content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def theoritical_spectrum(peptide_sequence):
"""Returns the theoritical spectrum of a given amino acid sequence.
INPUT :
peptide_sequence: string. The peptide sequence to get its theoritical spectrum
OUTPUT:
.: List. The theoritical spectrum of the given peptide sequence.
"""
linear_kmers = []
cyclic_kmers = []
for i in range(len(peptide_sequence)):
for j in range(i,len(peptide_sequence)):
linear_kmers.append(peptide_sequence[i:j+1])
for i in range(2,len(peptide_sequence)):
for j in range(i-1):
cyclic_kmers.append(peptide_sequence[i:len(peptide_sequence)]+peptide_sequence[0:j+1])
kmers = linear_kmers+cyclic_kmers
return sorted(list(map(get_molecular_weight,kmers))) | 1808daed80b553fe3a5a2b38e178956e4a0d7de0 | 3,656,160 |
def is_amazon(source_code):
"""
Method checks whether a given book is a physical book or a ebook giveaway for a linked Amazon account.
:param source_code:
:return:
"""
for line in source_code:
if "Your Amazon Account" in line:
return True
return False | 31c50622b4bb97a05d8cabb94c58f6e0a8f58971 | 3,656,161 |
def data_dim(p):
""" Return the dimensionality of the dataset """
dataset_class = DATASETS[p.dataset]
return dataset_class(p).get_in_dim() | 25e32039733e8599c22d696f28bfffbf8b97cf02 | 3,656,163 |
import torch
def create_supervised_evaluator(model, metrics=None,
device=None, non_blocking=False,
prepare_batch=_prepare_batch,
output_transform=
lambda x, y, y_pred: (y_pred, y,)):
"""
Factory function for creating an evaluator for supervised models.
Args:
model (`torch.nn.Module`): the model to train.
metrics (dict of str - :class:`~ignite.metrics.Metric`): a map of metric names to Metrics.
device (str, optional): device type specification (default: None).
Applies to both model and batches.
non_blocking (bool, optional): if True and this copy is between CPU and GPU, the copy may occur asynchronously
with respect to the host. For other cases, this argument has no effect.
prepare_batch (callable, optional): function that receives `batch`, `device`, `non_blocking` and outputs
tuple of tensors `(batch_x, batch_y)`.
output_transform (callable, optional): function that receives 'x', 'y', 'y_pred' and returns value
to be assigned to engine's state.output after each iteration. Default is returning `(y_pred, y,)` which fits
output expected by metrics. If you change it you should use `output_transform` in metrics.
Note: `engine.state.output` for this engine is defind by `output_transform` parameter and is
a tuple of `(batch_pred, batch_y)` by default.
Returns:
Engine: an evaluator engine with supervised inference function.
"""
metrics = metrics or {}
if device:
model.to(device)
def _inference(engine, batch):
model.eval()
with torch.no_grad():
# z is optional (e.g. task ids)
x, y, *z = prepare_batch(batch, device=device, non_blocking=non_blocking)
y_pred = model(*(x, *z))
# if hasattr(model, 'arch_sampler'):
# ent = model.arch_sampler.entropy().mean()
return output_transform(x, y, y_pred)
engine = Engine(_inference)
for name, metric in metrics.items():
metric.attach(engine, name)
return engine | 2af4cc7b12a76c3c12940353a072d8b715fec8c1 | 3,656,164 |
import typing
def historical_earning_calendar(
apikey: str, symbol: str, limit: int = DEFAULT_LIMIT
) -> typing.Optional[typing.List[typing.Dict]]:
"""
Query FMP /historical/earning_calendar/ API.
Note: Between the "from" and "to" parameters the maximum time interval can be 3 months.
:param apikey: Your API key.
:param symbol: Company ticker.
:param limit: Number of rows to return.
:return: A list of dictionaries.
"""
path = f"historical/earning_calendar/{symbol}"
query_vars = {
"apikey": apikey,
"symbol": symbol,
"limit": limit,
}
return __return_json_v3(path=path, query_vars=query_vars) | 7f231b253ef4f462ab89826d58546a3259bdd3d2 | 3,656,165 |
def config_section_data():
"""Produce the default configuration section for app.config,
when called by `resilient-circuits config [-c|-u]`
"""
config_data = u"""[fn_query_tor_network]
base_url = https://onionoo.torproject.org/details
#The Flag can be 'Running','Exit' for more information on flag settings - https://metrics.torproject.org/onionoo.html
flag = Exit
# The data fields should be comma separated and no space should be given in between each fields
data_fields = exit_addresses,or_addresses,host_name"""
return config_data | 239436c9b2141e17f6158aab20d7951d79359fcd | 3,656,166 |
def show_object_id_by_date(
move_data,
create_features=True,
kind=None,
figsize=(21, 9),
return_fig=True,
save_fig=True,
name='shot_points_by_date.png',
):
"""
Generates four visualizations based on datetime feature:
- Bar chart trajectories by day periods
- Bar chart trajectories day of the week
- Line chart trajectory by date
- Line chart of trajectory byhours of the day.
Parameters
----------
move_data : pymove.core.MoveDataFrameAbstract subclass.
Input trajectory data.
create_features : bool, optional, default True.
Represents whether or not to delete features created for viewing.
kind: list or None
Determines the kinds of each plot
figsize : tuple, optional, default (21,9).
Represents dimensions of figure.
return_fig : bool, optional, default True.
Represents whether or not to save the generated picture.
save_fig : bool, optional, default True.
Represents whether or not to save the generated picture.
name : String, optional, default 'shot_points_by_date.png'.
Represents name of a file.
Returns
-------
matplotlib.pyplot.figure or None
The generated picture.
References
----------
https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.plot.html
"""
if kind is None:
kind = ['bar', 'bar', 'line', 'line']
fig, ax = plt.subplots(2, 2, figsize=figsize)
move_data.generate_date_features()
move_data.generate_hour_features()
move_data.generate_time_of_day_features()
move_data.generate_day_of_the_week_features()
move_data.groupby([PERIOD])[TRAJ_ID].nunique().plot(
subplots=True, kind=kind[0], rot=0, ax=ax[0][0], fontsize=12
)
move_data.groupby([DAY])[TRAJ_ID].nunique().plot(
subplots=True, kind=kind[1], ax=ax[0][1], rot=0, fontsize=12
)
move_data.groupby([DATE])[TRAJ_ID].nunique().plot(
subplots=True,
kind=kind[2],
grid=True,
ax=ax[1][0],
rot=90,
fontsize=12,
)
move_data.groupby([HOUR])[TRAJ_ID].nunique().plot(
subplots=True, kind=kind[3], grid=True, ax=ax[1][1], fontsize=12
)
if not create_features:
move_data.drop(columns=[DATE, HOUR, PERIOD, DAY], inplace=True)
if save_fig:
plt.savefig(fname=name, fig=fig)
if return_fig:
return fig | 18bbd54adfba6ecfd0959904d99698cfaac4b198 | 3,656,167 |
def raw_escape(pattern, unix=None, raw_chars=True):
"""Apply raw character transform before applying escape."""
return _wcparse.escape(util.norm_pattern(pattern, False, raw_chars, True), unix=unix, pathname=True, raw=True) | e4df84b21b737f199a7314818cc7f892f93be1b8 | 3,656,168 |
def interpolate_effective_area_per_energy_and_fov(
effective_area,
grid_points,
target_point,
min_effective_area=1. * u.Unit('m2'),
method='linear',
):
"""
Takes a grid of effective areas for a bunch of different parameters
and interpolates (log) effective areas to given value of those parameters
Parameters
----------
effective_area: np.array of astropy.units.Quantity[area]
grid of effective area, of shape (n_grid_points, n_fov_offset_bins, n_energy_bins)
grid_points: np.array
list of parameters corresponding to effective_area, of shape (n_grid_points, n_interp_dim)
target_point: np.array
values of parameters for which the interpolation is performed, of shape (n_interp_dim)
min_effective_area: astropy.units.Quantity[area]
Minimum value of effective area to be considered for interpolation
method: 'linear’, ‘nearest’, ‘cubic’
Interpolation method
Returns
-------
aeff_interp: astropy.units.Quantity[area]
Interpolated Effective area array with shape (n_energy_bins, n_fov_offset_bins)
"""
# get rid of units
effective_area = effective_area.to_value(u.m**2)
min_effective_area = min_effective_area.to_value(u.m**2)
# remove zeros and log it
effective_area[effective_area < min_effective_area] = min_effective_area
effective_area = np.log(effective_area)
# interpolation
aeff_interp = griddata(grid_points, effective_area, target_point, method=method).T
# exp it and set to zero too low values
aeff_interp = np.exp(aeff_interp)
aeff_interp[aeff_interp < min_effective_area * 1.1] = 0 # 1.1 to correct for numerical uncertainty and interpolation
return u.Quantity(aeff_interp, u.m**2, copy=False) | 58c32f49c96ed7ceb14e734f1386ef0015920204 | 3,656,169 |
def extract_edge(stats:np.ndarray, idxs_upper:np.ndarray, runner:int, max_index:int, maximum_offset:float, iso_charge_min:int = 1, iso_charge_max:int = 6, iso_mass_range:int=5)->list:
"""Extract edges.
Args:
stats (np.ndarray): Stats array that contains summary statistics of hills.
idxs_upper (np.ndarray): Upper index for comparing.
runner (int): Index.
max_index (int): Unused.
maximum_offset (float): Maximum offset when comparing edges.
iso_charge_min (int, optional): Minimum isotope charge. Defaults to 1.
iso_charge_max (int, optional): Maximum isotope charge. Defaults to 6.
iso_mass_range (float, optional): Mass search range. Defaults to 5.
Returns:
list: List of edges.
"""
edges = []
mass1 = stats[runner, 0]
delta_mass1 = stats[runner, 1]
for j in range(runner+1, idxs_upper[runner]):
mass2 = stats[j, 0]
if np.abs(mass2 - mass1) <= maximum_offset:
delta_mass2 = stats[j, 1]
for charge in range(iso_charge_min, iso_charge_max + 1):
if check_isotope_pattern(mass1, mass2, delta_mass1, delta_mass2, charge, iso_mass_range):
edges.append((runner, j))
break
return edges | 8101a024c20d169f470d4e6632272e0ad00c484b | 3,656,170 |
def _neq_attr(node, attr, gens, container):
"""
Calcs fitness based on the fact that node's target shall not have an attr
with a certain value.
"""
trg_nd = container.nodes[gens[node]]
if attr[0] in trg_nd and attr[1] == trg_nd[attr[0]]:
return 10.1
return 0.0 | adfa39aa60d0777b2b05f174a9cf61a847e55b1d | 3,656,171 |
def getItem( user, list, itempk ):
"""
Get a single item from a list.
:param user: user who owns list
:param list: list containing item
:param itempk: private key of item
:return: item or None
"""
itemType = list.itemType
item = None
if itemType == 'Item':
item = Item.objects.get( pk=itempk, list=list, user=user )
elif itemType == 'Link':
item = Link.objects.get( pk=itempk, list=list, user=user )
elif itemType == 'Book':
item = Book.objects.get( pk=itempk, list=list, user=user )
elif itemType == 'Show' or itemType == 'Movie':
item = Video.objects.get( pk=itempk, list=list, user=user )
return item | f0d2c3a6d1881e0e1288aae451a556ebe856242e | 3,656,172 |
def metric_divergence(neighborhood_vectors: np.ndarray, dL: float, polarity: int) -> float:
"""
Calculates the divergence of a sampling volume neighborhood.
Note: For JIT to work, this must be declared at the top level.
@param neighborhood_vectors: Sampling volume neighborhood vectors (six 3D vectors)
@param dL: Length element
@param polarity: Polarity filter (-1: Keep values <= 0; 0: Keep all values; +1: Keep values >= 0)
"""
dxp = neighborhood_vectors[0][0]
dxn = neighborhood_vectors[3][0]
dyp = neighborhood_vectors[1][1]
dyn = neighborhood_vectors[4][1]
dzp = neighborhood_vectors[2][2]
dzn = neighborhood_vectors[5][2]
value = (dxp - dxn + dyp - dyn + dzp - dzn) / 2 / dL
if polarity == -1:
if value > 0:
return np.NaN
else:
return -value # Keep divergence positive, especially for use as alpha metric
elif polarity == +1:
if value < 0:
return np.NaN
else:
return value
else:
return value | 87dd2b19c654143ed54f3783059ece50eb32ec71 | 3,656,173 |
def tag(request):
"""
Add/Remove tag to email
"""
if request.is_ajax():
mail = request.POST.get("mail")
tag = request.POST.get("tag")
op = request.POST.get("op")
mail = get_object_or_404(Mail, pk=mail)
if op == "ADD":
mail.tags.add(tag)
elif op == "REMOVE":
mail.tags.remove(tag)
else:
raise Http404("404")
return JsonResponse({"ok": True})
raise Http404("404") | b1f5c2e65393be1d68a03b01c522214413e5b321 | 3,656,175 |
def sid_to_smiles(sid):
"""Takes an SID and prints the associated SMILES string."""
substance = pc.Substance.from_sid(sid)
cid = substance.standardized_cid
compound = pc.get_compounds(cid)[0]
return compound.isomeric_smiles | e243e201a8ac4e4ee63332454a8b8c64f0f43692 | 3,656,176 |
def view_static(request, **kwargs):
"""Outputs static page."""
template = kwargs.get('template', None)
if not template:
raise Http404
template = '.'.join([template, 'html'])
title = kwargs.get('title', 'static page')
img = kwargs.get('img', 'bgag.jpg')
return render_to_response(template, {
'is_mobile': request.user_agent.is_mobile,
'page_title': title,
'menu': MenuItem.active().order_by('order_id'),
'page_img': img,
}) | b6997e86175688f9b1293b0888faeb337bb5f3b6 | 3,656,177 |
def start_call(called_ident, skicall):
"""When a call is initially received this function is called.
Unless you want to divert to another page, this function should return called_ident which
would typically be the ident of a Responder or Template page dealing with the call.
If a ServeFile exception is raised, which contains a pathlib.Path object of a local server
file then that server file will be sent to the client. In this case, the end_call function
will not be called."""
# To serve a directory of static files, you can map a url to a server directory with the
# skicall.map_url_to_server method, which returns pathlib.Path objects, and then
# raise a ServeFile exception, which causes the file to be served. For example:
# servedfile = skicall.map_url_to_server("images", "/home/user/thisproject/imagefiles")
# if servedfile:
# raise ServeFile(servedfile)
# Of particular interest at this point are the attributes:
# skicall.received_cookies is a dictionary of cookie name:values received from the client
# skicall.call_data is a dictionary which you can set with your own data and, as skicall is
# passed on to the submit_data and end_call functions defined below, can be used to pass
# data to these functions.
# Normally you would return called_ident, which is the page being called, or None to cause a
# page not found error, or another ident (project, pagenumber) to divert the call to another page.
return called_ident | 0353d81273ea6638858bf18271f4480895ca1db1 | 3,656,178 |
def getmemory():
"""
Returns the memory limit for data arrays (in MB).
"""
return NX_MEMORY | f6850ac2ad5854f9798ef480e9ca105bf31644ed | 3,656,179 |
import this
def get_object_syncing_state():
""" Get a dictionary mapping which object trackers are active.
The dictionary contains name:bool pairs that can be fed back into
the func:`set_object_syncing_state()` function.
"""
states = {
"selection": bool(this._on_selection_changed_cb_id),
"duplicate": bool(this._on_before_duplicate_cb_id),
"name": bool(this._on_name_changed_cb_id),
"existence": bool(this._on_object_deleted_cb_id),
"relationship": bool(this._on_parent_changed_cb_id),
}
return states | c6fa40e7945b8186db06cc00b461fc2fe6a16c36 | 3,656,180 |
def determine_nohit_score(cons, invert):
"""
Determine the value in the matrix assigned to nohit given SeqFindr options
:param cons: whether the Seqfindr run is using mapping consensus data
or not
:param invert: whether the Seqfindr run is inverting (missing hits to
be shown as black bars.
:type cons: None of boolean
:type cons: boolean
:returns: the value defined as no hit in the results matrix
"""
if cons is None:
nohit = 0.5
else:
nohit = 1.0
if invert:
nohit = nohit*-1.0
return nohit | d0539b5ac4dda8b4a15c6800fb4a821cb305b319 | 3,656,181 |
def library_get_monomer_desc(res_name):
"""Loads/caches/returns the monomer description objec MonomerDesc
for the given monomer residue name.
"""
assert isinstance(res_name, str)
try:
return MONOMER_RES_NAME_CACHE[res_name]
except KeyError:
pass
mon_desc = library_construct_monomer_desc(res_name)
if mon_desc is None:
return None
MONOMER_RES_NAME_CACHE[res_name] = mon_desc
return mon_desc | 98b4790995bd1d2eba96775e99826fae7b7cfc8a | 3,656,183 |
def _seqfix(ref_seq, seq, comp_len, rev):
""" Fill or trim a portion of the beginning of a sequence relative to a
reference sequence
Args:
ref_seq (str): reference sequence e.g. germline gene
seq (str): sequence to compare to reference
comp_len (int): length of subsequence to compare e.g. necessary to
exclude the CDR3 rev (bool): whether to reverse the sequences
for J gene
filling / trimming
Returns:
seq_fixed (str): sequence filled / trimmed as necessary
"""
if rev:
ref_comp = ref_seq[::-1][:comp_len]
seq_comp = seq[::-1][:comp_len]
else:
ref_comp = ref_seq[:comp_len]
seq_comp = seq[:comp_len]
ref_aligned, seq_aligned = global_pw_align(ref_comp, seq_comp)
# replace N's in seq if present
seq_aligned = _replace_Ns_with_ref(ref_aligned, seq_aligned)
if ref_aligned.startswith('-'):
# need to trim sequence
fixed = _trim_extra_nt(ref_aligned, seq_aligned)
elif seq_aligned.startswith('-'):
# need to fill sequence
fixed = _fill_missing_nt(ref_aligned, seq_aligned)
else:
fixed = seq_aligned
if rev:
seq_fixed = seq[:-comp_len] + fixed[::-1]
else:
seq_fixed = fixed + seq[comp_len:]
return seq_fixed.replace('-', '') | 222ba3a8e2c4bced8ebcde6662890c10a0b41cf8 | 3,656,187 |
import torch
from typing import Tuple
def get_dedup_tokens(logits_batch: torch.Tensor) \
-> Tuple[torch.Tensor, torch.Tensor]:
"""Converts a batch of logits into the batch most probable tokens and their probabilities.
Args:
logits_batch (Tensor): Batch of logits (N x T x V).
Returns:
Tuple: Deduplicated tokens. The first element is a tensor (token indices) and the second element
is a tensor (token probabilities)
"""
logits_batch = logits_batch.softmax(-1)
out_tokens, out_probs = [], []
for i in range(logits_batch.size(0)):
logits = logits_batch[i]
max_logits, max_indices = torch.max(logits, dim=-1)
max_logits = max_logits[max_indices!=0]
max_indices = max_indices[max_indices!=0]
cons_tokens, counts = torch.unique_consecutive(
max_indices, return_counts=True)
out_probs_i = torch.zeros(len(counts), device=logits.device)
ind = 0
for i, c in enumerate(counts):
max_logit = max_logits[ind:ind + c].max()
out_probs_i[i] = max_logit
ind = ind + c
out_tokens.append(cons_tokens)
out_probs.append(out_probs_i)
out_tokens = pad_sequence(out_tokens, batch_first=True, padding_value=0.).long()
out_probs = pad_sequence(out_probs, batch_first=True, padding_value=0.)
return out_tokens, out_probs | 885048842e6d1b50cd5b98c5b455aeb71e49c191 | 3,656,188 |
def com(im):
"""
Compute the center of mass of im.
Expects that im is leveled (ie zero-centered). Ie, a pure noise image should have zero mean.
Sometimes this is improved if you square the im first com(im**2)
Returns:
y, x in array form.
"""
im = np.nan_to_num(im)
mass = np.sum(im)
ry = (
np.arange(im.shape[0]) + 0.5
) # 0.5 because we want the mass of a pixel at the center of the pixel
rx = np.arange(im.shape[1]) + 0.5
y = np.sum(ry * np.sum(im, axis=1))
x = np.sum(rx * np.sum(im, axis=0))
return utils.np_safe_divide(np.array([y, x]), mass) | 5e1a7c20075df3fe5804213e5fdddd4f46d276c6 | 3,656,189 |
def get_fitting_custom_pipeline():
"""
Pipeline looking like this
lagged -> custom -> ridge
"""
lagged_node = PrimaryNode('lagged')
lagged_node.custom_params = {'window_size': 50}
# For custom model params as initial approximation and model as function is necessary
custom_node = SecondaryNode('custom', nodes_from=[lagged_node])
custom_node.custom_params = {'alpha': 5,
'model_predict': custom_ml_model_imitation_predict,
'model_fit': custom_ml_model_imitation_fit}
node_final = SecondaryNode('lasso', nodes_from=[custom_node])
pipeline = Pipeline(node_final)
return pipeline | 3ed78dc2f83110b0ac7dd4622a76511d0316404f | 3,656,190 |
def get_regularizable_variables(scope):
"""
Get *all* regularizable variables in the scope.
:param scope: scope to filter variables by
:return:
"""
return tf.get_collection(REGULARIZABLE_VARS, scope) | 67a6673be12af47128a453e413778f18f4344eaa | 3,656,191 |
import glob
def load(midi_path: str, config: dict):
"""
returns a 3-tuple of `tf.Dataset` each returning `(input_seq, target_seq)`, representing train,
validation, and test portions of the overall dataset. `input_seq` represents the `inp_split`
portion of each midi sequence in `midi_path`.
"""
batch_size = config.get('batch_size', None)
# get midi files
filenames = tf.random.shuffle(glob.glob(f'{midi_path}/**/*.midi', recursive=True))
# get train, validation, and test sizes
train_split, test_split = config.get('train_size', None), config.get('test_size', None)
train_split = int(train_split * len(filenames))
test_split = int(test_split * len(filenames))
val_split = len(filenames) - train_split + test_split
# split filenames to train, test, split
midi_ds, midi_tokenizer = _create_dataset(
filenames=filenames,
inp_len=config.get('inp_len', None),
tar_len=config.get('tar_len', None),
velocity_bins=config.get('velocity_bins', None),
rest_resolution=config.get('rest_resolution', None))
train_ds = midi_ds.take(train_split)
val_ds = train_ds.skip(train_split)
test_ds = val_ds.skip(val_split)
val_ds = val_ds.take(val_split)
return (_optimize_dataset(train_ds.padded_batch(batch_size)),
_optimize_dataset(val_ds.padded_batch(batch_size)),
_optimize_dataset(test_ds.padded_batch(batch_size)),
midi_tokenizer) | 38d890a78cf85ce43cbdb783246ef1a5e7e2cd06 | 3,656,192 |
import re
def _parse_docstring(doc):
"""Extract documentation from a function's docstring."""
if doc is None:
return _Doc('', '', {}, [])
# Convert Google- or Numpy-style docstrings to RST.
# (Should do nothing if not in either style.)
# use_ivar avoids generating an unhandled .. attribute:: directive for
# Attribute blocks, preferring a benign :ivar: field.
cfg = Config(napoleon_use_ivar=True)
doc = str(GoogleDocstring(doc, cfg))
doc = str(NumpyDocstring(doc, cfg))
with _sphinx_common_roles():
tree = docutils.core.publish_doctree(
# Disable syntax highlighting, as 1) pygments is not a dependency
# 2) we don't render with colors and 3) SH breaks the assumption
# that literal blocks contain a single text element.
doc, settings_overrides={'syntax_highlight': 'none'})
class Visitor(NodeVisitor):
optional = [
'document', 'docinfo',
'field_list', 'field_body',
'literal', 'problematic',
# Introduced by our custom passthrough handlers, but the Visitor
# will recurse into the inner text node by itself.
'TextElement',
]
def __init__(self, document):
super().__init__(document)
self.paragraphs = []
self.start_lines = []
self.params = defaultdict(dict)
self.raises = []
self._current_paragraph = None
self._indent_iterator_stack = []
self._indent_stack = []
def _do_nothing(self, node):
pass
def visit_paragraph(self, node):
self.start_lines.append(node.line)
self._current_paragraph = []
def depart_paragraph(self, node):
text = ''.join(self._current_paragraph)
text = ''.join(self._indent_stack) + text
self._indent_stack = [
' ' * len(item) for item in self._indent_stack]
text = text.replace('\n', '\n' + ''.join(self._indent_stack))
self.paragraphs.append(text)
self._current_paragraph = None
visit_block_quote = visit_doctest_block = visit_paragraph
depart_block_quote = depart_doctest_block = depart_paragraph
def visit_Text(self, node):
self._current_paragraph.append(node)
depart_Text = _do_nothing
def visit_emphasis(self, node):
self._current_paragraph.append('\033[3m') # *foo*: italic
def visit_strong(self, node):
self._current_paragraph.append('\033[1m') # **foo**: bold
def visit_title_reference(self, node):
self._current_paragraph.append('\033[4m') # `foo`: underlined
def _depart_markup(self, node):
self._current_paragraph.append('\033[0m')
depart_emphasis = depart_strong = depart_title_reference = \
_depart_markup
def visit_rubric(self, node):
self.visit_paragraph(node)
def depart_rubric(self, node):
# Style consistent with "usage:", "positional arguments:", etc.
self._current_paragraph[:] = [
(t.lower() if t == t.title() else t) + ':'
for t in self._current_paragraph]
self.depart_paragraph(node)
def visit_literal_block(self, node):
text, = node
self.start_lines.append(node.line)
self.paragraphs.append(
re.sub('^|\n', r'\g<0> ', text)) # indent
raise SkipNode
def visit_bullet_list(self, node):
self._indent_iterator_stack.append(
(node['bullet'] + ' ' for _ in range(len(node))))
def depart_bullet_list(self, node):
self._indent_iterator_stack.pop()
def visit_enumerated_list(self, node):
enumtype = node['enumtype']
fmt = {('(', ')'): 'parens',
('', ')'): 'rparen',
('', '.'): 'period'}[node['prefix'], node['suffix']]
start = node.get('start', 1)
enumerators = [Body(None).make_enumerator(i, enumtype, fmt)[0]
for i in range(start, start + len(node))]
width = max(map(len, enumerators))
enumerators = [enum.ljust(width) for enum in enumerators]
self._indent_iterator_stack.append(iter(enumerators))
def depart_enumerated_list(self, node):
self._indent_iterator_stack.pop()
def visit_list_item(self, node):
self._indent_stack.append(next(self._indent_iterator_stack[-1]))
def depart_list_item(self, node):
self._indent_stack.pop()
def visit_field(self, node):
field_name_node, field_body_node = node
field_name, = field_name_node
parts = field_name.split()
if len(parts) == 2:
doctype, name = parts
# docutils>=0.16 represents \* as \0* in the doctree.
name = name.lstrip('*\0')
elif len(parts) == 3:
doctype, type_, name = parts
name = name.lstrip('*\0')
if doctype not in _PARAM_TYPES:
raise SkipNode
if 'type' in self.params[name]:
raise ValueError('type defined twice for {}'.format(name))
self.params[name]['type'] = type_
else:
raise SkipNode
if doctype in _PARAM_TYPES:
doctype = 'param'
if doctype in _TYPE_NAMES:
doctype = 'type'
if doctype in ['param', 'type'] and doctype in self.params[name]:
raise ValueError(
'{} defined twice for {}'.format(doctype, name))
visitor = Visitor(self.document)
field_body_node.walkabout(visitor)
if doctype in ['param', 'type']:
self.params[name][doctype] = ''.join(visitor.paragraphs)
elif doctype in ['raises']:
self.raises.append(name)
raise SkipNode
def visit_comment(self, node):
self.paragraphs.append(comment_token)
# Comments report their line as the *end* line of the comment.
self.start_lines.append(
node.line - node.children[0].count('\n') - 1)
raise SkipNode
def visit_system_message(self, node):
raise SkipNode
comment_token = object()
visitor = Visitor(tree)
tree.walkabout(visitor)
tuples = {name: _Param(values.get('param'), values.get('type'))
for name, values in visitor.params.items()}
if visitor.paragraphs:
text = []
for start, paragraph, next_start in zip(
visitor.start_lines,
visitor.paragraphs,
visitor.start_lines[1:] + [0]):
if paragraph is comment_token:
continue
text.append(paragraph)
# Insert two newlines to separate paragraphs by a blank line.
# Actually, paragraphs may or may not already have a trailing
# newline (e.g. text paragraphs do but literal blocks don't) but
# argparse will strip extra newlines anyways. This means that
# extra blank lines in the original docstring will be stripped, but
# this is less ugly than having a large number of extra blank lines
# arising e.g. from skipped info fields (which are not rendered).
# This means that list items are always separated by blank lines,
# which is an acceptable tradeoff for now.
text.append('\n\n')
parsed = _Doc(text[0], ''.join(text), tuples, visitor.raises)
else:
parsed = _Doc('', '', tuples, visitor.raises)
return parsed | ff4e3ce300748c32c2e65129c381f1e74912f4a1 | 3,656,193 |
def extract_remove_outward_edges_filter(exceptions_from_removal):
"""
This creates a closure that goes through the list of tuples to explicitly state which edges are leaving from the first argument of each tuple.
Each tuple that is passed in has two members. The first member is a string representing a single node from which the children will be explicitly stated. The second member is the list of nodes that are in its child set.
If the
This covers both barren_nodes and explicit_parent_offspring.
"""
def remove_outward_edges_filter(G):
graph = G.copy()
list_of_parents = [x[0] for x in exceptions_from_removal if len(x[1]) > 0]
list_of_barrens = [x[0] for x in exceptions_from_removal if len(x[1]) == 0]
for barren in list_of_barrens:
graph.remove_edges_from([edge for edge in graph.edges() if edge[0] == barren])
for parent in list_of_parents:
current_edges = graph.out_edges(parent)
valid_edges = [(x[0],y) for x in exceptions_from_removal if x[0] == parent for y in x[1]]
graph.remove_edges_from([edge for edge in current_edges if edge not in valid_edges])
return graph
return remove_outward_edges_filter | 543e5823b8375cbdec200988ea5dd0c4f2d23d05 | 3,656,194 |
import torch
def ln_addTH(x : torch.Tensor, beta : torch.Tensor) -> torch.Tensor:
"""
out = x + beta[None, :, None]
"""
return x + beta[None, :, None] | 77e556c41a33a8c941826604b4b595ea7d456f9a | 3,656,195 |
def drude2(tags, e, p):
"""dielectric function according to Drude theory for fitting"""
return drude(e, p[0], p[1], p[2], p[3]) | 8032c61df099f6c1ac671f2b81c3bb93d1f81317 | 3,656,196 |
def ParseFile(path):
"""Parse function names and comments from a .h path.
Returns mapping from function name to comment.
"""
result = {}
with open(path, 'r') as fp:
lines = fp.readlines()
i = 0
n = len(lines)
while i < n:
line = lines[i]
m = MCRE.match(line)
if m and not m.group('rest') and not m.group('params'):
# Looks like a function definition. Consume all adjacent following
# comment lines.
name = m.group('name')
tmpl = m.group('tmpl')
params = m.group('params')
if tmpl is not None:
name += '<%s>' % tmpl
if params is not None:
name += '(%s)' % params
# print '%3d: %s' % (i+1, m.groupdict())
comments = []
i += 1
while i < n:
m = CRE.match(lines[i])
if not m: break
comments.append(m.group('line'))
i += 1
result[name] = comments
else:
i += 1
return result | 6319137de084aaf366b28e76af52cc1911298d8b | 3,656,197 |
from typing import Dict
def get_records(data: Dict[_Expr, Dict], column_order):
"""Output data as a list of records"""
def cell_callback(expr, i, val, spreadsheet_data):
spreadsheet_data[-1].append(val)
return spreadsheet_data
def row_callback(spreadsheet_data):
spreadsheet_data[-1] = tuple(spreadsheet_data[-1])
spreadsheet_data.append([])
return spreadsheet_data
out = [[]]
out = print_analyses_v2(data, column_order, cell_callback, row_callback, out)
return out[:-1] | 8a8eb0e69c9dabe6dfc59c9b5637fdf4ee2d2dd1 | 3,656,198 |
import torch
def support_mask_to_label(support_masks, n_way, k_shot, num_points):
"""
Args:
support_masks: binary (foreground/background) masks with shape (n_way, k_shot, num_points)
"""
support_masks = support_masks.view(n_way, k_shot*num_points)
support_labels = []
for n in range(support_masks.shape[0]):
support_mask = support_masks[n, :] #(k_shot*num_points)
support_label = torch.zeros_like(support_mask)
mask_index = torch.nonzero(support_mask).squeeze(1)
support_label= support_label.scatter_(0, mask_index, n+1)
support_labels.append(support_label)
support_labels = torch.stack(support_labels, dim=0)
support_labels = support_labels.view(n_way, k_shot, num_points)
return support_labels.long() | e6d73dc93e1e0b54d805d9c8b69785168dd2621e | 3,656,199 |
def cal_covered_users(positions, heat_map, radius):
"""
:param positions: $k$ positions array of !!!(y, x)!!!
:param heat_map: grid data with count
:param radius: 0(1 grid), 1(8 grids), 2(25 grids)
:return: coverage score
"""
row_num, col_num = heat_map.shape
mask = np.zeros(heat_map.shape, dtype=int)
for position in positions:
center_x = position[1]
center_y = position[0]
max_x = center_x + radius if center_x + radius < col_num else col_num - 1
min_x = center_x - radius if center_x - radius >= 0 else 0
max_y = center_y + radius if center_y + radius < row_num else row_num - 1
min_y = center_y - radius if center_y - radius >= 0 else 0
for x in range(min_x, max_x + 1):
for y in range(min_y, max_y + 1):
mask[y, x] = 1
return np.sum(np.multiply(mask, heat_map)) | 52e3fec6b7aa01c9882c15ca3331b3199fa554a2 | 3,656,200 |
from typing import Union
import pathlib
def certificate_from_file(
filename: Union[str, pathlib.Path],
format=OpenSSL.crypto.FILETYPE_PEM,
) -> TS.X509:
"""Load an X509 certificate from ``filename``.
:param filename: The path to the certificate on disk.
:param format: The format of the certificate, from :doc:`OpenSSL:api/crypto`.
"""
with open(filename, 'r') as handle:
return certificate_from_string(handle.read(), format) | 1cc3cb514454118ed6af9257b35aa39586bce31b | 3,656,201 |
def get_welcome_response(session):
"""
Welcome the user to my python skill
"""
card_title = "Welcome"
speech_output = "Welcome to my python skill. You can search for GitHub repositories. "
# If the user either does not reply to the welcome message or says something
# that is not understood, they will be prompted again with this text.
reprompt_text = "Ask me to search GitHub for a repository. "
session_attributes = session.get('attributes', {})
speechlet_response = build_speechlet_response(
card_title,
speech_output,
reprompt_text
)
return build_response(session_attributes, speechlet_response) | d90bbd14bef29f1d7400042bbc593e4bb63b8713 | 3,656,202 |
import numpy as np
def rotate_quaternion ( angle, axis, old ):
"""Returns a quaternion rotated by angle about axis relative to old quaternion."""
# Note that the axis vector should be normalized and we test for this
# In general, the old quaternion need not be normalized, and the same goes for the result
# although in our applications we only ever use unit quaternions (to represent orientations)
assert old.size==4, 'Error in old quaternion dimension'
assert axis.size==3, 'Error in axis dimension'
assert np.isclose (np.sum(axis**2),1.0), 'axis normalization error {} {} {}'.format(*axis)
# Standard formula for rotation quaternion, using half angles
rot = np.sin(0.5*angle) * axis
rot = np.array([np.cos(0.5*angle),rot[0],rot[1],rot[2]],dtype=np.float_)
e = quatmul ( rot, old ) # Apply rotation to old quaternion
return e | ccc67dbcd2153b40a4e4c560d423d4c495912d8e | 3,656,203 |
def rochepot_dl(x, y, z, q):
"""
Dimensionless Roche potential (:math:`\\Phi_n`, synchronous rotation)
More massive component (:math:`m_1`) is centered at (x,y,z) = (0,0,0). Less massive
component (:math:`m_2`) is at (1,0,0). The unit of length is the distance between
the objects. Both objects are in the x,y plane (x-axis along the connecting line and
z perpendicular to the orbital plane).
Parameters
----------
x, y, z : float or array
Location(s) at which to calculate the potential. Unit
of length is the distance between the masses m1 and m2.
q : float
Mass ratio (0 <= m2/m1 <= 1)
Returns
-------
Potential : float or array
The potential at the specified location(s)
"""
_checkq(q)
r1, r2 = _r1r2_dl(x, y, z)
p = 2/((1+q)*r1) + 2*q/((1+q)*r2) + (x - q/(1+q))**2 + y**2
return p | f3d15ea27e6b4c476d345fa8af254b2a14cbdfbc | 3,656,205 |
def health_check(config):
"""
Tests the API to ensure it is working.
"""
itglue = ITGlue(config['api_key'], config['itglue_host'])
try:
itglue._make_request('organizations', {})
return True
except:
return False | 02b9a582b506f590adcdcdbd661abbc7aec52d26 | 3,656,206 |
import io
import time
def capture_image(resolution=(1024, 768), size=(320, 240), sleep=2):
"""
Captures image from raspberry pi camera
resolution -- resolution of capture
size -- size of output
sleep -- sleep time in seconds
"""
stream = io.BytesIO()
with picamera.PiCamera() as camera:
#camera.led = False
camera.resolution = resolution
camera.start_preview()
time.sleep(sleep)
camera.capture(stream, format='jpeg', resize=size)
# "Rewind" the stream to the beginning so we can read its content
stream.seek(0)
image = Image.open(stream)
return image | c8967d6bce5f953d11878fb31fa02dbffbe4e283 | 3,656,207 |
import numpy
def MLVR(XDATA,YDATA,xreference=0,residual=1,xlabel='',ylabel='',title='',alpha = 0.01,iters = 1000,plot=1):
"""Does Multivariant Linear Regression
properties:
XDATA = The Feature Dataframe
YDATA = The Target Dataframe
xreference = 1/0 -> The column index in XDATA for ploting graph
xlabel = Label for X in Graph
ylabel = Label for Y in Graph
title = title for graph]
alpha = Learning rate for model
iters = the number of iteration to train the model
"""
XDATA.conv_type('float',change_self=True)
xpure = XDATA[xreference]
XDATA.normalize(change_self=True)
YDATA.conv_type('float',change_self=True)
ypure = YDATA.tolist[0]
YDATA.normalize(change_self=True)
X=XDATA
y=YDATA
df =DataFrame()
ones = df.new(X.shape[0],1,elm=1.)
X = df.concat(ones,X,axis=1)
theta = DataFrame().new(1,length(X.columns),elm=0.)
def computeCost(X,y,theta):
dot_product = DataFrame().dot(X,theta.T)
return float( ( (dot_product - y)**2 ).sum(axis=0) )/(2 * X.shape[0])
def gradientDescent(X,y,theta,iters,alpha):
#cost = np.zeros(iters)
cost = []
for i in range(iters):
dot_product = DataFrame().dot(X,theta.T)
derivative = DataFrame(dataframe = [[(alpha/X.shape[0])]]) * ( X*(dot_product - y) ).sum(axis = 0 )
theta = theta - derivative
cost.append( computeCost(X, y, theta) ) #cost[i] = computeCost(X, y, theta)
return theta,cost
def print_equation(g):
stra = "Estimated equation, y = %s"%g[0]
g0 = g[0]
del g[0]
for c in range(length(g)):
stra += " + %s*x%s"%(g[c],c+1)
print(stra)
def predict_li(XDATA,g):
g0 = g[0]
del g[0]
y_pred = []
for row in range(XDATA.shape[0]):
suma = 0
suma += sum(list_multiplication( g , XDATA.row(row) ) )
yres = g0 + suma
y_pred.append(yres)
return y_pred
g,cost = gradientDescent(X,y,theta,iters,alpha)
finalCost = computeCost(X,y,g)
#g = g.T
g = g.two2oneD()
print("Thetas = %s"%g) #print("cost = ",cost)
print("finalCost = %s" % finalCost)
gN = g[:]
print_equation(gN)
gN = g[:]
y_pred = predict_li(XDATA,gN)
y_PRED = reference_reverse_normalize(ypure,y_pred)
emin,emean,emax = minResidual(ypure , y_PRED),meanResidual(ypure , y_PRED),maxResidual(ypure , y_PRED)
print("Min,Mean,Max residual = %s, %s, %s"%( emin,emean,emax ) )
print("Residual Min - Max Range = %s"%(emax-emin))
print("Residual range percentage = %s" %((emax-emin)/(max(ypure) - min(ypure))) )
print("Residual mean percentage = %s" %(emean/ArithmeticMean(ypure)) )
#-- If finalcost is lowest mean Residual or mean Error distance also will be lowest
#y_pred = [g[0] + g[1]*my_data[0][c] + g[2]*my_data[1][c] for c in range(my_data.shape[0])]
y_actual = YDATA.tolist[0]
x = XDATA[xreference]
if plot == 1:
fig, ax = plt.subplots()
ax.plot(numpy.arange(iters), cost, 'r')
ax.set_xlabel('Iterations')
ax.set_ylabel('Cost')
ax.set_title('Error vs. Training Epoch')
plt.show()
x_a, y_a = give_time_series(xpure,y_PRED)#give_time_series(x,y_pred)
plt.plot(x_a,y_a,color='r',marker='.',label='Prediction')
x_a, y_a = give_time_series(xpure,ypure)#give_time_series(x,y_actual)
plt.plot(x_a,y_a,color='g',marker='.',label='Real')
if residual == 1:
plot_error_distance(xpure,y_PRED,ypure)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.title(title)
plt.legend()
plt.show()
else:
print('plot off')
return finalCost | 84509c2e8ccc9b4f52b5d90432e74a18da226b0a | 3,656,208 |
def FilterAndTagWrapper(target, dontRemoveTag=False):
"""\
Returns a component that wraps a target component, tagging all traffic
going into its inbox; and filtering outany traffic coming out of its outbox
with the same unique id.
"""
if dontRemoveTag:
Filter = FilterButKeepTag
else:
Filter = FilterTag
return Graphline( TAGGER = UidTagger(),
FILTER = Filter(),
TARGET = target,
linkages = {
("TARGET", "outbox") : ("FILTER", "inbox"), # filter data coming from target
("FILTER", "outbox") : ("self", "outbox"),
("TAGGER", "uid") : ("FILTER", "uid"), # ensure filter uses right uid
("self", "inbox") : ("TAGGER", "inbox"), # tag data going to target
("TAGGER", "outbox") : ("TARGET", "inbox"),
("self", "control") : ("TARGET", "control"), # shutdown signalling path
("TARGET", "signal") : ("TAGGER", "control"),
("TAGGER", "signal") : ("FILTER", "control"),
("FILTER", "signal") : ("self", "signal"),
},
) | 045cdd4f0716ba187211fbb1a4536f1f4c863bc1 | 3,656,209 |
from typing import Union
def format_time(seconds: Union[int, float]) -> str:
"""Convert the seconds to human readable string with days, hours, minutes and seconds."""
s = int(np.rint(seconds))
if s < 60:
return "{0}s".format(s)
elif s < 60 * 60:
return "{0}m {1:02}s".format(s // 60, s % 60)
elif s < 24 * 60 * 60:
return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60)
else:
return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60) | f50b7d96a91e6e261169f0f0c9d71186e3c208fe | 3,656,210 |
def run_model(df, i, name, gscv, calibrate=True):
"""Given customercode values in dict_folds,
1. create balanced dataset
2. split into train, test sets
3. run grid search
4. get probability scores
5. calibrate as directed
6. find optimal cutoff from precision-recall
7. return predictions, data, scores
"""
df_undersampled = pd.concat([
df.query(target==0).sample(frac=0.3, random_state=0),
df.query("target==1")
])
X = df_undersampled.drop("target", axis=1).copy()
y = df_undersampled.loc[:, "target"].copy()
X_tr, X_te, y_tr, y_te = train_test_split(X, y, train_size=0.7, stratify=y)
model = gscv.fit(X_tr, y_tr)
# Probabilities
y_scores = model.predict_proba(X_te)[:, 1]
if calibrate:
sigmoid = CalibratedClassifierCV(model, cv=2, method="sigmoid")
sigmoid.fit(X_tr, y_tr)
y_probs = sigmoid.predict_proba(X_te)[:, 1]
else:
y_probs = np.array(y_scores)
# Cutoff
p, r, t = precision_recall_curve(y_te, y_probs, pos_label=1)
df_pr = (pd.DataFrame(data=zip(p, r, t),
columns=["precision", "recall", "threshold"])
.set_index("threshold"))
cutoff = (pd.Series(data=np.abs(df_pr["precision"] - df_pr["recall"]),
index=df_pr.index)
.idxmin()
.round(2))
# Predictions
y_pred = (y_probs >= cutoff).astype(int)
dict_data = {
"X_tr": X_tr,
"X_te": X_te,
"y_tr": y_tr,
"y_te": y_te,
"y_scores": y_scores,
"y_probs": y_probs,
"y_pred": y_pred,
}
dict_scores = {
"precision": precision_score(y_te, y_pred),
"recall": recall_score(y_te, y_pred),
}
payload = {
"name": name,
"model": model,
"data": dict_data,
"scores": dict_scores
}
return payload | 0f5513b7e4117580dd297ee5e9b7a88afc691b3a | 3,656,211 |
import re
def extract_date(db):
"""Extract Release Date from metadata and convert it into YYYY MM format"""
date_pattern = 'releaseDate\":(\d{9,10})'
def format_date(x):
"""Takes epoch time as argument and returns date in YYYY MM format"""
date = re.search(date_pattern, x)
if date:
val = pd.to_datetime(date.group(1), unit='s')
val = val.strftime('%Y %b')
return val
else:
return 'No Date'
db['date'] = db['meta'].apply(format_date)
db = db.drop('meta', axis=1)
return db | 9d4d8c19846a49967f9e3deb3be8808df9d69812 | 3,656,213 |
def split_test_image(aa):
"""
Separate image created by mk_test_image into x,y components
"""
if aa.dtype.kind == 'f':
y = np.round((aa % 1)*1024)
x = np.floor(aa)
else:
nshift = (aa.dtype.itemsize*8)//2
mask = (1 << nshift) - 1
y = aa & mask
x = aa >> nshift
return x, y | 4a06a0c0fb80dfcb8a58d9509971bfdc0b026d27 | 3,656,214 |
def sphdist(ra1, dec1, ra2, dec2):
"""measures the spherical distance between 2 points
Inputs:
(ra1, dec1) in degrees
(ra2, dec2) in degrees
Outputs:
returns a distance in degrees
"""
dec1_r = deg2rad(dec1)
dec2_r = deg2rad(dec2)
return 2. * rad2deg( arcsin( sqrt( ( sin((dec1_r - dec2_r) / 2)) ** 2 + cos(dec1_r) * cos(dec2_r) * ( sin((deg2rad(ra1 - ra2)) / 2)) ** 2))) | 517f7c67370c6e065c8860b2be59470a2801567d | 3,656,215 |
def parse_kwargs(kwargs, a_list):
"""
extract values from kwargs or set default
"""
if a_list is not None:
num_colors = len(a_list)
default_colors = generate_colors(num_colors)
else:
num_colors = 1
default_colors = 'k'
logscale = kwargs.get('logscale', [False, False])
Range = kwargs.get('Range', [[], []])
colors = kwargs.get('colors', default_colors)
figure_name = kwargs.get('figure_name', None)
show = kwargs.get('show', True)
dist = kwargs.get('dist', None)
values = [logscale, Range, colors, figure_name, show, dist]
return values | 3f1006a8f638b3304ec6aa975346be1a4b6e8189 | 3,656,216 |
def talib_WCLPRICE(DataFrame):
"""WCLPRICE - Weighted Close Price 加权收盘价"""
res = talib.WCLPRICE(DataFrame.high.values, DataFrame.low.values,
DataFrame.close.values)
return pd.DataFrame({'WCLPRICE': res}, index=DataFrame.index) | 6e2d4530fcb33d64b9fbe8a3f0a8a5d64c8f8107 | 3,656,217 |
def is_pi_parallel(ring1_center: np.ndarray,
ring1_normal: np.ndarray,
ring2_center: np.ndarray,
ring2_normal: np.ndarray,
dist_cutoff: float = 8.0,
angle_cutoff: float = 30.0) -> bool:
"""Check if two aromatic rings form a parallel pi-pi contact.
Parameters
----------
ring1_center, ring2_center: np.ndarray
Positions of centers of the two rings. Can be computed with the
compute_ring_center function.
ring1_normal, ring2_normal: np.ndarray
Normals of the two rings. Can be computed with the compute_ring_normal
function.
dist_cutoff: float
Distance cutoff. Max allowed distance between the ring center (Angstroms).
angle_cutoff: float
Angle cutoff. Max allowed deviation from the ideal (0deg) angle between
the rings (in degrees).
Returns
-------
bool
True if two aromatic rings form a parallel pi-pi.
"""
dist = np.linalg.norm(ring1_center - ring2_center)
angle = angle_between(ring1_normal, ring2_normal) * 180 / np.pi
if ((angle < angle_cutoff or angle > 180.0 - angle_cutoff) and
dist < dist_cutoff):
return True
return False | def4eaba9e25e9034fce7559041e5142f82fc3c8 | 3,656,218 |
def _fetch_alleninf_coords(*args, **kwargs):
"""
Gets updated MNI coordinates for AHBA samples, as shipped with `alleninf`
Returns
-------
coords : :class:`pandas.DataFrame`
Updated MNI coordinates for all AHBA samples
References
----------
Updated MNI coordinates taken from https://github.com/chrisfilo/alleninf,
which is licensed under the BSD-3 (reproduced here):
Copyright (c) 2018, Krzysztof Gorgolewski
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
"""
coords = resource_filename('abagen', 'data/corrected_mni_coordinates.csv')
coords = pd.read_csv(coords).rename(dict(corrected_mni_x='mni_x',
corrected_mni_y='mni_y',
corrected_mni_z='mni_z'),
axis=1)
return coords.set_index('well_id') | dae30a0f5404151a3e7d82f129ff36cfec14caa0 | 3,656,219 |
from typing import List
from typing import Union
from typing import DefaultDict
from typing import Dict
from typing import Tuple
def get_classes_for_mol_network(can: canopus.Canopus,
hierarchy: List[str],
npc_hierarchy: List[str],
class_p_cutoff: float,
max_class_depth: Union[int, None]) -> \
DefaultDict[str, List[Union[str, Dict[str, List[Tuple[
Union[str, float]]]]]]]:
"""Loop through mol network and gather CF and NPC classes
:param can: Canopus object of canopus results with gnps mol network data
:param hierarchy: the CF class level names to be included in output in
order of hierarchy
:param npc_hierarchy: the NPC class level names to be included in output in
order of hierarchy
:param class_p_cutoff: probability cutoff for including a class
:param max_class_depth: max class depth for finding CF class
:return: classes output - dict of lists of {componentindex: [cluster index,
formula, {CF_level: [(class, prob)]}, {NPC_level: [(class, prob)]}]}
CF classes are found by looking for the class at deepest depth (or
max_class_depth) and then ordering these deepest classes based on priority.
Then, the classes are traced back to higher hierarchy and sorted in output,
again based on priority of deepest classes.
"""
results = defaultdict(list)
for node_id, node in can.gnps.nodes.items():
# get canopus compound obj
compound = can.sirius.compounds.get(node_id)
if compound:
cf_classes_dict = get_cf_classes(can, compound, hierarchy,
class_p_cutoff, max_class_depth)
npc_classes_dict = get_npc_classes(can, compound, npc_hierarchy)
formula = compound.formula
comp_id = node.componentId
if comp_id == '-1': # handling of singleton -1 components
comp_id += f"_{node_id}"
results[comp_id].append(
[node_id, formula, cf_classes_dict, npc_classes_dict])
return results | 6808a751ed1873b7fb573bb3ecc55586d94590b1 | 3,656,220 |
def list_books(books):
"""Creates a string that, on each line, informs about a book."""
return '\n'.join([f'+ {book.name}: {book.renew_count}: {book.return_date}'
for book in books]) | fce770a39def7f40ed12820a578b4e327df7da43 | 3,656,221 |
def getHSPLNamespace():
"""
Retrieve the namespace of the HSPL XML.
@return: The namespace of the HSPL XML.
"""
return HSPL_NAMESPACE | 481db5781ff9d0b4a4e4702cccafb088379e38a4 | 3,656,222 |
def add_lead_zero(num,digit,IgnoreDataManipulation=False,RaiseDataManipulationError=False,DigitMustAtLeastTwo=False):
"""Add leading the letters '0' to inputted integer 'num' according to defined 'digit' and return as string.
Required keyword arguments:
- num (int) : Integer (can be positive, zero, or negative)
- digit (int) : How much digits of number should be in returned string.
Optional keyword arguments:
- IgnoreDataManipulation (bool) : Avoid raising acceptable data manipulation warning.
- RaiseDataManipulationError (bool) : Raise every data manipulation warning as error exception. (IgnoreDataManipulation must be False.)
- DigitMustAtLeastTwo (bool) : Raise warning or error if defined digit is less than 2.
Data manipulation error:
- Digit should be at least 2. (Ignore by default)
- Amount of defined digits is less than digits of number in inputted integer.
"""
if type(num) is not int or type(digit) is not int: raise TypeError('parameters \'num\', \'digit\' should be integer.')
if type(IgnoreDataManipulation) is not bool or type(RaiseDataManipulationError) is not bool or type(DigitMustAtLeastTwo) is not bool: raise TypeError('parameters \'IgnoreDataManipulation\', \'RaiseDataManipulationError\', and \'DigitMustAtLeastTwo\' should be boolean.')
if IgnoreDataManipulation: RaiseDataManipulationError=False
if digit<1: raise ValueError('Digit should be at least one.')
if digit<2 and DigitMustAtLeastTwo:
msg='Amount of digits should be at least 2.'
if not IgnoreDataManipulation and not RaiseDataManipulationError: alternative_warn(msg,ValueWarning,'add_lead_zero')
if RaiseDataManipulationError: raise ValueError(msg)
# Reuse variable 'digit'
if num>=0:
num=str(num)
IsNegative=False
else:
num=str(abs(num))
IsNegative=True
digit=digit-len(num)
if digit>0:
for x in range(0,digit):
# Reuse variable 'num'
num='0'+num
if not IsNegative: return num
else: return '-'+num
elif digit==0:
if not IsNegative: return num
else: return '-'+num
else:
msg='Defined digits amount is less than digits of number in inputted integer. It possibly means that some of used data has been manipulated incorrectly.'
if not IgnoreDataManipulation and not RaiseDataManipulationError: alternative_warn(msg,ValueWarning,'add_lead_zero')
if RaiseDataManipulationError: raise ValueError(msg)
if not IsNegative: return num
else: return '-'+num | ae3cffa2470a2acf5900a41b342366fb7c6e92da | 3,656,223 |
def _attach_monitoring_policy_server(module, oneandone_conn, monitoring_policy_id, servers):
"""
Attaches servers to a monitoring policy.
"""
try:
attach_servers = []
for _server_id in servers:
server_id = get_server(oneandone_conn, _server_id)
attach_server = oneandone.client.AttachServer(
server_id=server_id
)
attach_servers.append(attach_server)
if module.check_mode:
if attach_servers:
return True
return False
monitoring_policy = oneandone_conn.attach_monitoring_policy_server(
monitoring_policy_id=monitoring_policy_id,
servers=attach_servers)
return monitoring_policy
except Exception as ex:
module.fail_json(msg=str(ex)) | bf096804ec6be47fa4e41c9f4e50d51313f8ef3f | 3,656,224 |
from typing import Union
def get_generator_contingency_fcas_availability_term_2(data, trader_id, trade_type, intervention) -> Union[float, None]:
"""Get generator contingency FCAS term 2"""
# Parameters
lower_slope_coefficient = get_lower_slope_coefficient(data, trader_id, trade_type)
if lower_slope_coefficient == 0:
return None
enablement_min = lookup.get_trader_quantity_band_attribute(data, trader_id, trade_type, '@EnablementMin', float)
reg_target = lookup.get_trader_solution_attribute(data, trader_id, '@L5RegTarget', float, intervention)
energy_target = lookup.get_trader_solution_attribute(data, trader_id, '@EnergyTarget', float, intervention)
return (energy_target - reg_target - enablement_min) / lower_slope_coefficient | 8ec9c76c1941713511f8b472c4649954fd725d58 | 3,656,225 |
def format_pvalue(p_value, alpha=0.05, include_equal=True):
"""
If p-value is lower than 0.05, change it to "<0.05", otherwise, round it to two decimals
:param p_val: input p-value as a float
:param alpha: significance level
:param include_equal: include equal sign ('=') to pvalue (e.g., '=0.06') or not (e.g., '0.06')
:return: p_val: processed p-value (replaced by "<0.05" or rounded to two decimals) as a str
"""
if p_value < alpha:
p_value = "<" + str(alpha)
else:
if include_equal:
p_value = '=' + str(round(p_value, 3))
else:
p_value = str(round(p_value, 3))
return p_value | aa6506b14b68746f4fa58d951f246321e8b5a627 | 3,656,226 |
def _compute_y(x, ll):
"""Computes y."""
return np.sqrt(1 - ll ** 2 * (1 - x ** 2)) | 773a0695676e43984bb0ca8c1d8af2e0bc3bb4fd | 3,656,227 |
def create_axis(length=1.0, use_neg=True):
"""
Create axis.
:param length:
:param use_neg: If False, Only defined in Positive planes
:return: Axis object
"""
# Defining the location and colors of each vertex of the shape
vertices = [
# positions colors
-length * use_neg, 0.0, 0.0, 1.0, 0.0, 0.0,
length, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, -length * use_neg, 0.0, 0.0, 1.0, 0.0,
0.0, length, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, -length * use_neg, 0.0, 0.0, 1.0,
0.0, 0.0, length, 0.0, 0.0, 1.0]
# Defining connections among vertices
# We have a triangle every 3 indices specified
indices = [
0, 1,
2, 3,
4, 5]
return Shape(vertices, indices) | fe9c9d49de786147a382e1fda1e6ab92d26a1fe9 | 3,656,228 |
def genmatrix(list, combinfunc, symmetric=False, diagonal=None):
"""
Takes a list and generates a 2D-matrix using the supplied combination
function to calculate the values.
PARAMETERS
list - the list of items
combinfunc - the function that is used to calculate teh value in a cell.
It has to cope with two arguments.
symmetric - Whether it will be a symmetric matrix along the diagonal.
For example, it the list contains integers, and the
combination function is abs(x-y), then the matrix will be
symmetric.
Default: False
diagonal - The value to be put into the diagonal. For some functions,
the diagonal will stay constant. An example could be the
function "x-y". Then each diagonal cell will be "0".
If this value is set to None, then the diagonal will be
calculated.
Default: None
"""
matrix = []
row_index = 0
for item in list:
row = []
col_index = 0
for item2 in list:
if diagonal is not None and col_index == row_index:
# if this is a cell on the diagonal
row.append(diagonal)
elif symmetric and col_index < row_index:
# if the matrix is symmetric and we are "in the lower left triangle"
row.append( matrix[col_index][row_index] )
else:
# if this cell is not on the diagonal
row.append(combinfunc(item, item2))
col_index += 1
matrix.append(row)
row_index += 1
return matrix | b7d8ebc916f57621a20c371139162cb0504470cd | 3,656,229 |
def get_all_raw_codes_by_area(area: EmisPermArea) -> list:
"""
Returns a list of code names for all permissions within a logical area,
for all possible modes.
"""
return get_raw_codes_by_area(
area, EmisPermMode.CREATE | EmisPermMode.UPDATE | EmisPermMode.VIEW
) | d5887af92ba5fb7c373078dca84a8f9e74a089dc | 3,656,230 |
def cartesian_pair(df1, df2, **kwargs):
"""
Make a cross join (cartesian product) between two dataframes by using a constant temporary key.
Also sets a MultiIndex which is the cartesian product of the indices of the input dataframes.
See: https://github.com/pydata/pandas/issues/5401
:param df1 dataframe 1
:param df1 dataframe 2
:param kwargs keyword arguments that will be passed to pd.merge()
:return cross join of df1 and df2
"""
df1['_tmpkey'] = 1
df2['_tmpkey'] = 1
res = pd.merge(df1, df2, on='_tmpkey', **kwargs).drop('_tmpkey', axis=1)
df1.drop('_tmpkey', axis=1, inplace=True)
df2.drop('_tmpkey', axis=1, inplace=True)
return res | e4ec1526f7a7906c5349bff20f5d4f83244c8878 | 3,656,231 |
def get_cases_by_landkreise_3daysbefore():
"""
Return all Hospitals
"""
hospitals_aggregated = db.session.query(CasesPerLandkreis3DaysBefore).all()
return jsonify(__as_feature_collection(hospitals_aggregated)), 200 | 0442f66ff78549617dd582bc0d1529c0041e7edb | 3,656,232 |
def shape_list(x, out_type=tf.int32):
"""Deal with dynamic shape in tensorflow cleanly."""
static = x.shape.as_list()
dynamic = tf.shape(x, out_type=out_type)
return [dynamic[i] if s is None else s for i, s in enumerate(static)] | 80eea7ccdd4ebfa5a3318fb6070ec996df5b4972 | 3,656,233 |
import json
from typing import cast
def load_config(
config_file: str, print_warnings: bool = False
) -> InfestorConfiguration:
"""
Loads an infestor configuration from file and validates it.
"""
try:
with open(config_file, "r") as ifp:
raw_config = json.load(ifp)
except:
raise ConfigurationError(f"Could not read configuration: {config_file}")
configuration, warnings, errors = parse_config(raw_config)
if print_warnings:
warning_items = "\n".join([f"- {warning}" for warning in warnings])
if warnings:
print(
f"Warnings when loading configuration file ({config_file}):\n{warning_items}"
)
if errors:
error_items = "\n".join([f"- {error}" for error in errors])
error_message = (
f"Errors loading configuration file ({config_file}):\n{error_items}"
)
raise ConfigurationError(error_message)
return cast(InfestorConfiguration, configuration) | b1d4a1385bb8855530f7043ddff5cc8d2f48be79 | 3,656,235 |
def what_do_you_mean_response(ctx: Context) -> REPLY_TYPE:
"""Generate response when we are asked about subject of the dialog
Returns:
template phrase based on previous skill or intent or topic
confidence (can be 0.0, DONTKNOW_CONF, UNIVERSAL_RESPONSE_CONF, SUPER_CONF)
human attributes (empty),
bot attributes (empty),
attributes (empty or MUST_CONTINUE)
"""
dialog = ctx.misc["agent"]["dialog"]
attr = {}
try:
what_do_you_mean_intent = get_what_do_you_mean_intent(dialog["human_utterances"][-1])
if not (what_we_talk_about(dialog["human_utterances"][-1]) or what_do_you_mean_intent):
reply, confidence = "", 0
elif len(dialog.get("human_utterances", [])) < 2:
reply, confidence = DONTKNOW_PHRASE, DONTKNOW_CONF
else:
reply = get_bot_based_on_skill_reply(dialog.get("bot_utterances", []))
if reply is None:
reply = get_bot_based_on_topic_or_intent_reply(
dialog["human_utterances"][-2] if len(dialog["human_utterances"]) > 1 else []
)
if reply is None:
reply, confidence = DONTKNOW_PHRASE, DONTKNOW_CONF
else:
if what_we_talk_about(dialog["human_utterances"][-1]):
confidence = SUPER_CONF
attr = {"can_continue": MUST_CONTINUE}
else:
# what_do_you_mean_intent but not regexp
confidence = UNIVERSAL_RESPONSE_CONF
except Exception as e:
logger.exception("exception in grounding skill")
logger.info(str(e))
sentry_sdk.capture_exception(e)
reply = ""
confidence = 0
return reply, confidence, {}, {}, attr | 694b693d5ed1595781fdfe975f716cca4ff2dcd2 | 3,656,236 |
import warnings
def get_market_tops(symbols=None, **kwargs):
"""
MOVED to iexfinance.iexdata.get_tops
"""
warnings.warn(WNG_MSG % ("get_market_tops", "iexdata.get_tops"))
return TOPS(symbols, **kwargs).fetch() | 4c94e35f447762a3d3ed9c076708450f1d1f200b | 3,656,238 |
from pathlib import Path
def reduce_output_path(path=None, pdb_name=None):
"""Defines location of Reduce output files relative to input files."""
if not path:
if not pdb_name:
raise NameError(
"Cannot save an output for a temporary file without a PDB"
"code specified")
pdb_name = pdb_name.lower()
output_path = Path(global_settings['structural_database']['path'],
pdb_name[1:3].lower(), pdb_name[:4].lower(),
'reduce', pdb_name + '_reduced.mmol')
else:
input_path = Path(path)
if len(input_path.parents) > 1:
output_path = input_path.parents[1] / 'reduce' / \
(input_path.stem + '_reduced' + input_path.suffix)
else:
output_path = input_path.parent / \
(input_path.stem + '_reduced' + input_path.suffix)
return output_path | 0add37e0d5b71998112045af34aba4c0a17310f9 | 3,656,240 |
def link_discord(request: HttpRequest):
"""Page to prompt user to link their discord account to their user account."""
skip_confirmation = request.GET.get("skip-confirm")
if skip_confirmation and skip_confirmation == "true":
return redirect("discord_register")
return render(request, "link_discord.html") | 05aba45b508e5a23cf62f5791a04e2525bbbbae0 | 3,656,242 |
import six
import functools
def rpc(f=None, **kwargs):
"""Marks a method as RPC."""
if f is not None:
if isinstance(f, six.string_types):
if 'name' in kwargs:
raise ValueError('name option duplicated')
kwargs['name'] = f
else:
return rpc(**kwargs)(f)
return functools.partial(_rpc, **kwargs) | 37ac21bd800bb202a78542636e9249ac3519c54e | 3,656,243 |
def fig_fits_h(fig, y):
"""Lista ut of figuren *fig* far plats pa hojden pa skarmen vid
position *x*, *y*
"""
_, h = _get_max_width()
win_h = fig.window.winfo_height()
result = (y + win_h) < h
return result | 4e3254d7a4fad2d8de816b36aacbfd069378c1fc | 3,656,244 |
def index():
"""
Handler for the root url. Loads all movies and renders the first page.
"""
if path_set():
load_movies()
return flask.render_template('main.html') | 8f5c3295175cfd45b3604d523ac6b7de086702e9 | 3,656,246 |
def __hitScore__(srcMZ, targetMZ, srcRT, targetRT, parameters):
# type: (float, float, float, float, LFParameters) -> float
"""Return the hit score of the target frame for the given source
frame.
Keyword Arguments:
srcMZ -- source m/z
targetMZ -- target m/z
srcRT -- source retention time
targetRT -- target retention time
parameters -- LipidFinder's Amalgamator parameters instance
"""
mzDelta = mz_delta(srcMZ, parameters['mzFixedError'],
parameters['mzPPMError'])
mzDiff = abs(srcMZ - targetMZ)
rtDelta = rt_delta(parameters['maxRTDiffAdjFrame'])
rtDiff = abs(srcRT - targetRT)
return sqrt(min(mzDiff / mzDelta, 1.0) ** 2 \
+ min(rtDiff / rtDelta, 1.0) ** 2) | 1b35cfbb2f1e028ccbb53d4fed16459d5a469ac1 | 3,656,247 |
def compute_propeller_nonuniform_freestream(prop, upstream_wake,conditions):
""" Computes the inflow velocities in the frame of the rotating propeller
Inputs:
prop. SUAVE propeller
tip_radius - propeller radius [m]
rotation - propeller rotation direction [-]
thrust_angle - thrust angle of prop [rad]
number_radial_stations - number of propeller radial stations [-]
number_azimuthal_stations - number of propeller azimuthal stations [-]
upstream_wake.
u_velocities - Streamwise velocities from upstream wake
v_velocities - Spanwise velocities from upstream wake
w_velocities - Downwash velocities from upstream wake
VD - Vortex distribution from upstream wake
conditions.
frames
Outputs:
Va Axial velocities at propeller [m/s]
Vt Tangential velocities at propeller [m/s]
Vr Radial velocities at propeller [m/s]
"""
# unpack propeller parameters
Vv = conditions.frames.inertial.velocity_vector
R = prop.tip_radius
rotation = prop.rotation
c = prop.chord_distribution
Na = prop.number_azimuthal_stations
Nr = len(c)
ua_wing = upstream_wake.u_velocities
uv_wing = upstream_wake.v_velocities
uw_wing = upstream_wake.w_velocities
VD = upstream_wake.VD
# Velocity in the Body frame
T_body2inertial = conditions.frames.body.transform_to_inertial
T_inertial2body = orientation_transpose(T_body2inertial)
V_body = orientation_product(T_inertial2body,Vv)
body2thrust = prop.body_to_prop_vel()
T_body2thrust = orientation_transpose(np.ones_like(T_body2inertial[:])*body2thrust)
V_thrust = orientation_product(T_body2thrust,V_body)
# azimuth distribution
psi = np.linspace(0,2*np.pi,Na+1)[:-1]
psi_2d = np.tile(np.atleast_2d(psi),(Nr,1))
# 2 dimensiona radial distribution non dimensionalized
chi = prop.radius_distribution /R
# Reframe the wing induced velocities:
y_center = prop.origin[0][1]
# New points to interpolate data: (corresponding to r,phi locations on propeller disc)
points = np.array([[VD.YC[i], VD.ZC[i]] for i in range(len(VD.YC))])
ycoords = np.reshape((R*chi*np.cos(psi_2d).T).T,(Nr*Na,))
zcoords = prop.origin[0][2] + np.reshape((R*chi*np.sin(psi_2d).T).T,(Nr*Na,))
xi = np.array([[y_center+ycoords[i],zcoords[i]] for i in range(len(ycoords))])
ua_w = sp.interpolate.griddata(points,ua_wing,xi,method='linear')
uv_w = sp.interpolate.griddata(points,uv_wing,xi,method='linear')
uw_w = sp.interpolate.griddata(points,uw_wing,xi,method='linear')
ua_wing = np.reshape(ua_w,(Nr,Na))
uw_wing = np.reshape(uw_w,(Nr,Na))
uv_wing = np.reshape(uv_w,(Nr,Na))
if rotation == [1]:
Vt_2d = V_thrust[:,0]*( -np.array(uw_wing)*np.cos(psi_2d) + np.array(uv_wing)*np.sin(psi_2d) ) # velocity tangential to the disk plane, positive toward the trailing edge eqn 6.34 pg 165
Vr_2d = V_thrust[:,0]*( -np.array(uw_wing)*np.sin(psi_2d) - np.array(uv_wing)*np.cos(psi_2d) ) # radial velocity , positive outward
Va_2d = V_thrust[:,0]* np.array(ua_wing) # velocity perpendicular to the disk plane, positive downward eqn 6.36 pg 166
else:
Vt_2d = V_thrust[:,0]*( np.array(uw_wing)*np.cos(psi_2d) - np.array(uv_wing)*np.sin(psi_2d) ) # velocity tangential to the disk plane, positive toward the trailing edge
Vr_2d = V_thrust[:,0]*( -np.array(uw_wing)*np.sin(psi_2d) - np.array(uv_wing)*np.cos(psi_2d) ) # radial velocity , positive outward
Va_2d = V_thrust[:,0]* np.array(ua_wing) # velocity perpendicular to the disk plane, positive downward
# Append velocities to propeller
prop.tangential_velocities_2d = Vt_2d
prop.radial_velocities_2d = Vr_2d
prop.axial_velocities_2d = Va_2d
return prop | c7dc48066356e4d79e512812976a3e1a80b16749 | 3,656,248 |
def _expect_const(obj):
"""Return a Constant, or raise TypeError."""
if obj in (0, "0"):
return ZERO
if obj in (1, "1"):
return ONE
if obj in ("x", "X"):
return LOGICAL
if obj == "?":
return ILLOGICAL
if isinstance(obj, Constant):
return obj
raise TypeError("Expected obj to be a Constant") | 33aff48ff285b89f36d28a99148afeea97302a05 | 3,656,249 |
def _eval_input_receiver_fn(tf_transform_output, schema, label_key):
"""Build everything needed for the tf-model-analysis to run the model.
Args:
tf_transform_output: A TFTransformOutput.
schema: the schema of the input data.
label_key: the name of the transformed label
Returns:
EvalInputReceiver function, which contains:
- Tensorflow graph which parses raw untransformed features, applies the
tf-transform preprocessing operators.
- Set of raw, untransformed features.
- Label against which predictions will be compared.
"""
# Notice that the inputs are raw features, not transformed features here.
raw_feature_spec = _get_raw_feature_spec(schema)
raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
raw_feature_spec, default_batch_size=None)
serving_input_receiver = raw_input_fn()
features = serving_input_receiver.features.copy()
transformed_features = tf_transform_output.transform_raw_features(features)
# NOTE: Model is driven by transformed features (since training works on the
# materialized output of TFT, but slicing will happen on raw features.
features.update(transformed_features)
return tfma.export.EvalInputReceiver(
features=features,
receiver_tensors=serving_input_receiver.receiver_tensors,
labels=transformed_features[label_key]) | 60f0a6cf9a87894f7e37495b8b4e9f7bd9e85e22 | 3,656,250 |
def get_lpar_names(adp):
"""Get a list of the LPAR names.
:param adp: A pypowervm.adapter.Adapter instance for the PowerVM API.
:return: A list of string names of the PowerVM Logical Partitions.
"""
return [x.name for x in pvm_lpar.LPAR.search(adp, is_mgmt_partition=False)] | 4009ed95b23ba6a35cbe38e1354f109e29fb7fc7 | 3,656,251 |
def init_mlp(in_dim, out_dim, hidden_dim, num_layers, non_linearity=None, bias=True):
"""Initializes a MultilayerPerceptron.
Args:
in_dim: int
out_dim: int
hidden_dim: int
num_layers: int
non_linearity: differentiable function (tanh by default)
bias (bool)
Returns: a MultilayerPerceptron with the architecture
x -> Linear(in_dim, hidden_dim) -> non_linearity ->
...
Linear(hidden_dim, hidden_dim) -> non_linearity ->
Linear(hidden_dim, out_dim) -> y
where num_layers = 0 corresponds to
x -> Linear(in_dim, out_dim) -> y
"""
if non_linearity is None:
non_linearity = nn.Tanh()
dims = [in_dim] + [hidden_dim for _ in range(num_layers)] + [out_dim]
return MultilayerPerceptron(dims, non_linearity, bias) | a2d5b8535af5d363df459cf0d2138b29b2356f30 | 3,656,252 |
def c_grad_curry_regularized(data, target):
"""A closure constructor with regularization term for functional."""
def loss(layerweight):
model = (lambda x: layerweight @ x.t())
reg = 1e-3 * (layerweight**2).sum()/2
return criterion(model(data).t(), target) + reg
return loss | 4571c8849bb1643b4d27bad7d2d0ed88ed23c2fa | 3,656,253 |
from typing import Counter
def convert_examples_to_features_yake(examples, label_list, max_seq_length,
tokenizer, output_mode,
cls_token_at_end=False, pad_on_left=False,
cls_token='[CLS]', sep_token='[SEP]', noi_token='[NOI]', pad_token=0,
sequence_a_segment_id=0,
cls_token_segment_id=1, pad_token_segment_id=0,
mask_padding_with_zero=True, args=None):
""" Loads a data file into a list of `InputBatch`s
`cls_token_at_end` define the location of the CLS token:
- False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP]
- True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS]
`cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet)
"""
noi_token_id = tokenizer.convert_tokens_to_ids(noi_token)
num_exm = len(examples)
idf_dict = {}
for (ex_index, example) in enumerate(examples):
if ex_index % 100000 == 0:
logger.info("Writing idf example %d of %d" % (ex_index, len(examples)))
if args.model_name_or_path == 'bert-base-uncased' or args.model_name_or_path == 'bert-large-uncased':
tokens_a = tokenizer.tokenize(example.text_a)
elif args.model_name_or_path == 'bert-base-cased':
tokens_a = example.text_a.split()
tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
for t in tokens:
idf_dict[t] = idf_dict.get(t, 0) + 1
for t in idf_dict.keys():
idf_dict[t] = idf_dict[t] / num_exm
stop_words = set(stopwords.words('english') )
for t in stop_words:
if t in idf_dict:
idf_dict[t] *= 0.001
inp = " ".join(idf_dict.keys())
spacy_nlp = spacy.load('en_core_web_sm')
inp_results = [(token.text, token.tag_) for token in spacy_nlp(inp)]
allowed_tags = ['VB','NN','JJ','RB'] # UH for "yes", "no", etc.
ignored_words = ['was','were','be','is','are','am',"'s","'re"] + ['do','did','done','does'] # verb of no info
for word, tag in inp_results:
if word in idf_dict.keys():
if len(tag)>=2 and tag[:2] in allowed_tags and (word not in ignored_words):
if tag[:2] in ['VB','NN']:
idf_dict[word] *= 4
else:
idf_dict[word] *= 2
features = []
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
tokens_a = tokenizer.tokenize(example.text_a)
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[:(max_seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = tokens_a + [sep_token]
segment_ids = [sequence_a_segment_id] * len(tokens)
if cls_token_at_end:
tokens = tokens + [cls_token]
segment_ids = segment_ids + [cls_token_segment_id]
else:
tokens = [cls_token] + tokens
segment_ids = [cls_token_segment_id] + segment_ids
input_ids = tokenizer.convert_tokens_to_ids(tokens)
tf = Counter(tokens)
tokens_len = float(len(tokens))
# score: higher will be more likely to be keeped
prob_list = np.array([idf_dict[t] * tf[t] / tokens_len for t in tokens])
# prob_list = np.array([idf_dict[t] for t in tokens])
# add yake
key_word_len = 100
kw_extractor = yake.KeywordExtractor()
keywords = kw_extractor.extract_keywords(" ".join(tokens))
key_word_len = len(keywords)
for i, t in enumerate(tokens):
if t in keywords:
prob_list[i] *= 100
# Repeat words
for i, t in enumerate(tokens):
if t in tokens[:i]:
prob_list[i] /= 10
prob_list = max(prob_list) - prob_list
N = len(tokens)
lm_label_ids = [noi_token_id] * max_seq_length
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = max_seq_length - len(input_ids)
if pad_on_left:
input_ids = ([pad_token] * padding_length) + input_ids
input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids
else:
input_ids = input_ids + ([pad_token] * padding_length)
input_mask = input_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
segment_ids = segment_ids + ([pad_token_segment_id] * padding_length)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
if ex_index < 5:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("tokens: %s" % " ".join(
[str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("lm_label_ids: %s" % " ".join([str(x) for x in lm_label_ids]))
# logger.info("label: %s (id = %d)" % (example.label, label_id))
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
lm_label_ids=lm_label_ids))
while N > 1:
mask_pos = np.array(house_robber(prob_list))
unmask_pos = np.setdiff1d(np.arange(N), mask_pos)
tokens = [t for i,t in enumerate(tokens) if i in unmask_pos]
N = len(tokens)
# mask_lm_label_ids = input_ids
lm_label_ids = [pad_token] * max_seq_length
j=0
i = 1
while i < len(prob_list):
if i in mask_pos:
lm_label_ids[j] = input_ids[i]
i += 2
else:
lm_label_ids[j] = noi_token_id
i += 1
j += 1
# print(i,j)
while j < len(unmask_pos):
lm_label_ids[j] = noi_token_id # no input for last token of new sequence
j+= 1
prob_list = prob_list[unmask_pos]
# Zero-pad up to the sequence length.
padding_length = max_seq_length - len(unmask_pos)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
segment_ids = [sequence_a_segment_id] * len(tokens)
if pad_on_left:
input_ids = ([pad_token] * padding_length) + input_ids
input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids
else:
input_ids = input_ids + ([pad_token] * padding_length)
input_mask = input_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
segment_ids = segment_ids + ([pad_token_segment_id] * padding_length)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
if ex_index < 5:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("tokens: %s" % " ".join(
[str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("lm_label_ids: %s" % " ".join([str(x) for x in lm_label_ids]))
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
lm_label_ids=lm_label_ids))
return features | 4af89357339a2a63ff765f9da8660ca3895ba8b5 | 3,656,254 |
def sq_to_hr(bins, rho, S_k, k, axis=1):
"""
Takes the structure factor s(q) and computes the real space
total correlation function h(r)
"""
# setup scales
dr = np.pi / (k[0] * bins)
radius = dr * np.arange(1, bins + 1, dtype=np.float)
# Rearrange to find total correlation function from structure factor
H_k = (S_k - 1.) / rho
# # Transform back to real space
iFT = idst(H_k * k[:bins], type=1, axis=axis)
normalisation = bins * k[0] / (4 * np.pi**2 * radius) / (bins + 1)
h_r = normalisation * iFT
return h_r, radius | 870e535ee3cdec3b138da1c205b000292eaee8ba | 3,656,255 |
def scale17(data, factor):
"""Solution to exercise C-1.17.
Had we implemented the scale function (page 25) as follows, does it work
properly?
def scale(data, factor):
for val in data:
val *= factor
Explain why or why not.
--------------------------------------------------------------------------
Solution:
--------------------------------------------------------------------------
No, it doesn't work. Per the text, page 21:
"It is worth noting that val is treated as a standard identifier. If the
element of the original data happens to be mutable, the val identifier can
be used to invoke its methods. But a reassignment of identifier val to a
new value has no affect on the original data, nor on the next iteration of
the loop."
The code above fails because it tries to assign a new value to the "val"
identifier. This merely breaks the alias without changing the list.
"""
for val in data:
val *= factor
return data | 84ac4012e0c839b78cb8617b6b9b7c2e8c54caa2 | 3,656,256 |
import sqlite3
def initialize_database() -> sqlite3.Connection:
"""Create a sqlite3 database stored in memory with two tables to hold
users, records and history. Returns the connection to the created database."""
with sqlite3.connect("bank_buds.db") as conn:
conn.execute("""CREATE TABLE IF NOT EXISTS user(
customer_id TEXT NOT NULL,
firstName TEXT NOT NULL,
lastName TEXT NOT NULL,
userName TEXT NOT NULL,
userPass TEXT NOT NULL,
balance INTEGER NOT NULL)""")
conn.execute("""CREATE TABLE IF NOT EXISTS user_record(
rec_id TEXT REFERENCES user NOT NULL,
wins INTEGER NOT NULL,
losses INTEGER NOT NULL)""")
conn.execute("""CREATE TABLE IF NOT EXISTS challenge_history(
challenge_id INTEGER NOT NULL,
challenge_starter TEXT REFERENCES user NOT NULL,
challenge_opponent TEXT REFERENCES user NOT NULL,
challenge_winner TEXT REFERENCES user NOT NULL,
challenge_loser TEXT REFERENCES user NOT NULL,
is_active INTEGER NOT NULL,
goal INTEGER NOT NULL)""")
return conn | c3e32534de39a53686672c5c537a2c277fa2d06d | 3,656,257 |
def stateless_multinomial(logits,
num_samples,
seed,
output_dtype=dtypes.int64,
name=None):
"""Draws deterministic pseudorandom samples from a multinomial distribution.
This is a stateless version of `tf.random.categorical`: if run twice with the
same seeds, it will produce the same pseudorandom numbers. The output is
consistent across multiple runs on the same hardware (and between CPU
and GPU), but may change between versions of TensorFlow or on non-CPU/GPU
hardware.
Example:
```python
# samples has shape [1, 5], where each value is either 0 or 1 with equal
# probability.
samples = tf.random.stateless_categorical(
tf.math.log([[0.5, 0.5]]), 5, seed=[7, 17])
```
Args:
logits: 2-D Tensor with shape `[batch_size, num_classes]`. Each slice
`[i, :]` represents the unnormalized log-probabilities for all classes.
num_samples: 0-D. Number of independent samples to draw for each row slice.
seed: A shape [2] integer Tensor of seeds to the random number generator.
output_dtype: integer type to use for the output. Defaults to int64.
name: Optional name for the operation.
Returns:
The drawn samples of shape `[batch_size, num_samples]`.
"""
with ops.name_scope(name, "stateless_multinomial", [logits, seed]):
return stateless_multinomial_categorical_impl(logits, num_samples,
output_dtype, seed) | da750b8a33348b4f6ff0b47897b4421a8099f12e | 3,656,258 |
def calc_kss(tag,vj):
"""
calculate Kolmogorov-Smirnov statistics as in CMap; Lamb J, Science, 2006
Parameters
----------
tag: tuple
tuple of up-/down-gene lists; (up,down)
sorted with the values in the descending order
vj: dict
dictionary corresponding to V(j) in CMap; Lamb J, Science, 2006
key, gene; val, rank
"""
a_up,b_up = _ab(tag[0],vj)
a_dn,b_dn = _ab(tag[1],vj)
if a_up > b_up:
ks_up = a_up
else:
ks_up = -1*b_up
if a_dn > b_dn:
ks_dn = a_dn
else:
ks_dn = -1*b_dn
if ks_up*ks_dn > 0:
ks = 0
else:
ks = ks_up - ks_dn
n = len(vj)
tu = len(tag[0])
td = len(tag[1])
kssmax = _kss_max(n,tu,td)
return ks/kssmax | 8dbb6233fb82a65a3ffad347f8444d3c16f8f4a9 | 3,656,259 |
def encode(elem):
"""This is the general function to call when you wish to encode an
element and all its children and sub-children.
Encode in this context means to convert from pymm elements to
xml.etree.ElementTree elements.
Typically this is called by pymm.write()
"""
converter = ConversionHandler()
return converter.convert_element_hierarchy(elem, 'encode') | 13578267efb0a6e21b61d86a6c60f5ecd9235b05 | 3,656,260 |
def register_blueprints(app: "Flask") -> "Flask":
"""A function to register flask blueprint.
To register blueprints add them like the example
Example usage:
from app.blueprints import blueprint
app.register_blueprint(blueprint)
Args:
app (Flask): Flask Application instance
Returns:
Flask: Flask Application instance
"""
app.register_blueprint(api_v1_bp)
return app | 13564aa6f95d995362a56e9be02a51e50475e446 | 3,656,261 |
def build_history_class(
cls: declarative.DeclarativeMeta,
prop: T_PROPS,
schema: str = None) -> nine.Type[TemporalProperty]:
"""build a sqlalchemy model for given prop"""
class_name = "%s%s_%s" % (cls.__name__, 'History', prop.key)
table = build_history_table(cls, prop, schema)
base_classes = (
TemporalProperty,
declarative.declarative_base(metadata=table.metadata),
)
class_attrs = {
'__table__': table,
'entity': orm.relationship(
lambda: cls,
backref=orm.backref('%s_history' % prop.key, lazy='dynamic'),
),
}
if isinstance(prop, orm.RelationshipProperty):
class_attrs[prop.key] = orm.relationship(prop.argument, lazy='noload')
model = type(class_name, base_classes, class_attrs)
return model | 696b379172c57145c215b64e3e3dc4648b42e535 | 3,656,262 |
def geo_distance(left, right):
"""
Compute distance between two geo spatial data
Parameters
----------
left : geometry or geography
right : geometry or geography
Returns
-------
distance : double scalar
"""
op = ops.GeoDistance(left, right)
return op.to_expr() | 8a7f1bc14eacf38cecda874d8b16d6c38d9d2049 | 3,656,263 |
def svn_dirent_local_style(*args):
"""svn_dirent_local_style(char dirent, apr_pool_t pool) -> char"""
return _core.svn_dirent_local_style(*args) | afe170a321713c9d0f671303fa71d86bc93d8167 | 3,656,264 |
def make_generator_model():
"""
The Generator
The generator uses `tf.keras.layers.Conv2DTranspose` (upsampling)
tf.keras.layers.to produce an image from a seed (random noise).
Start with a `Dense` layer that takes this seed as input,
then upsample several times until you reach the desired image size of 28x28x1.
Notice the `tf.keras.layers.LeakyReLU` activation for each layer, except the output layer which uses tanh.
:return:
"""
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(7 * 7 * 256, use_bias=False, input_shape=(100,)))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Reshape((7, 7, 256)))
assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size
model.add(
tf.keras.layers.Conv2DTranspose(
128, (5, 5), strides=(1, 1), padding="same", use_bias=False
)
)
assert model.output_shape == (None, 7, 7, 128)
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
model.add(
tf.keras.layers.Conv2DTranspose(
64, (5, 5), strides=(2, 2), padding="same", use_bias=False
)
)
assert model.output_shape == (None, 14, 14, 64)
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())
model.add(
tf.keras.layers.Conv2DTranspose(
1, (5, 5), strides=(2, 2), padding="same", use_bias=False, activation="tanh"
)
)
assert model.output_shape == (None, 28, 28, 1)
return model | e02fa5487805a85aaa5830ce90a6cc26cb2f27a4 | 3,656,265 |
def find_simple_cycles(dg):
""" Find all simple cycles given a networkx graph.
Args:
dg (obj): a networkx directed graph
Returns:
simple_cycles (list of lists): a list of simple cycles ordered by number of segments.
"""
simple_cycles = [c for c in nx.simple_cycles(dg) if len(c) > 2]
#simple_cycles.sort(key=lambda cycle: len(cycle), reverse=True) # sort by number of segments
return simple_cycles | 4ed18ec26df80631c415086b99e470567e2641ae | 3,656,266 |
from typing import Optional
def augment_edge(edge_index: np.ndarray, nodes: np.ndarray,
edge_weight: np.ndarray = None, *,
nbrs_to_link: Optional[np.ndarray] = None,
common_nbrs: Optional[np.ndarray] = None,
fill_weight: float = 1.0) -> tuple:
"""Augment a set of edges by connecting nodes to
element in ``nbrs_to_link``.
Parameters
----------
edge_index: shape [M, 2] or [2, M]
edge indices of a Scipy sparse adjacency matrix.
nodes: the nodes that will be linked to the graph.
list or np.array: the nodes connected to `nbrs_to_link`
int: new added nodes connected to ``nbrs_to_link``,
node ids [num_nodes, ..., num_nodes+nodes-1].
edge_weight: shape [M,]
edge weights of a Scipy sparse adjacency matrix.
nbrs_to_link: a list of N elements,
where N is the length of 'nodes'.
the specified neighbor(s) for each added node.
if `None`, it will be set to `[0, ..., N-1]`.
common_nbrs: shape [None,].
specified common neighbors for each added node.
fill_weight: edge weight for the augmented edges.
NOTE:
-----
Both ``nbrs_to_link`` and ``common_nbrs`` should NOT be specified together.
See Also
--------
graphgallery.functional.augment_adj
"""
if nbrs_to_link is not None and common_nbrs is not None:
raise RuntimeError("Only one of them should be specified.")
edge_index = asedge(edge_index, shape="col_wise")
if edge_weight is None:
edge_weight = np.ones(edge_index.shape[1], dtype=gg.floatx())
num_nodes = edge_index.max() + 1
if gg.is_intscalar(nodes):
# int, add nodes to the graph
nodes = np.arange(num_nodes, num_nodes + nodes, dtype=edge_index.dtype)
else:
# array-like, link nodes to the graph
nodes = np.asarray(nodes, dtype=edge_index.dtype)
if common_nbrs is None and nbrs_to_link is None:
nbrs_to_link = np.arange(nodes.size, dtype=edge_index.dtype)
if not nodes.size == len(nbrs_to_link):
raise ValueError("The length of 'nbrs_to_link' should equal to 'nodes'.")
if nbrs_to_link is not None:
edges_to_link = np.hstack([np.vstack([np.tile(node, get_length(nbr)), nbr])
for node, nbr in zip(nodes, nbrs_to_link)])
else:
num_repeat = len(common_nbrs)
edges_to_link = np.hstack([np.vstack([np.tile(node, num_repeat), common_nbrs])
for node in nodes])
edges_to_link = np.hstack([edges_to_link, edges_to_link[[1, 0]]])
added_edge_weight = np.zeros(edges_to_link.shape[1], dtype=edge_weight.dtype) + fill_weight
augmented_edge_index = np.hstack([edge_index, edges_to_link])
augmented_edge_weight = np.hstack([edge_weight, added_edge_weight])
return augmented_edge_index, augmented_edge_weight | 9b128dfd4bcefa7912af857de6998183ef4da3c2 | 3,656,267 |
def status(proc):
"""Check for processes status"""
if proc.is_alive==True:
return 'alive'
elif proc.is_alive==False:
return 'dead'
else:
return proc.is_alive() | e257385f06979643e19fd9facc2118f4ae07c909 | 3,656,269 |
def is_plumed_file(filename):
"""
Check if given file is in PLUMED format.
Parameters
----------
filename : string, optional
PLUMED output file
Returns
-------
bool
wheter is a plumed output file
"""
headers = pd.read_csv(filename, sep=" ", skipinitialspace=True, nrows=0)
is_plumed = True if " ".join(headers.columns[:2]) == "#! FIELDS" else False
return is_plumed | b6fca7c82efb2b07779406f06c15bf195bb4b5e9 | 3,656,270 |
def detect_llj_xarray(da, inverse=False):
""" Identify local maxima in wind profiles.
args:
- da : xarray.DataArray with wind profile data
- inverse : to flip the array if the data is stored upside down
returns: : xarray.Dataset with vertical dimension removed containing:
- falloff : 0 or largest difference between local max and subseq min
- strength : 0 or wind speed at jet height
- index : -1 or index along <axis>
Note: vertical dimension should be labeled 'level' and axis=1
"""
# Move <axis> to first dimension, to easily index and iterate over it.
xv = np.rollaxis(da.values, 1)
if inverse:
xv = xv[::-1, ...]
# Set initial arrays
min_elem = xv[-1].copy()
max_elem = np.zeros(min_elem.shape)
max_diff = np.zeros(min_elem.shape)
max_idx = np.ones(min_elem.shape, dtype=int) * (-1)
# Start at end of array and search backwards for larger differences.
for i, elem in reversed(list(enumerate(xv))):
min_elem = np.minimum(elem, min_elem)
new_max_identified = elem - min_elem > max_diff
max_diff = np.where(new_max_identified, elem - min_elem, max_diff)
max_elem = np.where(new_max_identified, elem, max_elem)
max_idx = np.where(new_max_identified, i, max_idx)
# Combine the results in a dataframe
get_height = lambda i: np.where(i > 0, da.level.values[i], da.level.values[
-1])
dims = da.isel(level=0).drop('level').dims
coords = da.isel(level=0).drop('level').coords
lljs = xr.Dataset(
{
'falloff': (dims, max_diff),
'strength': (dims, max_elem),
'level': (dims, get_height(max_idx)),
},
coords=coords)
print(
'Beware! Level is also filled if no jet is detected! '
'Use ds.sel(level=lljs.level).where(lljs.falloff>0) to get rid of them'
)
return lljs | 3fbe444e5eed6ff1ec4f525145276e2bc974050c | 3,656,271 |
def gen_blinds(depth, width, height, spacing, angle, curve, movedown):
"""Generate genblinds command for genBSDF."""
nslats = int(round(height / spacing, 0))
slat_cmd = "!genblinds blindmaterial blinds "
slat_cmd += "{} {} {} {} {} {}".format(
depth, width, height, nslats, angle, curve)
slat_cmd += "| xform -rz -90 -rx -90 -t "
slat_cmd += f"{-width/2} {-height/2} {-movedown}\n"
return slat_cmd | 2e8a2751f2bb2be0c2ffdff8218961b0b1c0191b | 3,656,272 |
def dev_Sonic(Mach, gamma=defg._gamma):
"""computes the deviation angle for a downstream SONIC Mach number
Args:
Mach: param gamma: (Default value = defg._gamma)
gamma: (Default value = defg._gamma)
Returns:
"""
return deflection_Mach_sigma(Mach, sigma_Sonic(Mach, gamma=gamma), gamma=gamma) | a29f90ec1de25a3b86c2dcc1a1a6becedbfbf696 | 3,656,273 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.