content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def _is_test_file(filesystem, dirname, filename):
"""Return true if the filename points to a test file."""
return (_has_supported_extension(filesystem, filename) and
not is_reference_html_file(filename)) | ba161818a6f2497e1122519945f255d56488f231 | 3,955 |
def kitchen_door_device() -> Service:
"""Build the kitchen door device."""
transitions: TransitionFunction = {
"unique": {
"open_door_kitchen": "unique",
"close_door_kitchen": "unique",
},
}
final_states = {"unique"}
initial_state = "unique"
return build_deterministic_service_from_transitions(transitions, initial_state, final_states) | 700a1d92087ac91f5311b4c55380f1a6f18860b4 | 3,956 |
import http
def sql_connection_delete(
request: http.HttpRequest,
pk: int
) -> http.JsonResponse:
"""AJAX processor for the delete SQL connection operation.
:param request: AJAX request
:param pk: primary key for the connection
:return: AJAX response to handle the form
"""
conn = models.SQLConnection.objects.filter(pk=pk).first()
if not conn:
# The view is not there. Redirect to workflow detail
return http.JsonResponse({'html_redirect': reverse('home')})
return services.delete(
request,
conn,
reverse('connection:sqlconn_delete', kwargs={'pk': conn.id})) | 754e7d7f15a0be843b89c89446a7d4f39bc1401f | 3,957 |
from sage.all import solve
import html
def simpson_integration(
title = text_control('<h2>Simpson integration</h2>'),
f = input_box(default = 'x*sin(x)+x+1', label='$f(x)=$'),
n = slider(2,100,2,6, label='# divisions'),
interval_input = selector(['from slider','from keyboard'], label='Integration interval', buttons=True),
interval_s = range_slider(-10,10,default=(0,10), label="slider: "),
interval_g = input_grid(1,2,default=[[0,10]], label="keyboard: "),
output_form = selector(['traditional','table','none'], label='Computations form', buttons=True)):
"""
Interact explaining the simpson method for definite integrals, based on work by
Lauri Ruotsalainen, 2010 (based on the application "Numerical integrals with various rules"
by Marshall Hampton and Nick Alexander)
INPUT:
- ``f`` -- function of variable x to integrate
- ``n`` -- number of divisions (mult. of 2)
- ``interval_input`` -- swithes the input for interval between slider and keyboard
- ``interval_s`` -- slider for interval to integrate
- ``interval_g`` -- input grid for interval to integrate
- ``output_form`` -- the computation is formatted in a traditional form, in a table or missing
EXAMPLES:
Invoked in the notebook, the following command will produce
the fully formatted interactive mathlet. In the command line,
it will simply return the underlying HTML and Sage code which
creates the mathlet::
sage: interacts.calculus.simpson_integration()
<html>...</html>
"""
x = SR.var('x')
f = symbolic_expression(f).function(x)
if interval_input == 'from slider':
interval = interval_s
else:
interval = interval_g[0]
def parabola(a, b, c):
A, B, C = SR.var("A, B, C")
K = solve([A*a[0]**2+B*a[0]+C==a[1], A*b[0]**2+B*b[0]+C==b[1], A*c[0]**2+B*c[0]+C==c[1]], [A, B, C], solution_dict=True)[0]
f = K[A]*x**2+K[B]*x+K[C]
return f
xs = []; ys = []
dx = float(interval[1]-interval[0])/n
for i in range(n+1):
xs.append(interval[0] + i*dx)
ys.append(f(x=xs[-1]))
parabolas = Graphics()
lines = Graphics()
for i in range(0, n-1, 2):
p = parabola((xs[i],ys[i]),(xs[i+1],ys[i+1]),(xs[i+2],ys[i+2]))
parabolas += plot(p(x=x), (x, xs[i], xs[i+2]), color="red")
lines += line([(xs[i],ys[i]), (xs[i],0), (xs[i+2],0)],color="red")
lines += line([(xs[i+1],ys[i+1]), (xs[i+1],0)], linestyle="-.", color="red")
lines += line([(xs[-1],ys[-1]), (xs[-1],0)], color="red")
html(r'Function $f(x)=%s$'%latex(f(x)))
show(plot(f(x),x,interval[0],interval[1]) + parabolas + lines, xmin = interval[0], xmax = interval[1])
numeric_value = integral_numerical(f,interval[0],interval[1])[0]
approx = dx/3 *(ys[0] + sum([4*ys[i] for i in range(1,n,2)]) + sum([2*ys[i] for i in range(2,n,2)]) + ys[n])
html(r'Integral value to seven decimal places is: $\displaystyle\int_{%.2f}^{%.2f} {f(x) \, \mathrm{d}x} = %.6f$'%
(interval[0],interval[1],
N(numeric_value,digits=7)))
if output_form == 'traditional':
sum_formula_html = r"\frac{d}{3} \cdot \left[ f(x_0) + %s + f(x_{%s})\right]" % (
' + '.join([ r"%s \cdot f(x_{%s})" %(i%2*(-2)+4, i+1) for i in range(0,n-1)]),
n
)
sum_placement_html = r"\frac{%.2f}{3} \cdot \left[ f(%.2f) + %s + f(%.2f)\right]" % (
dx,
N(xs[0],digits=5),
' + '.join([ r"%s \cdot f(%.2f)" %(i%2*(-2)+4, N(xk, digits=5)) for i, xk in enumerate(xs[1:-1])]),
N(xs[n],digits=5)
)
sum_values_html = r"\frac{%.2f}{3} \cdot \left[ %s %s %s\right]" %(
dx,
"%.2f + "%N(ys[0],digits=5),
' + '.join([ r"%s \cdot %.2f" %(i%2*(-2)+4, N(yk, digits=5)) for i, yk in enumerate(ys[1:-1])]),
" + %.2f"%N(ys[n],digits=5)
)
html(r'''
<div class="math">
\begin{align*}
\int_{%.2f}^{%.2f} {f(x) \, \mathrm{d}x}
& \approx %s \\
& = %s \\
& = %s \\
& = %.6f
\end{align*}
</div>
''' % (
interval[0], interval[1],
sum_formula_html, sum_placement_html, sum_values_html,
N(approx,digits=7)
))
elif output_form == 'table':
s = [['$i$','$x_i$','$f(x_i)$','$m$','$m\cdot f(x_i)$']]
for i in range(0,n+1):
if i==0 or i==n:
j = 1
else:
j = (i+1)%2*(-2)+4
s.append([i, xs[i], ys[i],j,N(j*ys[i])])
s.append(['','','','$\sum$','$%s$'%latex(3/dx*approx)])
pretty_print(table(s, header_row=True))
html(r'$\int_{%.2f}^{%.2f} {f(x) \, \mathrm{d}x}\approx\frac {%.2f}{3}\cdot %s=%s$'%
(interval[0], interval[1],dx,latex(3/dx*approx),latex(approx))) | 45e575e9ebda475a613555dfcb43ae7d739131c9 | 3,958 |
def object_reactions_form_target(object):
"""
Get the target URL for the object reaction form.
Example::
<form action="{% object_reactions_form_target object %}" method="post">
"""
ctype = ContentType.objects.get_for_model(object)
return reverse("comments-ink-react-to-object", args=(ctype.id, object.id)) | 5bcd4d9fa8db783c78668820326dd55038ef609e | 3,959 |
def check_args(**kwargs):
"""
Check arguments for themis load function
Parameters:
**kwargs : a dictionary of arguments
Possible arguments are: probe, level
The arguments can be: a string or a list of strings
Invalid argument are ignored (e.g. probe = 'g', level='l0', etc.)
Invalid argument names are ignored (e.g. 'probes', 'lev', etc.)
Returns: list
Prepared arguments in the same order as the inputs
Examples:
res_probe = check_args(probe='a')
(res_probe, res_level) = check_args(probe='a b', level='l2')
(res_level, res_probe) = check_args(level='l1', probe=['a', 'b'])
# With incorrect argument probes:
res = check_args(probe='a', level='l2', probes='a b') : res = [['a'], ['l2']]
"""
valid_keys = {'probe', 'level'}
valid_probe = {'a', 'b', 'c', 'd', 'e'}
valid_level = {'l1', 'l2'}
# Return list of values from arg_list that are only included in valid_set
def valid_list(arg_list, valid_set):
valid_res = []
for arg in arg_list:
if arg in valid_set:
valid_res.append(arg)
return valid_res
# Return list
res = []
for key, values in kwargs.items():
if key.lower() not in valid_keys:
continue
# resulting list
arg_values = []
# convert string into list, or ignore the argument
if isinstance(values, str):
values = [values]
elif not isinstance(values, list):
continue
for value in values:
arg_values.extend(value.strip().lower().split())
# simple validation of the arguments
if key.lower() == 'probe':
arg_values = valid_list(arg_values, valid_probe)
if key.lower() == 'level':
arg_values = valid_list(arg_values, valid_level)
res.append(arg_values)
return res | 3e25dc43df0a80a9a16bcca0729ee0b170a9fb89 | 3,960 |
def make_theta_mask(aa):
""" Gives the theta of the bond originating each atom. """
mask = np.zeros(14)
# backbone
mask[0] = BB_BUILD_INFO["BONDANGS"]['ca-c-n'] # nitrogen
mask[1] = BB_BUILD_INFO["BONDANGS"]['c-n-ca'] # c_alpha
mask[2] = BB_BUILD_INFO["BONDANGS"]['n-ca-c'] # carbon
mask[3] = BB_BUILD_INFO["BONDANGS"]['ca-c-o'] # oxygen
# sidechain
for i, theta in enumerate(SC_BUILD_INFO[aa]['angles-vals']):
mask[4 + i] = theta
return mask | f33c1b46150ed16154c9a10c92f30cf9f60c2f51 | 3,961 |
def create_keypoint(n,*args):
"""
Parameters:
-----------
n : int
Keypoint number
*args: tuple, int, float
*args must be a tuple of (x,y,z) coordinates or x, y and z
coordinates as arguments.
::
# Example
kp1 = 1
kp2 = 2
create_keypoint(kp1,(0,0,0)) # x,y,z as tuple
create_keypoint(kp2,1,1,1) # x,y,z as arguments
"""
if len(args)==1 and isinstance(args[0],tuple):
x,y,z = args[0][0],args[0][1],args[0][2]
else:
x,y,z = args[0], args[1], args[2]
_kp = "K,%g,%g,%g,%g"%(n,x,y,z)
return _kp | e498e36418ec19d2feef122d3c42a346f9de4af7 | 3,962 |
import time
def wait_for_sidekiq(gl):
"""
Return a helper function to wait until there are no busy sidekiq processes.
Use this with asserts for slow tasks (group/project/user creation/deletion).
"""
def _wait(timeout=30, step=0.5):
for _ in range(timeout):
time.sleep(step)
busy = False
processes = gl.sidekiq.process_metrics()["processes"]
for process in processes:
if process["busy"]:
busy = True
if not busy:
return True
return False
return _wait | 7fe98f13e9474739bfe4066f20e5f7d813ee4476 | 3,963 |
def insert_node_after(new_node, insert_after):
"""Insert new_node into buffer after insert_after."""
next_element = insert_after['next']
next_element['prev'] = new_node
new_node['next'] = insert_after['next']
insert_after['next'] = new_node
new_node['prev'] = insert_after
return new_node | e03fbd7bd44a3d85d36069d494464b9237bdd306 | 3,965 |
def apply_wavelet_decomposition(mat, wavelet_name, level=None):
"""
Apply 2D wavelet decomposition.
Parameters
----------
mat : array_like
2D array.
wavelet_name : str
Name of a wavelet. E.g. "db5"
level : int, optional
Decomposition level. It is constrained to return an array with
a minimum size of larger than 16 pixels.
Returns
-------
list
The first element is an 2D-array, next elements are tuples of three
2D-arrays. i.e [mat_n, (cH_level_n, cV_level_n, cD_level_n), ...,
(cH_level_1, cV_level_1, cD_level_1)]
"""
(nrow, ncol) = mat.shape
max_level = int(
min(np.floor(np.log2(nrow / 16.0)), np.floor(np.log2(ncol / 16.0))))
if (level is None) or (level > max_level) or (level < 1):
level = max_level
return pywt.wavedec2(mat, wavelet_name, level=level) | d91f534d605d03c364c89383629a7142f4705ac8 | 3,966 |
import math
def ACE(img, ratio=4, radius=300):
"""The implementation of ACE"""
global para
para_mat = para.get(radius)
if para_mat is not None:
pass
else:
size = radius * 2 + 1
para_mat = np.zeros((size, size))
for h in range(-radius, radius + 1):
for w in range(-radius, radius + 1):
if not h and not w:
continue
para_mat[radius + h, radius + w] = 1.0 / \
math.sqrt(h ** 2 + w ** 2)
para_mat /= para_mat.sum()
para[radius] = para_mat
h, w = img.shape[:2]
p_h, p_w = [0] * radius + list(range(h)) + [h - 1] * radius, \
[0] * radius + list(range(w)) + [w - 1] * radius
temp = img[np.ix_(p_h, p_w)]
res = np.zeros(img.shape)
for i in range(radius * 2 + 1):
for j in range(radius * 2 + 1):
if para_mat[i][j] == 0:
continue
res += (para_mat[i][j] *
np.clip((img - temp[i:i + h, j:j + w]) * ratio, -1, 1))
return res | 6809067ec1aed0f20d62d672fcfb554e0ab51f28 | 3,967 |
def classname(object, modname):
"""Get a class name and qualify it with a module name if necessary."""
name = object.__name__
if object.__module__ != modname:
name = object.__module__ + '.' + name
return name | af4e05b0adaa9c90bb9946edf1dba67a40e78323 | 3,968 |
import time
def demc_block(y, pars, pmin, pmax, stepsize, numit, sigma, numparams, cummodels, functype, myfuncs, funcx, iortholist, fits, gamma=None, isGR=True, ncpu=1):
"""
This function uses a differential evolution Markov chain with block updating to assess uncertainties.
PARAMETERS
----------
y: Array containing dependent data
Params: Array of initial guess for parameters
#Pmin: Array of parameter minimum values
#Pmax: Array of parameter maximum values
stepsize: Array of 1-sigma change in parameter per iteration
Numit: Number of iterations to perform
Sigma: Standard deviation of data noise in y
Numparams: Number of parameters for each model
Cummodels: Cumulative number of models used
Functype: Define function type (eclipse, ramp, ip, etc), see models.py
Myfuncs: Pointers to model functions
Funcx: Array of x-axis values for myfuncs
fit: List of fit objects
gamma: Multiplcation factor in parameter differential, establishes acceptance rate
OUTPUTS
-------
This function returns an array of the best fitting parameters,
an array of all parameters over all iterations, and numaccept.
REFERENCES
----------
Cajo J. F. Ter Braak, "Genetic algorithms and Markov Chain Monte Carlo: Differential Evolution Markov Chain makes Bayesian computing easy," Biometrics, 2006.
HISTORY
-------
Adapted from mcmc.py
Kevin Stevenson, UChicago August 2012
"""
global fit
fit = fits
params = np.copy(pars)
nchains, nump = params.shape
nextp = np.copy(params) #Proposed parameters
bestp = np.copy(params[0]) #Best-fit parameters
pedit = np.copy(params) #Editable parameters
numaccept = 0
allparams = np.zeros((nump, nchains, numit))
inotfixed = np.where(stepsize != 0)[0]
ishare = np.where(stepsize < 0)[0]
#ifree = np.where(stepsize > 0)[0]
outside = np.zeros((nchains, nump))
numevents = len(fit)
intsteps = np.min((numit/5,1e5))
isrednoise = False
wavelet = None
noisefunc = None
#UPDATE PARAMTER(S) EQUAL TO OTHER PARAMETER(S)
if (ishare.size > 0):
for s in range(ishare.size):
params[:,ishare[s]] = params[:,int(abs(stepsize[ishare[s]])-1)]
#Define blocks
blocks = []
for j in range(numevents):
#Build list of blocks
blocks = np.concatenate((blocks, fit[j].blocks))
for i in range(cummodels[j],cummodels[j+1]):
if functype[i] == 'noise':
# Set up for modified chi-squared calculation using correlated noise
isrednoise = True
wavelet = fit[j].etc[k]
noisefunc = myfuncs[i]
blocks = blocks.astype(int)
iblocks = []
eps = []
numblocks = blocks.max() + 1
numbp = np.zeros(numblocks)
ifree = [[] for i in range(numblocks)]
for b in range(numblocks):
#Map block indices
whereb = np.where(blocks == b)[0]
iblocks.append(whereb)
#Locate indices of free parameters in each block
for w in whereb:
ifree[b] = np.concatenate((ifree[b],numparams[w]+np.where(stepsize[numparams[w]:numparams[w+1]] > 0)[0])).astype(int)
#Calculate number of free parameters per block
numbp[b] += len(ifree[b])
eps.append(npr.normal(0, stepsize[ifree[b]]/100., [numit,numbp[b]]))
print("Number of free parameters per block:")
print(numbp)
numa = np.zeros(numblocks)
if gamma == None:
gamma = 2.38/np.sqrt(2.*numbp)
print("gamma:")
print(gamma)
#Calc chi-squared for model type using current params
currchisq = np.zeros(nchains)
currmodel = [[] for i in range(numevents)]
for j in range(numevents):
currmodel[j], noisepars = calcModel(nchains, functype, myfuncs, pedit, params, iortholist[j],
funcx, cummodels, numparams, j)
currchisq += calcChisq(y[j], sigma[j], currmodel[j], nchains, params, j, noisepars, isrednoise, wavelet, noisefunc)
bestchisq = currchisq[0]
#GENERATE RANDOM NUMBERS FOR MCMC
numnotfixed = len(inotfixed)
unif = npr.rand(numit,nchains)
randchains = npr.randint(0,nchains,[numit,nchains,2])
#START TIMER
clock = timer.Timer(numit,progress = np.arange(0.05,1.01,0.05))
#Run Differential Evolution Monte Carlo algorithm 'numit' times
for m in range(numit):
#Select next event (block) to update
b = m % numblocks
#Remove model component(s) that are taking a step
pedit = np.copy(params)
nextmodel = currmodel[:]
for j in range(numevents):
ymodels, noisepars = calcModel(nchains, functype, myfuncs, pedit, params, iortholist[j],
funcx, cummodels, numparams, j, iblocks[b])
nextmodel[j] = np.divide(currmodel[j],ymodels)
#Generate next step using differential evolution
for n in range(nchains):
rand1, rand2 = randchains[m,n]
while rand1 == n or rand2 == n or rand1 == rand2:
rand1, rand2 = npr.randint(0,nchains,2)
nextp[n,ifree[b]] = params[n,ifree[b]] + gamma[b]*(params[rand1,ifree[b]]-params[rand2,ifree[b]]) + eps[b][m]
#CHECK FOR NEW STEPS OUTSIDE BOUNDARIES
ioutside = np.where(np.bitwise_or(nextp[n] < pmin, nextp[n] > pmax))[0]
if (len(ioutside) > 0):
nextp[n,ioutside] = np.copy(params[n,ioutside])
outside[n,ioutside] += 1
#UPDATE PARAMTER(S) EQUAL TO OTHER PARAMETER(S)
if (ishare.size > 0):
for s in range(ishare.size):
nextp[:,ishare[s]] = nextp[:,int(abs(stepsize[ishare[s]])-1)]
#COMPUTE NEXT CHI SQUARED AND ACCEPTANCE VALUES
pedit = np.copy(nextp)
nextchisq = np.zeros(nchains)
for j in range(numevents):
ymodels, noisepars = calcModel(nchains, functype, myfuncs, pedit, params, iortholist[j], funcx, cummodels, numparams, j, iblocks[b])
nextmodel[j] = np.multiply(nextmodel[j],ymodels)
nextchisq += calcChisq(y[j], sigma[j], nextmodel[j], nchains, params, j, noisepars, isrednoise, wavelet, noisefunc)
#CALCULATE ACCEPTANCE PROBABILITY
accept = np.exp(0.5 * (currchisq - nextchisq))
#print(b,currchisq[0], nextchisq[0], accept[0])
for n in range(nchains):
if accept[n] >= 1:
#ACCEPT BETTER STEP
numaccept += 1
numa[b] += 1
params[n] = np.copy(nextp[n])
currchisq[n] = np.copy(nextchisq[n])
if (currchisq[n] < bestchisq):
bestp = np.copy(params[n])
bestchisq = np.copy(currchisq[n])
elif unif[m,n] <= accept[n]:
#ACCEPT WORSE STEP
numaccept += 1
numa[b] += 1
params[n] = np.copy(nextp[n])
currchisq[n] = np.copy(nextchisq[n])
allparams[:,:,m] = params.T
#PRINT INTERMEDIATE INFO
if ((m+1) % intsteps == 0) and (m > 0):
print("\n" + time.ctime())
#print("Number of times parameter tries to step outside its prior:")
#print(outside)
print("Current Best Parameters: ")
print(bestp)
#Apply Gelman-Rubin statistic
if isGR:
#Check for no accepted steps in each chain
#stdev = np.std(allparams[inotfixed],axis=1)
#ichain = np.where(stdev > 0.)[0]
#Call test
#psrf, meanpsrf = gr.convergetest(allparams[inotfixed,ichain,:m+1], len(ichain))
psrf, meanpsrf = gr.convergetest(allparams[inotfixed,:,:m+1], nchains)
numconv = np.sum(np.bitwise_and(psrf < 1.01, psrf >= 1.00))
print("Gelman-Rubin statistic for free parameters:")
print(psrf)
if numconv == numnotfixed: #and m >= 1e4:
print("All parameters have converged to within 1% of unity. Halting MCMC.")
allparams = allparams[:,:,:m+1]
break
clock.check(m+1)
print("Acceptance rate per block (%):")
print(100.*numa*numblocks/numit/nchains)
allparams = np.reshape(allparams,(nump, (m+1)*nchains))
return allparams, bestp, numaccept, (m+1)*nchains | 414168976c732d66165e19c356800158b2056a1e | 3,969 |
def shape5d(a, data_format="NDHWC"):
"""
Ensuer a 5D shape, to use with 5D symbolic functions.
Args:
a: a int or tuple/list of length 3
Returns:
list: of length 5. if ``a`` is a int, return ``[1, a, a, a, 1]``
or ``[1, 1, a, a, a]`` depending on data_format "NDHWC" or "NCDHW".
"""
s2d = shape3d(a)
if data_format == "NDHWC":
return [1] + s2d + [1]
else:
return [1, 1] + s2d | fe6d974791a219c45a543a4d853f5d44770d0c9a | 3,970 |
def resnet152(pretrained=False, num_classes=1000, ifmask=True, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
block = Bottleneck
model = ResNet(block, [3, 8, 36, 3], num_classes=1000, **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
model.fc = nn.Linear(512 * block.expansion, num_classes)
if ifmask:
model.lmask = LearnableMaskLayer(feature_dim=512* block.expansion, num_classes=num_classes)
return model | 8b72a8e284d098a089448e4a10d5f393345d7278 | 3,972 |
def register_driver(cls):
"""
Registers a driver class
Args:
cls (object): Driver class.
Returns:
name: driver name
"""
_discover_on_demand()
if not issubclass(cls, BaseDriver):
raise QiskitChemistryError('Could not register class {} is not subclass of BaseDriver'.format(cls))
return _register_driver(cls) | 82eca23a5cf5caf9a028d040ac523aa6e20ae01d | 3,973 |
def ceil(array, value):
"""
Returns the smallest index i such that array[i - 1] < value.
"""
l = 0
r = len(array) - 1
i = r + 1
while l <= r:
m = l + int((r - l) / 2)
if array[m] >= value:
# This mid index is a candidate for the index we are searching for
# so save it, and continue searching for a smaller candidate on the
# left side.
i = m
r = m - 1
else:
# This mid index is not a candidate so continue searching the right
# side.
l = m + 1
return i | 689148cebc61ee60c99464fde10e6005b5d901a9 | 3,974 |
import copy
def FindOrgByUnionEtIntersection(Orgs):
"""Given a set of organizations considers all the possible unions and intersections to find all the possible organizations"""
NewNewOrgs=set([])
KnownOrgs=copy.deepcopy(Orgs)
for h in combinations(Orgs,2):
#checks only if one is not contained in the other
NewNewOrgs|=frozenset([OrgLibrary.check(h[0]|h[1])])
#checks only if one is not contained in the other
NewNewOrgs|=frozenset([OrgLibrary.check(h[0]&h[1])])
FoundOrgs=NewNewOrgs
NewOrgs=NewNewOrgs-KnownOrgs
while NewOrgs:
NewNewOrgs=set([])
for h in combinations(NewOrgs,2):
#checks only if one is not contained in the other
NewNewOrgs|=frozenset([OrgLibrary.check(h[0]|h[1])])
#checks only if one is not contained in the other
NewNewOrgs|=frozenset([OrgLibrary.check(h[0]&h[1])])
for h in NewOrgs:
for t in KnownOrgs:
#checks only if one is not contained in the other
NewNewOrgs|=frozenset([OrgLibrary.check(h|t)])
#checks only if one is not contained in the other
NewNewOrgs|=frozenset([OrgLibrary.check(h&t)])
KnownOrgs|=NewOrgs
NewOrgs=NewNewOrgs-KnownOrgs#NewOrgs is what we actually found
KnownOrgs-=Orgs
return KnownOrgs | 6e2450f49522186094b205dd86d8e698aca708bc | 3,975 |
def get_sf_fa(
constraint_scale: float = 1
) -> pyrosetta.rosetta.core.scoring.ScoreFunction:
"""
Get score function for full-atom minimization and scoring
"""
sf = pyrosetta.create_score_function('ref2015')
sf.set_weight(
pyrosetta.rosetta.core.scoring.ScoreType.atom_pair_constraint,
5.0 * constraint_scale)
sf.set_weight(pyrosetta.rosetta.core.scoring.ScoreType.dihedral_constraint,
1.0 * constraint_scale)
sf.set_weight(pyrosetta.rosetta.core.scoring.ScoreType.angle_constraint,
1.0 * constraint_scale)
return sf | b82b352f3fc031cc18951b037779a71247e5095f | 3,976 |
from typing import Optional
from typing import List
def make_keypoint(class_name: str, x: float, y: float, subs: Optional[List[SubAnnotation]] = None) -> Annotation:
"""
Creates and returns a keypoint, aka point, annotation.
Parameters
----------
class_name : str
The name of the class for this ``Annotation``.
x : float
The ``x`` value of the point.
y : float
The ``y`` value of the point.
subs : Optional[List[SubAnnotation]], default: None
List of ``SubAnnotation``s for this ``Annotation``.
Returns
-------
Annotation
A point ``Annotation``.
"""
return Annotation(AnnotationClass(class_name, "keypoint"), {"x": x, "y": y}, subs or []) | bc4a96c8376890eaaa2170ab1cc1401dcb2781a4 | 3,977 |
def plane_mean(window):
"""Plane mean kernel to use with convolution process on image
Args:
window: the window part to use from image
Returns:
Normalized residual error from mean plane
Example:
>>> from ipfml.filters.kernels import plane_mean
>>> import numpy as np
>>> window = np.arange(9).reshape([3, 3])
>>> result = plane_mean(window)
>>> (result < 0.0001)
True
"""
window = np.array(window)
width, height = window.shape
# prepare data
nb_elem = width * height
xs = [int(i / height) for i in range(nb_elem)]
ys = [i % height for i in range(nb_elem)]
zs = np.array(window).flatten().tolist()
# get residual (error) from mean plane computed
tmp_A = []
tmp_b = []
for i in range(len(xs)):
tmp_A.append([xs[i], ys[i], 1])
tmp_b.append(zs[i])
b = np.matrix(tmp_b).T
A = np.matrix(tmp_A)
fit = (A.T * A).I * A.T * b
errors = b - A * fit
residual = np.linalg.norm(errors)
return residual | 7383078ec3c88ac52728cddca9a725f6211b2d2c | 3,978 |
def _eval_field_amplitudes(lat, k=5, n=1, amp=1e-5, field='v',
wave_type='Rossby', parameters=Earth):
"""
Evaluates the latitude dependent amplitudes at a given latitude point.
Parameters
----------
lat : Float, array_like or scalar
latitude(radians)
k : Integer, scalar
spherical wave-number (dimensionless)
Default : 5
n : Integer, scaler
wave-mode (dimensionless)
Default : 1
amp : Float, scalar
wave amplitude(m/sec)
Default : 1e-5
field : str
pick 'phi' for geopotential height,
'u' for zonal velocity and 'v' for meridional velocity
Defualt : 'v'
wave_type: str
choose Rossby waves or WIG waves or EIG waves.
Defualt: Rossby
parameters: dict
planetary parameters dict with keys:
angular_frequency: float, (rad/sec)
gravitational_acceleration: float, (m/sec^2)
mean_radius: float, (m)
layer_mean_depth: float, (m)
Defualt: Earth's parameters defined above
Returns
-------
Either u_hat(m/sec), v_hat(m/sec) or p_hat(m^2/sec^2) : Float, array_like
or scalar Evaluation of the amplitudes for the zonal velocity,
or meridional velocity or the geopotential height respectivly.
Notes
-----
This function supports k>=1 and n>=1 inputs only.
Special treatments are required for k=0 and n=-1,0/-.
"""
if not isinstance(wave_type, str):
raise TypeError(str(wave_type) + ' should be string...')
# unpack dictionary into vars:
OMEGA = _unpack_parameters(parameters, 'angular_frequency')
G = _unpack_parameters(parameters, 'gravitational_acceleration')
A = _unpack_parameters(parameters, 'mean_radius')
H0 = _unpack_parameters(parameters, 'layer_mean_depth')
# Lamb's parameter:
Lamb = (2. * OMEGA * A)**2 / (G * H0)
# evaluate wave frequency:
all_omegas = _eval_omega(k, n, parameters)
# check for validity of wave_type:
if wave_type not in all_omegas:
raise KeyError(wave_type + ' should be Rossby, EIG or WIG...')
omega = all_omegas[wave_type]
# evaluate the meridional velocity amp first:
v_hat = _eval_meridional_velocity(lat, Lamb, n, amp)
# evaluate functions for u and phi:
v_hat_plus_1 = _eval_meridional_velocity(lat, Lamb, n + 1, amp)
v_hat_minus_1 = _eval_meridional_velocity(lat, Lamb, n - 1, amp)
# Eq. (6a) in the text
if field == 'v':
return v_hat
# Eq. (6b) in the text
elif field == 'u':
u_hat = (- ((n + 1) / 2.0)**0.5 * (omega / (G * H0)**0.5 + k / A) *
v_hat_plus_1 - ((n) / 2.0)**0.5 * (omega / (G * H0)**0.5 -
k / A) * v_hat_minus_1)
# pre-factors
u_hat = G * H0 * Lamb**0.25 / \
(1j * A * (omega**2 - G * H0 * (k / A)**2)) * u_hat
return u_hat
# Eq. (6c) in the text
elif field == 'phi':
p_hat = (- ((n + 1) / 2.0)**0.5 * (omega + (G * H0)**0.5 * k / A) *
v_hat_plus_1 + ((n) / 2.0)**0.5 * (omega - (G * H0)**0.5 *
k / A) * v_hat_minus_1)
p_hat = G * H0 * Lamb**0.25 / \
(1j * A * (omega**2 - G * H0 * (k / A)**2)) * p_hat
return p_hat
else:
raise KeyError('field must be u, v or phi') | db74c50ef6328055ab2a59faecba72cc28afd136 | 3,979 |
def get_uframe_info():
""" Get uframe configuration information. (uframe_url, uframe timeout_connect and timeout_read.) """
uframe_url = current_app.config['UFRAME_URL'] + current_app.config['UFRAME_URL_BASE']
timeout = current_app.config['UFRAME_TIMEOUT_CONNECT']
timeout_read = current_app.config['UFRAME_TIMEOUT_READ']
return uframe_url, timeout, timeout_read | 921f42d59af265152d7ce453a19cb8057af8415e | 3,980 |
def yd_process_results(
mentions_dataset,
predictions,
processed,
sentence2ner,
include_offset=False,
mode='default',
rank_pred_score=True,
):
"""
Function that can be used to process the End-to-End results.
:return: dictionary with results and document as key.
"""
assert mode in ['best_candidate', 'remove_invalid', 'default']
res = {}
for doc in mentions_dataset:
if doc not in predictions:
# No mentions found, we return empty list.
continue
pred_doc = predictions[doc]
ment_doc = mentions_dataset[doc]
text = processed[doc][0]
res_doc = []
for pred, ment in zip(pred_doc, ment_doc):
sent = ment["sentence"]
idx = ment["sent_idx"]
start_pos = ment["pos"]
mention_length = int(ment["end_pos"] - ment["pos"])
if pred["prediction"] != "NIL":
candidates = [
{
'cand_rank': cand_rank,
'cand_name': cand_name,
'cand_score': cand_score,
}
for cand_rank, (cand_name, cand_mask, cand_score)
in enumerate(zip(pred['candidates'], pred['masks'], pred['scores']))
if float(cand_mask) == 1
]
if rank_pred_score:
candidates = sorted(candidates, key=lambda x: float(x['cand_score']), reverse=True)
# make sure that ed_model predict is always in the first place.
for cand_index, candidate in enumerate(candidates):
if candidate['cand_name'] == pred['prediction']:
if cand_index != 0:
candidates[0], candidates[cand_index] = candidates[cand_index], candidates[0]
break
if len(candidates) == 1:
temp = (
start_pos,
mention_length,
pred["prediction"],
ment["ngram"],
pred["conf_ed"],
ment["conf_md"] if "conf_md" in ment else 0.0,
ment["tag"] if "tag" in ment else "NULL",
[tmp_candidate['cand_name'] for tmp_candidate in candidates],
)
res_doc.append(temp)
else:
if mode == 'best_candidate':
for cand_index, candidate in enumerate(candidates):
tmp_cand_name = candidate['cand_name'].replace('_', ' ')
if sentence2ner is not None and \
tmp_cand_name in sentence2ner and \
ment["tag"] != sentence2ner[tmp_cand_name]:
continue
else:
temp = (
start_pos,
mention_length,
candidate['cand_name'],
ment["ngram"],
pred["conf_ed"],
ment["conf_md"] if "conf_md" in ment else 0.0,
ment["tag"] if "tag" in ment else "NULL",
[tmp_candidate['cand_name'] for tmp_candidate in candidates],
)
res_doc.append(temp)
break
elif mode == 'remove_invalid':
tmp_cand_name = pred["prediction"].replace('_', '')
if sentence2ner is not None and \
tmp_cand_name in sentence2ner and \
ment["tag"] != sentence2ner[tmp_cand_name]:
pass
else:
temp = (
start_pos,
mention_length,
pred["prediction"],
ment["ngram"],
pred["conf_ed"],
ment["conf_md"] if "conf_md" in ment else 0.0,
ment["tag"] if "tag" in ment else "NULL",
[tmp_candidate['cand_name'] for tmp_candidate in candidates],
)
res_doc.append(temp)
elif mode == 'default':
temp = (
start_pos,
mention_length,
pred["prediction"],
ment["ngram"],
pred["conf_ed"],
ment["conf_md"] if "conf_md" in ment else 0.0,
ment["tag"] if "tag" in ment else "NULL",
[tmp_candidate['cand_name'] for tmp_candidate in candidates],
)
res_doc.append(temp)
res[doc] = res_doc
return res | 32352c6aabea6750a6eb410d62232c96ad6b7e7d | 3,981 |
import re
def valid(f):
"""Formula f is valid if and only if it has no
numbers with leading zero, and evals true."""
try:
return not re.search(r'\b0[0-9]', f) and eval(f) is True
except ArithmeticError:
return False | 1303729dc53288ea157687f78d7266fa7cb2ce79 | 3,982 |
def user_info():
"""
渲染个人中心页面
:return:
"""
user = g.user
if not user:
return redirect('/')
data={
"user_info":user.to_dict()
}
return render_template("news/user.html",data=data) | 54c6c6122f28553f0550a744d5b51c26221f7c60 | 3,983 |
def _check_X(X, n_components=None, n_features=None, ensure_min_samples=1):
"""Check the input data X.
See https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/mixture/_base.py .
Parameters
----------
X : array-like, shape (n_samples, n_features)
n_components : integer
Returns
-------
X : array, shape (n_samples, n_features)
"""
X = check_array(X, dtype=[np.float64, np.float32],
ensure_min_samples=ensure_min_samples)
if n_components is not None and X.shape[0] < n_components:
raise ValueError('Expected n_samples >= n_components '
'but got n_components = %d, n_samples = %d'
% (n_components, X.shape[0]))
if n_features is not None and X.shape[1] != n_features:
raise ValueError("Expected the input data X have %d features, "
"but got %d features"
% (n_features, X.shape[1]))
return X | 429120092a963d1638e04cc96afdfe5979470fee | 3,984 |
def read_viirs_geo (filelist, ephemeris=False, hgt=False):
"""
Read JPSS VIIRS Geo files and return Longitude, Latitude, SatelliteAzimuthAngle, SatelliteRange, SatelliteZenithAngle.
if ephemeris=True, then return midTime, satellite position, velocity, attitude
"""
if type(filelist) is str: filelist = [filelist]
if len(filelist) ==0: return None
# Open user block to read Collection_Short_Name
with h5py.File(filelist[0], 'r') as fn:
user_block_size = fn.userblock_size
with open(filelist[0], 'rU') as fs:
ub_text = fs.read(user_block_size)
ub_xml = etree.fromstring(ub_text.rstrip('\x00'))
#print(ub_text)
#print(etree.tostring(ub_xml))
CollectionName = ub_xml.find('Data_Product/N_Collection_Short_Name').text+'_All'
#print(CollectionName)
# read the data
geos = [h5py.File(filename, 'r') for filename in filelist]
if not ephemeris:
Latitude = np.concatenate([f['All_Data'][CollectionName]['Latitude'][:] for f in geos])
Longitude = np.concatenate([f['All_Data'][CollectionName]['Longitude'][:] for f in geos])
SatelliteAzimuthAngle = np.concatenate([f['All_Data'][CollectionName]['SatelliteAzimuthAngle'][:] for f in geos])
SatelliteRange = np.concatenate([f['All_Data'][CollectionName]['SatelliteRange'][:] for f in geos])
SatelliteZenithAngle = np.concatenate([f['All_Data'][CollectionName]['SatelliteZenithAngle'][:] for f in geos])
Height = np.concatenate([f['All_Data'][CollectionName]['Height'][:] for f in geos])
if hgt:
return Longitude, Latitude, SatelliteAzimuthAngle, SatelliteRange, SatelliteZenithAngle, Height
else:
return Longitude, Latitude, SatelliteAzimuthAngle, SatelliteRange, SatelliteZenithAngle
if ephemeris:
MidTime = np.concatenate([f['All_Data'][CollectionName]['MidTime'] [:] for f in geos])
SCPosition = np.concatenate([f['All_Data'][CollectionName]['SCPosition'][:] for f in geos])
SCVelocity = np.concatenate([f['All_Data'][CollectionName]['SCVelocity'][:] for f in geos])
SCAttitude = np.concatenate([f['All_Data'][CollectionName]['SCAttitude'][:] for f in geos])
return MidTime, SCPosition, SCVelocity, SCAttitude | 1b8bbd34651e13aabe752fa8e3ac8c6679d757ca | 3,985 |
def _in_terminal():
"""
Detect if Python is running in a terminal.
Returns
-------
bool
``True`` if Python is running in a terminal; ``False`` otherwise.
"""
# Assume standard Python interpreter in a terminal.
if "get_ipython" not in globals():
return True
ip = globals()["get_ipython"]()
# IPython as a Jupyter kernel.
if hasattr(ip, "kernel"):
return False
return True | 9716c2a1809f21ed8b827026d29b4ad69045f8d5 | 3,986 |
import re
def create_text_pipeline(documents):
"""
Create the full text pre-processing pipeline using spaCy that first cleans the texts
using the cleaning utility functions and then also removes common stopwords and corpus
specific stopwords. This function is used specifically on abstracts.
:param documents: A list of textual documents to pre-process.
:return cleaned_docs: Pre-processed textual documents.
"""
# Load all the documents into a spaCy pipe.
docs = nlp.pipe(documents, disable=["ner"])
cleaned_docs = []
# Lowercase + custom stopwords list + remove one character tokens + remove symbolical and punctuation tokens.
for doc in docs:
lowercased_sents_without_stops = []
for sent in doc.sents:
lowercased_lemmas_one_sent = []
for token in sent:
if not token.pos_ in {"SYM", "PUNCT"} \
and len(token) > 1 \
and not has_links(token.lower_) \
and not check_for_mostly_numeric_string(token.lower_) \
and not re.sub(r'[^\w\s]', '', token.lemma_) in CUSTOM_STOPS:
lowercased_lemmas_one_sent.append(token.lower_)
sentence = ' '.join(lowercased_lemmas_one_sent)
lowercased_sents_without_stops.append(sentence)
cleaned_docs.append([s for s in lowercased_sents_without_stops])
return cleaned_docs | d31632c7c1d9a2c85362e05ae43f96f35993a746 | 3,987 |
def giou_dist(tlbrs1, tlbrs2):
"""Computes pairwise GIoU distance."""
assert tlbrs1.ndim == tlbrs2.ndim == 2
assert tlbrs1.shape[1] == tlbrs2.shape[1] == 4
Y = np.empty((tlbrs1.shape[0], tlbrs2.shape[0]))
for i in nb.prange(tlbrs1.shape[0]):
area1 = area(tlbrs1[i, :])
for j in range(tlbrs2.shape[0]):
iou = 0.
area_union = area1 + area(tlbrs2[j, :])
iw = min(tlbrs1[i, 2], tlbrs2[j, 2]) - max(tlbrs1[i, 0], tlbrs2[j, 0]) + 1
ih = min(tlbrs1[i, 3], tlbrs2[j, 3]) - max(tlbrs1[i, 1], tlbrs2[j, 1]) + 1
if iw > 0 and ih > 0:
area_inter = iw * ih
area_union -= area_inter
iou = area_inter / area_union
ew = max(tlbrs1[i, 2], tlbrs2[j, 2]) - min(tlbrs1[i, 0], tlbrs2[j, 0]) + 1
eh = max(tlbrs1[i, 3], tlbrs2[j, 3]) - min(tlbrs1[i, 1], tlbrs2[j, 1]) + 1
area_encls = ew * eh
giou = iou - (area_encls - area_union) / area_encls
Y[i, j] = (1. - giou) * 0.5
return Y | 40dcd6b59f350f167ab8cf31be425e98671243d4 | 3,988 |
def easter(date):
"""Calculate the date of the easter.
Requires a datetime type object. Returns a datetime object with the
date of easter for the passed object's year.
"""
if 1583 <= date.year < 10000: # Delambre's method
b = date.year / 100 # Take the firsts two digits of the year.
h = (((19 * (date.year % 19) + b - (b / 4)) -
((b - ((b + 8) / 25) + 1) / 3) + 15) % 30)
k = ((32 + 2 * (b % 4) + 2 * ((date.year % 100) / 4) - h -
((year % 100) % 4)) % 7)
m = ((date.year % 19) + 11 * h + 22 * k) / 451
return datetime.date(date.year, (h + k - 7 * m + 114) / 31,
((h + k - 7 * m + 114) % 31) + 1)
elif 1 <= date.year < 1583: # Julian calendar
d = (19 * (date.year % 19) + 15) % 30
e = (2 * (date.year % 4) + 4 * (date.year % 7) - d + 34) % 7
return datetime.date(date.year, (d + e + 114) / 31,
((d + e + 114) % 31) + 1)
else: # Negative value
raise ValueError, "Invalid year: %d." % year | 90bfaf56fb5164cdfb185f430ca11e7a5d9c2785 | 3,989 |
from typing import Dict
def state_mahalanobis(od: Mahalanobis) -> Dict:
"""
Mahalanobis parameters to save.
Parameters
----------
od
Outlier detector object.
"""
state_dict = {'threshold': od.threshold,
'n_components': od.n_components,
'std_clip': od.std_clip,
'start_clip': od.start_clip,
'max_n': od.max_n,
'cat_vars': od.cat_vars,
'ohe': od.ohe,
'd_abs': od.d_abs,
'clip': od.clip,
'mean': od.mean,
'C': od.C,
'n': od.n}
return state_dict | 7be602c5a0c89d67adc223c911abccd96d359664 | 3,990 |
def show_table(table, **options):
"""
Displays a table without asking for input from the user.
:param table: a :class:`Table` instance
:param options: all :class:`Table` options supported, see :class:`Table` documentation for details
:return: None
"""
return table.show_table(**options) | ec040d4a68d2b3cb93493f336daf1aa63289756e | 3,991 |
def create_client(name, func):
"""Creating resources/clients for all needed infrastructure: EC2, S3, IAM, Redshift
Keyword arguments:
name -- the name of the AWS service resource/client
func -- the boto3 function object (e.g. boto3.resource/boto3.client)
"""
print("Creating client for", name)
return func(name,
region_name=DWH_REGION,
aws_access_key_id=KEY,
aws_secret_access_key=SECRET) | a688c36918ebb4bc76ee1594c6f4cca638587d7d | 3,992 |
def hamming(s0, s1):
"""
>>> hamming('ABCD', 'AXCY')
2
"""
assert len(s0) == len(s1)
return sum(c0 != c1 for c0, c1 in zip(s0, s1)) | efaba3e6aca8349b0dc5df575b937ba67a148d0e | 3,993 |
import pickle
def load_embeddings(topic):
"""
Load TSNE 2D Embeddings generated from fitting BlazingText on the news articles.
"""
print(topic)
embeddings = pickle.load(
open(f'covidash/data/{topic}/blazing_text/embeddings.pickle', 'rb'))
labels = pickle.load(
open(f'covidash/data/{topic}/blazing_text/labels.pickle', 'rb'))
if '</s>' in labels:
labels.remove('</s>')
embeddings = embeddings[:len(labels), :]
return embeddings, labels | de2f74c7e467e0f057c10a0bc15b79ee9eecb40f | 3,994 |
def mosaic_cut(image, original_width, original_height, width, height, center,
ptop, pleft, pbottom, pright, shiftx, shifty):
"""Generates a random center location to use for the mosaic operation.
Given a center location, cuts the input image into a slice that will be
concatenated with other slices with the same center in order to construct
a final mosaicked image.
Args:
image: `Tensor` of shape [None, None, 3] that needs to be altered.
original_width: `float` value indicating the original width of the image.
original_height: `float` value indicating the original height of the image.
width: `float` value indicating the final width of the image.
height: `float` value indicating the final height of the image.
center: `float` value indicating the desired center of the final patched
image.
ptop: `float` value indicating the top of the image without padding.
pleft: `float` value indicating the left of the image without padding.
pbottom: `float` value indicating the bottom of the image without padding.
pright: `float` value indicating the right of the image without padding.
shiftx: `float` 0.0 or 1.0 value indicating if the image is on the left or
right.
shifty: `float` 0.0 or 1.0 value indicating if the image is at the top or
bottom.
Returns:
image: The cropped image in the same datatype as the input image.
crop_info: `float` tensor that is applied to the boxes in order to select
the boxes still contained within the image.
"""
def cast(values, dtype):
return [tf.cast(value, dtype) for value in values]
with tf.name_scope('mosaic_cut'):
center = tf.cast(center, width.dtype)
zero = tf.cast(0.0, width.dtype)
cut_x, cut_y = center[1], center[0]
# Select the crop of the image to use
left_shift = tf.minimum(
tf.minimum(cut_x, tf.maximum(zero, -pleft * width / original_width)),
width - cut_x)
top_shift = tf.minimum(
tf.minimum(cut_y, tf.maximum(zero, -ptop * height / original_height)),
height - cut_y)
right_shift = tf.minimum(
tf.minimum(width - cut_x,
tf.maximum(zero, -pright * width / original_width)), cut_x)
bot_shift = tf.minimum(
tf.minimum(height - cut_y,
tf.maximum(zero, -pbottom * height / original_height)),
cut_y)
(left_shift, top_shift, right_shift, bot_shift,
zero) = cast([left_shift, top_shift, right_shift, bot_shift, zero],
tf.float32)
# Build a crop offset and a crop size tensor to use for slicing.
crop_offset = [zero, zero, zero]
crop_size = [zero - 1, zero - 1, zero - 1]
if shiftx == 0.0 and shifty == 0.0:
crop_offset = [top_shift, left_shift, zero]
crop_size = [cut_y, cut_x, zero - 1]
elif shiftx == 1.0 and shifty == 0.0:
crop_offset = [top_shift, cut_x - right_shift, zero]
crop_size = [cut_y, width - cut_x, zero - 1]
elif shiftx == 0.0 and shifty == 1.0:
crop_offset = [cut_y - bot_shift, left_shift, zero]
crop_size = [height - cut_y, cut_x, zero - 1]
elif shiftx == 1.0 and shifty == 1.0:
crop_offset = [cut_y - bot_shift, cut_x - right_shift, zero]
crop_size = [height - cut_y, width - cut_x, zero - 1]
# Contain and crop the image.
ishape = tf.cast(tf.shape(image)[:2], crop_size[0].dtype)
crop_size[0] = tf.minimum(crop_size[0], ishape[0])
crop_size[1] = tf.minimum(crop_size[1], ishape[1])
crop_offset = tf.cast(crop_offset, tf.int32)
crop_size = tf.cast(crop_size, tf.int32)
image = tf.slice(image, crop_offset, crop_size)
crop_info = tf.stack([
tf.cast(ishape, tf.float32),
tf.cast(tf.shape(image)[:2], dtype=tf.float32),
tf.ones_like(ishape, dtype=tf.float32),
tf.cast(crop_offset[:2], tf.float32)
])
return image, crop_info | 2874ea65a695d7ebebf218e5a290069a9f3c1e8e | 3,996 |
import requests
def get_children_info(category_id: str) -> list[dict]:
"""Get information about children categories of the current category.
:param: category_id: category id.
:return: info about children categories.
"""
# Create the URL
url = f'{POINT}/resources/v2/title/domains/{DOMAIN}/' \
f'categories/{category_id}/children'
# Request
response = requests.get(url, params=REQUEST_PARAMS,
headers=REQUEST_HEADERS)
# If error
if not response:
# Raise exception to retry request by decorator
raise RequestException()
# Extract data
children_data = response.json().get('data')
if children_data:
return children_data['categories']
return [] | f5a651c1f58c75ee56d1140ee41dc6dd39570f88 | 3,997 |
from datetime import datetime
def GetTypedValue(field_type, value):
"""Returns a typed value based on a schema description and string value.
BigQuery's Query() method returns a JSON string that has all values stored
as strings, though the schema contains the necessary type information. This
method provides conversion services to make it easy to persist the data in
your JSON as "typed" data.
Args:
field_type: The field type (as defined by BigQuery).
value: The field value, typed as a string.
Returns:
A value of the appropriate type.
Raises:
NotSupportedError: Raised if the field type is not supported.
"""
if value is None:
return None
if field_type == FieldTypes.STRING:
return value
if field_type == FieldTypes.INTEGER:
if value == 'NaN':
return None
else:
return int(value)
if field_type == FieldTypes.FLOAT:
if value == 'NaN':
return None
else:
return float(value)
if field_type == FieldTypes.TIMESTAMP:
if value == 'NaN':
return None
else:
dt = datetime.datetime.utcfromtimestamp(float(value))
return dt.isoformat(' ')
if field_type == FieldTypes.BOOLEAN:
return value.lower() == 'true'
else:
raise NotSupportedError(
'Type {field_type} is not supported.'.format(field_type=field_type)) | 8e6198d089bae4e1044b2998da97a8cbcf6130b2 | 3,998 |
def predict_from_file(audio_file,
hop_length=None,
fmin=50.,
fmax=MAX_FMAX,
model='full',
decoder=torchcrepe.decode.viterbi,
return_harmonicity=False,
return_periodicity=False,
batch_size=None,
device='cpu',
pad=True):
"""Performs pitch estimation from file on disk
Arguments
audio_file (string)
The file to perform pitch tracking on
hop_length (int)
The hop_length in samples
fmin (float)
The minimum allowable frequency in Hz
fmax (float)
The maximum allowable frequency in Hz
model (string)
The model capacity. One of 'full' or 'tiny'.
decoder (function)
The decoder to use. See decode.py for decoders.
return_harmonicity (bool) [DEPRECATED]
Whether to also return the network confidence
return_periodicity (bool)
Whether to also return the network confidence
batch_size (int)
The number of frames per batch
device (string)
The device used to run inference
pad (bool)
Whether to zero-pad the audio
Returns
pitch (torch.tensor [shape=(1, 1 + int(time // hop_length))])
(Optional) periodicity (torch.tensor
[shape=(1, 1 + int(time // hop_length))])
"""
# Load audio
audio, sample_rate = torchcrepe.load.audio(audio_file)
# Predict
return predict(audio,
sample_rate,
hop_length,
fmin,
fmax,
model,
decoder,
return_harmonicity,
return_periodicity,
batch_size,
device,
pad) | 7e1f8036e5d0506f28a4b36b9e23c2d4a0237218 | 3,999 |
import unittest
def test():
"""Runs the unit tests without test coverage."""
tests = unittest.TestLoader().discover('cabotage/tests', pattern='test*.py')
result = unittest.TextTestRunner(verbosity=2).run(tests)
if result.wasSuccessful():
return 0
return 1 | bcb57638bea41f3823cd22aa7a43b159591ad99b | 4,000 |
def nm_to_uh(s):
"""Get the userhost part of a nickmask.
(The source of an Event is a nickmask.)
"""
return s.split("!")[1] | 5e6c07b7b287000a401ba81117bc55be47cc9a24 | 4,001 |
def upload_example_done(request, object_id):
"""
This view is a callback that receives POST data
from uploadify when the download is complete.
See also /media/js/uploadify_event_handlers.js.
"""
example = get_object_or_404(Example, id=object_id)
#
# Grab the post data sent by our OnComplete handler and parse it. Set the fields
# on our example object as appropriate and save.
#
if request.method == 'POST':
post_response = request.POST['s3_response']
location_rexp = '<Location>(.*)</Location>'
example.file_url = unquote_plus(re.search(location_rexp, post_response).group(1))
example.file_name = request.POST['file_obj[name]']
example.file_size = request.POST['file_obj[size]']
example.file_upload_speed = request.POST['upload_data[speed]']
example.file_uploaded = datetime.now()
example.save()
print example.file_url
print example.file_name
print example.file_uploaded
return HttpResponse((reverse('examples_example_detail', args=[example.id]))) | b748cb1708ddfdd2959f723902c45668c8774df2 | 4,002 |
def epoch_in_milliseconds(epoch):
"""
>>> epoch_in_milliseconds(datetime_from_seconds(-12345678999.0001))
-12345679000000
"""
return epoch_in_seconds(epoch) * 1000 | 75ae0779ae2f6d1987c1fdae0a6403ef725a6893 | 4,003 |
def get_workspaces(clue, workspaces):
"""
Imports all workspaces if none were provided.
Returns list of workspace names
"""
if workspaces is None:
logger.info("no workspaces specified, importing all toggl workspaces...")
workspaces = clue.get_toggl_workspaces()
logger.info("The following workspaces will be imported: %s", str(workspaces))
return workspaces | aae8b5f2585a7865083b433f4aaf9874d5ec500e | 4,004 |
import pprint
def create_hparams(hparams_string=None, hparams_json=None, verbose=True):
"""Create model hyperparameters. Parse nondefault from given string."""
hparams = tf.contrib.training.HParams(
training_stage='train_style_extractor',#['train_text_encoder','train_style_extractor','train_style_attention','train_refine_layernorm']
full_refine=False,
################################
# Experiment Parameters #
################################
epochs=500,
iters=1000000,
iters_per_checkpoint=5000,
log_per_checkpoint=1,
seed=1234,
dynamic_loss_scaling=True,
fp16_run=False,
distributed_run=False,
dist_backend="nccl",
dist_url="tcp://localhost:54321",
cudnn_enabled=True,
cudnn_benchmark=False,
numberworkers=8,
ignore_layers=['embedding.weight'],
################################
# Data Parameters #
################################
load_mel=True,
training_files='../../../spk_ttsdatafull_libri500_unpacked/training_with_mel_frame.txt',
mel_dir='../../../spk_ttsdatafull_libri500_unpacked/',
text_cleaners=['english_cleaners'],
is_partial_refine=False,
is_refine_style=False,
use_GAN=False,
GAN_type='wgan-gp',#['lsgan', 'wgan-gp']
GAN_alpha=1.0,
GP_beata=10.0,
Generator_pretrain_step=1,
add_noise=False,
################################
# Audio Parameters #
################################
max_wav_value=32768.0,
num_mels=80,
num_freq=1025,
min_mel_freq=0,
max_mel_freq=8000,
sample_rate=16000,
frame_length_ms=50,
frame_shift_ms=12.5,
preemphasize=0.97,
min_level_db=-100,
ref_level_db=0, # suggest use 20 for griffin-lim and 0 for wavenet
max_abs_value=4,
symmetric_specs=True, # if true, suggest use 4 as max_abs_value
# Eval:
griffin_lim_iters=60,
power=1.5, # Power to raise magnitudes to prior to Griffin-Lim
threshold=0.5, # for stop token
minlenratio=0.0, # Minimum length ratio in inference.
maxlenratio=50.0, # Maximum length ratio in inference.
use_phone=True,
phone_set_file="../../../spk_ttsdatafull_libri500_unpacked/phone_set.json",
n_symbols=5000, # len(symbols),
embed_dim=512, # Dimension of character embedding.
pretrained_model=None,
# VQVAE
use_vqvae=False,
aux_encoder_kernel_size=3,
aux_encoder_n_convolutions=2,
aux_encoder_embedding_dim=512,
speaker_embedding_dim=256,
commit_loss_weight=1.0, # Contribution of commitment loss, between 0.1 and 2.0 (default: 1.0)
eprenet_conv_layers=3, # Number of encoder prenet convolution layers.
eprenet_conv_chans=512, # Number of encoder prenet convolution channels.
eprenet_conv_filts=5, # Filter size of encoder prenet convolution.
dprenet_layers=2, # Number of decoder prenet layers.
dprenet_units=256, # Number of decoder prenet hidden units.
positionwise_layer_type="linear", # FFN or conv or (conv+ffn) in encoder after self-attention
positionwise_conv_kernel_size=1, # Filter size of conv
elayers=6, # Number of encoder layers.
eunits=1536, # Number of encoder hidden units.
adim=384, # Number of attention transformation dimensions.
aheads=4, # Number of heads for multi head attention.
dlayers=6, # Number of decoder layers.
dunits=1536, # Number of decoder hidden units.
duration_predictor_layers=2,
duration_predictor_chans=384,
duration_predictor_kernel_size=3,
use_gaussian_upsampling=False,
postnet_layers=5, # Number of postnet layers.
postnet_chans=512, # Number of postnet channels.
postnet_filts=5, # Filter size of postnet.
use_scaled_pos_enc=True, # Whether to use trainable scaled positional encoding.
use_batch_norm=True, # Whether to use batch normalization in posnet.
encoder_normalize_before=True, # Whether to perform layer normalization before encoder block.
decoder_normalize_before=True, # Whether to perform layer normalization before decoder block.
encoder_concat_after=False, # Whether to concatenate attention layer's input and output in encoder.
decoder_concat_after=False, # Whether to concatenate attention layer's input and output in decoder.
reduction_factor=1, # Reduction factor.
is_multi_speakers=True,
is_spk_layer_norm=True,
pretrained_spkemb_dim=512,
n_speakers=8000,
spk_embed_dim=128, # Number of speaker embedding dimenstions.
spk_embed_integration_type="concat", # concat or add, How to integrate speaker embedding.
use_ssim_loss=True,
use_f0=False,
log_f0=False,
f0_joint_train=False,
f0_alpha=0.1,
stop_gradient_from_pitch_predictor=False,
pitch_predictor_layers=2,
pitch_predictor_chans=384,
pitch_predictor_kernel_size=3,
pitch_predictor_dropout=0.5,
pitch_embed_kernel_size=9,
pitch_embed_dropout=0.5,
is_multi_styles=False,
n_styles=6,
style_embed_dim=128, # Number of style embedding dimenstions.
style_embed_integration_type="concat", # concat or add, How to integrate style embedding.
style_vector_type='mha',#gru or mha, How to generate style vector.
style_query_level='sentence',#phone or sentence
# value: pytorch, xavier_uniform, xavier_normal, kaiming_uniform, kaiming_normal
transformer_init="pytorch", # How to initialize transformer parameters.
initial_encoder_alpha=1.0,
initial_decoder_alpha=1.0,
transformer_enc_dropout_rate=0.1, # Dropout rate in encoder except attention & positional encoding.
transformer_enc_positional_dropout_rate=0.1, # Dropout rate after encoder positional encoding.
transformer_enc_attn_dropout_rate=0.1, # Dropout rate in encoder self-attention module.
transformer_dec_dropout_rate=0.1, # Dropout rate in decoder except attention & positional encoding.
transformer_dec_positional_dropout_rate=0.1, # Dropout rate after decoder positional encoding.
transformer_dec_attn_dropout_rate=0.1, # Dropout rate in deocoder self-attention module.
transformer_enc_dec_attn_dropout_rate=0.1, # Dropout rate in encoder-deocoder attention module.
duration_predictor_dropout_rate=0.1,
eprenet_dropout_rate=0.5, # Dropout rate in encoder prenet.
dprenet_dropout_rate=0.5, # Dropout rate in decoder prenet.
postnet_dropout_rate=0.5, # Dropout rate in postnet.
use_masking=True, # Whether to apply masking for padded part in loss calculation.
use_weighted_masking=False, # Whether to apply weighted masking in loss calculation.
bce_pos_weight=1.0, # Positive sample weight in bce calculation (only for use_masking=true).
loss_type="L2", # L1, L2, L1+L2, How to calculate loss.
# Reference:
# Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention
# https://arxiv.org/abs/1710.08969
use_gst=False,
use_mutual_information=False,
mutual_information_lambda=0.1,
mi_loss_type='unbias',#['bias','unbias']
style_extractor_presteps=300000,
choosestl_steps=100000,
gst_train_att=False,
att_name='100k_noshuffle_gru',
shuffle=False,
gst_reference_encoder='multiheadattention',#'multiheadattention' or 'convs'
gst_reference_encoder_mha_layers=4,
gst_tokens=10,
gst_heads=4,
gst_conv_layers=6,
gst_conv_chans_list=(32, 32, 64, 64, 128, 128),
gst_conv_kernel_size=3,
gst_conv_stride=2,
gst_gru_layers=1,
gst_gru_units=128,
step_use_predicted_dur=20000,
################################
# Optimization Hyperparameters #
################################
learning_rate_decay_scheme='noam',
use_saved_learning_rate=True,
warmup_steps=10000, # Optimizer warmup steps.
decay_steps=12500, # halves the learning rate every 12.5k steps
decay_rate=0.5, # learning rate decay rate
# decay_end=300000,
# decay_rate=0.01,
initial_learning_rate=0.5, # Initial value of learning rate.
final_learning_rate=1e-5,
weight_decay=1e-6,
grad_clip_thresh=1.0,
batch_criterion='utterance',
batch_size=2,
mask_padding=True # set model's padded outputs to padded values
)
if hparams_json:
print('Parsing hparams in json # {}'.format(hparams_json))
with open(hparams_json) as json_file:
hparams.parse_json(json_file.read())
if hparams_string:
print('Parsing command line hparams # {}'.format(hparams_string))
hparams.parse(hparams_string)
# if hparams.use_phone:
# from text.phones import Phones
# phone_class = Phones(hparams.phone_set_file)
# hparams.n_symbols = len(phone_class._symbol_to_id)
# del phone_class
if verbose:
print('Final parsed hparams:')
pprint(hparams.values())
return hparams | d4d255241b7322a10369bc313a0ddc971c0115a6 | 4,005 |
def ChromiumFetchSync(name, work_dir, git_repo, checkout='origin/master'):
"""Some Chromium projects want to use gclient for clone and dependencies."""
if os.path.isdir(work_dir):
print '%s directory already exists' % name
else:
# Create Chromium repositories one deeper, separating .gclient files.
parent = os.path.split(work_dir)[0]
Mkdir(parent)
proc.check_call(['gclient', 'config', git_repo], cwd=parent)
proc.check_call(['git', 'clone', git_repo], cwd=parent)
proc.check_call(['git', 'fetch'], cwd=work_dir)
proc.check_call(['git', 'checkout', checkout], cwd=work_dir)
proc.check_call(['gclient', 'sync'], cwd=work_dir)
return (name, work_dir) | 8bb0f593eaf874ab1a6ff95a913ef34b566a47bc | 4,006 |
def kld_error(res, error='simulate', rstate=None, return_new=False,
approx=False):
"""
Computes the `Kullback-Leibler (KL) divergence
<https://en.wikipedia.org/wiki/Kullback-Leibler_divergence>`_ *from* the
discrete probability distribution defined by `res` *to* the discrete
probability distribution defined by a **realization** of `res`.
Parameters
----------
res : :class:`~dynesty.results.Results` instance
:class:`~dynesty.results.Results` instance for the distribution we
are computing the KL divergence *from*.
error : {`'jitter'`, `'resample'`, `'simulate'`}, optional
The error method employed, corresponding to :meth:`jitter_run`,
:meth:`resample_run`, and :meth:`simulate_run`, respectively.
Default is `'simulate'`.
rstate : `~numpy.random.RandomState`, optional
`~numpy.random.RandomState` instance.
return_new : bool, optional
Whether to return the realization of the run used to compute the
KL divergence. Default is `False`.
approx : bool, optional
Whether to approximate all sets of uniform order statistics by their
associated marginals (from the Beta distribution). Default is `False`.
Returns
-------
kld : `~numpy.ndarray` with shape (nsamps,)
The cumulative KL divergence defined *from* `res` *to* a
random realization of `res`.
new_res : :class:`~dynesty.results.Results` instance, optional
The :class:`~dynesty.results.Results` instance corresponding to
the random realization we computed the KL divergence *to*.
"""
# Define our original importance weights.
logp2 = res.logwt - res.logz[-1]
# Compute a random realization of our run.
if error == 'jitter':
new_res = jitter_run(res, rstate=rstate, approx=approx)
elif error == 'resample':
new_res, samp_idx = resample_run(res, rstate=rstate, return_idx=True)
logp2 = logp2[samp_idx] # re-order our original results to match
elif error == 'simulate':
new_res, samp_idx = resample_run(res, rstate=rstate, return_idx=True)
new_res = jitter_run(new_res)
logp2 = logp2[samp_idx] # re-order our original results to match
else:
raise ValueError("Input `'error'` option '{0}' is not valid."
.format(error))
# Define our new importance weights.
logp1 = new_res.logwt - new_res.logz[-1]
# Compute the KL divergence.
kld = np.cumsum(np.exp(logp1) * (logp1 - logp2))
if return_new:
return kld, new_res
else:
return kld | 430ad6cb1c25c0489343717d7cf8a44bdfb5725d | 4,007 |
def article_detail(request, slug):
"""
Show details of the article
"""
article = get_article_by_slug(slug=slug, annotate=True)
comment_form = CommentForm()
total_views = r.incr(f'article:{article.id}:views')
return render(request, 'articles/post/detail.html',
{'article': article,
'section': article.category,
'comment_form': comment_form,
'total_views': total_views}) | 079d31509fe573ef207600e007e51ac14e9121c4 | 4,008 |
def deactivate(userid, tfa_response):
"""
Deactivate 2FA for a specified user.
Turns off 2FA by nulling-out the ``login.twofa_secret`` field for the user record,
and clear any remaining recovery codes.
Parameters:
userid: The user for which 2FA should be disabled.
tfa_response: User-supplied response. May be either the Google Authenticator
(or other app) supplied code, or a recovery code.
Returns: Boolean True if 2FA was successfully disabled, otherwise Boolean False if the
verification of `tfa_response` failed (bad challenge-response or invalid recovery code).
"""
# Sanity checking for length requirement of recovery code/TOTP is performed in verify() function
if verify(userid, tfa_response):
# Verification passed, so disable 2FA
force_deactivate(userid)
return True
else:
return False | 1ac0f5e716675ccb118c9656bcc7c9b4bd3f9606 | 4,009 |
def hsi_normalize(data, max_=4096, min_ = 0, denormalize=False):
"""
Using this custom normalizer for RGB and HSI images.
Normalizing to -1to1. It also denormalizes, with denormalize = True)
"""
HSI_MAX = max_
HSI_MIN = min_
NEW_MAX = 1
NEW_MIN = -1
if(denormalize):
scaled = (data - NEW_MIN) * (HSI_MAX - HSI_MIN)/(NEW_MAX - NEW_MIN) + HSI_MIN
return scaled.astype(np.float32)
scaled = (data - HSI_MIN) * (NEW_MAX - NEW_MIN)/(HSI_MAX - HSI_MIN) + NEW_MIN
return scaled.astype(np.float32) | 7f276e90843c81bc3cf7715e54dadd4a78162f93 | 4,010 |
from typing import Optional
def safe_elem_text(elem: Optional[ET.Element]) -> str:
"""Return the stripped text of an element if available. If not available, return the empty string"""
text = getattr(elem, "text", "")
return text.strip() | 12c3fe0c96ffdb5578e485b064ee4df088192114 | 4,011 |
def resource(filename):
"""Returns the URL a static resource, including versioning."""
return "/static/{0}/{1}".format(app.config["VERSION"], filename) | b330c052180cfd3d1b622c18cec7e633fa7a7910 | 4,012 |
import csv
def read_q_stats(csv_path):
"""Return list of Q stats from file"""
q_list = []
with open(csv_path, newline='') as csv_file:
reader = csv.DictReader(csv_file)
for row in reader:
q_list.append(float(row['q']))
return q_list | f5bee4859dc4bac45c4c3e8033da1b4aba5d2818 | 4,014 |
def _validate(config):
"""Validate the configuation.
"""
diff = set(REQUIRED_CONFIG_KEYS) - set(config.keys())
if len(diff) > 0:
raise ValueError(
"config is missing required keys".format(diff))
elif config['state_initial']['status'] not in config['status_values']:
raise ValueError(
"initial status '{}' is not among the allowed status values"
.format(config['state_initial']['status']))
else:
return config | 07c92e5a5cc722efbbdc684780b1edb66aea2532 | 4,015 |
def exp_by_squaring(x, n):
"""
Compute x**n using exponentiation by squaring.
"""
if n == 0:
return 1
if n == 1:
return x
if n % 2 == 0:
return exp_by_squaring(x * x, n // 2)
return exp_by_squaring(x * x, (n - 1) // 2) * x | ef63d2bf6f42690fd7c5975af0e961e2a3c6172f | 4,016 |
def _compare(expected, actual):
"""
Compare SslParams object with dictionary
"""
if expected is None and actual is None:
return True
if isinstance(expected, dict) and isinstance(actual, SslParams):
return expected == actual.__dict__
return False | 4a82d1631b97960ecc44028df4c3e43dc664d3e5 | 4,017 |
def update_token(refresh_token, user_id):
"""
Refresh the tokens for a given user
:param: refresh_token
Refresh token of the user
:param: user_id
ID of the user for whom the token is to be generated
:returns:
Generated JWT token
"""
token = Token.query.filter_by(refresh_token=refresh_token).first()
token.access_token = Token.encode_token(user_id, "access").decode("utf-8")
token.refresh_token = Token.encode_token(user_id, "refresh").decode(
"utf-8"
)
db.session.commit()
return token | 0b91cf19f808067a9c09b33d7497548743debe14 | 4,018 |
from re import X
def minimax(board):
"""
Returns the optimal action for the current player on the board.
"""
def max_value(state, depth=0):
if ttt.terminal(state):
return (None, ttt.utility(state))
v = (None, -2)
for action in ttt.actions(state):
v = max(v, (action, min_value(ttt.result(state, action), depth+1)[1] - (depth/10)), key=lambda x: x[1])
return v
def min_value(state, depth=0):
if ttt.terminal(state):
return (None, ttt.utility(state))
v = (None, 2)
for action in ttt.actions(state):
v = min(v, (action, max_value(ttt.result(state, action), depth+1)[1] + (depth/10)), key=lambda x: x[1])
return v
if ttt.player(board) == X:
return max_value(board)[0]
elif ttt.player(board) == O:
return min_value(board)[0] | 8de42db3ad40d597bf9600bcd5fec7c7f775f84d | 4,019 |
import random
def random_order_dic_keys_into_list(in_dic):
"""
Read in dictionary keys, and return random order list of IDs.
"""
id_list = []
for key in in_dic:
id_list.append(key)
random.shuffle(id_list)
return id_list | d18ac34f983fbaff59bfd90304cd8a4a5ebad42e | 4,020 |
from typing import Union
from pathlib import Path
from typing import Dict
import json
def read_json(json_path: Union[str, Path]) -> Dict:
"""
Read json file from a path.
Args:
json_path: File path to a json file.
Returns:
Python dictionary
"""
with open(json_path, "r") as fp:
data = json.load(fp)
return data | c0b55e5363a134282977ee8a01083490e9908fcf | 4,021 |
def igraph_to_csc(g, save=False, fn="csc_matlab"):
"""
Convert an igraph to scipy.sparse.csc.csc_matrix
Positional arguments:
=====================
g - the igraph graph
Optional arguments:
===================
save - save file to disk
fn - the file name to be used when writing (appendmat = True by default)
"""
assert isinstance(g, igraph.Graph), "Arg1 'g' must be an igraph graph"
print "Creating CSC from igraph object ..."
gs = csc_matrix(g.get_adjacency().data) # Equiv of calling to_dense so may case MemError
print "CSC creation complete ..."
if save:
print "Saving to MAT file ..."
sio.savemat(fn, {"data":gs}, True) # save as MAT format only. No other options!
return gs | 12ea73531599cc03525e898e39b88f2ed0ad97c3 | 4,022 |
def xml2dict(data):
"""Turn XML into a dictionary."""
converter = XML2Dict()
if hasattr(data, 'read'):
# Then it's a file.
data = data.read()
return converter.fromstring(data) | 0c73989b4ea83b2b1c126b7f1b39c6ebc9e18115 | 4,023 |
def balance_dataset(data, size=60000):
"""Implements upsampling and downsampling for the three classes (low, medium, and high)
Parameters
----------
data : pandas DataFrame
A dataframe containing the labels indicating the different nightlight intensity bins
size : int
The number of samples per classes for upsampling and downsampling
Returns
-------
pandas DataFrame
The data with relabelled and balanced nightlight intensity classes
"""
bin_labels = data.label.unique()
classes = []
for label in bin_labels:
class_ = data[data.label == label].reset_index()
if len(class_) >= size:
sample = class_.sample(
n=size, replace=False, random_state=SEED
)
elif len(class_) < size:
sample = class_.sample(
n=size, replace=True, random_state=SEED
)
classes.append(sample)
data_balanced = pd.concat(classes)
data_balanced = data_balanced.sample(
frac=1, random_state=SEED
).reset_index(drop=True)
data_balanced = data_balanced.iloc[:, 1:]
return data_balanced | 93cd5888c28f9e208379d7745790b7e1e0cb5b79 | 4,024 |
def updateStopList(userId, newStop):
"""
Updates the list of stops for the user in the dynamodb table
"""
response = dynamodb_table.query(
KeyConditionExpression=Key('userId').eq(userId))
if response and len(response["Items"]) > 0:
stops = response["Items"][0]['stops']
else:
stops = {}
if newStop['code'] in stops:
existingStop = stops[newStop['code']]
if 'buses' in existingStop:
newStop['buses'] = list(
set(existingStop['buses'] + newStop['buses']))
stops[newStop['code']] = newStop
response = dynamodb_table.update_item(
Key={
'userId': userId
},
UpdateExpression="set stops = :s",
ExpressionAttributeValues={
':s': stops
}
)
card_title = render_template('card_title')
responseText = render_template(
"add_bus_success", stop=newStop['code'], route=",".join(newStop['buses']))
return statement(responseText).simple_card(card_title, responseText) | 433ae6c4562f6a6541fc262925ce0bba6fb742ec | 4,025 |
import re
def is_blacklisted_module(module: str) -> bool:
"""Return `True` if the given module matches a blacklisted pattern."""
# Exclude stdlib modules such as the built-in "_thread"
if is_stdlib_module(module):
return False
# Allow user specified exclusions via CLI
blacklist = set.union(MODULE_BLACKLIST_PATTERNS, config.excluded_imports)
return any(re.fullmatch(p, module) for p in blacklist) | 391d63a4d8a4f24d1d3ba355745ffe0079143e68 | 4,026 |
def _build_geojson_query(query):
"""
See usages below.
"""
# this is basically a translation of the postgis ST_AsGeoJSON example into sqlalchemy/geoalchemy2
return func.json_build_object(
"type",
"FeatureCollection",
"features",
func.json_agg(func.ST_AsGeoJSON(query.subquery(), maxdecimaldigits=5).cast(JSON)),
) | dd7a0893258cf95e1244458ba9bd74c5239f65c5 | 4,029 |
import urllib
def url_encode(obj, charset='utf-8', encode_keys=False, sort=False, key=None,
separator='&'):
"""URL encode a dict/`MultiDict`. If a value is `None` it will not appear
in the result string. Per default only values are encoded into the target
charset strings. If `encode_keys` is set to ``True`` unicode keys are
supported too.
If `sort` is set to `True` the items are sorted by `key` or the default
sorting algorithm.
.. versionadded:: 0.5
`sort`, `key`, and `separator` were added.
:param obj: the object to encode into a query string.
:param charset: the charset of the query string.
:param encode_keys: set to `True` if you have unicode keys.
:param sort: set to `True` if you want parameters to be sorted by `key`.
:param separator: the separator to be used for the pairs.
:param key: an optional function to be used for sorting. For more details
check out the :func:`sorted` documentation.
"""
if isinstance(obj, MultiDict):
items = obj.lists()
elif isinstance(obj, dict):
items = []
for k, v in obj.iteritems():
if not isinstance(v, (tuple, list)):
v = [v]
items.append((k, v))
else:
items = obj or ()
if sort:
items.sort(key=key)
tmp = []
for key, values in items:
if encode_keys and isinstance(key, unicode):
key = key.encode(charset)
else:
key = str(key)
for value in values:
if value is None:
continue
elif isinstance(value, unicode):
value = value.encode(charset)
else:
value = str(value)
tmp.append('%s=%s' % (urllib.quote(key),
urllib.quote_plus(value)))
return separator.join(tmp) | 2106032d6a4cf895c525e9db702655af3439a95c | 4,030 |
from datetime import datetime
def create_export_and_wait_for_completion(name, bucket, prefix, encryption_config, role_arn=None):
"""
Request QLDB to export the contents of the journal for the given time period and S3 configuration. Before calling
this function the S3 bucket should be created, see
:py:class:`pyqldbsamples.export_journal.create_s3_bucket_if_not_exists`
:type name: str
:param name: Name of the ledger to create a journal export for.
:type bucket: str
:param bucket: S3 bucket to write the data to.
:type prefix: str
:param prefix: S3 prefix to be prefixed to the files being written.
:type encryption_config: dict
:param encryption_config: Encryption configuration for S3.
:type role_arn: str
:param role_arn: The IAM role ARN to be used when exporting the journal.
:rtype: dict
:return: The result of the request.
"""
if role_arn is None:
role_arn = create_export_role(EXPORT_ROLE_NAME, encryption_config.get('KmsKeyArn'), ROLE_POLICY_NAME, bucket)
try:
start_time = datetime.utcnow() - timedelta(minutes=JOURNAL_EXPORT_TIME_WINDOW_MINUTES)
end_time = datetime.utcnow()
result = create_export(name, start_time, end_time, bucket, prefix, encryption_config, role_arn)
wait_for_export_to_complete(Constants.LEDGER_NAME, result.get('ExportId'))
logger.info('JournalS3Export for exportId {} is completed.'.format(result.get('ExportId')))
return result
except Exception as e:
logger.exception('Unable to create an export!')
raise e | 9fb6f66dc02d70ffafe1c388188b99b9695a6900 | 4,031 |
def sample_student(user, **kwargs):
"""create and return sample student"""
return models.Student.objects.create(user=user, **kwargs) | a70c3a181b1ee0627465f016953952e082a51c27 | 4,032 |
from datetime import datetime
def normalise_field_value(value):
""" Converts a field value to a common type/format to make comparable to another. """
if isinstance(value, datetime):
return make_timezone_naive(value)
elif isinstance(value, Decimal):
return decimal_to_string(value)
return value | 3cbc4c4d7ae027c030e70a1a2bd268bdd0ebe556 | 4,033 |
from typing import Any
from typing import Tuple
from typing import List
import collections
import yaml
def parse_yaml(stream: Any) -> Tuple[Swagger, List[str]]:
"""
Parse the Swagger specification from the given text.
:param stream: YAML representation of the Swagger spec satisfying file interface
:return: (parsed Swagger specification, parsing errors if any)
"""
# adapted from https://stackoverflow.com/questions/5121931/in-python-how-can-you-load-yaml-mappings-as-ordereddicts
# and https://stackoverflow.com/questions/13319067/parsing-yaml-return-with-line-number
object_pairs_hook = collections.OrderedDict
class OrderedLoader(yaml.SafeLoader):
def compose_node(self, parent, index):
# the line number where the previous token has ended (plus empty lines)
node = Composer.compose_node(self, parent, index)
node.__lineno__ = self.line + 1
return node
def construct_mapping(loader, node, deep=False):
loader.flatten_mapping(node)
mapping = Constructor.construct_pairs(loader, node, deep=deep)
ordered_hook = object_pairs_hook(mapping)
# assert not hasattr(ordered_hook, "__lineno__"), \
# "Expected ordered mapping to have no __lineno__ attribute set before"
# setattr(ordered_hook, "__lineno__", node.__lineno__)
return RawDict(adict=ordered_hook, source=stream.name, lineno=node.__lineno__)
OrderedLoader.add_constructor(yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, construct_mapping)
raw_dict = yaml.load(stream, OrderedLoader)
swagger = Swagger()
errors = [] # type: List[str]
adict = raw_dict.adict
tag_exists: bool = False
if 'tags' in adict:
if len(adict['tags']) > 0:
tag_exists = True
for tag in adict['tags']:
for key, value in tag.adict.items():
if key == 'name':
swagger.name = value
if swagger.name == '':
if not (OptionKey.PermitAbsenseOfTagNameIfNoTagsExist in parse_options
and not tag_exists):
errors.append('missing tag "name" in the swagger specification')
swagger.base_path = adict.get('basePath', '')
for path_id, path_dict in adict.get('paths', RawDict()).adict.items():
path, path_errors = _parse_path(raw_dict=path_dict)
path.identifier = path_id
path.swagger = swagger
errors.extend(['in path {!r}: {}'.format(path_id, error) for error in path_errors])
if not path_errors:
swagger.paths[path_id] = path
for def_id, def_dict in adict.get('definitions', RawDict()).adict.items():
typedef, def_errors = _parse_typedef(raw_dict=def_dict)
errors.extend(['in definition {!r}: {}'.format(def_id, error) for error in def_errors])
adef = Definition()
adef.swagger = swagger
adef.identifier = def_id
adef.typedef = typedef
if not def_errors:
swagger.definitions[def_id] = adef
for param_id, param_dict in adict.get('parameters', RawDict()).adict.items():
param, param_errors = _parse_parameter(raw_dict=param_dict)
errors.extend(['in parameter {!r}: {}'.format(param_id, error) for error in param_errors])
if not param_errors:
swagger.parameters[param_id] = param
swagger.raw_dict = raw_dict
return swagger, errors | 7155520db98bf1d884ba46f22b46297a901f4411 | 4,035 |
import itertools
def dataset_first_n(dataset, n, show_classes=False, class_labels=None, **kw):
"""
Plots first n images of a dataset containing tensor images.
"""
# [(img0, cls0), ..., # (imgN, clsN)]
first_n = list(itertools.islice(dataset, n))
# Split (image, class) tuples
first_n_images, first_n_classes = zip(*first_n)
if show_classes:
titles = first_n_classes
if class_labels:
titles = [class_labels[cls] for cls in first_n_classes]
else:
titles = []
return tensors_as_images(first_n_images, titles=titles, **kw) | ed8394fc2a1b607597599f36545c9182a9bc8187 | 4,036 |
def unit_conversion(thing, units, length=False):
"""converts base data between metric, imperial, or nautical units"""
if 'n/a' == thing:
return 'n/a'
try:
thing = round(thing * CONVERSION[units][0 + length], 2)
except TypeError:
thing = 'fubar'
return thing, CONVERSION[units][2 + length] | 96bfb9cda575a8b2efc959b6053284bec1d286a6 | 4,037 |
import functools
def timed(func):
"""Decorate function to print elapsed time upon completion."""
@functools.wraps(func)
def wrap(*args, **kwargs):
t1 = default_timer()
result = func(*args, **kwargs)
t2 = default_timer()
print('func:{} args:[{}, {}] took: {:.4f} sec'.format(
func.__name__, args, kwargs, t2 - t1))
return result
return wrap | d572488c674607b94e2b80235103d6f0bb27738f | 4,038 |
def fade_out(s, fade=cf.output.fade_out):
"""
Apply fade-out to waveform time signal.
Arguments:
ndarray:s -- Audio time series
float:fade (cf.output.fade_out) -- Fade-out length in seconds
Returns faded waveform.
"""
length = int(fade * sr)
shape = [1] * len(s.shape)
shape[0] = length
win = np.hanning(length * 2)[length:]
win = win.reshape(shape)
if length < len(s):
s[-length:] = s[-length:] * win
return s | 0b554dbb1da7253e39c651ccdc38ba91e67a1ee4 | 4,040 |
def create_arch(T, D, units=64, alpha=0, dr_rate=.3):
"""Creates the architecture of miint"""
X = K.Input(shape=(T, D))
active_mask = K.Input(shape=(T, 1))
edges = K.Input(shape=(T, None))
ycell = netRNN(T=T, D=D, units=units, alpha=alpha, dr_rate=dr_rate)
yrnn = K.layers.RNN(ycell, return_sequences=True)
Y = yrnn((X, edges, active_mask))
return K.Model(inputs=[X, active_mask, edges], outputs=Y) | cc9723657a7a0822d73cc78f6e1698b33257f9e0 | 4,041 |
def redact(str_to_redact, items_to_redact):
""" return str_to_redact with items redacted
"""
if items_to_redact:
for item_to_redact in items_to_redact:
str_to_redact = str_to_redact.replace(item_to_redact, '***')
return str_to_redact | f86f24d3354780568ec2f2cbf5d32798a43fdb6a | 4,042 |
def FibreDirections(mesh):
"""
Routine dedicated to compute the fibre direction of components in integration point for
the Material in Florence and for the auxiliar routines in this script. First three directions
are taken into the code for Rotation matrix, so always it should be present in this order,
Normal, Tangential, Axial.
"""
ndim = mesh.InferSpatialDimension()
nfibre = 2
# Geometric definitions per element
divider = mesh.elements.shape[1]
directrix = [0.,1.,0.]
fibre_direction = np.zeros((mesh.nelem,nfibre,ndim),dtype=np.float64)
# Loop throught the element in the mesh
for elem in range(mesh.nelem):
# Geometric definitions per element
center = np.sum(mesh.points[mesh.elements[elem,:],:],axis=0)/divider
tangential = np.cross(directrix,center)
tangential = tangential/np.linalg.norm(tangential)
normal = np.cross(tangential,directrix)
# Define the anisotropic orientations
fibre_direction[elem,0,:]=np.multiply(directrix,np.cos(np.pi/4.)) + np.multiply(tangential,np.sin(np.pi/4.))
fibre_direction[elem,1,:]=np.multiply(directrix,np.cos(np.pi/4.)) - np.multiply(tangential,np.sin(np.pi/4.))
return fibre_direction | 9408702e72dde7586f42137ad25a0a944ed28a93 | 4,043 |
def put(consul_url=None, token=None, key=None, value=None, **kwargs):
"""
Put values into Consul
:param consul_url: The Consul server URL.
:param key: The key to use as the starting point for the list.
:param value: The value to set the key to.
:param flags: This can be used to specify an unsigned value
between 0 and 2^64-1. Clients can choose to use
this however makes sense for their application.
:param cas: This flag is used to turn the PUT into a
Check-And-Set operation.
:param acquire: This flag is used to turn the PUT into a
lock acquisition operation.
:param release: This flag is used to turn the PUT into a
lock release operation.
:return: Boolean & message of success or failure.
CLI Example:
.. code-block:: bash
salt '*' consul.put key='web/key1' value="Hello there"
salt '*' consul.put key='web/key1' value="Hello there" acquire='d5d371f4-c380-5280-12fd-8810be175592'
salt '*' consul.put key='web/key1' value="Hello there" release='d5d371f4-c380-5280-12fd-8810be175592'
"""
ret = {}
if not consul_url:
consul_url = _get_config()
if not consul_url:
log.error("No Consul URL found.")
ret["message"] = "No Consul URL found."
ret["res"] = False
return ret
if not key:
raise SaltInvocationError('Required argument "key" is missing.')
# Invalid to specified these together
conflicting_args = ["cas", "release", "acquire"]
for _l1 in conflicting_args:
for _l2 in conflicting_args:
if _l1 in kwargs and _l2 in kwargs and _l1 != _l2:
raise SaltInvocationError(
"Using arguments `{}` and `{}` together is invalid.".format(
_l1, _l2
)
)
query_params = {}
available_sessions = session_list(consul_url=consul_url, return_list=True)
_current = get(consul_url=consul_url, token=token, key=key)
if "flags" in kwargs:
if kwargs["flags"] >= 0 and kwargs["flags"] <= 2 ** 64:
query_params["flags"] = kwargs["flags"]
if "cas" in kwargs:
if _current["res"]:
if kwargs["cas"] == 0:
ret["message"] = "Key {} exists, index must be non-zero.".format(key)
ret["res"] = False
return ret
if kwargs["cas"] != _current["data"]["ModifyIndex"]:
ret["message"] = "Key {} exists, but indexes do not match.".format(key)
ret["res"] = False
return ret
query_params["cas"] = kwargs["cas"]
else:
ret[
"message"
] = "Key {} does not exists, CAS argument can not be used.".format(key)
ret["res"] = False
return ret
if "acquire" in kwargs:
if kwargs["acquire"] not in available_sessions:
ret["message"] = "{} is not a valid session.".format(kwargs["acquire"])
ret["res"] = False
return ret
query_params["acquire"] = kwargs["acquire"]
if "release" in kwargs:
if _current["res"]:
if "Session" in _current["data"]:
if _current["data"]["Session"] == kwargs["release"]:
query_params["release"] = kwargs["release"]
else:
ret["message"] = "{} locked by another session.".format(key)
ret["res"] = False
return ret
else:
ret["message"] = "{} is not a valid session.".format(kwargs["acquire"])
ret["res"] = False
else:
log.error("Key {0} does not exist. Skipping release.")
data = value
function = "kv/{}".format(key)
method = "PUT"
res = _query(
consul_url=consul_url,
token=token,
function=function,
method=method,
data=data,
query_params=query_params,
)
if res["res"]:
ret["res"] = True
ret["data"] = "Added key {} with value {}.".format(key, value)
else:
ret["res"] = False
ret["data"] = "Unable to add key {} with value {}.".format(key, value)
if "error" in res:
ret["error"] = res["error"]
return ret | 3b80283da426e5515026fb8dc0db619b2a471f41 | 4,044 |
def prepare_w16():
"""
Prepare a 16-qubit W state using sqrt(iswaps) and local gates,
respecting linear topology
"""
ket = qf.zero_state(16)
circ = w16_circuit()
ket = circ.run(ket)
return ket | 74d0599e1520aab44088480616e2062153a789aa | 4,045 |
import requests
def get_All_Endpoints(config):
"""
:return:
"""
url = 'https://{}:9060/ers/config/endpoint'.format(config['hostname'])
headers = {
'Content-Type': 'application/json',
'Accept': 'application/json'
}
body = {}
response = requests.request('GET', url, headers=headers, data=body, auth=HTTPBasicAuth('Admin', 'C1sco12345'), verify=False)
result = response.json()
return result['SearchResult']['resources'] | f74ad8ba7d65de11851b71318b2818776c5dc29b | 4,046 |
import pandas
import numpy
def synthetic_peptides_by_subsequence(
num_peptides,
fraction_binders=0.5,
lengths=range(8, 20),
binding_subsequences=["A?????Q"]):
"""
Generate a toy dataset where each peptide is a binder if and only if it
has one of the specified subsequences.
Parameters
----------
num_peptides : int
Number of rows in result
fraction_binders : float
Fraction of rows in result where "binder" col is 1
lengths : dict, Series, or list
If a dict or Series, then this should map lengths to the fraction of the
result to have the given peptide length. If it's a list of lengths then
all lengths are given equal weight.
binding_subsequences : list of string
Peptides with any of the given subsequences will be considered binders.
Question marks ("?") in these sequences will be replaced by random
amino acids.
Returns
----------
pandas.DataFrame, indexed by peptide sequence. The "binder" column is a
binary indicator for whether the peptide is a binder.
"""
if not isinstance(lengths, dict):
lengths = dict((length, 1.0) for length in lengths)
lengths_series = pandas.Series(lengths)
lengths_series /= len(lengths)
num_binders = int(round(num_peptides * fraction_binders))
num_non_binders = num_peptides - num_binders
print(num_binders, num_non_binders)
peptides = []
# Generate non-binders
for (length, weight) in lengths_series.iteritems():
peptides.extend(
random_peptides(round(weight * num_non_binders), round(length)))
for binding_core in binding_subsequences:
# Generate binders
lengths_binders = lengths_series.ix[
lengths_series.index >= len(binding_core)
]
normalized_lengths_binders = (
lengths_binders /
lengths_binders.sum() /
len(binding_subsequences))
for (length, weight) in normalized_lengths_binders.iteritems():
if length >= len(binding_core):
num_peptides_to_make = int(round(weight * num_binders))
if length == len(binding_core):
start_positions = [0] * num_peptides_to_make
else:
start_positions = numpy.random.choice(
length - len(binding_core), num_peptides_to_make)
peptides.extend(
"".join([
random_peptides(1, length=start_position)[0],
binding_core,
random_peptides(1, length=length - len(
binding_core) - start_position)[0],
])
for start_position in start_positions)
df = pandas.DataFrame(index=set(peptides))
df["binder"] = False
for binding_core in binding_subsequences:
df["binder"] = df["binder"] | df.index.str.contains(
binding_core,
regex=False)
def replace_question_marks(s):
while "?" in s:
s = s.replace("?", numpy.random.choice(AMINO_ACIDS))
return s
df.index = df.index.map(replace_question_marks)
df_shuffled = df.sample(frac=1)
return df_shuffled | d4cfa202043e3a98a7960246a7d8775ff147201c | 4,049 |
def gce_zones() -> list:
"""Returns the list of GCE zones"""
_bcds = dict.fromkeys(['us-east1', 'europe-west1'], ['b', 'c', 'd'])
_abcfs = dict.fromkeys(['us-central1'], ['a', 'b', 'c', 'f'])
_abcs = dict.fromkeys(
[
'us-east4',
'us-west1',
'europe-west4',
'europe-west3',
'europe-west2',
'asia-east1',
'asia-southeast1',
'asia-northeast1',
'asia-south1',
'australia-southeast1',
'southamerica-east1',
'asia-east2',
'asia-northeast2',
'europe-north1',
'europe-west6',
'northamerica-northeast1',
'us-west2',
],
['a', 'b', 'c'],
)
_zones_combo = {**_bcds, **_abcfs, **_abcs}
zones = [f'{loc}-{zone}' for loc, zones in _zones_combo.items() for zone in zones]
return zones | 10e684b2f458fe54699eb9886af148b092ec604d | 4,050 |
def empty_netbox_query():
"""Return an empty list to a list query."""
value = {
"count": 0,
"next": None,
"previous": None,
"results": [],
}
return value | 9b017c34a3396a82edc269b10b6bfc6b7f878bc3 | 4,051 |
import psutil
import time
def get_process_metrics(proc):
""" Extracts CPU times, memory infos and connection infos about a given
process started via Popen(). Also obtains the return code. """
p = psutil.Process(proc.pid)
max_cpu = [0, 0]
max_mem = [0, 0]
conns = []
while proc.poll() is None:
try:
cpu = list(p.cpu_times())
mem = list(p.memory_info())
conns = p.connections('all')
for child in p.children(recursive=True):
c_cpu = list(child.cpu_times())
c_mem = list(child.memory_info())
cpu[0] += c_cpu[0]
cpu[1] += c_cpu[1]
mem[0] += c_mem[0]
mem[1] += c_mem[1]
if max_cpu[0] < cpu[0]:
max_cpu = cpu
if max_mem[0] < mem[0]:
max_mem = mem
except (psutil.AccessDenied, psutil.NoSuchProcess):
pass
time.sleep(1)
retcode = proc.wait()
return retcode, max_cpu, max_mem, conns | 7be8688debbde33bbcfb43b483d8669241e029d6 | 4,052 |
def tau_from_T(Tobs, Tkin):
"""
Line optical depth from observed temperature and excitation temperature in Kelvin
"""
tau = -np.log(1.-(Tobs/Tkin))
return tau | 089cdc9ae3692037fa886b5c168e03ee2b6ec9ce | 4,053 |
def create_classes_names_list(training_set):
"""
:param training_set: dict(list, list)
:return: (list, list)
"""
learn_classes_list = []
for k, v in training_set.items():
learn_classes_list.extend([str(k)] * len(v))
return learn_classes_list | 0b30153afb730d4e0c31e87635c9ece71c530a41 | 4,054 |
from petastorm.spark import SparkDatasetConverter
def get_petastorm_dataset(cache_dir: str, partitions: int=4):
"""
This Dataloader assumes that the dataset has been converted to Delta table already
The Delta Table Schema is:
root
|-- sample_id: string (nullable = true)
|-- value: string (nullable = true)
|-- sample_label: string (nullable = true)
|-- filepath: string (nullable = true)
|-- filename: string (nullable = true)
|-- extension: string (nullable = true)
|-- set: string (nullable = true)
|-- label: integer (nullable = true)
See: TBD to Load and convert the aclImdb dataset from the tf sample dataset lib
Args:
cache_dir: Cache Directory for Peatstorm
partitions: Num Partitions for Petastorm partitions need to match num horovod threads / gpus (TO CHECK)
Returns:
df_train: spark df of training data
df_val: spark df of val data
size_train: size of the training dataset for use in batch step calcs
size_val: size of the val dataset for use in validation batch step calcs
"""
spark.conf.set(SparkDatasetConverter.PARENT_CACHE_DIR_URL_CONF, cache_dir)
train_frame = spark.sql("select value, `label` \
from brian_petastorm_datasets.aclImdb_label \
where `set` = 'train'")
df_test = spark.sql("select value, `label` \
from brian_petastorm_datasets.aclImdb_label \
where `set` = 'test'")
df_train, df_val = train_frame.randomSplit([0.8,0.2], seed=12345)
df_train.repartition(partitions)
df_val.repartition(partitions)
df_test.repartition(partitions)
size_train = df_train.count()
size_val = df_val.count()
size_test = df_test.count()
return df_train, df_val, df_test, size_train, size_val, size_test | 27f6777b2c1cebad08f8a416d360a2b7096febec | 4,056 |
def get_corners(square_to_edges, edge_to_squares):
"""Get squares ids of squares which place in grid in corner."""
return get_squares_with_free_edge(square_to_edges, edge_to_squares, 2) | 1370f472aedf83f7aa17b64a813946a3a760968d | 4,057 |
async def get_untagged_joke():
"""
Gets an untagged joke from the jokes table and sends returns it
:return: json = {joke_id, joke}
"""
df = jokes.get_untagged_joke()
if not df.empty:
response = {"joke": df["joke"][0], "joke_id": int(df["id"][0])}
else:
response = {"joke": "No more jokes to tag", "joke_id": -1}
return response | a2dde1d5ddba47beb5e7e51b9f512f0a861336da | 4,058 |
def map_parallel(function, xs):
"""Apply a remote function to each element of a list."""
if not isinstance(xs, list):
raise ValueError('The xs argument must be a list.')
if not hasattr(function, 'remote'):
raise ValueError('The function argument must be a remote function.')
# EXERCISE: Modify the list comprehension below to invoke "function"
# remotely on each element of "xs". This should essentially submit
# one remote task for each element of the list and then return the
# resulting list of ObjectIDs.
return [function.remote(x) for x in xs] | 1fe75868d5ff12a361a6aebd9e4e49bf92c32126 | 4,059 |
def log_interp(x,y,xnew):
"""
Apply interpolation in logarithmic space for both x and y.
Beyound input x range, returns 10^0=1
"""
ynew = 10**ius(np.log10(x), np.log10(y), ext=3)(np.log10(xnew))
return ynew | 16ef0cc494f61c031f9fd8f8e820a17bb6c83df8 | 4,060 |
def inten_sat_compact(args):
"""
Memory saving version of inten_scale followed by saturation.
Useful for multiprocessing.
Parameters
----------
im : numpy.ndarray
Image of dtype np.uint8.
Returns
-------
numpy.ndarray
Intensity scale and saturation of input.
"""
return ((inten_scale(args[0]) * saturation(args[0])) ** 2).astype(np.float32) | 9624891f9d09c13d107907fcd30e2f102ff00ee2 | 4,061 |
def masseuse_memo(A, memo, ind=0):
"""
Return the max with memo
:param A:
:param memo:
:param ind:
:return:
"""
# Stop if
if ind > len(A)-1:
return 0
if ind not in memo:
memo[ind] = max(masseuse_memo(A, memo, ind + 2) + A[ind], masseuse_memo(A, memo, ind + 1))
return memo[ind] | 03d108cb551f297fc4fa53cf9575d03af497ee38 | 4,062 |
import torch
def unique_pairs(bonded_nbr_list):
"""
Reduces the bonded neighbor list to only include unique pairs of bonds. For example,
if atoms 3 and 5 are bonded, then `bonded_nbr_list` will have items [3, 5] and also
[5, 3]. This function will reduce the pairs only to [3, 5] (i.e. only the pair in which
the first index is lower).
Args:
bonded_nbr_list (list): list of arrays of bonded pairs for each molecule.
Returns:
sorted_pairs (list): same as bonded_nbr_list but without duplicate pairs.
"""
unique_pairs = []
for pair in bonded_nbr_list:
# sort according to the first item in the pair
sorted_pair = torch.sort(pair)[0].numpy().tolist()
if sorted_pair not in unique_pairs:
unique_pairs.append(sorted_pair)
# now make sure that the sorting is still good (this may be unnecessary but I added
# it just to make sure)
idx = list(range(len(unique_pairs)))
# first_arg = list of the the first node in each pair
first_arg = [pair[0] for pair in unique_pairs]
# sorted_idx = sort the indices of unique_pairs by the first node in each pair
sorted_idx = [item[-1] for item in sorted(zip(first_arg, idx))]
# re-arrange by sorted_idx
sorted_pairs = torch.LongTensor(np.array(unique_pairs)[sorted_idx])
return sorted_pairs | e974728ad831a956f1489b83bb77b15833ae9b82 | 4,063 |
def permission(*perms: str):
""" Decorator that runs the command only if the author has the specified permissions.
perms must be a string matching any property of discord.Permissions.
NOTE: this function is deprecated. Use the command 'permissions' attribute instead.
"""
def decorator(func):
@wraps(func)
async def wrapped(message: discord.Message, *args, **kwargs):
member_perms = message.channel.permissions_for(message.author)
if all(getattr(member_perms, perm, False) for perm in perms):
await func(message, *args, **kwargs)
return wrapped
return decorator | b0ef0dfec36a243152dff4ca11ab779d2c417ab8 | 4,064 |
from re import T
def validate_script(value):
"""Check if value is a valid script"""
if not sabnzbd.__INITIALIZED__ or (value and sabnzbd.filesystem.is_valid_script(value)):
return None, value
elif (value and value == "None") or not value:
return None, "None"
return T("%s is not a valid script") % value, None | d4a5d6922fb14524bc9d11f57807d9a7f0e937f1 | 4,065 |
Subsets and Splits