content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def str2bytes(s): """ Returns byte string representation of product state. Parameters ---------- s : str Representation of a product state, in terms of a string. """ return bitarray2bytes(str2bitarray(s))
defb9f471ba6108a0d667b6f4e9522c8b6f38649
3,654,100
import re def find_links(text, image_only=False): """ Find Markdown links in text and return a match object. Markdown links are expected to have the form [some txt](A-url.ext) or ![Alt text](cool-image.png). Parameters ---------- text : str Text in which to search for links. image_only : bool If ``True``, find only markdown image links, i.e. those that begin with an exclamation mark. Returns ------- list List of ``re.Match`` objects, one for each link found. Each object has two named groups, 'link_text', which contains the the part between the square brackets, and 'link',which is the URL (or file name for an image). """ if image_only: markdown_link = \ re.compile(r"!\[(?P<link_text>.+?\n*?.*?)\]\((?P<link_url>.+?)\)", flags=re.MULTILINE) else: markdown_link = \ re.compile(r"!?\[(?P<link_text>.+?\n*?.*?)\]\((?P<link_url>.+?)\)", flags=re.MULTILINE) groups = [m for m in markdown_link.finditer(text)] return groups
5f96672b48d3d911faf2e398c86f622676263d73
3,654,101
def least_one_row(data_frame): """ checking at least one row in dataframe Input: pandas dataframe Output: True or False """ if data_frame: return True return False
a72cbd3d504140547233481ec8340a8510e35f52
3,654,102
import inspect from textwrap import dedent def get_reference_docs(): """Create reference documentation from the source code. A bit like Sphinx autodoc, but using Markdown, and more basic. Returns a str in Markdown format. Note that this function is used to build the Dash Slicer chapter in the Dash docs. """ methods = [] props = [] sig = str(inspect.signature(dash_slicer.VolumeSlicer.__init__)).replace( "self, ", "" ) doc = f"**class `VolumeSlicer{sig}`**" doc += "\n\n" + dedent(dash_slicer.VolumeSlicer.__doc__).rstrip() methods.append(doc) for name in dir(dash_slicer.VolumeSlicer): val = getattr(dash_slicer.VolumeSlicer, name) if name.startswith("_") or not hasattr(val, "__doc__"): pass elif callable(val): # Method sig = str(inspect.signature(val)).replace("self, ", "") doc = f"**method `VolumeSlicer.{name}{sig}`**" doc += "\n\n" + dedent(val.__doc__).rstrip() methods.append(doc) else: # Property doc = f"**property `VolumeSlicer.{name}`**" try: typ = val.fget.__annotations__["return"].__name__ doc += f" (`{typ}`)" except (AttributeError, KeyError): pass doc += ": " + dedent(val.__doc__).rstrip() props.append(doc) parts = [] parts.append("### The VolumeSlicer class") parts += methods parts += props parts.append(dash_slicer.slicer.__doc__) return "\n\n".join(parts)
e7727704026d6b0013f15e1be966ee92dbc19ef5
3,654,103
import math def generate_label_colors(labels: list, colors: list, palette='Set2'): """Matches labels with colors If there are more labels than colors, repeat and cycle through colors """ label_colors = defaultdict(dict) num_repeats = math.ceil(len(labels) / len(colors)) for label in enumerate(labels): label_colors[label[1]] = (colors * num_repeats)[label[0]] return {**label_colors}
8b4b35498d4478604e81987b127ab099ebb0e70b
3,654,104
import os def get_xml_file_path_from_image_name(image_name, xml_dir_or_txt): """Retrieve xml filepath from xml dir Args: image_name: xml_dir_or_txt: Returns: xml_path: """ if os.path.isfile(xml_dir_or_txt): filepaths = fileio.read_list_from_txt(xml_dir_or_txt, field=-1) elif os.path.isdir(xml_dir_or_txt): filepaths = list(glob2.glob(os.path.join(xml_dir_or_txt, '**', '*xml'))) else: raise ValueError('xml_dir_or_txt is neither a directory nor file') image_name_no_ext = os.path.splitext(os.path.basename(image_name))[0] xml_path_list = [] for filepath in filepaths: if image_name_no_ext in filepath: xml_path_list.append(filepath) # print(filepath) assert len(xml_path_list) <= 1, 'xml_path_list expect 0 or 1 element but found {}!'.format(len(xml_path_list)) if len(xml_path_list) == 1: xml_path = xml_path_list[0] else: xml_path = None return xml_path
1b9e62bf77e1055a230ea47ea628677bfb8cde86
3,654,105
def index(): """ View root page function that returns the index page and its data """ # getting top headlines in sources topheadlines_sources = get_sources('top-headlines') business_sources = get_sources('business') entertainment_sources = get_sources('entertainment') title = 'Home - Welcome to your online News room' # print(topheadlines_sources.articles) # search_source = request.args.get(source_query) # if search_source: # return redirect(url_for('search',source_name=search_source)) # else: return render_template('index.html', title = title , topheadlines_sources = topheadlines_sources, business_sources = business_sources, entertainment_sources = entertainment_sources)
df3c5d0471cde998f6ea5a0de2b41ab16ef775c6
3,654,106
def start_ltm(tup, taus, w=0.1, add_coh=False, use_cv=False, add_const=False, verbose=False, **kwargs): """Calculate the lifetime density map for given data. Parameters ---------- tup : datatuple tuple with wl, t, data taus : list of floats Used to build the basis vectors. w : float, optional Used sigma for calculating the , by default 0.1. add_coh : bool, optional If true, coherent contributions are added to the basis. By default False. use_cv : bool, optional Whether to use cross-validation, by default False add_const : bool, optional Whether to add an explict constant, by default False verbose : bool, optional Wheater to be verobse, by default False Returns ------- tuple of (linear_model, coefs, fit, alphas) The linear model is the used sklearn model. Coefs is the arrary of the coefficents, fit contains the resulting fit and alphas is an array of the applied alpha value when using cv. """ X = _make_base(tup, taus, w=w, add_const=add_const, add_coh=add_coh) if not use_cv: mod = lm.ElasticNet(**kwargs, l1_ratio=0.98) else: mod = lm.ElasticNetCV(**kwargs, l1_ratio=0.98) mod.fit_intercept = not add_const mod.warm_start = 1 coefs = np.empty((X.shape[1], tup.data.shape[1])) fit = np.empty_like(tup.data) alphas = np.empty(tup.data.shape[1]) for i in range(tup.data.shape[1]): if verbose: print(i, 'ha', end=';') mod.fit(X, tup.data[:, i]) coefs[:, i] = mod.coef_.copy() fit[:, i] = mod.predict(X) if hasattr(mod, 'alpha_'): alphas[i] = mod.alpha_ return mod, coefs, fit, alphas
d24d2fdc9740a12766b5424a20c98f4ab14222eb
3,654,107
def manhattan_distance(origin, destination): """Return the Manhattan distance between the origin and the destination. @type origin: Location @type destination: Location @rtype: int >>> pt1 = Location(1,2) >>> pt2 = Location(3,4) >>> print(manhattan_distance(pt1, pt2)) 4 """ return (abs(origin.row - destination.row) + abs(origin.column - destination.column))
0bcfd7767e44b0dcc47890dc4bcb2c054abb4bde
3,654,108
import os import json def get_release(): """Get the current release of the application. By release, we mean the release from the version.json file à la Mozilla [1] (if any). If this file has not been found, it defaults to "NA". [1] https://github.com/mozilla-services/Dockerflow/blob/master/docs/version_object.md """ # Try to get the current release from the version.json file generated by the # CI during the Docker image build try: with open(os.path.join(BASE_DIR, "version.json"), encoding="utf8") as version: return json.load(version)["version"] except FileNotFoundError: return "NA"
5aece4ae245637243543e3bd5d81b4dabf0e968e
3,654,109
from typing import Dict from typing import List import logging def find_best_resampler( features_train: pd.DataFrame, labels_train: pd.DataFrame, parameters: Dict ) -> List: """Compare several resamplers and find the best one to handle imbalanced labels. Args: features_train: Training data of independent features. labels_train: Training data of next month payment default status. parameters: Parameters defined in parameters.yml. Returns: A list containing the best resampler and the search CV results as DataFrame. """ col_dict = _get_column_dtype(features_train) if labels_train.shape[0] == features_train.shape[0]: labels_train.index = features_train.index # Create transformers for each dtype transformers = [ ("num_n_trans", StandardScaler(), col_dict["num_normal"]), ( "num_s_trans", QuantileTransformer(random_state=parameters["random_state"]), col_dict["num_skewed"], ), ("ordi_trans", "passthrough", col_dict["ordinal"]), ("bool_pass", "passthrough", col_dict["boolean"]), ( "cat_trans", JamesSteinEncoder(random_state=parameters["random_state"], return_df=False), col_dict["category"], ), ] transformers = _remove_unused_transformers(transformers) # Combine the transformers as preprocessor preprocessor = ColumnTransformer(transformers=transformers) num_cols = col_dict["num_normal"] + col_dict["num_skewed"] nomi_cols = col_dict["ordinal"] + col_dict["boolean"] + col_dict["category"] # Extract target target_train = labels_train["DEFAULT_PAY"] # Initalize samplers smotenc_smpl = SMOTENC( categorical_features=[ x for x in range(len(num_cols), len(num_cols) + len(nomi_cols)) ], n_jobs=-1, ) ro_smpl = RandomOverSampler() enn_smpl = EditedNearestNeighbours(n_jobs=-1) tl_smpl = TomekLinks(n_jobs=-1) ru_smpl = RandomUnderSampler() # Initalize classifier clf = ExtraTreesClassifier(max_depth=10, n_jobs=-1) # Create parameter grid param_grid = { "sampler": [None, smotenc_smpl, ro_smpl, enn_smpl, tl_smpl, ru_smpl], "classifier": [clf], } # Create classifier pipeline resampler = PipelineImb( steps=[ ("preprocessor", preprocessor), ("sampler", smotenc_smpl), ("classifier", clf), ] ) # Start grid search search_cv = GridSearchCV( resampler, param_grid=param_grid, scoring=[ "precision", "recall", "f1", "roc_auc", ], refit="f1", error_score=0, verbose=2, ) timer_start = timer() search_cv.fit(features_train, target_train) timer_end = timer() # Log search duration logger = logging.getLogger(__name__) logger.info( f"Best resampler search elapsed time : {_get_time_delta(timer_end - timer_start)}." ) # Save search result as DataFrame search_results = pd.DataFrame(search_cv.cv_results_).sort_values( by=["rank_test_f1"] ) # Remove unused steps from resampler resampler = search_cv.best_estimator_ resampler.set_params( steps=_remove_unused_steps(steps=resampler.steps, remove_clf=True) ) return [resampler, search_results]
29c14261e0c5131c8fad653bb286d03c73b8ddd7
3,654,110
def grid(dim, num): """Build a one-dim grid of num points""" if dim.type == "categorical": return categorical_grid(dim, num) elif dim.type == "integer": return discrete_grid(dim, num) elif dim.type == "real": return real_grid(dim, num) elif dim.type == "fidelity": return fidelity_grid(dim, num) else: raise TypeError( "Grid Search only supports `real`, `integer`, `categorical` and `fidelity`: " f"`{dim.type}`\n" "For more information on dimension types, see " "https://orion.readthedocs.io/en/stable/user/searchspace.html" )
1d59936882cd15372e0c13c02d80cbe739650134
3,654,111
def path(graph, source, target, excluded_edges=None, ooc_types=ooc_types): """ Path of functions between two types """ if not isinstance(source, type): source = type(source) if not isinstance(target, type): target = type(target) for cls in concatv(source.mro(), _virtual_superclasses): if cls in graph: source = cls break # If both source and target are Out-Of-Core types then restrict ourselves # to the graph of out-of-core types if ooc_types: oocs = tuple(ooc_types) if issubclass(source, oocs) and issubclass(target, oocs): graph = graph.subgraph([n for n in graph.nodes() if issubclass(n, oocs)]) with without_edges(graph, excluded_edges) as g: pth = nx.shortest_path(g, source=source, target=target, weight='cost') edge = adjacency(graph) def path_part(src, tgt): node = edge[src][tgt] return PathPart(src, tgt, node['func'], node['cost']) return map(path_part, pth, pth[1:])
6bdf2adbfc754dc5350406570bc865ac17c088ce
3,654,112
def is_resource_sufficient(order_ingredients): """Return true or false""" for item in order_ingredients: if order_ingredients[item]>=resources[item]: print(f"Sorry not Enough {item} to Make Coffee.") return False return True
758ab17760aac8f32b4d5fb93e42e01bc780507b
3,654,113
import requests def get_gh_releases_api(project, version=None): """ """ # https://developer.github.com/v3/auth/ # self.headers = {'Authorization': 'token %s' % self.api_token} # https://api.github.com/repos/pygame/stuntcat/releases/latest repo = get_repo_from_url(project.github_repo) if not repo: return url = f'https://api.github.com/repos/{repo}/releases' if version is not None: url += f'/{version}' if Config.GITHUB_RELEASES_OAUTH is None: headers = {} else: headers = {'Authorization': 'token %s' % Config.GITHUB_RELEASES_OAUTH} resp = requests.get( url, headers = headers ) if resp.status_code != 200: raise ValueError('github api failed') data = resp.json() return data
348857ab557277f7b26cb93866284ac899746524
3,654,114
import random import logging def weak_move(board): """Weak AI - makes a random valid move. Args: board: (Board) The game board. Returns: Array: Our chosen move. """ valid_moves = _get_moves(board, Square.black) # Return a random valid move our_move = valid_moves[random.randrange(0, len(valid_moves))] logging.info('Weak AI chose r%sc%s', our_move[0], our_move[1]) return our_move
6c978b58cca58baadaab5417b27adbf4444d59ff
3,654,115
def flow_to_image(flow): """ Input: flow: Output: Img array: Description: Transfer flow map to image. Part of code forked from flownet. """ out = [] maxu = -999. maxv = -999. minu = 999. minv = 999. maxrad = -1 for i in range(flow.shape[0]): u = flow[i, :, :, 0] v = flow[i, :, :, 1] idxunknow = (abs(u) > 1e7) | (abs(v) > 1e7) u[idxunknow] = 0 v[idxunknow] = 0 maxu = max(maxu, np.max(u)) minu = min(minu, np.min(u)) maxv = max(maxv, np.max(v)) minv = min(minv, np.min(v)) rad = np.sqrt(u ** 2 + v ** 2) maxrad = max(maxrad, np.max(rad)) u = u / (maxrad + np.finfo(float).eps) v = v / (maxrad + np.finfo(float).eps) img = compute_color(u, v) out.append(img) return np.float32(np.uint8(out))
b7ed9cf684b4b818397f0329f3c7de1dbfa2ecd8
3,654,116
def parse_model_value(value, context): """ do interpolation first from context, "x is {size}" with size = 5 will be interpolated to "x is 5" then return interpolated string :param value: :param context: :return: """ return value.format(**context)
58cee6092bc03debe636ae8fa47878727457d334
3,654,117
def apply_tropomi_operator( filename, n_elements, gc_startdate, gc_enddate, xlim, ylim, gc_cache, build_jacobian, sensi_cache, ): """ Apply the tropomi operator to map GEOS-Chem methane data to TROPOMI observation space. Arguments filename [str] : TROPOMI netcdf data file to read n_elements [int] : Number of state vector elements gc_startdate [datetime64] : First day of inversion period, for GEOS-Chem and TROPOMI gc_enddate [datetime64] : Last day of inversion period, for GEOS-Chem and TROPOMI xlim [float] : Longitude bounds for simulation domain ylim [float] : Latitude bounds for simulation domain gc_cache [str] : Path to GEOS-Chem output data build_jacobian [log] : Are we trying to map GEOS-Chem sensitivities to TROPOMI observation space? sensi_cache [str] : If build_jacobian=True, this is the path to the GEOS-Chem sensitivity data Returns output [dict] : Dictionary with one or two fields: - obs_GC : GEOS-Chem and TROPOMI methane data - TROPOMI methane - GEOS-Chem methane - TROPOMI lat, lon - TROPOMI lat index, lon index If build_jacobian=True, also include: - K : Jacobian matrix """ # Read TROPOMI data TROPOMI = read_tropomi(filename) if TROPOMI == None: print(f"Skipping {filename} due to file processing issue.") return TROPOMI # We're only going to consider data within lat/lon/time bounds, with QA > 0.5, and with safe surface albedo values sat_ind = filter_tropomi(TROPOMI, xlim, ylim, gc_startdate, gc_enddate) # Number of TROPOMI observations n_obs = len(sat_ind[0]) print("Found", n_obs, "TROPOMI observations.") # If need to build Jacobian from GEOS-Chem perturbation simulation sensitivity data: if build_jacobian: # Initialize Jacobian K jacobian_K = np.zeros([n_obs, n_elements], dtype=np.float32) jacobian_K.fill(np.nan) # Initialize a list to store the dates we want to look at all_strdate = [] # For each TROPOMI observation for k in range(n_obs): # Get the date and hour iSat = sat_ind[0][k] # lat index jSat = sat_ind[1][k] # lon index time = pd.to_datetime(str(TROPOMI["utctime"][iSat])) strdate = time.round("60min").strftime("%Y%m%d_%H") all_strdate.append(strdate) all_strdate = list(set(all_strdate)) # Read GEOS_Chem data for the dates of interest all_date_gc = read_all_geoschem(all_strdate, gc_cache, build_jacobian, sensi_cache) # Initialize array with n_obs rows and 6 columns. Columns are TROPOMI CH4, GEOSChem CH4, longitude, latitude, II, JJ obs_GC = np.zeros([n_obs, 6], dtype=np.float32) obs_GC.fill(np.nan) # For each TROPOMI observation: for k in range(n_obs): # Get GEOS-Chem data for the date of the observation: iSat = sat_ind[0][k] jSat = sat_ind[1][k] p_sat = TROPOMI["pressures"][iSat, jSat, :] dry_air_subcolumns = TROPOMI["dry_air_subcolumns"][iSat, jSat, :] # mol m-2 apriori = TROPOMI["methane_profile_apriori"][iSat, jSat, :] # mol m-2 avkern = TROPOMI["column_AK"][iSat, jSat, :] time = pd.to_datetime(str(TROPOMI["utctime"][iSat])) strdate = time.round("60min").strftime("%Y%m%d_%H") GEOSCHEM = all_date_gc[strdate] # Find GEOS-Chem lats & lons closest to the corners of the TROPOMI pixel longitude_bounds = TROPOMI["longitude_bounds"][iSat, jSat, :] latitude_bounds = TROPOMI["latitude_bounds"][iSat, jSat, :] corners_lon_index = [] corners_lat_index = [] for l in range(4): iGC = nearest_loc(longitude_bounds[l], GEOSCHEM["lon"]) jGC = nearest_loc(latitude_bounds[l], GEOSCHEM["lat"]) corners_lon_index.append(iGC) corners_lat_index.append(jGC) # If the tolerance in nearest_loc() is not satisfied, skip the observation if np.nan in corners_lon_index + corners_lat_index: continue # Get lat/lon indexes and coordinates of GEOS-Chem grid cells closest to the TROPOMI corners ij_GC = [(x, y) for x in set(corners_lon_index) for y in set(corners_lat_index)] gc_coords = [(GEOSCHEM["lon"][i], GEOSCHEM["lat"][j]) for i, j in ij_GC] # Compute the overlapping area between the TROPOMI pixel and GEOS-Chem grid cells it touches overlap_area = np.zeros(len(gc_coords)) dlon = GEOSCHEM["lon"][1] - GEOSCHEM["lon"][0] dlat = GEOSCHEM["lat"][1] - GEOSCHEM["lat"][0] # Polygon representing TROPOMI pixel polygon_tropomi = Polygon(np.column_stack((longitude_bounds, latitude_bounds))) # For each GEOS-Chem grid cell that touches the TROPOMI pixel: for gridcellIndex in range(len(gc_coords)): # Define polygon representing the GEOS-Chem grid cell coords = gc_coords[gridcellIndex] geoschem_corners_lon = [ coords[0] - dlon / 2, coords[0] + dlon / 2, coords[0] + dlon / 2, coords[0] - dlon / 2, ] geoschem_corners_lat = [ coords[1] - dlat / 2, coords[1] - dlat / 2, coords[1] + dlat / 2, coords[1] + dlat / 2, ] polygon_geoschem = Polygon( np.column_stack((geoschem_corners_lon, geoschem_corners_lat)) ) # Calculate overlapping area as the intersection of the two polygons if polygon_geoschem.intersects(polygon_tropomi): overlap_area[gridcellIndex] = polygon_tropomi.intersection( polygon_geoschem ).area # If there is no overlap between GEOS-Chem and TROPOMI, skip to next observation: if sum(overlap_area) == 0: continue # ======================================================= # Map GEOS-Chem to TROPOMI observation space # ======================================================= # Otherwise, initialize tropomi virtual xch4 and virtual sensitivity as zero area_weighted_virtual_tropomi = 0 # virtual tropomi xch4 area_weighted_virtual_tropomi_sensitivity = 0 # virtual tropomi sensitivity # For each GEOS-Chem grid cell that touches the TROPOMI pixel: for gridcellIndex in range(len(gc_coords)): # Get GEOS-Chem lat/lon indices for the cell iGC, jGC = ij_GC[gridcellIndex] # Get GEOS-Chem pressure edges for the cell p_gc = GEOSCHEM["PEDGE"][iGC, jGC, :] # Get GEOS-Chem methane for the cell gc_CH4 = GEOSCHEM["CH4"][iGC, jGC, :] # Get merged GEOS-Chem/TROPOMI pressure grid for the cell merged = merge_pressure_grids(p_sat, p_gc) # Remap GEOS-Chem methane to TROPOMI pressure levels sat_CH4 = remap( gc_CH4, merged["data_type"], merged["p_merge"], merged["edge_index"], merged["first_gc_edge"], ) # ppb # Convert ppb to mol m-2 sat_CH4_molm2 = sat_CH4 * 1e-9 * dry_air_subcolumns # mol m-2 # Derive the column-averaged XCH4 that TROPOMI would see over this ground cell # using eq. 46 from TROPOMI Methane ATBD, Hasekamp et al. 2019 virtual_tropomi_gridcellIndex = ( sum(apriori + avkern * (sat_CH4_molm2 - apriori)) / sum(dry_air_subcolumns) * 1e9 ) # ppb # Weight by overlapping area (to be divided out later) and add to sum area_weighted_virtual_tropomi += ( overlap_area[gridcellIndex] * virtual_tropomi_gridcellIndex ) # ppb m2 # If building Jacobian matrix from GEOS-Chem perturbation simulation sensitivity data: if build_jacobian: # Get GEOS-Chem perturbation sensitivities at this lat/lon, for all vertical levels and state vector elements sensi_lonlat = GEOSCHEM["Sensitivities"][iGC, jGC, :, :] # Map the sensitivities to TROPOMI pressure levels sat_deltaCH4 = remap_sensitivities( sensi_lonlat, merged["data_type"], merged["p_merge"], merged["edge_index"], merged["first_gc_edge"], ) # mixing ratio, unitless # Tile the TROPOMI averaging kernel avkern_tiled = np.transpose(np.tile(avkern, (n_elements, 1))) # Tile the TROPOMI dry air subcolumns dry_air_subcolumns_tiled = np.transpose( np.tile(dry_air_subcolumns, (n_elements, 1)) ) # mol m-2 # Derive the change in column-averaged XCH4 that TROPOMI would see over this ground cell tropomi_sensitivity_gridcellIndex = np.sum( avkern_tiled * sat_deltaCH4 * dry_air_subcolumns_tiled, 0 ) / sum( dry_air_subcolumns ) # mixing ratio, unitless # Weight by overlapping area (to be divided out later) and add to sum area_weighted_virtual_tropomi_sensitivity += ( overlap_area[gridcellIndex] * tropomi_sensitivity_gridcellIndex ) # m2 # Compute virtual TROPOMI observation as weighted mean by overlapping area # i.e., need to divide out area [m2] from the previous step virtual_tropomi = area_weighted_virtual_tropomi / sum(overlap_area) # Save actual and virtual TROPOMI data obs_GC[k, 0] = TROPOMI["methane"][ iSat, jSat ] # Actual TROPOMI methane column observation obs_GC[k, 1] = virtual_tropomi # Virtual TROPOMI methane column observation obs_GC[k, 2] = TROPOMI["longitude"][iSat, jSat] # TROPOMI longitude obs_GC[k, 3] = TROPOMI["latitude"][iSat, jSat] # TROPOMI latitude obs_GC[k, 4] = iSat # TROPOMI index of longitude obs_GC[k, 5] = jSat # TROPOMI index of latitude if build_jacobian: # Compute TROPOMI sensitivity as weighted mean by overlapping area # i.e., need to divide out area [m2] from the previous step jacobian_K[k, :] = area_weighted_virtual_tropomi_sensitivity / sum( overlap_area ) # Output output = {} # Always return the coincident TROPOMI and GEOS-Chem data output["obs_GC"] = obs_GC # Optionally return the Jacobian if build_jacobian: output["K"] = jacobian_K return output
c449ddaf8113a3adfcd0e501cacc245bcf0af495
3,654,118
import yaml from typing import cast def load_configuration(yaml: yaml.ruamel.yaml.YAML, filename: str) -> DictLike: """Load an analysis configuration from a file. Args: yaml: YAML object to use in loading the configuration. filename: Filename of the YAML configuration file. Returns: dict-like object containing the loaded configuration """ with open(filename, "r") as f: config = yaml.load(f) return cast(DictLike, config)
6c3b9b54b6e22b40c61c901b2bcb3b6af4847214
3,654,119
def device_list(request): """ :param request: :return: """ device_list = True list = Device.objects.all() return render(request, "back/device_list.html", locals())
f4892f40831d25182b55414a666fbd62d6d978ef
3,654,120
def L008_eval(segment, raw_stack, **kwargs): """ This is a slightly odd one, because we'll almost always evaluate from a point a few places after the problem site """ # We need at least two segments behind us for this to work if len(raw_stack) < 2: return True else: cm1 = raw_stack[-1] cm2 = raw_stack[-2] if cm2.name == 'comma': if cm1.name not in ['whitespace', 'newline']: # comma followed by something that isn't whitespace! return cm2 elif cm1.raw not in ['\n', ' '] and not segment.is_comment: return cm1 return True
71c42999ffc76bd28a61b640cf85086b0b9e8d69
3,654,121
def overwrite_ruffus_args(args, config): """ :param args: :param config: :return: """ if config.has_section('Ruffus'): cmdargs = dict() cmdargs['draw_horizontally'] = bool cmdargs['flowchart'] = str cmdargs['flowchart_format'] = str cmdargs['forced_tasks'] = lambda x: x.split() cmdargs['history_file'] = str cmdargs['jobs'] = int cmdargs['just_print'] = bool cmdargs['key_legend_in_graph'] = bool cmdargs['log_file'] = str cmdargs['recreate_database'] = bool cmdargs['target_tasks'] = lambda x: x.split() cmdargs['touch_files_only'] = bool cmdargs['use_threads'] = bool cmdargs['verbose'] = lambda x: x.split() for k, v in config.items('Ruffus'): try: args.__setattr__(k, cmdargs[k](v)) except KeyError: pass return args
6f947c362a37bfdc6df53c861783604999621a88
3,654,122
def read_sfr_df(): """Reads and prepares the sfr_df Parameters: Returns: sfr_df(pd.DataFrame): dataframe of the fits file mosdef_sfrs_latest.fits """ sfr_df = read_file(imd.loc_sfrs_latest) sfr_df['FIELD_STR'] = [sfr_df.iloc[i]['FIELD'].decode( "utf-8").rstrip() for i in range(len(sfr_df))] return sfr_df
9d0d16929ffd5043853096c01cafa00747104b9f
3,654,123
def redshift(x, vo=0., ve=0.,def_wlog=False): """ x: The measured wavelength. v: Speed of the observer [km/s]. ve: Speed of the emitter [km/s]. Returns: The emitted wavelength l'. Notes: f_m = f_e (Wright & Eastman 2014) """ if np.isnan(vo): vo = 0 # propagate nan as zero (@calibration in fib B) a = (1.0+vo/c) / (1.0+ve/c) if def_wlog: return x + np.log(a) # logarithmic #return x + a # logarithmic + approximation v << c else: return x * a #return x / (1.0-v/c)
0dee71d862d2dc4252033964a9adcb4428c5dfa9
3,654,124
import mmap def overlay_spectra_plot(array, nrow=5,ncol=5,**kwargs): """ Overlay spectra on a collapsed cube. Parameters ---------- array : 3D numpy array nrow : int Number of rows in the figure. ncol : int Number of columns in the figure. **kwargs : dict Keyword arguments passed to `ax.plot` for the spectra Returns ------- fig : matplotlib.figure.Figure The figure object. """ cube = np.nan_to_num(array) fig,ax = plt.subplots(subplot_kw={'projection':mmap.wcs},figsize=(10,10)) fig.set_constrained_layout(False) collapsed_cube = np.nanmean(cube,axis=2) vmin,vmax = np.percentile(collapsed_cube[collapsed_cube>0], [0.1,99.9]) ax.imshow(collapsed_cube,cmap='Greys',norm=mpl.colors.LogNorm(vmin=vmin,vmax=vmin)) w = 1/ncol # in figure coords h = 1/nrow # in figure coords dr,dc = collapsed_cube.shape # create grid of inset_axes on figure for i in range(nrow): for j in range(ncol): b,l = i*h, j*w #print(f'left:{l:0.1f} col: {j} bottom:{b:0.1f} row:{i}') bl = [b,l] ax2 = ax.inset_axes([l,b,w,h]) ax2.set_xticks([]) ax2.set_yticks([]) ax2.set_facecolor('none') #ax.add_patch(mpl.patches.Rectangle([l,b],w,h,transform=ax.transAxes,color='r',alpha=0.5)) #ju.annotate(f'row:{i} col:{j}',l,b,ha='left',va='bottom',ax=ax,transform='axes') #print(f'{int(b*dr)}:{int((b+h)*dr)},{int(l*dc)}:{int((l+w)*dc)}') line = np.nanmean(mmap.co[sl][int(b*dr):int((b+h)*dr),int(l*dc):int((l+w)*dc),vsl],axis=(0,1)) ax2.plot(mmap.v[vsl],ju.scale_ptp(line),'r',lw=1,**kwargs) ax2.set_ylim(ax2.get_ylim()[0],max(ax2.get_ylim()[1],.3)) #ax2.set_axis_off() #ax.add_patch(mpl.patches.Rectangle([bl[0],bl[1]],w*dc,h*dr,transform=ax.transData,alpha=0.25)) return fig
8abbbbe7667c57bea50575a58bf11c3b080c8608
3,654,125
def digest_from_rsa_scheme(scheme, hash_library=DEFAULT_HASH_LIBRARY): """ <Purpose> Get digest object from RSA scheme. <Arguments> scheme: A string that indicates the signature scheme used to generate 'signature'. Currently supported RSA schemes are defined in `securesystemslib.keys.RSA_SIGNATURE_SCHEMES` hash_library: The crypto library to use for the given hash algorithm (e.g., 'hashlib'). <Exceptions> securesystemslib.exceptions.FormatError, if the arguments are improperly formatted. securesystemslib.exceptions.UnsupportedAlgorithmError, if an unsupported hashing algorithm is specified, or digest could not be generated with given the algorithm. securesystemslib.exceptions.UnsupportedLibraryError, if an unsupported library was requested via 'hash_library'. <Side Effects> None. <Returns> Digest object e.g. hashlib.new(algorithm) or PycaDiggestWrapper object """ # Are the arguments properly formatted? If not, raise # 'securesystemslib.exceptions.FormatError'. securesystemslib.formats.RSA_SCHEME_SCHEMA.check_match(scheme) # Get hash algorithm from rsa scheme (hash algorithm id is specified after # the last dash; e.g. rsassa-pss-sha256 -> sha256) hash_algorithm = scheme.split('-')[-1] return digest(hash_algorithm, hash_library)
6eaf10657a0e80f2ddfa5eacbcc1bac72437ca51
3,654,126
import os def getconfig(filename): """ 1. Checks if the config file exists. 2. If not, creates it with the content in default_config. 3. Reads the config file and returns it. Returns False in case of errors. """ global default_config if os.path.exists(filename): configfile = open(filename, "r") else: try: f = open(filename, 'w') f.write(default_config) f.close() configfile = open(filename, "r") except IOError: return False ret = [] for line in configfile: line = line.strip() if not line or line[0] == '#': continue else: ret.append(line) configfile.close() return ret
8c9cf7110a7279638e2051454a1e26ca25f69e6b
3,654,127
def table(content, accesskey:str ="", class_: str ="", contenteditable: str ="", data_key: str="", data_value: str="", dir_: str="", draggable: str="", hidden: str="", id_: str="", lang: str="", spellcheck: str="", style: str="", tabindex: str="", title: str="", translate: str=""): """ Returns a table.\n `content`: Contents of the table.\n """ g_args = global_args(accesskey, class_, contenteditable, data_key, data_value, dir_, draggable, hidden, id_, lang, spellcheck, style, tabindex, title, translate) return f"<table {g_args}>{content}</table>\n"
b27cf1b1897bdbc764fff76edc2e53fa0aca7861
3,654,128
def _ev_match( output_dir, last_acceptable_entry_index, certificate, entry_type, extra_data, certificate_index): """Matcher function for the scanner. Returns the certificate's hash if it is a valid, non-expired, EV certificate, None otherwise.""" # Only generate whitelist for non-precertificates. It is expected that if # a precertificate was submitted then the issued SCT would be embedded # in the final certificate. if entry_type != client_pb2.X509_ENTRY: return None # No point in including expired certificates. if certificate.is_expired(): return None # Do not include entries beyond the last entry included in the whitelist # generated on January 1st, 2015. if certificate_index > last_acceptable_entry_index: return None # Only include certificates that have an EV OID. matching_policies = find_matching_policies(certificate) if not matching_policies: return None # Removed the requirement that the root of the chain matches the root that # should be used for the EV policy OID. # See https://code.google.com/p/chromium/issues/detail?id=524635 for # details. # Matching certificate if output_dir: _write_cert_and_chain( output_dir, certificate, extra_data, certificate_index) return calculate_certificate_hash(certificate)
acd8416546d5f687fd1bfc1f0edfc099cde4408d
3,654,129
def axis_ratio_disklike(scale=0.3, truncate=0.2): """Sample (one minus) the axis ratio of a disk-like galaxy from the Rayleigh distribution Parameters ---------- scale : float scale of the Rayleigh distribution; the bigger, the smaller the axis ratio truncate : float the minimum value of the axis ratio Note ---- The default parameters are used in Lenspop ([1]_) and are expected for elliptical sources. References ---------- .. [1] Collett, Thomas E. "The population of galaxy–galaxy strong lenses in forthcoming optical imaging surveys." The Astrophysical Journal 811.1 (2015): 20. Returns ------- float the axis ratio """ q = 0.0 while q < truncate: q = 1.0 - np.random.rayleigh(scale, size=None) return q
d001ef0b2f5896f4e7f04f314cd4e71ffd97a277
3,654,130
import numpy def rk4(y0, t0, te, N, deriv, filename=None): """ General RK4 driver for N coupled differential eq's, fixed stepsize Input: - y0: Vector containing initial values for y - t0: Initial time - te: Ending time - N: Number of steps - deriv: See rk4_step - filename: Optional, use if you want to write data to file at each step. Format used: t y[0] y[1] ... (%10.15E) Output: If filename=None, return tuple containing: - time: Array of times at which it has iterated over - yout: N*len(y0) numpy array containing y for each timestep If filename specified, None is returned. """ h = (te-t0)/float(N) t = t0; if filename == None: #Setup arrays time = numpy.zeros(N); yout = [] #Inital values yout.append(y0); time[0] = t0; t = t0; #Loop over timesteps for i in xrange(1,N): yout.append(rk4_step(yout[i-1],t,h,deriv)); t = t0 + h*i; time[i] = t; return (time,yout) else: ofile = open(filename,'w') #Format string used for output file ostring = "%20.8E " + ("%20.8E "*len(y0)) + "\n" #Initial values y = y0 t = t0 foo = [t]; foo[1:] = y; ofile.write(ostring % tuple(foo)) while (t < te): y = rk4_step(y,t,h,deriv) t +=h foo = [t]; foo[1:] = y; ofile.write(ostring % tuple(foo)) ofile.close() return None
93b7255fc95f06f765df12930efcf89338970ee6
3,654,131
from typing import Dict from typing import Tuple def create_txt_substitute_record_rule_command(client: Client, args: Dict) -> Tuple[str, Dict, Dict]: """ Args: client: Client object args: Usually demisto.args() Returns: Outputs """ name = args.get('name') rp_zone = args.get('rp_zone') comment = args.get('comment') text = args.get('text') infoblox_object_type = 'record:rpz:txt' raw_response = client.create_substitute_record_rule(infoblox_object_type, name=name, rp_zone=rp_zone, comment=comment, text=text) rule = raw_response.get('result', {}) fixed_keys_rule_res = {RESPONSE_TRANSLATION_DICTIONARY.get(key, string_to_context_key(key)): val for key, val in rule.items()} title = f'{INTEGRATION_NAME} - Response Policy Zone rule: {name} has been created:' context = { f'{INTEGRATION_CONTEXT_NAME}.ModifiedResponsePolicyZoneRules(val.Name && val.Name === obj.Name)': fixed_keys_rule_res} human_readable = tableToMarkdown(title, fixed_keys_rule_res, headerTransform=pascalToSpace) return human_readable, context, raw_response
ada3c412ec166eedd04edb2219396da6aef967ea
3,654,132
def pot_rho_linear(SP, t, rho0=1025, a=2e-4, b=7e-4, SP0=35, t0=15): """ Potential density calculated using a linear equation of state: Parameters ---------- SP : array-like Salinity [g/kg] t : array-like Temperature [°C] rho0 : float, optional Constant density [kg/m^3] a : float, optional Thermal expansion coefficient [1/°C] b : float, optional saline expansion coefficient [kg/g] SP0 : float, optional Constant salinity [g/kg] t0 : float, optional Constant temperature [°C] Returns ------- pot_rho : ndarray Potential density [kg/m^3] """ return rho0 * (1 - a * (t - t0) + b * (SP - SP0))
47dd8248239d2147ff50d1b179d3fc4392c173cb
3,654,133
def oembed(url, params=""): """ Render an OEmbed-compatible link as an embedded item. :param url: A URL of an OEmbed provider. :return: The OEMbed ``<embed>`` code. """ # Note: this method isn't currently very efficient - the data isn't # cached or stored. kwargs = dict(urlparse.parse_qsl(params)) try: return mark_safe(get_oembed_data( url, **kwargs )['html']) except (KeyError, ProviderException): if settings.DEBUG: return "No OEmbed data returned" return ""
eece184ee8a17613607f190b2de002fb6026340c
3,654,134
async def create_assc(conn : asyncpg.Connection, name : str, type : str, base : str, leader : int) -> Association: """Create an association with the fields given. type must be 'Brotherhood','College', or 'Guild'. """ psql = """ SELECT assc_id FROM associations WHERE assc_name = $1; """ if await conn.fetchval(psql, name) is not None: raise Checks.NameTaken(name) psql1 = """ WITH rows AS ( INSERT INTO associations (assc_name, assc_type, leader_id, assc_icon, base) VALUES ($1, $2, $3, $4, $5) RETURNING assc_id ) SELECT assc_id FROM rows; """ psql2 = """ UPDATE players SET assc = $1, guild_rank = 'Leader' WHERE user_id = $2; """ psql3 = """ INSERT INTO brotherhood_champions (assc_id) VALUES ($1); """ assc_id = await conn.fetchval( psql1, name, type, leader, Vars.DEFAULT_ICON, base) await conn.execute(psql2, assc_id, leader) if type == "Brotherhood": await conn.execute(psql3, assc_id) return await get_assc_by_id(conn, assc_id)
3089b6033e31325d7b3942d9d887b89cec21ca1c
3,654,135
def filter_tof_to_csr( tof_slices: np.ndarray, push_indices: np.ndarray, tof_indices: np.ndarray, push_indptr: np.ndarray, ) -> tuple: """Get a CSR-matrix with raw indices satisfying push indices and tof slices. Parameters ---------- tof_slices : np.int64[:, 3] Each row of the array is assumed to be a (start, stop, step) tuple. This array is assumed to be sorted, disjunct and strictly increasing (i.e. np.all(np.diff(tof_slices[:, :2].ravel()) >= 0) = True). push_indices : np.int64[:] The push indices from where to retrieve the TOF slices. tof_indices : np.uint32[:] The self.tof_indices array of a TimsTOF object. push_indptr : np.int64[:] The self.push_indptr array of a TimsTOF object. Returns ------- (np.int64[:], np.int64[:], np.int64[:],) An (indptr, values, columns) tuple, where indptr are push indices, values raw indices, and columns the tof_slices. """ indptr = [0] values = [] columns = [] for push_index in push_indices: start = push_indptr[push_index] end = push_indptr[push_index + 1] idx = start for i, (tof_start, tof_stop, tof_step) in enumerate(tof_slices): idx += np.searchsorted(tof_indices[idx: end], tof_start) tof_value = tof_indices[idx] while (tof_value < tof_stop) and (idx < end): if tof_value in range(tof_start, tof_stop, tof_step): values.append(idx) columns.append(i) break # TODO what if multiple hits? idx += 1 tof_value = tof_indices[idx] indptr.append(len(values)) return np.array(indptr), np.array(values), np.array(columns)
925fc93c6e275ead7d472469764fbbb1093aa6bd
3,654,136
def get_path_from_query_string(req): """Gets path from query string Args: req (flask.request): Request object from Flask Returns: path (str): Value of "path" parameter from query string Raises: exceptions.UserError: If "path" is not found in query string """ if req.args.get('path') is None: raise exceptions.UserError('Path not found in query string') return req.args.get('path')
7e279e8e33dbbaa6ceb18d4b9a61723826522ec3
3,654,137
import scipy def entropy_grassberger(n, base=None): """" Estimate the entropy of a discrete distribution from counts per category n: array of counts base: base in which to measure the entropy (default: nats) """ N = np.sum(n) entropy = np.log(N) - np.sum(n*scipy.special.digamma(n+1e-20))/N if base: entropy /= np.log(base) return entropy
1dc5ced1f5bb43bce30fa9501632825648b19cb8
3,654,138
def get_param_layout(): """Get layout for causality finding parameters definition window Parameters ---------- Returns ------- `List[List[Element]]` Layout for causality finding parameters window """ box = [ [ sg.Text('Parameters') ], [ sg.Text(' Epochs: '),sg.Input(key=cte.EPOCHS,size=(10,1), default_text="1000"), sg.Text(' Kernel Size: '),sg.Input(key=cte.KERNEL,size=(10,1), default_text="4") ], [ sg.Text(' Depth: '),sg.Input(key=cte.LEVEL,size=(10,1), default_text="1"), sg.Text(' Learning Rate: '),sg.Input(key=cte.RATE,size=(10,1), default_text="0.01") ], [ sg.Text(' Dilation: '),sg.Input(key=cte.DILATION,size=(10,1), default_text="4"), sg.Text(' Significance: '),sg.Input(key=cte.SIGNIFICANCE,size=(10,1), default_text="0.8") ], [ sg.Text('Optimizer: '),sg.Input(key=cte.OPTIMIZER,size=(10,1), default_text="Adam"), sg.Text(' Log Interval: '),sg.Input(key=cte.LOGINT,size=(10,1), default_text="500") ], [sg.Button('Create Causal Graph', key=cte.CREATE)] ] return box
e09db05b848e71449d7d17004793e8ce167dca1a
3,654,139
def senti_histplot(senti_df): """histogram plot for sentiment""" senti_hist = ( alt.Chart(senti_df) .mark_bar() .encode(alt.Y(cts.SENTI, bin=True), x="count()", color=cts.SENTI,) .properties(height=300, width=100) ).interactive() return senti_hist
731fda9cf5af49fdbec7d1a16edbf65148e67d5a
3,654,140
def pd_df_sampling(df, coltarget="y", n1max=10000, n2max=-1, isconcat=1): """ DownSampler :param df: :param coltarget: binary class :param n1max: :param n2max: :param isconcat: :return: """ df1 = df[df[coltarget] == 0].sample(n=n1max) n2max = len(df[df[coltarget] == 1]) if n2max == -1 else n2max df0 = df[df[coltarget] == 1].sample(n=n2max) if isconcat: df2 = pd.concat((df1, df0)) df2 = df2.sample(frac=1.0, replace=True) return df2 else: print("y=1", n2max, "y=0", len(df1)) return df0, df1
2cec90c189d00a8cd3ec19224fa7a2685c135bf2
3,654,141
from functools import partial from pathlib import Path from argparse import ( ArgumentParser, ArgumentDefaultsHelpFormatter, ) from packaging.version import Version from .version import check_latest, is_flagged from niworkflows.utils.spaces import Reference, OutputReferencesAction from json import loads def _build_parser(): """Build parser object.""" def _path_exists(path, parser): """Ensure a given path exists.""" if path is None or not Path(path).exists(): raise parser.error(f"Path does not exist: <{path}>.") return Path(path).absolute() def _min_one(value, parser): """Ensure an argument is not lower than 1.""" value = int(value) if value < 1: raise parser.error("Argument can't be less than one.") return value def _to_gb(value): scale = {"G": 1, "T": 10 ** 3, "M": 1e-3, "K": 1e-6, "B": 1e-9} digits = "".join([c for c in value if c.isdigit()]) units = value[len(digits):] or "M" return int(digits) * scale[units[0]] def _drop_sub(value): value = str(value) return value.lstrip("sub-") def _bids_filter(value): if value and Path(value).exists(): return loads(Path(value).read_text()) verstr = f"dMRIPrep v{config.environment.version}" currentv = Version(config.environment.version) is_release = not any( (currentv.is_devrelease, currentv.is_prerelease, currentv.is_postrelease) ) parser = ArgumentParser( description="dMRIPrep: dMRI PREProcessing workflows v{}".format( config.environment.version ), formatter_class=ArgumentDefaultsHelpFormatter, ) PathExists = partial(_path_exists, parser=parser) PositiveInt = partial(_min_one, parser=parser) # Arguments as specified by BIDS-Apps # required, positional arguments # IMPORTANT: they must go directly with the parser object parser.add_argument( "bids_dir", action="store", type=PathExists, help="the root folder of a BIDS valid dataset (sub-XXXXX folders should " "be found at the top level in this folder).", ) parser.add_argument( "output_dir", action="store", type=Path, help="the output path for the outcomes of preprocessing and visual " "reports", ) parser.add_argument( "analysis_level", choices=["participant"], help='processing stage to be run, only "participant" in the case of ' "dMRIPrep (see BIDS-Apps specification).", ) # optional arguments parser.add_argument("--version", action="version", version=verstr) g_bids = parser.add_argument_group("Options for filtering BIDS queries") g_bids.add_argument( "--skip-bids-validation", action="store_true", default=False, help="assume the input dataset is BIDS compliant and skip the validation", ) g_bids.add_argument( "--participant-label", "--participant_label", action="store", nargs="+", type=_drop_sub, help="a space delimited list of participant identifiers or a single " "identifier (the sub- prefix can be removed)", ) g_bids.add_argument( "--bids-filter-file", dest="bids_filters", action="store", type=_bids_filter, metavar="PATH", help="a JSON file describing custom BIDS input filter using pybids " "{<suffix>:{<entity>:<filter>,...},...} " "(https://github.com/bids-standard/pybids/blob/master/bids/layout/config/bids.json)", ) g_bids.add_argument( "--anat-derivatives", action='store', metavar="PATH", type=PathExists, help="Reuse the anatomical derivatives from another fMRIPrep run or calculated " "with an alternative processing tool (NOT RECOMMENDED)." ) g_perfm = parser.add_argument_group("Options to handle performance") g_perfm.add_argument( "--nprocs", "--nthreads", "--n_cpus", "-n-cpus", action="store", type=PositiveInt, help="maximum number of threads across all processes", ) g_perfm.add_argument( "--omp-nthreads", action="store", type=PositiveInt, help="maximum number of threads per-process", ) g_perfm.add_argument( "--mem", "--mem_mb", "--mem-mb", dest="memory_gb", action="store", type=_to_gb, help="upper bound memory limit for dMRIPrep processes", ) g_perfm.add_argument( "--low-mem", action="store_true", help="attempt to reduce memory usage (will increase disk usage " "in working directory)", ) g_perfm.add_argument( "--use-plugin", action="store", default=None, help="nipype plugin configuration file", ) g_perfm.add_argument( "--anat-only", action="store_true", help="run anatomical workflows only" ) g_perfm.add_argument( "--boilerplate_only", action="store_true", default=False, help="generate boilerplate only", ) g_perfm.add_argument( "--md-only-boilerplate", action="store_true", default=False, help="skip generation of HTML and LaTeX formatted citation with pandoc", ) g_perfm.add_argument( "-v", "--verbose", dest="verbose_count", action="count", default=0, help="increases log verbosity for each occurrence, debug level is -vvv", ) g_conf = parser.add_argument_group("Workflow configuration") g_conf.add_argument( "--ignore", required=False, action="store", nargs="+", default=[], choices=["fieldmaps", "slicetiming", "sbref"], help="ignore selected aspects of the input dataset to disable corresponding " "parts of the workflow (a space delimited list)", ) g_conf.add_argument( "--longitudinal", action="store_true", help="treat dataset as longitudinal - may increase runtime", ) g_conf.add_argument( "--output-spaces", nargs="*", action=OutputReferencesAction, help="""\ Standard and non-standard spaces to resample anatomical and functional images to. \ Standard spaces may be specified by the form \ ``<SPACE>[:cohort-<label>][:res-<resolution>][...]``, where ``<SPACE>`` is \ a keyword designating a spatial reference, and may be followed by optional, \ colon-separated parameters. \ Non-standard spaces imply specific orientations and sampling grids. \ The default value of this flag (meaning, if the argument is not include in the command line) \ is ``--output-spaces run`` - the original space and sampling grid of the original DWI run. \ Important to note, the ``res-*`` modifier does not define the resolution used for \ the spatial normalization. To generate no DWI outputs (if that is intended for some reason), \ use this option without specifying any spatial references. For further details, please check out \ https://www.nipreps.org/dmriprep/en/%s/spaces.html""" % (currentv.base_version if is_release else "latest"), ) # ANTs options g_ants = parser.add_argument_group("Specific options for ANTs registrations") g_ants.add_argument( "--skull-strip-template", default="OASIS30ANTs", type=Reference.from_string, help="select a template for skull-stripping with antsBrainExtraction", ) g_ants.add_argument( "--skull-strip-fixed-seed", action="store_true", help="do not use a random seed for skull-stripping - will ensure " "run-to-run replicability when used with --omp-nthreads 1", ) # Fieldmap options g_fmap = parser.add_argument_group("Specific options for handling fieldmaps") g_fmap.add_argument( "--fmap-bspline", action="store_true", default=False, help="fit a B-Spline field using least-squares (experimental)", ) g_fmap.add_argument( "--fmap-no-demean", action="store_false", default=True, help="do not remove median (within mask) from fieldmap", ) # SyN-unwarp options g_syn = parser.add_argument_group("Specific options for SyN distortion correction") g_syn.add_argument( "--use-syn-sdc", action="store_true", default=False, help="EXPERIMENTAL: Use fieldmap-free distortion correction", ) g_syn.add_argument( "--force-syn", action="store_true", default=False, help="EXPERIMENTAL/TEMPORARY: Use SyN correction in addition to " "fieldmap correction, if available", ) # FreeSurfer options g_fs = parser.add_argument_group("Specific options for FreeSurfer preprocessing") g_fs.add_argument( "--fs-license-file", metavar="PATH", type=PathExists, help="Path to FreeSurfer license key file. Get it (for free) by registering" " at https://surfer.nmr.mgh.harvard.edu/registration.html", ) g_fs.add_argument( "--fs-subjects-dir", metavar="PATH", type=Path, help="Path to existing FreeSurfer subjects directory to reuse. " "(default: OUTPUT_DIR/freesurfer)", ) # Surface generation xor g_surfs = parser.add_argument_group("Surface preprocessing options") g_surfs_xor = g_surfs.add_mutually_exclusive_group() g_surfs_xor.add_argument( "--no-submm-recon", action="store_false", dest="hires", help="disable sub-millimeter (hires) reconstruction", ) g_surfs_xor.add_argument( "--fs-no-reconall", action="store_false", dest="run_reconall", help="disable FreeSurfer surface preprocessing.", ) g_other = parser.add_argument_group("Other options") g_other.add_argument( "-w", "--work-dir", action="store", type=Path, default=Path("work").absolute(), help="path where intermediate results should be stored", ) g_other.add_argument( "--clean-workdir", action="store_true", default=False, help="Clears working directory of contents. Use of this flag is not" "recommended when running concurrent processes of dMRIPrep.", ) g_other.add_argument( "--resource-monitor", action="store_true", default=False, help="enable Nipype's resource monitoring to keep track of memory and CPU usage", ) g_other.add_argument( "--reports-only", action="store_true", default=False, help="only generate reports, don't run workflows. This will only rerun report " "aggregation, not reportlet generation for specific nodes.", ) g_other.add_argument( "--run-uuid", action="store", default=None, help="Specify UUID of previous run, to include error logs in report. " "No effect without --reports-only.", ) g_other.add_argument( "--write-graph", action="store_true", default=False, help="Write workflow graph.", ) g_other.add_argument( "--stop-on-first-crash", action="store_true", default=False, help="Force stopping on first crash, even if a work directory" " was specified.", ) g_other.add_argument( "--notrack", action="store_true", default=False, help="Opt-out of sending tracking information of this run to " "the dMRIPREP developers. This information helps to " "improve dMRIPREP and provides an indicator of real " "world usage crucial for obtaining funding.", ) g_other.add_argument( "--sloppy", dest="debug", action="store_true", default=False, help="Use low-quality tools for speed - TESTING ONLY", ) latest = check_latest() if latest is not None and currentv < latest: print( """\ You are using dMRIPrep-%s, and a newer version of dMRIPrep is available: %s. Please check out our documentation about how and when to upgrade: https://dmriprep.readthedocs.io/en/latest/faq.html#upgrading""" % (currentv, latest), file=sys.stderr, ) _blist = is_flagged() if _blist[0]: _reason = _blist[1] or "unknown" print( """\ WARNING: Version %s of dMRIPrep (current) has been FLAGGED (reason: %s). That means some severe flaw was found in it and we strongly discourage its usage.""" % (config.environment.version, _reason), file=sys.stderr, ) return parser
ac2a2b8b3f6cab89f0720cb666ae3c7b9d69d730
3,654,142
def get_deliverer(batch_size, max_staleness, session): """ Helper function to returns the correct deliverer class for the batch_size and max_stalennes parameters """ if batch_size < 1: return SimpleDeliverer(session) else: return BatchDeliverer(session, batch_size, max_staleness)
544740a5f38befc4d8123e7835ba758feac2d35b
3,654,143
import copy def trace_fweight_deprecated(fimage, xinit, ltrace=None, rtraceinvvar=None, radius=3.): """ Python port of trace_fweight.pro from IDLUTILS Parameters: ----------- fimage: 2D ndarray Image for tracing xinit: ndarray Initial guesses for x-trace invvar: ndarray, optional Inverse variance array for the image radius: float, optional Radius for centroiding; default to 3.0 """ # Init nx = fimage.shape[1] ny = fimage.shape[0] ncen = len(xinit) xnew = copy.deepcopy(xinit) xerr = np.zeros(ncen) + 999. ycen = np.arange(ny, dtype=int) invvar = 0. * fimage + 1. x1 = xinit - radius + 0.5 x2 = xinit + radius + 0.5 ix1 = np.floor(x1).astype(int) ix2 = np.floor(x2).astype(int) fullpix = int(np.maximum(np.min(ix2-ix1)-1, 0)) sumw = np.zeros(ny) sumxw = np.zeros(ny) sumwt = np.zeros(ny) sumsx1 = np.zeros(ny) sumsx2 = np.zeros(ny) qbad = np.array([False]*ny) if invvar is None: invvar = np.zeros_like(fimage) + 1. # Compute for ii in range(0,fullpix+3): spot = ix1 - 1 + ii ih = np.clip(spot,0,nx-1) xdiff = spot - xinit # wt = np.clip(radius - np.abs(xdiff) + 0.5,0,1) * ((spot >= 0) & (spot < nx)) sumw = sumw + fimage[ycen,ih] * wt sumwt = sumwt + wt sumxw = sumxw + fimage[ycen,ih] * xdiff * wt var_term = wt**2 / (invvar[ycen,ih] + (invvar[ycen,ih] == 0)) sumsx2 = sumsx2 + var_term sumsx1 = sumsx1 + xdiff**2 * var_term #qbad = qbad or (invvar[ycen,ih] <= 0) qbad = np.any([qbad, invvar[ycen,ih] <= 0], axis=0) # Fill up good = (sumw > 0) & (~qbad) if np.sum(good) > 0: delta_x = sumxw[good]/sumw[good] xnew[good] = delta_x + xinit[good] xerr[good] = np.sqrt(sumsx1[good] + sumsx2[good]*delta_x**2)/sumw[good] bad = np.any([np.abs(xnew-xinit) > radius + 0.5, xinit < radius - 0.5, xinit > nx - 0.5 - radius], axis=0) if np.sum(bad) > 0: xnew[bad] = xinit[bad] xerr[bad] = 999.0 # Return return xnew, xerr
e927113477a277ceb9acc8ce6af8bd1689c2913c
3,654,144
from datetime import datetime def home(): """Renders the card page.""" cardStack = model.CardStack() return render_template( 'cards.html', title ='POSTIN - Swipe', cardSet = cardStack.cardList, year=datetime.now().year, )
203021b1da4833418aafd3e3e20964e3b765a816
3,654,145
import os import io import sys import tarfile def uncompress(filename: str, path: str = os.getcwd()) -> None: """Uncompress a tar file Args: filename: a tar file (tar, tgz, ...) path: where the filename will be uncompressed Example: >>> import robotathome as rh >>> rh.uncompress('~/WORKSPACE/Robot@Home2_db.tgz') """ class ProgressFileObject(io.FileIO): def __init__(self, path, *args, **kwargs): self._total_size = os.path.getsize(path) io.FileIO.__init__(self, path, *args, **kwargs) def read(self, size): sys.stdout.write("\rUncompressing %d of %d MB (%d%%)" % (self.tell() / 1048576, self._total_size / 1048576, self.tell()*100/self._total_size)) sys.stdout.flush() return io.FileIO.read(self, size) try: rh.logger.info("Extracting files from {}: ", (os.path.basename(filename))) file_obj=ProgressFileObject(os.path.expanduser(filename)) tf = tarfile.open(fileobj=file_obj) tf.extractall(path=os.path.expanduser(path)) file_obj.close() except Exception as error_code: rh.logger.info("Error: {}", error_code) else: tf.close() print() rh.logger.info("Extraction success. Don't forget to remove {} if you are not plenty of space.", (os.path.basename(filename)))
797c8a0073fdc73d9a42f5089bc38ff51d71ceb7
3,654,146
def index(request): """ User profile page. """ user = request.user profile = user.userprofile context = collect_view_data(request, 'profile') context['user'] = user context['profile'] = profile context['uform'] = UserForm(request, request.user, init=True) context['upform'] = UserProfileForm(request, profile, init=True) context['pform'] = ChangePasswordForm(request.user) context['sform'] = SSHKeyForm(request, request.user) context['ssh_keys'] = request.user.usersshkey_set.all().order_by('id') context['email_aform'] = EmailActivationProfileForm(profile.email_token) context['phone_aform'] = PhoneActivationProfileForm(profile.phone_token) return render(request, 'gui/profile/profile.html', context)
1a8cc98ba476e21986f79ec8e662bb222df79fae
3,654,147
def user_confirm_email(token): """Confirm a user account using his email address and a token to approve. Parameters ---------- token : str The token associated with an email address. """ try: email = ts.loads(token, max_age=86400) except Exception as e: logger.error(str(e)) abort(404) user = User.query.filter_by(email=email).one_or_none() if user is None: flash( 'You did not sign-up yet to RAMP. Please sign-up first.', category='error' ) return redirect(url_for('auth.sign_up')) elif user.access_level in ('user', 'admin'): flash( "Your account is already approved. You don't need to confirm your " "email address", category='error' ) return redirect(url_for('auth.login')) elif user.access_level == 'asked': flash( "Your email address already has been confirmed. You need to wait " "for an approval from a RAMP administrator", category='error' ) return redirect(url_for('general.index')) User.query.filter_by(email=email).update({'access_level': 'asked'}) db.session.commit() admin_users = User.query.filter_by(access_level='admin') for admin in admin_users: subject = 'Approve registration of {}'.format( user.name ) body = body_formatter_user(user) url_approve = ('http://{}/sign_up/{}' .format(app.config['DOMAIN_NAME'], user.name)) body += 'Click on the link to approve the registration ' body += 'of this user: {}'.format(url_approve) send_mail(admin.email, subject, body) flash( "An email has been sent to the RAMP administrator(s) who will " "approve your account" ) return redirect(url_for('auth.login'))
3f26a4872af9759165d0592ac8d966f2e27a9bf6
3,654,148
def num_zeros_end(num): """ Counts the number of zeros at the end of the number 'num'. """ iszero = True num_zeros = 0 i = len(num)-1 while (iszero == True) and (i != 0): if num[i] == "0": num_zeros += 1 elif num[i] != "0": iszero = False i -= 1 return num_zeros
f227cce65e26a0684a10755031a4aeff2156015a
3,654,149
from typing import List def batch_summarize(texts: List[str]) -> List[str]: """Summarizes the texts (local mode). :param texts: The texts to summarize. :type texts: List[str] :return: The summarized texts. :rtype: List[str] """ if _summarizer is None: load_summarizer() assert _summarizer is not None tokenizer = get_summarizer_tokenizer() prompts = [summarizer_prompt.format(text=text) for text in texts] information = { "prompt_length": max(len(tokenizer.encode(prompt)) for prompt in prompts) } parameters = format_parameters_to_local(summarizer_parameters, information) response = _summarizer(prompts, **parameters) return [ cut_on_stop(choices[0]["generated_text"], summarizer_parameters["stop"]) for choices in response ]
7c05b8f612faab808fbeb1ef7c21f8b3b2487be5
3,654,150
def Vp_estimation(z, T, x, g=param.g): """ Estimation of the Vp profile from the results of solving the system. """ DT = T - T[-1] # temperature variation in the layer compared to T[ICB] drhoP = -param.rhoH**2. * g * z / Seismic_observations.calcK(z) drhoT = -param.rhoH * param.alpha * DT # *(Mp*h+X*Mx) rhoL = (param.rhoD - (1 - x[0]) * param.rhoH - drhoT[0] - drhoP[0]) / x[0] # print rhoL # rhoL2=x[0]/(1/(rhoD-drhoT[0]-drhoP[1])-(1-x[0])/rhoH) # print rhoL rho_new = x * rhoL + (1 - x) * param.rhoH + drhoT + drhoP Vp_new = np.sqrt(Seismic_observations.calcK(z) / rho_new) return rho_new, Vp_new
4f1e1936cc98cfd84d87a651c8deac5bb7aa39e0
3,654,151
def pp_date(dt): """ Human-readable (i.e. pretty-print) dates, e.g. for spreadsheets: See http://docs.python.org/tutorial/stdlib.html e.g. 31-Oct-2011 """ d = date_to_datetime(dt) return d.strftime('%d-%b-%Y')
a6c8cd97785212afebb2b8948117815f5553dc24
3,654,152
import copy import math def optimizer_p(cd, path, i, obs, path_penalty): """Optimizer of the current path. Reduce the piece-wise path length in the free space of the environment.""" p_tmp = copy.deepcopy(path) p_tmp[i].x = p_tmp[i].x + cd[0] p_tmp[i].y = p_tmp[i].y + cd[1] r1 = math.sqrt((p_tmp[i-1].x - p_tmp[i].x)**2+(p_tmp[i-1].y - p_tmp[i].y)**2) r2 = math.sqrt((p_tmp[i+1].x - p_tmp[i].x)**2+(p_tmp[i+1].y - p_tmp[i].y)**2) penalty1 = 0 penalty2 = 0 if obstacles: for o in obs: d1 = check_obst(p_tmp[i-1].x, p_tmp[i-1].y, p_tmp[i].x, p_tmp[i].y, o[0].x, o[0].y) if d1< o[1]: penalty1 = max(penalty1,(o[1] - d1)*path_penalty) d2 = check_obst(p_tmp[i].x, p_tmp[i].y, p_tmp[i+1].x, p_tmp[i+1].y, o[0].x, o[0].y) if d2 < o[1]: penalty2 = max(penalty1,(o[1] - d1)*path_penalty) return r1 + r2 + abs(r1-r2) + penalty1 + penalty2
da126e3e7c0013748b1bc5b39c1b51aa2bf0d68b
3,654,153
import base64 def create_message(sender_address, receiver_address , subject, email_content): """Create a message for an email. Args: sender: Email address of the sender. to: Email address of the receiver. subject: The subject of the email message. message_text: The text of the email message. Returns: An object containing a base64url encoded email object. """ message = MIMEText(email_content, 'html') message['to'] = receiver_address message['from'] = sender_address message['subject'] = subject # return {'raw': base64.urlsafe_b64encode(message.as_string())} b64_bytes = base64.urlsafe_b64encode(message.as_bytes()) b64_string = b64_bytes.decode() return {'raw': b64_string}
3970272fda9650b5b59de9a57b2579374088b5c4
3,654,154
import functools def handle_view_errors(func): """ view error handler wrapper # TODO - raise user related errors here """ @functools.wraps(func) def wrapper(*args, **kwargs): debug: bool = current_app.config.get('DEBUG') try: return func(*args, **kwargs) except ValueError as e: message: str = str(e) if debug: print(message) raise InputError(status=error_codes.input_error_code, description=message) except TypeError as e: message: str = str(e) if debug: print(e) raise InputError( status=error_codes.input_error_code, description=message) except BadRequestError as e: if debug: print(e) message: str = '''Bad Request: while connecting to database''' raise RequestError(status=error_codes.bad_request_error_code, description=message) except BadQueryError as e: if debug: print(e) message: str = '''Database Query Error: Error while querying database please inform admin''' raise DataServiceError( status=error_codes.data_service_error_code, description=message) except ConnectionRefusedError as e: if debug: print(e) message: str = '''Connection Refused: Unable to connect to database please try again later''' raise RequestError(status=error_codes.remote_data_error, description=message) except RetryError as e: if debug: print(e) message: str = '''Retries Exceeded: Unable to connect to database please try again later or inform the administrator''' raise RequestError(status=error_codes.remote_data_error, description=message) except Aborted as e: if debug: print(e) message: str = '''Abort Error: connection refused by remote server''' raise RequestError(status=error_codes.remote_data_error, description=message) return wrapper
8687214b9ad659a19699c3563a9a5890358e4c71
3,654,155
def get_latest_revision_number(request, package_id): """ returns the latest revision number for given package """ package = get_object_or_404(Package, id_number=package_id) return HttpResponse(simplejson.dumps({ 'revision_number': package.latest.revision_number}))
3f8053656cbd7e08336a4632f1deaf43e58bc3eb
3,654,156
from typing import Mapping def _make_mesh_tensors(inputs: Mapping[K, np.ndarray]) -> Mapping[K, tf.Tensor]: """ Computes tensors that are the Cartesian product of the inputs. This is around 20x faster than constructing this in Python. Args: inputs: A mapping from keys to NumPy arrays. Returns: A mapping from keys to a Tensor, which takes on values from the corresponding input NumPy array. Computing the Tensors should yield NumPy arrays equal to `{k: itertools.product(inputs.values())[i] for i, k in enumerate(inputs.keys())}`. """ # SOMEDAY(adam): messy, this would be much nicer in TF2 API # SOMEDAY(adam): v.dtype may not always match the dtype expected by the models. # e.g. `stable_baselines.common.input` always maps `MultiDiscrete` to `int32` even though # Gym reports it as `int64`. The dtypes match with `Box` though, which is the only thing we # need so far, so ignoring this (change should possibly be made in Stable Baselines). phs = {k: tf.placeholder(v.dtype, shape=v.shape) for k, v in inputs.items()} # Increase dimensions for broadcasting # So first tensor will be a[:, None, ..., None], # second tensor b[None, :, None, ..., None], ..., # final tensor z[None, ..., None, :]. tensors = {} for i, (k, ph) in enumerate(phs.items()): t = ph for j in range(len(phs)): if i != j: t = tf.expand_dims(t, axis=j) tensors[k] = t target_shape = tuple((len(v) for v in inputs.values())) tensors = { k: tf.broadcast_to(t, target_shape + inputs[k].shape[1:]) for k, t in tensors.items() } target_len = np.product(target_shape) tensors = {k: tf.reshape(t, (target_len,) + inputs[k].shape[1:]) for k, t in tensors.items()} handles = {k: tf.get_session_handle(t) for k, t in tensors.items()} feed_dict = {ph: inputs[k] for k, ph in phs.items()} return tf.get_default_session().run(handles, feed_dict=feed_dict)
65a97e7f7d85668acd2af50ba9ed745190181018
3,654,157
def make_counters(): """Creates all of the VariantCounters we want to track.""" def _gt_selector(*gt_types): return lambda v: variantutils.genotype_type(v) in gt_types return VariantCounters([ ('All', lambda v: True), ('SNPs', variantutils.is_snp), ('Indels', variantutils.is_indel), ('BiAllelic', variantutils.is_biallelic), ('MultiAllelic', variantutils.is_multiallelic), ('HomRef', _gt_selector(variantutils.GenotypeType.hom_ref)), ('Het', _gt_selector(variantutils.GenotypeType.het)), ('HomAlt', _gt_selector(variantutils.GenotypeType.hom_var)), ('NonRef', _gt_selector(variantutils.GenotypeType.het, variantutils.GenotypeType.hom_var)), ])
b7a943f045018556a2a5d0dbf5e093906d10242a
3,654,158
def connect_registry_client(): """ connect the module client for the Registry implementation we're using return the client object """ client = adapters.RegistryClient() client.connect(environment.service_connection_string) return client
f2e2bccb4cfacd86af36e3924463541d9e3dcdcd
3,654,159
def get_group_average_score(gid=None, name=None): """ Get the average score of teams in a group. Args: gid: The group id name: The group name Returns: The total score of the group """ group_scores = get_group_scores(gid=gid, name=name) total_score = sum([entry['score'] for entry in group_scores]) return int(total_score / len(group_scores)) if len(group_scores) > 0 else 0
cdea61e388b47f399fbc8e228e313d6199164b2f
3,654,160
def solve_with_cdd_for_II(A, verbose=False): """This method finds II's minmax strategy for zero-sum game A""" m = A.shape[0] # number of rows n = A.shape[1] # number of columns A = np.column_stack([[0]*m,-A,[1]*m]) I = np.eye(n) nn = np.column_stack([[0]*n,I,[0]*n]) # non-negativity constraints n1 = [-1] * n n1.insert(0,1) n1.append(0) # n1 = 1,-1,-1,...,-1,0] n2 = [1] * n n2.insert(0,-1) n2.append(0) # n1 = 1,-1,-1,...,-1,0] d = np.vstack([A,nn,n1,n2]) mat = cdd.Matrix(d.tolist(), number_type='fraction') mat.obj_type = cdd.LPObjType.MIN d = [0] * (n+1) d.append(1) # [0,0,...0,1] mat.obj_func = d lp = cdd.LinProg(mat) lp.solve() lp.status == cdd.LPStatusType.OPTIMAL # lp.primal_solution uses fractions, and has value as last entry, so that # is dropped p = [float(val) for val in lp.primal_solution[:-1]] u = float(lp.obj_value) if verbose: print("------ Solved with cdd -------------") print("Optimal strategy:", p) print("Optimal payoff:", -u) print("------------------------------------") return p, -u
87ac90691fcbbe2f89bf9090c31f86c165c007ed
3,654,161
def build_none() -> KeySetNone: """Returns NONE.""" return KeySetNone()
8ba38204cd763597c66d51466f5d2ffa5c9a19bf
3,654,162
import csv import numpy def load_csv(file, shape=None, normalize=False): """ Load CSV file. :param file: CSV file. :type file: file like object :param shape : data array is reshape to this shape. :type shape: tuple of int :return: numpy array """ value_list = [] for row in csv.reader(file): value_list.append(map(float, row)) if shape is None: return numpy.array(value_list) else: return numpy.array(value_list).reshape(shape)
07f3b61bbdb6c9937f3cc4b0ae98fdfb7d8de48a
3,654,163
from typing import Tuple def flip_around_axis( coords: np.ndarray, axis: Tuple[float, float, float] = (0.2, 0.2, 0.2) ) -> np.ndarray: """Flips coordinates randomly w.r.t. each axis with its associated probability.""" for col in range(3): if np.random.binomial(1, axis[col]): coords[:, col] = np.negative(coords[:, col]) return coords
914834a8492998b4e1e0b93e5e9677ec9af2d736
3,654,164
import math def get_tc(name): """Determine the amount of tile columns to use.""" args = ["ffprobe", "-hide_banner", "-select_streams", "v", "-show_streams", name] proc = sp.run(args, text=True, stdout=sp.PIPE, stderr=sp.DEVNULL) lines = proc.stdout.splitlines() d = {} for ln in lines[1:-1]: key, value = ln.strip().split("=") d[key] = value width = d["width"] return math.floor(math.log2(math.ceil(float(width) / 64.0)))
ee917cd8cebfe7dc4ae718d883c657cf23bff1cf
3,654,165
import os import socket def get_my_nodes(): """Get nodes assigned to this host for computation """ if not os.path.exists("/etc/cluster-hosts"): raise Exception("No cluster hosts specified") #grab list of hosts in cluster, in order hosts = [] with open("/etc/cluster-hosts", "r") as fp: for line in fp: hosts.append(line.strip()) d = Differ() diffnodes = list(d.get_nodes()) #compute node->host assignments (round-robin) assigns = dict() dx = 0 for item in diffnodes: assigns[item] = hosts[dx % len(hosts)] dx += 1 myitems = [] fqdn = socket.getfqdn() for (item, host) in assigns.items(): if host == fqdn: myitems.append(item) return myitems
3f3f57a3239d71850f1ee72ab108255d5f152830
3,654,166
def cmap_hex_color(cmap, i): """ Convert a Colormap to hex color. Parameters ---------- cmap : matplotlib.colors.ListedColormap Represents the Colormap. i : int List color index. Returns ------- String Represents corresponding hex string. """ return matplotlib.colors.rgb2hex(cmap(i))
9ac7753cde9470e3dd9fbd4a66373b25126635ca
3,654,167
def train_folds(X, y, fold_count, batch_size, get_model_func): """ K-Fold Cross-Validation for Keras Models Inspired by PavelOstyakov https://github.com/PavelOstyakov/toxic/blob/master/toxic/train_utils.py """ fold_size = len(X[0]) // fold_count models = [] for fold_id in range(0, fold_count): print('===== FOLD {} ====='.format(fold_id+1)) model = get_model_func() model.compile() RocAuc = RocAucEvaluation() RocAuc.set_model(model) model.fit( X, y, validation_split=max(1/fold_count, 0.15), batch_size=batch_size, epochs=20, shuffle=True, add_callbacks=[RocAuc], verbose=1 ) models.append(model) return models
51a38243925c76ac6179a90be46be31fcb685054
3,654,168
import socket import os, random, string import json def reset_password(request): """ View to handle password reset """ helper.log_entrace(logger,request) postEmail = request.POST.get('email', '') try: user = User.objects.get(email = postEmail) chars = string.ascii_letters + string.digits random.seed = os.urandom(1024) new_password = ''.join(random.choice(chars) for i in range(EPA_DEFAULT_PASSWORD_LENGTH)) user.set_password(new_password) try: send_mail(EPA_FORGOT_PASSWORD_EMAIL_TITLE, EPA_FORGOT_PASSWORD_EMAIL_BODY_TEMPLATE.replace('%username%', user.username) .replace('%new_password%', new_password), EPA_FORGOT_PASSWORD_EMAIL_SENDER, [user.email]) user.save() return HttpResponse(json.dumps([{'status': 'ok'}])) except socket.error: return HttpResponseServerError(json.dumps({'messages': ['Fail while try connecting to mail server']})) except (ObjectDoesNotExist, DatabaseError) as e: res = {"messages": ['User Not found']} logger.error('Error in method view_prediction_data: ' + str(e.__class__) + e.message) return HttpResponseNotFound(json.dumps(res))
50c8b1d058a168176b528bb9168d4e0e179a08c5
3,654,169
async def cancel(command: HALCommandType, script: str): """Cancels the execution of a script.""" try: await command.actor.helpers.scripts.cancel(script) except Exception as err: command.warning(text=f"Error found while trying to cancel {script}.") return command.fail(error=err) return command.finish(f"Script {script} has been scheduled for cancellation.")
438297845f5ba4ffc49b95a798adf61294371694
3,654,170
def get_nodes_by_betweenness_centrality(query_id, node_number): """Get a list of nodes with the top betweenness-centrality. --- tags: - query parameters: - name: query_id in: path description: The database query identifier required: true type: integer - name: node_number in: path description: The number of top between-nodes to return required: true type: integer """ graph = manager.cu_get_graph_from_query_id_or_404(query_id) if node_number > graph.number_of_nodes(): node_number = graph.number_of_nodes() bw_dict = nx.betweenness_centrality(graph) return jsonify([ node.md5 for node, score in sorted(bw_dict.items(), key=itemgetter(1), reverse=True)[:node_number] ])
44d97e443c6bef4d7048496674a2382a6c4f2ade
3,654,171
import sympy def preprocess(function): """ Converts a given function from type str to a Sympy object. Keyword arguments: function -- a string type representation of the user's math function """ expr = function while True: if '^' in expr: expr = expr[:expr.index('^')] + '**' + expr[expr.index('^')+1:] else: break expr = sympy.sympify(expr) return expr
001bd04d27db2afa4debbe776e5fe3cf1af1476d
3,654,172
import re def tot_changes(changes: str) -> int: """Add deletions and insertions.""" insertions_pat = re.compile(r"(\d+) insertion") deletions_pat = re.compile(r"(\d+) deletion") insertions = insertions_pat.search(changes) insertions = int(insertions.group(1)) if insertions else 0 deletions = deletions_pat.search(changes) deletions = int(deletions.group(1)) if deletions else 0 return insertions + deletions
74742baf63db51b5c59b332f0104008500f330b9
3,654,173
def update_from_mcd(full_table, update_table): # type: (pd.DataFrame, pd.DataFrame) -> pd.DataFrame """ Update the full table (aka the PDG extended-style table) with the up-to-date information from the PDG .mcd file. Example ------- >>> new_table = update_from_mcd('mass_width_2008.fwf', 'mass_width_2021.mcd') # doctest: +SKIP """ full_table = full_table.copy() full_table.update(update_table) update_table_neg = update_table.copy() update_table_neg.index = -update_table_neg.index full_table.update(update_table_neg) return full_table
c60daea5719445fb696ef21bbc0f233fea4e48cd
3,654,174
import socket def resolve_hostname(host): """Get IP address of hostname or URL.""" try: parsed = urlparse.urlparse(host) except AttributeError as err: error = "Hostname `%s`is unparseable. Error: %s" % (host, err) LOG.exception(error) raise errors.SatoriInvalidNetloc(error) # Domain names are in netloc, IP addresses fall into path hostname = parsed.netloc or parsed.path # socket.gaierror is not trapped here address = socket.gethostbyname(hostname) return address
1792d943e490661b4dd42608f2b025096810688f
3,654,175
import pandas as pd import numpy as np from .data_utils import keep_common_genes from .data_utils import df_normalization def DeconRNASeq_main(rna_df, sig_df, patient_IDs='ALL', args={}): """ This function does the following: - parses the dictionary 'args' for the arguments to pass on to the DeconRNASeq method. - eliminates genes from rna_df and sig_df that are not present in both data sets - Runs DeconRNASeq() for each patient specified in patient_IDs' argument - Combines the resulting frequencies into a pandas dataframe (num_celltypes x num_patients) Inputs: - rna_df: pandas df of rna gene expression data. Rows are genes (indexed by 'Hugo_Symbol') and columns are patients - sig_df: pandas df of Signature gene expression values for given cell types. Rows are genes (indexed by 'Hugo_Symbol') and columns are cell types - patient_IDs: list of patient IDs to run DeconRNASeq for. Alternatively, can use the string 'ALL' to run for all patients - args: dictionary containing any of the following: - check_sig: boolean, whether or not to check the condition number of the signature matrix - scaling: string, must be either 'None', 'zscore', or 'minmax'. Determines how to scale the signature matrix and mixture data before solving for optimal x - scaling_axis: 0 or 1. Whether to scale mixture data and signature matrix by normalizing each column (celltype/patient) separately (scaling_axis=0) or each row (gene) separately (scaling_axis=1). - formulation: see DeconRNASeq() - reg_constant: see DeconRNASeq() - print_result: see DeconRNASeq() Outputs: - cell_freqs: pandas df. Contains cell type frequencies for each patient in 'patient_IDs' list. Rows are indexed by cell type, columns are patient IDs """ # Read in optional arguments, or set them as default # Assert values are of the right data type when passed to DeconRNASeq() function. # formulation must be 'qp', 'ridge', or 'lasso' if 'formulation' in args.keys(): formulation = args['formulation'] if formulation not in ['qp','ridge','lasso']: raise ValueError("Formulation ({!r}) must be set to 'qp', 'ridge', or 'lasso'".format(formulation)) else: formulation = 'qp' # reg_constant must be a double if 'reg_constant' in args.keys(): reg_constant = args['reg_constant'] else: reg_constant = 1.0 if 'check_sig' in args.keys(): check_sig = args['check_sig'] if not isinstance(check_sig, bool): raise ValueError("check_sig ({!r}) must be a boolean variable".format(check_sig)) else: check_sig = False if 'scaling' in args.keys(): scaling = args['scaling'] if scaling not in ['None', 'none', 'zscore', 'minmax', 'r-zscore']: raise ValueError("scaling ({!r}) must be set to 'none', 'zscore' or 'minmax'".format(scaling)) else: scaling = 'minmax' if 'scaling_axis' in args.keys(): scaling_axis = args['scaling_axis'] if scaling_axis not in [0, 1]: raise ValueError("scaling_axis ({!r}) must be 0 or 1".format(scaling_axis)) else: scaling_axis = 0 if 'print_results' in args.keys(): print_results = args['print_results'] if not isinstance(print_results, bool): raise ValueError("print_results ({!r}) must be a boolean variable".format(print_results)) else: print_results = False # eliminate genes not present in both rna and sig dfs, and ensure they are in the same order: rna_df, sig_df = keep_common_genes(rna_df, sig_df) # Scale Data: if scaling in ['zscore', 'minmax', 'r-zscore']: # R implementation uses zscore scaling. sig_df = df_normalization(sig_df, scaling=scaling, axis=scaling_axis) rna_df = df_normalization(rna_df, scaling=scaling, axis=scaling_axis) # Convert signature to numpy array Sig = np.array(sig_df) # Check the condition number of the signature matrix: if check_sig: print("Condition number of signature matrix =", np.linalg.cond(Sig)) # Select a patient / list of patients to solve for their cell type frequencies: # Patient_ID must be 'ALL' or an array of specific patient IDs. if patient_IDs == 'ALL': patient_list = rna_df.columns elif not isinstance(patient_IDs, type([])): raise ValueError("patient_IDs should be either 'ALL', or an array of IDs (not a single ID)") else: patient_list = patient_IDs # For each patient, run DeconRNASeq to get cell type frequencies, and save results to pandas df: print("Running DeconRNASeq...") cell_freqs_df = pd.DataFrame() cell_freqs_df['Patient_ID'] = sig_df.columns cell_freqs_df = cell_freqs_df.set_index(['Patient_ID']) for patient in patient_list: if patient in rna_df.columns: Mix = np.array(rna_df[patient]) cell_freqs_df[patient] = DeconRNASeq(Sig, Mix, formulation=formulation, reg_constant=reg_constant, print_results=print_results, label=patient) else: raise ValueError("patient_ID ({!r}) not present in rna dataframe".format(patient)) cell_freqs_df = cell_freqs_df.transpose() return cell_freqs_df
44bf01b0d53110610d3219e3002cca0ab35720b5
3,654,176
import re from typing import OrderedDict def parse_c_interface(c_interface_file): """ @brief Parses a c-interface file and generates a dictionary of function names to parameter lists. Exported functions are expected to be preceded by 'DLL_EXPORT'. Python keywords should not be used as variable names for the function names in the cpp-interface file. If a Python wrapper function shall return the output buffer, the corresponding parameter has to be preceded by the _OUT_BUFFER_KEYWORD in the C++ file. In this case, we assume the parameter is a numpy array. The shape and the dtype will be taken from the first input parameter. """ _OUT_BUFFER_KEYWORD = "OUT" with open(c_interface_file, "r") as f: # read file and remove comments content = "\n".join([c.split("//")[0] for c in re.sub("/\*.*?\*/", "", f.read(), flags=re.DOTALL).split("\n")]) function_signatures = [x for x in re.findall("DLL_EXPORT.+?\)", content, flags=re.DOTALL)] function_dict = OrderedDict() for sig in function_signatures: params_regex = re.compile("\(.*?\)", flags=re.DOTALL) # find function name wo_params = re.sub(params_regex, "", sig) tokens = re.split("\s", wo_params) name = tokens[-1] function_dict[name] = dict() # find return type and initialize dict function_dict[name] = {"restype": " ".join(tokens[1:-1]), "params": [], "out_buffers": []} # find parameters, remove template specifiers, and split at commas param_fields = re.sub("<.*?>", "", re.search(params_regex, sig).group(0)[1:-1]).split(",") out_buffer_indices = [i for i, s in enumerate(param_fields) if _OUT_BUFFER_KEYWORD in [x.strip() for x in s.split(" ")]] name_position = -1 # last position in C++ should contain the name of the variable try: all_parameters = [re.search("[A-Za-z0-9_]+", x[name_position].strip()).group(0) for x in (re.split("\s", s) for s in param_fields)] for i, p in enumerate(all_parameters): if i in out_buffer_indices: function_dict[name]["out_buffers"].append(p) else: function_dict[name]["params"].append(p) except AttributeError: pass return function_dict
06a4edb40e12343cda688da82c9042d1342e6429
3,654,177
def con_minimize(fun, bounds, constr=(), x0=None, args=(), callback=None, options={}, workers=None): """Constrained minimization of `fun` using Genetic Algorithm. This function is a wrapper over modetga.minimize(). The constraints are defined as a tuple of functions (`fcon1(x, *args)`, `fcon2(x, *args)`, `...`). The algorithm searches for a solution minimizing `fun(x, *args)` and satisfying the conditions (`fcon1(x, *args) >= 0`, `fcon2(x, *args) >= 0`, `...`). `callback` arguments: `x`, `fx`, `ng`, `*args`. `fx` is the function value at the generation `ng`. Returns an optimization result object with the following attributes: - x - numpy 1D array, optimized parameters, - message - str, exit message, - ng - int, number of generations, - fx - float, final function value. :param fun: function to be minimized :param bounds: tuple, parameter bounds :param constr: tuple, functions defining constraints :param x0: numpy 1D array, initial parameters :param args: tuple, positional arguments to be passed to `fun` and to `fcon` :param callback: function, called after every generation :param options: dict, GA options :param workers: int, number of processes to use (will use all CPUs if None) :return: OptRes, optimization result """ # Wrap cost function with constraints def fun_soft_con(x, *augmented_args): # Unpack constraints and arguments fcore = augmented_args[0] # Function to be minimized fcons = augmented_args[1] # Constraints user_args = augmented_args[2:] # Arguments # Evaluate core function ycore = fcore(x, *user_args) # Initialize penalty penalty = 0. # Update penalty # (the more negative fcon() is, the higher penalty) for f in fcons: ycon = np.max([f(x, *user_args) * -1., 0.]) pscale = ycore / (ycon + 1e-6) penalty += ycon * pscale return ycore + penalty # Run minimization augmented_args = (fun, constr, *args) res = minimize( fun=fun_soft_con, bounds=bounds, x0=x0, args=augmented_args, callback=callback, options=options, workers=workers) # Extend result with contraint violation info res.constr = [fcon(res.x, *args) for fcon in constr] return res
46a7400953e54dfb9b2364832e6029a508acc9de
3,654,178
def unique_v2(lst): """ Returns a list of all unique elements in the input list "lst." This algorithm runs in o(n), as it only passes through the list "lst" twice """ dd = defaultdict(int) # avoids blank dictionary problem (KeyError when accessing nonexistent entries) unique_list = [] for val in lst: dd[val] += 1 for val in lst: if dd[val] == 1: unique_list.append(val) return unique_list
d7c5706908d569b3ee93ba1bebbd09bc6f335ad2
3,654,179
import ipaddress def is_ip_network(network, strict=False): """Returns True/False if a string is a valid network.""" network = str(network) try: ipaddress.ip_network(network, strict) return True except ValueError: return False
84206586412b76816fa845a75fc6c121bfdf0989
3,654,180
def assign_point_of_contact(point_of_contact): """ Assign a user to be the point of contact in emails/letters :param point_of_contact: A string containing the user_guid if point of contact has been set for a request :return: A User object to be designated as the point of contact for a request """ if point_of_contact: return Users.query.filter(Users.guid == point_of_contact).one_or_none() else: return current_user
99f2e7d036c4f7cf71be2bd6b82a313f26b3af41
3,654,181
def response_with_pagination(guests, previous, nex, count): """ Make a http response for GuestList get requests. :param count: Pagination Total :param nex: Next page Url if it exists :param previous: Previous page Url if it exists :param guests: Guest :return: Http Json response """ return make_response(jsonify({ 'status': 'success', 'previous': previous, 'next': nex, 'count': count, 'guests': guests })), 200
00373c866b6cc8384a88e62b63fcaa5950ccc1c1
3,654,182
def put_object(request, old_pid): """MNStorage.update(session, pid, object, newPid, sysmeta) → Identifier.""" if django.conf.settings.REQUIRE_WHITELIST_FOR_UPDATE: d1_gmn.app.auth.assert_create_update_delete_permission(request) d1_gmn.app.util.coerce_put_post(request) d1_gmn.app.views.assert_db.post_has_mime_parts( request, (("field", "newPid"), ("file", "object"), ("file", "sysmeta")) ) d1_gmn.app.views.assert_db.is_valid_pid_to_be_updated(old_pid) sysmeta_pyxb = d1_gmn.app.sysmeta.deserialize(request.FILES["sysmeta"]) new_pid = request.POST["newPid"] d1_gmn.app.views.assert_sysmeta.matches_url_pid(sysmeta_pyxb, new_pid) d1_gmn.app.views.assert_sysmeta.obsoletes_matches_pid_if_specified( sysmeta_pyxb, old_pid ) sysmeta_pyxb.obsoletes = old_pid sid = d1_common.xml.get_opt_val(sysmeta_pyxb, "seriesId") d1_gmn.app.views.assert_sysmeta.is_valid_sid_for_chain(old_pid, sid) d1_gmn.app.views.create.create_sciobj(request, sysmeta_pyxb) # The create event for the new object is added in create_sciobj(). The update # event on the old object is added here. d1_gmn.app.event_log.log_update_event( old_pid, request, timestamp=d1_common.date_time.normalize_datetime_to_utc( sysmeta_pyxb.dateUploaded ), ) d1_gmn.app.sysmeta.update_modified_timestamp(old_pid) return new_pid
192ed2a7efc35baf28605de9db594319370f294d
3,654,183
def _match_gelu_pattern(gf, entry_node): """ Return the nodes that form the subgraph of a GELU layer """ try: if not len(entry_node.outputs) == 3: return None pow_1, add_2, mul_3 = [gf[x] for x in entry_node.outputs] if not (pow_1.op == 'Pow' and add_2.op == 'Add' and mul_3.op == 'Mul'): return None const_4 = gf[pow_1.inputs[1]] if not (const_4.op == 'Const' and int(round(const_4.value.val)) == 3): return None mul_5 = gf[pow_1.outputs[0]] const_6 = gf[mul_5.inputs[0]] if not (const_6.op == 'Const' and \ abs(const_6.value.val - 0.0447) < 1e-3): return None if not (gf[add_2.inputs[0]] == entry_node and \ gf[add_2.inputs[1]] == mul_5): return None mul_7 = gf[add_2.outputs[0]] const_8 = gf[mul_7.inputs[0]] if not abs(const_8.value.val - np.sqrt(2 / np.pi)) < 1e-3: return None tanh_9 = gf[mul_7.outputs[0]] add_10 = gf[tanh_9.outputs[0]] const_11 = gf[add_10.inputs[0]] if not (tanh_9.op == 'Tanh' and add_10.op == 'Add' and \ const_11.op == 'Const' and int(round(const_11.value.val)) == 1): return None mul_12 = gf[add_10.outputs[0]] const_13 = gf[mul_12.inputs[0]] if not (mul_12.op == 'Mul' and const_13.op == 'Const' and \ abs(const_13.value.val - 0.5) < 1e-3): return None if not (gf[mul_3.inputs[0]] == entry_node and \ gf[mul_3.inputs[1]] == mul_12): return None gelu_nodes = [pow_1, add_2, mul_3, const_4, mul_5, const_6, mul_7, const_8, tanh_9, add_10, const_11, mul_12, const_13] return gelu_nodes except: return None
6e08578a9cb9bea96c939a4fbee31003d6c575d4
3,654,184
def assign_obs_error(param, truth_mag, band, run): """ Assign errors to Object catalog quantities Returns ------- obs_err : float or np.array The error values in units defined in get_astrometric_error(), get_photometric_error err_type : str Type of observational error """ if param in ['ra_offset', 'dec_offset', 'Ixx_sqrt', 'Iyy_sqrt', 'x', 'y_obs',]: obs_err = get_astrometric_error(truth_mag, band=band) err_type = 'astrometric' elif param in ['Ixy', 'IxxPSF', 'IxyPSF', 'IyyPSF',]: # \delta(x^2) = \delta(x) \times 2x obs_err = 2.0*param_val*get_astrometric_error(truth_mag, band=band) err_type = 'astrometric' elif 'Flux' in param: # flux columns obs_err = get_photometric_error(truth_mag, band=band, run=run) err_type = 'photometric' elif param == 'extendedness': obs_err = np.zeros_like(param_val) err_type = 'N/A' else: raise NotImplementedError return obs_err, err_type
9a90b80755941ac19cbf023f7ee63f4650518242
3,654,185
from typing import List from typing import Tuple import tokenize def dir_frequency(dirname: str, amount=50) -> List[Tuple[str, int]]: """Pipeline of word_frequency from a directory of raw input file.""" md_list = md.collect_md_text(dirname) return compute_frequency(tokenize(normalize(" ".join(md_list))), amount)
3daddb1930e80235887b51ed5918e9d7cb1fff71
3,654,186
def test_solver1(N, version='scalar'): """ Very simple test case. Store the solution at every N time level. """ def I(x): return sin(2*x*pi/L) def f(x,t): return 0 solutions = [] # Need time_level_counter as global variable since # it is assigned in the action function (that makes # a variable local to that block otherwise). # The manager class below provides a cleaner solution. global time_level_counter time_level_counter = 0 def action(u, t, x): global time_level_counter if time_level_counter % N == 0: solutions.append(u.copy()) time_level_counter += 1 n = 100; tstop = 6; L = 10 dt, x, cpu = solver(I, f, 1.0, lambda t: 0, lambda t: 0, L, n, 0, tstop, user_action=action, version=version) print 'CPU time:', cpu print 'Max value in final u:', arrmax(solutions[-1])
7c74b3f731c0aa613c7a9f8da82533c1239a574f
3,654,187
import requests def get_auth_data(): """ Create auth data. Returns: return: access token and token expiring time. """ payload = { 'client_id': CLIENT_ID, 'client_secret': CLIENT_SECRET, 'grant_type': 'client_credentials', } api_url = '{0}/oauth/access_token'.format(API_BASE_URL) response = requests.post(url=api_url, data=payload) response.raise_for_status() auth_data = response.json() return auth_data['access_token'], auth_data['expires_in']
ecd921c1ef3639c388111ec5952c887867076d99
3,654,188
def datatable(module, tag): """Mapping for DataTable.""" if tag == "DataTable": return module, tag
1eaa06771ecdd99dfa102ec249b23db3999b6fd7
3,654,189
def remove_prepending(seq): """ Method to remove prepending ASs from AS path. """ last_add = None new_seq = [] for x in seq: if last_add != x: last_add = x new_seq.append(x) is_loopy = False if len(set(seq)) != len(new_seq): is_loopy = True # raise Exception('Routing Loop: {}'.format(seq)) return new_seq, is_loopy
78bb1554678af0998e15ecf9ed8f4e379ac2e2ad
3,654,190
def github_handle_error(e): """ Handles an error from the Github API an error example: Error in API call [401] - Unauthorized {"message": "Bad credentials", "documentation_url": "https://docs.github.com/rest"} The error might contain error_code, error_reason and error_message The error_reason and error_message might be the same but usually, the error_reason adds more information that the error_message doesn't provide examples: error_code = 401 error_message = 'Bad credentials' error_reason = 'Unauthorized' :param e: the client object :return: error_code and error_message """ try: error_code = "" error_message = str(e) if e.__class__ is DemistoException and e.res is not None: error_res = e.res if isinstance(error_res, dict): error_code = str(error_res.get("status")) error_message = str(error_res.get("detail")) else: error_code = e.res.status_code if not e.res.ok: if e.res.json(): error_message = error_res.json().get("message", "") if not error_message: error_message = error_res.json().get("detail", "") error_reason = error_res.reason if error_reason and error_reason != error_message: error_message += f' {error_reason}' return error_code, error_message except Exception as e: error_code = "" error_message = str(e) return error_code, error_message
1b3d7ef6756c02d7bf1b8db506dbf926dd3e6abd
3,654,191
def netmask_to_bits(net_mask): """ Convert netmask to bits Args: net_mask ('str'): Net mask IP address ex.) net_mask = '255.255.255.255' Raise: None Returns: Net mask bits """ return IPAddress(net_mask).netmask_bits()
7ecc069e14242ebffd840b989331a431f6c2ecbc
3,654,192
def register_corrector(cls=None, *, name=None): """A decorator for registering corrector classes.""" def _register(cls): if name is None: local_name = cls.__name__ else: local_name = name if local_name in _CORRECTORS: raise ValueError(f'Already registered model with name: {local_name}') _CORRECTORS[local_name] = cls return cls if cls is None: return _register else: return _register(cls)
90795496caff7958af52bbe1518582a2a2ceea73
3,654,193
import numpy def _sample_perc_from_list(lst, perc=100, algorithm="cum_rand", random_state=None): """ Sample randomly a certain percentage of items from the given list. The original order of the items is kept. :param lst: list, shape = (n,), input items :param perc: scalar, percentage to sample :param algorithm: string, which algorithm should be used "random": Decide for each item to be chosen or not. This algorithm runs in linear time O(n), but the percentages might not match exactly. "cum_rand": O(n log(n) + perc) :return: list """ if perc >= 100: return lst if perc <= 0: return [] # Store old random state and set random state rs_old = numpy.random.get_state() numpy.random.seed(random_state) if algorithm == "random": lst_sub = [it for it in lst if numpy.random.uniform(high=100) <= perc] elif algorithm == "cum_rand": n = len(lst) n_perc = numpy.round(n * perc / 100.0) rank_its = numpy.argsort(numpy.random.uniform(size=n)) lst_sub = [] for idx, it in enumerate(lst): if rank_its[idx] < n_perc: lst_sub.append(it) if len(lst_sub) > n_perc: break else: raise ValueError("Invalid sampling algorithm: %s." % algorithm) # Restore old random stat numpy.random.set_state(rs_old) return lst_sub
4ec000e9bd8f5e10550040e49018e2a045659397
3,654,194
def irods_setacls(path, acl_list, verbose=False): """ This function will add the ACLs listed in 'acl_list' to the collection or data object at 'path'. 'acl_list' is a list where each element itself is a list consisting of the username in name#zone format, and the access level ('read', 'write', 'own', or 'null'). Access type 'null' removes all ACLs for that user/group. Note. On an error return, some of the ACLs might have been applied. The function does not "roll back" on error. Returns 0 on success, non-zero on error. """ if not path or not acl_list: return 1 for acl in acl_list: (rc, output) = shell_command(['ichmod', acl[1], acl[0], path]) if rc: if verbose: print("Error running 'ichmod %s %s %s': rc = %d:" % (acl[1], acl[0], path, rc)) print output[1] return rc return 0
5727d6ff96e2d693323d5d88ed81eafbd4de0435
3,654,195
from datetime import datetime def add_years(date_to_change, years): """ Return a date that's `years` years after the date (or datetime) object `date_to_change`. Return the same calendar date (month and day) in the destination year, if it exists, otherwise use the following day (thus changing February 29 to March 1). Args: date_to_change (date): The date that we're adding years to. years ([type]): The number of years to add. Returns: [date]: The provided date + one year. """ try: return date_to_change.replace(year=date_to_change.year + years) except ValueError: return date_to_change + ( datetime.date(date_to_change.year + years, 1, 1) - datetime.date(date_to_change.year, 1, 1) )
e9b71d190f7629a3edc0902d0582005a26a33956
3,654,196
def concurrency_update_done(client, function_name, qualifier): """wait fn for ProvisionedConcurrencyConfig 'Status'""" def _concurrency_update_done(): status = client.get_provisioned_concurrency_config( FunctionName=function_name, Qualifier=qualifier )["Status"] if status == "FAILED": raise ShortCircuitWaitException(f"Concurrency update failed: {status=}") else: return status == "READY" return _concurrency_update_done
4d168e4e9648c3a3d8cb149aad1e835362bd271a
3,654,197
def googleapis_email(url, params): """Loads user data from googleapis service, only email so far as it's described in http://sites.google.com/site/oauthgoog/Home/emaildisplayscope Parameters must be passed in queryset and Authorization header as described on Google OAuth documentation at: http://groups.google.com/group/oauth/browse_thread/thread/d15add9beb418ebc and: http://code.google.com/apis/accounts/docs/OAuth2.html#CallingAnAPI """ request = Request(url + '?' + params, headers={'Authorization': params}) try: return simplejson.loads(dsa_urlopen(request).read())['data'] except (ValueError, KeyError, IOError): return None
c6123e367f093a512ac17797da487e733503dc11
3,654,198
def _compose_query_string(ctx, query_string, **args): """ Return the SQL for an ad-hoc named query on the given context. NOTE: This is a debug ONLY method, do NOT use this in production code. """ query = _construct_adhoc_query(ctx, query_string, **args) wrapped_ctx = _CtxWrapper.wrap(ctx) assert wrapped_ctx.current_conn != None return query.sql(wrapped_ctx.current_conn, args, _debugging=True)
b64d17d11b8b9947eac9c59510254d33018d519b
3,654,199