']
[2940.0, 2940.0, 2940.0]
[19.0, 17.0, 18.0]
[163, 153, 163]
p03281
u404034840
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nif n < 105:\n print(0)\nelse:\n ans = 0\n for i in range(n,103,-2):\n count = 1\n for j in range(1,99,2):\n nj = n%j\n if nj == 0:\n count += 1\n if count == 9:\n ans -= 1\n if count == 8:\n ans += 1\n print(ans)', 'n = int(input())\nif n %2 == 0:\n n -= 1\nif n < 105:\n print(0)\nelse:\n ans = 0\n for i in range(n,103,-2):\n count = 1\n for j in range(1,101,2):\n nj = n%j\n if nj == 0:\n count += 1\n if count == 9:\n ans -= 1\n if count == 8:\n ans += 1\n print(ans)', 'n = int(input())\na = 0\nfor i in range(1,n+1,2):\n c = 0\n for j in range(1,n+1):\n if i%j == 0:\n c += 1\n if c == 8:\n a +=1\nprint(a)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s153867357', 's366039471', 's150214189']
[3060.0, 3060.0, 9156.0]
[17.0, 18.0, 31.0]
[266, 290, 142]
p03281
u404676457
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\ncount = 0\nfor i in range(105, n + 1):\n insu = 0\n if i % 2 != 0:\n continue\n for j in range(1, i + 1):\n if i % j == 0:\n insu += 1\n if insu == 8:\n count += 1\nprint(count)\n', 'n = int(input())\ncount = 0\nfor i in range(105, n + 1):\n insu = 0\n if i % 2 == 0:\n continue\n for j in range(1, i + 1):\n if i % j == 0:\n insu += 1\n if insu == 8:\n count += 1\nprint(count)\n']
['Wrong Answer', 'Accepted']
['s704272732', 's342593659']
[2940.0, 2940.0]
[18.0, 18.0]
[229, 229]
p03281
u405864101
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['def divisor(n): \n i = 1\n table = []\n while i * i <= n:\n if n % i == 0:\n table.append(i)\n table.append(n//i)\n i += 1\n table = list(set(table))\n return table\n\nN = int(input())\ntotal = 0\n\nfor n in range(1, N + 1, 2):\n print(n)\n if len(divisor(n)) == 8:\n total += 1\n\nprint(total)', 'def divisor(n): \n i = 1\n table = []\n while i * i <= n:\n if n % i == 0:\n table.append(i)\n table.append(n//i)\n i += 1\n table = list(set(table))\n return table\n\nN = int(input())\ntotal = 0\n\nfor n in range(1, N + 1, 2):\n if len(divisor(n)) == 8:\n total += 1\n\nprint(total)']
['Wrong Answer', 'Accepted']
['s207321924', 's005747636']
[9224.0, 9184.0]
[27.0, 31.0]
[339, 326]
p03281
u410118019
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=int(input())\nc=0\nfor i in range(1,n+1,2):\n count=0\n for j in range(1,i**0.5):\n if i%j==0:\n count+=1\n if count==8:\n c+=1\nprint(c)', 'n=int(input())\nc=0\nfor i in range(1,n+2,2):\n count=0\n for j in range(1,int(i**0.5)):\n if i%j==0:\n count+=1\n if count==8:\n c+=1\nprint(c)\n', 'n=int(input())\nc=0\nfor i in range(1,n+1,2):\n count=0\n for j in range(1,i+1):\n if i%j==0:\n count+=1\n if count==8:\n c+=1\nprint(c)\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s498088420', 's730432149', 's672248672']
[3060.0, 2940.0, 2940.0]
[18.0, 17.0, 19.0]
[144, 150, 142]
p03281
u412481017
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=int(input())\n\nresult=0\nfor i in range(1,n):\n cnt=0\n if i%2==0:\n for j in range(1,i+1):\n if i%j==0:\n cnt+=1\n if cnt==8:\n result+=1\n \nprint(result)\n \n ', 'n=int(input())\n\nresult=0\nfor i in range(1,n+1):\n cnt=0\n if i%2==1:\n for j in range(1,i+1):\n if i%j==0:\n cnt+=1\n #print(i,j)\n if cnt==8:\n #print(">>",i)\n result+=1\n \nprint(result)\n \n \n']
['Wrong Answer', 'Accepted']
['s984881408', 's766939751']
[2940.0, 2940.0]
[19.0, 18.0]
[181, 223]
p03281
u414558682
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['# import sympy\n\ndef prime_factorize(n):\n a = []\n while n % 2 == 0:\n a.append(2)\n n //= 2\n f = 3\n while f * f <= n:\n if n % f == 0:\n a.append(f)\n n //= f\n else:\n f += 2\n if n != 1:\n a.append(n)\n return a\n\nn = int(input())\n# print(f"{n}")\n\nans = 0\nfor i in range(1, n + 1):\n if i % 2 == 0:\n continue\n \n \n a = prime_factorize(i)\n # print(a)\n d_count = len(a)\n # print(f"{i} {d_count}")\n if d_count == 8:\n ans += 1\nprint(ans)', 'def make_divisors(n: int) -> list:\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n \n return divisors\n \nn = int(input())\n# print(f"{n}")\n\nans = 0\nfor i in range(1, n + 1, 2):\n divisors = make_divisors(i)\n if len(divisors) == 8:\n \n ans += 1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s350571885', 's301561355']
[9164.0, 9336.0]
[26.0, 26.0]
[579, 451]
p03281
u414877092
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\ncount=0\nfor i in range(1):\n for j in range(1):\n for k in range(1):\n for l in range(1):\n for m in range(1):\n if i*3+j*5+k*7+l*11+m*13<=N and i+j+k+l+m==3:\n count+=1\nprint(count)', 'N=int(input())\nans=0\nfor i in range(1,N+1):\n if i%2==0:\n continue\n count=0\n for j in range(1,i+1):\n if i%j==0:\n count+=1\n if count==8:\n ans+=1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s128348517', 's687188461']
[3060.0, 2940.0]
[17.0, 18.0]
[269, 197]
p03281
u416223629
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\ncount=0\nanswer=0\nfor i in range(N):\n for j in range(i+1):\n if (i+1)%(j+1)==0:\n count=count+1\n if count==8:\n answer=answer+1\n count=0\n\nprint(answer)\n', 'n = int(input())\nif 105>n: print(0)\nelif 135>n: print(1)\nelif 165>n: print(2)\nelif 189>n: print(3)\nelif 195>n: print(4)\nelse: print(5)']
['Wrong Answer', 'Accepted']
['s138255403', 's623019654']
[2940.0, 2940.0]
[20.0, 17.0]
[201, 134]
p03281
u416915042
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['a = input()\nans = 0\nif a >= 105:\n ans+=1\nif a >= 135:\n ans+=1\nif a >= 165:\n ans+=1\nif a >= 189:\n ans+=1\nif a >= 195:\n ans+=1\nprint(ans)', 'a = int(input())\nans = 0\nif a >= 105:\n ans+=1\nif a >= 135:\n ans+=1\nif a >= 165:\n ans+=1\nif a >= 189:\n ans+=1\nif a >= 195:\n ans+=1\nprint(ans)']
['Runtime Error', 'Accepted']
['s604681692', 's074282370']
[3060.0, 3060.0]
[17.0, 17.0]
[150, 155]
p03281
u433080052
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(inut())\nif N<105:\n print(0)\nelif N<135:\n print(1)\nelif N<165:\n print(2)\nelif N<189:\n print(3)\nelif N<195:\n print(4)\nelse:\n print(5)', 'N = int(input())\nif N<105:\n print(0)\nelif N<135:\n print(1)\nelif N<165:\n print(2)\nelif N<189:\n print(3)\nelif N<195:\n print(4)\nelse:\n print(5)\n']
['Runtime Error', 'Accepted']
['s011335309', 's049674336']
[2940.0, 3064.0]
[18.0, 17.0]
[145, 147]
p03281
u437351386
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\ndef yakusuu(n):\n num=0\n for i in range(1,n):\n if n%i==0:\n num=num+1\n return num==8\nans=0\nfor i in range(n):\n if def(i):\n ans=ans+1\nprint(ans)\n \n ', '#import math\nN=int(input())\ndef yakusuu(n):\n num=_0\n for i in range(1,n):\n if n%i==0:\n num=num+1\n return num==8\nans=0\nfor i in range(n):\n if def(i):\n ans=ans+1\nprint(ans)\n \n ', 'n=int(input())\ndef yakusuu(n):\n num=0\n if n%2==1:\n for i in range(1,n+1):\n if n%i==0:\n num=num+1\n return num \n\nans=0\nfor i in range(n+1):\n if yakusuu(i)==8:\n ans=ans+1\nprint(ans)\n \n ']
['Runtime Error', 'Runtime Error', 'Accepted']
['s114570250', 's875828052', 's923429960']
[2940.0, 2940.0, 2940.0]
[18.0, 17.0, 18.0]
[181, 195, 210]
p03281
u437638594
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\ncount = 0\n\nfor i in range(1, N+1, 2):\n tmp = 0\n for j in range(1, i):\n if i % j == 0:\n tmp += 1\n if tmp == 8:\n count += 1\n \nprint(count)\n ', 'N = int(input())\n\ncount = 0\n\nfor i in range(1, N+1, 2):\n tmp = 0\n for j in range(1, i+1):\n if i % j == 0:\n tmp += 1\n # print(tmp)\n if tmp == 8:\n count += 1\n \nprint(count)\n ']
['Wrong Answer', 'Accepted']
['s091413469', 's960991109']
[2940.0, 2940.0]
[18.0, 18.0]
[174, 191]
p03281
u437723389
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
["import math\n\ndef countDividers(n):\n divisors = []\n for i in range(1, int(math.sqrt(n))):\n if n % i == 0:\n divisors.append(i)\n divisors.append(int(n/i))\n return len(divisors)\n\nif __name__ == '__main__':\n n = int(input())\n count = 0\n for i in range(1,n+1):\n if countDividers(i) == 8:\n count += 1\n print(count)", "import math\n\ndef countDividers(n):\n divisors = []\n for i in range(1, int(math.sqrt(n))):\n if n % i == 0:\n divisors.append(i)\n divisors.append(int(n/i))\n return len(divisors)\n\nif __name__ == '__main__':\n n = int(input())\n print(countDividers(n))\n \n ", "import math\n\ndef countDividers(n):\n divisors = []\n for i in range(1, int(math.sqrt(n))+1):\n if n % i == 0:\n divisors.append(i)\n divisors.append(int(n/i))\n return len(divisors)\n\n\nif __name__ == '__main__':\n n = int(input())\n count = 0\n for i in range(1,n+1):\n if i %2 ==1 and countDividers(i) == 8:\n count += 1\n \n print(count)\n"]
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s147654027', 's824190777', 's121223842']
[8916.0, 9016.0, 9100.0]
[30.0, 29.0, 36.0]
[369, 296, 404]
p03281
u440129511
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=int(input())\nl=list(range(1,n+1))\nk=[27,105,125,165,195]\nlk=set(l) & set(k)\nprint(len(lk))', 'n=int(input())\nl=list(range(1,n+1))\nk=[105,135,165,189,195]\nlk=set(l) & set(k)\nprint(len(lk))']
['Wrong Answer', 'Accepted']
['s804661098', 's923933846']
[3444.0, 3060.0]
[28.0, 18.0]
[94, 95]
p03281
u445628522
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=int(input())\ncount=0\n\nfor i in range(1,N+1):\n a=[]\n if i%2==0:\n continue\n for j in range(1,i+1):\n if i%j==0:\n a.append(j)\n\n if len(a)==8:\n count+=1\n\nprint(count)', 'N=in(input())\nconut=0\n\nfor i in range(1,N+1):\n a=[]\n if i%2==0:\n continue\n for j in range(1,i+1):\n if i%j==0:\n a.append(j)\n\n if len(a)==8:\n count+=1\n\nprint(count)', 'N=int(input())\nconut=0\n\nfor i in range(1,N+1):\n a=[]\n if i%2==0:\n continue\n for j in range(1,i+1):\n if i%j==0:\n a.append(j)\n\n if len(a)==8:\n count+=1\n\nprint(count)', '# -*- coding: utf-8 -*-\n\nN = int(input())\ncount = 0\n\nfor i in range(1, N + 1):\n a = []\n if i % 2 == 0:\n continue\n\n for j in range(1, i + 1):\n if i % j == 0:\n a.append(j)\n\n if len(a) == 8:\n count += 1\n\nprint(count)\n\n\n']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s154583550', 's518703803', 's704042921', 's758318612']
[2940.0, 2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0, 18.0]
[210, 209, 210, 260]
p03281
u448655578
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\ncount1 = 0\nfor i in range(1,N+1):\n if i % 2 != 0:\n \tcount2 = 0 \n for j in range(1,i+1):\n if i % j == 0:\n count2 += 1\n if count2 == 8:\n count1 += 1\nprint(count1)\n \n ', 'N = int(input())\ncount1 = 0\nfor i in range(1,N+1):\n if i % 2 != 0: #Odd Number\n count2 = 0 \n for j in range(1,i+1):\n if i % j == 0:\n count2 += 1\n if count2 == 8:\n count1 += 1\nprint(count1)']
['Runtime Error', 'Accepted']
['s021636997', 's102608859']
[2940.0, 3064.0]
[17.0, 18.0]
[219, 220]
p03281
u454714837
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\nAns = 0\n\nfor i in range(1,N,2):\n count = 0\n for j in range(1,i,2):\n if i % j == 0:\n count += 1\n if count == 7:\n Ans += 1\n\nprint(Ans)', 'N = int(input())\n\nAns = 0\n\nfor i in range(1,N+1,2):\n count = 0\n for j in range(1,i,2):\n if i % j == 0:\n count += 1\n if count == 7:\n Ans += 1\n\nprint(Ans)']
['Wrong Answer', 'Accepted']
['s368527921', 's703305442']
[3060.0, 2940.0]
[18.0, 17.0]
[184, 186]
p03281
u455317716
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nif !n%2:\n n += 1\n\nresult = 0\n\nfor i in range(1,n+2,2):\n print(i)\n cnt = 0\n\n for ii in range(1,i+2,2):\n if i%ii == 0:\n cnt += 1\n\n if cnt >= 8:\n result += 1\n\nprint(result)', 'n = int(input())\nif !n%2:\n n += 1\n\nresult = 0\n\nfor i in range(1,n+2,2):\n cnt = 0\n\n for ii in range(1,i+2,2):\n if i%ii == 0:\n cnt += 1\n\n if cnt >= 8:\n result += 1\n\nprint(result)', 'n = int(input())\nif not n%2:\n n -= 1\n\nresult = 0\n\nfor i in range(1,n+2,2):\n cnt = 0\n\n for ii in range(1,i+2,2):\n if i%ii == 0:\n cnt += 1\n\n if cnt >= 8:\n result += 1\n\nprint(result)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s186680042', 's509373379', 's244765811']
[2940.0, 2940.0, 3060.0]
[17.0, 17.0, 17.0]
[226, 213, 216]
p03281
u456806668
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n\n\nN = int(input())\n\ncount=0\nmitasuN=[]\nfor i in range(1,N,2):\n tmp_s = make_divisors(i)\n # print(tmp_s)\n if len(tmp_s)==8:\n count+=1\n mitasuN.append(i)\n# print(mitasuN)\nprint(count)\n', '\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n\n\nN = int(input())\n\ncount=0\nmitasuN=[]\nfor i in range(1,N+1,2):\n tmp_s = make_divisors(i)\n # print(tmp_s)\n if len(tmp_s)==8:\n count+=1\n mitasuN.append(i)\n# print(mitasuN)\nprint(count)\n']
['Wrong Answer', 'Accepted']
['s062786613', 's156773506']
[3060.0, 3060.0]
[17.0, 17.0]
[494, 496]
p03281
u460245024
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\n\ncount = 0\nfor n in range(1, N+1, 2):\n count_fact = 0\n for i in range(1, n+1):\n if n%i == 0:\n count_fact += 1\n else:\n if count_fact == 8:\n print(n)\n count += 1\n\nprint(count)\n', 'N = int(input())\n\ncount = 0\nfor n in range(1, N+1, 2):\n count_fact = 0\n for i in range(1, n+1):\n if n%i == 0:\n count_fact += 1\n else:\n if count_fact == 8:\n count += 1\n\nprint(count)\n']
['Wrong Answer', 'Accepted']
['s828575336', 's713950862']
[3060.0, 2940.0]
[18.0, 19.0]
[247, 226]
p03281
u460737328
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['from math import sqrt, ceil\n\nN = int(input())\nans = 0\nfor n in range(1, N+1, 2):\n count = 0\n for i in range(1, ceil(sqrt(n))+1):\n if n%i == 0:\n count += 2\n if count == 8:\n print(n)\n ans += 1\nprint(ans)\n', 'from math import sqrt, ceil\n\nN = int(input())\nans = 0\nfor n in range(1, N+1, 2):\n count = 0\n for i in range(1, ceil(sqrt(n))+1):\n if n%i == 0:\n count += 2\n if count == 8:\n ans += 1\nprint(ans)\n\n']
['Wrong Answer', 'Accepted']
['s450985173', 's936559667']
[2940.0, 2940.0]
[17.0, 18.0]
[243, 227]
p03281
u464205401
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=int(input())\ncnt=0\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n \n return divisors\n\nfor i in range(n+1):\n if len(make_divisors(i))==8:\n cnt+=1\nprint(cnt)\n', 'n=int(input())\ncnt=0\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n \n return divisors\n\nfor i in range(1,n+1,2):\n if len(make_divisors(i))==8:\n cnt+=1\nprint(cnt)\n']
['Wrong Answer', 'Accepted']
['s511276423', 's816272320']
[3060.0, 3060.0]
[18.0, 17.0]
[337, 341]
p03281
u466917094
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=input()\nans=0\nfor i in range(1,n):\n cnt=0\n for j in range(1,n):\n if i%j==0:\n cnt=cnt+1\n if cnt==8:\n ans+=1\nprint(int(ans))', 'n=int(input())\nans=0\nfor i in range(1,n+1):\n cnt=0\n for j in range(1,n+1):\n if i%j==0:\n cnt=cnt+1\n if cnt==8:\n ans+=1\nprint(int(ans))', 'n=int(input())\nans=0\nfor i in range(1,n+1):\n if i % 2==0:\n continue\n cnt=0\n for j in range(1,n+1):\n if i%j==0:\n cnt=cnt+1\n if cnt==8:\n ans+=1\nprint(int(ans))']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s034472667', 's191917375', 's991091942']
[2940.0, 2940.0, 3060.0]
[20.0, 20.0, 19.0]
[138, 147, 175]
p03281
u468972478
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nb = 0\nfor i in range(1, n+1):\n if i % 2 == 1:\n a = 0\n for j in range(1, i+1):\n if i % j == 0:\n a += 1\n if a == 8:\n b += 1', 'n = int(input())\nt = 0\nfor i in range(1, n+1):\n if i % 2 == 1:\n s = 1\n for j in range(1, i//2 + 1):\n if i % j == 0:\n s += 1\n if s == 8:\n t += 1\nprint(t)']
['Wrong Answer', 'Accepted']
['s358006040', 's085040590']
[9176.0, 9108.0]
[25.0, 28.0]
[165, 179]
p03281
u469953228
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\n\nif n >= 189:\n print(2)\nelif n>=135:\n print(1)\nelse:\n print(0)', 'n = int(input())\nif n >= 195:\n print(5)\nelif n >= 189:\n print(4)\nelif n >= 165:\n print(3)\nelif n >= 135:\n print(2)\nelif n >= 105:\n print(1)\nelse:\n print(0)\n']
['Wrong Answer', 'Accepted']
['s299167492', 's685626727']
[2940.0, 2940.0]
[18.0, 17.0]
[82, 162]
p03281
u471684875
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['import sys\ninput = sys.stdin.readline\nn=int(input())\nimport fractions\n\nans=0\nif n<=104:\n print(0)\nelse:\n ans=0\n for i in range(105,n+1,2):\n c=0\n for j in range(1,i+1):\n if i%j==0:\n c+=1\n if c==8:\n ans+=1\n print(i)\n print(ans)', 'import sys\ninput = sys.stdin.readline\nn=int(input())\n\nans=0\nif n<=104:\n print(0)\nelse:\n ans=0\n for i in range(105,n+1,2):\n c=0\n for j in range(1,i+1):\n if i%j==0:\n c+=1\n if c==8:\n ans+=1\n print(ans)']
['Wrong Answer', 'Accepted']
['s170891335', 's881818109']
[5304.0, 3064.0]
[38.0, 19.0]
[306, 268]
p03281
u474270503
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=int(input())\nb=[3*5*7, 3*5*9, 3*5*11, 27*7, 3*5*13]\nprint(b)\na=0\nfor i in range(len(b)):\n if b[i]<=n:\n a+=1\nprint(a)\n', 'n=int(input())\nb=[3*5*7, 3*5*9, 3*5*11, 27*7, 3*5*13]\na=0\nfor i in range(len(b)):\n if b[i]<=n:\n a+=1\nprint(a)\n']
['Wrong Answer', 'Accepted']
['s201972506', 's310507763']
[2940.0, 2940.0]
[17.0, 17.0]
[129, 120]
p03281
u475675023
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N=input()\ndiv=0\nA=0\nB=0\ncount=0\nanswer=0\nfor i in range(1,N+1,2):\n div=0\n count=0\n while True:\n div+=1\n if i%div==0:\n A=div\n B=N/siv\n count+=1\n if B=count:\n if A<B and count==4:\n answer+=1 \n break\nprint(answer)', 'N=int(input())\ndiv=0\nA=0\nB=N\ncount=0\nanswer=0\nfor i in range(1,N+1,2):\n div=0\n count=0\n while True:\n div+=1\n if i%div==0:\n A=div\n B=i/div\n if A<B:\n count+=1\n if A>=B:\n if count==4:\n answer+=1 \n break\nprint(answer)']
['Runtime Error', 'Accepted']
['s293236985', 's951713990']
[2940.0, 3064.0]
[17.0, 19.0]
[255, 265]
p03281
u482157295
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\ncount = 0\nfor i in range(1,n+1):\n if n%i == 0:\n count = count + 1\nprint(count)', 'n = int(input())\nans = 0\nfor i in range(1,n+1,2):\n count = 0\n for j in range(1,i+1):\n if i%j == 0:\n count = count + 1\n if count == 8:\n ans = ans + 1 \nprint(ans)']
['Wrong Answer', 'Accepted']
['s893228120', 's966454391']
[2940.0, 2940.0]
[17.0, 19.0]
[99, 174]
p03281
u484216426
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['s = list(map(int, list(input())))\nk = int(input())\n\ncnt1 = 0\nif s[0]==1:\n cnt1 += 1\n \nfor i in range(1, len(s)):\n if s[0] == 1 and s[i-1] == 1 and s[i] == s[i-1]:\n cnt1 += 1\n \nif k <= cnt1:\n print(1)\nelif cnt1 == 0:\n print(s[0])\nelse:\n print(s[cnt1])', 'import sys\nn = int(input())\n\n\ncn = 0\n\ncy = 0\n\nif n < 105:\n print(0)\n sys.exit()\n \nfor i in range(105, n+1):\n if i % 2 == 0:\n continue\n\n for j in range(1, i+1):\n if i % j == 0:\n cy += 1\n if cy == 8:\n cn += 1\n cy = 0\nprint(cn)']
['Runtime Error', 'Accepted']
['s426431158', 's424409907']
[3064.0, 3064.0]
[18.0, 18.0]
[282, 327]
p03281
u486448566
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\n\ncount = 0\nfor i in range(1,n+1):\n temp_count = 0\n for j in range(1,i+1):\n if i%j == 0:\n temp_count += 1\n if temp_count == 8:\n count += 1\n \nprint(count)\n \n\n', 'n = int(input())\ncounter = 0\nfor i in range(1, n+1, 2):\n divisor_counter = 0\n for j in range(1, i+1):\n if i % j == 0:\n divisor_counter += 1\n\n if divisor_counter == 8:\n counter += 1\nprint(counter)']
['Wrong Answer', 'Accepted']
['s918107371', 's012763592']
[9152.0, 9040.0]
[32.0, 31.0]
[193, 229]
p03281
u501163846
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=int(input())\nc=0\na=3\nwhile a<=n:\n b=a*(a+2)*(a+4)\n if b==\n elif b<=n:\n c+=1\n a+=2\n else:\n break\nprint(c)\n', 'n=int(input())\nl=[]\nfor i in range(3,n+1,2):\n c=0\n for k in range(1,i+1):\n if i%k==0:\n c+=1\n else:\n pass\n l.append(c)\nprint(l.count(8))\n']
['Runtime Error', 'Accepted']
['s682525869', 's501227582']
[2940.0, 2940.0]
[17.0, 18.0]
[140, 181]
p03281
u503221936
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\ncount = 0\nfor i in range(1, N + 1):\n c = 0\n while i*i <= N:\n if i*i == N:\n c += 1\n elif N % i == 0:\n c += 2\n if c == 8:\n count += 1\nprint(count)', 'N = int(input())\ncount = 0\nfor i in range(1, N + 1, 2):\n c = 0\n j = 1\n while j*j <= i:\n if j*j == i:\n c += 1\n elif i % j == 0:\n c += 2\n j += 1\n if c == 8:\n count += 1\nprint(count)']
['Time Limit Exceeded', 'Accepted']
['s079793269', 's416640152']
[2940.0, 3060.0]
[2104.0, 17.0]
[213, 241]
p03281
u506302470
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['A=int(input())\nans = 0\nfor i in range(1,A+1):\n cnt = 0\n for j in range(1,i+1):\n if i % j == 0:\n cnt+=1\n if cnt == 8:\n ans += 1\nprint(ans)', 'A=int(input())\nans = 0\nfor i in range(1,A+1):\n if i % 2 == 1:\n cnt = 0\n for j in range(1,i+1):\n if i % j == 0:\n cnt+=1\n if cnt == 8:\n ans += 1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s299863927', 's732377194']
[2940.0, 2940.0]
[19.0, 18.0]
[171, 214]
p03281
u506689504
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nans = 0\nfor m in range(1, n+1):\n\tif m%2 != 1:\n\t\tcontinue\n\tcnt = 0\n\tfor k in range(1,m+1):\n\t\tif m%k == 0:\n\t\t\tcnt += 1\n\t\tif cnt>8:\n\t\t\tbreak\n\tif cnt == 8:\n\t\tprint(m)\n\t\tans += 1\n\nprint(ans)', 'n = int(input())\nans = 0\nfor m in range(1, n+1):\n\tif m%2 != 1:\n\t\tcontinue\n\tcnt = 0\n\tfor k in range(1,m+1):\n\t\tif m%k == 0:\n\t\t\tcnt += 1\n\t\tif cnt>8:\n\t\t\tbreak\n\tif cnt == 8:\n\t\t# print(m)\n\t\tans += 1\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s800653336', 's686608586']
[3060.0, 3060.0]
[19.0, 18.0]
[202, 204]
p03281
u514678698
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nres = 0\nfor i in range(1,n+1, 2):\n\tif i % 1:\n\t\tcnt = 0\n\t\tfor j in range(i+1):\n\t\t\tif i % j == 0:\n\t\t\t\tcnt += 1\n\t\tif cnt == 8:\n\t\t\tres += 1\n\nprint(res)', 'n = int(input())\nres = 0\n\nfor i in range(1, n+1, 2):\n\tcnt = 0\n\tfor j in range(1, i+1):\n\t\tif i % j == 0:\n\t\t\tcnt += 1\n\tif cnt == 8:\n\t\tres += 1\nprint(res)\n']
['Wrong Answer', 'Accepted']
['s298653717', 's498231930']
[9112.0, 9164.0]
[31.0, 30.0]
[164, 152]
p03281
u518378780
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['import sys\n\nN = float(input())\nt = 3\nprime_number = []\nwhile t <= N / 15.0:\n l = []\n for i in range(t+1):\n if i != 0:\n if t % i == 0:\n l.append(i)\n if l == [1, t]:\n prime_number.append(t)\n t += 1\nn = len(prime_number)\nans = 0\nif n < 3:\n print(0)\n sys.exit()\nelse:\n for i in prime_number:\n for j in prime_number:\n if j != i:\n for k in prime_number:\n if k != i and k != j:\n if i * j * k <= N:\n ans += 1\nans = ans / 6\nprint(ans)\nif N >= 189:\n ans += 2\nelif N >= 135:\n ans += 1\nprint(int(ans))\n', 'n = int(input())\nans = 0\nfor i in range(n+1):\n t = 0\n if i % 2 == 0:\n continue\n else:\n for j in range(i+1):\n if j != 0:\n if i % j == 0:\n t += 1\n if t == 8:\n ans += 1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s042907707', 's303856676']
[3064.0, 2940.0]
[17.0, 18.0]
[659, 254]
p03281
u518556834
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nans = 0\nfor i in range(1,n):\n c = 0\n for j in range(1,n+1,2):\n if j % i == 0:\n c += 1 \n if c == 8:\n ans += 1\nprint(ans)', 'n = int(input())\nc = 0\nd = 0\nfor i in range(n):\n for j in range(1,n,2):\n if j % i == 0:\n c += 1\n if c == 8:\n d += 1\nprint(d)\n \n \n ', 'n = int(input())\nans = 0\ndef cou(n):\n d = 0\n for i in range(1,n+1):\n if n % i == 0:\n d += 1\n return(d)\nfor j in range(1,n+1,2):\n if cou(j) == 8:\n ans += 1\nprint(ans)\n \n \n\n']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s001450348', 's043927140', 's309698849']
[2940.0, 3064.0, 3060.0]
[19.0, 17.0, 18.0]
[158, 168, 188]
p03281
u518891382
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\n\ndef solve(num):\n cnt = 0\n for i in range(1,num+1):\n if num % i == 0:\n cnt += 1\n return cnt\n\nans = 0\nfor i in range(1,n+1):\n if i % 2 == 0:\n continue\n if solve(i) == 8:\n ans += 1\n\nprint(ans', 'n = int(input())\n\ndef solve(num):\n cnt = 0\n for i in range(1,num+1):\n if num % i == 0:\n cnt += 1\n return cnt\n\nans = 0\nfor i in range(1,n+1):\n if i % 2 == 0:\n continue\n if solve(i) == 8:\n ans += 1\n\nprint(ans)\n\n']
['Runtime Error', 'Accepted']
['s770730976', 's485800877']
[8980.0, 9076.0]
[31.0, 29.0]
[253, 256]
p03281
u518987899
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input().strip())\n\n\ndef divisor(n):\n result = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n result.append(i)\n if i != n // i:\n result.append(n//i)\n return result\n\ncount = 0\nfor j in range(N):\n if N%2==0:\n continue\n if len(divisor(j)) == 8:\n count += 1\nprint(count)', 'N = int(input().strip())\n\n\ndef divisor(n):\n result = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n result.append(i)\n if i != n // i:\n result.append(n//i)\n return result\n\ncount = 0\nfor j in range(1,N+1):\n if j % 2 == 0:\n continue\n if len(divisor(j)) == 8:\n count += 1\nprint(count)\n']
['Wrong Answer', 'Accepted']
['s650968057', 's094039386']
[3060.0, 3060.0]
[17.0, 17.0]
[325, 334]
p03281
u519452411
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['import math\nn = int(input())\n\ndef make_prime_list_2(num):\n if num < 2:\n return []\n\n \n prime_list = [i for i in range(num + 1)]\n prime_list[1] = 0 \n num_sqrt = math.sqrt(num)\n\n for prime in prime_list:\n if prime == 0:\n continue\n if prime > num_sqrt:\n break\n\n for non_prime in range(2 * prime, num, prime):\n prime_list[non_prime] = 0\n\n return [prime for prime in prime_list if prime != 0]\n\ndef search_divisor_num_1(num):\n if num < 0:\n return None\n elif num == 1:\n return 1\n else:\n num_sqrt = math.floor(math.sqrt(num))\n prime_list = make_prime_list_2(num_sqrt)\n\n divisor_num = 1\n for prime in prime_list:\n count = 1\n while num % prime == 0:\n num //= prime\n count += 1\n divisor_num *= count\n\n if num != 1:\n divisor_num *= 2\n\n return divisor_num\n\n\nsum = 0\nfor i in range(n+1):\n if n % 2 !=0 and search_divisor_num_1(n) == 8:\n sum += 1\nprint(sum)', 'n = int(input())\n\nans = 0\nfor i in range(1,n+1,2):\n sum = 0\n for j in range(1,i+1):\n if i % j == 0:\n sum += 1\n if sum == 8:\n ans += 1\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s732152152', 's315139750']
[3064.0, 2940.0]
[19.0, 18.0]
[1132, 159]
p03281
u519849839
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['answer = 0\nfor i in range(1, n+1, 2):\n num_of_divisor = 0\n for j in range(1, i+1):\n if i % j == 0:\n num_of_divisor += 1\n if num_of_divisor == 8:\n answer += 1\nprint(answer)', 'n = int(input())\nanswer = 0\nfor i in range(1, n+1, 2):\n num_of_divisor = 0\n for j in range(1, i+1):\n if i % j == 0:\n num_of_divisor += 1\n if num_of_divisor == 8:\n answer += 1\nprint(answer)']
['Runtime Error', 'Accepted']
['s682856571', 's381788704']
[2940.0, 3060.0]
[17.0, 18.0]
[205, 222]
p03281
u519939795
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
["c = 0\nn = int(input())\nif n%2==1:\n for i in range(1,n+1):\n n%i == 0\n c += 1\n if c == 8:\n print('1')\n else:\n print('0')", 'n=int(input())\nl=[]\nans1=0\nfor i in range(1,n+1):\n if i%2!=0:\n l.append(i)\nfor j in range(len(l)):\n ans=0\n for k in range(1,l[j]+1):\n if l[j]%k==0:\n ans+=1\n if ans==8:\n ans1+=1\nprint(ans1)']
['Wrong Answer', 'Accepted']
['s172574437', 's335333293']
[3060.0, 3060.0]
[17.0, 19.0]
[163, 232]
p03281
u521323621
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nans = []\nfor i in range(n):\n temp = []\n for j in range(1, i + 1, 2):\n if i % j == 0:\n temp.append(j)\n if len(temp) == 8:\n ans.append(i)\n \nprint(len(ans))', 'n = int(input())\nans = []\nfor i in range(1, n + 1):\n temp = []\n for j in range(1, i + 1, 2):\n if i % j == 0:\n temp.append(j)\n if len(temp) == 8:\n ans.append(i)\n \nprint(len(ans))']
['Wrong Answer', 'Accepted']
['s360047589', 's013577308']
[2940.0, 3060.0]
[18.0, 18.0]
[187, 194]
p03281
u527261492
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['def yakusu(m):\n cnt=0\n for i in range(m//2):\n if m%i==0:\n cnt+=1\n return cnt\nans=0\nn=int(input())\nfor j in range(1,n+1):\n if yakusu(j)==8 and n%2!=0:\n ans+=1\nprint(ans)\n \n\n ', 'def yakusu(m):\n cnt=1\n for i in range(1,(m//2)+1):\n if m%i==0:\n cnt+=1\n return cnt\nans=0\nn=int(input())\nfor j in range(1,n+1):\n if yakusu(j)==8 and n%2!=0:\n ans+=1\nprint(ans)\n \n\n \n', 'def yakusu(m):\n cnt=1\n for i in range(1,(m//2)+1):\n if m%i==0:\n cnt+=1\n return cnt\nans=0\nn=int(input())\nfor j in range(1,n+1):\n if yakusu(j)==8 and j%2!=0:\n ans+=1\nprint(ans)\n \n\n \n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s833399463', 's985023416', 's887950962']
[2940.0, 2940.0, 2940.0]
[18.0, 18.0, 18.0]
[205, 212, 212]
p03281
u531002842
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['# -*- coding: utf-8 -*-\nN = int(input())\n\nif N < 105:\n ans = 0\nelse:\n ans = 0\n for i in range(103,N,2):\n cnt = 0\n\n for j in range(1,N):\n if i % j == 0:\n cnt += 1\n\n if cnt == 8:\n ans += 1\n\n\nprint(ans)', '# -*- coding: utf-8 -*-\nN = int(input())\n\nif N < 105:\n ans = 0\nelse:\n ans = 1\n for i in range(107, N+2, 2):\n cnt = 0\n for j in range(1, N+1):\n if i % j == 0:\n cnt += 1\n\n if cnt == 8:\n ans += 1\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s860857897', 's341104370']
[3060.0, 3060.0]
[19.0, 18.0]
[266, 271]
p03281
u533482278
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['def f(n):\n a = []\n for i in range(1,n+1):\n if n%i == 0:\n a.append(i)\n return a\n\nn = int(input())\ncount = 0\nfor i in range(1,n+1):\n ff = f(i)\n if len(ff) == 8:\n count+=1\nprint(count)\n', 'def f(n):\n a = []\n for i in range(1,n+1):\n if n%i == 0:\n a.append(i)\n return a\n\nn = int(input())\ncount = 0\nfor i in range(1,n+1,2):\n ff = f(i)\n #print(ff)\n if len(ff) == 8:\n count+=1\nprint(count)\n']
['Wrong Answer', 'Accepted']
['s447913284', 's912839894']
[2940.0, 2940.0]
[19.0, 18.0]
[222, 239]
p03281
u535555850
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['def count(n):\n ans = 0\n for i in range(1,n+1):\n if n % i == 0:\n ans += 1\n return ans\n\nans = 0\na = (int(i) for i in input().split())\nfor i in range(1,n+1):\n if count(i) == 8:\n ans += 1\nprint(ans)\n\n ', 'def count(n):\n ans = 0\n for i in range(1,n+1):\n if n % i == 0:\n ans += 1\n return ans\n\nans = 0\nN = (int(i) for i in input().split())\nfor i in range(1,N+1):\n if count(i) == 8:\n ans += 1\nprint(ans)\n\n ', 'def count(n):\n ans = 0\n for i in range(1,n+1):\n if n % i == 0:\n ans += 1\n return ans\n\nans = 0\nN = int(input())\nfor i in range(1,N + 1):\n if i % 2 == 0:\n \tcontinue\n if count(i) == 8:\n ans += 1\nprint(ans)\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s426585977', 's860647286', 's353646706']
[2940.0, 2940.0, 2940.0]
[17.0, 17.0, 18.0]
[215, 215, 220]
p03281
u537497369
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N, = list(map(int,input().split()))\n\nans = 0\n\nfor i in range(N):\n num = 0\n for j in range(200):\n if N % j == 0:\n num += 1\n if num == 8:\n ans += 1\n\nprint(ans)\n\n', 'N, = list(map(int,input().split()))\n\nans = 0\n\nfor i in range(N+1):\n if i % 2 == 1:\n num = 0\n for j in range(1,201):\n if i % j == 0:\n num += 1\n if num == 8:\n ans += 1\n \nprint(ans)\n']
['Runtime Error', 'Accepted']
['s319706567', 's333772993']
[2940.0, 2940.0]
[17.0, 30.0]
[187, 266]
p03281
u538909258
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nprint(n)\n\ndef divisor(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n return divisors\n\nl = len(divisor(n))\n\nif l == 8:\n print(1)\nelse:\n print(0)', 'n = int(input())\n\ndef divisor(n):\n res = 0\n for i in range(1,n+1):\n if n % i == 0:\n res += 1\n if i != n//i:\n res += 1\n return res\n\nans = 0\nfor i in range(1, n+1, 2):\n if divisor(i) == 8:\n ans += 1\nprint(ans)', 'n = int(input())\n\ndef divisor(n):\n res = 0\n for i in range(1,int(n**0.5)+1):\n if n % i == 0:\n res += 1\n if i != n//i:\n res += 1\n return res\n\nans = 0\nfor i in range(1, n+1, 2):\n if divisor(i) == 8:\n ans += 1\nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s222319414', 's900826037', 's166539440']
[3060.0, 3060.0, 3060.0]
[17.0, 18.0, 17.0]
[304, 271, 281]
p03281
u538956308
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['N = int(input())\ncnt=0\nif N <105:\n print(0)\nelse:\n for i in range(105,N,2):\n temp=0\n for j in range(3,15,2):\n if i%j==0:\n temp+=1\n if temp==3:\n cnt+=1\nprint(cnt)', 'N =int(input())\ncnt =0\ntemp = 0\nif N <105:\n print(0)\nelse:\n if N%2 ==0:\n n = N-1\n for i in range(107,N,2):\n for j in range(3,14,2):\n if i%j==0:\n temp+=1\n if temp==4:\n cnt+=1\nprint(cnt)\n ', 'N = int(input())\ncnt=0\nif N <105:\n print(0)\nelse:\n for i in range(107,N,2):\n temp=0\n for j in range(3,15,2):\n if i%j==0:\n temp+=1\n if temp==3:\n cnt+=1\nprint(cnt)', 'N = int(input())\nif N <105:\n print(0)\nelse:\n for i in range(105,N,2):\n temp=0\n for j in range(3,15,2):\n if i%j==0:\n temp+=1\n if temp==3:\n cnt+=1\nprint(cnt)', 'N = int(input())\ncnt=0\nif N <105:\n cnt =0\nelse:\n if N%2==0:\n for i in range(105,N+1,2):\n temp=0\n for j in range(1,N+1,2):\n if i%j==0:\n temp+=1\n if temp==8:\n cnt+=1\n else:\n for i in range(105,N+1,2):\n temp=0\n for j in range(1,N+3,2):\n if i%j==0:\n temp+=1\n if temp==8:\n cnt+=1\n\nprint(cnt)\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s207984360', 's566575906', 's664165389', 's905450401', 's249923843']
[2940.0, 3060.0, 3060.0, 3060.0, 3064.0]
[17.0, 18.0, 17.0, 17.0, 18.0]
[197, 236, 197, 191, 372]
p03281
u539123425
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['def make_divisors(n):\n lower_divisors , upper_divisors = [], []\n i = 1\n while i*i <= n:\n if n % i == 0:\n lower_divisors.append(i)\n if i != n // i:\n upper_divisors.append(n//i)\n i += 1\n return lower_divisors + upper_divisors[::-1]\n\nN = int(input())\ncounter = 0\nfor i in range(1,N+1,1):\n if(len(make_divisors(i)) == 8):\n counter+=1\nprint(counter)', 'def make_divisors(n):\n lower_divisors , upper_divisors = [], []\n i = 1\n while i*i <= n:\n if n % i == 0:\n lower_divisors.append(i)\n if i != n // i:\n upper_divisors.append(n//i)\n i += 1\n return lower_divisors + upper_divisors[::-1]\n\nN = int(input())\ncounter = 0\nfor i in range(1,N+1,2):\n if(len(make_divisors(i)) == 8):\n counter+=1\nprint(counter)']
['Wrong Answer', 'Accepted']
['s683802713', 's734852719']
[9136.0, 9080.0]
[28.0, 23.0]
[417, 417]
p03281
u539517139
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n=int(input())\nc=0\nfor j in range(105,n+1,2) \n d=[]\n for i in range(1,int(j**0.5)+1):\n if j%i==0:\n d.append(i)\n if i!=n//i:\n d.append(n//i)\n if len(d)==8:\n c+=1\nprint(c)', 'n=int(input())\nc=0\nfor i in range(1,n+1,2):\n if i%(i**0.5)==0:\n continue\n t=0\n for j in range(1,i+1):\n if i%j==0:\n t+=1\n c+=(t==8)\nprint(c)']
['Runtime Error', 'Accepted']
['s579845878', 's469945339']
[2940.0, 3060.0]
[18.0, 18.0]
[220, 154]
p03281
u540290227
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['n = int(input())\nc = 0\nfor i in range(1, n, 2):\n tmp = 0\n for j in range(1, n, 2):\n if i % j == 0:\n tmp += 1\n if tmp == 8:\n c += 1\nprint(c)', 'n = int(input())\nc = 0\nfor i in range(1, n+1, 2):\n tmp = 0\n for j in range(1, n+1, 2):\n if i % j == 0:\n tmp += 1\n if tmp == 8:\n c += 1\nprint(c)']
['Wrong Answer', 'Accepted']
['s374588053', 's621113174']
[9112.0, 9012.0]
[31.0, 29.0]
[173, 177]
p03281
u541017633
2,000
1,024,000
The number 105 is quite special - it is odd but still it has eight divisors. Now, your task is this: how many odd numbers with exactly eight positive divisors are there between 1 and N (inclusive)?
['import sympy\n\nN=int(input())\ncount=0\nfor i in range(N):\n if sympy.divisor_count(i+1)==8 and (i+1)%2==1:\n count+=1\ninput(count)\n', 'N=int(input())\ncount=0\nif N>=195:\n print(5)\nelif N>=189:\n print(4)\nelif N>=165:\n print(3)\nelif N>=135:\n print(2)\nelif N>=105:\n print(1)\nelse:\n print(0)\n']
['Runtime Error', 'Accepted']
['s171485846', 's353349561']
[2940.0, 2940.0]
[17.0, 17.0]
[137, 170]