content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def add_counter_text(img, box_shape, people_in): """ Add person counter text on the image Args: img (np.array): Image box_shape (tuple): (width, height) of the counter box people_in (int): Number representing the amount of people inside the space Returns: (np.array): Updated image """ box_width, box_height = box_shape img_pil = Image.fromarray(img) draw = ImageDraw.Draw(img_pil) # set in/capacity numbers text_in = "{}".format(people_in) text_cap = "{}".format(CAPACITY) # import constants for re-use TEXT_COUNTER_UP = TEXT_CONF["TEXT_COUNTER_UP"] TEXT_COUNTER_DOWN = TEXT_CONF["TEXT_COUNTER_DOWN"] # get shapes for parts of text w_up, h_up = draw.textsize(TEXT_COUNTER_UP, stroke_width=1, font=FONT_SMALL) w_down, h_down = draw.textsize(TEXT_COUNTER_DOWN, stroke_width=1, font=FONT_SMALL) w_in, h_in = draw.textsize(text_in, stroke_width=1, font=FONT_SMALL) w_cap, h_cap = draw.textsize(text_cap, stroke_width=1, font=FONT_SMALL) w_slash, h_slash = draw.textsize(" / ", stroke_width=1, font=FONT_SMALL) # calculate coordinates for each part of the text textX_up = int((box_width - w_up) / 2) textY_up = int(0.05 * box_height) textX_down = int((box_width - w_down) / 2) textY_down = int(0.1 * box_height + h_up) textX_in = int((box_width - w_slash) / 2 - w_in) textY_stat = int(0.2 * box_height + h_down + h_up) textX_slash = int((box_width - w_slash) / 2) textX_cap = int((box_width + w_slash) / 2) # add text on image draw.text( (textX_up, textY_up), TEXT_COUNTER_UP, font=FONT_SMALL, fill=WHITE, stroke_width=1, ) draw.text( (textX_down, textY_down), TEXT_COUNTER_DOWN, font=FONT_SMALL, fill=WHITE, stroke_width=1, ) draw.text( (textX_in, textY_stat), text_in, font=FONT_SMALL, fill=(0, 255, 0), stroke_width=1, ) draw.text( (textX_slash, textY_stat), " / ", font=FONT_SMALL, fill=WHITE, stroke_width=1 ) draw.text( (textX_cap, textY_stat), text_cap, font=FONT_SMALL, fill=WHITE, stroke_width=1 ) img = np.array(img_pil, dtype="uint8") return img
ca182338a7dc11596b8375d788036d5de50381e2
3,837
def create_override(override): """Takes override arguments as dictionary and applies them to copy of current context""" override_context = bpy.context.copy() for key, value in override.items(): override_context[key] = value return override_context
25ecb761d8e9225081752fef10d2a6a885ba14d2
3,838
import json def load_or_make_json(file, *, default=None): """Loads a JSON file, or makes it if it does not exist.""" if default is None: default = {} return __load_or_make(file, default, json.load, json.dump)
3045cf141d26313fe8ffe60d6e74ff7af18ddce2
3,840
import warnings def plot_predictions(image, df, color=None, thickness=1): """Plot a set of boxes on an image By default this function does not show, but only plots an axis Label column must be numeric! Image must be BGR color order! Args: image: a numpy array in *BGR* color order! Channel order is channels first df: a pandas dataframe with xmin, xmax, ymin, ymax and label column color: color of the bounding box as a tuple of BGR color, e.g. orange annotations is (0, 165, 255) thickness: thickness of the rectangle border line in px Returns: image: a numpy array with drawn annotations """ if image.shape[0] == 3: raise ValueError("Input images must be channels last format [h, w, 3] not channels first [3, h, w], use np.rollaxis(image, 0, 3) to invert") if image.dtype == "float32": image = image.astype("uint8") image = image.copy() if not color: if not ptypes.is_numeric_dtype(df.label): warnings.warn("No color was provided and the label column is not numeric. Using a single default color.") color=(0,165,255) for index, row in df.iterrows(): if not color: color = label_to_color(row["label"]) cv2.rectangle(image, (int(row["xmin"]), int(row["ymin"])), (int(row["xmax"]), int(row["ymax"])), color=color, thickness=thickness, lineType=cv2.LINE_AA) return image
c666b1a92eefbc04abc7da1c3a4bc6cccde93769
3,841
from sympy import solveset, diff from re import S def stationary_points(f, symbol, domain=S.Reals): """ Returns the stationary points of a function (where derivative of the function is 0) in the given domain. Parameters ========== f : Expr The concerned function. symbol : Symbol The variable for which the stationary points are to be determined. domain : Interval The domain over which the stationary points have to be checked. If unspecified, S.Reals will be the default domain. Examples ======== >>> from sympy import Symbol, S, sin, log, pi, pprint, stationary_points >>> from sympy.sets import Interval >>> x = Symbol('x') >>> stationary_points(1/x, x, S.Reals) EmptySet() >>> pprint(stationary_points(sin(x), x), use_unicode=False) pi 3*pi {2*n*pi + -- | n in Integers} U {2*n*pi + ---- | n in Integers} 2 2 >>> stationary_points(sin(x),x, Interval(0, 4*pi)) {pi/2, 3*pi/2, 5*pi/2, 7*pi/2} """ if isinstance(domain, EmptySet): return S.EmptySet domain = continuous_domain(f, symbol, domain) set = solveset(diff(f, symbol), symbol, domain) return set
21011d7925c136de43f962a56edd5ffcc09c144f
3,842
def _create_table(data_list, headers): """ Create a table for given data list and headers. Args: data_list(list): list of dicts, which keys have to cover headers headers(list): list of headers for the table Returns: new_table(tabulate): created table, ready to print """ list_table = list() for row in data_list: row_data = list() for header in headers: if header.lower() in row: row_data.append(row[header.lower()]) else: row_data.append(None) list_table.append(row_data) new_table = tabulate(list_table, headers=headers) return new_table
d072857776c16128808b7e2b4b64075cc4894199
3,843
def _validate_attribute_id(this_attributes, this_id, xml_ids, enforce_consistency, name): """ Validate attribute id. """ # the given id is None and we don't have setup attributes # -> increase current max id for the attribute by 1 if this_id is None and this_attributes is None: this_id = max(xml_ids) + 1 # the given id is None and we do have setup attributes # set id to the id present in the setup elif this_id is None and this_attributes is not None: this_id = this_attributes[name] # the given id is not None and we do have setup attributes # -> check that the ids match (unless we are in over-write mode) elif this_id is not None and this_attributes is not None: if (this_id != this_attributes[name]) and enforce_consistency: raise ValueError("Expect id %i for attribute %s, got %i" % (this_attributes[name], name, this_id)) return this_id
e85201c85b790576f7c63f57fcf282a985c22347
3,844
def Arrows2D(startPoints, endPoints=None, shaftLength=0.8, shaftWidth=0.09, headLength=None, headWidth=0.2, fill=True, c=None, cmap=None, alpha=1): """ Build 2D arrows between two lists of points `startPoints` and `endPoints`. `startPoints` can be also passed in the form ``[[point1, point2], ...]``. Color can be specified as a colormap which maps the size of the arrows. :param float shaftLength: fractional shaft length :param float shaftWidth: fractional shaft width :param float headLength: fractional head length :param float headWidth: fractional head width :param bool fill: if False only generate the outline :param c: color :param float alpha: set transparency :Example: .. code-block:: python from vedo import Grid, Arrows2D g1 = Grid(sx=1, sy=1) g2 = Grid(sx=1.2, sy=1.2).rotateZ(4) arrs2d = Arrows2D(g1, g2, c='jet') arrs2d.show(axes=1, bg='white') |quiver| """ if isinstance(startPoints, Points): startPoints = startPoints.points() if isinstance(endPoints, Points): endPoints = endPoints.points() startPoints = np.array(startPoints) if endPoints is None: strt = startPoints[:,0] endPoints = startPoints[:,1] startPoints = strt else: endPoints = np.array(endPoints) if headLength is None: headLength = 1 - shaftLength arr = Arrow2D((0,0,0), (1,0,0), shaftLength, shaftWidth, headLength, headWidth, fill) orients = endPoints - startPoints if orients.shape[1] == 2: # make it 3d orients = np.c_[np.array(orients), np.zeros(len(orients))] pts = Points(startPoints) arrg = Glyph(pts, arr.polydata(False), orientationArray=orients, scaleByVectorSize=True, c=c, alpha=alpha).flat().lighting('off') if c is not None: arrg.color(c) arrg.name = "Arrows2D" return arrg
d2276def355c56c6fe494c29bab04cd6f1e28221
3,845
def filter_characters(results: list) -> str: """Filters unwanted and duplicate characters. Args: results: List of top 1 results from inference. Returns: Final output string to present to user. """ text = "" for i in range(len(results)): if results[i] == "$": continue elif i + 1 < len(results) and results[i] == results[i + 1]: continue else: text += results[i] return text
6b2ca1446450751258e37b70f2c9cbe5110a4ddd
3,846
def seq_alignment_files(file1, file2, outputfile=""): """This command takes 2 fasta files as input, each file contains a single sequence. It reads the 2 sequences from files and get all their alignments along with the score. The -o is an optional parameter if we need the output to be written on a file instead of the screen. """ try: seq1 = SeqIO.read(file1, 'fasta') seq2 = SeqIO.read(file2, 'fasta') except OSError as Error: print(Error) return 'Please Enter a valid File name' alignments = pairwise2.align.globalxx(seq1, seq2) # global alignment if outputfile == '': for alignment in alignments: print(alignment) print(format_alignment(*alignment)) else: output_alignment(alignments, outputfile) print('Alignmnet Done to File ', outputfile)
b225d97e29040040755cc3f2260b60f90c390bce
3,847
def main(Block: type[_Block], n: int, difficulty: int) -> list[tuple[float, int]]: """Test can hash a block""" times_and_tries = [] for i in range(n): block = Block(rand_block_hash(), [t], difficulty=difficulty) # print(f"starting {i}... ", end="", flush=True) with time_it() as timer: block.hash() # print(f"took {timer.interval:.3g} seconds and {block.nonce+1} tries") times_and_tries.append((timer.interval, block.nonce + 1)) return times_and_tries
27c729604b3f3441e1ceb5f6d6d28f47d64fdb13
3,848
from typing import Union from typing import SupportsFloat def is_castable_to_float(value: Union[SupportsFloat, str, bytes, bytearray]) -> bool: """ prüft ob das objekt in float umgewandelt werden kann Argumente : o_object : der Wert der zu prüfen ist Returns : True|False Exceptions : keine >>> is_castable_to_float(1) True >>> is_castable_to_float('1') True >>> is_castable_to_float('1.0') True >>> is_castable_to_float('1,0') False >>> is_castable_to_float('True') False >>> is_castable_to_float(True) True >>> is_castable_to_float('') False >>> is_castable_to_float(None) # noqa False """ try: float(value) return True except (ValueError, TypeError): return False
e3882c0e64da79dc9a0b74b4c2414c7bf29dd6c9
3,849
from operator import itemgetter def list_unique(hasDupes): """Return the sorted unique values from a list""" # order preserving d = dict((x, i) for i, x in enumerate(hasDupes)) return [k for k, _ in sorted(d.items(), key=itemgetter(1))]
0ba0fcb216400806aca4a11d5397531dc19482f6
3,850
def filter_by_networks(object_list, networks): """Returns a copy of object_list with all objects that are not in the network removed. Parameters ---------- object_list: list List of datamodel objects. networks: string or list Network or list of networks to check for. Returns ------- filtered List of filtered datamodel objects. """ filtered = [obj for obj in object_list if check_network(networks, obj)] return filtered
9ffb2cedd1508e5924f3a2894a2f842bc5673440
3,851
def score_per_year_by_country(country): """Returns the Global Terrorism Index (GTI) per year of the given country.""" cur = get_db().execute('''SELECT iyear, ( 1*COUNT(*) + 3*SUM(nkill) + 0.5*SUM(nwound) + 2*SUM(case propextent when 1.0 then 1 else 0 end) + 2*SUM(case propextent when 2.0 then 1 else 0 end) + 2*SUM(case propextent when 3.0 then 1 else 0 end) + 2*SUM(case propextent when 4.0 then 1 else 0 end)) FROM Attacks WHERE iso_code="{}" GROUP BY iyear''' .format(country)) score = cur.fetchall() cur.close() return jsonify(score)
ac8992a0bd2227b7b9f5622b9395e4c7933af35a
3,853
def build(options, is_training): """Builds a model based on the options. Args: options: A model_pb2.Model instance. Returns: A model instance. Raises: ValueError: If the model proto is invalid or cannot find a registered entry. """ if not isinstance(options, model_pb2.Model): raise ValueError('The options has to be an instance of model_pb2.Model.') for extension, model_proto in options.ListFields(): if extension in MODELS: return MODELS[extension](model_proto, is_training) raise ValueError('Invalid model config!')
99fc2f283075091254743a9d70ecab3d7a65066d
3,854
def string_to_rdkit(frmt: str, string: str, **kwargs) -> RDKitMol: """ Convert string representation of molecule to RDKitMol. Args: frmt: Format of string. string: String representation of molecule. **kwargs: Other keyword arguments for conversion function. Returns: RDKitMol corresponding to string representation. """ try: converter = RDKIT_STRING_TO_MOL_CONVERTERS[frmt.lower()] except KeyError: raise ValueError(f'{frmt} is not a recognized RDKit format') else: remove_hs = kwargs.pop('removeHs', False) # Don't remove hydrogens by default rdkit_mol = converter(string, removeHs=remove_hs, **kwargs) return RDKitMol(rdkit_mol)
34803a46d5228644bb3db614aca5580bcb286655
3,855
from datetime import datetime def clean_datetime_remove_ms(atime): """ 将时间对象的 毫秒 全部清零 :param atime: :return: """ return datetime(atime.year, atime.month, atime.day, atime.hour, atime.minute, atime.second)
94a47ad8802b3eb4d58d332d71bb3d3e0c67d947
3,856
def perDay(modified): """Auxiliary in provenance filtering: chunk the trails into daily bits.""" chunks = {} for m in modified: chunks.setdefault(dt.date(m[1]), []).append(m) return [chunks[date] for date in sorted(chunks)]
ce9fe31c39c9c6c5e0753aa2dc6dc5113fb199e4
3,857
def login(): """The screen to log the user into the system.""" # call create_all to create database tables if this is the first run db.create_all() # If there are no users, create a default admin and non-admin if len(User.query.all()) == 0: create_default_users() # Redirect the user if already logged in if current_user.is_authenticated: # Send admins and non-admins to different pages if current_user.admin: return redirect(url_for('admin.admin_home')) else: return redirect(url_for('export.export_home')) form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(username=form.username.data).first() if user is None or not user.check_password(form.password.data): flash("Invalid username or password") return redirect(url_for('login.login')) login_user(user) current_app.logger.info(f"Logged in {user}") # If the user was redirected here, send the user back to the original page next_page = request.args.get('next') if not next_page or url_parse(next_page).netloc != '': # If no next page given, default to these pages if user.admin: next_page = url_for('admin.admin_home') else: next_page = url_for('export.export_home') return redirect(next_page) nav_bar_title = "Login" return render_template('login/login.html', title='Sign in', form=form, nav_bar_title=nav_bar_title)
0912dca53b40677da9a9443c4500badf05fff8a8
3,859
def freight_sep_2014(): """Find the number of freight of the month""" for i in fetch_data_2014(): if i[1] == "Freight" and i[4] == "September": num_0 = i[6] return int(num_0)
b7f770362f7a85ffc92591a48660d01d7f784dc1
3,860
def piotroski_f(df_cy,df_py,df_py2): """function to calculate f score of each stock and output information as dataframe""" f_score = {} tickers = df_cy.columns for ticker in tickers: ROA_FS = int(df_cy.loc["NetIncome",ticker]/((df_cy.loc["TotAssets",ticker]+df_py.loc["TotAssets",ticker])/2) > 0) CFO_FS = int(df_cy.loc["CashFlowOps",ticker] > 0) ROA_D_FS = int(df_cy.loc["NetIncome",ticker]/(df_cy.loc["TotAssets",ticker]+df_py.loc["TotAssets",ticker])/2 > df_py.loc["NetIncome",ticker]/(df_py.loc["TotAssets",ticker]+df_py2.loc["TotAssets",ticker])/2) CFO_ROA_FS = int(df_cy.loc["CashFlowOps",ticker]/df_cy.loc["TotAssets",ticker] > df_cy.loc["NetIncome",ticker]/((df_cy.loc["TotAssets",ticker]+df_py.loc["TotAssets",ticker])/2)) LTD_FS = int((df_cy.loc["LTDebt",ticker] + df_cy.loc["OtherLTDebt",ticker])<(df_py.loc["LTDebt",ticker] + df_py.loc["OtherLTDebt",ticker])) CR_FS = int((df_cy.loc["CurrAssets",ticker]/df_cy.loc["CurrLiab",ticker])>(df_py.loc["CurrAssets",ticker]/df_py.loc["CurrLiab",ticker])) DILUTION_FS = int(df_cy.loc["CommStock",ticker] <= df_py.loc["CommStock",ticker]) GM_FS = int((df_cy.loc["GrossProfit",ticker]/df_cy.loc["TotRevenue",ticker])>(df_py.loc["GrossProfit",ticker]/df_py.loc["TotRevenue",ticker])) ATO_FS = int(df_cy.loc["TotRevenue",ticker]/((df_cy.loc["TotAssets",ticker]+df_py.loc["TotAssets",ticker])/2)>df_py.loc["TotRevenue",ticker]/((df_py.loc["TotAssets",ticker]+df_py2.loc["TotAssets",ticker])/2)) f_score[ticker] = [ROA_FS,CFO_FS,ROA_D_FS,CFO_ROA_FS,LTD_FS,CR_FS,DILUTION_FS,GM_FS,ATO_FS] f_score_df = pd.DataFrame(f_score,index=["PosROA","PosCFO","ROAChange","Accruals","Leverage","Liquidity","Dilution","GM","ATO"]) return f_score_df
119a3dd426fbe5e8b5106cbebebf4b000799a839
3,862
from typing import Dict def evaluate_circuit( instances: Dict[str, SType], connections: Dict[str, str], ports: Dict[str, str], ) -> SDict: """evaluate a circuit for the given sdicts.""" # it's actually easier working w reverse: reversed_ports = {v: k for k, v in ports.items()} block_diag = {} for name, S in instances.items(): block_diag.update( {(f"{name},{p1}", f"{name},{p2}"): v for (p1, p2), v in sdict(S).items()} ) sorted_connections = sorted(connections.items(), key=_connections_sort_key) all_connected_instances = {k: {k} for k in instances} for k, l in sorted_connections: name1, _ = k.split(",") name2, _ = l.split(",") connected_instances = ( all_connected_instances[name1] | all_connected_instances[name2] ) for name in connected_instances: all_connected_instances[name] = connected_instances current_ports = tuple( p for instance in connected_instances for p in set([p for p, _ in block_diag] + [p for _, p in block_diag]) if p.startswith(f"{instance},") ) block_diag.update(_interconnect_ports(block_diag, current_ports, k, l)) for i, j in list(block_diag.keys()): is_connected = i == k or i == l or j == k or j == l is_in_output_ports = i in reversed_ports and j in reversed_ports if is_connected and not is_in_output_ports: del block_diag[i, j] # we're no longer interested in these port combinations circuit_sdict: SDict = { (reversed_ports[i], reversed_ports[j]): v for (i, j), v in block_diag.items() if i in reversed_ports and j in reversed_ports } return circuit_sdict
7dd6d019845dbf7f69c6324143d88d4d48af9dea
3,863
def canonical_smiles_from_smiles(smiles, sanitize = True): """ Apply canonicalisation with rdkit Parameters ------------ smiles : str sanitize : bool Wether to apply rdkit sanitisation, default yes. Returns --------- canonical_smiles : str Returns None if canonicalisation fails """ try: mol = Chem.MolFromSmiles(smiles, sanitize = sanitize) mol.UpdatePropertyCache() #mol = Chem.AddHs(mol) Chem.GetSSSR(mol) return Chem.MolToSmiles(mol,canonical=True, allHsExplicit=True, kekuleSmiles = False, allBondsExplicit = True, isomericSmiles = True) except: return None
0c4dc4583d9a12439b915412cab8458e380a4e6c
3,864
def get_ref(struct, ref, leaf=False): """ Figure out if a reference (e.g., "#/foo/bar") exists within a given structure and return it. """ if not isinstance(struct, dict): return None parts = ref_parts(ref) result = {} result_current = result struct_current = struct for part in parts: if part not in struct_current: return None result_current[part] = {} result_current = result_current[part] struct_current = struct_current[part] if leaf: return struct_current result_current.update(struct_current) return result
61ebb2561c2c79c58c297c91ac266e9e786a5b7f
3,865
def edit_maker_app( operator, app_maker_code, app_name="", app_url="", developer="", app_tag="", introduction="", add_user="", company_code="", ): """ @summary: 修改 maker app @param operator:操作者英文id @param app_maker_code: maker app编码 @param app_name:app名称,可选参数,为空则不修改名称 @param app_url:app链接,可选参数,为空则不修改链接 @param developer: 填写开发者英文id列表,请用英文分号";"隔开, 可选参数,为空则不修改开发者 需传入修改后的所有开发者信息 @param app_tag: 可选 String 轻应用分类 @param introduction: 可选 String 轻应用描述 @param add_user: 冗余字段,多版本兼容 @param company_code: 冗余字段,多版本兼容 @return: {'result': True, 'message':u"APP Maker 修改成功"} {'result': False, 'message':u"APP Maker 修改出错"} """ data = { "bk_app_code": settings.APP_CODE, "bk_app_secret": settings.SECRET_KEY, "light_app_code": app_maker_code, "app_name": app_name, } if app_url: data["app_url"] = app_url if developer: data["developers"] = developer.split(",") if app_tag: data["app_tag"] = app_tag if introduction: data["introduction"] = introduction resp = _request_paasv3_light_app_api(url=LIGHT_APP_API, method="patch", data=data) return resp
abb2d57235e6c231b96182f989606060f8ebb4ab
3,867
def fifo(): """ Returns a callable instance of the first-in-first-out (FIFO) prioritization algorithm that sorts ASDPs by timestamp Returns ------- prioritize: callable a function that takes an ASDP type name and a dict of per-type ASDPDB metadata, as returned by `asdpdb.load_asdp_metadata_by_type`, and returns a list of dicts containing ordered ASDPs with metadata (in the format expected by `asdpdb.save_asdp_ordering`) """ def prioritize(asdp_type, metadata): # Extract metadata entries ids = metadata['asdp_id'] sue = metadata['sue'] ts = metadata['timestamp'] untransmitted = metadata['downlink_status'] n_untransmitted = np.sum(untransmitted) if n_untransmitted == 0: logger.info(f'No untransmitted {asdp_type} products to prioritize') return [] size_bytes = metadata['asdp_size_bytes'] sue_per_byte = sue / size_bytes # Fill in bad values with zeros sue_per_byte[np.isnan(sue_per_byte)] = 0.0 sue_per_byte[np.isinf(sue_per_byte)] = 0.0 order = np.argsort(ts) for cand_id in order: if untransmitted[cand_id]: logger.info( f'Selected ASDP {ids[cand_id]}, ' f'initial SUE = {sue_per_byte[cand_id]:.2e}' ) products = [ { 'asdp_id': ids[cand_id], 'initial_sue': sue[cand_id], 'final_sue': sue[cand_id], 'initial_sue_per_byte': sue_per_byte[cand_id], 'final_sue_per_byte': sue_per_byte[cand_id], 'size_bytes': size_bytes[cand_id], 'timestamp': ts[cand_id], } for cand_id in order if untransmitted[cand_id] ] return products return prioritize
8f0d24c43a15467c9e6b9f195d12978664867bd3
3,868
def super(d, t): """Pressure p and internal energy u of supercritical water/steam as a function of density d and temperature t (deg C).""" tk = t + tc_k tau = tstar3 / tk delta = d / dstar3 taupow = power_array(tau, tc3) delpow = power_array(delta, dc3) phidelta = nr3[0] * delpow[-1] + sum([n * i * delpow[i - 1] * taupow[j] for (i, j, n) in zip(ir3, jr3, nr3)]) phitau = sum([n * delpow[i] * j * taupow[j - 1] for (i, j, n) in zip(ir3, jr3, nr3)]) rt = rconst * tk p = d * rt * delta * phidelta u = rt * tau * phitau return (p, u)
937d58264b94b041aafa63b88d5fd4498d4acb8e
3,869
import tty import logging import json def ls(query=None, quiet=False): """List and count files matching the query and compute total file size. Parameters ---------- query : dict, optional (default: None) quiet : bool, optional Whether to suppress console output. """ tty.screen.status('Searching ...', mode='static') if query is None: query = CONFIG['GENERAL']['QUERY'] file_list = scihub.search(query, verbose=True) size = 0.0 for f in file_list: size += f['size'] if not quiet: msg = 'Found {0:d} files ({1}).'.format(len(file_list), utils.b2h(size)) logging.info(msg) tty.screen.result(msg) for f in file_list: msg = '{:>8} {}'.format(utils.b2h(f['size']), f['filename']) # tty.update(f['filename'],msg) logging.info(f['filename']) # # Write file_list to JSON file # so it can be read later by the get() and store() commands. # if 'OUT_FILE' in CONFIG['GENERAL'] and \ CONFIG['GENERAL']['OUT_FILE'] is not None: with open(CONFIG['GENERAL']['OUT_FILE'], 'w') as f: json.dump(file_list, f, default=str, indent=2) return file_list
acbf576170f34cfc09e4a3a8d64c1c313a7d3b51
3,870
def _create_full_gp_model(): """ GP Regression """ full_gp_model = gpflow.models.GPR( (Datum.X, Datum.Y), kernel=gpflow.kernels.SquaredExponential(), mean_function=gpflow.mean_functions.Constant(), ) opt = gpflow.optimizers.Scipy() opt.minimize( full_gp_model.training_loss, variables=full_gp_model.trainable_variables, options=dict(maxiter=300), ) return full_gp_model
bebe02e89e4ad17c5832cfced8f7cd1dce9a3b11
3,871
def read_file_header(fd, endian): """Read mat 5 file header of the file fd. Returns a dict with header values. """ fields = [ ('description', 's', 116), ('subsystem_offset', 's', 8), ('version', 'H', 2), ('endian_test', 's', 2) ] hdict = {} for name, fmt, num_bytes in fields: data = fd.read(num_bytes) hdict[name] = unpack(endian, fmt, data) hdict['description'] = hdict['description'].strip() v_major = hdict['version'] >> 8 v_minor = hdict['version'] & 0xFF hdict['__version__'] = '%d.%d' % (v_major, v_minor) return hdict
d994f74a889cedd7e1524102ffd1c62bb3764a0f
3,872
def shape_padleft(t, n_ones=1): """Reshape `t` by left-padding the shape with `n_ones` 1s. See Also -------- shape_padaxis shape_padright Dimshuffle """ _t = aet.as_tensor_variable(t) pattern = ["x"] * n_ones + [i for i in range(_t.type.ndim)] return _t.dimshuffle(pattern)
44e68fed0ea7497ba244ad83fbd4ff53cec22f24
3,873
def zad1(x): """ Функция выбирает все элементы, идущие за нулём. Если таких нет, возвращает None. Если такие есть, то возвращает их максимум. """ zeros = (x[:-1] == 0) if np.sum(zeros): elements_to_compare = x[1:][zeros] return np.max(elements_to_compare) return None
e54f99949432998bf852afb8f7591af0af0b8b59
3,874
def skopt_space(hyper_to_opt): """Create space of hyperparameters for the gaussian processes optimizer. This function creates the space of hyperparameter following skopt syntax. Parameters: hyper_to_opt (dict): dictionary containing the configuration of the hyperparameters to optimize. This dictionary must follow the next syntax: .. code:: python hyper_to_opt = {'hyperparam_1': {'type': ..., 'range: ..., 'step': ...}, 'hyperparam_2': {'type': ..., 'range: ..., 'step': ...}, ... } See the oficial documentation for more details. Returns: list: space of hyperparameters following the syntax required by the gaussian processes optimization algorithm. Example:: hyper_top_opt = { 'cnn_rnn_dropout':{ 'type': 'uniform', 'range': [0,1]}, 'optimizer_type':{ 'type': 'choice',, 'range': ['Adadelta', 'Adam', 'RMSProp', 'SGD']}, 'base_learning_rate':{ 'type': 'loguniform', 'range': [-5, 0]}, 'layer1_filters':{ 'type': 'quniform', 'range': [16, 64], 'step': 1}} Raises: KeyError: if ``type`` is other than ``uniform``, ``quniform``, ``loguniform`` or ``choice``. """ space = [] # loop over the hyperparameters to optimize dictionary and add each # hyperparameter to the space for key, items in hyper_to_opt.items(): if items['type'] == 'uniform': space.append(skopt.space.Real(items['range'][0], items['range'][1], name=key)) elif items['type'] == 'quniform': space.append(skopt.space.Integer(items['range'][0], items['range'][1], name=key)) elif items['type'] == 'loguniform': space.append(skopt.space.Real(items['range'][0], items['range'][1], name=key, prior='log-uniform')) elif items['type'] == 'choice': space.append(skopt.space.Categorical(items['range'], name=key)) else: raise KeyError('The gaussian processes optimizer supports only \ uniform, quniform, loguniform and choice space types') return space
bdfbc685b5fd51f8f28cb9b308d3962179d15c7e
3,875
import torch def process_text_embedding(text_match, text_diff): """ Process text embedding based on embedding type during training and evaluation Args: text_match (List[str]/Tensor): For matching caption, list of captions for USE embedding and Tensor for glove/fasttext embeddings text_diff (List[str]/Tensor): For non-matching caption, list of captions for USE embedding and Tensor for glove/fasttext embeddings Returns: text_match (Tensor): Processed text-embedding for matching caption text_diff (Tensor): Processed text-embedding for non-matching caption """ if embed_type == 'use': text_match = torch.tensor(use_embed(text_match).numpy()) text_diff = torch.tensor(use_embed(text_diff).numpy()) text_match = text_match.to(device) text_diff = text_diff.to(device) return text_match, text_diff
6f052cc29186f8bcc1598780bf7f437098774498
3,877
import requests import json import base64 def x5u_vulnerability(jwt=None, url=None, crt=None, pem=None, file=None): """ Check jku Vulnerability. Parameters ---------- jwt: str your jwt. url: str your url. crt: str crt path file pem: str pem file name file: str jwks file name Returns ------- str your new jwt. """ if not is_valid_jwt(jwt): raise InvalidJWT("Invalid JWT format") if file is None: file = "jwks_with_x5c.json" jwt_json = jwt_to_json(jwt) if "x5u" not in jwt_json[HEADER]: raise InvalidJWT("Invalid JWT format JKU missing") if crt is None or pem is None: crt, pem = create_crt() with open(crt) as f: content = f.read() f.close() x5u = requests.get(jwt_json[HEADER]["x5u"]).json() x5u["keys"][0]["x5c"] = ( content.replace("-----END CERTIFICATE-----", "") .replace("-----BEGIN CERTIFICATE-----", "") .replace("\n", "") ) if ".json" not in file: file += ".json" if not url.endswith("/"): url += "/" jwt_json[HEADER]["x5u"] = f"{url}{file}" f = open(file, "w") f.write(json.dumps(x5u)) f.close() s = encode_jwt(jwt_json) key = crypto.load_privatekey(crypto.FILETYPE_PEM, open(pem).read()) priv = key.to_cryptography_key() sign = priv.sign( bytes(s, encoding="UTF-8"), algorithm=hashes.SHA256(), padding=padding.PKCS1v15(), ) return s + "." + base64.urlsafe_b64encode(sign).decode("UTF-8").rstrip("=")
0424072951e99d0281a696b94889538c1d17ed81
3,878
def get_all_interactions(L, index_1=False): """ Returns a list of all epistatic interactions for a given sequence length. This sets of the order used for beta coefficients throughout the code. If index_1=True, then returns epistatic interactions corresponding to 1-indexing. """ if index_1: pos = range(1, L+1) else: pos = range(L) all_U = list(powerset(pos)) return all_U
f8a151e5d44f2e139820b3d06af3995f60945dd2
3,880
import xml import math def convertSVG(streamOrPath, name, defaultFont): """ Loads an SVG and converts it to a DeepSea vector image FlatBuffer format. streamOrPath: the stream or path for the SVG file. name: the name of the vector image used to decorate material names. defaultFont: the default font to use. The binary data is returned. """ svg = minidom.parse(streamOrPath) materials = Materials(name) commands = [] for rootNode in svg.childNodes: if rootNode.nodeType != xml.dom.Node.ELEMENT_NODE: continue if rootNode.tagName == 'svg': if rootNode.hasAttribute('viewBox'): box = rootNode.getAttribute('viewBox').split() if len(box) != 4: raise Exception("Invalid view box '" + rootNode.getAttribute('viewbox') + "'") if sizeFromString(box[0], 0.0) != 0.0 or sizeFromString(box[1], 0.0) != 0.0: raise Exception("View box must have an origin of (0, 0)") size = (sizeFromString(box[2], 0.0), sizeFromString(box[3], 0.0)) elif rootNode.hasAttribute('width') and rootNode.hasAttribute('height'): size = (sizeFromString(rootNode.getAttribute('width'), 0.0), sizeFromString(rootNode.getAttribute('height'), 0.0)) else: raise Exception("No size set on SVG.") diagonalSize = math.sqrt(size[0]*size[0] + size[1]*size[1])/math.sqrt(2) for node in rootNode.childNodes: if node.nodeType != xml.dom.Node.ELEMENT_NODE: continue if node.tagName == 'defs': readMaterials(node, materials, size, diagonalSize) else: commands.extend(readShapes(node, defaultFont, materials, size, diagonalSize, \ Transform())) break builder = flatbuffers.Builder(0) materials.write(builder) commandOffsets = [] for command in commands: commandOffsets.extend(command(builder)) VectorImage.StartCommandsVector(builder, len(commandOffsets)) for offset in reversed(commandOffsets): builder.PrependUOffsetTRelative(offset) commandsOffset = builder.EndVector() VectorImage.Start(builder) materials.writeToVectorImage(builder) VectorImage.AddCommands(builder, commandsOffset) VectorImage.AddSize(builder, CreateVector2f(builder, size[0], size[1])) builder.Finish(VectorImage.End(builder)) return builder.Output()
f71b22af076a466f951815e73f83ea989f920cdf
3,881
def to_accumulo(df, config: dict, meta: dict, compute=True, scheduler=None): """ Paralell write of Dask DataFrame to Accumulo Table Parameters ---------- df : Dataframe The dask.Dataframe to write to Accumulo config : dict Accumulo configuration to use to connect to accumulo meta : dict Data model to apply to dataframe compute : bool Should compute be called; immediately call write if True, delayed otherwise scheduler : str The scheduler to use, like “threads” or “processes” Returns ------- The number of Accumulo rows written if they were computed right away. If not, the delayed tasks associated with the writing of the table """ dfs = df.to_delayed() values = [delayed(pandas_write_dataframe)(config, d, meta) for d in dfs] if compute: return sum(delayed(values).compute(scheduler=scheduler)) else: return values
016ee1cc516b8fd6c055902002a196b30ceb0e07
3,882
def compute_euclidean_distance(x, y): """ Computes the euclidean distance between two tensorflow variables """ d = tf.reduce_sum(tf.square(x-y),axis=1,keep_dims=True) return d
26171d3a0c719d0744ab163b33590f4bb1f92480
3,883
def vpn_ping(address, port, timeout=0.05, session_id=None): """Sends a vpn negotiation packet and returns the server session. Returns False on a failure. Basic packet structure is below. Client packet (14 bytes):: 0 1 8 9 13 +-+--------+-----+ |x| cli_id |?????| +-+--------+-----+ x = packet identifier 0x38 cli_id = 64 bit identifier ? = unknown, probably flags/padding Server packet (26 bytes):: 0 1 8 9 13 14 21 2225 +-+--------+-----+--------+----+ |x| srv_id |?????| cli_id |????| +-+--------+-----+--------+----+ x = packet identifier 0x40 cli_id = 64 bit identifier ? = unknown, probably flags/padding bit 9 was 1 and the rest were 0 in testing """ if session_id is None: session_id = random.randint(0, 0xffffffffffffffff) sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) data = struct.pack("!BQxxxxxx", 0x38, session_id) sock.sendto(data, (address, port)) sock.settimeout(timeout) try: received = sock.recv(2048) except socket.timeout: return False finally: sock.close() fmt = "!BQxxxxxQxxxx" if len(received) != struct.calcsize(fmt): print struct.calcsize(fmt) return False (identifier, server_sess, client_sess) = struct.unpack(fmt, received) if identifier == 0x40 and client_sess == session_id: return server_sess
dcc4d8cf347486b0f10f1dd51d230bd6fb625551
3,884
def is_admin(): """Checks if author is a server administrator, or has the correct permission tags.""" async def predicate(ctx): return ( # User is a server administrator. ctx.message.channel.permissions_for(ctx.message.author).administrator # User is a developer. or (ctx.author.id == developer_id) # User has a permission tag. or (discord.utils.get(ctx.author.roles, name=str(f"fox:{ctx.command.name}"))) ) return commands.check(predicate)
70a87d8ae4970b05aa39339fec2aa1ade43d238a
3,885
def send_message(chat_id): """Send a message to a chat If a media file is found, send_media is called, else a simple text message is sent """ files = request.files if files: res = send_media(chat_id, request) else: message = request.form.get("message", default="Empty Message") res = g.driver.chat_send_message(chat_id, message) if res: return jsonify(res) else: return False
df77e115497cfc975b9fad6f9a3b43648349133e
3,886
def get_neighbours(sudoku, row, col): """Funkcja zwraca 3 listy sasiadow danego pola, czyli np. wiersz tego pola, ale bez samego pola""" row_neighbours = [sudoku[row][y] for y in range(9) if y != col] col_neighbours = [sudoku[x][col] for x in range(9) if x != row] sqr_neighbours = [sudoku[x][y] for x in range(9) if x//3 == row//3 for y in range(9) if y//3 == col//3 if x!=row or y!=col] return row_neighbours, col_neighbours, sqr_neighbours
b10766fc8925b54d887925e1a684e368c0f3b550
3,887
import torch import PIL def to_ndarray(image): """ Convert torch.Tensor or PIL.Image.Image to ndarray. :param image: (torch.Tensor or PIL.Image.Image) image to convert to ndarray :rtype (ndarray): image as ndarray """ if isinstance(image, torch.Tensor): return image.numpy() if isinstance(image, PIL.Image.Image): return np.array(image) raise TypeError("to_ndarray: expect torch.Tensor or PIL.Image.Image")
f12444779e2d2eb78e3823821c8c6acec7c601a6
3,888
def calc_random_piv_error(particle_image_diameter): """ Caclulate the random error amplitude which is proportional to the diameter of the displacement correlation peak. (Westerweel et al., 2009) """ c = 0.1 error = c*np.sqrt(2)*particle_image_diameter/np.sqrt(2) return error
91b02b658c0c6476739695017925c44c92bf67c8
3,890
def resolve(name, module=None): """Resolve ``name`` to a Python object via imports / attribute lookups. If ``module`` is None, ``name`` must be "absolute" (no leading dots). If ``module`` is not None, and ``name`` is "relative" (has leading dots), the object will be found by navigating relative to ``module``. Returns the object, if found. If not, propagates the error. """ name = name.split('.') if not name[0]: if module is None: raise ValueError("relative name without base module") module = module.split('.') name.pop(0) while not name[0]: module.pop() name.pop(0) name = module + name used = name.pop(0) found = __import__(used) for n in name: used += '.' + n try: found = getattr(found, n) except AttributeError: __import__(used) found = getattr(found, n) return found
d778ff9e4ea821be6795cc9007552e6c0afeb565
3,891
def fibonacci(n:int) -> int: """Return the `n` th Fibonacci number, for positive `n`.""" if 0 <= n <= 1: return n n_minus1, n_minus2 = 1,0 result = None for f in range(n - 1): result = n_minus2 + n_minus1 n_minus2 = n_minus1 n_minus1 = result return result
4be929f69dc9c35679af580767bfe047fc1963e9
3,892
import select def get_budget(product_name, sdate): """ Budget for a product, limited to data available at the database :param product_name: :param sdate: starting date :return: pandas series """ db = DB('forecast') table = db.table('budget') sql = select([table.c.budget]).where(table.c.product_name == product_name).order_by(asc('month')) ans = db.query(sql).fetchall() ret = [] for row in ans: ret.append(float(row[0])) date_index = pd.date_range(start = sdate, periods = len(ret), freq = 'M') return pd.Series(data = ret, index = date_index)
a17ae7db2734c2c877a41eb0986016a4f0241f07
3,893
def _residual_block_basic(filters, kernel_size=3, strides=1, use_bias=False, name='res_basic', kernel_initializer='he_normal', kernel_regularizer=regulizers.l2(1e-4)): """ Return a basic residual layer block. :param filters: Number of filters. :param kernel_size: Kernel size. :param strides: Convolution strides :param use_bias: Flag to use bias or not in Conv layer. :param kernel_initializer: Kernel initialisation method name. :param kernel_regularizer: Kernel regularizer. :return: Callable layer block """ def layer_fn(x): x_conv1 = _res_conv( filters=filters, kernel_size=kernel_size, padding='same', strides=strides, use_relu=True, use_bias=use_bias, kernel_initializer=kernel_initializer, kernel_regularizer=kernel_regularizer, name=name + '_cbr_1')(x) x_residual = _res_conv( filters=filters, kernel_size=kernel_size, padding='same', strides=1, use_relu=False, use_bias=use_bias, kernel_initializer=kernel_initializer, kernel_regularizer=kernel_regularizer, name=name + '_cbr_2')(x_conv1) merge = _merge_with_shortcut(kernel_initializer, kernel_regularizer,name=name)(x, x_residual) merge = Activation('relu')(merge) return merge return layer_fn
87c041f58de71d7bd2d3fcbe97ec35b8fa057468
3,894
def console_script(tmpdir): """Python script to use in tests.""" script = tmpdir.join('script.py') script.write('#!/usr/bin/env python\nprint("foo")') return script
be6a38bec8bb4f53de83b3c632ff3d26d88ef1c7
3,895
def parse_tpl_file(tpl_file): """ parse a PEST-style template file to get the parameter names Args: tpl_file (`str`): path and name of a template file Returns: [`str`] : list of parameter names found in `tpl_file` Example:: par_names = pyemu.pst_utils.parse_tpl_file("my.tpl") """ par_names = set() with open(tpl_file, "r") as f: try: header = f.readline().strip().split() assert header[0].lower() in [ "ptf", "jtf", ], "template file error: must start with [ptf,jtf], not:" + str(header[0]) assert ( len(header) == 2 ), "template file error: header line must have two entries: " + str(header) marker = header[1] assert len(marker) == 1, ( "template file error: marker must be a single character, not:" + str(marker) ) for line in f: par_line = set(line.lower().strip().split(marker)[1::2]) par_names.update(par_line) # par_names.extend(par_line) # for p in par_line: # if p not in par_names: # par_names.append(p) except Exception as e: raise Exception( "error processing template file " + tpl_file + " :\n" + str(e) ) # par_names = [pn.strip().lower() for pn in par_names] # seen = set() # seen_add = seen.add # return [x for x in par_names if not (x in seen or seen_add(x))] return [p.strip() for p in list(par_names)]
01ed281f4ee9f1c51032d4f3655bd3e17b73bbb2
3,896
def get_single_image_results(pred_boxes, gt_boxes, iou_thr): """Calculates number of true_pos, false_pos, false_neg from single batch of boxes. Args: gt_boxes (list of list of floats): list of locations of ground truth objects as [xmin, ymin, xmax, ymax] pred_boxes (dict): dict of dicts of 'boxes' (formatted like `gt_boxes`) and 'scores' iou_thr (float): value of IoU to consider as threshold for a true prediction. Returns: dict: true positives (int), false positives (int), false negatives (int) """ all_pred_indices = range(len(pred_boxes)) all_gt_indices = range(len(gt_boxes)) if len(all_pred_indices) == 0: tp = 0 fp = 0 fn = len(gt_boxes) return {'true_pos': tp, 'false_pos': fp, 'false_neg': fn} if len(all_gt_indices) == 0: tp = 0 fp = len(pred_boxes) fn = 0 return {'true_pos': tp, 'false_pos': fp, 'false_neg': fn} gt_idx_thr = [] pred_idx_thr = [] ious = [] for ipb, pred_box in enumerate(pred_boxes): for igb, gt_box in enumerate(gt_boxes): iou = calc_iou_individual(pred_box, gt_box) if iou > iou_thr: gt_idx_thr.append(igb) pred_idx_thr.append(ipb) ious.append(iou) args_desc = np.argsort(ious)[::-1] if len(args_desc) == 0: # No matches tp = 0 fp = len(pred_boxes) fn = len(gt_boxes) else: gt_match_idx = [] pred_match_idx = [] for idx in args_desc: gt_idx = gt_idx_thr[idx] pr_idx = pred_idx_thr[idx] # If the boxes are unmatched, add them to matches if (gt_idx not in gt_match_idx) and (pr_idx not in pred_match_idx): gt_match_idx.append(gt_idx) pred_match_idx.append(pr_idx) tp = len(gt_match_idx) fp = len(pred_boxes) - len(pred_match_idx) fn = len(gt_boxes) - len(gt_match_idx) return {'true_pos': tp, 'false_pos': fp, 'false_neg': fn}
3f3bc93641e2f7d04a21fed9a8d0c40fcbc9eacc
3,898
def get_list(caller_id): """ @cmview_user @response{list(dict)} PublicIP.dict property for each caller's PublicIP """ user = User.get(caller_id) ips = PublicIP.objects.filter(user=user).all() return [ip.dict for ip in ips]
41f7855eb258df444b29dc85860e5e85ae6de441
3,899
def matrix_zeros(m, n, **options): """"Get a zeros matrix for a given format.""" format = options.get('format', 'sympy') dtype = options.get('dtype', 'float64') spmatrix = options.get('spmatrix', 'csr') if format == 'sympy': return zeros(m, n) elif format == 'numpy': return _numpy_zeros(m, n, **options) elif format == 'scipy.sparse': return _scipy_sparse_zeros(m, n, **options) raise NotImplementedError('Invaild format: %r' % format)
e4c87a85dd6a37868704205b21732d82a4ffb2df
3,900
def make_password(password, salt=None): """ Turn a plain-text password into a hash for database storage Same as encode() but generate a new random salt. If password is None then return a concatenation of UNUSABLE_PASSWORD_PREFIX and a random string, which disallows logins. Additional random string reduces chances of gaining access to staff or superuser accounts. See ticket #20079 for more info. """ if password is None: return UNUSABLE_PASSWORD_PREFIX + get_random_string( UNUSABLE_PASSWORD_SUFFIX_LENGTH) if not isinstance(password, (bytes, str)): raise TypeError( 'Password must be a string or bytes, got %s.' % type(password).__qualname__ ) hasher = PBKDF2PasswordHasher() salt = salt or hasher.salt() return hasher.encode(password, salt)
6c39486c2eb88af278580cdf4b86b7b45489eef0
3,901
from typing import Union from pathlib import Path from typing import Tuple import torch from typing import Optional from typing import Callable from re import T def compute_spectrogram( audio: Union[Path, Tuple[torch.Tensor, int]], n_fft: int, win_length: Optional[int], hop_length: int, n_mels: int, mel: bool, time_window: Optional[Tuple[int, int]], **kwargs, ) -> torch.Tensor: """ Get the spectrogram of an audio file. Args: audio: Path of the audio file or a (waveform, sample_rate) tuple. n_fft: win_length: hop_length: n_mels: mel: If true we want melodic spectrograms. time_window: A tuple of two time values such we get the sliced spectrogram w.r.t. that window. kwargs: """ # See if we have to deal with an audio file or (waveform, sample rate). if isinstance(audio, Path): waveform, sample_rate = torchaudio.load(audio, format="ogg") elif isinstance(audio[0], torch.Tensor) and isinstance(audio[1], int): waveform = audio[0] sample_rate = audio[1] else: raise Exception( "Input audio worng, it must be either a path to an audio file or a (waveform, sample rate) tuple." ) spectrogram: Callable if not mel: spectrogram = T.Spectrogram( n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True, pad_mode="reflect", power=2.0, ) else: # Mel Spectrogram transform. spectrogram = T.MelSpectrogram( sample_rate=sample_rate, n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True, pad_mode="reflect", power=2.0, norm="slaney", onesided=True, n_mels=n_mels, mel_scale="htk", ) if time_window: # We convert the time window from seconds to frames. start, end = np.asarray(time_window) * sample_rate waveform = waveform[:, start:end] return spectrogram(waveform)
918fc0c9273b2085ded2ca8d6dd5d4db758538f0
3,904
def decode_html_dir(new): """ konvertiert bestimmte Spalte in HTML-Entities """ def decode(key): return decode_html(unicode(new[key])) if new.has_key('title') and new['title'].find('&') >= 0: new['title'] = decode('title') if new.has_key('sub_title') and new['sub_title'].find('&') >= 0: new['sub_title'] = decode('sub_title') if new.has_key('text') and new['text'].find('&') >= 0: new['text'] = decode('text') if new.has_key('text_more') and new['text_more'].find('&') >= 0: new['text_more'] = decode('text_more') if new.has_key('sections') and new['sections'].find('&') >= 0: new['sections'] = decode('sections') if new.has_key('section') and new['section'].find('&') >= 0: new['section'] = decode('section') if new.has_key('anti_spam_question'): new['anti_spam_question'] = decode('anti_spam_question') return new
029483974a26befc2df8d92babf53f5a32be31f5
3,905
def dmsp_enz_deg( c, t, alpha, vmax, vmax_32, kappa_32, k ): """ Function that computes dD32_dt and dD34_dt of DMSP Parameters ---------- c: float. Concentration of DMSP in nM. t: int Integration time in min. alpha: float. Alpha for cleavage by DddP from this study. vmax: float. Vmax for cleavage by DddP, calculated from the K M that the enzyme should have to exhibit the pattern of d34S DMSP vs. time, in nM/min/nM enzyme Vmax_d: float. km: float. K M that the enzyme should have to exhibit the pattern of d34S DMSP vs. time, in nM. k: float. Degradation rate of the enzyme, in min^-1. Returns ------- The dD32_dt and dD34_dt of DMSP """ # Unpack isotopes enzyme, dmsp_34, dmsp_32 = c #Calculate vmax_34 assuming that Vmax total = Vmax_32 + Vmax_34 #This assumption would only hold true at saturation vmax_34 = vmax-vmax_32 #Determination of kappa 32 from kappa 34 and the fractionation factor kappa_34 = kappa_32 * alpha # Calculate dD34_dt dD34_dt = - ((kappa_34 * enzyme * (vmax_34 * enzyme * dmsp_34/((vmax_34 * enzyme)+(kappa_34 * enzyme * dmsp_34))))) # Calculate dD32_dt dD32_dt = - ((kappa_32 * enzyme * (vmax_32 * enzyme * dmsp_32/((vmax_32 * enzyme)+(kappa_32 * enzyme * dmsp_32))))) #Calculate dE_dt dE_dt = -k*enzyme return [dE_dt, dD34_dt, dD32_dt]
d5e4b77523ab469b61eec106a28e1e3143644bf7
3,907
def plot_holdings(returns, positions, legend_loc='best', ax=None, **kwargs): """Plots total amount of stocks with an active position, either short or long. Displays daily total, daily average per month, and all-time daily average. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. positions : pd.DataFrame, optional Daily net position values. - See full explanation in tears.create_full_tear_sheet. legend_loc : matplotlib.loc, optional The location of the legend on the plot. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() positions = positions.copy().drop('cash', axis='columns') df_holdings = positions.apply(lambda x: np.sum(x != 0), axis='columns') df_holdings_by_month = df_holdings.resample('1M', how='mean') df_holdings.plot(color='steelblue', alpha=0.6, lw=0.5, ax=ax, **kwargs) df_holdings_by_month.plot( color='orangered', alpha=0.5, lw=2, ax=ax, **kwargs) ax.axhline( df_holdings.values.mean(), color='steelblue', ls='--', lw=3, alpha=1.0) ax.set_xlim((returns.index[0], returns.index[-1])) ax.legend(['Daily holdings', 'Average daily holdings, by month', 'Average daily holdings, net'], loc=legend_loc) ax.set_title('Holdings per Day') ax.set_ylabel('Amount of holdings per day') ax.set_xlabel('') return ax
5e375729aa48d0d3f8aada17268048a68a662421
3,908
def concatenation_sum(n: int) -> int: """ Algo: 1. Find length of num (n), i.e. number of digits 'd'. 2. Determine largest number with 'd - 1' digits => L = 10^(d - 1) - 1 3. Find diff => f = n - L 4. Now, the sum => s1 = f * d, gives us the number of digits in the string formed by all 'd'-digit numbers less than or equal to 'n'. 5. Now, iteratively calculate and sum ((10^(d-i) - 10^(d-i-1)) * (d-i)) for i ∈ [1, d) 6. This will determine the number of digits in the string formed by all 'd-1', 'd-2', and so on -digits numbers. :param n: Max number :return: Number of digits in the string, formed by concatenating all the numbers from 1 to n. """ d = len(str(n)) L = 10**(d - 1) - 1 f = n - L s1 = f * d s2 = get_numdigs_sum_upto(d - 1) return s1 + s2
644c994ee9b5af280feb233a40df51b519c4b9c6
3,910
def make_join_conditional(key_columns: KeyColumns, left_alias: str, right_alias: str) -> Composed: """ Turn a pair of aliases and a list of key columns into a SQL safe string containing join conditionals ANDed together. s.id1 is not distinct from d.id1 and s.id2 is not distinct from d.id2 """ composed_aliases = {"left_alias": Identifier(left_alias), "right_alias": Identifier(right_alias)} template = "{left_alias}.{column} {equality} {right_alias}.{column}" composed_conditionals = [ SQL(template).format( column=Identifier(c.name), equality=SQL("=" if c.not_nullable else "is not distinct from"), **composed_aliases, ) for c in key_columns ] return SQL(" and ").join(composed_conditionals)
c0b239598f606f35d3af0cbf8c34168137e05b9c
3,911
def home(): """ Home interface """ return '''<!doctype html> <meta name="viewport" content="width=device-width, initial-scale=1" /> <body style="margin:0;font-family:sans-serif;color:white"> <form method="POST" action="analyse" enctype="multipart/form-data"> <label style="text-align:center;position:fixed;top:0;bottom:0;width:100%;background-position:center;background-size:cover;background-image:url(https://blog.even3.com.br/wp-content/uploads/2019/04/saiba-como-e-por-que-fazer-crachas-para-eventos-1.png)"> <br /><br /> <h1>Cara-crachá</h1> <h3 id="processing" style="display:none">Processando...</h3> <input type="file" name="file" onchange="processing.style.display='block';this.form.submit()" style="display:none" /> </label> </form> </body> '''
d8a9c3449ac56b04ee1514729342ce29469c5c2f
3,912
def _enable_mixed_precision_graph_rewrite_base(opt, loss_scale, use_v1_behavior): """Enables mixed precision. See `enable_mixed_precision_graph_rewrite`.""" opt = _wrap_optimizer(opt, loss_scale, use_v1_behavior=use_v1_behavior) config.set_optimizer_experimental_options({'auto_mixed_precision': True}) return opt
8601ae6d24575e2bf5a7057bc06992088d473179
3,913
def selection_criteria_1(users, label_of_interest): """ Formula for Retirement/Selection score: x = sum_i=1_to_n (r_i) — sum_j=1_to_m (r_j). Where first summation contains reliability scores of users who have labeled it as the same as the label of interest, second summation contains reliability scores of users who have labeled it differently Args: users (list): List of users where each element is a tuple of the form (uid, ulabel, f1 score) label_of_interest (int): Label under consideration (left hand summation of formula) Returns (int): 1 = select the subject id, 0 = don't select """ left_sum, right_sum = 0, 0 threshold = 2.0 for user in users: uid, ulabel, f1_score = user if ulabel == label_of_interest: left_sum += f1_score else: right_sum += f1_score if left_sum - right_sum >= threshold: return 1 else: return 0
8255fd3645d5b50c43006d2124d06577e3ac8f2d
3,915
import requests from typing import cast def get_default_product_not_found(product_category_id: str) -> str: """Get default product. When invalid options are provided, the defualt product is returned. Which happens to be unflavoured whey at 2.2 lbs. This is PRODUCT_INFORMATION. """ response = requests.get(f'https://us.myprotein.com/{product_category_id}.variations') response.raise_for_status() dom = bs4.BeautifulSoup(response.text, 'html.parser') # data-child-id is the attribute that contains the canonical product id product_id_node = dom.find(attrs={'data-child-id': True}) if not product_id_node: err_msg = f'Could not get data to resolve options to product id. Url: {response.url}' raise ValueError(err_msg) return cast(str, product_id_node['data-child-id'])
4464a56de2ff514a71d5d06b1684f04a9ed8e564
3,916
import re def book_number_from_path(book_path: str) -> float: """ Parses the book number from a directory string. Novellas will have a floating point value like "1.1" which indicates that it was the first novella to be published between book 1 and book 2. :param book_path: path of the currently parsed book :return: book number """ num = int(re.findall(r'[0-9]{2}', book_path)[-1]) return num / 10
087cb0b8cd0c48c003175a05ed0d7bb14ad99ac3
3,917
def intervals_split_merge(list_lab_intervals): """ 对界限列表进行融合 e.g. 如['(2,5]', '(5,7]'], 融合后输出为 '(2,7]' Parameters: ---------- list_lab_intervals: list, 界限区间字符串列表 Returns: ------- label_merge: 合并后的区间 """ list_labels = [] # 遍历每个区间, 取得左值右值字符串组成列表 for lab in list_lab_intervals: for s in lab.split(','): list_labels.append(s.replace('(', '').replace(')', '').replace(']', '')) list_lab_vals = [float(lab) for lab in list_labels] # 取得最大最小值的索引 id_max_val = list_lab_vals.index(max(list_lab_vals)) id_min_val = list_lab_vals.index(min(list_lab_vals)) # 取得最大最小值的字符串 lab_max_interval = list_labels[id_max_val] lab_min_interval = list_labels[id_min_val] # 如果右边界限的值为+Inf,则改为')', 其他为']' l_label = '(' if lab_max_interval == '+Inf': r_label = ')' else: r_label = ']' label_merge = l_label + lab_min_interval + ',' + lab_max_interval + r_label return label_merge
a9e99ec6fc51efb78a4884206a72f7f4ad129dd4
3,918
def antique(bins, bin_method=BinMethod.category): """CARTOColors Antique qualitative scheme""" return scheme('Antique', bins, bin_method)
718ca4c2b9efede292bb5e8e1eb5128e6200a454
3,919
import json def do_request(batch_no, req): """execute one request. tail the logs. wait for completion""" tmp_src = _s3_split_url(req['input']) cpy_dst = _s3_split_url(req['output']) new_req = { "src_bucket": tmp_src[0], "src_key": tmp_src[1], "dst_bucket": cpy_dst[0], "dst_key": cpy_dst[1], "digests": req["digests"] } delete_mismatch = req.get('delete_mismatch', False) log.info("REQ%s data-rehash request: %s", batch_no, json.dumps(new_req, sort_keys=True, indent=4, separators=(",", ": "))) code, response = lambdas.invoke_sync(lambdas.DATA_REHASH, Payload=new_req) data = response['Payload'].read().decode("ascii") if code != 0: raise Exception("data-rehash failed to complete: %s" % (data,)) data_obj = json.loads(data) if data_obj.get('error', None): if "mismatch" in data_obj['error']: session = boto3.session.Session() s3 = session.client('s3', config=botocore.config.Config(read_timeout=300, retries={'max_attempts': 0})) log.info("REQ%s deleting mismatchfile: Bucket=%s Key=%s", batch_no, tmp_src[0], tmp_src[1]) try: s3.delete_object(Bucket=tmp_src[0], Key=tmp_src[1]) except Exception as delete_exc: log.error("REQ%s delete failed", exc_info=delete_exc) raise Exception("data-rehash returned an error: %s" % (data_obj,)) return data_obj
6e4b8591abfe8a1c106a0ede1e6aa3f6712afd4a
3,920
def _robot_barcode(event: Message) -> str: """Extracts a robot barcode from an event message. Args: event (Message): The event Returns: str: robot barcode """ return str( next( subject["friendly_name"] # type: ignore for subject in event.message["event"]["subjects"] # type: ignore if subject["role_type"] == "robot" # type: ignore ) )
5ffb6567ebb103fc534390d13876d9c1fa956169
3,922
from typing import List from typing import Union def check_thirteen_fd(fds: List[Union[BI, FakeBI]]) -> str: """识别十三段形态 :param fds: list 由远及近的十三段形态 :return: str """ v = Signals.Other.value if len(fds) != 13: return v direction = fds[-1].direction fd1, fd2, fd3, fd4, fd5, fd6, fd7, fd8, fd9, fd10, fd11, fd12, fd13 = fds max_high = max([x.high for x in fds]) min_low = min([x.low for x in fds]) if direction == Direction.Down: if min_low == fd13.low and max_high == fd1.high: # aAbBc式底背驰,fd2-fd6构成A,fd8-fd12构成B if min(fd2.high, fd4.high, fd6.high) > max(fd2.low, fd4.low, fd6.low) > fd8.high \ and min(fd8.high, fd10.high, fd12.high) > max(fd8.low, fd10.low, fd12.low) \ and min(fd2.low, fd4.low, fd6.low) > max(fd8.high, fd10.high, fd12.high) \ and fd13.power < fd7.power: v = Signals.LA0.value # ABC式底背驰,A5B3C5 if fd5.low < min(fd1.low, fd3.low) and fd9.high > max(fd11.high, fd13.high) \ and fd8.high > fd6.low and fd1.high - fd5.low > fd9.high - fd13.low: v = Signals.LA0.value if fd13.power < max(fd11.power, fd9.power): v = Signals.LB0.value # ABC式底背驰,A3B5C5 if fd3.low < min(fd1.low, fd5.low) and fd9.high > max(fd11.high, fd13.high) \ and min(fd4.high, fd6.high, fd8.high) > max(fd4.low, fd6.low, fd8.low) \ and fd1.high - fd3.low > fd9.high - fd13.low: v = Signals.LA0.value if fd13.power < max(fd11.power, fd9.power): v = Signals.LB0.value # ABC式底背驰,A5B5C3 if fd5.low < min(fd1.low, fd3.low) and fd11.high > max(fd9.high, fd13.high) \ and min(fd6.high, fd8.high, fd10.high) > max(fd6.low, fd8.low, fd10.low) \ and fd1.high - fd5.low > fd11.high - fd13.low: v = Signals.LA0.value if fd13.power < fd11.power: v = Signals.LB0.value elif direction == Direction.Up: if max_high == fd13.high and min_low == fd1.low: # aAbBC式顶背驰,fd2-fd6构成A,fd8-fd12构成B if fd8.low > min(fd2.high, fd4.high, fd6.high) >= max(fd2.low, fd4.low, fd6.low) \ and min(fd8.high, fd10.high, fd12.high) >= max(fd8.low, fd10.low, fd12.low) \ and max(fd2.high, fd4.high, fd6.high) < min(fd8.low, fd10.low, fd12.low) \ and fd13.power < fd7.power: v = Signals.SA0.value # ABC式顶背驰,A5B3C5 if fd5.high > max(fd3.high, fd1.high) and fd9.low < min(fd11.low, fd13.low) \ and fd8.low < fd6.high and fd5.high - fd1.low > fd13.high - fd9.low: v = Signals.SA0.value # C内部顶背驰,形成双重顶背驰 if fd13.power < max(fd11.power, fd9.power): v = Signals.SB0.value # ABC式顶背驰,A3B5C5 if fd3.high > max(fd5.high, fd1.high) and fd9.low < min(fd11.low, fd13.low) \ and min(fd4.high, fd6.high, fd8.high) > max(fd4.low, fd6.low, fd8.low) \ and fd3.high - fd1.low > fd13.high - fd9.low: v = Signals.SA0.value # C内部顶背驰,形成双重顶背驰 if fd13.power < max(fd11.power, fd9.power): v = Signals.SB0.value # ABC式顶背驰,A5B5C3 if fd5.high > max(fd3.high, fd1.high) and fd11.low < min(fd9.low, fd13.low) \ and min(fd6.high, fd8.high, fd10.high) > max(fd6.low, fd8.low, fd10.low) \ and fd5.high - fd1.low > fd13.high - fd11.low: v = Signals.SA0.value # C内部顶背驰,形成双重顶背驰 if fd13.power < fd11.power: v = Signals.SB0.value else: raise ValueError("direction 的取值错误") return v
95c308c2560cc7a337e4a1719836c3df74ab1bbe
3,924
from typing import List def set_process_tracking(template: str, channels: List[str]) -> str: """This function replaces the template placeholder for the process tracking with the correct process tracking. Args: template: The template to be modified. channels: The list of channels to be used. Returns: The modified template. """ tracking = "" for channel in channels: tracking += " ULong64_t {ch}_processed = 0;\n".format(ch=channel) tracking += " std::mutex {ch}_bar_mutex;\n".format(ch=channel) tracking += " auto c_{ch} = {ch}_df_final.Count();\n".format(ch=channel) tracking += " c_{ch}.OnPartialResultSlot(quantile, [&{ch}_bar_mutex, &{ch}_processed, &quantile](unsigned int /*slot*/, ULong64_t /*_c*/) {{".format( ch=channel ) tracking += ( "\n std::lock_guard<std::mutex> lg({ch}_bar_mutex);\n".format( ch=channel ) ) tracking += " {ch}_processed += quantile;\n".format(ch=channel) tracking += ' Logger::get("main - {ch} Channel")->info("{{}} Events processed ...", {ch}_processed);\n'.format( ch=channel ) tracking += " });\n" return template.replace("{PROGRESS_CALLBACK}", tracking)
0cf720bd56a63939541a06e60492472f92c4e589
3,925
def solve(instance: Instance) -> InstanceSolution: """Solves the P||Cmax problem by using a genetic algorithm. :param instance: valid problem instance :return: generated solution of a given problem instance """ generations = 512 population_size = 128 best_specimens_number = 32 generator = solution_generator(instance, population_size, best_specimens_number) best_solution = GeneticSolution(instance, [0 for _ in range(len(instance.tasks_durations))]) for _, solution in zip(range(generations), generator): best_solution = min(best_solution, solution, key=lambda x: x.total_time) return best_solution.to_instance_solution()
f8a82a066de29e0c149c3c5f01821af080619764
3,926
def payee_transaction(): """Last transaction for the given payee.""" entry = g.ledger.attributes.payee_transaction(request.args.get("payee")) return serialise(entry)
47a21c7921cae4be30b6eefbbde43bfdf5a38013
3,927
def represent(element: Element) -> str: """Represent the regular expression as a string pattern.""" return _Representer().visit(element)
dfd44499aa1f63248c1a6632131974b242fedf95
3,928
def read_dynamo_table(gc, name, read_throughput=None, splits=None): """ Reads a Dynamo table as a Glue DynamicFrame. :param awsglue.context.GlueContext gc: The GlueContext :param str name: The name of the Dynamo table :param str read_throughput: Optional read throughput - supports values from "0.1" to "1.5", inclusive. :param str splits: Optional number of input splits - defaults to the SparkContext default parallelism. :rtype: awsglue.dynamicframe.DynamicFrame """ connection_options = { 'dynamodb.input.tableName': name, 'dynamodb.splits': str(splits or gc.spark_session.sparkContext.defaultParallelism) } if read_throughput: connection_options['dynamodb.throughput.read.percent'] = str(read_throughput) return gc.create_dynamic_frame_from_options(connection_type='dynamodb', connection_options=connection_options)
5f789626cb3fc8004532cc59bdae128b744b111e
3,929
import six def convert_to_bytes(text): """ Converts `text` to bytes (if it's not already). Used when generating tfrecords. More specifically, in function call `tf.train.BytesList(value=[<bytes1>, <bytes2>, ...])` """ if six.PY2: return convert_to_str(text) # In python2, str is byte elif six.PY3: if isinstance(text, bytes): return text else: return convert_to_unicode(text).encode('utf-8') else: raise ValueError("Not running on Python2 or Python 3?")
da10be9cb88a80f66becead41400b3a4eb6152a2
3,930
from typing import OrderedDict def xreplace_constrained(exprs, make, rule=None, costmodel=lambda e: True, repeat=False): """ Unlike ``xreplace``, which replaces all objects specified in a mapper, this function replaces all objects satisfying two criteria: :: * The "matching rule" -- a function returning True if a node within ``expr`` satisfies a given property, and as such should be replaced; * A "cost model" -- a function triggering replacement only if a certain cost (e.g., operation count) is exceeded. This function is optional. Note that there is not necessarily a relationship between the set of nodes for which the matching rule returns True and those nodes passing the cost model check. It might happen for example that, given the expression ``a + b``, all of ``a``, ``b``, and ``a + b`` satisfy the matching rule, but only ``a + b`` satisfies the cost model. :param exprs: The target SymPy expression, or a collection of SymPy expressions. :param make: Either a mapper M: K -> V, indicating how to replace an expression in K with a symbol in V, or a function, used to construct new, unique symbols. Such a function should take as input a parameter, used to enumerate the new symbols. :param rule: The matching rule (a lambda function). May be left unspecified if ``make`` is a mapper. :param costmodel: The cost model (a lambda function, optional). :param repeat: Repeatedly apply ``xreplace`` until no more replacements are possible (optional, defaults to False). """ found = OrderedDict() rebuilt = [] # Define /replace()/ based on the user-provided /make/ if isinstance(make, dict): rule = rule if rule is not None else (lambda i: i in make) replace = lambda i: make[i] else: assert callable(make) and callable(rule) def replace(expr): if isinstance(make, dict): return make[expr] temporary = found.get(expr) if temporary: return temporary else: temporary = make(replace.c) found[expr] = temporary replace.c += 1 return temporary replace.c = 0 # Unique identifier for new temporaries def run(expr): if expr.is_Atom or expr.is_Indexed: return expr, rule(expr) elif expr.is_Pow: base, flag = run(expr.base) if flag and costmodel(base): return expr.func(replace(base), expr.exp, evaluate=False), False else: return expr.func(base, expr.exp, evaluate=False), flag else: children = [run(a) for a in expr.args] matching = [a for a, flag in children if flag] other = [a for a, _ in children if a not in matching] if matching: matched = expr.func(*matching, evaluate=False) if len(matching) == len(children) and rule(expr): # Go look for longer expressions first return matched, True elif rule(matched) and costmodel(matched): # Replace what I can replace, then give up rebuilt = expr.func(*(other + [replace(matched)]), evaluate=False) return rebuilt, False else: # Replace flagged children, then give up replaced = [replace(e) for e in matching if costmodel(e)] unreplaced = [e for e in matching if not costmodel(e)] rebuilt = expr.func(*(other + replaced + unreplaced), evaluate=False) return rebuilt, False return expr.func(*other, evaluate=False), False # Process the provided expressions for expr in as_tuple(exprs): assert expr.is_Equality root = expr.rhs while True: ret, _ = run(root) if repeat and ret != root: root = ret else: rebuilt.append(expr.func(expr.lhs, ret)) break # Post-process the output found = [Eq(v, k) for k, v in found.items()] return found + rebuilt, found
f24f0bb1356c5613c012fe405691b1b493ffc6a2
3,931
import re def get_comp_rules() -> str: """ Download the comp rules from Wizards site and return it :return: Comp rules text """ response = download_from_wizards(COMP_RULES) # Get the comp rules from the website (as it changes often) # Also split up the regex find so we only have the URL comp_rules_url: str = re.findall(r"href=\".*\.txt\"", response)[0][6:-1] response = download_from_wizards(comp_rules_url).replace("’", "'") return response
dbb48b391305199182a2bf66bed62dcd91dc0071
3,932
def delete_vpc(vpc_id): """Delete a VPC.""" client = get_client("ec2") params = {} params["VpcId"] = vpc_id return client.delete_vpc(**params)
5c1a043d837ff1bc0cab41ccdbe784688966a275
3,933
def test_network_xor(alpha = 0.1, iterations = 1000): """Creates and trains a network against the XOR/XNOR data""" n, W, B = network_random_gaussian([2, 2, 2]) X, Y = xor_data() return n.iterate_network(X, Y, alpha, iterations)
cb05f01f589d7e224d1a0a87f594a075228741fc
3,934
from pathlib import Path import shutil def assemble_book(draft__dir: Path, work_dir: Path, text_dir: Path) -> Path: """Merge contents of draft book skeleton with test-specific files for the book contents. """ book_dir = work_dir / "test-book" # Copy skeleton from draft__dir shutil.copytree(draft__dir, book_dir) # Add metadata and text files for test book if (text_dir / "content.opf").is_file(): shutil.copy(text_dir / "content.opf", book_dir / "src" / "epub") for file in text_dir.glob("*.xhtml"): shutil.copy(file, book_dir / "src" / "epub" / "text") # Rebuild file metadata must_run(f"se print-manifest-and-spine --in-place {book_dir}") must_run(f"se print-toc --in-place {book_dir}") return book_dir
51ec6ed21760feeff3eeee6ee6fa802383b5afa3
3,935
def merid_advec_spharm(arr, v, radius): """Meridional advection using spherical harmonics.""" _, d_dy = horiz_gradient_spharm(arr, radius) return v * d_dy
7973f99b60ad9d94b6858d28d8877f5c814160c2
3,936
def run_win_pct(team_name, df): """ Function that calculates a teams winning percentage Year over Year (YoY) Calculation: Number of wins by the total number of competitions. Then multiply by 100 = win percentage. Number of loses by the total number of competitions. Then multiply by 100 = loss percentage this function also takes into account the home and away win/loss percentages. :param team_name: Takes in the state of the team_names dropdown :return:a dataframe That returns percentages for specific teams """ df['home_team'] = df['home_team'].str.lower() df['away_team'] = df['away_team'].str.lower() team_name = team_name.lower() df_home = df[df['home_team'] == team_name] df_away = df[df['away_team'] == team_name] frames = [df_home,df_away] df_fill = pd.concat(frames) df = home_vs_away(df_fill, team_name) home_matches = df[df['home_team'] == team_name] away_matches = df[df['away_team'] == team_name] home_matches = home_matches.drop(columns = ['away_team']) away_matches = away_matches.drop(columns = ['home_team']) #wins per season home_team_win = home_matches.groupby(["home_team","dateYear"])["outcome"].apply( lambda x: x[x.str.contains("win")].count()).reset_index() away_team_win = away_matches.groupby(['away_team','dateYear'])['outcome'].apply( lambda x: x[x.str.contains('win')].count()).reset_index() home_team_loss = home_matches.groupby(['home_team','dateYear'])['outcome'].apply( lambda x: x[x.str.contains('lose')].count()).reset_index() away_team_loss = away_matches.groupby(['away_team','dateYear'])['outcome'].apply( lambda x: x[x.str.contains('lose')].count()).reset_index() home_team_tie = home_matches.groupby(['home_team','dateYear'])['outcome'].apply( lambda x: x[x.str.contains('draw')].count()).reset_index() away_team_tie = away_matches.groupby(['away_team','dateYear'])['outcome'].apply( lambda x: x[x.str.contains('draw')].count()).reset_index() #matches played per season searchFor = ['win','lose','draw'] matches_home = home_matches.groupby(['home_team','dateYear'])['outcome'].apply( lambda x: x[x.str.contains('|'.join(searchFor))].count()).reset_index() matches_away = away_matches.groupby(['away_team', 'dateYear'])['outcome'].apply( lambda x: x[x.str.contains('|'.join(searchFor))].count()).reset_index() #goals for and against match_numbers = matches_home.merge(matches_away, how='left', left_on='dateYear', right_on='dateYear') loss_merge = home_team_loss.merge(away_team_loss, how='left', left_on='dateYear', right_on='dateYear') tie_merge = home_team_tie.merge(away_team_tie, how='left', left_on='dateYear', right_on='dateYear') fin = home_team_win.merge(away_team_win, how = 'left', left_on='dateYear', right_on='dateYear') fin['Total Wins'] = fin['outcome_x'] + fin['outcome_y'] fin['Total Losses'] = loss_merge['outcome_x'] + loss_merge['outcome_y'] fin['Total Draws'] = tie_merge['outcome_x'] + tie_merge['outcome_y'] fin['Total Matches'] = match_numbers['outcome_x'] + match_numbers['outcome_y'] fin['Win PCT'] = (fin['Total Wins'] / fin['Total Matches'] * 100).round(2) fin['Loss PCT'] = (fin['Total Losses'] / fin['Total Matches'] * 100).round(2) fin['Draw PCT'] = (fin['Total Draws'] / fin['Total Matches'] * 100).round(2) #home match percentage fin['Home Win PCT'] = (home_team_win['outcome'] / matches_home['outcome'] * 100).round(2) fin['Away Win PCT'] = (away_team_win['outcome'] / matches_away['outcome'] * 100).round(2) fin['Home Loss PCT'] = (home_team_loss['outcome'] / matches_home['outcome'] * 100).round(2) fin['Away Loss PCT'] = (away_team_loss['outcome'] / matches_away['outcome'] * 100).round(2) return fin
3fc071cd7e89f68216286b0b6422a95ce8f690f6
3,937
def get_container_info(pi_status): """ Expects a dictionary data structure that include keys and values of the parameters that describe the containers running in a Raspberry Pi computer. Returns the input dictionary populated with values measured from the current status of one or more containers running in the Pi. """ pi_status['containers'] = [] if len(client.containers()) == 0: print 'No container running' new_container={ 'id': 'None', 'cpuUsage': '0.0', 'memUsage': '0.0', 'name': 'None', # the client.container() returns a list of names. 'status': 'None', # as a temporary solution, I take the first name 'image': 'None', # of the list. 'port_host': '0', # the client.container() returns a list of ports 'port_container': '0'} # getting the first, is a tmp solution pi_status['containers'].append(new_container) else: print 'num container %d' % len(client.containers()) for container in client.containers(): cmd = "docker stats %s --no-stream | grep %s | awk \'{print $2}\' " % (container['Id'], container['Id']) cpuUsage = system_call(cmd) cpuUsage_str = cpuUsage.replace("\n", "") cpuUsage_str = cpuUsage_str.replace("%", "") cmd = "docker stats %s --no-stream | grep %s | awk \'{print $6}\' " % (container['Id'], container['Id']) memUsage = system_call(cmd) memUsage_str = memUsage.replace("\n", "") memUsage_str = memUsage_str.replace("%", "") #dict_port_host= container['Ports'][0] #p_int=dict_port_host['PublicPort'] #port_host_str= str(p_int).replace("\n", "") new_container={ 'id': container['Id'], 'cpuUsage': cpuUsage_str, 'memUsage': memUsage_str, 'name': container['Names'][0], # the client.container() returns a list of names. 'status': container['Status'], # as a temporary solution, I take the first name 'image': container['Image'], # of the list. 'port_host': '80', # the client.container() returns a list of ports 'port_container': '8000'} # getting the first, is a tmp solution pi_status['containers'].append(new_container) return (len((pi_status['containers'])))
a488e7afa9c2e003edb3138c1d78e434921dbf3e
3,938
import math def formatSI(n: float) -> str: """Format the integer or float n to 3 significant digits + SI prefix.""" s = '' if n < 0: n = -n s += '-' if type(n) is int and n < 1000: s = str(n) + ' ' elif n < 1e-22: s = '0.00 ' else: assert n < 9.99e26 log = int(math.floor(math.log10(n))) i, j = divmod(log, 3) for _try in range(2): templ = '%.{}f'.format(2 - j) val = templ % (n * 10 ** (-3 * i)) if val != '1000': break i += 1 j = 0 s += val + ' ' if i != 0: s += 'yzafpnum kMGTPEZY'[i + 8] return s
ddbbb70e66d368253d29c3223eee7a5926518efd
3,939
import scipy def pemp(stat, stat0): """ Computes empirical values identically to bioconductor/qvalue empPvals """ assert len(stat0) > 0 assert len(stat) > 0 stat = np.array(stat) stat0 = np.array(stat0) m = len(stat) m0 = len(stat0) statc = np.concatenate((stat, stat0)) v = np.array([True] * m + [False] * m0) perm = np.argsort(-statc, kind="mergesort") # reversed sort, mergesort is stable v = v[perm] u = np.where(v)[0] p = (u - np.arange(m)) / float(m0) # ranks can be fractional, we round down to the next integer, ranking returns values starting # with 1, not 0: ranks = np.floor(scipy.stats.rankdata(-stat)).astype(int) - 1 p = p[ranks] p[p <= 1.0 / m0] = 1.0 / m0 return p
7d046666687ede0b671c00d5c691ac520179e11f
3,940
def help_message() -> str: """ Return help message. Returns ------- str Help message. """ msg = f"""neocities-sync Sync local directories with neocities.org sites. Usage: neocities-sync options] [--dry-run] [-c CONFIG] [-s SITE1] [-s SITE2] ... Options: -C CONFIG_FILE Path to the config file to use. (defaults to "{config_file_path_unexpanded}".) -s SITE Which site to sync (as specified in the config file). The default is to sync all sites in the config file. --dry-run Do not actually upload anything. -v Verbose output. -q Quiet output. -h, --help Show this help message and exit. Config file: The config file is an ini file, located at "{config_file_path_unexpanded}". Each section of the config file describes a different site (the name of the section doesn't need to be the same as the site's domain, since the api_key suffices to identify the site). The keys of the config file are: api_key (str) [required] The api key of the site. root_dir (path) [required] The local directory to sync. sync_disallowed (yes/no) [default: no] Whether to sync files that are only allowed for paying users. sync_hidden (yes/no) [default: no] Whether to sync hidden files. sync_vcs (yes/no) [default: no] Whether to sync version control files. allowed_extensions (list of str) [default: not set] Which file extensions to sync. If not set, all files are synced. remove_empty_dirs (yes/no) [default: yes] Whether to remove empty directories after sync. Example config: [site1] api_key = 6b9b522e7d8d93e88c464aafc421a61b root_dir = ~/path/to/site1 allowed_extensions = .html .css .js remove_empty_dirs = no [site2] api_key = 78559e6ebc35fe33eec21de05666a243 root_dir = /var/www/path/to/site2 allowed_extensions = .html .css .js .woff2 .neocitiesignore In any subdirectory of the root directory, a file named ".neocitiesignore" can be used to specify which files to ignore. The syntax is the same as the one for ".gitignore". Credits: This software was developed by Andre Kugland <[email protected]>.""" return msg
8c2d0c31513e36c1ef1c9f0b096d264449dafdee
3,941
def fuzzyCompareDouble(p1, p2): """ compares 2 double as points """ return abs(p1 - p2) * 100000. <= min(abs(p1), abs(p2))
e2a93a993147e8523da0717d08587250003f9269
3,942
def filter_date_df(date_time, df, var="date"): """Filtrar dataframe para uma dada lista de datas. Parameters ---------- date_time: list list with dates. df: pandas.Dataframe var: str column to filter, default value is "date" but can be adaptable for other ones. Returns ------- df_filter: pandas.Dataframe Examples -------- >>> file1 = './data/WIN$N_1M_2015.08.12_2015.12.30_.csv', >>> file2 = './data/WIN$N_10M_2013.11.08_2021.01.22_.csv' >>> dates = filter_overlapping_dates(file1, file2) >>> df1 = pandas.read_csv(file1) >>> filter_date_df(dates_overlapping, df1).head() date hour open high low close real_volume tick_volume 0 2015.08.12 09:00:00 50280 50430 50255 50405 976 217 1 2015.08.12 09:01:00 50405 50440 50335 50400 1589 445 2 2015.08.12 09:02:00 50395 50410 50355 50355 465 102 3 2015.08.12 09:03:00 50350 50360 50320 50325 474 150 4 2015.08.12 09:04:00 50325 50330 50090 50190 2078 747 """ filters = [True if date in date_time else False for date in df[var]] df_filter = df[filters] df_filter = df_filter.drop(columns=["spread"], errors="ignore") df_filter = df_filter.dropna().drop_duplicates() df_filter = df_filter.sort_values(by=["date", "hour"]) df_filter = df_filter.reset_index(drop=True) df_filter = format_hour(df_filter) return df_filter
6d3002917ef0786e8b128a2a02df3fabb9997aab
3,943
import urllib def pproxy_desired_access_log_line(url): """Return a desired pproxy log entry given a url.""" qe_url_parts = urllib.parse.urlparse(url) protocol_port = '443' if qe_url_parts.scheme == 'https' else '80' return 'http {}:{}'.format(qe_url_parts.hostname, protocol_port)
4c056b1d2cc11a72cf63400734807b9b074f147c
3,944
import socket def unused_port() -> int: """Return a port that is unused on the current host.""" with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind(("127.0.0.1", 0)) return s.getsockname()[1]
26d72e1a529edd37b14ac746bcb4082c1d1b9061
3,945
def get_axioma_risk_free_rate(conn) : """ Get the USD risk free rate provided by Axioma and converted it into a daily risk free rate assuming a 252 trading data calendar. """ query = """ select data_date, Risk_Free_Rate from axioma_currency where currencycode = 'USD' order by data_date """ df = pd.read_sql_query(query, conn.sql.CONN) df['Risk_Free_Rate'] = df['Risk_Free_Rate'].astype('float32') df[RFR] = (1 + df['Risk_Free_Rate']) ** (1.0/252.0) - 1 df.drop(columns = ['Risk_Free_Rate'], inplace = True) return df
2c6c680ef36c247b67c481ff4dde685afc4bad4d
3,946
import numbers import time import warnings def _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score=False, return_parameters=False, return_n_test_samples=False, return_times=False, return_estimator=False, split_progress=None, candidate_progress=None, error_score=np.nan): """override the sklearn.model_selection._validation._fit_and_score Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape (n_samples, n_features) The data to fit. y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None The target variable to try to predict in the case of supervised learning. scorer : A single callable or dict mapping scorer name to the callable If it is a single callable, the return value for ``train_scores`` and ``test_scores`` is a single float. For a dict, it should be one mapping the scorer name to the scorer callable object / function. The callable object / fn should have signature ``scorer(estimator, X, y)``. train : array-like of shape (n_train_samples,) Indices of training samples. test : array-like of shape (n_test_samples,) Indices of test samples. verbose : int The verbosity level. error_score : 'raise' or numeric, default=np.nan Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. parameters : dict or None Parameters to be set on the estimator. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. return_train_score : bool, default=False Compute and return score on training set. return_parameters : bool, default=False Return parameters that has been used for the estimator. split_progress : {list, tuple} of int, default=None A list or tuple of format (<current_split_id>, <total_num_of_splits>). candidate_progress : {list, tuple} of int, default=None A list or tuple of format (<current_candidate_id>, <total_number_of_candidates>). return_n_test_samples : bool, default=False Whether to return the ``n_test_samples``. return_times : bool, default=False Whether to return the fit/score times. return_estimator : bool, default=False Whether to return the fitted estimator. Returns ------- result : dict with the following attributes train_scores : dict of scorer name -> float Score on training set (for all the scorers), returned only if `return_train_score` is `True`. test_scores : dict of scorer name -> float Score on testing set (for all the scorers). n_test_samples : int Number of test samples. fit_time : float Time spent for fitting in seconds. score_time : float Time spent for scoring in seconds. parameters : dict or None The parameters that have been evaluated. estimator : estimator object The fitted estimator. fit_failed : bool The estimator failed to fit. """ if estimator.__class__.__name__ != 'KerasGBatchClassifier': return _sk_fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score=return_train_score, return_parameters=return_parameters, return_n_test_samples=return_n_test_samples, return_times=return_times, return_estimator=return_estimator, split_progress=split_progress, candidate_progress=candidate_progress, error_score=error_score) if not isinstance(error_score, numbers.Number) and error_score != 'raise': raise ValueError( "error_score must be the string 'raise' or a numeric value. " "(Hint: if using 'raise', please make sure that it has been " "spelled correctly.)" ) progress_msg = "" if verbose > 2: if split_progress is not None: progress_msg = f" {split_progress[0]+1}/{split_progress[1]}" if candidate_progress and verbose > 9: progress_msg += (f"; {candidate_progress[0]+1}/" f"{candidate_progress[1]}") if verbose > 1: if parameters is None: params_msg = '' else: sorted_keys = sorted(parameters) # Ensure deterministic o/p params_msg = (', '.join(f'{k}={parameters[k]}' for k in sorted_keys)) if verbose > 9: start_msg = f"[CV{progress_msg}] START {params_msg}" print(f"{start_msg}{(80 - len(start_msg)) * '.'}") # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = _check_fit_params(X, fit_params, train) if parameters is not None: # clone after setting parameters in case any parameters # are estimators (like pipeline steps) # because pipeline doesn't clone steps in fit cloned_parameters = {} for k, v in parameters.items(): cloned_parameters[k] = clone(v, safe=False) estimator = estimator.set_params(**cloned_parameters) start_time = time.time() X_train, y_train = _safe_split(estimator, X, y, train) X_test, y_test = _safe_split(estimator, X, y, test, train) result = {} try: if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) except Exception: # Note fit time as time until error fit_time = time.time() - start_time score_time = 0.0 if error_score == 'raise': raise elif isinstance(error_score, numbers.Number): if isinstance(scorer, dict): test_scores = {name: error_score for name in scorer} if return_train_score: train_scores = test_scores.copy() else: test_scores = error_score if return_train_score: train_scores = error_score warnings.warn("Estimator fit failed. The score on this train-test" " partition for these parameters will be set to %f. " "Details: \n%s" % (error_score, format_exc()), FitFailedWarning) result["fit_failed"] = True else: result["fit_failed"] = False fit_time = time.time() - start_time test_scores = estimator.evaluate(X_test, y_test, scorer, error_score) score_time = time.time() - start_time - fit_time if return_train_score: train_scores = estimator.evaluate( X_train, y_train, scorer, error_score ) if verbose > 1: total_time = score_time + fit_time end_msg = f"[CV{progress_msg}] END " result_msg = params_msg + (";" if params_msg else "") if verbose > 2: if isinstance(test_scores, dict): for scorer_name in sorted(test_scores): result_msg += f" {scorer_name}: (" if return_train_score: scorer_scores = train_scores[scorer_name] result_msg += f"train={scorer_scores:.3f}, " result_msg += f"test={test_scores[scorer_name]:.3f})" else: result_msg += ", score=" if return_train_score: result_msg += (f"(train={train_scores:.3f}, " f"test={test_scores:.3f})") else: result_msg += f"{test_scores:.3f}" result_msg += f" total time={logger.short_format_time(total_time)}" # Right align the result_msg end_msg += "." * (80 - len(end_msg) - len(result_msg)) end_msg += result_msg print(end_msg) result["test_scores"] = test_scores if return_train_score: result["train_scores"] = train_scores if return_n_test_samples: result["n_test_samples"] = _num_samples(X_test) if return_times: result["fit_time"] = fit_time result["score_time"] = score_time if return_parameters: result["parameters"] = parameters if return_estimator: result["estimator"] = estimator return result
6330fb95709e74471b72b58297b3ce3c7d483449
3,948
from typing import Dict from typing import List def prettify_eval(set_: str, accuracy: float, correct: int, avg_loss: float, n_instances: int, stats: Dict[str, List[int]]): """Returns string with prettified classification results""" table = 'problem_type accuracy\n' for k in sorted(stats.keys()): accuracy_ = stats[k][0]/stats[k][1] accuracy_ = accuracy_*100 table += k table += ' ' table += '{:.2f}%\n'.format(accuracy_) return '\n' + set_ + ' set average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format( avg_loss, correct, n_instances, accuracy) + table + '\n'
5e5ba8ffa62668e245daa2ada9fc09747b5b6dd2
3,949
def load_location(doc_name): """Load a location from db by name.""" doc_ref = get_db().collection("locations").document(doc_name) doc = doc_ref.get() if not doc.exists: return None else: return doc.to_dict()
900450ec3a1c033a9c11baed611170457660754f
3,951
def plotMultiROC(y_true, # list of true labels y_scores, # array of scores for each class of shape [n_samples, n_classes] title = 'Multiclass ROC Plot', n_points=100, # reinterpolates to have exactly N points labels = None, # list of labels for each class threshdot = None, plot=True, # 1/0. If 0, returns plotly json object, but doesnt plot ): """ Makes a multiclass ROC plot. Can also be used for binary ROC plot """ y_true = np.array(y_true) y_scores = np.array(y_scores) if y_scores.ndim == 1: # convert to [n_samples, n_classes] even if 1 class y_scores = np.atleast_2d(y_scores).T N, n_classes = y_scores.shape if n_classes == 1: # needed to avoid inverting when doing binary classification y_scores *= -1 if threshdot is not None: threshdot *= -1 # calc ROC curves & AUC fpr = dict() tpr = dict() thresh = dict() thresh_txt = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], thresh[i] = sk.metrics.roc_curve(y_true == i, y_scores[:, i]) roc_auc[i] = sk.metrics.auc(fpr[i], tpr[i]) if n_points is not None: x = np.linspace(0, 1, n_points) indxs = np.searchsorted(tpr[i], x) tpr[i] = tpr[i][indxs] fpr[i] = fpr[i][indxs] thresh[i] = thresh[i][indxs] thresh_txt[i] = ['T=%.4f' % t for t in thresh[i]] if labels is None: labels = ['C%d' % n for n in range(1, n_classes+1)] labels = [str(x) for x in labels] # convert labels to str # make traces traces = [] [traces.append(go.Scatter(y=tpr[i], x=fpr[i], name=labels[i] + '. AUC= %.2f' % (roc_auc[i]), text=thresh_txt[i], legendgroup=str(i), line={'width': 1})) for i in range(n_classes)] traces += [go.Scatter(y=[0, 1], x=[0, 1], name='Random classifier', line={'width': 1, 'dash': 'dot'})] if threshdot is not None: for i in range(n_classes): c_indx = (np.abs(thresh[i]-threshdot)).argmin() traces += [go.Scatter(x=[fpr[i][c_indx]]*2, y=[tpr[i][c_indx]]*2, mode='markers', name='Threshold', legendgroup=str(i), showlegend=False)] # make layout layout = go.Layout(title=title, xaxis={'title': 'FPR'}, yaxis={'title': 'TPR'}, legend=dict(x=1), hovermode='closest', ) fig = go.Figure(data=traces, layout=layout) return plotOut(fig, plot)
a8ca19b92f7f3539d8550cf63121a46d36e59cbf
3,952
def fasta_to_dict(fasta_file): """Consolidate deflines and sequences from FASTA as dictionary""" deflines = [] sequences = [] sequence = "" with open(fasta_file, "r") as file: for line in file: if line.startswith(">"): deflines.append(line.rstrip().lstrip('>')) if sequence: sequences.append(sequence) sequence = "" else: sequence += line.rstrip() sequences.append(sequence) fasta_dict = {} for x, defline in enumerate(deflines): fasta_dict[defline]=sequences[x] return fasta_dict
e1740ad29672e5239d575df963e21a0bf5caee08
3,953
def find_roots(graph): """ return nodes which you can't traverse down any further """ return [n for n in graph.nodes() if len(list(graph.predecessors(n))) == 0]
7dbf755d2b76f066370d149638433c6693e8e7b9
3,954