content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def matching_poss(poss_1, poss_2): """Count how many rows the possibilities have in common. Arguments: poss_1 {np.array} -- possibilities 1 poss_2 {np.array} -- possibilities 2 Returns: int -- the count/matches """ matches = 0 for row_2 in poss_2: for row_1 in poss_1: if np.array_equal(row_1, row_2): matches += 1 return matches
096214d8e2115afd21cbd76b28cafa54574cdfb1
3,656,043
from collections import Counter def unk_emb_stats(sentences, emb): """Compute some statistics about unknown tokens in sentences such as "how many sentences contain an unknown token?". emb can be gensim KeyedVectors or any other object implementing __contains__ """ stats = { "sents": 0, "tokens": 0, "unk_tokens": 0, "unk_types": 0, "unk_tokens_lower": 0, "unk_types_lower": 0, "sents_with_unk_token": 0, "sents_with_unk_token_lower": 0} all_types = set() for sent in sentences: stats["sents"] += 1 any_unk_token = False any_unk_token_lower = False types = Counter(sent) for ty, freq in types.items(): all_types.add(ty) stats["tokens"] += freq unk = ty not in emb if unk: any_unk_token = True stats["unk_types"] += 1 stats["unk_tokens"] += freq if unk and ty.lower() not in emb: any_unk_token_lower = True stats["unk_types_lower"] += 1 stats["unk_tokens_lower"] += freq if any_unk_token: stats["sents_with_unk_token"] += 1 if any_unk_token_lower: stats["sents_with_unk_token_lower"] += 1 stats["types"] = len(all_types) return stats
221b88e2124f3b8da2976a337476a11a7276a470
3,656,044
from typing import List async def search_dcu( ldap_conn: LDAPConnection, dcu_id: str = None, uid: str = None, fullname: str = None ) -> List[DCUUser]: """ Seach DCU AD for user Args: ldap_conn: LDAP connection to use for searching uid: Usersname to search for dcu_id: dcu student id number fullname: Users full name Returns: A list of user found in ad matching search criteria """ query = "".join( filter( None, [ f"(displayName={fullname})" if fullname else None, f"(cn={uid})" if uid else None, f"(id={dcu_id})" if dcu_id else None, ], ) ) if not query: return [] res = await ldap_conn.search("o=ad,o=dcu,o=ie", f"(&{query})", attributes=DCU_ATTR) return [DCUUser.from_ldap(user) for user in res]
32444b30f1463332f51720eef3167c3495deeaec
3,656,046
def jump(inst_ptr, program, direction): """Jump the instruction pointer in the program until matching bracket""" count = direction while count != 0: inst_ptr += direction char = program[inst_ptr] if char == '[': count += 1 elif char == ']': count -= 1 else: pass return inst_ptr
76c6c4dcf4dbc452e9f2b252522871fcca95c75d
3,656,047
def center_image(IM, method='com', odd_size=True, square=False, axes=(0, 1), crop='maintain_size', verbose=False, center=_deprecated, **kwargs): """ Center image with the custom value or by several methods provided in :func:`find_origin()` function. Parameters ---------- IM : 2D np.array The image data. method : tuple or str either a tuple (float, float), the coordinate of the origin of the image in the (row, column) format, or a string to specify an automatic centering method: ``image_center`` the center of the image is used as the origin. The trivial result. ``com`` the origin is found as the center of mass. ``convolution`` the origin is found as the maximum of autoconvolution of the image projections along each axis. ``gaussian`` the origin is extracted from a fit to a Gaussian function. This is probably only appropriate if the data resembles a gaussian. ``slice`` the image is broken into slices, and these slices compared for symmetry. odd_size : boolean if ``True``, the returned image will contain an odd number of columns. Most of the transform methods require this, so it's best to set this to ``True`` if the image will subsequently be Abel-transformed. square : bool if ``True``, the returned image will have a square shape. crop : str determines how the image should be cropped. The options are: ``maintain_size`` return image of the same size. Some regions of the original image may be lost, and some regions may be filled with zeros. ``valid_region`` return the largest image that can be created without padding. All of the returned image will correspond to the original image. However, portions of the original image will be lost. If you can tolerate clipping the edges of the image, this is probably the method to choose. ``maintain_data`` the image will be padded with zeros such that none of the original image will be cropped. axes : int or tuple center image with respect to axis ``0`` (vertical), ``1`` (horizontal), or both axes ``(0, 1)`` (default). Returns ------- out : 2D np.array centered image """ if center is not _deprecated: _deprecate('abel.tools.center.center_image() ' 'argument "center" is deprecated, use "method" instead.') method = center rows, cols = IM.shape if odd_size and cols % 2 == 0: # drop rightside column IM = IM[:, :-1] rows, cols = IM.shape if square and rows != cols: # make rows == cols, but maintain approx. center if rows > cols: diff = rows - cols trim = diff//2 if trim > 0: IM = IM[trim: -trim] # remove even number of rows off each end if diff % 2: IM = IM[: -1] # remove one additional row else: # make rows == cols, check row oddness if odd_size and rows % 2 == 0: IM = IM[:-1, :] rows -= 1 xs = (cols - rows)//2 IM = IM[:, xs:-xs] rows, cols = IM.shape # origin is in (row, column) format! if isinstance(method, string_types): origin = find_origin(IM, method=method, verbose=verbose, **kwargs) else: origin = method centered_data = set_center(IM, origin=origin, crop=crop, axes=axes, verbose=verbose) return centered_data
7b9793d720228a246df07c08a2aeda861108f92e
3,656,049
def get_mapping(mapping_name): """ Reads in the given mapping and returns a dictionary of letters to keys. If the given mapping is a dictionary, does nothing an returns the mapping mpaping_name can be a path to different file formats """ # read in mapping if type(mapping_name) == str: if mapping_name.split(".")[-1] == "mst": mapping = create_map_from_reformulation(mapping_name) elif mapping_name.split(".")[-1] == "txt": mapping = create_map_from_txt(mapping_name) return mapping else: return mapping_name
1e4f99d14b242ba4e8760fafecd83cd32932a92c
3,656,051
def evaluate(model, reward_gen, n_steps=1000000, delta=1): """Evaulate the regrets and rewards of a given model based on a given reward generator Args: model (TYPE): Description n_steps (int, optional): Description delta (int, optional): Number of steps for feedback delay reward_gen (TYPE, optional): Description Returns: regrets (list): List of regrets for each round. Regret is the maximum reward minus the selected action's reward for the round rewards (list): List of rewards for actions taken """ regrets = [] rewards = [] last_rewards = [] last_changes = [] last_selected_actions = [] # initialize successs and failures to 0 for all items successes = np.zeros(model.n_items) failures = np.zeros(model.n_items) for step in range(1, n_steps + 1): reward_vector, item_changed = reward_gen.get_rewards() # reinitialize the successes and failures if the item has changed if item_changed: successes = np.zeros(model.n_items) failures = np.zeros(model.n_items) selected_action = model.get_action(item_changed, successes, failures) regret = ( np.max(reward_gen.reward_probs) - reward_gen.reward_probs[selected_action] ) regrets.append(regret) rewards.append(reward_vector[selected_action]) last_rewards.append(reward_vector[selected_action]) last_changes.append(item_changed) last_selected_actions.append(selected_action) # record success or failure of action at appropriate index in #successes or failures if reward_vector[selected_action] == 1: successes[selected_action] += 1 else: failures[selected_action] += 1 # Feedback if delta steps have passed if step % delta == 0: model.update(last_selected_actions, last_rewards, last_changes) last_rewards = [] last_changes = [] last_selected_actions = [] return regrets, rewards
a326e905156f6ac195eeb993878ae651a13a306e
3,656,052
def get_photo_from_response(response: dict): """ parse json response and return an Photo Keyword arguments: response -- meetup api response in a dict return -> get or create Photo """ photo, create = Photo.objects.get_or_create(meetup_id=response["id"]) # add optional fields if "highres_link" in response: photo.highres_link = response["highres_link"] if "base_url" in response: photo.base_url = response["base_url"] if "photo_link" in response: photo.photo_link = response["photo_link"] if "thumb_link" in response: photo.thumb_link = response["thumb_link"] if "type" in response: photo.photo_type = response["type"] photo.save() return photo
9f0aeee796c1131424a7f4292a2b712d2bf0158e
3,656,053
from typing import Union from typing import List from typing import Tuple def composition_plot(adata: AnnData, by: str, condition: str, stacked: bool = True, normalize: bool = True, condition_sort_by: str = None, cmap: Union[str, List[str], Tuple[str]] = None, **kwds) -> hv.core.element.Element: """ Generate a composition plot, which shows the percentage of observations from every condition within each cluster (by). Args: adata: Annotated data matrix. by: Key for accessing variables of adata.var_names or a field of adata.obs used to group the data. condition: Key for accessing variables of adata.var_names or a field of adata.obs used to compute counts within a group. stacked: Whether bars are stacked. normalize: Normalize counts within each group to sum to one. condition_sort_by: Sort condition within each group by max, mean, natsorted, or None. cmap: Color map name (hv.plotting.list_cmaps()) or a list of hex colors. See http://holoviews.org/user_guide/Styling_Plots.html for more information. """ adata_raw = __get_raw(adata, False) keys = [by, condition] adata_df = __get_df(adata, adata_raw, keys) for column in adata_df: if not pd.api.types.is_categorical_dtype(adata_df[column]): adata_df[column] = adata_df[column].astype(str).astype('category') cmap = __get_category_cmap(adata_raw, adata_df, condition) if cmap is None else __fix_cmap(adata_df, condition, cmap) keywords = dict(stacked=stacked, group_label=condition) keywords.update(kwds) invert = keywords.get('invert', False) if not invert and 'rot' not in keywords: keywords['rot'] = 90 dummy_df = pd.get_dummies(adata_df[condition]) df = pd.concat([adata_df, dummy_df], axis=1) df = df.groupby(by).agg(np.sum) if normalize: df = df.T.div(df.sum(axis=1)).T if not (pd.api.types.is_categorical_dtype(df.index) and df.index.dtype.ordered): df = df.loc[natsorted(df.index)] secondary = dummy_df.columns.values if condition_sort_by == 'max' or condition_sort_by == 'mean': secondary_sort = df.values.max(axis=0) if condition_sort_by == 'max' else df.values.mean(axis=0) index = np.flip(np.argsort(secondary_sort)) secondary = secondary[index] elif condition_sort_by == 'natsorted': secondary = natsorted(secondary) secondary = list(secondary) p = df.hvplot.bar(by, secondary, cmap=cmap, **keywords) p.df = df return p
f2e588c0ce6d195201754885bbd90aae83b49ba7
3,656,054
def region_of_province(province_in: str) -> str: """ Return the corresponding key in ITALY_MAP whose value contains province_in :param province_in: str :return: str """ region = None for r in ITALY_MAP: for p in ITALY_MAP[r]: if province_in == p: region = r return region
1aa29235d569929a0cfbbc4258d45ba4f0171f3c
3,656,055
def filter_stopwords(words:list)->iter: """ Filter the stop words """ words = filter(is_not_stopword, words) return words
a5516886be0ce5c8671ef259baf38b04d61c511f
3,656,056
def numpy_jaccard(box_a, box_b): """计算两组矩形两两之间的iou Args: box_a: (tensor) bounding boxes, Shape: [A, 4]. box_b: (tensor) bounding boxes, Shape: [B, 4]. Return: ious: (tensor) Shape: [A, B] """ A = box_a.shape[0] B = box_b.shape[0] box_a_x1y1 = np.reshape(box_a[:, 2:], (A, 1, 2)) box_a_x1y1 = np.tile(box_a_x1y1, (1, B, 1)) box_b_x1y1 = np.reshape(box_b[:, 2:], (1, B, 2)) box_b_x1y1 = np.tile(box_b_x1y1, (A, 1, 1)) box_a_x0y0 = np.reshape(box_a[:, :2], (A, 1, 2)) box_a_x0y0 = np.tile(box_a_x0y0, (1, B, 1)) box_b_x0y0 = np.reshape(box_b[:, :2], (1, B, 2)) box_b_x0y0 = np.tile(box_b_x0y0, (A, 1, 1)) max_xy = np.minimum(box_a_x1y1, box_b_x1y1) min_xy = np.maximum(box_a_x0y0, box_b_x0y0) inter = np.clip((max_xy - min_xy), 0.0, np.inf) inter = inter[:, :, 0] * inter[:, :, 1] area_a = ((box_a[:, 2]-box_a[:, 0]) * (box_a[:, 3]-box_a[:, 1])) area_a = np.reshape(area_a, (A, 1)) area_a = np.tile(area_a, (1, B)) area_b = ((box_b[:, 2]-box_b[:, 0]) * (box_b[:, 3]-box_b[:, 1])) area_b = np.reshape(area_b, (1, B)) area_b = np.tile(area_b, (A, 1)) union = area_a + area_b - inter return inter / union
1c0aed3c354a9253c5f9278109cd13365941846c
3,656,057
import uuid def test_get_rule(client_rule_factory, client_response_factory, registered_rule): """Check request data that client uses to get a rule. 1. Create a subclass of the abstract client. 2. Implement send request so that it checks the request parameters. 3. Invoke the get_rule method. 4. Check the rule, returned by the method call. """ rule_id = str(uuid.uuid4()) class _Client(AbstractClient): def _send_request(self, url, method="GET", json=None): assert url == "rule/{0}".format(rule_id), "Wrong url" assert method == "GET", "Wrong method" assert json is None, "Data has been specified" response_json = {"rule_id": rule_id} response_json.update(self._rule_factory.serialize_rule(rule=registered_rule)) return response_json client = _Client( configuration_url="/", rule_factory=client_rule_factory, response_factory=client_response_factory, ) obtained_rule = client.get_rule(rule_id=rule_id) assert obtained_rule.rule_id == rule_id, "Rule ID has not been set"
62b8368072cebf0591137357167980a6d710a1f0
3,656,058
import colorsys def summaryhsl(all_summaries, summary): """ Choose a color for the given system summary to distinguish it from other types of systems. Returns hue, saturation, and luminance for the start of the range, and how much the hue can be randomly varied while staying distinguishable. """ lowest_att = min(att for att, ms in all_summaries) highest_att = max(att for att, ms in all_summaries) att_range = highest_att - lowest_att + 1 attractors, monotonic_species = summary lowest_ms = min(ms for att, ms in all_summaries if att == attractors) highest_ms = max(ms for att, ms in all_summaries if att == attractors) ms_range = highest_ms - lowest_ms + 1 bin_width = 1 / (ms_range + 1) / att_range hue = ((highest_att - attractors) / att_range) + (highest_ms - monotonic_species) * bin_width variability_squeeze = (2 if att_range > 1 else 1) * (2 if ms_range > 1 else 1) return hue, 1, colorsys.ONE_THIRD, bin_width / variability_squeeze
1e874aaa359a5d8bb566809fc2be212df2890885
3,656,059
def _get_cached_values(instance, translated_model, language_code, use_fallback=False): """ Fetch an cached field. """ if not appsettings.PARLER_ENABLE_CACHING or not instance.pk or instance._state.adding: return None key = get_translation_cache_key(translated_model, instance.pk, language_code) values = cache.get(key) if not values: return None # Check for a stored fallback marker if values.get('__FALLBACK__', False): # Internal trick, already set the fallback marker, so no query will be performed. instance._translations_cache[translated_model][language_code] = MISSING # Allow to return the fallback language instead. if use_fallback: lang_dict = get_language_settings(language_code) # iterate over list of fallback languages, which should be already # in proper order for fallback_lang in lang_dict['fallbacks']: if fallback_lang != language_code: return _get_cached_values( instance, translated_model, fallback_lang, use_fallback=False ) return None values['master'] = instance values['language_code'] = language_code return values
e650eabbfde8b877519b9456dba9021dfa0f78e6
3,656,060
def tensor_index_by_list(data, list_index): """Tensor getitem by list of int and bool""" data_shape = F.shape(data) indexes_types = hyper_map(F.typeof, list_index) if const_utils.judge_indexes_types(indexes_types, mstype.int_type + (mstype.bool_,)): sub_tuple_index = const_utils.transform_sequence_index(list_index, data_shape[0], const_utils.TENSOR_GETITEM) if not sub_tuple_index: data_rank = len(data_shape) if data_rank == 1: return const_utils.make_tensor([], data.dtype, ()) return const_utils.make_tensor([], data.dtype, data_shape[1:]) tensor_index = const_utils.make_tensor(sub_tuple_index, mstype.int64) return F.gather(data, tensor_index, 0) tuple_index_new = () for index in list_index: tuple_index_new += (index,) return tensor_index_by_tuple(data, tuple_index_new)
99702ca58ebd7f316d83687804f09ac0639e3f17
3,656,061
def sample_ingridient(user, name='Salt'): """Create and return a sample ingridient""" return Ingridient.objects.create(user=user, name=name)
8904f11164a78959eb8073b80fa349155c1ae185
3,656,062
def remove_duplicates_from_list(params_list): """ Common function to remove duplicates from a list Author: [email protected] :param params_list: :return: """ if params_list: return list(dict.fromkeys(params_list)) return list()
885b2e048ec672bd2d24fabe25066bc2df3ea8a8
3,656,063
from typing import Sequence def _scale_and_shift( x: chex.Array, params: Sequence[chex.Array], has_scale: bool, has_shift: bool, ) -> chex.Array: """Example of a scale and shift function.""" if has_scale and has_shift: scale, shift = params return x * scale + shift elif has_scale: assert len(params) == 1 return x * params[0] elif has_shift: assert len(params) == 1 return x + params[0] else: raise ValueError("You must have either `has_scale` or `has_shift` set " "to True.")
68c7128ff7c1788cd77e3737adff293f488e190e
3,656,066
import math def get_distance_metres(aLocation1, aLocation2): """ Returns the ground distance in metres between two LocationGlobal objects :param aLocation1: starting location :param aLocation2: ending location :return: """ dlat = aLocation2.lat - aLocation1.lat dlong = aLocation2.lon - aLocation1.lon dlong_c = dlong*math.cos(math.radians(aLocation1.lat)) return math.sqrt((dlat * dlat) + (dlong_c * dlong_c)) * 1.113195e5
5f1428c099f79ba8b41177f87e6a3bffed13e00b
3,656,067
import scipy def merge_components(a,c,corr_img_all_r,U,V,normalize_factor,num_list,patch_size,merge_corr_thr=0.6,merge_overlap_thr=0.6,plot_en=False): """ want to merge components whose correlation images are highly overlapped, and update a and c after merge with region constrain Parameters: ----------- a: np.ndarray matrix of spatial components (d x K) c: np.ndarray matrix of temporal components (T x K) corr_img_all_r: np.ndarray corr image U, V: low rank decomposition of Y normalize_factor: std of Y num_list: indices of components patch_size: dimensions for data merge_corr_thr: scalar between 0 and 1 temporal correlation threshold for truncating corr image (corr(Y,c)) (default 0.6) merge_overlap_thr: scalar between 0 and 1 overlap ratio threshold for two corr images (default 0.6) Returns: -------- a_pri: np.ndarray matrix of merged spatial components (d x K') c_pri: np.ndarray matrix of merged temporal components (T x K') corr_pri: np.ndarray matrix of correlation images for the merged components (d x K') flag: merge or not """ f = np.ones([c.shape[0],1]); ############ calculate overlap area ########### a = csc_matrix(a); a_corr = scipy.sparse.triu(a.T.dot(a),k=1); cor = csc_matrix((corr_img_all_r>merge_corr_thr)*1); temp = cor.sum(axis=0); cor_corr = scipy.sparse.triu(cor.T.dot(cor),k=1); cri = np.asarray((cor_corr/(temp.T)) > merge_overlap_thr)*np.asarray((cor_corr/temp) > merge_overlap_thr)*((a_corr>0).toarray()); a = a.toarray(); connect_comps = np.where(cri > 0); if len(connect_comps[0]) > 0: flag = 1; a_pri = a.copy(); c_pri = c.copy(); G = nx.Graph(); G.add_edges_from(list(zip(connect_comps[0], connect_comps[1]))) comps=list(nx.connected_components(G)) merge_idx = np.unique(np.concatenate([connect_comps[0], connect_comps[1]],axis=0)); a_pri = np.delete(a_pri, merge_idx, axis=1); c_pri = np.delete(c_pri, merge_idx, axis=1); corr_pri = np.delete(corr_img_all_r, merge_idx, axis=1); num_pri = np.delete(num_list,merge_idx); for comp in comps: comp=list(comp); print("merge" + str(num_list[comp]+1)); a_zero = np.zeros([a.shape[0],1]); a_temp = a[:,comp]; if plot_en: spatial_comp_plot(a_temp, corr_img_all_r[:,comp].reshape(patch_size[0],patch_size[1],-1,order="F"),num_list[comp],ini=False); mask_temp = np.where(a_temp.sum(axis=1,keepdims=True) > 0)[0]; a_temp = a_temp[mask_temp,:]; y_temp = np.matmul(a_temp, c[:,comp].T); a_temp = a_temp.mean(axis=1,keepdims=True); c_temp = c[:,comp].mean(axis=1,keepdims=True); model = NMF(n_components=1, init='custom') a_temp = model.fit_transform(y_temp, W=a_temp, H = (c_temp.T)); a_zero[mask_temp] = a_temp; c_temp = model.components_.T; corr_temp = vcorrcoef(U/normalize_factor, V.T, c_temp); a_pri = np.hstack((a_pri,a_zero)); c_pri = np.hstack((c_pri,c_temp)); corr_pri = np.hstack((corr_pri,corr_temp)); num_pri = np.hstack((num_pri,num_list[comp[0]])); return flag, a_pri, c_pri, corr_pri, num_pri else: flag = 0; return flag
e2e15c208ae71ba20cc84d8c0501485c04e41a90
3,656,068
def RenderSubpassStartInputAttachmentsVector(builder, numElems): """This method is deprecated. Please switch to Start.""" return StartInputAttachmentsVector(builder, numElems)
484ba9746f278cfcc7d50a282605ebc9a3a4fb2b
3,656,069
def GetCLInfo(cl_info_str): """Gets CL's repo_name and revision.""" return cl_info_str.split('/')
d077216b2804c249a7d0ffdbff7f992dde106501
3,656,070
def acyclic_run(pipeline): """ @summary: 逆转反向边 @return: """ deformed_flows = {'{}.{}'.format(flow[PWE.source], flow[PWE.target]): flow_id for flow_id, flow in pipeline[PWE.flows].items()} reversed_flows = {} while True: no_circle = validate_graph_without_circle(pipeline) if no_circle['result']: break source = no_circle['error_data'][-2] target = no_circle['error_data'][-1] circle_flow_key = '{}.{}'.format(source, target) flow_id = deformed_flows[circle_flow_key] reversed_flows[flow_id] = deepcopy(pipeline[PWE.flows][flow_id]) pipeline[PWE.flows][flow_id].update({ PWE.source: target, PWE.target: source }) source_node = pipeline['all_nodes'][source] delete_flow_id_from_node_io(source_node, flow_id, PWE.outgoing) add_flow_id_to_node_io(source_node, flow_id, PWE.incoming) target_node = pipeline['all_nodes'][target] delete_flow_id_from_node_io(target_node, flow_id, PWE.incoming) add_flow_id_to_node_io(target_node, flow_id, PWE.outgoing) return reversed_flows
535edb2a7ccd1c0995fe46bff8a931175c353e51
3,656,071
def TextAreaFieldWidget(field, request): # pylint: disable=invalid-name """IFieldWidget factory for TextWidget.""" return FieldWidget(field, TextAreaWidget(request))
0d2431b1274e34978a6869efed0014982aaaa2e2
3,656,072
def s_wexler(T_K): """ Calculates slope of saturation vapor pressure curve over water at each temperature based on Wexler 1976, with coefficients from Hardy 1998 (ITS-90). Args: T_K (np.ndarray (dimension<=2), float, list of floats) : Air or Dewpoint Temperatures [K] Returns: s : np.ndarray of slopes [Pa / deg C] """ powers = np.arange(-3, 4).reshape((1, 1, 7)) pow_coeffs = powers.copy() + 1 T_K = np.atleast_3d(T_K).astype(dtype=np.float64) temps = np.repeat(T_K, 8, axis=-1) temps[..., :-1] = pow_coeffs * c.gs[..., :-1] * np.power(temps[..., :-1], powers) temps[..., -1] = -1. * c.gs[..., -1] * temps[..., -1] ** -1 s = np.squeeze(temps.sum(axis=-1)) * es_wexler(T_K) return s
b27b713b6c609115fa36f458c7f72358c001fbd5
3,656,074
from importlib import import_module def get_additional_bases(): """ Looks for additional view bases in settings.REST_EASY_VIEW_BASES. :return: """ resolved_bases = [] for base in getattr(settings, 'REST_EASY_VIEW_BASES', []): mod, cls = base.rsplit('.', 1) resolved_bases.append(getattr(import_module(mod), cls)) return resolved_bases
485c2f0d4778399ff534f40e681706419c3c923a
3,656,075
from pathlib import Path import warnings def load_mask_from_shp(shp_file: Path, metad: dict) -> np.ndarray: """ Load a mask containing geometries from a shapefile, using a reference dataset Parameters ---------- shp_file : str shapefile containing a polygon metad : dict rasterio-style metadata dictionary Returns ------- mask_im : numpy.ndarray mask image Notes ----- 1) Pixels outside of the polygon are assigned as nodata in the mask 2) Exception is raised if no Polygon geometry exists in the shapefile """ sf = gpd.read_file(shp_file).to_crs(metad["crs"]) # extract non-empty polygons from the shapefile geoms = [ g for g in sf.geometry if g.type.lower() == "polygon" and g.is_empty is False ] nshapes = len(geoms) if nshapes == 0: raise Exception("input shapefile does not have any 'Polygon' geometry") if nshapes > 1: warnings.warn( f"{nshapes} Polygons found in shapefile. It is recommended only to have one", UserWarning, stacklevel=1, ) mask_im = rasterio.features.geometry_mask( geoms, out_shape=(metad["height"], metad["width"]), transform=metad["transform"], all_touched=False, invert=True, ) return mask_im
fd8178919b2afec71f69a8a7a00e1b2f224d2509
3,656,076
def est_corner_plot(estimation, settings=None, show=True, save=None): """Wrapper to corner plot of `corner <https://corner.readthedocs.io/en/latest/>`_ module; visualisation of the parameter posterior distribution by all 2-dimensional and 1-dimensional marginals. Parameters ---------- estimation : memocell.estimation.Estimation A memocell estimation object. settings : dict of dict, optional Optional labels for parameters. show : bool, optional Plot is shown if `show=True`. save : None or str, optional Provide a path to save the plot. Returns ------- fig : matplotlib.figure.Figure axes : list or array of matplotlib.axes """ # if not given, create some default settings if settings==None: settings = dict() for theta_id in estimation.net.net_theta_symbolic: param = estimation.net.net_rates_identifier[theta_id] settings[param] = {'label': param} # get plotting information from estimation instance samples, labels = estimation._samples_corner_parameters(settings) # use corner package for this plot fig = corner.corner(samples, labels=labels) # save/show figure if save!=None: plt.savefig(save, bbox_inches='tight') if show: plt.show(fig, block=False) return fig, fig.axes
87f9eda0dc3bf61f66d4ee28f693dad4ef383f24
3,656,077
def voigt_peak_err(peak, A, dA, alphaD, dalphaD): """ Gives the error on the peak of the Voigt profile. \ It assumes no correlation between the parameters and that they are \ normally distributed. :param peak: Peak of the Voigt profile. :type peak: array :param A: Area under the Voigt profile. :param dA: Error on the area `A`. :type dA: array :param alphaD: HWHM of the Gaussian core. :type alphaD: array """ dpeak = abs(peak)*np.sqrt(np.power(dalphaD/alphaD, 2.) + np.power(dA/A, 2.)) return dpeak
52d3fbb7fabe5dfe2e5ab67bcd498d5434f7afc7
3,656,078
import typing def discord_api_call(method: str, params: typing.Dict, func, data, token: str) -> typing.Any: """ Calls Discord API. """ # This code is from my other repo -> https://gtihub.com/kirillzhosul/python-discord-token-grabber # Calling. return func( f"https://discord.com/api/{method}", params=params, headers={ "Authorization": f"{token}", "Content-Type": "application/json" }, data=data )
84ea201c88dd4260bbc80dbd45654c01cb5a36ee
3,656,080
import logging def get_startup(config: Config) -> Startup: """Extracts and validates startup parameters from the application config file for the active profile """ db_init_schema = config.extract_config_value( ('postgres', 'startup', 'init_schema'), lambda x: x is not None and isinstance(x, bool), lambda x: x, 'bool' ) db_wipe_schema = config.extract_config_value( ('postgres', 'startup', 'wipe_schema'), lambda x: x is not None and isinstance(x, bool), lambda x: x, 'bool' ) if db_wipe_schema and not db_init_schema: logging.getLogger(__name__).warning( "Configuration is set to wipe database schema, but not" " re-initialize it afterward: despite configuration, schema will be" " re-initialized" ) db_init_schema = True return Startup( init_schema=db_init_schema, wipe_schema=db_wipe_schema )
daa3809ed4f8be6c991796c8bbc11ee7b1434ee5
3,656,081
def new_request(request): """Implements view that allows users to create new requests""" user = request.user if user.user_type == 'ADM': return redirect('/admin') if request.method == "POST": request_type = request.POST.get('requestType') if request_type == 'SC' and user.user_object.type == 'PR': schedule = request.POST.getlist('schedule') start_time = request.POST.get('start_time') # Create schedule model monday_start = tuesday_start = wednesday_start = None thursday_start = friday_start = saturday_start = sunday_start = None for day in schedule: if day == 'MO': monday_start = start_time elif day == 'TU': tuesday_start = start_time elif day == 'WE': wednesday_start = start_time elif day == 'TH': thursday_start = start_time elif day == 'FR': friday_start = start_time elif day == 'SA': saturday_start = start_time elif day == 'SU': sunday_start = start_time schedule_model = Schedule.objects.get_or_create(monday_start=monday_start, tuesday_start=tuesday_start, wednesday_start=wednesday_start, thursday_start=thursday_start, friday_start=friday_start, saturday_start=saturday_start, sunday_start=sunday_start)[0] request_change = None else: schedule_model = None request_change = request.POST.get('request_change') request = Request.objects.get_or_create(user_id=user, schedule_id=schedule_model, request_change=request_change, current_request_review_id=None, request_type=request_type)[0] request_review = RequestReview.objects.get_or_create(request_id=request, status='P')[0] request.current_request_review_id = request_review request_review.save() request.save() # create new notification notification = Notification.objects.get_or_create(notification_type='R', is_dismissed=False, request=request)[0] notification.save() # sending emails for this request: email_vendor.email_admin_new_request(request) email_vendor.email_user_new_request(request) return redirect('/requests') else: # GET Request return render(request, 'applications/request_new.html')
d90f72d5f299282709ed8a925569512a81d60591
3,656,082
def get_slice_test(eval_kwargs, test_kwargs, test_dataloader, robustness_testing_datasets): """ Args: test_dataloader: test_kwargs: eval_kwargs (dict): test_dataloader (Dataloader): robustness_testing_datasets (dict): Returns: """ slice_test = None if 'slice' in robustness_testing_datasets: slice_kwargs = {'dataset': robustness_testing_datasets['slice']} if 'sampler' in test_kwargs: slice_kwargs['sampler'] = test_kwargs['sampler'] slice_kwargs.update(eval_kwargs) slice_test = test_dataloader(**slice_kwargs) return slice_test
b995ff26fd743f106115c5d5958dd0654e0d4645
3,656,083
def transform_config(cfg, split_1='search:', split_2='known_papers:'): """Ugly function to make cfg.yml less ugly.""" before_search, after_search = cfg.split(split_1, 1) search_default, papers_default = after_search.split(split_2, 1) search, paper_comment = '', '' for line in search_default.splitlines(): line = line.strip() if line: if line.startswith('-'): search += ' ' elif line.startswith('# List of paper ids'): paper_comment = line continue search += ' ' + line + '\n' ok = papers_default if '-' in papers_default: ok = ' [' for line in papers_default.splitlines(): line = line.strip() if '-' in line: ok += line.split('- ')[1] + ', ' ok = ok[:-2] + ']' return f"{before_search}{split_1}\n{search}{paper_comment}\n{split_2}{ok}"
78d079b6b06c8426be2b65307782129c414a42c4
3,656,084
def filter_coords(raw_lasso, filter_mtx): """Filter the raw data corresponding to the new coordinates.""" filter_mtx_use = filter_mtx.copy() filter_mtx_use["y"] = filter_mtx_use.index lasso_data = pd.melt(filter_mtx_use, id_vars=["y"], value_name="MIDCounts") lasso_data = lasso_data[lasso_data["MIDCounts"] != 0][["x", "y"]] new_lasso = pd.merge(raw_lasso, lasso_data, on=["x", "y"], how="inner") return new_lasso
fce1159db2a2bdb75acbe9b7ccb236af8bade627
3,656,085
def compute_threshold(predictions_list, dev_labels, f1=True): """ Determine the best threshold to use for classification. Inputs: predictions_list: prediction found by running the model dev_labels: ground truth label to be compared with predictions_list f1: True is using F1 score, False if using accuracy score Returns: best_threshold: threshold that yields the best accuracy """ predictions_list = predictions_list.reshape(-1, 1) dev_labels = dev_labels.reshape(-1, 1) both = np.column_stack((predictions_list, dev_labels)) both = both[both[:, 0].argsort()] predictions_list = both[:, 0].ravel() dev_labels = both[:, 1].ravel() accuracies = np.zeros(np.shape(predictions_list)) for i in range(np.shape(predictions_list)[0]): score = predictions_list[i] predictions = (predictions_list >= score) * 2 - 1 accuracy = accuracy_score(predictions, dev_labels) if f1: accuracy = f1_score(dev_labels, predictions) accuracies[i] = accuracy indices = np.argmax(accuracies) best_threshold = np.mean(predictions_list[indices]) return best_threshold
230824c1454978cbe7c5f50ee43fba7b16754922
3,656,086
import torch def color2position(C, min=None, max=None): """ Converts the input points set into colors Parameters ---------- C : Tensor the input color tensor min : float (optional) the minimum value for the points set. If None it will be set to -1 (default is None) max : float (optional) the maximum value for the points set. If None it will be set to +1 (default is None) Returns ------- Tensor the points set tensor """ if min is None: min = -1 if max is None: max = 1 return torch.add(torch.mul(C, max-min), min)
809d8cfd6f24e6abb6d65d5b576cc0b0ccbc3fdf
3,656,087
def is_empty_parsed_graph(graph): """ Checks if graph parsed from web page only contains an "empty" statement, that was not embedded in page namely (<subjectURI>, <http://www.w3.org/ns/md#item>, <http://www.w3.org/1999/02/22-rdf-syntax-ns#nil>) :param graph: an rdflib.Graph :return: True if graph contains no "real" RDF, False otherwise """ if len(graph) > 1: return False for po in graph.predicate_objects(None): if po == (URIRef(u'http://www.w3.org/ns/md#item'), URIRef(u'http://www.w3.org/1999/02/22-rdf-syntax-ns#nil')): return True return False
bf66271bc23f078669bc478a133b67c715fd8fdf
3,656,088
def fillinNaN(var,neighbors): """ replacing masked area using interpolation """ for ii in range(var.shape[0]): a = var[ii,:,:] count = 0 while np.any(a.mask): a_copy = a.copy() for hor_shift,vert_shift in neighbors: if not np.any(a.mask): break a_shifted=np.roll(a_copy,shift=hor_shift,axis=1) a_shifted=np.roll(a_shifted,shift=vert_shift,axis=0) idx=~a_shifted.mask*a.mask #print count, idx[idx==True].shape a[idx]=a_shifted[idx] count+=1 var[ii,:,:] = a return var
a8ffc34dac72cbd4ecdbbc9ad02270a457b0b8d9
3,656,089
from plistlib import loads, FMT_BINARY from bplistlib import loads def parse_plist_from_bytes(data): """ Convert a binary encoded plist to a dictionary. :param data: plist data :return: dictionary """ try: return loads(data, fmt=FMT_BINARY) except ImportError: return loads(data, binary=True)
b9f96ef749af88bdb950d8f3f36b584f6766661d
3,656,090
def projection_standardizer(emb): """Returns an affine transformation to translate an embedding to the centroid of the given set of points.""" return Affine.translation(*(-emb.mean(axis=0)[:2]))
65686636caeac72a16198ac6c7f603836eaedc53
3,656,091
def forward_imputation(X_features, X_time): """ Fill X_features missing values with values, which are the same as its last measurement. :param X_features: time series features for all samples :param X_time: times, when observations were measured :return: X_features, filled with last measurements instead of zeros (missing observations) """ time_length = [np.where(times == 0)[0][1] if np.where(times == 0)[0][0] == 0 else np.where(times == 0)[0][0] for times in X_time] # impute times series features for i, sample in enumerate(X_features): for j, ts in enumerate(sample.T): # note the transposed matrix first_observation = True current_value = -1 for k, observation in enumerate(ts[:time_length[i]]): if X_features[i, k, j] == 0 and first_observation: continue elif X_features[i, k, j] != 0: current_value = X_features[i, k, j] first_observation = False elif X_features[i, k, j] == 0 and not first_observation: X_features[i, k, j] = current_value return X_features
ea0a41bfef02752338dc5384ce7fcd447c95f8c7
3,656,092
def calc_mlevel(ctxstr, cgmap, gtftree, pmtsize=1000): """ Compute the mean methylation level of promoter/gene/exon/intron/IGN in each gene """ inv_ctxs = {'X': 'CG', 'Y': 'CHG', 'Z': 'CHH'} ign = defaultdict(list) mtable = defaultdict(lambda: defaultdict(lambda: defaultdict(float))) counter = defaultdict(lambda: defaultdict(int)) for chr in set(ctxstr) & set(cgmap) & set(gtftree): mask = [1]*len(cgmap[chr]) for (gene_id, strand) in gtftree[chr]: feature_mlevels = defaultdict(lambda: defaultdict(list)) gstart = min(gtftree[chr][(gene_id, strand)])[0] gend = max(gtftree[chr][(gene_id, strand)])[1] mask[gstart:gend] = [0]*(gend - gstart) if strand == '+': for (pos, (tag, mlevel)) in enumerate(izip(ctxstr[chr][gstart-pmtsize:gstart], cgmap[chr][gstart-pmtsize:gstart])): tag = tag.upper() if tag in inv_ctxs and mlevel != '-': feature_mlevels[inv_ctxs[tag]]['pmt'].append(mlevel) elif strand == '-': for (pos, (tag, mlevel)) in enumerate(izip(ctxstr[chr][gend:gend+pmtsize], cgmap[chr][gend:gend+pmtsize])): tag = tag.upper() if tag in inv_ctxs and mlevel != '-': feature_mlevels[inv_ctxs[tag]]['pmt'].append(mlevel) for (pos, (tag, mlevel)) in enumerate(izip(ctxstr[chr][gstart:gend], cgmap[chr][gstart:gend])): tag = tag.upper() inexon = False if tag in inv_ctxs and mlevel != '-': feature_mlevels[inv_ctxs[tag]]['gene'].append(mlevel) for exon in gtftree[chr][(gene_id, strand)]: if exon[0] <= pos+gstart < exon[1]: feature_mlevels[inv_ctxs[tag]]['exon'].append(mlevel) inexon = True break if not inexon: feature_mlevels[inv_ctxs[tag]]['intron'].append(mlevel) for ctx in ['CG', 'CHG', 'CHH']: for feature in feature_mlevels[ctx]: counter[ctx][feature] += len(feature_mlevels[ctx][feature]) mtable[ctx][gene_id][feature] = np.mean(feature_mlevels[ctx][feature]) for (pos, (tag, mlevel)) in enumerate(izip(ctxstr[chr], cgmap[chr])): tag = tag.upper() if (tag in inv_ctxs) and (mask[pos] == 1) and (mlevel != '-'): ign[inv_ctxs[tag]].append(mlevel) for ctx in ign: ign[ctx] = np.mean(ign[ctx]) cg_table = pd.DataFrame(mtable['CG']).T cg_table = cg_table[['pmt', 'gene', 'exon', 'intron']] chg_table = pd.DataFrame(mtable['CHG']).T chg_table = chg_table[['pmt', 'gene', 'exon', 'intron']] chh_table = pd.DataFrame(mtable['CHH']).T chh_table = chh_table[['pmt', 'gene', 'exon', 'intron']] return ign, cg_table, chg_table, chh_table
59b3a36e09e6ea0dd3608da0cf04f14f4d487182
3,656,093
def _get_service(plugin): """ Return a service (ie an instance of a plugin class). :param plugin: any of: the name of a plugin entry point; a plugin class; an instantiated plugin object. :return: the service object """ if isinstance(plugin, basestring): try: (plugin,) = iter_entry_points( group=PLUGINS_ENTRY_POINT_GROUP, name=plugin ) except ValueError: raise PluginNotFoundException(plugin) return plugin.load()() elif isinstance(plugin, _pca_Plugin): return plugin elif isclass(plugin) and issubclass(plugin, _pca_Plugin): return plugin() else: raise TypeError("Expected a plugin name, class or instance", plugin)
a3433521b40861926d9ac3efa6a693d926a7fc94
3,656,094
def taiut1(tai1, tai2, dta): """ Wrapper for ERFA function ``eraTaiut1``. Parameters ---------- tai1 : double array tai2 : double array dta : double array Returns ------- ut11 : double array ut12 : double array Notes ----- The ERFA documentation is below. - - - - - - - - - - e r a T a i u t 1 - - - - - - - - - - Time scale transformation: International Atomic Time, TAI, to Universal Time, UT1. Given: tai1,tai2 double TAI as a 2-part Julian Date dta double UT1-TAI in seconds Returned: ut11,ut12 double UT1 as a 2-part Julian Date Returned (function value): int status: 0 = OK Notes: 1) tai1+tai2 is Julian Date, apportioned in any convenient way between the two arguments, for example where tai1 is the Julian Day Number and tai2 is the fraction of a day. The returned UT11,UT12 follow suit. 2) The argument dta, i.e. UT1-TAI, is an observed quantity, and is available from IERS tabulations. Reference: Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed), University Science Books (1992) Copyright (C) 2013-2017, NumFOCUS Foundation. Derived, with permission, from the SOFA library. See notes at end of file. """ ut11, ut12, c_retval = ufunc.taiut1(tai1, tai2, dta) check_errwarn(c_retval, 'taiut1') return ut11, ut12
c7f9490a5af86de98c89af37cb6ca1bcb92d107a
3,656,095
from SPARQLWrapper import SPARQLWrapper, JSON def fetch_ppn(ppn): """ """ ENDPOINT_URL = 'http://openvirtuoso.kbresearch.nl/sparql' sparql = SPARQLWrapper(ENDPOINT_URL) sqlquery = """ SELECT ?collatie WHERE {{ kbc:{ppn} dcterms:extent ?formaat, ?collatie . FILTER (?formaat != ?collatie ) . FILTER regex(?formaat, "^[0-9]{{1,2}}°", "i") . }} """.format(ppn=ppn) sparql.setQuery(sqlquery) sparql.setReturnFormat(JSON) results = sparql.query().convert() # {'head': {'link': [], 'vars': ['collatie']}, 'results': {'bindings': [{'collatie': {'value': '*`SUP`8`LO` A-S`SUP`8`LO` (S8 blank)', 'type': 'literal'}}], 'distinct': False, 'ordered': True}} result = results['results']['bindings'][0]['collatie']['value'] return result
fd974eccc7f4c099320c50a20b678d36cea7b899
3,656,096
def prepare_link_title( item: feedparser.FeedParserDict) -> feedparser.FeedParserDict: """ Для RSS Item возвращает ссылку, заголовок и описание :param item: :return: """ result = None if item: assert item.title, 'Not found title in item' assert item.link, 'Not found link in item' link = item.link.replace('https://www.google.com/url?rct=j&sa=t&url=', '') ge_ind = link.find('&ct=ga') if ge_ind > -1: link = link[0:ge_ind] title = item.title.replace('<b>', '').replace('</b>', '') item.link = link item.title = title result = item return result
445eccd9855484b65b726a4ee12a3dfa9a9de375
3,656,097
def api_docs_redirect(): """ Redirect to API docs """ return redirect('/api/v1', code=302)
d7ed10aa264d1403325f0b044b4c7b8b20b5989f
3,656,098
from typing import List def print_topics(model, vectorizer, top_n: int=10)-> List: """Print the top n words found by each topic model. Args: model: Sklearn LatentDirichletAllocation model vectorizer: sklearn CountVectorizer top_n (int): Number of words you wish to return Source: https://towardsdatascience.com/end-to-end-topic-modeling-in-python-latent-dirichlet-allocation-lda-35ce4ed6b3e0 """ for idx, topic in enumerate(model.components_): print(f"Topic {idx}:") print([(vectorizer.get_feature_names()[i], topic[i]) for i in topic.argsort()[:-top_n - 1:-1]]) return [vectorizer.get_feature_names()[i] for i in topic.argsort()[:-top_n-1:-1]]
c0477c19c6806c2eaacb4165d332291dc0ba341b
3,656,099
def create_logistic_vector(input_vector, cutoff): """ Creates a vector of 0s and 1s based on an input vector of numbers with a cut-off point. """ output_vector = np.zeros(len(input_vector)) n = 0 for i in range(len(input_vector)): if input_vector[i] > cutoff: output_vector[i] = 1 else: output_vector[i] = -1 # Set to -1 rather than 0 to help make later calculations easier. n += 1 return output_vector
bb4756f745f56fae7d8d4f0b1a1758ef6d70fb5a
3,656,102
def profile(username): """ user profile """ user = User.query.filter_by(username=username).first_or_404() return render_template("user/profile.jinja.html", user=user)
31e2a1b108c0652356cea92f32e9077105733726
3,656,103
def action_rescale(action): """Rescale Distribution actions to exp one""" return np.array([0 if abs(a) < 0.5 else 10 ** (a-3) if a > 0 else -(10 ** (-a - 3)) for a in action * 3])
534509b76410eaeadee599e1ac510def8243e7ba
3,656,104
def multi_knee(points: np.ndarray, t1: float = 0.99, t2: int = 3) -> np.ndarray: """ Recursive knee point detection based on the curvature equations. It returns the knee points on the curve. Args: points (np.ndarray): numpy array with the points (x, y) t1 (float): coefficient of determination threshold (default 0.99) t2 (int): number of points threshold (default 3) Returns: np.ndarray: knee points on the curve """ return mk.multi_knee(knee, points, t1, t2)
ee44d9f51c843a0fb8e18f10057b5c6510dd8f3a
3,656,105
def parse_dotted_path(path): """ Extracts attribute name from dotted path. """ try: objects, attr = path.rsplit('.', 1) except ValueError: objects = None attr = path return objects, attr
4685fad6461286b957a8d0056df2146fdd0f2e55
3,656,106
def resource_media_fields(document, resource): """ Returns a list of media fields defined in the resource schema. :param document: the document eventually containing the media files. :param resource: the resource being consumed by the request. .. versionadded:: 0.3 """ media_fields = app.config['DOMAIN'][resource]['_media'] return [field for field in media_fields if field in document]
b54bc5f7fd35626866d70ce6d46bf0b84b9cf1b8
3,656,107
from typing import List from typing import Tuple def _parse_moving(message: List[str]) -> Tuple[Actions, str]: """Parses the incoming message list to determine if movement is found. Args: message: list of words in the player message Returns: a tuple of the action and direction """ short_dir = ['n', 'ne', 'e', 'se', 's', 'sw', 'w', 'nw'] long_dir = [ 'north', 'northeast', 'east', 'southeast', 'south', 'southwest', 'west', 'northwest' ] for d in long_dir: if d in message: return (Actions.MOVE, d) for d in short_dir: if d in message: direction = long_dir[short_dir.index(d)] return (Actions.MOVE, direction) return (Actions.UNKNOWN, '')
9785cbeb39dbc9ba980f605b648fb77855fe863d
3,656,109
def _Net_forward_all(self, blobs=None, **kwargs): """ Run net forward in batches. Take blobs: list of blobs to extract as in forward() kwargs: Keys are input blob names and values are blob ndarrays. Refer to forward(). Give all_outs: {blob name: list of blobs} dict. """ # Collect outputs from batches all_outs = {out: [] for out in set(self.outputs + (blobs or []))} for batch in self._batch(kwargs): outs = self.forward(blobs=blobs, **batch) for out, out_blob in outs.items(): all_outs[out].extend(out_blob.copy()) # Package in ndarray. for out in all_outs: all_outs[out] = np.asarray(all_outs[out]) # Discard padding. pad = len(next(iter(all_outs.values()))) - len(next(iter(kwargs.values()))) if pad: for out in all_outs: all_outs[out] = all_outs[out][:-pad] return all_outs
f5b6acf347e4fb85e0148d2d176042559f93b6a1
3,656,110
def email_members_old(request, course_prefix, course_suffix): """ Displays the email form and handles email actions Right now this is blocking and does not do any batching. Will have to make it better """ error_msg="" success_msg="" form = EmailForm() if request.method == "POST": form = EmailForm(data=request.POST) if form.is_valid(): sender = request.common_page_data['course'].title + ' Staff <[email protected]>' recipient_qset = User.objects.none() #get recipients in a QuerySet if form.cleaned_data['to'] == "all" : recipient_qset = request.common_page_data['course'].get_all_members() elif form.cleaned_data['to'] == "students" : recipient_qset = request.common_page_data['course'].get_all_students() elif form.cleaned_data['to'] == "staff" : recipient_qset = request.common_page_data['course'].get_all_course_admins() elif form.cleaned_data['to'] == "myself": recipient_qset = User.objects.filter(id=request.user.id) #pdb.set_trace() courses.email_members.tasks.email_with_celery.delay( form.cleaned_data['subject'], form.cleaned_data['message'], sender, recipient_qset.values_list('email',flat=True), course_title=request.common_page_data['course'].title, course_url=request.build_absolute_uri(reverse('courses.views.main', args=[course_prefix, course_suffix]))) success_msg = "Your email was successfully queued for sending" #form = EmailForm() else: error_msg = "Please fix the errors below:" context = RequestContext(request) return render_to_response('email/email.html', {'form': form, 'error_msg': error_msg, 'success_msg': success_msg, 'course': request.common_page_data['course'], 'common_page_data': request.common_page_data}, context_instance=context)
eeafa4d9c4ca0b0ad1b7ffaecceb03c188e02813
3,656,111
def Padding_op(Image, strides, offset_x, offset_y): """ Takes an image, offset required to fit output image dimensions with given strides and calculates the padding it needs for perfect fit. :param Image: :param strides: :param offset_x: :param offset_y: :return: Padded image """ if config['volumetric']: raise Exception("3D Padding not yet implemented!") padding_x = strides[0] - offset_x padding_y = strides[1] - offset_y Padded_Image = np.zeros(shape=(Image.shape[0] + padding_x, Image.shape[1] + padding_y, Image.shape[2]), dtype=Image.dtype) Padded_Image[padding_x // 2:(padding_x // 2) + (Image.shape[0]), padding_y // 2:(padding_y // 2) + Image.shape[1], :] = Image return Padded_Image
d3f046069a597f2d7e3204b543f1f60c8e1e5b23
3,656,112
def area_triangle(point_a: array_like, point_b: array_like, point_c: array_like) -> np.float64: """ Return the area of a triangle defined by three points. The points are the vertices of the triangle. They must be 3D or less. Parameters ---------- point_a, point_b, point_c : array_like The three vertices of the triangle. Returns ------- np.float64 The area of the triangle. References ---------- http://mathworld.wolfram.com/TriangleArea.html Examples -------- >>> from skspatial.measurement import area_triangle >>> area_triangle([0, 0], [0, 1], [1, 0]) 0.5 >>> area_triangle([0, 0], [0, 2], [1, 1]) 1.0 >>> area_triangle([3, -5, 1], [5, 2, 1], [9, 4, 2]).round(2) 12.54 """ vector_ab = Vector.from_points(point_a, point_b) vector_ac = Vector.from_points(point_a, point_c) # Normal vector of plane defined by the three points. vector_normal = vector_ab.cross(vector_ac) return 0.5 * vector_normal.norm()
0c21ca96f8a6fd4d088cf0fa47a260b3bc582966
3,656,113
def test_valid(line): """Test for 40 character hex strings Print error on failure""" base_error = '*** WARNING *** line in torrent list' if len(line) != 40: print(base_error, 'incorrect length:', line) elif any(char not in HEX for char in line): print(base_error, 'has non-hex digits:', line) else: return True
ca6517a8dd622b07703b30af7842685b9b6d5865
3,656,115
def custom_formatter(code, msg): """ 自定义结果格式化函数 :param code: 响应码 :param msg: 响应消息 """ return { "code": code, "msg": "hello", "sss": "tt", }
59a7e3f9f03f9afc42b8faec6ebe23f5373d0bf0
3,656,117
def get_sampler_callback(rank, num_replicas, noniid=0, longtail=0): """ noniid: noniid controls the noniidness. - noniid = 1 refers to completely noniid - noniid = 0 refers to iid. longtail: longtail controls the long-tailness. - Class i takes (1-longtail) ** i percent of data. """ assert noniid >= 0 and noniid <= 1, f"`noniid` in [0, 1], get {noniid}" assert longtail >= 0 and longtail <= 1, f"`longtail` in [0, 1], get {longtail}" if longtail > 0: return lambda x: NONIIDLTSampler( alpha=1 - noniid, beta=1 - longtail, num_replicas=num_replicas, rank=rank, shuffle=True, dataset=x, ) if noniid == 0: # Byzantine workers return lambda x: DistributedSampler( num_replicas=num_replicas, rank=rank, shuffle=True, dataset=x, ) if noniid > 0: return lambda x: DecentralizedMixedSampler( noniid_percent=noniid, num_replicas=num_replicas, rank=rank, shuffle=True, dataset=x, ) raise NotImplementedError("")
05e526ba903ebd834f248d965253344136e8a8a8
3,656,118
def alloc_bitrate(frame_nos, chunk_frames, pref_bitrate, nrow_tiles, ncol_tiles): """ Allocates equal bitrate to all the tiles """ vid_bitrate = [] for i in range(len(chunk_frames)): chunk = chunk_frames[i] chunk_bitrate = [[-1 for x in range(ncol_tiles)] for y in range(nrow_tiles)] chunk_weight = [[1. for x in range(ncol_tiles)] for y in range(nrow_tiles)] total_weight = sum(sum(x) for x in chunk_weight) for x in range(nrow_tiles): for y in range(ncol_tiles): chunk_bitrate[x][y] = chunk_weight[x][y]*pref_bitrate/total_weight; vid_bitrate.append(chunk_bitrate) return vid_bitrate
1883f480852d49e63c0408c9ef0daeba9e50db6b
3,656,119
from typing import Collection from typing import Any def file_filter(extensions: Collection[str]) -> Any: """Register a page content filter for file extensions.""" def wrapper(f): for ext in extensions: _file_filters[ext] = f return f return wrapper
bef1a304497ffaac3f294607d8a393e505c1eb19
3,656,120
def epc_calc_img_size(reg_dict): """ Calcalute the output image size from the EPC660 sensor Parameters ---------- reg_dict : dict Returns ---------- int The number of rows int The number of columns in the image """ col_start, col_end, row_start, row_end = epc_calc_roi(reg_dict) row_bin, col_bin = epc_calc_bin_mode(reg_dict) row_binning, col_binning = epc_calc_binning(reg_dict) row_div = 1 col_div = 1 if row_bin: row_div = (1 << row_binning) if col_bin: col_div = (1 << col_binning) nrows = (2*(row_end-row_start+1))/row_div ncols = (col_end-col_start+1)/col_div return nrows, ncols
698b6ae6a99f8f9621c40ffaee2ab5ea5e584ce1
3,656,121
def simple_url_formatter(endpoint, url): """ A simple URL formatter to use when no application context is available. :param str endpoint: the endpoint to use. :param str url: the URL to format """ return u"/{}".format(url)
74f3e68fe10f7cc6bf8bfe81a7349a995bb79fa3
3,656,122
from typing import List def generate_service( name: str, image: str, ports: List[str] = [], volumes: List[str] = [], dependsOn: List[str] = [], ) -> str: """ Creates a string with docker compose service specification. Arguments are a list of values that need to be added to each section named after the parameter. i.e. the volume arguments are for the volumes section of the service config. """ indent = ' ' service = "{s}{name}:\n{s}{s}image: {image}\n".format( s=indent, name=name, image=image, ) if ports: service += "{s}ports:\n".format(s=indent*2) for port in ports: service += '{s}- "{port}"\n'.format(s=indent*3, port=port) if volumes: service += "{s}volumes:\n".format(s=indent*2) for vol in volumes: service += '{s}- {vol}\n'.format(s=indent*3, vol=vol) if dependsOn: service += "{s}depends_on:\n".format(s=indent*2) for item in dependsOn: service += '{s}- "{dep}"\n'.format(s=indent*3, dep=item) return service
581e37e69d73ab5b6c0ac533bd91e7b5cb5187d9
3,656,123
def read_integer(msg=None, error_msg=None): """ Asks the user for an integer value (int or long) :param msg: The message, displayed to the user. :param error_msg: The message, displayed to the user, in case he did not entered a valid int or long. :return: An int or a long from the user. """ res = raw_input(msg) try: return int(res) except (TypeError, ValueError): pass try: return long(res) except (TypeError, ValueError): pass if error_msg is not None: print(error_msg) return read_integer(msg=msg, error_msg=error_msg)
c3067b436f57583b89ca02bff5e01802845ebf69
3,656,124
def percError(predicted, observed): """Percentage Error Parameters ========== predicted : array-like Array-like (list, numpy array, etc.) of predictions observed : array-like Array-like (list, numpy array, etc.) of observed values of scalar quantity Returns ======= perc : float Array of forecast errors expressed as a percentage """ err, pred, obse = forecastError(predicted, observed, full=True) res = err/obse return 100*res
168affcb5af47563c15d27c6e662b0cf6411eca2
3,656,126
def _dict_eq(a, b): """ Compare dictionaries using their items iterators and loading as much as half of each into a local temporary store. For comparisons of ordered dicts, memory usage is nil. For comparisons of dicts whose iterators differ in sequence maximally, memory consumption is O(N). Execution time is O(N). :param a: one dict :param b: another dict :return: True if they're the same, false otherwise """ # The memory consumption here is to make a linear improvement in execution # time. In the case of a dict backed by Redis, it is faster to iterate # over N items than to retrieve each one, by a factor of 10 or more # because of the reduced round-trips to the server. size = len(a) if size != len(b): return False # Iterate over both dicts. Compare items. If the same ones come up # at the same time, great, they match. If different ones come up, # store them in the am and bm collections of misses. Check for prior # misses that may be matched by the new elements. bi = iteritems(b) am = {} bm = {} for ak, av in iteritems(a): bk, bv = next(bi) if ak == bk: if av != bv: return False else: # keys differ if ak in bm: if bm[ak] == av: del bm[ak] else: return False else: am[ak] = av if bk in am: if am[bk] == bv: del am[bk] else: return False else: bm[bk] = bv if len(am) + len(bm) > size: return False return len(am) + len(bm) == 0
68292489e4f6f8f213f4d17cf799052cb99ece37
3,656,127
from typing import Dict from typing import List def avoid_snakes(my_head: Dict[str, int], snakes: List[dict], possible_moves: List[str]) -> List[str]: """ my_head: Dictionary of x/y coordinates of the Battlesnake head. e.g. {"x": 0, "y": 0} snakes: List of dictionaries of x/y coordinates for every segment of a Battlesnake. e.g. [ {"x": 0, "y": 0}, {"x": 1, "y": 0}, {"x": 2, "y": 0} ] possible_moves: List of strings. Moves to pick from. e.g. ["up", "down", "left", "right"] return: The list of remaining possible_moves not blocked by other snakes """ for snake in snakes: for segment in snake["body"]: if my_head["x"] - 1 == segment["x"] and my_head["y"] == segment["y"]: print("Segment to the left") remove_move("left", possible_moves) if my_head["x"] + 1 == segment["x"] and my_head["y"] == segment["y"]: print("Segment to the right") remove_move("right", possible_moves) if my_head["x"] == segment["x"] and my_head["y"] - 1 == segment["y"]: print("Segment below") remove_move("down", possible_moves) if my_head["x"] == segment["x"] and my_head["y"] + 1 == segment["y"]: print("Segment above") remove_move("up", possible_moves) # We're going to be super conservative if we're near another head # to avoid head on collisions if my_head["x"] - 2 == snake["head"]["x"] and my_head["y"] == snake["head"]["y"]: print("Dodge the head!") remove_move("left", possible_moves) if my_head["x"] + 2 == snake["head"]["x"] and my_head["y"] == snake["head"]["y"]: print("Dodge the head!") remove_move("right", possible_moves) if my_head["x"] == snake["head"]["x"] and my_head["y"] - 2 == snake["head"]["y"]: print("Dodge the head!") remove_move("down", possible_moves) if my_head["x"] == snake["head"]["x"] and my_head["y"] + 2 == snake["head"]["y"]: print("Dodge the head!") remove_move("up", possible_moves) if my_head["x"] - 1 == snake["head"]["x"] and my_head["y"] + 1 == snake["head"]["y"]: print("Dodge the head!") remove_move("left", possible_moves) remove_move("up", possible_moves) if my_head["x"] - 1 == snake["head"]["x"] and my_head["y"] - 1 == snake["head"]["y"]: print("Dodge the head!") remove_move("left", possible_moves) remove_move("down", possible_moves) if my_head["x"] + 1 == snake["head"]["x"] and my_head["y"] + 1 == snake["head"]["y"]: print("Dodge the head!") remove_move("right", possible_moves) remove_move("up", possible_moves) if my_head["x"] + 1 == snake["head"]["x"] and my_head["y"] - 1 == snake["head"]["y"]: print("Dodge the head!") remove_move("right", possible_moves) remove_move("down", possible_moves) return possible_moves
dcdd80522486ec1c6001aa8990f2bfaf88235ec1
3,656,128
def m_unicom_online_time2_0(seq): """ 获取联通手机在网时长所对应的code :param seq: 联通在网时长区间 :return: code example: :seq: [0-1] :return 1 """ if not seq: return [] if seq[0] in ["[0-1]", "(1-2]", "[3-6]"]: seq = ["(0_6)"] elif seq[0] in ["[7-12]"]: seq = ["[6_12)"] elif seq[0] in ["[13-24]"]: seq = ["[12_24)"] elif seq[0] in ["[25-36]", "[37,+)"]: seq = ["[24_+)"] return seq
4a242d76f3d2708b5ad590830156a44fd22e7267
3,656,130
def convert_config_gui_structure(config_gui_structure, port, instance_id, is_port_in_database, conf): """ Converts the internal data structure to a dictionary which follows the "Configuration file structure", see setup.rst :param config_gui_structure: Data structure used to hold and show configuration information in the Gui :return A dictionary which follows the "Configuration file structure", see setup.rst """ config_dict = identify_existing_config_file(port, conf.OPRP_DIR_PATH) if not is_port_in_database and config_dict: file_path = get_config_file_path(port, conf.OPRP_DIR_PATH) LOGGER.error("The identified configuration file does not exist in the database. " "File path: %s" % file_path) if not (is_port_in_database and config_dict): config_dict = get_default_client() config_dict = clear_config_keys(config_dict) if instance_id: config_dict[CONFIG_DICT_INSTANCE_ID_KEY] = instance_id if contains_dynamic_discovery_info(config_gui_structure): gui_config = GuiConfig(config_gui_structure) config_dict['srv_discovery_url'] = gui_config.get_dynamic_discovery_issuer() elif config_gui_structure['fetchStaticProviderInfo']['showInputFields']: config_dict = static_provider_info_to_config_file_dict(config_gui_structure, config_dict) config_dict = client_registration_to_config_file_dict(config_gui_structure, config_dict) config_dict = subject_type_to_config_file_dict(config_dict, config_gui_structure) config_dict = profile_to_config_file_dict(config_dict, config_gui_structure) if config_gui_structure['webfingerSubject'] != "": config_dict['webfinger_subject'] = config_gui_structure['webfingerSubject'] if config_gui_structure['loginHint'] != "": config_dict['login_hint'] = config_gui_structure['loginHint'] if config_gui_structure['uiLocales'] != "": config_dict['ui_locales'] = config_gui_structure['uiLocales'] if config_gui_structure['claimsLocales'] != "": config_dict['claims_locales'] = config_gui_structure['claimsLocales'] if config_gui_structure['acrValues'] != "": config_dict['acr_values'] = config_gui_structure['acrValues'] if config_gui_structure['webfinger_url'] != "": config_dict['webfinger_url'] = config_gui_structure['webfinger_url'] if config_gui_structure['webfinger_email'] != "": config_dict['webfinger_email'] = config_gui_structure['webfinger_email'] return config_dict
3f46a621261ba097918fb5b5d27bd7611910a623
3,656,131
def message_similarity_hard(m1, m2): """ Inputs: One dimension various length numpy array. """ return int(np.all(m1==m2))
8f649a295853c34d692fb96a0a7facbc82d67ddb
3,656,132
def identity_block(input_tensor, kernel_size, filters, stage, block): """ The identity_block is the block that has no conv layer at shortcut Arguments input_tensor: input tensor kernel_size: defualt 3, the kernel size of middle conv layer at main path filters: list of integers, the nb_filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names """ nb_filter1, nb_filter2, nb_filter3 = filters bn_axis = 3 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = Convolution2D(nb_filter1, 1, 1, name=conv_name_base + '2a')(input_tensor) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x) x = Activation('relu')(x) x = Convolution2D(nb_filter2, kernel_size, kernel_size, border_mode='same', name=conv_name_base + '2b')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x) x = Activation('relu')(x) x = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '2c')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x) x = merge([x, input_tensor], mode='sum') x = Activation('relu')(x) return x
38a898a3b52f12490584206dfa6ea6b9819a1240
3,656,133
def convert_to_squad(story_summary_content, question_content, set_type): """ :param story_summary_content: :param question_content: :param category_content: :param set_type: :return: formatted SQUAD data At initial version, we are just focusing on the context and question, nothing more, therefore we are ignoring the answer part as of now """ squad_formatted_content = dict() squad_formatted_content['version'] = 'narrativeqa_squad_format' data = [] content = story_summary_content if set_type != 'all': content = story_summary_content[story_summary_content['set'] == set_type] for datum in content.itertuples(index=False): #print(datum.summary) data_ELEMENT = dict() data_ELEMENT['title'] = 'dummyTitle' paragraphs = [] paragraphs_ELEMENT = dict() superdocument = datum.summary paragraphs_ELEMENT['context'] = superdocument qas = [] sub_datum = question_content[question_content['document_id'] == datum.document_id] for q_datum in sub_datum.itertuples(): # print(indx) #print(q_datum) qas_ELEMENT = dict() ANSWERS_ELEMENT = dict() qas_ELEMENT_ANSWERS = [] qas_ELEMENT['id'] = q_datum.document_id + '-' + str(q_datum.Index) qas_ELEMENT['question'] = q_datum.question ANSWERS_ELEMENT['answer_start'] = -1 ANSWERS_ELEMENT['text'] = 'dummyAnswer' qas_ELEMENT_ANSWERS.append(ANSWERS_ELEMENT) qas_ELEMENT['answers'] = qas_ELEMENT_ANSWERS qas.append(qas_ELEMENT) paragraphs_ELEMENT['qas'] = qas paragraphs.append(paragraphs_ELEMENT) data_ELEMENT['paragraphs'] = paragraphs data.append(data_ELEMENT) squad_formatted_content['data'] = data return squad_formatted_content
5b884ef521af4d5835fef25f01cb1f11d68cfafb
3,656,134
def check_conditions(conditions, variable_dict, domain_dict, domain_list): """A function that checks if the generated variables pass the conditions and generates new ones until they do. :param conditions: The conditions of the template. :param variable_dict: List of variables. :param domain_dict: the domain of the variables. :param domain_list: a dict with the domain list. :return: List of variables that pass the conditions of the given template. """ conditions = remove_unnecessary(conditions) # Check conditions --> if false: change a variable -> check conditions inserted_conditions = string_replace(conditions, variable_dict) while not parse_expr(latex_to_sympy(inserted_conditions), transformations=standard_transformations + (convert_xor, implicit_multiplication_application,), global_dict=None, evaluate=True): variable_to_change = choice(list(variable_dict.keys())) # Chose a random key from variable_dict if domain_list[variable_to_change]: variable_dict[variable_to_change] = make_number_from_list(domain_dict[variable_to_change]) else: variable_dict[variable_to_change] = new_random_value(variable_to_change, domain_dict) inserted_conditions = string_replace(conditions, variable_dict) return variable_dict
fffd9889d3c149f56041753522aee245135cf0ee
3,656,136
def set_pin_on_teaching_page(request, section_label, pin=True): """ if pin=True, pin the section on teaching page if pin=False, unpin the section from teaching page @except InvalidSectionID @except NotSectionInstructorException @except UserCourseDisplay.DoesNotExist """ section = get_section_by_label(section_label) check_section_instructor(section, get_person_of_current_user(request)) # not to pin a primary section if section.is_primary_section: return False return UserCourseDisplay.set_pin( get_user_model(request), section_label, pin)
385940e3adc286a923a94a3205b56c3817ee6284
3,656,137
from typing import Any def inject_python_resources() -> dict[str, Any]: """ Inject common resources to be used in Jinja templates. """ return dict( isinstance=isinstance, zip=zip, enumerate=enumerate, len=len, str=str, bool=bool, int=int, float=float, )
98fb7fbf39f20b9972ef5c0d35ae12b2864580b2
3,656,138
def get_feature_subsets_options(study, data_types): """Given a study and list of data types, get the relevant feature subsets """ feature_subsets = ['custom'] if 'expression' in data_types: try: feature_subsets.extend(study.expression.feature_subsets.keys()) except AttributeError: pass if 'splicing' in data_types: try: feature_subsets.extend(study.splicing.feature_subsets.keys()) except AttributeError: pass # Cast to "set" to get rid of duplicates, then back to list because you # can't sort a set, then back to list after sorting because you get # an iterator... yeah .... feature_subsets = list(natural_sort(list(set(feature_subsets)))) # Make sure "variant" is first because all datasets have that # first remove 'variant' if it is there, then add it at the front try: feature_subsets.pop(feature_subsets.index('variant')) except ValueError: pass feature_subsets.insert(0, 'variant') return feature_subsets
d9310f00ff001f5ddc643998c7544df6ba5382b5
3,656,139
import json def possibilities(q=0, *num): """ :param q: Número de quadrados a considerar :param num: Em quantos quadrados a soma do nº de bombas é 1 :return: pos -> Possibilidade de distribuição das bombas tot -> Número de quadrados nos quais só há uma bomba i -> Início da contagem dos quadrados onde a soma das bombas é 1 """ lbn = [] lp = [] num = str(num).replace('(', '[').replace(')', ']') num = json.loads(num) for c4 in range(0, len(num)): num[c4] += [''] for c1 in range(0, 2 ** q): pos = [] bn = str(bin(c1)).replace('0b', '') # bn = int(bn, base=2) -> Reverte o processo bn = bn.rjust(q, '0') pos += bn ts = 0 for c2 in range(0, len(num)): i = num[c2][0] tot = num[c2][1] # print(bn, tot, pos) s = 0 for c3 in range(i, tot + i): if pos[c3] == '1': s += 1 if num[c2][3] != '': # print(num[c2], pos[num[c2][3]]) if pos[num[c2][3]] == '1': s += 1 if s == num[c2][2]: ts += 1 # print(bn, s) if ts == len(num): lbn += [bn] for c5 in range(0, q): lp += [0] for item in lbn: for c6 in range(0, q): if item[c6] == '1': lp[c6] += 1 return lp
94c126a1bacf5bb242ad2935f949ab146f847001
3,656,140
import re def parse_page_options(text): """ Parses special fields in page header. The header is separated by a line with 3 dashes. It contains lines of the "key: value" form, which define page options. Returns a dictionary with such options. Page text is available as option named "text". """ if type(text) != unicode: raise TypeError('parse_page_options() expects Unicode text, not "%s".' % text.__class__.__name__) options = dict() text = text.replace('\r\n', '\n') # fix different EOL types parts = text.split(u'\n---\n', 1) if len(parts) > 1: for line in parts[0].split('\n'): if not line.startswith('#'): kv = line.split(':', 1) if len(kv) == 2: k = kv[0].strip() v = kv[1].strip() if k.endswith('s'): v = re.split('[\s,]+', v) options[k] = v options['text'] = parts[-1] return options
b90b1adb7d5d6f8716b9d4e00b0e4b533393f725
3,656,141
def _read_16_bit_message(prefix, payload_base, prefix_type, is_time, data, offset, eieio_header): """ Return a packet containing 16 bit elements """ if payload_base is None: if prefix is None: return EIEIO16BitDataMessage(eieio_header.count, data, offset) elif prefix_type == EIEIOPrefix.LOWER_HALF_WORD: return EIEIO16BitLowerKeyPrefixDataMessage( prefix, eieio_header.count, data, offset) elif prefix_type == EIEIOPrefix.UPPER_HALF_WORD: return EIEIO16BitUpperKeyPrefixDataMessage( prefix, eieio_header.count, data, offset) elif payload_base is not None and not is_time: if prefix is None: return EIEIO16BitPayloadPrefixDataMessage( payload_base, eieio_header.count, data, offset) elif prefix_type == EIEIOPrefix.LOWER_HALF_WORD: return EIEIO16BitPayloadPrefixLowerKeyPrefixDataMessage( prefix, payload_base, eieio_header.count, data, offset) elif prefix_type == EIEIOPrefix.UPPER_HALF_WORD: return EIEIO16BitPayloadPrefixUpperKeyPrefixDataMessage( prefix, payload_base, eieio_header.count, data, offset) elif payload_base is not None and is_time: if prefix is None: return EIEIO16BitTimedPayloadPrefixDataMessage( payload_base, eieio_header.count, data, offset) elif prefix_type == EIEIOPrefix.LOWER_HALF_WORD: return EIEIO16BitTimedPayloadPrefixLowerKeyPrefixDataMessage( prefix, payload_base, eieio_header.count, data, offset) elif prefix_type == EIEIOPrefix.UPPER_HALF_WORD: return EIEIO16BitTimedPayloadPrefixUpperKeyPrefixDataMessage( prefix, payload_base, eieio_header.count, data, offset) return EIEIOWithoutPayloadDataMessage(eieio_header, data, offset)
b552d06b314d47ee3ae928ebcee678c65bd24f84
3,656,142
def test_linear(): """ Tests that KernelExplainer returns the correct result when the model is linear. (as per corollary 1 of https://arxiv.org/abs/1705.07874) """ np.random.seed(2) x = np.random.normal(size=(200, 3), scale=1) # a linear model def f(x): return x[:, 0] + 2.0*x[:, 1] phi = shap.KernelExplainer(f, x).shap_values(x, l1_reg="num_features(2)", silent=True) assert phi.shape == x.shape # corollary 1 expected = (x - x.mean(0)) * np.array([1.0, 2.0, 0.0]) np.testing.assert_allclose(expected, phi, rtol=1e-3)
6e716d6505162aa49507b026672455d357ab7c2b
3,656,143
def csm_shape(csm): """ Return the shape field of the sparse variable. """ return csm_properties(csm)[3]
a74357086a9d7233cabed1c6ddc14fdbdbe0b41f
3,656,144
def hyperlist_to_labellist(hyperlist): """ :param hyperlist: :return: labellist, labels to use for plotting """ return [hyper_to_label(hyper) for hyper in hyperlist]
9587694d783ccbd122b58894a2d80ee5e58dc900
3,656,145
import json def _pretty_print_dict(dictionary): """Generates a pretty-print formatted version of the input JSON. Args: dictionary (dict): the JSON string to format. Returns: str: pretty-print formatted string. """ return json.dumps(_ascii_encode_dict(dictionary), indent=2, sort_keys=True)
17e94d18f824253540fd968c726721542f25a95e
3,656,146
def _bivariate_kdeplot(x, y, filled, fill_lowest, kernel, bw, gridsize, cut, clip, axlabel, cbar, cbar_ax, cbar_kws, ax, **kwargs): """Plot a joint KDE estimate as a bivariate contour plot.""" # Determine the clipping if clip is None: clip = [(-np.inf, np.inf), (-np.inf, np.inf)] elif np.ndim(clip) == 1: clip = [clip, clip] # Calculate the KDE if _has_statsmodels: xx, yy, z = _statsmodels_bivariate_kde(x, y, bw, gridsize, cut, clip) else: xx, yy, z = _scipy_bivariate_kde(x, y, bw, gridsize, cut, clip) # Plot the contours n_levels = kwargs.pop("n_levels", 10) scout, = ax.plot([], []) default_color = scout.get_color() scout.remove() cmap = kwargs.pop("cmap", None) color = kwargs.pop("color", None) if cmap is None and "colors" not in kwargs: if color is None: color = default_color if filled: cmap = light_palette(color, as_cmap=True) else: cmap = dark_palette(color, as_cmap=True) if isinstance(cmap, str): if cmap.endswith("_d"): pal = ["#333333"] pal.extend(color_palette(cmap.replace("_d", "_r"), 2)) cmap = blend_palette(pal, as_cmap=True) else: cmap = mpl.cm.get_cmap(cmap) label = kwargs.pop("label", None) kwargs["cmap"] = cmap contour_func = ax.contourf if filled else ax.contour cset = contour_func(xx, yy, z, n_levels, **kwargs) if filled and not fill_lowest: cset.collections[0].set_alpha(0) kwargs["n_levels"] = n_levels if cbar: cbar_kws = {} if cbar_kws is None else cbar_kws ax.figure.colorbar(cset, cbar_ax, ax, **cbar_kws) # Label the axes if hasattr(x, "name") and axlabel: ax.set_xlabel(x.name) if hasattr(y, "name") and axlabel: ax.set_ylabel(y.name) if label is not None: legend_color = cmap(.95) if color is None else color if filled: ax.fill_between([], [], color=legend_color, label=label) else: ax.plot([], [], color=legend_color, label=label) return ax
ecb60ec3ffdc746f40b89158ef3c5b3a03e85bfc
3,656,147
def unified_load(namespace, subclasses=None, recurse=False): """Provides a unified interface to both the module and class loaders, finding modules by default or classes if given a ``subclasses`` parameter. """ if subclasses is not None: return ClassLoader(recurse=recurse).load(namespace, subclasses=subclasses) else: return ModuleLoader(recurse=recurse).load(namespace)
62f5f4e17d3d232bfa72090a836f89f782068b53
3,656,149
def generate_free_rooms(room_times: dict) -> dict: """ Generates data structure for getting free rooms for each time. """ # create data format free_rooms = {'M': {}, 'Tu': {}, 'W': {}, 'Th': {}, 'F': {} } # add empty lists for each time for dotw in free_rooms: for i in range(0, 144): free_rooms[dotw][i] = [] # iterate through all the rooms. days, and times for room in room_times: for day in room_times[room]: for time in room_times[room][day]: # add the room to the corresponding time free_rooms[day][time].append(room) return free_rooms
e60df355acd84e60c08ba34a45a2131d8d4519b4
3,656,150
def code_parse_line(li, pattern_type="import/import_externa"): """ External Packages """ ### Import pattern if pattern_type == "import": if li.find("from") > -1: l = li[li.find("from") + 4 : li.find("import")].strip().split(",") else: l = li.strip().split("import ")[1].strip().split(",") l = [x for x in l if x != ""] l = np_list_dropduplicate(l) return l # Only external if pattern_type == "import_extern": if li.find("from") > -1: l = li[li.find("from") + 4 : li.find("import")].strip().split(",") else: l = li.strip().split("import ")[1].strip().split(",") l = [x for x in l if x != ""] l = [x for x in l if x[0] != "."] l = [x.split(".")[0].split("as")[0].split("#")[0].strip() for x in l] l = np_list_dropduplicate(l) return l
347b3d0c3192978beb4c26a1950d86482812310b
3,656,151
def get_high(pair, path="https://api.kraken.com/0/public"): """ Get the last 24h high price of `pair`. Parameters ---------- pair : str Code of the requested pair(s). Comma delimited if several pair. path : str Path of the exchange to request. Returns ------- float or dict Last 24h higher price(s). """ return _get_ticker(pair, 'h', path)
8443ad24450e8f7bd2b6fac339e5e2b9149685c1
3,656,152
def SIx(): """ Reads in future LENS SI-x data Returns ---------- leafmean : array leaf indices (ens x year x lat x lon) latmean : array last freeze indices (ens x year x lat x lon) lat : array of latitudes lon : array of longitudes lstfrz : list last freeze indices """ directory = '/volumes/eas-shared/ault/ecrl/spring-indices/data/' versions=['002','003','004','005','006','007','008','009','010','011','012','013','014','015','016','017','018','019','020','021','022','023','024','025','026','027','028','029','030'] leaf=[] lstfrz = [] for version in versions: years = 'b.e11.BRCP85C5CNBDRD.f09_g16.%s.cam.h.SI-x.2006-2080.nc' % version filename = directory + years values = Dataset(filename) lon = values.variables['lon'][189:240] lat = values.variables['lat'][:32] lstfrz_index = values.variables['lstfrz_index'][:,:32,189:240] leaf_index = values.variables['leaf_index'][:,:32,189:240] values.close() leaf.append(leaf_index) lstfrz.append(lstfrz_index) latmean = np.asarray(lstfrz) leafmean = np.asarray(leaf) print 'Done! 1' return leafmean, latmean, lstfrz, lat, lon
0ac033577d73c6567ebef10437a7e44e51bf5c79
3,656,153
import scipy def make_truncnorm_gen_with_bounds(mean, std, low_bound, hi_bound): """ low_bound and hi_bound are in the same units as mean and std """ assert hi_bound > low_bound clipped_mean = min(max(mean, low_bound), hi_bound) if clipped_mean == low_bound: low_sigma = -0.01 * std hi_sigma = (hi_bound - clipped_mean) / std elif clipped_mean == hi_bound: low_sigma = (low_bound - clipped_mean) / std hi_sigma = 0.01 * std else: low_sigma = (low_bound - clipped_mean) / std hi_sigma = (hi_bound - clipped_mean) / std return scipy.stats.truncnorm(low_sigma, hi_sigma, loc=clipped_mean, scale=std)
8e957d99141a56f804bebf931098fa147d066bb8
3,656,154
from invenio_app_ils.ill.api import BORROWING_REQUEST_PID_TYPE from invenio_app_ils.ill.proxies import current_ils_ill from invenio_app_ils.items.api import ITEM_PID_TYPE from invenio_app_ils.proxies import current_app_ils from invenio_app_ils.errors import UnknownItemPidTypeError def resolve_item_from_loan(item_pid): """Resolve the item referenced in loan based on its PID type.""" if item_pid["type"] == ITEM_PID_TYPE: rec_cls = current_app_ils.item_record_cls elif item_pid["type"] == BORROWING_REQUEST_PID_TYPE: rec_cls = current_ils_ill.borrowing_request_record_cls else: raise UnknownItemPidTypeError(pid_type=item_pid["type"]) return rec_cls.get_record_by_pid(item_pid["value"])
f58ea857a445f2e6e01f426656f87a2032ea8306
3,656,155
def delta(s1, s2): """ Find the difference in characters between s1 and s2. Complexity: O(n), n - length of s1 or s2 (they have the same length). Returns: dict, format {extra:[], missing:[]} extra: list, letters in s2 but not in s1 missing: list, letters in s1 but not in s2 """ letters = {} for c in s1: if c not in letters: letters[c] = 1 else: letters[c] += 1 extra = [] # letters which are in s2 but not in s1 for c in s2: if c not in letters: extra.append(c) else: letters[c] -=1 missing = [] # letters which are in s1 but not in s2 for (letter, count) in letters.iteritems(): if count > 0: missing.append(letter) return {'extra': extra, 'missing': missing}
e439b5a4cf634f5e53fbf845b5774342cedeb404
3,656,157
def mean_predictive_value(targets, preds, cm=None, w=None, adjusted=False): """ :purpose: Calculates the mean predictive value between a discrete target and pred array :params: targets, preds : discrete input arrays, both of shape (n,) cm : if you have previously calculated a confusion matrix, pass it here to save the computation. set as None, which makes the function calculate the confusion matrix w : weights at each index of true and pred. array of shape (n,) if no w is set, it is initialized as an array of ones such that it will have no impact on the output adjusted : bool. if true, adjust the output for chance (making 0 the worst and 1 the best score). defaults to false :returns: mean_predictive_value : float, the mean predictive value of the targets and preds array :example: >>> from fastdist import fastdist >>> import numpy as np >>> true = np.random.RandomState(seed=0).randint(2, size=10000) >>> pred = np.random.RandomState(seed=1).randint(2, size=10000) >>> fastdist.mean_predictive_value(true, pred) 0.49030739883826424 by saskra """ w = init_w(w, len(targets)) if cm is None: cm = confusion_matrix(targets, preds, w=w) n = cm.shape[0] diag, columns_sums = np.zeros(n), np.zeros(n) for i in range(n): diag[i] = cm[i][i] # sum of the diagonal = true results for j in range(n): columns_sums[j] += cm[i][j] # sums of the columns = predictions per class class_div = diag / columns_sums # fraction of true results among the predicted ones per class div_mean = 0 for i in range(n): div_mean += class_div[i] div_mean /= n # mean fraction of true results among the predicted ones if adjusted: div_mean -= 1 / n div_mean /= 1 - 1 / n return div_mean
9e7b7047d0dcf79509e544ca8bb0d621d1ce283d
3,656,158
def delta(phase,inc, ecc = 0, omega=0): """ Compute the distance center-to-center between planet and host star. ___ INPUT: phase: orbital phase in radian inc: inclination of the system in radian OPTIONAL INPUT: ecc: omega: // OUTPUT: distance center-to-center, double-float number. ___ """ phase = 2*np.pi*phase if ecc == 0 and omega == 0: delta = np.sqrt(1-(np.cos(phase)**2)*(np.sin(inc)**2)) else: delta = (1.-ecc**2.)/(1.-ecc*np.sin(phase-omega))* np.sqrt((1.-(np.cos(phase))**2.*(np.sin(inc))**2)) return delta
797d84618ade3e84b63a1a40e7728de77d5465ca
3,656,159