content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def select_user(query_message, mydb): """ Prompt the user to select from a list of all database users. Args: query_message - The messages to display in the prompt mydb - A connected MySQL connection """ questions = [ inquirer.List('u', message=query_message, choices=list_users(mydb) ) ] return inquirer.prompt(questions)['u']
8ab2adb27f73b5581bc48c8cc4cbc2888a21753f
3,655,921
from typing import Optional import hashlib def generate_abl_contract_for_lateral_stage( lateral_stage: LateralProgressionStage, parent_blinding_xkey: CCoinExtKey, start_block_num: int, creditor_control_asset: CreditorAsset, debtor_control_asset: DebtorAsset, bitcoin_asset: BitcoinAsset, first_stage_input_descriptor: Optional[BlindingInputDescriptor] = None ) -> int: """ Generate the main contract code and accompanying data, and store all the info in vertical stage objects """ assert start_block_num > 0 lstage = lateral_stage plan = lstage.plan lstage_blinding_xkey = safe_derive( parent_blinding_xkey, STAGE_NEXT_LEVEL_PATH ) # Need blinding factors and input descriptors ready # before we can generate the scripts for vstage in lstage.vertical_stages: blinding_xkey = safe_derive( lstage_blinding_xkey, f'{vstage.index_m}h') blinding_factor = hashlib.sha256( safe_derive(blinding_xkey, STAGE_BLINDING_FACTOR_PATH) ).digest() asset_blinding_factor = hashlib.sha256( safe_derive(blinding_xkey, STAGE_BLINDING_ASSET_FACTOR_PATH) ).digest() if lstage.level_n == 0 and vstage.index_m == 0: assert first_stage_input_descriptor is not None contract_input_descriptor = first_stage_input_descriptor first_stage_input_descriptor = None else: assert first_stage_input_descriptor is None contract_input_descriptor = BlindingInputDescriptor( asset=plan.collateral.asset, amount=plan.collateral.amount, blinding_factor=Uint256(blinding_factor), asset_blinding_factor=Uint256(asset_blinding_factor), ) vstage.blinding_data = VerticalProgressionStageBlindingData( blinding_xkey, contract_input_descriptor ) collateral_grab_outs_hash = \ get_hash_of_collateral_forfeiture_checked_outs( lstage.vertical_stages[-1], creditor_control_asset, debtor_control_asset, bitcoin_asset) total_vstages = 0 # Need to process in reverse, because scripts in earlier stages # depend on scripts in later stages for vstage in reversed(lstage.vertical_stages): total_vstages += 1 if vstage.next_lateral_stage: total_vstages += generate_abl_contract_for_lateral_stage( vstage.next_lateral_stage, vstage.blinding_data.blinding_xkey, start_block_num, creditor_control_asset, debtor_control_asset, bitcoin_asset ) full_repayment_cod = get_full_repayment_checked_outs_data( vstage, creditor_control_asset, debtor_control_asset, bitcoin_asset, ) partial_repayment_cod = get_partial_repayment_checked_outs_data( vstage, creditor_control_asset, debtor_control_asset, bitcoin_asset, ) revoc_cod = get_revocation_tx_checked_outs_data( vstage, creditor_control_asset, bitcoin_asset ) stage_script, checked_outs_hashes = \ generate_script_and_checked_outs_hashes( vstage, creditor_control_asset, debtor_control_asset, start_block_num, full_repayment_checked_outs_data=full_repayment_cod, partial_repayment_checked_outs_data=partial_repayment_cod, revoc_checked_outs_data=revoc_cod, hash_of_collateral_grab_outputs_data=collateral_grab_outs_hash, ) vstage.script_data = VerticalProgressionStageScriptData( stage_script, checked_outs_hashes ) return total_vstages
2c9b47666c3fb5abf78b8a7d007d1258930f1068
3,655,923
def force_norm(): """perform normalization simulation""" norm = meep.Simulation(cell_size=cell, boundary_layers=[pml], geometry=[], resolution=resolution) norm.init_fields() source(norm) flux_inc = meep_ext.add_flux_plane(norm, fcen, df, nfreq, [0,0,0], [W, W, 0]) norm.run(until_after_sources=meep.stop_when_fields_decayed(.5*um, decay, pt=meep.Vector3(0,0,0), decay_by=1e-3)) return {'frequency': np.array(meep.get_flux_freqs(flux_inc)), 'area': (W)**2, 'incident': np.asarray(meep.get_fluxes(flux_inc))}
e5c9e6255568e52d0cb30504cd22f610b6f6e5d9
3,655,925
def search(coordinates): """Search for closest known locations to these coordinates """ gd = GeocodeData() return gd.query(coordinates)
c9191a06b085c61b547136166cb43a24789d95cb
3,655,926
from pathlib import Path def get_all_apis_router(_type: str, root_path: str) -> (Path, Path): """Return api files and definition files just put the file on folder swagger.""" swagger_path = Path(root_path) all_files = list(x.name for x in swagger_path.glob("**/*.yaml")) schemas_files = [x for x in all_files if "schemas" in x] api_files = [x for x in all_files if "schemas" not in x and "main" not in x] return api_files if _type == "api" else schemas_files
eab89c870447e3f1abd72529de37d645de3be612
3,655,927
def get_cached_patches(dataset_dir=None): """ Finds the cached patches (stored as images) from disk and returns their paths as a list of tuples :param dataset_dir: Path to the dataset folder :return: List of paths to patches as tuples (path_to_left, path_to_middle, path_to_right) """ if dataset_dir is None: dataset_dir = config.DATASET_DIR cache_dir = join(dataset_dir, 'cache') frame_paths = [join(cache_dir, x) for x in listdir(cache_dir)] frame_paths = [x for x in frame_paths if is_image(x)] frame_paths.sort() tuples = [] for i in range(len(frame_paths) // config.MAX_SEQUENCE_LENGTH): foo = (frame_paths[i * config.MAX_SEQUENCE_LENGTH + ix] for ix in range(config.MAX_SEQUENCE_LENGTH)) tuples.append(list(foo)) return tuples
7990b592ddc9b93e04b11c4ae65f410c6afc15d7
3,655,928
def complex_mse(y_true: tf.Tensor, y_pred: tf.Tensor): """ Args: y_true: The true labels, :math:`V \in \mathbb{C}^{B \\times N}` y_pred: The true labels, :math:`\\widehat{V} \in \mathbb{C}^{B \\times N}` Returns: The complex mean squared error :math:`\\boldsymbol{e} \in \mathbb{R}^B`, where given example :math:`\\widehat{V}_i \in \mathbb{C}^N`, we have :math:`e_i = \\frac{\|V_i - \\widehat{V}_i\|^2}{N}`. """ real_loss = tf.losses.mse(tf.math.real(y_true), tf.math.real(y_pred)) imag_loss = tf.losses.mse(tf.math.imag(y_true), tf.math.imag(y_pred)) return (real_loss + imag_loss) / 2
9dc8699312926b379619e56a29529fe2762d68a9
3,655,929
def expand_not(tweets): """ DESCRIPTION: In informal speech, which is widely used in social media, it is common to use contractions of words (e.g., don't instead of do not). This may result in misinterpreting the meaning of a phrase especially in the case of negations. This function expands these contractions and other similar ones (e.g it's --> it is etc...). INPUT: tweets: Series of a set of tweets as a python strings OUTPUT: Series of filtered tweets """ tweets = tweets.str.replace('n\'t', ' not', case=False) tweets = tweets.str.replace('i\'m', 'i am', case=False) tweets = tweets.str.replace('\'re', ' are', case=False) tweets = tweets.str.replace('it\'s', 'it is', case=False) tweets = tweets.str.replace('that\'s', 'that is', case=False) tweets = tweets.str.replace('\'ll', ' will', case=False) tweets = tweets.str.replace('\'l', ' will', case=False) tweets = tweets.str.replace('\'ve', ' have', case=False) tweets = tweets.str.replace('\'d', ' would', case=False) tweets = tweets.str.replace('he\'s', 'he is', case=False) tweets = tweets.str.replace('what\'s', 'what is', case=False) tweets = tweets.str.replace('who\'s', 'who is', case=False) tweets = tweets.str.replace('\'s', '', case=False) for punct in ['!', '?', '.']: regex = "(\\"+punct+"( *)){2,}" tweets = tweets.str.replace(regex, punct+' <repeat> ', case=False) return tweets
66f4ed5c7321fe7bf5ea0d350980394a235d99e6
3,655,930
def parse_filter_kw(filter_kw): """ Return a parsed filter keyword and boolean indicating if filter is a hashtag Args: :filter_kw: (str) filter keyword Returns: :is_hashtag: (bool) True, if 'filter_kw' is hashtag :parsed_kw: (str) parsed 'filter_kw' (lowercase, without '#', ...) """ filter_kw = filter_kw.strip() is_hashtag = filter_kw.startswith('#') parsed_kw = parse_string(filter_kw, remove=('#', "'")).lower() return (is_hashtag, parsed_kw)
253d7d5f1aaf6ab3838e7fb3ba395a919f29b70e
3,655,931
def get_branch_index(BRANCHES, branch_name): """ Get the place of the branch name in the array of BRANCHES so will know into which next branch to merge - the next one in array. """ i = 0 for branch in BRANCHES: if branch_name == branch: return i else: i = i + 1
c983bab67b3aa0cd1468c39f19732395c7e376f9
3,655,932
from bs4 import BeautifulSoup def prettify_save(soup_objects_list, output_file_name): """ Saves the results of get_soup() function to a text file. Parameters: ----------- soup_object_list: list of BeautifulSoup objects to be saved to the text file output_file_name: entered as string with quotations and with extension .txt , used to name the output text file This function can work independent of the rest of the library. Note: Unique to Windows, open() needs argument: encoding = 'utf8' for it to work. """ prettified_soup = [BeautifulSoup.prettify(k) for k in soup_objects_list] custom_word_added = [m + 'BREAKHERE' for m in prettified_soup] one_string = "".join(custom_word_added) # unique to Windows, open() needs argument: encoding = "utf8" with open(output_file_name, 'w') as file: file.write(one_string) return None
3de5b7df49837c24e89d2ded286c0098069945fd
3,655,933
def determine_required_bytes_signed_integer(value: int) -> int: """ Determines the number of bytes that are required to store value :param value: a SIGNED integer :return: 1, 2, 4, or 8 """ value = ensure_int(value) if value < 0: value *= -1 value -= 1 if (value >> 7) == 0: return 1 if (value >> 15) == 0: return 2 if (value >> 31) == 0: return 4 if (value >> 63) == 0: return 8 raise IntegerLargerThan64BitsException
231e6f1fc239da5afe7f7600740ace846125e7f5
3,655,934
from bs4 import BeautifulSoup def scrape_cvs(): """Scrape and return CVS data.""" page_headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36", "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9"} page = get_resource(CVS_ROOT + CVS_VACCINE_PAGE, page_headers) soup = BeautifulSoup(page.content, 'html.parser') modals = [elem for elem in soup.find_all( class_='modal__box') if elem.get('id').startswith('vaccineinfo')] state_urls = {} for modal in modals: state = modal.get('id').split('-')[-1] state_urls[state] = CVS_ROOT + \ modal.find(class_='covid-status').get('data-url') state_dfs = [] state_headers = { 'authority': 'www.cvs.com', 'user-agent': "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36", 'accept': '*/*', 'sec-fetch-site': 'same-origin', 'sec-fetch-mode': 'cors', 'sec-fetch-dest': 'empty', 'referer': 'https://www.cvs.com/immunizations/covid-19-vaccine', 'accept-language': 'en-US,en;q=0.9', 'referrerPolicy': 'strict-origin-when-cross-origin', 'mode': 'cors', 'credentials': 'include' } for state, url in state_urls.items(): print(url) state_response = get_resource(url, state_headers) state_df = cvs_json_to_df(state, state_response.json()) state_dfs.append(state_df) return pd.concat(state_dfs)
2f2f59b3477297f475d1749ff2a35c2682361cfd
3,655,935
def _to_original(sequence, result): """ Cast result into the same type >>> _to_original([], ()) [] >>> _to_original((), []) () """ if isinstance(sequence, tuple): return tuple(result) if isinstance(sequence, list): return list(result) return result
7b9d8d1d2b119d61b43dde253d8d3c48bd0e45b8
3,655,936
def get_B_R(Rdot): """Get B_R from Q, Qdot""" return Rdot
696932b9bf423289bdcf91287b0d789007322852
3,655,939
def run_coroutine_with_span(span, coro, *args, **kwargs): """Wrap the execution of a Tornado coroutine func in a tracing span. This makes the span available through the get_current_span() function. :param span: The tracing span to expose. :param coro: Co-routine to execute in the scope of tracing span. :param args: Positional args to func, if any. :param kwargs: Keyword args to func, if any. """ with span_in_stack_context(span=span): return coro(*args, **kwargs)
95672b0a1ecf7b8b86dff09835fa9b3c10f7fad2
3,655,940
def calc_bin_centre(bin_edges): """ Calculates the centre of a histogram bin from the bin edges. """ return bin_edges[:-1] + np.diff(bin_edges) / 2
780a02dc9372670ae53fb4d85e216458e7d83975
3,655,941
def to_matrix(dG, tG, d_mat, t_mat, label_mat, bridges): """ Parameters: tG: target graph dG: drug graph d_mat: drug feature matrix t_mat: target feature matrix label_mat: label matrix bridges: known links between drugs and targets Return: d_feature, t_feature """ drug_feature, target_feature = {},{} new_label = set() for d,t,i in label_mat: if d in dG.nodes and t in tG.nodes: #d_vector = np.zeros(d_mat[d].shape) #t_vector = np.zeros(t_mat[t].shape) #if i == 1: d_vector = d_mat[d] t_vector = t_mat[t] addressed_d = set() addressed_t = set() for link in bridges: if link[0] in dG.nodes and link[1] in tG.nodes: if nx.has_path(dG, d, link[0]) and nx.has_path(tG, t, link[1]): if link[0] not in addressed_d: #print(f'di: {d}, dl: {link[0]}') max_sim_d = max_sim(d,link[0],dG) d_vector = sim_vec(d_vector, d_mat[link[0]],max_sim_d) addressed_d.add(link[0]) elif link[1] not in addressed_t: #print(f'tj: {t}, tl: {link[1]}') max_sim_t = max_sim(t,link[1],tG) t_vector = sim_vec(t_vector, t_mat[link[1]],max_sim_t) addressed_t.add(link[1]) drug_feature[d] = d_vector target_feature[t] = t_vector new_label.add((d,t,i)) return drug_feature, target_feature, new_label
54a8ad910f78eca383eba90bd5f6bf6088145630
3,655,942
def ensureList(obj): """ ensures that object is list """ if isinstance(obj, list): return obj # returns original lis elif hasattr(obj, '__iter__'): # for python 2.x check if obj is iterablet return list(obj) # converts to list else: return [obj]
f845658fda36a583ac54caed1e6493d331c910fa
3,655,943
import torch def gelu_impl(x): """OpenAI's gelu implementation.""" return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x * (1.0 + 0.044715 * x * x)))
15ced02b61d6e8c526bc60d2a5214f83183946c2
3,655,944
def get_shape(kind='line', x=None, y=None, x0=None, y0=None, x1=None, y1=None, span=0, color='red', dash='solid', width=1, fillcolor=None, fill=False, opacity=1, xref='x', yref='y'): """ Returns a plotly shape Parameters: ----------- kind : string Shape kind line rect circle x : float x values for the shape. This assumes x0=x1 x0 : float x0 value for the shape x1 : float x1 value for the shape y : float y values for the shape. This assumes y0=y1 y0 : float y0 value for the shape y1 : float y1 value for the shape color : string color for shape line dash : string line style solid dash dashdot dot width : int line width fillcolor : string shape fill color fill : bool If True then fill shape If not fillcolor then the line color will be used opacity : float [0,1] opacity of the fill xref : string Sets the x coordinate system which this object refers to 'x' 'paper' 'x2' etc yref : string Sets the y coordinate system which this object refers to 'y' 'paper' 'y2' etc """ if x1 is None: if x0 is None: if x is None: xref = 'paper' x0 = 0 x1 = 1 else: x0 = x1 = x else: x1 = x0 else: x if y1 is None: if y0 is None: if y is None: yref = 'paper' y0 = 0 y1 = 1 else: y0 = y1 = y else: y1 = y0 shape = {'x0': x0, 'y0': y0, 'x1': x1, 'y1': y1, 'line': { 'color': normalize(color), 'width': width, 'dash': dash }, 'xref': xref, 'yref': yref } if kind == 'line': shape['type'] = 'line' elif kind == 'circle': shape['type'] = 'circle' elif kind == 'rect': shape['type'] = 'rect' else: raise Exception("Invalid or unkown shape type : {0}".format(kind)) if (fill or fillcolor) and kind != 'line': fillcolor = color if not fillcolor else fillcolor fillcolor = to_rgba(normalize(fillcolor), opacity) shape['fillcolor'] = fillcolor return shape
b639869eca941d2c91d44549aa751c51e033fe00
3,655,945
from typing import List def clean_row(elements: List[Tag]) -> List[Tag]: """ Clean MathML row, removing children that should not be considered tokens or child symbols. One example of cleaning that should take place here is removing 'd' and 'δ' signs that are used as derivatives, instead of as identifiers. """ # Remove whitespace between elements. elements = [e for e in elements if not (isinstance(e, str) and e.isspace())] # Remove quantifiers and double bars. elements = [e for e in elements if e.text not in ["∀", "∃"]] elements = [e for e in elements if e.text not in ["|", "∥"]] # Remove 'd's and 'δ's used as signs for derivatives. derivatives_cleaned = [] DERIVATIVE_GLYPHS = ["d", "δ", "∂"] for i, e in enumerate(elements): is_derivative_symbol = ( # Is the glyph a derivative sign? e.name == "mi" and e.text in DERIVATIVE_GLYPHS # Is the next element a symbol? and (i < len(elements) - 1 and _is_identifier(elements[i + 1])) # Is the element after that either not a symbol, or another derivative sign? and ( i == len(elements) - 2 or not _is_identifier(elements[i + 2]) or elements[i + 2].text in DERIVATIVE_GLYPHS ) ) if not is_derivative_symbol: derivatives_cleaned.append(e) elements = derivatives_cleaned return elements
527cb06ddb19d9fb25e5805c49f903254813c4e8
3,655,946
def models(estimators, cv_search, transform_search): """ Grid search prediction workflows. Used by bll6_models, test_models, and product_models. Args: estimators: collection of steps, each of which constructs an estimator cv_search: dictionary of arguments to LeadCrossValidate to search over transform_search: dictionary of arguments to LeadTransform to search over Returns: a list drain.model.Predict steps constructed by taking the product of the estimators with the the result of drain.util.dict_product on each of cv_search and transform_search. Each Predict step contains the following in its inputs graph: - lead.model.cv.LeadCrossValidate - lead.model.transform.LeadTransform - drain.model.Fit """ steps = [] for cv_args, transform_args, estimator in product( dict_product(cv_search), dict_product(transform_search), estimators): cv = lead.model.cv.LeadCrossValidate(**cv_args) cv.name = 'cv' X_train = Call('__getitem__', inputs=[MapResults([cv], {'X':'obj', 'train':'key', 'test':None, 'aux':None})]) mean = Call('mean', inputs=[X_train]) mean.name = 'mean' X_impute = Construct(data.impute, inputs=[MapResults([cv], {'aux':None, 'test':None, 'train':None}), MapResults([mean], 'value')]) cv_imputed = MapResults([X_impute, cv], ['X', {'X':None}]) cv_imputed.target = True transform = lead.model.transform.LeadTransform(inputs=[cv_imputed], **transform_args) transform.name = 'transform' fit = model.Fit(inputs=[estimator, transform], return_estimator=True) fit.name = 'fit' y = model.Predict(inputs=[fit, transform], return_feature_importances=True) y.name = 'predict' y.target = True steps.append(y) return steps
2a3044a9cc994f18e37337a7e58e9fb9e5ef05d1
3,655,947
from datetime import datetime import pytz def xml_timestamp(location='Europe/Prague'): """Method creates timestamp including time zone Args: location (str): time zone location Returns: str: timestamp """ return datetime.datetime.now(pytz.timezone(location)).isoformat()
a2883e269c8f9ae8ffd723b7b0205d931453e358
3,655,948
def transform_postorder(comp, func): """Traverses `comp` recursively postorder and replaces its constituents. For each element of `comp` viewed as an expression tree, the transformation `func` is applied first to building blocks it is parameterized by, then the element itself. The transformation `func` should act as an identity function on the kinds of elements (computation building blocks) it does not care to transform. This corresponds to a post-order traversal of the expression tree, i.e., parameters are alwaysd transformed left-to-right (in the order in which they are listed in building block constructors), then the parent is visited and transformed with the already-visited, and possibly transformed arguments in place. NOTE: In particular, in `Call(f,x)`, both `f` and `x` are arguments to `Call`. Therefore, `f` is transformed into `f'`, next `x` into `x'` and finally, `Call(f',x')` is transformed at the end. Args: comp: The computation to traverse and transform bottom-up. func: The transformation to apply locally to each building block in `comp`. It is a Python function that accepts a building block at input, and should return either the same, or transformed building block at output. Both the intput and output of `func` are instances of `ComputationBuildingBlock`. Returns: The result of applying `func` to parts of `comp` in a bottom-up fashion. Raises: TypeError: If the arguments are of the wrong computation_types. NotImplementedError: If the argument is a kind of computation building block that is currently not recognized. """ py_typecheck.check_type(comp, computation_building_blocks.ComputationBuildingBlock) if isinstance( comp, (computation_building_blocks.CompiledComputation, computation_building_blocks.Data, computation_building_blocks.Intrinsic, computation_building_blocks.Placement, computation_building_blocks.Reference)): return func(comp) elif isinstance(comp, computation_building_blocks.Selection): return func( computation_building_blocks.Selection( transform_postorder(comp.source, func), comp.name, comp.index)) elif isinstance(comp, computation_building_blocks.Tuple): return func( computation_building_blocks.Tuple([(k, transform_postorder( v, func)) for k, v in anonymous_tuple.to_elements(comp)])) elif isinstance(comp, computation_building_blocks.Call): transformed_func = transform_postorder(comp.function, func) if comp.argument is not None: transformed_arg = transform_postorder(comp.argument, func) else: transformed_arg = None return func( computation_building_blocks.Call(transformed_func, transformed_arg)) elif isinstance(comp, computation_building_blocks.Lambda): transformed_result = transform_postorder(comp.result, func) return func( computation_building_blocks.Lambda( comp.parameter_name, comp.parameter_type, transformed_result)) elif isinstance(comp, computation_building_blocks.Block): return func( computation_building_blocks.Block( [(k, transform_postorder(v, func)) for k, v in comp.locals], transform_postorder(comp.result, func))) else: raise NotImplementedError( 'Unrecognized computation building block: {}'.format(str(comp)))
964e55dc33acf978cae3f058397c9b355cae9af7
3,655,949
def bytes_to_unicode_records(byte_string, delimiter, encoding): """ Convert a byte string to a tuple containing an array of unicode records and any remainder to be used as a prefix next time. """ string = byte_string.decode(encoding) records = string.split(delimiter) return (records[:-1], records[-1].encode(encoding))
ccc3591551a6b316843cc8eafb33e45627eac752
3,655,950
def administrator(): """Returns a :class:`t_system.administration.Administrator` instance.""" return Administrator()
e473ee2e86f66f96a5cf3e09ac4a052e32a279b9
3,655,951
import numpy def ocr(path, lang='eng'): """Optical Character Recognition function. Parameters ---------- path : str Image path. lang : str, optional Decoding language. Default english. Returns ------- """ image = Image.open(path) vectorized_image = numpy.asarray(image).astype(numpy.uint8) vectorized_image[:, :, 0] = 0 vectorized_image[:, :, 2] = 0 im = cv2.cvtColor(vectorized_image, cv2.COLOR_RGB2GRAY) return pytesseract.image_to_string( Image.fromarray(im), lang=lang )[:5]
9b484779a34d65bb25e57baeaa371205c65d2dc6
3,655,952
def is_solution(system, point): """ Checks whether the point is the solution for a given constraints system. """ a = np.array(system) # get the left part left = a[:, :-1] * point left = sum(left.T) # get the right part right = (-1) * a[:, -1] return np.all(left <= right)
774987f22a57f3a6d68b5d51f7b3a42d945a1eff
3,655,956
def git_config_bool(option: str) -> bool: """ Return a boolean git config value, defaulting to False. """ return git_config(option) == "true"
1ed48faa3c6de43fc8a732aed2fde1a81bc75949
3,655,957
def read_configs(paths): """ Read yaml files and merged dict. """ eths = dict() vlans = dict() bonds = dict() for path in paths: cfg = read_config(path) ifaces = cfg.get("network", dict()) if "ethernets" in ifaces: eths.update(ifaces["ethernets"]) if "vlans" in ifaces: vlans.update(ifaces["vlans"]) if "bonds" in ifaces: bonds.update(ifaces["bonds"]) return dict( ethernets=eths, vlans=vlans, bonds=bonds )
998c75b9d75e4d6404c265a67c31bb88b9b7d435
3,655,958
import json def get_client(): """ generates API client with personalized API key """ with open("api_key.json") as json_file: apikey_data = json.load(json_file) api_key = apikey_data['perspective_key'] # Generates API client object dynamically based on service name and version. perspective = discovery.build('commentanalyzer', 'v1alpha1', developerKey=api_key) dlp = discovery.build('dlp', 'v2', developerKey=api_key) return (apikey_data, perspective, dlp)
be68eeeedf9c3dcf3f3991b70db18cd3032d2218
3,655,959
def main(global_config, **settings): """ This function returns a Pyramid WSGI application. """ settings['route_patterns'] = { 'villages': '/geography.cfm', 'parameters': '/thesaurus.cfm', 'sources': '/bibliography.cfm', 'languages': '/languages.cfm', 'florafauna': '/florafauna.cfm', 'bangime': '/bangime.cfm', 'file': r'/_files/{id:[^/\.]+}', 'file_alt': r'/_files/{id:[^/\.]+}.{ext}', } config = Configurator(settings=settings) config.include('clldmpg') config.register_menu( ('dataset', partial(menu_item, 'dataset', label='Home')), ('languages', partial(menu_item, 'languages')), ('values', partial(menu_item, 'values', label='Lexicon')), ('parameters', partial(menu_item, 'parameters', label='Thesaurus')), ('villages', partial(menu_item, 'villages', label='Villages')), ('florafauna', partial(menu_item, 'florafauna', label='Flora-Fauna')), #('contributors', partial(menu_item, 'contributors', label='Project members')), ('sources', partial(menu_item, 'sources', label='Materials')), #('bangime', partial(menu_item, 'bangime', label='Bangime')), #('other', partial(menu_item, 'other', label='Other Languages')), ('movies', partial(menu_item, 'movies', label='Videos')), ) home_comp = config.registry.settings['home_comp'] home_comp = [ 'bangime', 'other', 'contributors'] + home_comp config.add_settings({'home_comp': home_comp}) config.register_resource('village', models.Village, IVillage, with_index=True) config.register_resource('movie', models.Movie, IMovie, with_index=True) config.register_resource('file', models.File, IFile, with_index=True) config.registry.registerUtility(CustomFactoryQuery(), ICtxFactoryQuery) config.add_page('bangime') config.add_page('florafauna') config.add_page('other') config.add_page('typology') return config.make_wsgi_app()
52779856e4eeecb9673707b707d51322decda729
3,655,960
def overrides(pattern, norminput): """Split a date subfield into beginning date and ending date. Needed for fields with multiple hyphens. Args: pattern: date pattern norminput: normalized date string Returns: start date portion of pattern start date portion of norminput end date portion of pattern end date portion of norminput """ if pattern == 'NNNN-NNNN-': return pattern[:4], pattern[5:9], norminput[:4], norminput[5:9] if pattern == 'NNNN?-NNNN? av. j.-c.': return pattern[:5], pattern[6:], norminput[:5], norminput[6:] if pattern == 'NN---NNNN': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NNNN-NNNN av. j.-c.': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NNNN--': return pattern[:4], None, norminput[:4], None if pattern == 'NNNN-NN--': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'f. NNNN-NN-NN': return pattern, None, norminput, None if pattern == 'NNNN?-NNNN av. j.-c.': return pattern[:5], pattern[6:], norminput[:5], norminput[6:] if pattern == 'NN-NN-NNNN': return pattern, None, norminput, None if pattern == '-NNNN-': return None, pattern[:-1], None, norminput[:-1] if pattern == 'NNNN--NNNN': return pattern[:4], pattern[6:], norminput[:4], norminput[6:] if pattern == 'NNNN-NN--?': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NNNNNNNN': return pattern, None, norminput, None if pattern == 'NN..-NNNN av. j.-c.': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NNNN-NNN-': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'fl. NNNN-NNN-': return pattern[:8], pattern[9:], norminput[:8], norminput[9:] if pattern == 'NNNN av. j.-c.-NNNN': return pattern[:-5], pattern[-4:], norminput[:-5], norminput[-4:] if pattern == 'NNNN-NN-NN-': return pattern[:-1], None, norminput[:-1], None if pattern == 'NN-- -NNNN': return pattern[:4], pattern[-4:], norminput[:4], norminput[-4:] if pattern == 'NNNN-NN-NN': return pattern, None, norminput, None if pattern == 'NN..-NNNN? av. j.-c.': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NNNN--...': return pattern[:4], pattern[6:], norminput[:4], norminput[6:] if pattern == 'fl. NNN--NNNN': return pattern[:8], pattern[-4:], norminput[:8], norminput[-4:] if pattern == 'fl. NN---NNNN': return pattern[:8], pattern[-4:], norminput[:8], norminput[-4:] if pattern == 'NN---NNNN?': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'fl. NNN--NNN-': return pattern[:8], pattern[-4:], norminput[:8], norminput[-4:] if pattern == 'NN..-NN.. av. j.-c.': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NN--': return pattern, None, norminput, None if pattern == 'fl. NN--': return pattern, None, norminput, None if pattern == 'NN..?-NN..? av. j.-c.': return pattern[:5], pattern[6:], norminput[:5], norminput[6:] if pattern == 'NNN-NNN av. j.-c.': return pattern[:3], pattern[4:], norminput[:3], norminput[4:] if pattern == 'NN---NN--': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NNN--NNN-': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NN-..-NN..': return pattern[:2]+pattern[3:5], pattern[6:], norminput[:2]+norminput[3:5], norminput[6:] if pattern == 'NN---': return pattern[:-1], None, norminput[:-1], None if pattern == 'NNNN?-NNNN?': return pattern[:5], pattern[6:], norminput[:5], norminput[6:] if pattern == 'NNNN-NN-NN-NNNN-NN-NN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-N-NN': return pattern, None, norminput, None if pattern == 'NNNN-N-N': return pattern, None, norminput, None if pattern == 'NNNN-NNNN-NN-NN': return pattern[:4], pattern[6:], norminput[:4], norminput[6:] if pattern == 'NNNN-N-NN-NNNN-N-NN': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'NNNN-NN-NN-NNNN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-N-NN-NNNN-N-N': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'NNNN-N-N-NNNN-N-NN': return pattern[:8], pattern[9:], norminput[:8], norminput[9:] if pattern == 'NNNN-N-NN-NNNN-NN-NN': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'NNNN-NN-NN-NNNN-N-NN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'month NN NNNN-NNNN-NN-NN': p = pattern.split('-', 1) n = norminput.split('-', 1) return p[0], p[1], n[0], n[1] if pattern == 'NN month NNNN-NNNN-NN-NN': p = pattern.split('-', 1) n = norminput.split('-', 1) return p[0], p[1], n[0], n[1] if pattern == 'NNNN-N-N-NNNN-N-N': return pattern[:8], pattern[9:], norminput[:8], norminput[9:] if pattern == '-NNNN-NN-NN': return None, pattern[1:], None, norminput[1:] if pattern == 'NNNN-NN-NN-month NN NNNN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-N-N-NNNN-NN-NN': return pattern[:8], pattern[9:], norminput[:8], norminput[9:] if pattern == 'NNNN-NN-NN-NNNN-N-N': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-NN-NN-NN month NNNN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-NN-N-NNNN-N-NN': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'NNNN-N-NN-NNNN-NN-N': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'month N NNNN-NNNN-NN-NN': p = pattern.split('-', 1) n = norminput.split('-', 1) return p[0], p[1], n[0], n[1] if pattern == 'NNNN-N-N-month NN NNNN': return pattern[:8], pattern[9:], norminput[:8], norminput[9:] if pattern == 'NNNN-NN-NN-month N NNNN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-NN-NN-N month NNNN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-NN-N-NNNN-NN-NN': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'N month NNNN-NNNN-NN-NN': p = pattern.split('-', 1) n = norminput.split('-', 1) return p[0], p[1], n[0], n[1] if pattern == 'NNNN-NN-NN-NNNN-NN-N': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-NN-NN-NNNN/NN/NN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-N-N-NNNN-NN-N': return pattern[:8], pattern[9:], norminput[:8], norminput[9:] if pattern == 'NNNN-N-NN-NNNN': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'NNNN-NN-NN-month NNNN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-NN-N-NNNN-N-N': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'NNNN-NN-NN}}': return pattern, None, norminput, None if pattern == 'NN-NN-NNNN-NN-NN-NNNN': return pattern[:10], pattern[11:], norminput[:10], norminput[11:] if pattern == 'NNNN-N-N-month N NNNN': return pattern[:8], pattern[9:], norminput[:8], norminput[9:] if pattern == 'NNNN-NNNN-N-NN': return pattern[:4], pattern[5:], norminput[:4], norminput[5:] if pattern == 'NNNN-N-NN-month NNNN': return pattern[:9], pattern[10:], norminput[:9], norminput[10:] if pattern == 'c. NNNN-NNNN-NN-NN': return pattern[:7], pattern[8:], norminput[:7], norminput[8:] if pattern == 'NNNN-N-N-NNNN': pattern[:4], pattern[5:], norminput[:4], norminput[5:] return None
5e005b0537d123607225ed82163cac07f578a755
3,655,961
def defaultPolynomialLoad(): """ pytest fixture that returns a default PolynomialLoad object :return: PolynomialLoad object initialized with default values """ return PolynomialStaticLoad()
75b989dc80e7ccf4e9a091de2dcdeb8758b465b3
3,655,962
def calc_pi(iteration_count, cores_usage): """ We calculate pi using Ulam's Monte Carlo method. See the module documentation. The calculated value of pi is returned. We use a process pool to offer the option of spreading the calculation across more then one core. iteration_count is the number of iterations that are run. cores_usage is the number of processes to use. """ # We're using a multiprocessing pool here, to take advantage of # multi-core CPUs. # Calculate stuff for the pool. pool_size = cores_usage iterations_per_process = iteration_count // pool_size work_list = [iterations_per_process] * pool_size work_list[0] += iteration_count % pool_size # Set up the pool. calc_pool = mp.Pool(pool_size) # Use the pool to obtain random points in the unit circle. # We'll let the system determine the chunk size. in_circle_total = sum(calc_pool.map( count_is_in_cirle, work_list)) # Finish the calculation. in_circle_total, divided by the total # number of iterations, is the area of the unit circle # relative to the [-1, 1] square. Multiply by 4, which is the area # of the [-1, 1] square, to get the area of the unit circle. # .NOTE. If you modify this program to run in Python 2.7, remember # to modify this calculation to use floating point division (or # import division from future). return 4 * in_circle_total / iteration_count
7b4db8f0936995f46a42fedb4d5539cd3057eb01
3,655,963
def pair_range_from_to(x): # cpdef pair_range(np.ndarray[long,ndim=1] x): """ Returns a list of half-cycle-amplitudes x: Peak-Trough sequence (integer list of local minima and maxima) This routine is implemented according to "Recommended Practices for Wind Turbine Testing - 3. Fatigue Loads", 2. edition 1990, Appendix A except that a list of half-cycle-amplitudes are returned instead of a from_level-to_level-matrix """ x = x - np.min(x) k = np.max(x) n = x.shape[0] S = np.zeros(n + 1) A = np.zeros((k + 1, k + 1)) S[1] = x[0] ptr = 1 p = 1 q = 1 f = 0 # phase 1 while True: p += 1 q += 1 # read S[p] = x[ptr] ptr += 1 if q == n: f = 1 while p >= 4: #print S[p - 3:p + 1] #print S[p - 2], ">", S[p - 3], ", ", S[p - 1], ">=", S[p - 3], ", ", S[p], ">=", S[p - 2], (S[p - 2] > S[p - 3] and S[p - 1] >= S[p - 3] and S[p] >= S[p - 2]) #print S[p - 2], "<", S[p - 3], ", ", S[p - 1], "<=", S[p - 3], ", ", S[p], "<=", S[p - 2], (S[p - 2] < S[p - 3] and S[p - 1] <= S[p - 3] and S[p] <= S[p - 2]) #print (S[p - 2] > S[p - 3] and S[p - 1] >= S[p - 3] and S[p] >= S[p - 2]) or (S[p - 2] < S[p - 3] and S[p - 1] <= S[p - 3] and S[p] <= S[p - 2]) if (S[p - 2] > S[p - 3] and S[p - 1] >= S[p - 3] and S[p] >= S[p - 2]) or \ (S[p - 2] < S[p - 3] and S[p - 1] <= S[p - 3] and S[p] <= S[p - 2]): A[S[p - 2], S[p - 1]] += 1 A[S[p - 1], S[p - 2]] += 1 S[p - 2] = S[p] p -= 2 else: break if f == 1: break # q==n # phase 2 q = 0 while True: q += 1 if p == q: break else: #print S[q], "to", S[q + 1] A[S[q], S[q + 1]] += 1 return A
96d86079b971bda58fd2d0af440feecc8fa4c1fd
3,655,965
def serialize_action( action: RetroReaction, molecule_store: MoleculeSerializer ) -> StrDict: """ Serialize a retrosynthesis action :param action: the (re)action to serialize :param molecule_store: the molecule serialization object :return: the action as a dictionary """ dict_ = action.to_dict() dict_["mol"] = molecule_store[dict_["mol"]] dict_["class"] = f"{action.__class__.__module__}.{action.__class__.__name__}" return dict_
f35c0a34cc6778a39c991edafdda6bd30aea4886
3,655,966
import string def complement(s): """ Return complement of 's'. """ c = string.translate(s, __complementTranslation) return c
7dab43db51bc5a3bb7321deebdb8122792f08d86
3,655,968
import copy def get_state_transitions(actions): """ get the next state @param actions: @return: tuple (current_state, action, nextstate) """ state_transition_pairs = [] for action in actions: current_state = action[0] id = action[1][0] next_path = action[1][1] next_state = copy.deepcopy(current_state) if 'NoTrans' not in id: # change the state next_state[id] = next_path state_transition_pairs.append((current_state, action[1], next_state)) return state_transition_pairs
bbed37ed6469f5635fbc65fa07195114b4bb3dac
3,655,969
import struct def parse_pascal_string(characterset, data): """ Read a Pascal string from a byte array using the given character set. :param characterset: Character set to use to decode the string :param data: binary data :return: tuple containing string and number of bytes consumed """ string_size_format, string_size_size, character_size = get_string_size_format(characterset) if len(data) < string_size_size: raise FileParseException("String size truncated") string_size = struct.unpack("<" + string_size_format, data[0:string_size_size])[0] * character_size string_data = data[string_size_size:string_size_size + string_size] result = string_data.decode(CHARACTER_SETS[characterset]) total_size = string_size_size + string_size return result, total_size
eabdfe1f6fb864eead1345016495f64c5457727e
3,655,970
def folder(initial=None, title='Select Folder'): """Request to select an existing folder or to create a new folder. Parameters ---------- initial : :class:`str`, optional The initial directory to start in. title : :class:`str`, optional The text to display in the title bar of the dialog window. Returns ------- :class:`str` The name of the selected folder or :obj:`None` if the user cancelled the request to select a folder. """ app, title = _get_app_and_title(title) name = QtWidgets.QFileDialog.getExistingDirectory(app.activeWindow(), title, initial) return name if len(name) > 0 else None
60331e1a89241595e09e746901fff656f8d4365a
3,655,971
import tqdm from typing import Any from typing import Optional def tqdm_hook(t: tqdm) -> Any: """Progressbar to visualisation downloading progress.""" last_b = [0] def update_to(b: int = 1, bsize: int = 1, t_size: Optional[int] = None) -> None: if t_size is not None: t.total = t_size t.update((b - last_b[0]) * bsize) last_b[0] = b return update_to
ff075a946ea9cf2d124d9d5e93fb83d31f2e0623
3,655,973
def check_regular_timestamps( time_series: TimeSeries, time_tolerance_decimals: int = 9, gb_severity_threshold: float = 1.0 ): """If the TimeSeries uses timestamps, check if they are regular (i.e., they have a constant rate).""" if ( time_series.timestamps is not None and len(time_series.timestamps) > 2 and check_regular_series(series=time_series.timestamps, tolerance_decimals=time_tolerance_decimals) ): timestamps = np.array(time_series.timestamps) if timestamps.size * timestamps.dtype.itemsize > gb_severity_threshold * 1e9: severity = Severity.HIGH else: severity = Severity.LOW return InspectorMessage( severity=severity, message=( "TimeSeries appears to have a constant sampling rate. " f"Consider specifying starting_time={time_series.timestamps[0]} " f"and rate={time_series.timestamps[1] - time_series.timestamps[0]} instead of timestamps." ), )
0c44f2b26a71e76b658180e1817cc3dfbeb375e0
3,655,974
def test_device_bypass(monkeypatch): """Test setting the bypass status of a device.""" _was_called = False def _call_bypass(url, body, **kwargs): nonlocal _was_called assert url == "/appservices/v6/orgs/Z100/device_actions" assert body == {"action_type": "BYPASS", "device_id": [6023], "options": {"toggle": "OFF"}} _was_called = True return StubResponse(None, 204) api = call_cbcloud_api() patch_cbc_sdk_api(monkeypatch, api, POST=_call_bypass) api.device_bypass([6023], False) assert _was_called
17e2a2f1f7c8ef1a7ef32e8aacb40f8f7fe16c53
3,655,975
import re import importlib def import_config_module( cfg_file ): """ Returns valid imported config module. """ cfg_file = re.sub( r'\.py$', '', cfg_file ) cfg_file = re.sub( r'-', '_', cfg_file ) mod_name = 'config.' + cfg_file cfg_mod = importlib.import_module( mod_name ) if not hasattr( cfg_mod, 'pre_start_config' ): raise ImportError( 'Config file must define \'pre_start_config\' method' ) if not hasattr( cfg_mod, 'post_start_config' ): raise ImportError( 'Config file must define \'post_start_config\' method' ) return cfg_mod
4cb25a56df0f26f0f3c4917aad2ca4cd40e4797f
3,655,976
import multiprocessing def process_batches(args, batches): """Runs a set of batches, and merges the resulting output files if more than one batch is included. """ nbatches = min(args.nbatches, len(batches)) pool = multiprocessing.Pool(nbatches, init_worker_thread) try: batches = pool.imap(run_batch, batches, 1) if not merge_batch_results(batches): pool.terminate() pool.join() return 1 pool.close() pool.join() return 0 except: pool.terminate() pool.join() raise
dbd893773e6a5fed1d68a48c875741e4ce963ae6
3,655,977
def tripledes_cbc_pkcs5_decrypt(key, data, iv): """ Decrypts 3DES ciphertext in CBC mode using either the 2 or 3 key variant (16 or 24 byte long key) and PKCS#5 padding. :param key: The encryption key - a byte string 16 or 24 bytes long (2 or 3 key mode) :param data: The ciphertext - a byte string :param iv: The initialization vector - a byte string 8-bytes long :raises: ValueError - when any of the parameters contain an invalid value TypeError - when any of the parameters are of the wrong type OSError - when an error is returned by OpenSSL :return: A byte string of the plaintext """ if len(key) != 16 and len(key) != 24: raise ValueError(pretty_message( ''' key must be 16 bytes (2 key) or 24 bytes (3 key) long - is %s ''', len(key) )) if len(iv) != 8: raise ValueError(pretty_message( ''' iv must be 8 bytes long - is %s ''', len(iv) )) ctx = triple_des(key, mode=DES_CBC, IV=iv, padmode=DES_PAD_PKCS5) return ctx.decrypt(data)
bf6d7efaade2cb7ce2f6abf7cea89a04fdbb3897
3,655,978
def kruskal_chi2_test(data=None, alpha=0.05, precision=4): """ col = 要比較的 target row = data for each target """ if type(data) == pd.DataFrame: data = data.copy().to_numpy() alldata = np.concatenate(data.copy()) else: alldata = np.concatenate(data.copy()) k = data.shape[1] alldata.sort() tmp_df = pd.DataFrame(({'value': alldata})) tmp_df['rank'] = tmp_df.index + 1 # rank value_to_rank = tmp_df.groupby('value').mean().reset_index() T = [] sample_rank_df = [] for i in range(k): samp = pd.DataFrame( {'value': data[:, i][~np.isnan(data[:, i])]}) samp = pd.merge(samp, value_to_rank) sample_rank_df.append(samp) T.append(samp['rank'].sum()) n = [len(data[:, i][~np.isnan(data[:, i])]) for i in range(k)] # print(T) # print(n) rule_of_five_str = "" if (np.sum(np.array(n) < 5) > 0): rule_of_five_str += "!(At least one sample size is less than 5)" else: rule_of_five_str += "(All sample size >= 5)" N = np.sum(n) t_over_n = 0 for i in range(k): t_over_n += T[i] ** 2 / n[i] H = 12 / N / (N + 1) * t_over_n - 3 * (N + 1) p_value = 1 - stats.chi2.cdf(H, k - 1) chi2_stat = stats.chi2.ppf(1 - alpha, k - 1) result_dict = {'H': H, 'p-value': p_value, 'T': T, 'sample_rank_df': sample_rank_df} flag = p_value < alpha result = f'''======= Kruskal-Wallis Test with Chi-squared Test ======= {rule_of_five_str} H statistic value (observed) = {H:.{precision}f} chi2 critical value = {chi2_stat:.{precision}f} p-value = {p_value:.{precision}f} ({inter_p_value(p_value)}) Reject H_0 (Not all {k} population locations are the same) → {flag} ''' print(result) return result_dict
3b89e14e7072cbb6375b0c1ead8320c5643aacd1
3,655,979
def add_new_action(action, object_types, preferred, analyst): """ Add a new action to CRITs. :param action: The action to add to CRITs. :type action: str :param object_types: The TLOs this is for. :type object_types: list :param preferred: The TLOs this is preferred for. :type preferred: list :param analyst: The user adding this action. :returns: True, False """ action = action.strip() idb_action = Action.objects(name=action).first() if not idb_action: idb_action = Action() idb_action.name = action idb_action.object_types = object_types idb_action.preferred = [] prefs = preferred.split('\n') for pref in prefs: cols = pref.split(',') if len(cols) != 3: continue epa = EmbeddedPreferredAction() epa.object_type = cols[0].strip() epa.object_field = cols[1].strip() epa.object_value = cols[2].strip() idb_action.preferred.append(epa) try: idb_action.save(username=analyst) except ValidationError: return False return True
2b54c3766d9793a1c6598402bf7a5b1103bb324b
3,655,980
import multiprocessing import asyncio def test_PipeJsonRpcSendAsync_5(): """ Specia test case. Two messages: the first message times out, the second message is send before the response from the first message is received. Verify that the result returned in response to the second message is received. (We discard the result of the message that is timed out.) """ def method_handler1(): ttime.sleep(0.7) return 39 def method_handler2(): ttime.sleep(0.2) return 56 conn1, conn2 = multiprocessing.Pipe() pc = PipeJsonRpcReceive(conn=conn2, name="comm-server") pc.add_method(method_handler1, "method1") pc.add_method(method_handler2, "method2") pc.start() async def send_messages(): p_send = PipeJsonRpcSendAsync(conn=conn1, name="comm-client") p_send.start() # Submit multiple messages at once. Messages should stay at the event loop # and be processed one by one. with pytest.raises(CommTimeoutError): await p_send.send_msg("method1", timeout=0.5) result = await p_send.send_msg("method2", timeout=0.5) assert result == 56, "Incorrect result received" p_send.stop() asyncio.run(send_messages()) pc.stop()
a1939e03f4c9992d84ac52a35b975f20077a2161
3,655,981
import re def tpc(fastas, **kw): """ Function to generate tpc encoding for protein sequences :param fastas: :param kw: :return: """ AA = kw['order'] if kw['order'] is not None else 'ACDEFGHIKLMNPQRSTVWY' encodings = [] triPeptides = [aa1 + aa2 + aa3 for aa1 in AA for aa2 in AA for aa3 in AA] AADict = {} for i in range(len(AA)): AADict[AA[i]] = i for i in fastas: name, sequence = i[0], re.sub('-', '', i[1]) code = [name] tmpCode = [0] * 8000 for j in range(len(sequence) - 3 + 1): tmpCode[AADict[sequence[j]] * 400 + AADict[sequence[j + 1]] * 20 + AADict[sequence[j + 2]]] = \ tmpCode[AADict[sequence[j]] * 400 + AADict[sequence[j + 1]] * 20 + AADict[sequence[j + 2]]] + 1 if sum(tmpCode) != 0: tmpCode = [i / sum(tmpCode) for i in tmpCode] code = code + tmpCode encodings.append(code) return encodings
b8017356980b266d78d85a867aee97c0d79ec5e5
3,655,983
def _uninstall_flocker_centos7(): """ Return an ``Effect`` for uninstalling the Flocker package from a CentOS 7 machine. """ return sequence([ run_from_args([ b"yum", b"erase", b"-y", b"clusterhq-python-flocker", ]), run_from_args([ b"yum", b"erase", b"-y", b"clusterhq-release", ]), ])
0d8f068857cbc25743b644d067fe70efffb644f0
3,655,984
import requests def authenticate(username, password): """Authenticate with the API and get a token.""" API_AUTH = "https://api2.xlink.cn/v2/user_auth" auth_data = {'corp_id': "1007d2ad150c4000", 'email': username, 'password': password} r = requests.post(API_AUTH, json=auth_data, timeout=API_TIMEOUT) try: return (r.json()['access_token'], r.json()['user_id']) except KeyError: raise(LaurelException('API authentication failed'))
9675227b5ff4f58d79bafffc0407366a26d638bd
3,655,986
def filter_hashtags_users(DATAPATH, th, city): """ cleans target_hashtags by removing hashtags that are used by less than 2 users replaces hahstags by ht_id and saves to idhashtags.csv creates entropy for each ht_id and saves to hashtag_id_entropies.csv prints std output :param DATAPATH: :param th: hashtags are too popular if more than th% of users share them :param city: :return: """ ht = pd.read_csv(DATAPATH + city + ".target_hashtags") print ("ht.shape", ht.shape) ht["hashtags"] = ht['hashtags'].astype('category') ht["ht_id"] = ht["hashtags"].cat.codes ht.drop('hashtags', axis=1, inplace=True) #arrmult = [] entarr = [] gp = ht.groupby('ht_id') # cnt_df = gp.size().reset_index(name='sizes') # hashtags are too popular if more than th% of users share them max_df_ht = th * len(ht.uid.unique()) print ("max_df_ht", max_df_ht) # removing hashtags that are used by less than 2 users and more than th% of users for htid, group in gp: user_count = len(group['uid'].value_counts().values) if user_count > 1 and user_count <= max_df_ht: e = entropy(group['uid'].value_counts().values) c = len(group) entarr.append([htid, e, c]) #arrmult.append(htid) # save entropies of hashtags for other calculations entdf = pd.DataFrame(data=entarr, columns=['ht_id', 'entropy', 'counts']) sortt = entdf.sort_values(by='entropy') sortt.to_csv(DATAPATH + "counts_entropies.csv", index=False) # filtered hashtag df ht2 = ht[ht.ht_id.isin(entdf.ht_id)] print ("after removing too popular and too rare hts", ht2.shape) ht2.to_csv(DATAPATH + str(th) + "filtered_hashtags.csv", index=False) return entdf, ht2
60e0b02f9bbdccae32958717fd8608aa1932386e
3,655,987
def cluster_set_state(connection: 'Connection', state: int, query_id=None) -> 'APIResult': """ Set cluster state. :param connection: Connection to use, :param state: State to set, :param query_id: (optional) a value generated by client and returned as-is in response.query_id. When the parameter is omitted, a random value is generated, :return: API result data object. Contains zero status if a value is written, non-zero status and an error description otherwise. """ return __cluster_set_state(connection, state, query_id)
88b05a617e17574961e44d5a88bec1ac4da0be95
3,655,988
def get_all(data, path): """Returns a list with all values in data matching the given JsonPath.""" return [x for x in iterate(data, path)]
592fee87b3b4be171d4e4a19b013b99551768f75
3,655,989
def extract_information_from_blomap(oneLetterCodes): """ extracts isoelectric point (iep) and hydrophobicity from blomap for each aminoacid Parameters ---------- oneLetterCodes : list of Strings/Chars contains oneLetterCode for each aminoacid Returns ------- float, float iep, hydrophobicity """ letter_encodings = [] for x in oneLetterCodes: letter_encodings.append(extended_blomap[x.upper()]) isoelectric_point = [] hydrophobicity = [] for element in letter_encodings: isoelectric_point.append([element[7]]) hydrophobicity.append([element[8]]) return isoelectric_point, hydrophobicity
d36e16a0e35d744f1001752c98d09035b3e581c6
3,655,990
def partitions(n): """ Return a sequence of lists Each element is a list of integers which sum to n - a partition n. The elements of each partition are in descending order and the sequence of partitions is in descending lex order. >>> list(partitions(4)) [[3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]] """ return partitions_with_max(n, max=n - 1)
042759c97031baee7c958d59b3a432b52111a696
3,655,991
def create_request_element(channel_id, file_info, data_id, annotation): """ create dataset item from datalake file :param channel_id: :param file_id: :param file_info: :param label_metadata_key: :return: """ data_uri = 'datalake://{}/{}'.format(channel_id, file_info.file_id) data = { 'source_data': [ { 'data_uri': data_uri, 'data_type': file_info.content_type } ], 'attributes': { 'classification': annotation, 'id': data_id } } return data
9fad37428e2608d47b2d0d57d075c0fbd9292b46
3,655,992
from typing import Mapping from typing import Iterable def _categorise(obj, _regex_adapter=RegexAdapter): """ Check type of the object """ if obj is Absent: return Category.ABSENT obj_t = type(obj) if issubclass(obj_t, NATIVE_TYPES): return Category.VALUE elif callable(obj): return Category.CALLABLE elif _regex_adapter.check(obj): return Category.REGEX elif issubclass(obj_t, Mapping): return Category.DICT elif issubclass(obj_t, Iterable): return Category.ITERABLE else: # catch-all for types like decimal.Decimal, uuid.UUID, et cetera return Category.VALUE
549f21bee43f619fea7c2a09940cda1ce03e4e8c
3,655,993
def remove_key(d, key): """Safely remove the `key` from the dictionary. Safely remove the `key` from the dictionary `d` by first making a copy of dictionary. Return the new dictionary together with the value stored for the `key`. Parameters ---------- d : dict The dictionary from which to remove the `key`. key : The key to remove Returns ------- v : The value for the key r : dict The dictionary with the key removed. """ r = dict(d) v = r[key] del r[key] return v, r
5695b18675b52f4ca8bc3cba1ed0104425e7a04f
3,655,994
import csv import six def tasks_file_to_task_descriptors(tasks, retries, input_file_param_util, output_file_param_util): """Parses task parameters from a TSV. Args: tasks: Dict containing the path to a TSV file and task numbers to run variables, input, and output parameters as column headings. Subsequent lines specify parameter values, one row per job. retries: Number of retries allowed. input_file_param_util: Utility for producing InputFileParam objects. output_file_param_util: Utility for producing OutputFileParam objects. Returns: task_descriptors: an array of records, each containing the task-id, task-attempt, 'envs', 'inputs', 'outputs', 'labels' that defines the set of parameters for each task of the job. Raises: ValueError: If no job records were provided """ task_descriptors = [] path = tasks['path'] task_min = tasks.get('min') task_max = tasks.get('max') # Load the file and set up a Reader that tokenizes the fields param_file = dsub_util.load_file(path) reader = csv.reader(param_file, delimiter='\t') # Read the first line and extract the parameters header = six.advance_iterator(reader) job_params = parse_tasks_file_header(header, input_file_param_util, output_file_param_util) # Build a list of records from the parsed input file for row in reader: # Tasks are numbered starting at 1 and since the first line of the TSV # file is a header, the first task appears on line 2. task_id = reader.line_num - 1 if task_min and task_id < task_min: continue if task_max and task_id > task_max: continue if len(row) != len(job_params): dsub_util.print_error('Unexpected number of fields %s vs %s: line %s' % (len(row), len(job_params), reader.line_num)) # Each row can contain "envs", "inputs", "outputs" envs = set() inputs = set() outputs = set() labels = set() for i in range(0, len(job_params)): param = job_params[i] name = param.name if isinstance(param, job_model.EnvParam): envs.add(job_model.EnvParam(name, row[i])) elif isinstance(param, job_model.LabelParam): labels.add(job_model.LabelParam(name, row[i])) elif isinstance(param, job_model.InputFileParam): inputs.add( input_file_param_util.make_param(name, row[i], param.recursive)) elif isinstance(param, job_model.OutputFileParam): outputs.add( output_file_param_util.make_param(name, row[i], param.recursive)) task_descriptors.append( job_model.TaskDescriptor({ 'task-id': task_id, 'task-attempt': 1 if retries else None }, { 'labels': labels, 'envs': envs, 'inputs': inputs, 'outputs': outputs }, job_model.Resources())) # Ensure that there are jobs to execute (and not just a header) if not task_descriptors: raise ValueError('No tasks added from %s' % path) return task_descriptors
7c195e8c09b439d39fca105fa3303f74c43538c1
3,655,995
def spreadplayers(self: Client, x: RelativeFloat, y: RelativeFloat, spread_distance: float, max_range: float, victim: str) -> str: """Spreads players.""" return self.run('spreadplayers', x, y, spread_distance, max_range, victim)
6577d7209d19a142ae9e02804b84af921df3224c
3,655,997
def get_version(): """Returns single integer number with the serialization version""" return 2
f25ad858441fcbb3b5353202a53f6ebaa8874e4d
3,655,998
def format_result(func): """包装结果格式返回给调用者""" @wraps(func) def wrapper(*args, **kwargs): ret = {} try: data = func(*args, **kwargs) if type(data) is Response: return data ret['data'] = data ret['success'] = True ret['message'] = 'Succeed' except Exception as e: ret['message'] = str(e) ret['data'] = None ret['success'] = False logger.info(f"request_{func}, result: {ret}") return ret return wrapper
53109217a9fe6fbc00250a7b8dfd6b295e47e12b
3,655,999
def writeData(filename, data): """ MBARBIER: Taken/adapted from https://github.com/ChristophKirst/ClearMap/blob/master/ClearMap/IO/TIF.py Write image data to tif file Arguments: filename (str): file name data (array): image data Returns: str: tif file name """ d = len(data.shape); if d == 2: tiff.imsave(filename, data.transpose([0,1])); elif d == 3: tiff.imsave(filename, data.transpose([2,0,1]), photometric = 'minisblack', planarconfig = 'contig', bigtiff = True); elif d == 4: #tiffile (z,y,x,c) tiff.imsave(filename, data.transpose([0,1,2,3]), photometric = 'minisblack', planarconfig = 'contig', bigtiff = True); else: raise RuntimeError('writing multiple channel data to tif not supported!'); return filename;
cc4414b9f52413bebc422032f796cd242ecc8ef4
3,656,000
def get_trigger_function(trigger_message, waiter): """Función auxiliar que genera un activador Args: trigger_message: mensaje o instruccion para continuar. waiter: función que pausa el flujo de instrucciones. """ def trigger_function(): # Se imprime la instrucción para detonar el activador print(trigger_message) waiter() # Se reproduce un audio confirmando que el activador fue # detonado. reproducir_audio(TRIGGER_AUDIO_PATH) return trigger_function
b389dd93631ae396c65d5653da6cea3ec91b3556
3,656,001
def find_peaks(amplitude): """ A value is considered to be a peak if it is higher than its four closest neighbours. """ # Pad the array with -1 at the beginning and the end to avoid overflows. padded = np.concatenate((-np.ones(2), amplitude, -np.ones(2))) # Shift the array by one/two values to the left/right shifted_l2 = padded[:-4] shifted_l1 = padded[1:-3] shifted_r1 = padded[3:-1] shifted_r2 = padded[4:] # Compare the original array with the shifted versions. peaks = ((amplitude >= shifted_l2) & (amplitude >= shifted_l1) & (amplitude >= shifted_r1) & (amplitude >= shifted_r2)) return peaks
192f25bbc491c7e880ff5363098b0ced29f37567
3,656,002
from typing import Optional def sync( *, client: Client, json_body: CustomFieldOptionsCreateRequestBody, ) -> Optional[CustomFieldOptionsCreateResponseBody]: """Create Custom Field Options Create a custom field option. If the sort key is not supplied, it'll default to 1000, so the option appears near the end of the list. Args: json_body (CustomFieldOptionsCreateRequestBody): Example: {'custom_field_id': '01FCNDV6P870EA6S7TK1DSYDG0', 'sort_key': 10, 'value': 'Product'}. Returns: Response[CustomFieldOptionsCreateResponseBody] """ return sync_detailed( client=client, json_body=json_body, ).parsed
6215e704be4bbc32e52fb03817e00d7fd5338365
3,656,003
def decrypt_with_private_key(data, private_key): """Decrypts the PKCS#1 padded shared secret using the private RSA key""" return _pkcs1_unpad(private_key.decrypt(data))
f1dac9113fb97f62afab524239e38c6cb196c989
3,656,004
import warnings def deprecated (func): """ This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emitted when the function is used. :param func: original function :type func: :any:`collections.Callable` :return: decorated func :rtype: :any:`collections.Callable` """ @wraps(func) def newFunc (*args, **kwargs): warnings.warn("Call to deprecated function %s." % func.__name__, category=DeprecationWarning, stacklevel=2) return func(*args, **kwargs) return newFunc
ba237c30d97013080bd84569af1817685023dab6
3,656,006
import re def prediction(): """ A function that takes a JSON with two fields: "text" and "maxlen" Returns: the summarized text of the paragraphs. """ print(request.form.values()) paragraphs = request.form.get("paragraphs") paragraphs = re.sub("\d+", "", paragraphs) maxlen = int(request.form.get("maxlen")) summary = summarizer(paragraphs, max_length=maxlen, min_length=49, do_sample=False) return render_template('index.html', prediction_text = '" {} "'.format(summary[0]["summary_text"])), 200
a1bdf996908e65e3087ed4ffe27402c9763b4d69
3,656,007
def is_reviewer(user): """Return True if this user is a financial aid reviewer""" # no need to cache here, all the DB lookups used during has_perm # are already cached return user.has_perm("finaid.review_financial_aid")
e3c599f78eb51c33ab48e3760c0f2965ba305916
3,656,008
def getLogMessage(commitSHA): """Get the log message for a given commit hash""" output = check_output(["git","log","--format=%B","-n","1",commitSHA]) return output.strip()
2d42e587da57faff5366fc656e8d45a8fa797208
3,656,009
def sup(content, accesskey:str ="", class_: str ="", contenteditable: str ="", data_key: str="", data_value: str="", dir_: str="", draggable: str="", hidden: str="", id_: str="", lang: str="", spellcheck: str="", style: str="", tabindex: str="", title: str="", translate: str=""): """ Returns superscript.\n `content`: Contents of the superscript.\n """ g_args = global_args(accesskey, class_, contenteditable, data_key, data_value, dir_, draggable, hidden, id_, lang, spellcheck, style, tabindex, title, translate) return f"<sup {g_args}>{content}</sup>\n"
dff8635d98f68e5b024fe23cbeaa6a1a9884222f
3,656,011
def isnonempty(value): """ Return whether the value is not empty Examples:: >>> isnonempty('a') True >>> isnonempty('') False :param value: string to validate whether value is not empty """ return value != ''
0250cb455d8f77027d5cde9101a24683950bbdb2
3,656,012
def InstallSystem(config, deployment, options): """Install the local host from the sysync deployment configuration files.""" installed = {} # Create fresh temporary directory Log('Clearing temporary deployment path: %s' % config['deploy_temp_path']) run.Run('/bin/rm -rf %s' % config['deploy_temp_path']) run.Run('/bin/mkdir -p %s' % config['deploy_temp_path']) # Install the packages result = InstallPackagesLocally(config, deployment, options) return result
642eda86228e5575bc7267d9b3a5c3ddc055daf4
3,656,013
def preprocess_input(x): """前処理。""" return tf.keras.applications.imagenet_utils.preprocess_input(x, mode="torch")
6795c5e571d67a7908edbe3c3ca0ed5e3412d2f0
3,656,014
def attribute_to_partner_strict(partner, partner_string_or_spec, amount): """Return the amount attributable to the given partner.""" spec = ( partner_string_or_spec if isinstance(partner_string_or_spec, dict) else parse_partner_string(partner_string_or_spec) ) if partner not in spec: raise ValueError("Partner not found in partner string: %s" % partner) v100 = spec[partner] * float(amount.abs()) f_floor = round if isclose(v100, round(v100)) else floor v = amount.sign() * 0.01 * f_floor(v100) return Amount(str(v)).with_commodity(amount.commodity)
d7e00b50e8be010d7896b6c51e1e3fcfe73438d2
3,656,015
import math def drawLines(img, lines, color=(255,0,0)): """ Draw lines on an image """ centroids = list() r_xs = list() r_ys = list() for line_ in lines: for rho,theta in line_: a = np.cos(theta) b = np.sin(theta) x0 = a*rho y0 = b*rho x1 = int(x0 + 1000*(-b)) y1 = int(y0 + 1000*(a)) x2 = int(x0 - 1000*(-b)) y2 = int(y0 - 1000*(a)) slope = (y1 - y0) / float(x1 - x0) angle = math.degrees(math.atan(slope)) if abs(angle) > 80: # print(img.shape[1]) h_layout = line((0, 0), (img.shape[1], 0)) h_layout_lower = line((0, img.shape[0]), (img.shape[1], img.shape[0])) r = intersection2(h_layout, line((x1, y1), (x2, y2))) r_lower = intersection2(h_layout_lower, line((x1, y1), (x2, y2))) # cv2.line(img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) # cv2.line(img, (int(r[0]), int(r[1])), (int(r_lower[0]), int(r_lower[1])), color, 2) # print('min(r, r_lower), max(r, r_lower) :', np.min(np.array([r, r_lower])), np.max(np.array([r, r_lower]))) # min max 의 최소 최대 Range 를 정해주어야 한다. # if np.min(np.array([r, r_lower])) >= 0 and np.max(np.array([r, r_lower])) < max(img.shape): center_p = (int((r[0] + r_lower[0]) / 2), int((r[1] + r_lower[1])/ 2)) centroids.append(center_p) r_xs.append((r[0], r_lower[0])) r_ys.append((r[1], r_lower[1])) # cv2.circle(img, center_p, 10, (255, 0, 255), -1) # cv2.line(img, (int(0), int(0)), (int(0), int(img.shape[0])), color, 2) # cv2.line(img, (int(img.shape[1]), int(0)), (int(img.shape[1]), int(img.shape[0])), color, 2) # cv2.circle(img, (0, int(img.shape[0] / 2)), 10, (255, 0, 255), -1) # cv2.circle(img, (img.shape[1], int(img.shape[0] / 2)), 10, (255, 0, 255), -1) centroids.append((0, int(img.shape[0] / 2))) centroids.append((img.shape[1], int(img.shape[0] / 2))) return r_xs, r_ys, centroids
5918bb1a81d8efae2874f294d927f7b01527d1d1
3,656,016
import numpy def moments_of_inertia(geo, amu=True): """ principal inertial axes (atomic units if amu=False) """ ine = inertia_tensor(geo, amu=amu) moms, _ = numpy.linalg.eigh(ine) moms = tuple(moms) return moms
34153dba5ea49d457ee97d4024a103b0d05c6bd0
3,656,017
def greenblatt_earnings_yield(stock, date=None, lookback_period=timedelta(days=0), period='FY'): """ :param stock: ticker(s) in question. Can be a string (i.e. 'AAPL') or a list of strings (i.e. ['AAPL', 'BA']). :param date: Can be a datetime (i.e. datetime(2019, 1, 1)) or list of datetimes. The most recent date of reporting from that date will be used. By default, date=None. :param lookback_period: lookback from date (used to compare against previous year or quarter etc.) i.e. timedelta(days=90). :param period: 'FY' for fiscal year, 'Q' for quarter, 'YTD' for calendar year to date, 'TTM' for trailing twelve months. :return: .. math:: \\text{Greenblatt Earnings Yield} = \\frac{\\text{EBIT}}{\\text{EV}} """ return earnings_before_interest_and_taxes(stock=stock, date=date, lookback_period=lookback_period, period=period) \ / enterprise_value(stock=stock, date=date, lookback_period=lookback_period, period=period)
333b12b609523ab16eeb1402d0219264a3a159e3
3,656,018
import shutil def remove_directory(dir_path): """Delete a directory""" if isdir(dir_path): try: shutil.rmtree(dir_path) return ok_resp(f'Directory removed {dir_path}') except TypeError as err_obj: return err_resp(f'Failed to remove directory. {err_obj}') except FileNotFoundError as err_obj: return err_resp(f'Directory not found: {err_obj}') except OSError as err_obj: return err_resp(f'Failed to delete directory: {err_obj}') except PermissionError as err_obj: return err_resp(f'Failed to delete directory: {err_obj}') return ok_resp(f'Not a directory {dir_path}')
c174568c024cff1948bdf78206e49c2ca40c6b25
3,656,019
def set_route_queue(path_list,user_position,sudden_id,sudden_xy,pi): """ 最後の患者が一番近い医師が行くようにする """ minimum_dis = 100 minimum_idx = 0 for i in range(len(path_list)): dis = np.sqrt((user_position[path_list[i][-2]][0] - sudden_xy[0])**2 + (user_position[path_list[i][-2]][1] - sudden_xy[1])**2) if(dis < minimum_dis): minimum_dis = dis minimum_idx = path_list[i][-2] pi_idx = [i for i, x in enumerate(pi) if x == minimum_idx] pi.insert(pi_idx[0]+1,sudden_id) return pi
0425c3edf2d488680ccb54661e79698a506e4fe4
3,656,023
def add(x, y): """Add two numbers together.""" return x+y
92015156eac5bc9cc0be3b1812f9c0766f23020c
3,656,024
import requests def retry_session(tries=2, backoff_factor=0.1, status_forcelist=(500, 502, 504), session=None): """ Parameters ---------- tries : int, number of retires. backoff_factor : A backoff factor to apply between attempts after the second try (most errors are resolved immediately by a second try without a delay). urllib3 will sleep for: {backoff factor} * (2 ^ ({number of total retries} - 1)) seconds. If the backoff_factor is 0.1, then sleep() will sleep for [0.0s, 0.2s, 0.4s, ...] between retries. It will never be longer than Retry.BACKOFF_MAX. status_forcelist : Retries are made on any HTTP responses in this list. Default values include the following: - 500: Internal Server Error. - 502: Bad Gateway. - 504: Gateway Timeout. session Returns ------- """ session = session or requests.Session() retry = Retry( total=tries, read=tries, connect=tries, backoff_factor=backoff_factor, status_forcelist=status_forcelist) adapter = HTTPAdapter(max_retries=retry, pool_block=True) session.mount('http://', adapter) session.mount('https://', adapter) return session
5766c4623e0e53f4353de1e58080c1ad5c9b4080
3,656,026
def vc(t, delta, beta): """velocity correlation of locus on rouse polymer. beta = alpha/2.""" return ( np.power(np.abs(t - delta), beta) + np.power(np.abs(t + delta), beta) - 2*np.power(np.abs(t), beta) )/( 2*np.power(delta, beta) )
89eff8a8cdb0e84a69e7990ebf0c128ca27ecea8
3,656,027
def algorithm(name): """ A function decorator that is used to add an algorithm's Python class to the algorithm_table. Args: A human readable label for the algorithm that is used to identify it in the GUI """ def decorator(class_): algorithm_table[name] = class_ return class_ return decorator
8f67fec3f1933dc0ea041322fcf041f2247bc638
3,656,028
def comp_easy(): """Get easy components.""" return Components(ewlaps, gi_setting.DEFAULT_EASY)
d15093dce67657b05665d7a9373d1328b4171f91
3,656,029
def play(player1, player2, rounds=1, verbose=False, symdict=None): """Play a number of `rounds` matches between the two players and return the score $S = sum_j a_j$, where a_j = 1 if player1 wone --or-- -1 if player2 wone --or-- 0 otherwise. """ if player1 is player2: raise AttributeError("Players match...") if player1._rules is not player2._rules: raise AttributeError("Different rules sets...") if symdict is None: symdict = range(len(pl1._rules)) score = [0, 0, 0] results = ["Player1 wins.", "Tie.", "Player 2 wins."] playiter = xrange(rounds) if verbose else Progress(xrange(rounds)) for i in playiter: res1, res2 = player1.play(), player2.play() player1._memory.append((res1, res2)) player2._memory.append((res2, res1)) resind = 1 - player1._rules[res1][res2] score[resind] += 1 if verbose: print("{} vs {}: {}".format(symdict[res1], symdict[res2], results[resind])) print(score) return score
28e0cc41d664a6681b4af1216d0de6f1a2871f04
3,656,030
def calc_deltabin_3bpavg(seq, files, bin_freqs, seqtype = "fastq"): """ At each position (starting at i), count number of sequences where region (i):(i+3) is mutated. This is sort of a rolling average and not critical to the result. It just ends up a bit cleaner than if we looked at a single base pair since. We are assuming that on average a mutation messes up binding, however this is not always the case. For example, especially with RNAP, there might be a couple positions that are not-at-all optimal for DNA binding. Parameter --------- seq: wild-type sequence of library region files: filenames (used to identify bin number, '...bin*.fastq') bin_freqs: numpy array (np.zeros([# bins, # letters (i.e. 4), length sequence]) that contained the letter frequences from each bin. seqtype: sequence file type (i.e. '.fastq' or '.fasta') Returns ------- avgBin_counts: array 1*seqLength; contains counts used to calculate average of mutated nucleotides at each position. avgBin-avgbin_WT: average bin of mutated nucleotides at each position relative to wild-type average bin. """ seqLength = len(seq) avgBin_counts = np.zeros([len(files),seqLength]) avgBin = np.zeros(seqLength) #filecount = 0 avgbin_WT = 0 for j in range(0,len(files)): avgbin_WT += ( (j+1)*bin_freqs[j,:,0].sum() )/ bin_freqs[:,:,0].sum() print('average_bin_WT', avgbin_WT) for i in range(0,seqLength-2): for j, fname in enumerate(files): count = 0 binnumber = int(fname[-7]) - 1 for rec in SeqIO.parse(fname, seqtype): if (rec.seq[i:(i+2)] != seq[i:(i+2)]): count += 1 avgBin_counts[binnumber,i] = count for i in range(0,seqLength-2): for j in range(0,len(files)): avgBin[i] += ( (j+1)*avgBin_counts[j,i] )/avgBin_counts[:,i].sum() return avgBin_counts, (avgBin-avgbin_WT)
5ea614e7280d6ed288ea03e63e86e3129d4e4994
3,656,031
def make_right_handed(l_csl_p1, l_p_po): """ The function makes l_csl_p1 right handed. Parameters ---------------- l_csl_p1: numpy.array The CSL basis vectors in the primitive reference frame of crystal 1. l_p_po: numpy.array The primitive basis vectors of the underlying lattice in the orthogonal reference frame. Returns ----------- t1_array: numpy.array Right handed array """ l_csl_po1 = l_p_po.dot(l_csl_p1) t1_array = np.array(l_csl_p1, dtype='double') t2_array = np.array(l_csl_p1, dtype='double') if (nla.det(l_csl_po1) < 0): t1_array[:, 0] = t2_array[:, 1] t1_array[:, 1] = t2_array[:, 0] return t1_array
3b5e3f21e6da5292fb84eb632ddcfa2ec52507ee
3,656,032
def company(anon, obj, field, val): """ Generates a random company name """ return anon.faker.company(field=field)
95580147817a37542f75e2c728941a159cd30bd3
3,656,034
def delete_schedule(): """ При GET запросе возвращает страницу для удаления расписания. При POST запросе, удаляет выбранное расписани (Запрос на удаление идэт с главной страницы(func index), шаблона(template) функция не имеет). """ if not check_admin_status(): flash(f'У вас нет прав для просмотра данной страницы!', 'error') app.logger.warning(f"Сотрудник с недостаточным уровнем допуска попытался удалить расписание: {get_user_info()}") return redirect(url_for('index')) schedule_id = request.args.get('schedule_id') ScheduleCleaning.query.filter_by(id=schedule_id).delete() db.session.commit() return redirect(url_for('index'))
1e73c757956d4bd78f3a093e2a2ddfde894aeac5
3,656,035
def map_datapoint(data_point: DATAPOINT_TYPE) -> SFX_OUTPUT_TYPE: """ Create dict value to send to SFX. :param data_point: Dict with values to send :type data_point: dict :return: SignalFx data :rtype: dict """ return { "metric": data_point["metric"], "value": data_point["value"], "dimensions": dict(data_point["dimensions"], **default_dimensions) if "dimensions" in data_point else default_dimensions, }
cf5d7eb1bded092adb2b002ee93ad168e696230a
3,656,038
def write_obs(mdict, obslist, flag=0): """ """ # Print epoch epoch = mdict['epoch'] res = epoch.strftime("> %Y %m %d %H %M %S.") + '{0:06d}0'.format(int(epoch.microsecond)) # Epoch flag res += " {0:2d}".format(flag) # Num sats res += " {0:2d}".format(len(mdict)-1) res += '\n' # For each satellite, print obs for sat in mdict: if sat == 'epoch': continue res += sat obstypes = obslist[sat[0]] for o in obstypes: try: meas = mdict[sat][o] except KeyError: meas = 0.0 # BeiDou satellites can have long ranges if GEO satellites are used if meas > 40e6: meas = 0.0 res += '{0:14.3f}00'.format(meas) res += '\n' return res
5a91b02fce07f455f4442fe6fbf76d3609f5a74e
3,656,039
from typing import Optional from typing import Union import fsspec def open_view( path: str, *, filesystem: Optional[Union[fsspec.AbstractFileSystem, str]] = None, synchronizer: Optional[sync.Sync] = None, ) -> view.View: """Open an existing view. Args: path: View storage directory. filesystem: The file system used to access the view. synchronizer: The synchronizer used to synchronize the view. Returns: The opened view. Example: >>> view = open_view("/home/user/myview") """ return view.View.from_config(path, filesystem=filesystem, synchronizer=synchronizer)
b12471f59ef78e444a43c0e766cb6b4237e65338
3,656,040
def smi2xyz(smi, forcefield="mmff94", steps=50): """ Example: utils.smi2xyz("CNC(C(C)(C)F)C(C)(F)F") returns: C 1.17813 0.06150 -0.07575 N 0.63662 0.20405 1.27030 C -0.86241 0.13667 1.33270 C -1.46928 -1.21234 0.80597 C -0.94997 -2.44123 1.55282 C -2.99527 -1.22252 0.74860 F -1.08861 -1.36389 -0.50896 C -1.34380 0.44926 2.78365 C -0.84421 1.76433 3.34474 F -2.70109 0.48371 2.84063 F -0.94986 -0.53971 3.63106 H 0.78344 0.82865 -0.74701 H 0.99920 -0.92873 -0.50038 H 2.26559 0.18049 -0.03746 H 1.03185 -0.51750 1.87094 H -1.24335 0.93908 0.68721 H -1.29943 -2.47273 2.58759 H -1.27996 -3.36049 1.05992 H 0.14418 -2.47324 1.55471 H -3.35862 -0.36599 0.16994 H -3.34471 -2.11983 0.22567 H -3.46364 -1.21709 1.73400 H -1.20223 2.60547 2.74528 H -1.22978 1.89248 4.36213 H 0.24662 1.79173 3.40731 """ mol = pybel.readstring("smi", smi) mol.addh() # add hydrogens, if this function is not called, pybel will output xyz string with no hydrogens. mol.make3D(forcefield=forcefield, steps=steps) # possible forcefields: ['uff', 'mmff94', 'ghemical'] mol.localopt() return _to_pyscf_atom(mol)
083bbc1a242a3f5f247fc6f7066e099dab654b7a
3,656,041
from typing import Optional from typing import Tuple from typing import List def pgm_to_pointcloud( depth_image: np.ndarray, color_image: Optional[np.ndarray], intrinsics: Tuple[float, float, float, float], distortion: List[float]) -> Tuple[np.ndarray, Optional[np.ndarray]]: """Fast conversion of opencv images to pointcloud. Takes ~7 ms per 1280x720 RGBD on my corp laptop (hirak). Args: depth_image: OpenCV image. color_image: Corresponding color image, if colors for each point is desired. intrinsics: fx, fy, cx, cy. distortion: Standard distoriton params k1, k2, p1, p2, [k3, [k4, k5, k6]]. Returns: points: Nx3 array of points in space. colors: Nx3 array of colors, each row an RGB. None if color_image is None. """ # The code below is optimized for speed, further optimizations may also be # possible. x_axis, y_axis = np.mgrid[0:depth_image.shape[1], 0:depth_image.shape[0]] valid = ~np.isnan(depth_image) x_axis = x_axis.T[valid] y_axis = y_axis.T[valid] depth = depth_image[valid] * _DEPTH_SCALE x_and_y = np.vstack([x_axis, y_axis]).astype(float) fx, fy, cx, cy = intrinsics camera_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]]) x_and_y = cv2.undistortPoints(x_and_y, camera_matrix, np.array(distortion)) x_and_y = x_and_y.T.reshape(2, -1) points = np.vstack([x_and_y * depth, depth]).T colors = None if color_image is not None: colors = color_image[valid] if len(colors.shape) > 1 and colors.shape[1] == 3: # OpenCV uses BGR. Point cloud libraries like to use RGB. colors[:, [0, 2]] = colors[:, [2, 0]] else: colors = np.vstack([colors, colors, colors]).T return points, colors
574d514c216f0db1f90bf277dc78a5b5dcc2535a
3,656,042