content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def poppler_page_get_text_layout(page): """ Wrapper of an underlying c-api function not yet exposed by the python-poppler API. Returns a list of text rectangles on the pdf `page` """ n = c_uint(0) rects = CRectangle.ptr() # From python-poppler internals it is known that hash(page) returns the # c-pointer to the underlying glib object. See also the repr(page). page_ptr = hash(page) _c_text_layout(page_ptr, rects, n) # Obtain pointer to array of rectangles of the correct length rectangles = POINTER(CRectangle * n.value).from_address(addressof(rects)) get_text = page.get_selected_text poppler_rect = poppler.Rectangle() result = [] for crect in rectangles.contents: # result.append(Rectangle( # x1=crect.x1, y1=crect.y1, x2=crect.x2, y2=crect.y2)) _ = (crect.x1, crect.y1, crect.x2, crect.y2) poppler_rect.x1, poppler_rect.y1, poppler_rect.x2, poppler_rect.y2 = _ text = get_text(GLYPH, poppler_rect).decode("utf8") if text.endswith(" \n"): text = text[:-2] elif text.endswith(" ") and len(text) > 1: text = text[:-1] elif text.endswith("\n"): text = text[:-1] rect = Box( rect=Rectangle(x1=crect.x1, y1=crect.y1, x2=crect.x2, y2=crect.y2), text=text, ) result.append(rect) # TODO(pwaller): check that this free is correct g_free(rectangles) return result
2c7313004c9a551d943be741c904cadb4593b892
3,653,900
from typing import Optional def get_volume(name: Optional[str] = None, namespace: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetVolumeResult: """ ## Example Usage ```python import pulumi import pulumi_harvester as harvester ubuntu20_dev_mount_disk = harvester.get_volume(name="ubuntu20-dev-mount-disk", namespace="default") ``` :param str name: A unique name """ __args__ = dict() __args__['name'] = name __args__['namespace'] = namespace if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('harvester:index/getVolume:getVolume', __args__, opts=opts, typ=GetVolumeResult).value return AwaitableGetVolumeResult( access_mode=__ret__.access_mode, attached_vm=__ret__.attached_vm, description=__ret__.description, id=__ret__.id, image=__ret__.image, name=__ret__.name, namespace=__ret__.namespace, phase=__ret__.phase, size=__ret__.size, state=__ret__.state, storage_class_name=__ret__.storage_class_name, tags=__ret__.tags, volume_mode=__ret__.volume_mode)
528dfb0432b30b40037b86a234e83c8327eb5206
3,653,901
def both_block_num_missing(record): """ Returns true of both block numbers are missing :param record: dict - The record being evaluated :return: bool """ rpt_block_num = record.get("rpt_block_num", "") or "" rpt_sec_block_num = record.get("rpt_sec_block_num", "") or "" # True, if neither address has a block number. if rpt_block_num == "" and rpt_sec_block_num == "": return True return False
63e2fdaef78dbc3c6560a4b015ed022583f30d05
3,653,902
def map_keys(func,dic): """ TODO: Test against all types handle python recursion limit """ return {func(k):map_keys(func,v) if isinstance(v,dict) else v for k,v in dic.items()}
5dc2c292e769037300d6b3f118e887bcb50752ac
3,653,903
def jsonize(v): """ Convert the discount configuration into a state in which it can be stored inside the JSON field. Some information is lost here; f.e. we only store the primary key of model objects, so you have to remember yourself which objects are meant by the primary key values. """ if isinstance(v, dict): return dict((i1, jsonize(i2)) for i1, i2 in v.items()) if hasattr(v, "__iter__"): return [jsonize(i) for i in v] if isinstance(v, Model): return v.pk return v
1aa7954c0089726b7707e0180b35a12d679c286b
3,653,904
def clean_kaggle_movies(movies_df): """ Clean the Kaggle movie data with the following steps: 1. Drop duplicate rows 2. Filter out adult videos and drop unnecessary columns 3. Recast columns to appropriate data types Parameters ---------- movies_df : Pandas dataframe Kaggle movie data Returns ------- Pandas dataframe Clean Kaggle movie data """ # Drop duplicate rows movies_df = udf_movies.drop_duplicates(movies_df) # Filter out adult videos and drop unnecessary columns movies_df = drop_cols(movies_df) # Recast columns to appropriate data types movies_df = recast_cols(movies_df) return movies_df
05d5a0eb965b26cdc04dcfb9f3a76690d272389c
3,653,905
from typing import List from typing import Dict from typing import Any import torch import pathlib import os def generate_trainer( datafiles: List[str], labelfiles: List[str], class_label: str, batch_size: int, num_workers: int, optim_params: Dict[str, Any]={ 'optimizer': torch.optim.Adam, 'lr': 0.02, }, weighted_metrics: bool=None, scheduler_params: Dict[str, float]=None, wandb_name: str=None, weights: torch.Tensor=None, max_epochs=500, *args, **kwargs, ): """ Generates PyTorch Lightning trainer and datasets for model training. :param datafiles: List of absolute paths to datafiles :type datafiles: List[str] :param labelfiles: List of absolute paths to labelfiles :type labelfiles: List[str] :param class_label: Class label to train on :type class_label: str :param weighted_metrics: To use weighted metrics in model training :type weighted_metrics: bool :param batch_size: Batch size in dataloader :type batch_size: int :param num_workers: Number of workers in dataloader :type num_workers: int :param optim_params: Dictionary defining optimizer and any needed/optional arguments for optimizer initializatiom :type optim_params: Dict[str, Any] :param wandb_name: Name of run in Wandb.ai, defaults to '' :type wandb_name: str, optional :return: Trainer, model, datamodule :rtype: Trainer, model, datamodule """ device = ('cuda:0' if torch.cuda.is_available() else 'cpu') print(f'Device is {device}') here = pathlib.Path(__file__).parent.absolute() data_path = os.path.join(here, '..', '..', '..', 'data') wandb_logger = WandbLogger( project=f"tabnet-classifer-sweep", name=wandb_name ) uploadcallback = UploadCallback( path=os.path.join(here, 'checkpoints'), desc=wandb_name ) early_stop_callback = EarlyStopping( monitor=("weighted_val_accuracy" if weighted_metrics else "val_accuarcy"), min_delta=0.00, patience=3, verbose=False, mode="max" ) module = DataModule( datafiles=datafiles, labelfiles=labelfiles, class_label=class_label, batch_size=batch_size, num_workers=num_workers, ) model = TabNetLightning( input_dim=module.num_features, output_dim=module.num_labels, weighted_metrics=weighted_metrics, optim_params=optim_params, scheduler_params=scheduler_params, weights=weights, ) trainer = pl.Trainer( gpus=(1 if torch.cuda.is_available() else 0), auto_lr_find=False, # gradient_clip_val=0.5, logger=wandb_logger, max_epochs=max_epochs, # callbacks=[ # uploadcallback, # ], # val_check_interval=0.25, # Calculate validation every quarter epoch instead of full since dataset is large, and would like to test this ) return trainer, model, module
e3448901793e2b58befff751b89edfa968a9e0d1
3,653,906
def make_shift_x0(shift, ndim): """ Returns a callable that calculates a shifted origin for each derivative of an operation derivatives scheme (given by ndim) given a shift object which can be a None, a float or a tuple with shape equal to ndim """ if shift is None: return lambda s, d, i, j: None elif isinstance(shift, float): return lambda s, d, i, j: d + s * d.spacing elif type(shift) is tuple and np.shape(shift) == ndim: if len(ndim) == 1: return lambda s, d, i, j: d + s[j] * d.spacing elif len(ndim) == 2: return lambda s, d, i, j: d + s[i][j] * d.spacing else: raise ValueError("ndim length must be equal to 1 or 2") raise ValueError("shift parameter must be one of the following options: " "None, float or tuple with shape equal to %s" % (ndim,))
e6b01e43c8bf73ba21a9bdfcd27a93db9ccb7478
3,653,907
import os def load_pca_tsne(pca, name, tpmmode=True, logmode=True, exclude=[], cache=True, dir='.'): """ Run t-sne using pca result Parameters ---------- pca : array, shape (n_samples, n_pca) pca matrix. name: str name of pca results Returns ------- tsne : array, shape (n_samples, 2) The tsne coordinates for each sample """ file = get_tsne_file(dir, name, tpmmode=tpmmode, logmode=logmode) if not os.path.isfile(file) or not cache: print('{} was not found, creating it...'.format(file)) # perplexity = 5, n_iter = 5000, learning = 10 tsne = new_tsne() if isinstance(pca, SparseDataFrame): tsne_results = SparseDataFrame(tsne.fit_transform(pca.data), pca.index, pca.columns) else: tsne_results = tsne.fit_transform(pca) data = pd.DataFrame({'Barcode':pca.index, 'TSNE-1':tsne_results[:, 0], 'TSNE-2':tsne_results[:, 1]}) data = data[['Barcode', 'TSNE-1', 'TSNE-2']] data = data.set_index('Barcode') data.to_csv(file, sep='\t', header=True) return read_tsne(file)
43946e73e367d2d5f0e623dff5f5a8d481917e87
3,653,908
def one_zone_numerical(params, ref_coeff, num_molecules=1e-9): """Returns one zone reactor exit flow.""" time = np.array(params[0], dtype=float) gradient = np.array(params[1], dtype=float) gridpoints = int(params[2]) step_size, area = float(params[3]), float(params[4]) solu = odeint( _one_zone_fd, np.zeros(int(gradient.size)), time, args=(ref_coeff, gradient, gridpoints, step_size, area) ) return solu[:, -2] * ref_coeff * area / (step_size * num_molecules)
4eb17f9684d1d12175bf85d15bada4178074de8a
3,653,909
import re def get_all_event_history_links(): """From ufcstat website finds all completed fights and saves the http into the current working directory """ url = "http://www.ufcstats.com/statistics/events/completed?page=all" href_collection = get_all_a_tags(url) #Add all links to list that have event-details in them links = [] for i in href_collection: site_regex = re.search('event-details', i) if site_regex is not None: links.append(i) links = list(dict.fromkeys(links)) return links
ab452c66460f18b5d55ce2be2e22877f07e959d5
3,653,910
import matplotlib import numpy as np import matplotlib.cm as cm import matplotlib.colors as colors def profile_plot(x,z,data,ax,context_label = None,add_labels = False,xlabel = None,xmin = None, xmax=None, max_depth=None): """ UnTRIM-like profile plot of salinity xmin,xmax are the bounds (in km) of the profile max_depth is the maximum depth, data assumed to be """ global x_part global z_part matplotlib.rcParams['xtick.direction'] = 'out' matplotlib.rcParams['ytick.direction'] = 'out' if (not max_depth): max_depth = data.shape[0] if (xmin): min_station = x[0,:].searchsorted(xmin) else: min_station = 0 if (xmax): max_station = x[0,:].searchsorted(xmax) else: max_station = x.shape[1] set_index_bounds(min_station,max_station,max_depth) print("context label: %s" % context_label) print("add label: %s" % add_labels) print("min x dist %s max x dist %s" %(xmin,xmax)) print("min x station %s max x station %s max_depth %s" %(min_station,max_station,max_depth)) x_part = x[0:max_depth,min_station:max_station] z_part = z[0:max_depth,min_station:max_station] data_part = data[0:max_depth,min_station:max_station] data_part = np.ma.masked_where(np.isnan(data_part),data_part) norml = ThreePointLinearNorm(2,0,20) cmap=cm.get_cmap("RdBu_r").copy() cmap.set_bad("white",0.0) do_image=False if do_image: lev = [0.0,0.1,0.2,0.5,1.0,2.0,4.0,8.0,16.0,24.0,32.0] norml = colors.BoundaryNorm(lev, 256) im = ax.imshow(vertical_fill(data_part), interpolation='bilinear', origin='upper', aspect = 'auto', vmin = 0.0, vmax = 32.0, norm=norml, cmap=cmap, extent=(x[0,min_station],x[0,max_station-1],max_depth,0)) bad_data = np.ma.masked_where(~data_part.mask, data_part.mask) ax.imshow(bad_data, interpolation='nearest', aspect = 0.75, cmap=cm.gray,extent=(x[0,min_station],x[0,max_station-1],max_depth,0)) # Colorbar for the image. cbi = ax.colorbar(im, orientation='vertical', shrink=0.6,ticks = lev) cbi.set_label("Salinity (psu)", size = 14) else: im = None do_line_contour = True if do_line_contour: lev = np.array([2.0, 4.0, 8.0, 16.0]) greys = 1.0-lev/32. cs = ax.contour(x_part,z_part,data_part,levels = lev,colors=['black','black','black','black'],linewidths=2) greylev = 1.0 for c in cs.collections: c.set_linestyle('solid') #Thicken the zero contour. zc = cs.collections[0] #ax.setp(zc, linewidth=3) #ax.setp(zc, linestyle = 'dotted') ax.clabel(cs, lev, # label every second level inline=1, inline_spacing = 3, fmt='%1.1f', fontsize=12) else: cs = None do_filled_contour = True if do_filled_contour: lev = [0.0,0.1,0.2,0.5,1.0,2.0,4.0,8.0,16.0,32.0] norml = colors.BoundaryNorm(lev, 256) filled_data_part = vertical_fill(data_part) bad_data = np.ma.masked_where(~data_part.mask, data_part.mask, copy=True) maxz = np.argmax(bad_data,axis=0) maxz[maxz == 0] = max_depth maxz = np.concatenate(([max_depth],maxz,[max_depth])) xstat = np.concatenate(([x_part[0,0]],x_part[0,:],[x_part[0,-1]])) ax.set_ylim([max_depth,0]) cs = ax.contourf(x_part,z_part,filled_data_part,levels = lev, cmap = cm.RdBu_r, norm = norml,extent=(x[0,min_station],x[0,max_station-1],max_depth,0)) ax.fill(xstat,maxz,"darkgray") #cb = ax.colorbar(cs, orientation='vertical', shrink=0.8,ticks = [32,16,8,4,2,1,0.5,0.2,0.1,0]) #cb.set_label("Salinity (psu)", size = 14) add_cruise_loc = False if add_cruise_loc: xloc = x_part[0] zloc = np.ones_like(xloc)*19 stops, = ax.plot(xloc,zloc,'o',label="USGS cast") xloc = np.array([84.86]) yloc = np.ones_like(xloc)*19 dayflow, = ax.plot(xloc,yloc,"*",label="Dayflow X2",markersize=14) add_labels = True if (add_labels): inbound_label_dists = [x for x in location_labels.keys() if (x>xmin and x<xmax)] bbox_props = dict(boxstyle="rarrow,pad=0.3", fc="white", lw=2) for dist in inbound_label_dists: t = ax.text(dist, max_depth-2, location_labels[dist], ha="center", va="bottom", rotation=270, size=12, bbox=bbox_props) if (add_cruise_loc and add_labels): font= FontProperties(color="white"); leg = ax.legend(("USGS cast","Dayflow X2"),"center left",numpoints=1,frameon=False) leg_texts = leg.get_texts() if len(leg_texts) > 0: leg_texts[0].set_color("white") leg_texts[1].set_color("white") if context_label: ttxt = ax.text(x_part[0,0]+2,5,context_label,size = 18, color = 'white') #ax.title('Vertical Salinity Profile', size = 14) if xlabel: ax.set_xlabel(xlabel, size = 14) ax.set_ylabel('Depth (m)', size = 14) return im, cs, ttxt
9758ae430a2d45fd14932b8476648c61120c9749
3,653,911
def plot_book_wordbags(urn, wordbags, window=5000, pr = 100): """Generate a diagram of wordbags in book """ return plot_sammen_vekst(urn, wordbags, window=window, pr=pr)
12a03c70316d3920419f85cd2e4af87c7a16f0f8
3,653,912
def map_line2citem(decompilation_text): """ Map decompilation line numbers to citems. This function allows us to build a relationship between citems in the ctree and specific lines in the hexrays decompilation text. Output: +- line2citem: | a map keyed with line numbers, holding sets of citem indexes | | eg: { int(line_number): sets(citem_indexes), ... } ' """ line2citem = {} # # it turns out that citem indexes are actually stored inline with the # decompilation text output, hidden behind COLOR_ADDR tokens. # # here we pass each line of raw decompilation text to our crappy lexer, # extracting any COLOR_ADDR tokens as citem indexes # for line_number in range(decompilation_text.size()): line_text = decompilation_text[line_number].line line2citem[line_number] = lex_citem_indexes(line_text) return line2citem
86c8a24f769c7404560bb63c34f2b60ff3a097da
3,653,913
def from_dict(params, filter_func=None, excludes=[], seeds=[], order=2, random_seed=None): """Generates pair-wise cases from given parameter dictionary.""" if random_seed is None or isinstance(random_seed, int): return _from_dict(params, filter_func, excludes, seeds, order, random_seed) # Find the best (smallest) test suite by trying multiple seeds. best = None for rs in random_seed: case = _from_dict(params, filter_func, excludes, seeds, order, rs) if best is None or len(case) < len(best): best = case return best
d9ecd0528340adbe874afa70d3a9309e53ff87cc
3,653,914
def ensure_min_topology(*args, **kwargs): """ verifies if the current testbed topology satifies the minimum topology required by test script :param spec: needed topology specification :type spec: basestring :return: True if current topology is good enough else False :rtype: bool """ return getwa().ensure_min_topology(*args, **kwargs)
364e7b3c166b725fd73846e1814bd3b7ab92ad96
3,653,915
def encode_mode(mode): """ JJ2 uses numbers instead of strings, but strings are easier for humans to work with CANNOT use spaces here, as list server scripts may not expect spaces in modes in port 10057 response :param mode: Mode number as sent by the client :return: Mode string """ if mode == 16: return "headhunters" if mode == 15: return "domination" if mode == 14: return "tlrs" if mode == 13: return "flagrun" if mode == 12: return "deathctf" if mode == 11: return "jailbreak" if mode == 10: return "teambattle" if mode == 9: return "pestilence" if mode == 8: return "xlrs" if mode == 7: return "lrs" if mode == 6: return "roasttag" if mode == 5: return "coop" if mode == 4: return "race" if mode == 3: return "ctf" if mode == 2: return "treasure" if mode == 1: return "battle" return "unknown"
db83c419acb299284b7b5338331efc95051115a5
3,653,916
def split_array(arr, num_of_splits): """split an array into equal pieces""" # TODO Replace this function with gluon.utils.split_data() once targeting MXNet 1.7 size = arr.shape[0] if size < num_of_splits: return [arr[i:i + 1] for i in range(size)] slice_len, rest = divmod(size, num_of_splits) div_points = [0] + [(slice_len * index + min(index, rest) + slice_len + (index < rest)) for index in range(num_of_splits)] slices = [ arr[div_points[i]:div_points[i + 1]] for i in range(num_of_splits) ] return slices
f8d4812619725940f9e986d238bc4e0f650e8da6
3,653,917
import random def randclust(SC, k): """ cluster using random """ # generate labels. labels = np.array([random.randint(0,k-1) for x in range(SC.shape[1])]) # compute the average. S, cats = avg_cat(labels, SC) # return it. return S, labels, cats
42530495959977c1289fa6bdc2089747a246d210
3,653,918
def get_domains_by_name(kw, c, adgroup=False): """Searches for domains by a text fragment that matches the domain name (not the tld)""" domains = [] existing = set() if adgroup: existing = set(c['adgroups'].find_one({'name': adgroup}, {'sites':1})['sites']) for domain in c['domains'].find({}, {'domain': 1, 'alexa.rank.latest':1}): try: rank = domain['alexa']['rank']['latest'] domain_name = domain['domain'].replace('#', '.') if kw in domain_name: if domain_name not in existing: domains.append({ "domain": domain_name, "rank": rank }) except KeyError: pass return domains[:50]
6ecaf4ccf1ecac806fb621c02282bf46929459ce
3,653,919
def read_bbgt(filename): """ Read ground truth from bbGt file. See Piotr's Toolbox for details """ boxes = [] with open(filename,"r") as f: signature = f.readline() if not signature.startswith("% bbGt version=3"): raise ValueError("Wrong file signature") rects = [] ignore = [] labels = [] for line in f: elms = line.strip().split() assert len(elms) == 12, "Invalid file" lbl = elms[0] rect = tuple(map(float, elms[1:5])) ign = int(elms[10]) rects.append(rect) ignore.append(ign) labels.append(lbl) if not rects: rects = np.empty((0,4),"f") ignore = np.empty(0,"i") labels = np.empty(0,"<U1") boxes = bbox_list(np.array(rects,"f"), format=RectFormat.XYWH, ignore=np.array(ignore,"i"), labels=np.array(labels)) return boxes
25cfe28de9ed67ca0888da5bf27d01a803da8690
3,653,920
def measure(G, wire, get_cb_delay = False, meas_lut_access = False): """Calls HSPICE to obtain the delay of the wire. Parameters ---------- G : nx.MultiDiGraph The routing-resource graph. wire : str Wire type. get_cb_delay : Optional[bool], default = False Determines the position of the wire and the connection block and then calls >>meas_local_wire.py<< to obtain the delay from the wire to a LUT input pin. Returns ------- float Delay. """ #------------------------------------------------------------------------# def run(): """Runs HSPICE and parses the delay.""" with open(netlist_filename, "w") as outf: outf.write(conv_nx_to_spice(net, meas_lut_access = meas_lut_access)) hspice_call = os.environ["HSPICE"] + " %s > %s" % (netlist_filename, hspice_dump) os.system(hspice_call) scale_dict = {'f' : 1e-15, 'p' : 1e-12, 'n' : 1e-9} with open(hspice_dump, "r") as inf: lines = inf.readlines() #os.system("rm " + hspice_dump) td_dict = {} get_td = lambda l : round(float(l.split()[1][:-1]), 1) * scale_dict[l.split()[1][-1]] get_tap = lambda l : wire + '_' + l.split('=', 1)[0].split('_', 1)[1] for line in lines: if "tfall=" in line: tfall = get_td(line) elif "trise=" in line: trise = get_td(line) elif meas_lut_access: if "tfall_ble_mux" in line or "trise_ble_mux" in line: td = get_td(line) if td < 0: print "Negative time!" raise ValueError try: td_dict["ble_mux"] = 0.5 * (td_dict["ble_mux"] + td) except: td_dict.update({"ble_mux" : td}) elif wire[0] == 'V': if "tfall_tap" in line or "trise_tap" in line: tap = get_tap(line) td = get_td(line) if td < 0: print "Negative time!" raise ValueError try: td_dict[tap] = 0.5 * (td_dict[tap] + td) except: td_dict.update({tap : td}) if trise < 0 or tfall < 0: print "Negative time!" raise ValueError if wire[0] == 'V': td_dict.update({"whole" : 0.5 * (trise + tfall)}) if meas_lut_access: td_dict.update({"lut_access" : 0.5 * (trise + tfall) - td_dict["ble_mux"]}) return td_dict if wire[0] == 'V': return td_dict return 0.5 * (trise + tfall) #------------------------------------------------------------------------# netlist_filename = "sim_global_%s_%s.sp" % (args.arc_name, wire) hspice_dump = "hspice_%s_%s.dump" % (args.arc_name, wire) if meas_lut_access: net = meas_lut_access_delay(G) return run() else: pins, all_sizes = stack_muxes(G, get_pins = True) source_dict = {} for mux in pins: if wire in mux and mux.startswith("ble_%d_" % NEUTRAL_BLE): if ROBUSTNESS_LEVEL == 0: source = mux if get_cb_delay: return get_netlist(G, wire, source, get_cb_delay = True) net = get_netlist(G, wire, source) return run() key = mux.split("_tap")[0] offset = pins[mux]['o'][0 if wire[0] == 'V' else 1] deg = 0 for fanout in G: if fanout.startswith(key): deg += G.in_degree(fanout) + G.out_degree(fanout) source_dict.update({key : {"mux" : mux, "deg" : deg, "offset" : offset}}) sorted_keys = sorted(source_dict, key = lambda s : source_dict[s]["deg"]\ * abs(source_dict[s]["offset"])) if ROBUSTNESS_LEVEL == 1 or get_cb_delay: #NOTE: Connection-block delays are very robust to changing the multiplexer as they usually #assume only one or two columns, immediately next to the crossbar. Hence, the x-offset is #less varialbe. Also, the load is within the cluster itself. If there is any variation in #multiplexer sizes, that is more of an artifact of parametrized architecture generation. #Median fanin should be a good representative in this case. source = source_dict[sorted_keys[len(source_dict) / 2]]["mux"] if get_cb_delay: return get_netlist(G, wire, source, get_cb_delay = True) net = get_netlist(G, wire, source) return run() td_dicts = [] for source_key in sorted_keys: source = source_dict[source_key]["mux"] net = get_netlist(G, wire, source) td_dicts.append(run()) if ROBUSTNESS_LEVEL == 3: potential_targets = [u for u, attrs in net.nodes(data = True) if attrs.get("potential_target", False)] for i, u in enumerate(potential_targets): relabeling_dict = {} if u == 't': continue relabeling_dict.update({'t' : "prev_t_%d" % i}) relabeling_dict.update({u : 't'}) net = nx.relabel_nodes(net, relabeling_dict) td_dicts.append(run()) if (wire[0] == 'H' and not meas_lut_access) or get_cb_delay: return sum(td_dicts) / len(td_dicts) for v in td_dicts[0]: for td_dict in td_dicts[1:]: td_dicts[0][v] += td_dict[v] td_dicts[0][v] /= len(td_dicts) return td_dicts[0]
7db83ff5084798100a00d79c4df13a226a2e55a8
3,653,921
def direction_to(front,list_of_others,what="average") : """ Compute the direction vector towards *some other entities*. Parameters ---------- front : :py:class:`front.Front` Front to be used as the origin (starting point) of the direction \ vector list_of_others : list List created by ***get_enity*** LINK what : string String options: - 'nearest': compute the direction vector to the nearest \ point in the list_of_others. - 'average': default. TODO. Currently returns a list of direction \ vectors - 'all': Return a list of all direction vectors """ if len(list_of_others) == 0 : # shouldn't this be array([0,0,0])??? No items, null vector #return np.array([0,0,0]) return None # handle the error somewhere else pos = front.xyz vecs = [] smallest_vec = np.array([100000000,100000000,100000000]) for loc in list_of_others : vec = loc-pos#pos-loc vecs.append(vec) # THIS SHOULD BE MEMORIZED / TABULATED ++++++++++++++++++++ <----- if np.sqrt(np.sum((loc-pos)**2)) < np.sqrt(np.sum((smallest_vec)**2)) : smallest_vec = vec if what == "nearest" : return smallest_vec else : return vecs
f5757837e0eb71f2c03fda7c1d5b438d5036e8ac
3,653,922
def live_ferc_db(request): """Use the live FERC DB or make a temporary one.""" return request.config.getoption("--live_ferc_db")
f0540c8e3383572c5f686ea89011d9e1ab0bf208
3,653,923
from typing import Optional async def get_eth_hash(timestamp: int) -> Optional[str]: """Fetches next Ethereum blockhash after timestamp from API.""" try: this_block = w3.eth.get_block("latest") except Exception as e: logger.error(f"Unable to retrieve latest block: {e}") return None if this_block["timestamp"] < timestamp: logger.error( f"Timestamp {timestamp} is older than current " "block timestamp {this_block['timestamp']}" ) return None block_num = block_num_from_timestamp(timestamp) if block_num is None: logger.warning("Unable to retrieve block number from Etherscan API") return None try: block = w3.eth.get_block(block_num) except Exception as e: logger.error(f"Unable to retrieve block {block_num}: {e}") return None return str(block["hash"].hex())
f7f8cd70857d8bb84261685385f59e7cfd048f4c
3,653,924
import sys def resize_opencv(method, *args, **kwargs): """Direct arguments to one of the resize functions. Parameters ---------- method One among 'crop', 'cover', 'contain', 'width', 'height' or 'thumbnail' image Numpy array size Size object with desired size """ method = f"resize_{method}_opencv" valid_methods = [ x for x in globals().keys() if x.endswith("opencv") and x != "resize_opencv" ] LOG.info("Resizing with %s()", method) try: return getattr(sys.modules[__name__], method)(*args, **kwargs) except AttributeError: LOG.critical( f"Invalid method '{method}'; should be one of {', '.join(valid_methods)}" )
fdbf2e166dd348101c3e39d6edb417112c389aba
3,653,925
import urllib.request, urllib.parse, urllib.error from bs4 import BeautifulSoup import ssl def extract_url_dataset(dataset,msg_flag=False): """ Given a dataset identifier this function extracts the URL for the page where the actual raw data resides. """ # Ignore SSL certificate errors ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE dataset_dict={} baseurl='https://archive.ics.uci.edu/ml/datasets/' url = baseurl+dataset try: uh= urllib.request.urlopen(url, context=ctx) html =uh.read().decode() soup=BeautifulSoup(html,'html5lib') if soup.text.find("does not appear to exist")!=-1: if msg_flag: print(f"{dataset} not found") return None else: for link in soup.find_all('a'): if link.attrs['href'].find('machine-learning-databases')!=-1: a=link.attrs['href'] a=a[2:] dataurl="https://archive.ics.uci.edu/ml/"+str(a) #print(dataurl) return str(dataurl) #dataurls.append(dataurl) # After finishing the for-loop with a-tags, the first dataurl is added to the dictionary #dataset_dict['dataurl']=dataurls[0] except: #print("Could not retrieve") return None
06ec2dd6bea4c264fe9590663a28c7c92eed6a49
3,653,926
def test_encrypt_and_decrypt_one(benchmark: BenchmarkFixture) -> None: """Benchmark encryption and decryption run together.""" primitives.encrypt = nacl.bindings.crypto_aead_xchacha20poly1305_ietf_encrypt primitives.decrypt = nacl.bindings.crypto_aead_xchacha20poly1305_ietf_decrypt def encrypt_and_decrypt() -> bytes: token = version2.encrypt(MESSAGE, KEY, FOOTER) return version2.decrypt(token, KEY, FOOTER) plain_text = benchmark(encrypt_and_decrypt) assert plain_text == MESSAGE
fdd15ca362b983e5f7e28632434c2cbe1ab983ac
3,653,927
def MPI_ITOps(mintime = 5, maxtime = 20, cap = 60): """ Returns a costOfLaborValue object suitable to attach to a sim or other event Time is in hours """ timeDist = LogNormalValue(maxtime, mintime, cap) costDist = LogNormalValue(235, 115, 340) team = costOfLaborValue("IT I&O Team", timeDist, costDist) return team
829c702d31a585fc18f81eea01c87f32c2458ea6
3,653,928
import json def load_private_wallet(path): """ Load a json file with the given path as a private wallet. """ d = json.load(open(path)) blob = bytes.fromhex(d["key"]) return BLSPrivateHDKey.from_bytes(blob)
9c98be3b3891eaab7b62eba32b426b78ae985880
3,653,929
import json def format_parameters(parameters: str) -> str: """ Receives a key:value string and retuns a dictionary string ({"key":"value"}). In the process strips trailing and leading spaces. :param parameters: The key-value-list :return: """ if not parameters: return '{}' pairs = [] for item in parameters.split(','): try: key, value = item.split(':') except ValueError: raise ValueError(f"Got unexpected parameters {item}.") pairs.append((key.strip(), value.strip())) return json.dumps(dict(pairs))
95f115b9000d495db776798700cfdf35209cfbd4
3,653,930
def downvote_question(current_user, question_id): """Endpoint to downvote a question""" error = "" status = 200 response = {} question = db.get_single_question(question_id) if not question: error = "That question does not exist!" status = 404 elif db.downvote_question(current_user[0], question_id) is False: error = "You have already downvoted!" status = 400 else: db.downvote_question(current_user[0], question_id) votes = db.get_votes(question_id) que_details = db.get_question_details(question_id) data = { "meetup": que_details[0], "title": que_details[1].strip(), "body": que_details[2].strip(), "votes": votes[0] } status = 200 if error: response.update({"status": status, "error": error}) return jsonify(response), status response.update({"status": status, "data": data}) return jsonify(response), status
a7bba2a9608d25b3404f22ca2f283486f205f0ad
3,653,931
def get_new_generation(generation: GEN, patterns: PATTERNS) -> GEN: """Mutate current generation and get the next one.""" new_generation: GEN = dict() plant_ids = generation.keys() min_plant_id = min(plant_ids) max_plant_id = max(plant_ids) for i in range(min_plant_id - 2, max_plant_id + 2): pattern = get_pattern(generation, i) if patterns.get(pattern, Pot.EMPTY) is Pot.PLANT: new_generation[i] = Pot.PLANT return new_generation
a0908c9c7570814ca86d3b447425e7b75cdbfde2
3,653,932
def ell2tm(latitude, longitude, longitude_CM, ellipsoid = 'GRS80'): """ Convert ellipsoidal coordinates to 3 degree Transversal Mercator projection coordinates Input: latitude: latitude of a point in degrees longitude: longitude of a point in degrees longitude_CM: central meridian in degrees ellipsoid: name of ellipsoid in string format Output: Easting, Northing [unit:meters] """ Phi = _np.deg2rad(latitude) # degree to radian Lambda = _np.deg2rad(longitude) # degree to radian Lambda_CM = _np.deg2rad(longitude_CM) # degree to radian dlambda = Lambda - Lambda_CM # ----------------------------------------------------------------------------- # Define Ellipsoid ell = _ellipsoid(ellipsoid) # ----------------------------------------------------------------------------- # Some parameters N = ell.a/_np.sqrt(1-ell.e1**2*_np.sin(Phi)**2) t = _np.tan(Phi) n = ell.e2 * _np.cos(Phi) # ----------------------------------------------------------------------------- # Easting Computation easting = N*(dlambda*_np.cos(Phi)+((dlambda**3*_np.cos(Phi)**3)/6)*(1-t**2+n**2) + ((dlambda**5*_np.cos(Phi)**5)/120)*(5-18*t**2+t**4+14*n**2-58*t**2*n**2+13*n**4+4*n**6-64*n**4*t**2-24*n**6*t**2) + ((dlambda**7*_np.cos(Phi)**7)/5040)*(61-479*t**2+179*t**4-t**6)) easting += 500000 # false easting # ----------------------------------------------------------------------------- # Meridian Arc Computation # Meridian Arc Computation A0 = 1 - ell.e1**2/4 - (3/64)*ell.e1**4 - (5/256)*ell.e1**6 - (175/16384)*ell.e1**8 A2 = (3/8) * (ell.e1**2 + ell.e1**4/4 + (15/128)*ell.e1**6 - (455/4096)*ell.e1**8) A4 = (15/256) * (ell.e1**4 + (3/4)*ell.e1**6 - (77/128)*ell.e1**8) A6 = (35/3072) * (ell.e1**6 - (41/32)*ell.e1**8) A8 = (-315/131072) * ell.e1**8 S_phi = ell.a * ( A0 * Phi - A2*_np.sin(2*Phi) + A4*_np.sin(4*Phi) - A6*_np.sin(6*Phi) + A8*_np.sin(8*Phi)) # ----------------------------------------------------------------------------- # Northing Computation northing = S_phi + N * ( (dlambda**2/2) * _np.sin(Phi) * _np.cos(Phi) + (dlambda**4/24) * _np.sin(Phi) * _np.cos(Phi)**3 * (5 - t**2 + 9*n**2 + 4*n**4) + (dlambda**6/720) * _np.sin(Phi) * _np.cos(Phi)**5 * (61 - 58*t**2 + t**4 + 270*n**2 - 330*t**2*n**2 + 445*n**4 + 324*n**6 - 680*n**4*t**2 + 88*n**8 - 600*n**6*t**2 - 192*n**8*t**2) + (dlambda**8/40320) * _np.sin(Phi) * _np.cos(Phi)**7 * (1385 - 311*t**2 + 543*t**4 - t**6)) return easting, northing
b6e1361df8b51e188bbc7a49557dbe8f14905df3
3,653,933
def Format_Phone(Phone): """Function to Format a Phone Number into (999)-999 9999)""" Phone = str(Phone) return f"({Phone[0:3]}) {Phone[3:6]}-{Phone[6:10]}"
8e46c35bca9d302d86909457c84785ad5d366c15
3,653,934
from sets import Set def aStarSearch(problem, heuristic=nullHeuristic): """Search the node that has the lowest combined cost and heuristic first.""" "*** YOUR CODE HERE ***" startState = problem.getStartState() if problem.isGoalState(startState): return [] # Each element in the fringe stores the state and the cost to reach it. fringe = util.PriorityQueue() fringe.push(startState, 0 + heuristic(startState, problem)) # Each pair in itemsInFringe stores a state and the list of actions # required to reach it. States are added in itemsInFringe when they are # added to the fringe. The states are removed from itemsInFringe when # they get removed from the fringe. itemsInFringe = {startState: []} visitedStates = Set() while not fringe.isEmpty(): currState = fringe.pop() actionsToCurrState = itemsInFringe[currState] del itemsInFringe[currState] costOfActionsToCurrState = problem.getCostOfActions(actionsToCurrState) if problem.isGoalState(currState): return actionsToCurrState visitedStates.add(currState) for successor, action, stepCost in problem.getSuccessors(currState): heuristicCostToSuccessor = heuristic(successor, problem) newCostToSuccessor = costOfActionsToCurrState + stepCost + \ heuristicCostToSuccessor newActionsToSuccessor = actionsToCurrState + [action] if successor not in visitedStates: fringe.update(successor, newCostToSuccessor) if successor in itemsInFringe and \ problem.getCostOfActions(itemsInFringe[successor]) + \ heuristicCostToSuccessor <= newCostToSuccessor: # If successor is already in itemsInFringe, only update the # cost if the current cost is greater than the new cost. continue itemsInFringe[successor] = newActionsToSuccessor # Goal not found, so no action. return []
429c45bff701bbd2bb515be6d8a0f538183941d3
3,653,935
def _stack_add_equal_dataset_attributes(merged_dataset, datasets, a=None): """Helper function for vstack and hstack to find dataset attributes common to a set of datasets, and at them to the output. Note:by default this function does nothing because testing for equality may be messy for certain types; to override a value should be assigned to the add_keys argument. Parameters ---------- merged_dataset: Dataset the output dataset to which attributes are added datasets: tuple of Dataset Sequence of datasets to be stacked. Only attributes present in all datasets and with identical values are put in merged_dataset a: {'unique','drop_nonunique','uniques','all'} or True or False or None (default: None). Indicates which dataset attributes from datasets are stored in merged_dataset. If an int k, then the dataset attributes from datasets[k] are taken. If 'unique' then it is assumed that any attribute common to more than one dataset in datasets is unique; if not an exception is raised. If 'drop_nonunique' then as 'unique', except that exceptions are not raised. If 'uniques' then, for each attribute, any unique value across the datasets is stored in a tuple in merged_datasets. If 'all' then each attribute present in any dataset across datasets is stored as a tuple in merged_datasets; missing values are replaced by None. If None (the default) then no attributes are stored in merged_dataset. True is equivalent to 'drop_nonunique'. False is equivalent to None. """ if a is None or a is False: # do nothing return elif a is True: a = 'drop_nonunique' if not datasets: # empty - so nothing to do return if type(a) is int: base_dataset = datasets[a] for key in base_dataset.a.keys(): merged_dataset.a[key] = base_dataset.a[key].value return allowed_values = ['unique', 'uniques', 'drop_nonunique', 'all'] if not a in allowed_values: raise ValueError("a should be an int or one of " "%r" % allowed_values) # consider all keys that are present in at least one dataset all_keys = set.union(*[set(dataset.a.keys()) for dataset in datasets]) def _contains(xs, y, comparator=all_equal): for x in xs: if comparator(x, y): return True return False for key in all_keys: add_key = True values = [] for i, dataset in enumerate(datasets): if not key in dataset.a: if a == 'all': values.append(None) continue value = dataset.a[key].value if a in ('drop_nonunique', 'unique'): if not values: values.append(value) elif not _contains(values, value): if a == 'unique': raise DatasetError("Not unique dataset attribute value " " for %s: %s and %s" % (key, values[0], value)) else: add_key = False break elif a == 'uniques': if not _contains(values, value): values.append(value) elif a == 'all': values.append(value) else: raise ValueError("this should not happen: %s" % a) if add_key: if a in ('drop_nonunique', 'unique'): merged_dataset.a[key] = values[0] else: merged_dataset.a[key] = tuple(values)
acfeb1e7ca315aa7109731427ce6f058b2fceb6d
3,653,936
def _rstrip_inplace(array): """ Performs an in-place rstrip operation on string arrays. This is necessary since the built-in `np.char.rstrip` in Numpy does not perform an in-place calculation. """ # The following implementation convert the string to unsigned integers of # the right length. Trailing spaces (which are represented as 32) are then # converted to null characters (represented as zeros). To avoid creating # large temporary mask arrays, we loop over chunks (attempting to do that # on a 1-D version of the array; large memory may still be needed in the # unlikely case that a string array has small first dimension and cannot # be represented as a contiguous 1-D array in memory). dt = array.dtype if dt.kind not in 'SU': raise TypeError("This function can only be used on string arrays") # View the array as appropriate integers. The last dimension will # equal the number of characters in each string. bpc = 1 if dt.kind == 'S' else 4 dt_int = "{0}{1}u{2}".format(dt.itemsize // bpc, dt.byteorder, bpc) b = array.view(dt_int, np.ndarray) # For optimal speed, work in chunks of the internal ufunc buffer size. bufsize = np.getbufsize() # Attempt to have the strings as a 1-D array to give the chunk known size. # Note: the code will work if this fails; the chunks will just be larger. if b.ndim > 2: try: b.shape = -1, b.shape[-1] except AttributeError: # can occur for non-contiguous arrays pass for j in range(0, b.shape[0], bufsize): c = b[j:j + bufsize] # Mask which will tell whether we're in a sequence of trailing spaces. mask = np.ones(c.shape[:-1], dtype=bool) # Loop over the characters in the strings, in reverse order. We process # the i-th character of all strings in the chunk at the same time. If # the character is 32, this corresponds to a space, and we then change # this to 0. We then construct a new mask to find rows where the # i-th character is 0 (null) and the i-1-th is 32 (space) and repeat. for i in range(-1, -c.shape[-1], -1): mask &= c[..., i] == 32 c[..., i][mask] = 0 mask = c[..., i] == 0 return array
f59d6d127d4d3f0725df5eee2e4586ccbea9288b
3,653,937
def compute_fixpoint_0(graph, max_value): """ Computes the fixpoint obtained by the symbolic version of the backward algorithm for safety games. Starts from the antichain of the safe set and works backwards using controllable predecessors. The maximum value for the counters is a parameter to facilitate the incremental algorithm. :param graph: :type graph: :param max_value: :type max_value: :return: :rtype: """ # wether we want to print the sets during computation toPrint = False # get the values to create the create the antichain of maximal elements of the safe set nbr_functions, nbr_counters_per_function = compute_counters_sizes_0(graph) start_antichain = Antichain(comparator_generalized_0, intersector_generalized_0) # create the antichain of maximal elements of the safe set # every counter in every tuple has the maximal value for node in graph.get_nodes(): temp = [node] for func in range(0, nbr_functions): temp.append(nbr_counters_per_function[func] * [max_value]) start_antichain.insert(temp) if (toPrint): print("Start antichain : " + str(start_antichain) + "\n") antichain1 = start_antichain cpre1 = Cpre(start_antichain, 1, graph, nbr_functions, max_value) if (toPrint): print("CPre_1 of start antichain: " + str(cpre1) + "\n") cpre0 = Cpre(start_antichain, 0, graph, nbr_functions, max_value) if (toPrint): print("CPre_0 of start antichain: " + str(cpre0) + "\n") # we know the elements of cpre0 and cpre1 to be incomparable. Union of the two antichains can be done through # simple extend cpre0.incomparable_elements.extend(cpre1.incomparable_elements) if (toPrint): print("Union of CPre_0 and CPre_1 " + str(cpre0) + "\n") antichain2 = antichain1.intersection(cpre0) if (toPrint): print("Inter of start and previous union " + str(antichain2) + "\n") nb_iter = 0 # while we have not obtained the fixpoint while not antichain1.compare(antichain2): nb_iter += 1 antichain1 = antichain2 cpre1 = Cpre(antichain1, 1, graph, nbr_functions, max_value) if (toPrint): print("ITER " + str(nb_iter) + " CPre 1 of prev " + str(cpre1) + "\n") cpre0 = Cpre(antichain1, 0, graph, nbr_functions, max_value) if (toPrint): print("ITER " + str(nb_iter) + " CPre 0 of prev " + str(cpre0) + "\n") temp = cpre0.union(cpre1) if (toPrint): print("ITER " + str(nb_iter) + " Union of Pre 0 and Pre 1 " + str(temp) + "\n") antichain2 = antichain1.intersection(temp) if (toPrint): print("ITER " + str(nb_iter) + " final set " + str(antichain2) + "\n") return antichain1
e2ee9cb00ce6f88e03a080d85a635c208cdd5a35
3,653,938
def extract_unii_other_code(tree): """Extract the codes for other ingredients""" unii_other_xpath = \ '//generalizedMaterialKind/code[@codeSystem="%s"]/@code' % UNII_OTHER_OID return tree.getroot().xpath(unii_other_xpath)
0576dc7537a9212990a72125b8fd406c457efb76
3,653,939
import functools def initfunc(f): """ Decorator for initialization functions that should be run exactly once. """ @functools.wraps(f) def wrapper(*args, **kwargs): if wrapper.initialized: return wrapper.initialized = True return f(*args, **kwargs) wrapper.initialized = False return wrapper
337ca902fc1fbe138ad5dd4c203a3cac77e89f57
3,653,940
def edit_frame(frame): """edit frame to analyzable frame rgb 2 gray thresh frame color bitwise color Args frame (ndarray): original frame from movie Returns work_frame (ndarray): edited frame """ work_frame = frame work_frame = cv2.cvtColor(work_frame, cv2.COLOR_RGB2GRAY) work_frame = cv2.threshold(work_frame, FRAME_THRESH, 255, cv2.THRESH_BINARY)[1] work_frame = cv2.bitwise_not(work_frame) return work_frame
b82588fa81093c05e4a683b76aa367ba2be4b2e2
3,653,941
def manchester(bin_string): """ Applies the Manchester technique to a string of bits. :param bin_string: :type bin_string: str :return: :rtype: str """ signal_manager = Signal() for bin_digit in bin_string: if bin_digit == '0': # Generate +- if signal_manager.signal == '+': # It's positive signal_manager.keep() # + signal_manager.flip() # - else: # It's negative signal_manager.flip() # + signal_manager.flip() # - else: # Generate -+ if signal_manager.signal == '+': # It's positive signal_manager.flip() # - signal_manager.flip() # + else: # It's negative signal_manager.keep() # - signal_manager.flip() # + return str(signal_manager)
e5f58e929db74f0eeb2a003c25c5097f45c74989
3,653,942
from typing import List def load_admin_cells(identifier: str) -> List[MultiPolygon]: """Loads the administrative region cells Data is loaded from :py:const:`ADMIN_GEOJSON_TEMPLATE` ``% identifier``. This is a wrapper function for :py:func:`load_polygons_from_json`. Returns: A list of the administrative region cells. """ return load_polygons_from_json(ADMIN_GEOJSON_TEMPLATE % identifier)
dc2083ca7392da5b2d6509b6dd8f108bd8218726
3,653,943
import inspect def register_writer(format, cls=None): """Return a decorator for a writer function. A decorator factory for writer functions. A writer function should have at least the following signature: ``<class_name_or_generator>_to_<format_name>(obj, fh)``. `fh` is **always** an open filehandle. This decorator provides the ability to use filepaths in the same argument position as `fh`. They will automatically be opened and closed. **The writer must not close the filehandle**, cleanup will be handled external to the reader and is not its concern. Any additional `**kwargs` will be passed to the writer and may be used if necessary. The writer must not return a value. Instead it should only mutate the `fh` in a way consistent with it's purpose. If the writer accepts a generator, it should exhaust the generator to ensure that the potentially open filehandle backing said generator is closed. .. note:: Failure to adhere to the above interface specified for a writer will result in unintended side-effects. Parameters ---------- format : str A format name which a decorated writer will be bound to. cls : type, optional The class which a decorated writer will be bound to. If `cls` is None the writer will be bound as expecting a generator. Default is None. Returns ------- function A decorator to be used on a writer. The decorator will raise a ``skbio.io.DuplicateRegistrationError`` if there already exists a *writer* bound to the same permutation of `fmt` and `cls`. See Also -------- skbio.io.write skbio.io.get_writer """ def decorator(writer): format_class = _formats.setdefault(format, {}).setdefault(cls, {}) if 'writer' in format_class: raise DuplicateRegistrationError('writer', format, cls) file_args = [] writer_spec = inspect.getargspec(writer) if writer_spec.defaults is not None: # Concept from http://stackoverflow.com/a/12627202/579416 for key, default in zip( writer_spec.args[-len(writer_spec.defaults):], writer_spec.defaults): if default is FileSentinel: file_args.append(key) # We wrap the writer so that basic file handling can be managed # externally from the business logic. def wrapped_writer(obj, fp, mode='w', **kwargs): file_keys = [] files = [fp] for file_arg in file_args: if file_arg in kwargs: if kwargs[file_arg] is not None: file_keys.append(file_arg) files.append(kwargs[file_arg]) else: kwargs[file_arg] = None with open_files(files, mode) as fhs: for key, fh in zip(file_keys, fhs[1:]): kwargs[key] = fh writer(obj, fhs[0], **kwargs) wrapped_writer.__doc__ = writer.__doc__ wrapped_writer.__name__ = writer.__name__ format_class['writer'] = wrapped_writer return wrapped_writer return decorator
b8312d987cecfa106c73afb4eca5299637d260f6
3,653,944
import os def get_downloadpath(user_id): """ find the download path """ path = settings.DOCUMENT_PATH + str(user_id) + '/' if not os.path.isdir(path): os.mkdir(path) return path
da3508639cd8740410e5b21df8944a64ade7e50c
3,653,945
import torch def accuracy(output, target, topk=1,axis=1,ignore_index=-100, exclude_mask=False): """Computes the precision@k for the specified values of k prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) """ input_tensor=output.copy().detach() target_tensor=target.copy().detach() num_classes = int_shape(output)[axis] if len(input_tensor)==0: return to_tensor(0.0) is_logsoftmax = None from_logits = None output_exp = exp(input_tensor) if (ndim(input_tensor) >= 1 and 'float' in str(input_tensor.dtype) and input_tensor.min() >= 0 and input_tensor.max() <= 1): is_logsoftmax = False from_logits = True input_tensor = clip(input_tensor, min=1e-8, max=1 - 1e-8) elif (ndim(output_exp) >= 1 and 'float' in str(output_exp.dtype) and output_exp.min() >= 0 and output_exp.max() <= 1): is_logsoftmax = True from_logits = True input_tensor = clip(output_exp, min=1e-8, max=1 - 1e-8) else: is_logsoftmax = False from_logits = False if input_tensor.dtype!=torch.int64 and topk==1: if len(input_tensor.size())==1: #binary input_tensor=input_tensor.gt(0.5).float() else: input_tensor=argmax(input_tensor,axis).squeeze() if target_tensor.dtype!=torch.int64: target_tensor=argmax(target_tensor,axis).squeeze() if input_tensor.shape!=target_tensor.shape and topk==1: raise ValueError('input shape {0} is not competable with target shape {1}'.format(input_tensor.shape,target_tensor.shape)) input_mask=ones_like(input_tensor) if isinstance(ignore_index, int) and 0 <= ignore_index < num_classes: input_mask[input_tensor==ignore_index] = 0 elif isinstance(ignore_index, (list, tuple)): for idx in ignore_index: if isinstance(idx, int) and 0 <= idx < int_shape(output)[axis]: input_mask[input_tensor == idx] = 0 batch_size = target_tensor.size(0) if topk==1: return (input_tensor.eq(target_tensor).float()*input_mask).sum()/clip((input_mask).float().sum(),min=1) else: _, pred = input_tensor.topk(topk) pred = pred.t() correct = pred.eq(target_tensor.reshape((1, -1)).expand_as(pred)) correct_k = reduce_sum(correct[:topk].reshape(-1).float(),axis=0,keepdims=True) return correct_k.mul_(1 / batch_size)
a35d4bff308862c4c8a83948c619e66299d7887f
3,653,946
def jitter_over_thresh(x: xr.DataArray, thresh: str, upper_bnd: str) -> xr.DataArray: """Replace values greater than threshold by a uniform random noise. Do not confuse with R's jitter, which adds uniform noise instead of replacing values. Parameters ---------- x : xr.DataArray Values. thresh : str Threshold over which to add uniform random noise to values, a quantity with units. upper_bnd : str Maximum possible value for the random noise, a quantity with units. Returns ------- xr.DataArray Notes ----- If thresh is low, this will change the mean value of x. """ return jitter(x, lower=None, upper=thresh, minimum=None, maximum=upper_bnd)
1a508c30aa68c3b8808f3fe0b254ad98621cd245
3,653,947
from .rename_axis import rename_axis_with_level def index_set_names(index, names, level=None, inplace=False): """ Set Index or MultiIndex name. Able to set new names partially and by level. Parameters ---------- names : label or list of label Name(s) to set. level : int, label or list of int or label, optional If the index is a MultiIndex, level(s) to set (None for all levels). Otherwise level must be None. inplace : bool, default False Modifies the object directly, instead of creating a new Index or MultiIndex. Returns ------- Index The same type as the caller or None if inplace is True. See Also -------- Index.rename : Able to set new names without level. Examples -------- >>> import mars.dataframe as md >>> idx = md.Index([1, 2, 3, 4]) >>> idx.execute() Int64Index([1, 2, 3, 4], dtype='int64') >>> idx.set_names('quarter').execute() Int64Index([1, 2, 3, 4], dtype='int64', name='quarter') >>> idx = md.MultiIndex.from_product([['python', 'cobra'], ... [2018, 2019]]) >>> idx.execute() MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], ) >>> idx.set_names(['kind', 'year'], inplace=True) >>> idx.execute() MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['kind', 'year']) >>> idx.set_names('species', level=0).execute() MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['species', 'year']) """ op = DataFrameRename(index_mapper=names, level=level, output_types=get_output_types(index)) ret = op(index) if inplace: df_or_series = getattr(index, '_get_df_or_series', lambda: None)() if df_or_series is not None: rename_axis_with_level(df_or_series, names, axis=index._axis, level=level, inplace=True) index.data = df_or_series.axes[index._axis].data else: index.data = ret.data else: return ret
4ad24ea4c1fd42b1259d43e273c44c4295a9e329
3,653,948
def get_critic(obs_dim: int) -> tf.keras.Model: """Get a critic that returns the expect value for the current state""" observation = tf.keras.Input(shape=(obs_dim,), name='observation') x = layers.Dense(64, activation='tanh')(observation) x = layers.Dense(64, activation='tanh')(x) value = layers.Dense(1, name='value')(x) critic = tf.keras.Model(observation, value) # critic.summary() return critic
69082d6260666c733e32093fbc7180726f77acc6
3,653,949
def register_and_login_test_user(c): """ Helper function that makes an HTTP request to register a test user Parameters ---------- c : object Test client object Returns ------- str Access JWT in order to use in subsequent tests """ c.post( "/api/auth/register", json={ "username": "test", "password": "secret", "first_name": "tim", "last_name": "apple", "email": "[email protected]", "birthday": "1990-01-01", }, ) setup_resp = c.post( "/api/auth/login", json={"username": "test", "password": "secret"} ) setup_resp_json = setup_resp.get_json() setup_access_token = setup_resp_json["access_token"] return setup_access_token
b76f7f6afa9af453246ae304b1b0504bd68b8919
3,653,950
def get_ssh_challenge_token(account, appid, ip=None, vo='def'): """ Get a challenge token for subsequent SSH public key authentication. The challenge token lifetime is 5 seconds. :param account: Account identifier as a string. :param appid: The application identifier as a string. :param ip: IP address of the client as a string. :param vo: The VO to act on. :returns: A dict with token and expires_at entries. """ kwargs = {'account': account} if not permission.has_permission(issuer=account, vo=vo, action='get_ssh_challenge_token', kwargs=kwargs): raise exception.AccessDenied('User can not get challenge token for account %s' % account) account = InternalAccount(account, vo=vo) return authentication.get_ssh_challenge_token(account, appid, ip)
12da26b4a20e648ca9fc6d325647f42288324b83
3,653,951
def rootpath_capacity_exceeded(rootpath,newSize): """ Return True if rootpath is already allocated to the extent it cannot accomadate newSize, otherwise return False """ vols_in_rootpath = Volume.objects.filter(root_path=rootpath) rootpathallocsum = 0 if vols_in_rootpath.count() > 0: rootpathallocsum = vols_in_rootpath.aggregate( alSize=db.models.Sum('size_GB'))['alSize'] if rootpathallocsum + newSize > rootpath.capacity_GB: return True return False
3b8d90f3693ce12de93c967d20c6a7b2ccb7ec38
3,653,952
import requests import json def user_token(user: str) -> str: """ Authorize this request with the GitHub app set by the 'app_id' and 'private_key' environment variables. 1. Get the installation ID for the user that has installed the app 2. Request a new token for that user 3. Return it so it can be used in future API requests """ # Hardcode the installation to PyTorch so we can always get a valid ID key id = installation_id("pytorch") url = f"https://api.github.com/app/installations/{id}/access_tokens" r_bytes = requests.post(url, headers=app_headers()) r = json.loads(r_bytes.content.decode()) token = str(r["token"]) return token
c02fae92505a922f58f231682a009d24ed6432bc
3,653,953
def file_exists(path): """ Return True if the file from the path exists. :param path: A string containing the path to a file. :return: a boolean - True if the file exists, otherwise False """ return isfile(path)
79610224c3e83f6ba4fdeb98b1faaf932c249ff2
3,653,954
from typing import Callable from typing import Dict def _static_to_href(pathto: Callable, favicon: Dict[str, str]) -> Dict[str, str]: """If a ``static-file`` is provided, returns a modified version of the icon attributes replacing ``static-file`` with the correct ``href``. If both ``static-file`` and ``href`` are provided, ``href`` will be ignored. """ if FILE_FIELD in favicon: attrs = favicon.copy() attrs["href"] = pathto( f"{OUTPUT_STATIC_DIR}/{attrs.pop(FILE_FIELD)}", resource=True ) return attrs return favicon
f54e5ced825dc44bfa14a09622c7fa9b179660c5
3,653,955
import torch def concatenate(tensor1, tensor2, axis=0): """ Basically a wrapper for torch.dat, with the exception that the array itself is returned if its None or evaluates to False. :param tensor1: input array or None :type tensor1: mixed :param tensor2: input array :type tensor2: numpy.ndarray :param axis: axis to concatenate :type axis: int :return: concatenated array :rtype: numpy.ndarray """ assert isinstance(tensor2, torch.Tensor) or isinstance(tensor2, torch.autograd.Variable) if tensor1 is not None: assert isinstance(tensor1, torch.Tensor) or isinstance(tensor1, torch.autograd.Variable) return torch.cat((tensor1, tensor2), axis=axis) else: return tensor2
24791a201f1ddb64cd2d3f683ecc38471d21697b
3,653,956
def setKey(key, keytype): """ if keytype is valid, save a copy of key accordingly and check if the key is valid """ global _key, _keytype, FREE_API_KEY, PREMIUM_API_KEY keytype = keytype.lower() if keytype in ("f", "fr", "free"): keytype = "free" FREE_API_KEY = key elif keytype.startswith("prem") or keytype in ("nonfree", "non-free"): keytype = "premium" PREMIUM_API_KEY = key else: print "invalid keytype", keytype return oldkey = _key oldkeytype = _keytype _key = key _keytype = keytype w = LocalWeather("london") # w.data != False rather than w.data to suppress Python 2.7 FurtureWarning: # "The behavior of this method will change in future versions...." if w is not None and hasattr(w, 'data') and w.data is not False: return True else: print "The key is not valid." _key = oldkey _keytype = oldkeytype return False
8baab2972ea5c9fbe33845aaed7c1ab4cc631a2e
3,653,957
import functools import operator def sum_(obj): """Sum the values in the given iterable. Different from the built-in summation function, the summation is based on the first item in the iterable. Or a SymPy integer zero is created when the iterator is empty. """ i = iter(obj) try: init = next(i) except StopIteration: return Integer(0) else: return functools.reduce(operator.add, i, init)
70727443ba5a62e5bd91e3c0a60130f6cc0b65e5
3,653,958
def setup_s3_client(job_data): """Creates an S3 client Uses the credentials passed in the event by CodePipeline. These credentials can be used to access the artifact bucket. :param job_data: The job data structure :return: An S3 client with the appropriate credentials """ try: key_id = job_data['artifactCredentials']['accessKeyId'] key_secret = job_data['artifactCredentials']['secretAccessKey'] session_token = job_data['artifactCredentials']['sessionToken'] session = Session(aws_access_key_id=key_id, aws_secret_access_key=key_secret, aws_session_token=session_token) except Exception as e: logger.warn('No credentials in artifact - using default role access: {}'.format(e)) session = Session() return session.client('s3', config=botocore.client.Config(signature_version='s3v4'))
bb51e03de125eeb6ff5e1e6d16b50ba07fdc7c56
3,653,959
import os import shutil import stat def collect_operations(opts): """ Produce a list of operations to take. Each element in the operations list is in the format: (function, (arguments,), 'logging message') """ operations = [] ####################### # Destination directory if os.path.exists(opts.dest_dir): if not opts.force: raise Exception( 'ERROR: The destination directory exists: "%s"\n' 'Use -f or --force option to overwrite the directory.' % opts.dest_dir ) else: operations.append( (shutil.rmtree, (opts.dest_dir,), 'Forcing deletion of existing destination directory "%s"' % opts.dest_dir) ) operations.append( (os.makedirs, (opts.dest_dir,), 'Creating destination directory "%s"' % opts.dest_dir) ) ########################## # Input joshua.config file config_text = opts.config.read() if opts.copy_config_options: config_text = filter_through_copy_config_script( config_text, opts.copy_config_options ) config_lines = config_text.split('\n') ############### # Files to copy # Parse the joshua.config and collect copy operations result_config_lines = [] grammar_configs_count = 0 for i, line in enumerate(config_lines): line_num = i + 1 if line_specifies_grammar(line): try: line, operation = process_line_containing_grammar( line, opts.orig_dir, opts.dest_dir, opts.grammar_paths, grammar_configs_count, opts.symlink, opts.absolute ) except PathException as e: # TODO: make this more appropriate for when the source # path was overridden by a command-line option message = ( # Prepend the line number to the error message 'ERROR: Configuration file "{0}" line {1}: {2}' .format(opts.config.name, line_num, str(e)) ) e.message = message raise e operations.append(operation) grammar_configs_count += 1 elif line_specifies_path(line): try: line, operation = process_line_containing_path( line, opts.orig_dir, opts.dest_dir, opts.symlink, opts.absolute ) except PathException as e: # Prepend the line number to the error message message = ( 'ERROR: Configuration file "{0}" line {1}: {2}' .format(opts.config.name, line_num, str(e)) ) e.message = message raise e operations.append(operation) result_config_lines.append(line) ########################### # Output joshua.config file # Create the Joshua configuration file for the package path = os.path.join(opts.dest_dir, OUTPUT_CONFIG_FILE_NAME) text = '\n'.join(result_config_lines) + '\n' operations.append( (write_string_to_file, (path, text), 'Writing the updated joshua.config to %s' % path ) ) ####################### # Bundle runner scripts # Write the scripts that run Joshua using the configuration and # resource in the bundle, and make their mode world-readable, and # world-executable. for file_name, file_text in [[BUNDLE_RUNNER_FILE_NAME, BUNDLE_RUNNER_TEXT], [SERVER_RUNNER_FILE_NAME, SERVER_RUNNER_TEXT], ]: path = os.path.join(opts.dest_dir, file_name) operations.append( (write_string_to_file, (path, file_text), 'Writing the bundle runner file "%s"' % path) ) mode = (stat.S_IREAD | stat.S_IRGRP | stat.S_IROTH | stat.S_IEXEC | stat.S_IXGRP | stat.S_IXOTH) operations.append( (os.chmod, (path, mode), 'Making the bundle runner file executable') ) ####################### # Write the README file path = os.path.join(opts.dest_dir, 'README') operations.append( (write_string_to_file, (path, README_TEMPLATE), 'Writing the README to "%s"' % path ) ) return operations
85f904d25a1a72fc754e09dbcbcbbed9cee98256
3,653,960
def pad_sequences(sequences, maxlen=None, dtype='int32', padding='pre', truncating='pre', value=0.): """ FROM KERAS Pads each sequence to the same length: the length of the longest sequence. If maxlen is provided, any sequence longer than maxlen is truncated to maxlen. Truncation happens off either the beginning (default) or the end of the sequence. Supports post-padding and pre-padding (default). # Arguments sequences: list of lists where each element is a sequence maxlen: int, maximum length dtype: type to cast the resulting sequence. padding: 'pre' or 'post', pad either before or after each sequence. truncating: 'pre' or 'post', remove values from sequences larger than maxlen either in the beginning or in the end of the sequence value: float, value to pad the sequences to the desired value. # Returns x: numpy array with dimensions (number_of_sequences, maxlen) """ lengths = [len(s) for s in sequences] nb_samples = len(sequences) if maxlen is None: maxlen = np.max(lengths) # take the sample shape from the first non empty sequence # checking for consistency in the main loop below. sample_shape = tuple() for s in sequences: if len(s) > 0: sample_shape = np.asarray(s).shape[1:] break x = (np.ones((nb_samples, maxlen) + sample_shape) * value).astype(dtype) for idx, s in enumerate(sequences): if len(s) == 0: continue # empty list was found if truncating == 'pre': trunc = s[-maxlen:] elif truncating == 'post': trunc = s[:maxlen] else: raise ValueError('Truncating type "%s" not understood' % truncating) # check `trunc` has expected shape trunc = np.asarray(trunc, dtype=dtype) if trunc.shape[1:] != sample_shape: raise ValueError('Shape of sample %s of sequence at position %s is different from expected shape %s' % (trunc.shape[1:], idx, sample_shape)) if padding == 'post': x[idx, :len(trunc)] = trunc elif padding == 'pre': x[idx, -len(trunc):] = trunc else: raise ValueError('Padding type "%s" not understood' % padding) return x
5d4603c5a71f898dc4f501d2424707ea10adbd0e
3,653,961
def basic_pyxll_function_22(x, y, z): """if z return x, else return y""" if z: # we're returning an integer, but the signature # says we're returning a float. # PyXLL will convert the integer to a float for us. return x return y
851b5eef683b0456a0f5bce7f3850698693b067e
3,653,962
def job_hotelling(prob_label, tr, te, r, ni, n): """Hotelling T-squared test""" with util.ContextTimer() as t: htest = tst.HotellingT2Test(alpha=alpha) test_result = htest.perform_test(te) return { 'test_method': htest, 'test_result': test_result, 'time_secs': t.secs}
137a3b4426a01675fe6995408ad71eec34126341
3,653,963
def return_circle_aperature(field, mask_r): """Filter the circle aperature of a light field. Filter the circle aperature of a light field. Parameters ---------- field : Field Input square field. mask_r : float, from 0 to 1 Radius of a circle mask. Returns ---------- X : array-like Filtered meshgird X. Y : array-like Filtered meshgrid Y. """ length = field.shape[0] norm_length = np.linspace(-1, 1, length) X, Y = np.meshgrid(norm_length, norm_length) norm_radius = np.sqrt(X**2 + Y**2) X[norm_radius > mask_r] = np.nan Y[norm_radius > mask_r] = np.nan return X, Y, norm_radius
49ae52bfa639cf8a7b8592caa1dbf8dbdef115f8
3,653,964
import json def user_get(): """ Get information from the database about an user, given his id. If there are field names received in the body, only those will be queried. If no field is provided, every field will be selected. The body should be a JSON object following the schema: { "user_id": id, "fields": ["field1", ...] } Returns: Response: - 200 in case of success and the user info in the body. - 400 if the body does not have all the necessary information or the field names are wrong. - 404 if the user is not found. """ body_schema = { "type": "object", "properties": { "user_id": {"type": "number"}, "fields": { "type": "array", "minItems": 1, "items": { "type": "string", } } }, "required": ["user_id"] } payload = request.get_json(silent=True) is_valid = validate_json(payload, body_schema) if not is_valid: return Response(status=400) user_id = payload["user_id"] if "fields" in payload: fields = payload["fields"] query = sql.SQL("SELECT {} FROM users WHERE user_id={};").format( sql.SQL(", ").join(map(sql.Identifier, fields)), sql.Literal(user_id) ) else: query = sql.SQL("SELECT * FROM users WHERE user_id={};").format( sql.Literal(payload["user_id"]) ) cursor = CONN.cursor(cursor_factory=RealDictCursor) try: cursor.execute(query) results = cursor.fetchall() except psycopg2.errors.UndefinedColumn: CONN.rollback() return Response(status=400) finally: cursor.close() CONN.commit() if len(results) == 0: return Response(status=404) return Response( status=200, response=json.dumps(results), mimetype="application/json" )
02b1a1bc1bedc2098bd907098a40fad41c2391d7
3,653,965
def get_data_file_args(args, language): """ For a interface, return the language-specific set of data file arguments Args: args (dict): Dictionary of data file arguments for an interface language (str): Language of the testbench Returns: dict: Language-specific data file arguments """ if language in args: return args[language] return args["generic"]
11e30b92316bad9a46b87bd9188f97d5e8860377
3,653,966
def branch_exists(branch): """Return True if the branch exists.""" try: run_git("rev-parse --verify {}".format(branch), quiet=True) return True except ProcessExecutionError: return False
8f08eeb78b322220def2f883e8172ac94df97063
3,653,967
import numpy def spectrum_like_noise(signal: numpy.ndarray, *, sampling_rate=40000, keep_signal_amp_envelope=False, low_pass_cutoff=50, # Hz low_pass_order=6, seed: int = 42, window_length_sec: float = 20 / 1000, # 20 ms p_overlap: float = .5, long_term_avg: bool = True ) -> numpy.ndarray: """Create a noise with same spectrum as the input signal. randomises phase Parameters ---------- signal : array_like Input signal. sampling_rate : int Sampling frequency of the input signal. (Default value = 40000) keep_signal_amp_envelope : bool Apply the envelope of the original signal to the noise. (Default value = False) low_pass_cutoff : float low_pass_order : int seed : int long_term_avg : bool window_length_sec: int p_overlap: float Returns ------- ndarray Noise signal. """ assert window_length_sec > 0 assert 0 <= p_overlap <= 1 signal = zero_pad_to_power_2(signal) # Ensure welch works with any window size signal_length = signal.shape[-1] window_sum_squares = signal_length # scaling factor defined as sum of squared samples of window function sc = 2 / (sampling_rate * window_sum_squares) # Scaling coefficient 2 takes into account removal of energy at negative frequencies (we drop this side of PSD) if not long_term_avg: n_fft = next_pow_2(signal_length) spec = numpy.abs(fft.rfft(signal, n_fft)) psd = (spec ** 2) * sc else: n_per_seg = next_pow_2(int(sampling_rate * window_length_sec)) # next_pow_2 per seg == n_fft n_overlap = int(n_per_seg * p_overlap) f, psd = welch(signal, sampling_rate, nperseg=n_per_seg, noverlap=n_overlap, scaling='density', return_onesided=True, detrend=False, # window='boxcar', window='hanning', ) n_fft = n_per_seg psd /= (signal_length / n_per_seg ) # normalise? spec = numpy.sqrt((psd / sc)) noise = [] runs = signal_length // n_fft for i in range(runs + 1): numpy_seed(seed + i) noise.extend(numpy.real( fft.irfft( spec * numpy.exp(2 * numpy.pi * 1j * numpy.random.random(spec.shape[-1])), # Randomise phase. 0->360, 2 pi rads n_fft))) # Give each spectral component a random phase, PHI(f(k)) = random number, # uniformly distributed between 0 and 360 degrees (or equivalently, between 0 and 2Pi radians); noise = numpy.array(noise)[:signal_length] if keep_signal_amp_envelope: [bb, aa] = butter(low_pass_order, low_pass_cutoff / (sampling_rate / 2)) # Cutoff Hz, LP filter noise *= filtfilt(bb, # numerator aa, # denominator hilbert_envelope(signal) # envelope of speech signal in time domain ) return numpy.expand_dims(noise, 0)
6e6ced3a5220a9a1d66c83a33a9232d265d18a1a
3,653,968
import re def check_string_capitalised(string): """ Check to see if a string is in all CAPITAL letters. Boolean. """ return bool(re.match('^[A-Z_]+$', string))
f496d79fafae4c89c3686856b42113c4818f7ed8
3,653,969
import torch def sample_zero_entries(edge_index, seed, num_nodes, sample_mult=1.0): """Obtain zero entries from a sparse matrix. Args: edge_index (tensor): (2, N), N is the number of edges. seed (int): to control randomness num_nodes (int): number of nodes in the graph sample_mult (float): the number of edges sampled is N * sample_mult. Returns: torch.tensor, (2, N) containing zero entries """ n_edges = edge_index.shape[1] np.random.seed(seed) # Number of edges in both directions must be even n_samples = int(np.ceil(sample_mult * n_edges / 2) * 2) adjacency = adj_from_edge_index(edge_index, num_nodes) zero_entries = np.zeros([2, n_samples], dtype=np.int32) nonzero_or_sampled = set(zip(*adjacency.nonzero())) i = 0 while True: t = tuple(np.random.randint(0, adjacency.shape[0], 2)) # Don't sample diagonal of the adjacency matrix if t[0] == t[1]: continue if t not in nonzero_or_sampled: # Add edge in both directions t_rev = (t[1], t[0]) zero_entries[:, i] = t zero_entries[:, i+1] = t_rev i += 2 if i == n_samples: break nonzero_or_sampled.add(t) nonzero_or_sampled.add(t_rev) return torch.tensor(zero_entries, dtype=torch.long)
211e97fa0a2622d49c50673c0b6255954383f3a0
3,653,970
import textwrap def ped_file_parent_missing(fake_fs): """Return fake file system with PED file""" content = textwrap.dedent( """ # comment FAM II-1\tI-1\t0\t1\t2 FAM I-1 0\t0\t1\t1 """ ).strip() fake_fs.fs.create_file("/test.ped", create_missing_dirs=True, contents=content) return fake_fs
9df19ab925984236aa581c9b8843591f05d3b7b4
3,653,971
import random import requests def GettingAyah(): """The code used to get an Ayah from the Quran every fixed time""" while True: ayah = random.randint(1, 6237) url = f'http://api.alquran.cloud/v1/ayah/{ayah}' res = requests.get(url) if len(res.json()['data']['text']) <= 280: return res.json()['data']['text']
5739cbd3554b97f01eefef7f59a4087e5497e3e7
3,653,972
def iterdecode(value): """ Decode enumerable from string presentation as a tuple """ if not value: return tuple() result = [] accumulator = u'' escaped = False for c in value: if not escaped: if c == CHAR_ESCAPE: escaped = True continue elif c == CHAR_SEPARATOR: result.append(accumulator) accumulator = u'' continue else: escaped = False accumulator += c result.append(accumulator) return tuple(result)
d8b03338a4578ee7b37a4f6d31d23463fc0a9b84
3,653,973
def run_resolution_filter(image=None, image_path=None, height=600, width=1000): """ This will take the image which is correctly rotated yolo output. Initially, We are doing for driving licenses only, Will return 1 if the height and width are greater than 700 and 1100 pixels else it will return 10002 :return: """ result = False if image is not None: result = test_image_height_and_width(image, desired_width=width, desired_height=height) if image_path is not None and image is None: img = cv2.imread(image_path) result = test_image_height_and_width(img, desired_width=width, desired_height=height) if result: return 1 else: return 10002
fde3040dbb29d6c5f7d79237df51f425d2d043b4
3,653,974
import types def text_to_emotion(text): """ テキストから感情を推測して返す Parameters ---------- text : string テキスト Returns ------- {'magnitude','score'} """ client = language.LanguageServiceClient() document = types.Document( content=text, type=enums.Document.Type.PLAIN_TEXT, language="ja" ) sentiment = client.analyze_sentiment(document=document).document_sentiment return {'magnitude':sentiment.magnitude,'score':sentiment.score}
b3b784fa777146f7f1a361784f848b28651676a4
3,653,975
def process_actions(list_response_json, headers, url, force_reset): """ If a policy does not exist on a given cluster find the right values defined in qos_dict and apply them """ qos_dict = {} # This dictionary sets the tiers and min/max/burst settings qos_dict['tiers'] = {"bronze": [500, 5000, 10000], "silver": [2000, 20000, 50000], "gold": [5000, 100000, 150000]} # Check to see if there are no policies set force_reset_dict = {} if len(list_response_json['result']['qosPolicies']) == 0: print(f"No existing QoS Policies found, implementing full install") for qos_key, qos_val in qos_dict['tiers'].items(): pol_name = qos_key min_iops = qos_val[0] max_iops = qos_val[1] burst_iops = qos_val[2] payload = build_payload(pol_name, min_iops, max_iops, burst_iops) connect_cluster(headers, url, payload) # If there are policies ignore them if they match names, remove that # name from the dict and move on else: for policy in list_response_json['result']['qosPolicies']: pol_name = policy['name'] if pol_name in qos_dict['tiers'].keys(): pol_id = policy['qosPolicyID'] min_iops = qos_dict['tiers'][pol_name][0] max_iops = qos_dict['tiers'][pol_name][1] burst_iops = qos_dict['tiers'][pol_name][2] pol_min = policy['qos']['minIOPS'] pol_max = policy['qos']['maxIOPS'] pol_burst = policy['qos']['burstIOPS'] if ((min_iops != pol_min or max_iops != pol_max or burst_iops != pol_burst) and force_reset is True): print(f"Policy mismatch detected on {pol_name}... resetting " f"as reset flag is set to True") print(qos_dict['tiers'][pol_name]) modify_qos_policy(headers, url, pol_id, min_iops, max_iops, burst_iops) elif ((min_iops != pol_min or max_iops != pol_max or burst_iops != pol_burst) and force_reset is False): print(f"Policy mismatch detected on {pol_name}... Leaving " f"as reset flag is set to false") else: print(f"QoS Policy {pol_name} found, policy is not in " f"configuration dictionary. Ignoring") pass if policy['name'] in qos_dict['tiers'].keys(): qos_dict['tiers'].pop(pol_name) return qos_dict
1c3651518c8c0f0f174876afdd0961099b3af342
3,653,976
def validate_ac_power(observation, values): """ Run a number of validation checks on a daily timeseries of AC power. Parameters ---------- observation : solarforecastarbiter.datamodel.Observation Observation object that the data is associated with values : pandas.Series Series of observation values Returns ------- timestamp_flag : pandas.Series Bitmask from :py:func:`.validator.check_timestamp_spacing` night_flag : pandas.Series Bitmask from :py:func:`.validator.check_day_night` or :py:func:`.validator.check_day_night_interval` limit_flag : pandas.Series Bitmask from :py:func:`.validator.check_ac_power_limits` """ solar_position, dni_extra, timestamp_flag, night_flag = _solpos_dni_extra( observation, values) day_night = \ ~quality_mapping.convert_mask_into_dataframe(night_flag)['NIGHTTIME'] limit_flag = validator.check_ac_power_limits( values, day_night, observation.site.modeling_parameters.ac_capacity, _return_mask=True) return timestamp_flag, night_flag, limit_flag
fcc487f61276e319316df3f99559ef935a7f0e7b
3,653,977
import itertools import six def partition(predicate, iterable): """Use `predicate` to partition entries into falsy and truthy ones. Recipe taken from the official documentation. https://docs.python.org/3/library/itertools.html#itertools-recipes """ t1, t2 = itertools.tee(iterable) return ( six.moves.filterfalse(predicate, t1), six.moves.filter(predicate, t2), )
5777203d9d34a9ffddc565129d8dda3ec91efc8e
3,653,978
def _download(url: str) -> bytes: """Download something from osu!web at `url`, returning the file contents.""" with _login() as sess: resp = sess.get(f"{url}/download", headers={"Referer": url}) if not resp.ok: raise ReplyWith("Sorry, a download failed.") return resp.content
1f7fc60299f066d12438042f43da6b74d1ac0348
3,653,979
def get_node(obj, path): """Retrieve a deep object based on a path. Return either a Wrapped instance if the deep object is not a node, or another type of object.""" subobj = obj indices = [] for item in path: try: subobj = subobj[item] except Exception as e: indices.append(item) subobj, indices = _select(subobj, indices) if isinstance(subobj, dict) or (isinstance(subobj, list) and subobj and isinstance(subobj[0], dict)): return Wrapped(obj, path) else: assert not indices, "This path does not exist." return subobj
f48cb0dc5ae149d0758348725ebc521e7838230f
3,653,980
def without_bond_orders(gra): """ resonance graph with maximum spin (i.e. no pi bonds) """ bnd_keys = list(bond_keys(gra)) # don't set dummy bonds to one! bnd_ord_dct = bond_orders(gra) bnd_vals = [1 if v != 0 else 0 for v in map(bnd_ord_dct.__getitem__, bnd_keys)] bnd_ord_dct = dict(zip(bnd_keys, bnd_vals)) return set_bond_orders(gra, bnd_ord_dct)
88b785c802a1d74a12f64a1eab6403429fa00cad
3,653,981
def check_struc(d1, d2, errors=[], level='wf'): """Recursively check struct of dictionary 2 to that of dict 1 Arguments --------- d1 : dict Dictionary with desired structure d2 : dict Dictionary with structre to check errors : list of str, optional Missing values in d2. Initial value is []. level : str, optional Level of search. Inital value is 'wf' (wind farm) for top-level dictionary. Returns ------- errors : list of str Missing values in d2. """ for k1, v1 in d1.items(): # loop through keys and values in first dict if k1 not in d2.keys(): # if key doesn't exist in d2 errors.append('{} not in dictionary'.format('.'.join([level,k1]))) elif isinstance(v1, dict): # otherwise, if item is a dict, recurse errors = check_struc(v1, d2[k1], errors=errors, # pass in accumulated errros level='.'.join([level, k1])) # change level return errors
aa835e7bbd6274e73d0b3d45d1ec4d617af0a167
3,653,982
def indexoflines(LFtop): """ Determining selected line index of Gromacs compatible topology files """ file1 = open(LFtop, "r") readline = file1.readlines() lineindex = ["x", "x", "x"] n = 0 for line in readline: linelist = line.split() if "atomtypes" in linelist: lineindex[0] = n n += 1 elif "moleculetype" in linelist: lineindex[1] = n n += 1 elif "system" in linelist: lineindex[2] = n n += 1 else: n += 1 file1.close() Idx = 0 while Idx < len(lineindex): if not str(lineindex[Idx]).isnumeric() == True: lineindex[Idx] = n + 1 Idx += 1 else: Idx += 1 return {'atomtypes': lineindex[0], 'moleculetype': lineindex[1], 'system': lineindex[2]}
dd2653c6245d9f7a0fa8647dcc841c51e01f9b2d
3,653,983
def create_mock_github(user='octo-cat', private=False): """Factory for mock GitHub objects. Example: :: >>> github = create_mock_github(user='octocat') >>> github.branches(user='octocat', repo='hello-world') >>> [{u'commit': {u'sha': u'e22d92d5d90bb8f9695e9a5e2e2311a5c1997230', ... u'url': u'https://api.github.com/repos/octocat/mock-repo/commits/e22d92d5d90bb8f9695e9a5e2e2311a5c1997230'}, ... u'name': u'dev'}, ... {u'commit': {u'sha': u'444a74d0d90a4aea744dacb31a14f87b5c30759c', ... u'url': u'https://api.github.com/repos/octocat/mock-repo/commits/444a74d0d90a4aea744dacb31a14f87b5c30759c'}, ... u'name': u'master'}, ... {u'commit': {u'sha': u'c6eaaf6708561c3d4439c0c8dd99c2e33525b1e6', ... u'url': u'https://api.github.com/repos/octocat/mock-repo/commits/c6eaaf6708561c3d4439c0c8dd99c2e33525b1e6'}, ... u'name': u'no-bundle'}] :param str user: Github username. :param bool private: Whether repo is private. :return: An autospecced GitHub Mock object """ github_mock = mock.create_autospec(GitHub) github_mock.repo.return_value = github3.repos.Repository.from_json({ u'archive_url': u'https://api.github.com/repos/{user}/mock-repo/{{archive_format}}{{/ref}}'.format(user=user), u'assignees_url': u'https://api.github.com/repos/{user}/mock-repo/assignees{{/user}}'.format(user=user), u'blobs_url': u'https://api.github.com/repos/{user}/mock-repo/git/blobs{{/sha}}'.format(user=user), u'branches_url': u'https://api.github.com/repos/{user}/mock-repo/branches{{/bra.format(user=user)nch}}'.format(user=user), u'clone_url': u'https://github.com/{user}/mock-repo.git'.format(user=user), u'collaborators_url': u'https://api.github.com/repos/{user}/mock-repo/collaborators{{/collaborator}}'.format(user=user), u'comments_url': u'https://api.github.com/repos/{user}/mock-repo/comments{{/number}}'.format(user=user), u'commits_url': u'https://api.github.com/repos/{user}/mock-repo/commits{{/sha}}'.format(user=user), u'compare_url': u'https://api.github.com/repos/{user}/mock-repo/compare/{{base}}...{{head}}', u'contents_url': u'https://api.github.com/repos/{user}/mock-repo/contents/{{+path}}'.format(user=user), u'contributors_url': u'https://api.github.com/repos/{user}/mock-repo/contributors'.format(user=user), u'created_at': u'2013-06-30T18:29:18Z', u'default_branch': u'dev', u'description': u'Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.', u'downloads_url': u'https://api.github.com/repos/{user}/mock-repo/downloads'.format(user=user), u'events_url': u'https://api.github.com/repos/{user}/mock-repo/events'.format(user=user), u'fork': False, u'forks': 89, u'forks_count': 89, u'forks_url': u'https://api.github.com/repos/{user}/mock-repo/forks', u'full_name': u'{user}/mock-repo', u'git_commits_url': u'https://api.github.com/repos/{user}/mock-repo/git/commits{{/sha}}'.format(user=user), u'git_refs_url': u'https://api.github.com/repos/{user}/mock-repo/git/refs{{/sha}}'.format(user=user), u'git_tags_url': u'https://api.github.com/repos/{user}/mock-repo/git/tags{{/sha}}'.format(user=user), u'git_url': u'git://github.com/{user}/mock-repo.git'.format(user=user), u'has_downloads': True, u'has_issues': True, u'has_wiki': True, u'homepage': u'https://mock-repo.readthedocs.org/', u'hooks_url': u'https://api.github.com/repos/{user}/mock-repo/hooks'.format(user=user), u'html_url': u'https://github.com/{user}/mock-repo'.format(user=user), u'id': 11075275, u'issue_comment_url': u'https://api.github.com/repos/{user}/mock-repo/issues/comments/{{number}}'.format(user=user), u'issue_events_url': u'https://api.github.com/repos/{user}/mock-repo/issues/events{{/number}}'.format(user=user), u'issues_url': u'https://api.github.com/repos/{user}/mock-repo/issues{{/number}}'.format(user=user), u'keys_url': u'https://api.github.com/repos/{user}/mock-repo/keys{{/key_id}}'.format(user=user), u'labels_url': u'https://api.github.com/repos/{user}/mock-repo/labels{{/name}}'.format(user=user), u'language': u'Python', u'languages_url': u'https://api.github.com/repos/{user}/mock-repo/languages'.format(user=user), u'master_branch': u'dev', u'merges_url': u'https://api.github.com/repos/{user}/mock-repo/merges'.format(user=user), u'milestones_url': u'https://api.github.com/repos/{user}/mock-repo/milestones{{/number}}'.format(user=user), u'mirror_url': None, u'name': u'mock-repo', u'network_count': 89, u'notifications_url': u'https://api.github.com/repos/{user}/mock-repo/notifications{{?since,all,participating}}'.format(user=user), u'open_issues': 2, u'open_issues_count': 2, u'owner': {u'avatar_url': u'https://gravatar.com/avatar/c74f9cfd7776305a82ede0b765d65402?d=https%3A%2F%2Fidenticons.github.com%2F3959fe3bcd263a12c28ae86a66ec75ef.png&r=x', u'events_url': u'https://api.github.com/users/{user}/events{{/privacy}}'.format(user=user), u'followers_url': u'https://api.github.com/users/{user}/followers'.format(user=user), u'following_url': u'https://api.github.com/users/{user}/following{{/other_user}}'.format(user=user), u'gists_url': u'https://api.github.com/users/{user}/gists{{/gist_id}}'.format(user=user), u'gravatar_id': u'c74f9cfd7776305a82ede0b765d65402', u'html_url': u'https://github.com/{user}'.format(user=user), u'id': 2379650, u'login': user, u'organizations_url': u'https://api.github.com/users/{user}/orgs'.format(user=user), u'received_events_url': u'https://api.github.com/users/{user}/received_events', u'repos_url': u'https://api.github.com/users/{user}/repos'.format(user=user), u'site_admin': False, u'starred_url': u'https://api.github.com/users/{user}/starred{{/owner}}{{/repo}}', u'subscriptions_url': u'https://api.github.com/users/{user}/subscriptions'.format(user=user), u'type': u'User', u'url': u'https://api.github.com/users/{user}'.format(user=user)}, u'private': private, u'pulls_url': u'https://api.github.com/repos/{user}/mock-repo/pulls{{/number}}'.format(user=user), u'pushed_at': u'2013-12-30T16:05:54Z', u'releases_url': u'https://api.github.com/repos/{user}/mock-repo/releases{{/id}}'.format(user=user), u'size': 8717, u'ssh_url': u'[email protected]:{user}/mock-repo.git'.format(user=user), u'stargazers_count': 1469, u'stargazers_url': u'https://api.github.com/repos/{user}/mock-repo/stargazers'.format(user=user), u'statuses_url': u'https://api.github.com/repos/{user}/mock-repo/statuses/{{sha}}'.format(user=user), u'subscribers_count': 86, u'subscribers_url': u'https://api.github.com/repos/{user}/mock-repo/subscribers'.format(user=user), u'subscription_url': u'https://api.github.com/repos/{user}/mock-repo/subscription'.format(user=user), u'svn_url': u'https://github.com/{user}/mock-repo'.format(user=user), u'tags_url': u'https://api.github.com/repos/{user}/mock-repo/tags'.format(user=user), u'teams_url': u'https://api.github.com/repos/{user}/mock-repo/teams'.format(user=user), u'trees_url': u'https://api.github.com/repos/{user}/mock-repo/git/trees{{/sha}}'.format(user=user), u'updated_at': u'2014-01-12T21:23:50Z', u'url': u'https://api.github.com/repos/{user}/mock-repo'.format(user=user), u'watchers': 1469, u'watchers_count': 1469, # NOTE: permissions are only available if authorized on the repo 'permissions': { 'push': True } }) github_mock.branches.return_value = [ Branch.from_json({u'commit': {u'sha': u'e22d92d5d90bb8f9695e9a5e2e2311a5c1997230', u'url': u'https://api.github.com/repos/{user}/mock-repo/commits/e22d92d5d90bb8f9695e9a5e2e2311a5c1997230'.format(user=user)}, u'name': u'dev'}), Branch.from_json({u'commit': {u'sha': u'444a74d0d90a4aea744dacb31a14f87b5c30759c', u'url': u'https://api.github.com/repos/{user}/mock-repo/commits/444a74d0d90a4aea744dacb31a14f87b5c30759c'.format(user=user)}, u'name': u'master'}), Branch.from_json({u'commit': {u'sha': u'c6eaaf6708561c3d4439c0c8dd99c2e33525b1e6', u'url': u'https://api.github.com/repos/{user}/mock-repo/commits/c6eaaf6708561c3d4439c0c8dd99c2e33525b1e6'.format(user=user)}, u'name': u'no-bundle'}) ] # http://developer.github.com/v3/repos/contents/ github_mock.contents.return_value = { 'octokit.rb': github3.repos.contents.Contents.from_json({ "type": "file", "size": 625, "name": u"\xf0octokit.rb", "path": u"\xf0octokit.rb", "sha": "fff6fe3a23bf1c8ea0692b4a883af99bee26fd3b", "url": "https://api.github.com/repos/{user}/octokit/contents/lib/octokit.rb".format(user=user), "git_url": "https://api.github.com/repos/{user}/octokit/git/blobs/fff6fe3a23bf1c8ea0692b4a883af99bee26fd3b".format(user=user), "html_url": "https://github.com/{user}/octokit/blob/master/lib/octokit.rb", "_links": { "self": "https://api.github.com/repos/{user}/octokit/contents/lib/octokit.rb".format(user=user), "git": "https://api.github.com/repos/{user}/octokit/git/blobs/fff6fe3a23bf1c8ea0692b4a883af99bee26fd3b".format(user=user), "html": "https://github.com/{user}/octokit/blob/master/lib/octokit.rb" } }), 'octokit': github3.repos.contents.Contents.from_json({ "type": "dir", "size": 0, "name": u"\xf0octokit", "path": u"\xf0octokit", "sha": "a84d88e7554fc1fa21bcbc4efae3c782a70d2b9d", "url": "https://api.github.com/repos/{user}/octokit/contents/lib/octokit".format(user=user), "git_url": "https://api.github.com/repos/{user}/octokit/git/trees/a84d88e7554fc1fa21bcbc4efae3c782a70d2b9d", "html_url": "https://github.com/{user}/octokit/tree/master/lib/octokit".format(user=user), "_links": { "self": "https://api.github.com/repos/{user}/octokit/contents/lib/octokit".format(user=user), "git": "https://api.github.com/repos/{user}/octokit/git/trees/a84d88e7554fc1fa21bcbc4efae3c782a70d2b9d".format(user=user), "html": "https://github.com/{user}/octokit/tree/master/lib/octokit".format(user=user) } }) } github_mock.tree.return_value = github3.git.Tree.from_json({ 'url': u'https://api.github.com/repos/{user}/mock-repo/git/trees/dev'.format(user=user), 'sha': 'dev', 'tree': [ {u'mode': u'100644', u'path': u'coveragerc', u'sha': u'92029ff5ce192425d346b598d7e7dd25f5f05185', u'size': 245, u'type': u'blob', u'url': u'https://api.github.com/repos/{user}/mock-repo/git/blobs/92029ff5ce192425d346b598d7e7dd25f5f05185'.format(user=user)}, {u'mode': u'100644', u'path': u'.gitignore', u'sha': u'972ac8aeb0e652642b042064c835f27419e197b4', u'size': 520, u'type': u'blob', u'url': u'https://api.github.com/repos/{user}/mock-repo/git/blobs/972ac8aeb0e652642b042064c835f27419e197b4'.format(user=user)}, {u'mode': u'100644', u'path': u'.travis.yml', u'sha': u'86e1fef2834cc2682e753f3ed26ab3c2e100478c', u'size': 501, u'type': u'blob', u'url': u'https://api.github.com/repos/{user}/mock-repo/git/blobs/86e1fef2834cc2682e753f3ed26ab3c2e100478c'.format(user=user)} ] }) github_mock.commits.return_value = [ { 'sha': '12345', 'name': 'authname', 'email': 'authmail', 'date': 'yesterday', } ] return github_mock
7eaffcc7bc22657eaf3c3e7d41d9492300128a73
3,653,984
import argparse from datetime import datetime from typing import OrderedDict def get_args_string(args: argparse.Namespace) -> str: """ Creates a string summarising the argparse arguments. :param args: parser.parse_args() :return: String of the arguments of the argparse namespace. """ string = '' if hasattr(args, 'experiment_name'): string += f'{args.experiment_name} ({datetime.now()})\n' max_length = max([len(k) for k, _ in vars(args).items()]) new_dict = OrderedDict((k, v) for k, v in sorted( vars(args).items(), key=lambda x: x[0] )) for key, value in new_dict.items(): string += ' ' * (max_length - len(key)) + key + ': ' + str(value) + '\n' return string
f1f4de0821d04a21df046bc0dc526b2f9f1135f6
3,653,985
def top_9(limit=21): """Vrni dano število knjig (privzeto 9). Rezultat je seznam, katerega elementi so oblike [knjiga_id, avtor,naslov,slika] """ cur.execute( """SELECT book_id, authors, title, original_publication_year, average_rating,image_url FROM books ORDER BY average_rating DESC LIMIT %s """, [limit]) najboljsi = cur.fetchall() # Vrnemo nabor, kot je opisano v dokumentaciji funkcije: return(najboljsi)
ec87714ea5925c5d4115b0ee091597f7ffb1c323
3,653,986
import torch def spm_dot_torch(X, x, dims_to_omit=None): """ Dot product of a multidimensional array with `x` -- Pytorch version, using Tensor instances @TODO: Instead of a separate function, this should be integrated with spm_dot so that it can either take torch.Tensors or nd.arrays The dimensions in `dims_to_omit` will not be summed across during the dot product Parameters ---------- 'X' [torch.Tensor] `x` [1D torch.Tensor or numpy object array containing 1D torch.Tensors] The array(s) to dot X with `dims_to_omit` [list :: int] (optional) Which dimensions to omit from summing across """ if x.dtype == object: dims = (np.arange(0, len(x)) + X.ndim - len(x)).astype(int) else: if x.shape[0] != X.shape[1]: """ Case when the first dimension of `x` is likely the same as the first dimension of `A` e.g. inverting the generative model using observations. Equivalent to something like self.values[np.where(x),:] when `x` is a discrete 'one-hot' observation vector """ dims = np.array([0], dtype=int) else: """ Case when `x` leading dimension matches the lagging dimension of `values` E.g. a more 'classical' dot product of a likelihood with hidden states """ dims = np.array([1], dtype=int) x_new = np.empty(1, dtype=object) x_new[0] = x.squeeze() x = x_new if dims_to_omit is not None: if not isinstance(dims_to_omit, list): raise ValueError("dims_to_omit must be a `list`") dims = np.delete(dims, dims_to_omit) if len(x) == 1: x = np.empty([0], dtype=object) else: x = np.delete(x, dims_to_omit) Y = X for d in range(len(x)): s = np.ones(Y.ndim, dtype=int) s[dims[d]] = max(x[d].shape) Y = Y * x[d].view(tuple(s)) Y = Y.sum(dim=int(dims[d]), keepdim=True) Y = Y.squeeze() # perform check to see if `y` is a number if Y.numel() <= 1: Y = np.asscalar(Y) Y = torch.Tensor([Y]) return Y
2dad76db822c24dc740e17b034d74644d0c91e19
3,653,987
def inverseTranslateTaps(lowerTaps, pos): """Method to translate tap integer in range [-lower_taps, raise_taps] to range [0, lowerTaps + raiseTaps] """ # Hmmm... is it this simle? posOut = pos + lowerTaps return posOut
827bdfc51b3581b7b893ff8ff02dd5846ff6cd0f
3,653,988
def GMLstring2points(pointstring): """Convert list of points in string to a list of points. Works for 3D points.""" listPoints = [] #-- List of coordinates coords = pointstring.split() #-- Store the coordinate tuple assert(len(coords) % 3 == 0) for i in range(0, len(coords), 3): listPoints.append([float(coords[i]), float(coords[i+1]), float(coords[i+2])]) return listPoints
e755d344d163bdcdb114d0c9d614a1bbd40be29f
3,653,989
def set_(key, value, service=None, profile=None): # pylint: disable=W0613 """ Set a key/value pair in the etcd service """ client = _get_conn(profile) client.set(key, value) return get(key, service, profile)
c9689c53dc837caf182ac0b5d0e8552888ec70e9
3,653,990
def compute_cw_score_normalized(p, q, edgedict, ndict, params = None): """ Computes the common weighted normalized score between p and q @param p -> A node of the graph @param q -> Another node in the graph @param edgedict -> A dictionary with key `(p, q)` and value `w`. @param ndict -> A dictionary with key `p` and the value a set `{p1, p2, ...}` @param params -> Should always be none here @return -> A real value representing the score """ if (len(ndict[p]) > len(ndict[q])): temp = p p = q q = temp score = 0 for elem in ndict[p]: if elem in ndict[q]: p_elem = edgedict[(p, elem)] if (p, elem) in edgedict else edgedict[(elem, p)] q_elem = edgedict[(q, elem)] if (q, elem) in edgedict else edgedict[(elem, q)] score += p_elem + q_elem degrees = params["deg"] return score / np.sqrt(degrees[p] * degrees[q])
7769bc21d6a6bf176002ea6f4020cbe78f971b84
3,653,991
def prompt_user_friendly_choice_list(msg, a_list, default=1, help_string=None): """Prompt user to select from a list of possible choices. :param msg:A message displayed to the user before the choice list :type msg: str :param a_list:The list of choices (list of strings or list of dicts with 'name' & 'desc') "type a_list: list :param default:The default option that should be chosen if user doesn't enter a choice :type default: int :returns: The list index of the item chosen. """ verify_is_a_tty() options = '\n'.join([' [{}] {}{}' .format(i + 1, x['name'] if isinstance(x, dict) and 'name' in x else x, ' - ' + x['desc'] if isinstance(x, dict) and 'desc' in x else '') for i, x in enumerate(a_list)]) allowed_vals = list(range(1, len(a_list) + 1)) linesToDelete = len(a_list) + 1 while True: val = _input('{}\n{}\nPlease enter a choice [Default choice({})]: '.format(msg, options, default)) if val == '?' and help_string is not None: for x in range(0, linesToDelete): delete_last_line() print('Please enter a choice [Default choice({})]: {}'.format(default, '?')) print(help_string) continue if not val: val = '{}'.format(default) try: ans = int(val) if ans in allowed_vals: for x in range(0, linesToDelete): delete_last_line() print('Please enter a choice [Default choice({})]: {}'.format(default, a_list[ans - 1])) # array index is 0-based, user input is 1-based return ans - 1 raise ValueError except ValueError: for x in range(0, linesToDelete): delete_last_line() print('Please enter a choice [Default choice({})]: {}'.format(default, val)) logger.warning('Valid values are %s', allowed_vals)
d2c81b8af3f2de3203dd8cfd11372909e2e9cbe3
3,653,992
import typing import json def fuse(search: typing.Dict, filepath: str): """Build a JSON doc of your pages""" with open(filepath, "w") as jsonfile: return json.dump( [x for x in _build_index(search, id_field="id")], fp=jsonfile, )
542aff31a2861bc8de8a25025582305db0ce2af1
3,653,993
def aggregate_gradients_using_copy_with_device_selection( tower_grads, avail_devices, use_mean=True, check_inf_nan=False): """Aggregate gradients, controlling device for the aggregation. Args: tower_grads: List of lists of (gradient, variable) tuples. The outer list is over towers. The inner list is over individual gradients. use_mean: if True, mean is taken, else sum of gradients is taken. check_inf_nan: If true, check grads for nans and infs. Returns: The tuple ([(average_gradient, variable),], has_nan_or_inf) where the gradient has been averaged across all towers. The variable is chosen from the first tower. The has_nan_or_inf indicates the grads has nan or inf. """ agg_grads = [] has_nan_or_inf_list = [] for i, single_grads in enumerate(zip(*tower_grads)): with tf.device(avail_devices[i % len(avail_devices)]): grad_and_var, has_nan_or_inf = aggregate_single_gradient( single_grads, use_mean, check_inf_nan) agg_grads.append(grad_and_var) has_nan_or_inf_list.append(has_nan_or_inf) return agg_grads
24d12a4e3ee63b96dd453bc901a9180ed956003b
3,653,994
def ToOrdinal(value): """ Convert a numerical value into an ordinal number. @param value: the number to be converted """ if value % 100//10 != 1: if value % 10 == 1: ordval = '{}st'.format(value) elif value % 10 == 2: ordval = '{}nd'.format(value) elif value % 10 == 3: ordval = '{}rd'.format(value) else: ordval = '{}th'.format(value) else: ordval = '{}th'.format(value) return ordval
774bac5fd22714ba3eb4c9dd2b16f4236e2f5e8c
3,653,995
from typing import List def compute_partition(num_list: List[int]): """Compute paritions that add up.""" solutions = [] for bits in helper.bitprod(len(num_list)): iset = [] oset = [] for idx, val in enumerate(bits): (iset.append(num_list[idx]) if val == 0 else oset.append(num_list[idx])) if sum(iset) == sum(oset): solutions.append(bits) return solutions
408f5f85b1648facdcebfd47f96f53221b54888e
3,653,996
def renumber(conllusent): """Fix non-contiguous IDs because of multiword tokens or removed tokens""" mapping = {line[ID]: n for n, line in enumerate(conllusent, 1)} mapping[0] = 0 for line in conllusent: line[ID] = mapping[line[ID]] line[HEAD] = mapping[line[HEAD]] return conllusent
30f336cd63e7aff9652e6e3d1a35a21dc3379c99
3,653,997
def recall_at(target, scores, k): """Calculation for recall at k.""" if target in scores[:k]: return 1.0 else: return 0.0
0c3f70be3fb4cfde16d5e39b256e565f180d1655
3,653,998
def supports_dynamic_state() -> bool: """Checks if the state can be displayed with widgets. :return: True if widgets available. False otherwise. """ return widgets is not None
bee2f32bb315f086b6bd8b75535eb8fdde36a188
3,653,999