content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import os def get_img_full_path(path): """ Checks if file can be found by path specified in the input. Returns the same as input if can find, otherwise joins current directory full path with path from input and returns it. :param path: Relative of full path to the image. :return: Relative of full path to the image (joined with path to current directory if needed). """ if os.path.isfile(path): return path else: directory = os.path.dirname(__file__) new_path = os.path.join(directory, path) if os.path.isfile(new_path): return new_path else: raise IOError("File not found: " + path)
d549cd09035ebd6213f1b31c1c2eee4e64dcdce8
3,654,200
def max_pool_2x2(input_): """ Perform max pool with 2x2 kelner""" return tf.nn.max_pool(input_, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
b85ccfaafbdcf5d703dffab65e188ffab52ebce9
3,654,201
import tqdm def remove_numerals(df, remove_mixed_strings=True): """Removes rows from an ngram table with words that are numerals. This does not include 4-digit numbers which are interpreted as years. Arguments: df {Pandas dataframe} -- A dataframe of with columns 'word', 'count'. Keyword Arguments: remove_mixed_strings {bool} -- Whether to remove rows with words that are mixtures of numerals and letters. (default: {True}) """ no_numerals_df = df.copy().reset_index() for i, row in tqdm(no_numerals_df.iterrows(), desc="Removing numerals\n"): word = row['word'] if remove_mixed_strings: if any([c.isnumeric() for c in word]) and \ not is_year(word): no_numerals_df.drop(i, axis=0, inplace=True) else: if word.isnumeric() and len(word) != 4: no_numerals_df.drop(i, axis=0, inplace=True) return no_numerals_df
4c3d0468456e08b1a0579a8b73a21221cae17676
3,654,202
def generate_json(args, df, num_changes, start_dt, finish_dt, projects, projects_map, not_found_proj, group=None, groups=[]): """ Returns json report from a dataframe for a specific project """ log.debug('Generating %s report for %s', args.report_format, group) log.debug(projects) if group: # we want to report on the projects that are common to projects and df projects_to_report = list(set(projects).intersection(df)) else: projects_to_report = projects frames = list() for project in projects_to_report: log.debug('%s df:\n%s', project, df[project]) frames.append(df[project]) # TODO wrap this in proper html or a template if len(frames) <= 0: return 'No projects in this group' df_plot = generate_plot(args, df, frames, start_dt) return df_plot.to_json(orient='table')
1f90e73ad26f87cea0052f157ac3167f54f8b027
3,654,203
def b32_ntop(*args): """LDNS buffer.""" return _ldns.b32_ntop(*args)
b43bc9b1b112f7815ec3c280d055676e7255adcc
3,654,204
import logging import sys import os def get_logger(filename, logger_name=None): """set logging file and format Args: filename: str, full path of the logger file to write logger_name: str, the logger name, e.g., 'master_logger', 'local_logger' Return: logger: python logger """ log_format = "%(asctime)s %(message)s" logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt="%m%d %I:%M:%S %p") # different name is needed when creating multiple logger in one process logger = logging.getLogger(logger_name) fh = logging.FileHandler(os.path.join(filename)) fh.setFormatter(logging.Formatter(log_format)) logger.addHandler(fh) return logger
e549cdd7198961662f28390e09480d05f5ad14b4
3,654,205
from typing import Callable from typing import Dict import torch def infer_feature_extraction_pytorch( model: PreTrainedModel, run_on_cuda: bool ) -> Callable[[Dict[str, torch.Tensor]], torch.Tensor]: """ Perform Pytorch inference for feature extraction task :param model: Pytorch model (sentence-transformers) :param run_on_cuda: True if should be ran on GPU :return: a function to perform inference """ def infer(inputs: Dict[str, torch.Tensor]) -> torch.Tensor: model_output = model(**inputs).detach() # noqa: F821 if run_on_cuda: torch.cuda.synchronize() return model_output return infer
18f935607c824c2122f68ea1ec9a7bcb50604ac8
3,654,206
def editRole(userSource, oldName, newName): """Renames a role in the specified user source. When altering the Gateway System User Source, the Allow User Admin setting must be enabled. Args: userSource (str): The user source in which the role is found. Blank will use the default user source. oldName (str): The role to edit. Role must not be blank and must exist. newName (str): The new name for the role. Must not be blank. Returns: UIResponse: An object with lists of warnings, errors, and info about the success or failure of the edit. """ print(userSource, oldName, newName) return UIResponse(Locale.ENGLISH)
f72796de14ff5f8c4314a5d31fe4fcf42cb883ec
3,654,207
def compute_bspline_dot_product_derivatives(basis_features, basis_dimension): """ Compute dot products of B-splines and their derivatives. Input: - basis_features: dict Contain information on the basis for each state - basis_dimension: dict Give the number of basis functions for each state Outputs: - dot_product_12: ndarray Array containing the dot products of Legendre polynomials with their derivatives - dot_product_22: ndarray Array containing the dot products of Legendre polynomials derivatives """ # Compute the dimension of the problem dimension = np.sum([basis_dimension[elt] for elt in basis_dimension]) # Get the knots t = basis_features['knots'] # FIXME: Consider small parameter to avoid vanishing of the last B-spline # at 1 eps = 1e-16 dot_product_12 = np.zeros([dimension, dimension]) dot_product_22 = np.zeros([dimension, dimension]) i, j = 0, 0 # Loop over states for state1 in basis_dimension: # Get degree of the B-splines of state1 k1 = basis_features[state1] # Add external knots depending on the degree t1 = np.r_[(0,)*(k1+1), t, (1,)*(k1+1)] for state2 in basis_dimension: # Get degree of the B-splines of state2 k2 = basis_features[state2] # Add external knots depending on the degree t2 = np.r_[(0,)*(k2+1), t, (1,)*(k2+1)] for m in range(basis_dimension[state1]): # Define m-th B-spline of the state1 basis spl_m = BSpline.basis_element(t1[m:m+k1+2]) # Reproduce the same spline for differenciation because of # differenciation problems with BSpline.basis_element() # FIXME: simplify if possible # Construct knots by first finding the internal knots and then # by adding the right numbers of external knots t1m = t1[m:m+k1+2] ind_min1 = np.max(np.argwhere(t1m == t1[m])) ind_max1 = np.min(np.argwhere(t1m == t1[m+k1+1])) t_m = np.r_[(t1m[ind_min1],)*k1, t1m[ind_min1:ind_max1+1], (t1m[ind_max1],)*k1] x_m = np.linspace(t1m[0], t1m[-1]-eps, 50) spl_m = make_lsq_spline(x_m, spl_m(x_m), t_m, k1) # Compute derivative spl_m_deriv = spl_m.derivative(nu=1) for n in range(basis_dimension[state2]): # Define n-th B-spline of the state2 basis spl_n = BSpline.basis_element(t2[n:n+k2+2]) # FIXME: simplify if possible # Construct knots by first finding the internal knots and # then by adding the right numbers of external knots t2n = t2[n:n+k2+2] ind_min2 = np.max(np.argwhere(t2n == t2[n])) ind_max2 = np.min(np.argwhere(t2n == t2[n+k2+1])) t_n = np.r_[(t2n[ind_min2],)*k2, t2n[ind_min2:ind_max2+1], (t2n[ind_max2],)*k2] x_n = np.linspace(t2n[0], t2n[-1]-eps, 50) spl_n = make_lsq_spline(x_n, spl_n(x_n), t_n, k2) # Compute derivative spl_n_deriv = spl_n.derivative(nu=1) max_t = max(t1[m], t2[n]) min_t = min(t1[m+k1+1], t2[n+k2+1]) # If intersection of supports then do computations if max_t < min_t: # Numerical integration quad_int_12 = quad(lambda x: spl_m(x) * spl_n_deriv(x), max_t, min_t) quad_int_22 = quad(lambda x: spl_m_deriv(x) * spl_n_deriv(x), max_t, min_t) dot_product_12[i + m, j + n] += quad_int_12[0] dot_product_22[i + m, j + n] += quad_int_22[0] j += basis_dimension[state2] j = 0 i += basis_dimension[state1] return dot_product_12, dot_product_22
a8ba13b23bb009eb81d57792abeced6fb8715b07
3,654,208
import os def validate_table(config, table): """Run VALVE validation on a table. :param config: valve config dictionary :param table: path to table :return: list of errors """ errors = [] table_name = os.path.splitext(os.path.basename(table))[0] table_details = config["table_details"] fields = config["table_fields"].get(table, {}) fields.update(config["table_fields"].get("*", {})) rules = None if "table_rules" in config: rules = config["table_rules"].get(table, {}) rules.update(config.get("*", {})) row_idx = 0 for row in table_details[table_name]["rows"]: col_idx = 1 for field, value in row.items(): if not value: value = "" # Check for field type if field in fields: # Get the expected field type # This will be validated based on the given datatypes parsed_type = fields[field]["parsed"] error_message = fields[field]["message"] # all values in this field must match the type messages = validate_condition( config, parsed_type, table_name, field, row_idx, value, message=error_message ) if messages: field_id = fields[field]["field ID"] for m in messages: m.update({ "rule ID": "field:" + str(field_id), "rule": fields[field]["column"], "level": "ERROR", }) errors.append(m) # Check for rules if rules and field in rules: # Check if the value meets any of the conditions for rule in rules[field]: when_condition = rule["when_condition"] # Run meets_condition without logging # as the then-cond check is only run if the value matches the type messages = validate_condition( config, when_condition, table_name, field, row_idx, value ) if not messages: # The "when" value meets the condition - validate the "then" value then_column = rule["column"] # Retrieve the "then" value to check if it meets the "then condition" then_value = row[then_column] if not then_value: then_value = "" messages = validate_condition( config, rule["then_condition"], table_name, then_column, row_idx, then_value, message=rule["message"], ) if messages: for m in messages: if rule["message"]: msg = m["message"] else: msg = ( f"because '{value}' is '{parsed_to_str(config, when_condition)}', " + m["message"] ) m.update( { "rule ID": "rule:" + str(rule["rule ID"]), "rule": then_column, "level": rule["level"], "message": msg, } ) errors.append(m) col_idx += 1 row_idx += 1 return errors
3b8a1517219d4b8b0db5042200f1c62700cabe94
3,654,209
def beam_hardening_correction(mat, q, n, opt=True): """ Correct the grayscale values of a normalized image using a non-linear function. Parameters ---------- mat : array_like Normalized projection image or sinogram image. q : float Positive number. Recommended range [0.005, 50]. n : float Positive number. Must larger than 1. opt : bool True: Curve towards 0.0. False: Curve towards 1.0. Returns ------- array_like Corrected image. """ if np.max(mat) >= 2.0: raise ValueError("!!! Input image must be normalized, i.e. gray-scales " "are in the range of [0.0, 1.0]) !!!") if n < 2.0: raise ValueError("!!! n must be larger than or equal to 2 !!!") return np.asarray([non_linear_function(x, q, n, opt) for x in mat])
d113ff33c2d688f460cf2bac62cdd8a26b890ce5
3,654,210
def cargar_recursos_vectores_transpuestos(): """ Se carga la informacion para poder calcular los vectores transpuestos """ # Se crea el df filename = 'csv/' + conf.data['env']['path'] + '/vectores_transpuestos.csv' recursos_v_transpuestos = pd.read_csv(filename) # Se cambia el nombre de los index al nombre de los vectores transpuestos # Se crea un MultiIndex para evitar agregar una columna a los vectores transpuestos # queda definida por tuples = [('Reg.1','H'), ('Reg.2', 'F'),('Reg.3', 'G'),('Reg.4', 'H'),...,('Reg.10', 'A')] tuples = [('Reg.' + str(i), vt) for i, vt in zip(recursos_v_transpuestos.pop('num_de_region'), recursos_v_transpuestos.pop('chr_vector_t'))] recursos_v_transpuestos.index = pd.MultiIndex.from_tuples(tuples) return recursos_v_transpuestos
f982fd22bbdfd2d7d389787bf7f923feb9abf66f
3,654,211
def read_pdb(file_name, exclude=('SOL',), ignh=False, modelidx=1): """ Parse a PDB file to create a molecule. Parameters ---------- filename: str The file to read. exclude: collections.abc.Container[str] Atoms that have one of these residue names will not be included. ignh: bool Whether hydrogen atoms should be ignored. model: int If the PDB file contains multiple models, which one to select. Returns ------- list[vermouth.molecule.Molecule] The parsed molecules. Will only contain edges if the PDB file has CONECT records. Either way, the molecules might be disconnected. Entries separated by TER, ENDMDL, and END records will result in separate molecules. """ parser = PDBParser(exclude, ignh, modelidx) with open(str(file_name)) as file_handle: mols = list(parser.parse(file_handle)) LOGGER.info('Read {} molecules from PDB file {}', len(mols), file_name) return mols
d7412b96adef5505676a80e5cdf3fe5e63a3b096
3,654,212
def sao_isomorficas(texto1: str, texto2: str) -> bool: """ >>> sao_isomorficas('egg', 'add') True >>> sao_isomorficas('foo', 'bar') False >>> sao_isomorficas('eggs', 'add') False """ # Algoritmo O(n) em tempo e memória letras_encontradas = {} if len(texto1) != len(texto2): return False for caractere_1, caractere_2 in zip(texto1, texto2): try: letra = letras_encontradas[caractere_1] except KeyError: letras_encontradas[caractere_1] = caractere_2 else: if letra is not caractere_2: return False return True
a1f2c00a50b69cb18c32a299d50cbd3a35dcbe5e
3,654,213
def _is_no_args(fn): """Check if function has no arguments. """ return getargspec(fn).args == []
29cb096323c69dd067bf4759a557734443a82ed5
3,654,214
def failure(parsed_args): """ :param :py:class:`argparse.Namespace` parsed_args: :return: Nowcast system message type :rtype: str """ logger.critical( f"{parsed_args.model_config} {parsed_args.run_type} FVCOM VH-FR run for " f'{parsed_args.run_date.format("YYYY-MM-DD")} ' f"on {parsed_args.host_name} failed" ) msg_type = f"failure {parsed_args.model_config} {parsed_args.run_type}" return msg_type
e6744bfd61458497b5a70d7d28712385a8488a98
3,654,215
def good_AP_finder(time,voltage): """ This function takes the following input: time - vector where each element is a time in seconds voltage - vector where each element is a voltage at a different time We are assuming that the two vectors are in correspondance (meaning that at a given index, the time in one corresponds to the voltage in the other). The vectors must be the same size or the code won't run This function returns the following output: APTimes - all the times where a spike (action potential) was detected """ APTimes = [] #Let's make sure the input looks at least reasonable if (len(voltage) != len(time)): print "Can't run - the vectors aren't the same length!" return APTimes ##Your Code Here! treshold = 0.5 * np.max(voltage) times_of_APs = time[voltage > treshold] APTimes =times_of_APs[np.diff(times_of_APs) > 0.0015] return APTimes
c13897b7bf5335cae20f65db853e7a214ec570c5
3,654,216
from typing import Dict from typing import Any import tqdm def parse(excel_sheets: Dict[Any, pd.DataFrame], dictionary: Dict[str, Any], verbose: bool = False) -> pd.DataFrame: """Parse sheets of an excel file according to instructions in `dictionary`. """ redux_dict = recursive_traverse(dictionary) column_tuples = redux_dict.keys() tuple_lengths = [len(tuple) for tuple in column_tuples] if len(set(tuple_lengths)) > 1: raise ValueError("Depth of provided JSON file is inconsistent. All " "entries must be located at the same depth.") multi_index = pd.MultiIndex.from_tuples(tuples=column_tuples) data_frame = pd.DataFrame(columns=multi_index) if verbose: sheets = tqdm( excel_sheets.items(), desc="Looping through sheets", ncols=100 ) else: sheets = excel_sheets.items() for sheet_name, sheet in sheets: new_row = {} for column, instr in redux_dict.items(): try: raw = sheet.iloc[instr["row"], instr["col"]].values except AttributeError: raw = sheet.iloc[instr["row"], instr["col"]] except ValueError: raw = None try: func = map_with_dict(instr["choices"]) except KeyError: func = FUNC_DICT[instr["func"]] try: new_row[column] = func(raw) except: new_row[column] = None data_frame = data_frame.append(new_row, ignore_index=True) return data_frame
88028fef19eda993680e89c58954c04a215a2fdd
3,654,217
def build_LAMP(prob,T,shrink,untied): """ Builds a LAMP network to infer x from prob.y_ = matmul(prob.A,x) + AWGN return a list of layer info (name,xhat_,newvars) name : description, e.g. 'LISTA T=1' xhat_ : that which approximates x_ at some point in the algorithm newvars : a tuple of layer-specific trainable variables """ eta,theta_init = shrinkage.get_shrinkage_function(shrink) print('theta_init='+repr(theta_init)) layers=[] A = prob.A M,N = A.shape B = A.T / (1.01 * la.norm(A,2)**2) B_ = tf.Variable(B,dtype=tf.float32,name='B_0') By_ = tf.matmul( B_ , prob.y_ ) layers.append( ('Linear',By_,None) ) if getattr(prob,'iid',True) == False: # set up individual parameters for every coordinate theta_init = theta_init*np.ones( (N,1),dtype=np.float32 ) theta_ = tf.Variable(theta_init,dtype=tf.float32,name='theta_0') OneOverM = tf.constant(float(1)/M,dtype=tf.float32) NOverM = tf.constant(float(N)/M,dtype=tf.float32) rvar_ = tf.reduce_sum(tf.square(prob.y_),0) * OneOverM (xhat_,dxdr_) = eta( By_,rvar_ , theta_ ) layers.append( ('LAMP-{0} T=1'.format(shrink),xhat_,(theta_,) ) ) vt_ = prob.y_ for t in range(1,T): if len(dxdr_.get_shape())==2: dxdr_ = tf.reduce_mean(dxdr_,axis=0) bt_ = dxdr_ * NOverM vt_ = prob.y_ - tf.matmul( prob.A_ , xhat_ ) + bt_ * vt_ rvar_ = tf.reduce_sum(tf.square(vt_),0) * OneOverM theta_ = tf.Variable(theta_init,name='theta_'+str(t)) if untied: B_ = tf.Variable(B,dtype=tf.float32,name='B_'+str(t)) rhat_ = xhat_ + tf.matmul(B_,vt_) layers.append( ('LAMP-{0} linear T={1}'.format(shrink,t+1),rhat_ ,(B_,) ) ) else: rhat_ = xhat_ + tf.matmul(B_,vt_) (xhat_,dxdr_) = eta( rhat_ ,rvar_ , theta_ ) layers.append( ('LAMP-{0} non-linear T={1}'.format(shrink,t+1),xhat_,(theta_,) ) ) return layers
392050992846aeb1a16e70fe6e43c386e11915e5
3,654,218
def coeffVar(X, precision=3): """ Coefficient of variation of the given data (population) Argument: X: data points, a list of int, do not mix negative and positive numbers precision (optional): digits precision after the comma, default=3 Returns: float, the cv (measure of dispersion) of the input sample or raise StatsError('mean is zero') if the mean = 0 """ try: return round(stdDev(X, precision) / mean(X, precision), precision) except ZeroDivisionError: raise StatsError('mean is zero')
e92505e79c4d10a5d56ec35cd2b543872f6be59c
3,654,219
def tostring(node): """ Generates a string representation of the tree, in a format determined by the user. @ In, node, InputNode or InputTree, item to turn into a string @ Out, tostring, string, full tree in string form """ if isinstance(node,InputNode) or isinstance(node,InputTree): return node.printXML() else: raise NotImplementedError('TreeStructure.tostring received "'+str(node)+'" but was expecting InputNode or InputTree.')
8e6cab92b898bd99b5c738b26fc9f8d79aef0750
3,654,220
from typing import Dict import random def pick_char_from_dict(char: str, dictionary: Dict[str, str]) -> str: """ Picks a random format for the givin letter in the dictionary """ return random.choice(dictionary[char])
c593166ef7cb8c960b8c4be8fa0f8a20ec616f00
3,654,221
from typing import List def bmeow_to_bilou(tags: List[str]) -> List[str]: """Convert BMEOW tags to the BILOU format. Args: tags: The BMEOW tags we are converting Raises: ValueError: If there were errors in the BMEOW formatting of the input. Returns: Tags that produce the same spans in the BILOU format. """ return convert_tags(tags, parse_spans_bmeow_with_errors, write_bilou_tags)
0081b7691a743fe3e28118cbb571708809fbd485
3,654,222
def site_sold_per_category(items): """For every category, a (site, count) pair with the number of items sold by the site in that category. """ return [(site, [(cat, total_sold(cat_items)) for cat, cat_items in categories]) for site, categories in category_items_per_site(items).iteritems()]
7b224f3e0a786aef497fad99359e525896eb8441
3,654,223
from typing import List import ctypes def swig_py_object_2_list_int(object, size : int) -> List[int]: """ Converts SwigPyObject to List[float] """ y = (ctypes.c_float * size).from_address(int(object)) new_object = [] for i in range(size): new_object += [int(y[i])] return new_object
064a9a1e43884a9f989bec0b31d6d19705764b64
3,654,224
def ParseAttributesFromData(attributes_data, expected_param_names): """Parses a list of ResourceParameterAttributeConfig from yaml data. Args: attributes_data: dict, the attributes data defined in command_lib/resources.yaml file. expected_param_names: [str], the names of the API parameters that the API method accepts. Example, ['projectsId', 'instancesId']. Returns: [ResourceParameterAttributeConfig]. Raises: InvalidResourceArgumentLists: if the attributes defined in the yaml file don't match the expected fields in the API method. """ raw_attributes = [ ResourceParameterAttributeConfig.FromData(a) for a in attributes_data ] registered_param_names = [a.parameter_name for a in raw_attributes] final_attributes = [] # TODO(b/78851830): improve the time complexity here. for expected_name in expected_param_names: if raw_attributes and expected_name == raw_attributes[0].parameter_name: # Attribute matches expected, add it and continue checking. final_attributes.append(raw_attributes.pop(0)) elif expected_name in IGNORED_FIELDS: # Attribute doesn't match but is being ignored. Add an auto-generated # attribute as a substitute. # Currently, it would only be the project config. attribute_name = IGNORED_FIELDS[expected_name] ignored_attribute = DEFAULT_RESOURCE_ATTRIBUTE_CONFIGS.get(attribute_name) # Manually add the parameter name, e.g. project, projectId or projectsId. ignored_attribute.parameter_name = expected_name final_attributes.append(ignored_attribute) else: # It doesn't match (or there are no more registered params) and the # field is not being ignored, error. raise InvalidResourceArgumentLists(expected_param_names, registered_param_names) if raw_attributes: # All expected fields were processed but there are still registered # attribute params remaining, they must be extra. raise InvalidResourceArgumentLists(expected_param_names, registered_param_names) return final_attributes
73cfc67dddd4d1385bebd0297bd84233c9546dd4
3,654,225
from typing import Tuple from typing import Union async def reactionFromRaw(payload: RawReactionActionEvent) -> Tuple[Message, Union[User, Member], emojis.BasedEmoji]: """Retrieve complete Reaction and user info from a RawReactionActionEvent payload. :param RawReactionActionEvent payload: Payload describing the reaction action :return: The message whose reactions changed, the user who completed the action, and the emoji that changed. :rtype: Tuple[Message, Union[User, Member], BasedEmoji] """ emoji = None user = None message = None if payload.member is None: # Get the channel containing the reacted message if payload.guild_id is None: channel = botState.client.get_channel(payload.channel_id) else: guild = botState.client.get_guild(payload.guild_id) if guild is None: return None, None, None channel = guild.get_channel(payload.channel_id) # Individual handling for each channel type for efficiency if isinstance(channel, DMChannel): if channel.recipient.id == payload.user_id: user = channel.recipient else: user = channel.me elif isinstance(channel, GroupChannel): # Group channels should be small and far between, so iteration is fine here. for currentUser in channel.recipients: if currentUser.id == payload.user_id: user = currentUser if user is None: user = channel.me # Guild text channels elif isinstance(channel, TextChannel): user = channel.guild.get_member(payload.user_id) else: return None, None, None # Fetch the reacted message (api call) message = await channel.fetch_message(payload.message_id) # If a reacting member was given, the guild can be inferred from the member. else: user = payload.member message = await payload.member.guild.get_channel(payload.channel_id).fetch_message(payload.message_id) if message is None: return None, None, None # Convert reacted emoji to BasedEmoji try: emoji = emojis.BasedEmoji.fromPartial(payload.emoji, rejectInvalid=True) except exceptions.UnrecognisedCustomEmoji: return None, None, None return message, user, emoji
36ae16e2b1ffb3df1d5c68ae903b95556446138f
3,654,226
import array def poisson2d(N,dtype='d',format=None): """ Return a sparse matrix for the 2d poisson problem with standard 5-point finite difference stencil on a square N-by-N grid. """ if N == 1: diags = asarray( [[4]],dtype=dtype) return dia_matrix((diags,[0]), shape=(1,1)).asformat(format) offsets = array([0,-N,N,-1,1]) diags = empty((5,N**2),dtype=dtype) diags[0] = 4 #main diagonal diags[1:] = -1 #all offdiagonals diags[3,N-1::N] = 0 #first lower diagonal diags[4,N::N] = 0 #first upper diagonal return dia_matrix((diags,offsets),shape=(N**2,N**2)).asformat(format)
089088f468e84dce865bbb26707714617e16f3f6
3,654,227
import random def get_factory(): """随机获取一个工厂类""" return random.choice([BasicCourseFactory, ProjectCourseFactory])()
c71401a2092618701966e5214f85c67a6520b1c9
3,654,228
def delay_class_factory(motor_class): """ Create a subclass of DelayBase that controls a motor of class motor_class. Used in delay_instace_factory (DelayMotor), may be useful for one-line declarations inside ophyd Devices. """ try: cls = delay_classes[motor_class] except KeyError: cls = type( 'Delay' + motor_class.__name__, (DelayBase,), {'motor': Cpt(motor_class, '')} ) delay_classes[motor_class] = cls return cls
264d68f7d3db164c5c133e68f943b789db52fc8b
3,654,229
import os def check_and_makedir(folder_name): """ Does a directory exist? if not create it. """ if not os.path.isdir(folder_name): os.mkdir(folder_name) return False else: return True
2f2632fc245c04add6a680fa755932d3a082168b
3,654,230
import os import fnmatch def _get_all_files_in_directory(dir_path, excluded_glob_patterns): """Recursively collects all files in directory and subdirectories of specified path. Args: dir_path: str. Path to the folder to be linted. excluded_glob_patterns: set(str). Set of all glob patterns to be excluded. Returns: a list of files in directory and subdirectories without excluded files. """ files_in_directory = [] for _dir, _, files in os.walk(dir_path): for file_name in files: filepath = os.path.relpath( os.path.join(_dir, file_name), os.getcwd()) if not any([fnmatch.fnmatch(filepath, gp) for gp in excluded_glob_patterns]): files_in_directory.append(filepath) return files_in_directory
42a7f1220fd54b08b83dc9d89beef0c63c9d5cd0
3,654,231
def lonlat2px_gt(img, lon, lat, lon_min, lat_min, lon_max, lat_max): """ Converts a pair of lon and lat to its corresponding pixel value in an geotiff image file. Parameters ---------- img : Image File, e.g. PNG, TIFF Input image file lon : float Longitude lat : float Latitude lon_min, lat_min : float lower left coordinate of geotiff lon_max, lat_max : float upper right coordinate of geotiff Returns ------- Row : float corresponding pixel value Col : float corresponding pixel value """ w, h = img.size londiff = lon_max - lon_min latdiff = lat_max - lat_min mw = w / londiff mh = h / latdiff row = (-lat + lat_max) * mh col = (lon - lon_min) * mw return row, col
39c1aeb63d38fdac383c510913f50f177d274a04
3,654,232
import torch def patchwise_contrastive_metric(image_sequence: torch.Tensor, kpt_sequence: torch.Tensor, method: str = 'norm', time_window: int = 3, patch_size: tuple = (7, 7), alpha: float = 0.1): """ Contrasts pixel patches around key-points. Positive examples are drawn from the same key-point at time-steps in the given time-window. Negative examples are drawn from other key-points at any time-step or the same key-point outside of the time-window. :param image_sequence: Tensor of sequential images in (N, T, C, H, W) :param kpt_sequence: Tensor of key-point coordinates in (N, T, K, D) :param method: Method to use: 'mean': Compares the mean patch differences 'norm': Compares the image norm of the patch differences 'vssil': Uses the pixelwise-contrastive feature representations 'tfeat': Uses tfeat encodings to compare the image patches :param time_window: Window size of positive examples around current the current time-step E.g. time_window=3 uses t-1 and t+1 as positives for t At t=0 and t=T, the window size is reduced. :param patch_size: Size of the patch so extract from the input, around the key-point If these would extend the image borders, they are moved to within the borders. TODO: Fix with padding instead ? :param alpha: Allowance for pos / neg similarity """ N, T, C, H, W = image_sequence.shape assert kpt_sequence.shape[0] == N, "images and kpts dont share batch size dim" assert kpt_sequence.shape[1] == T, "images and kpts dont share time dim" _, _, K, D = kpt_sequence.shape # To reduce the computational effort, the extracted patches are saved and re-used by demand patch_sequence = torch.empty(size=(N, T, K, C, patch_size[0], patch_size[1])) evaluated_kpts = [] L = torch.empty(size=(N, T, K)).to(kpt_sequence.device) # Iterate over time-steps for t in range(T): # Iterate over key-points for k in range(K): # # ANCHOR # if (t, k) in evaluated_kpts: anchor_patch = patch_sequence[:, t, k, ...].float() else: x_min, x_max, y_min, y_max = get_box_within_image_border(kpt_sequence, patch_size, H, W, t, k) anchor_patch = image_sequence[:, t, :, x_min: x_max + 1, y_min: y_max + 1].float() patch_sequence[:, t, k, ...] = anchor_patch evaluated_kpts.append((t, k)) # # POSITIVES # L_pos = torch.tensor([0]).to(kpt_sequence.device) t_range = np.arange(max(0, t - int(time_window/2)), min(T - 1, t + int(time_window/2)) + 1) # t_range = np.arange(0, T) for t_p in t_range: if t_p == t: continue if (t_p, k) in evaluated_kpts: positive_patch = patch_sequence[:, t_p, k, ...].float() else: x_min, x_max, y_min, y_max = get_box_within_image_border(kpt_sequence, patch_size, H, W, t_p, k) positive_patch = image_sequence[:, t_p, :, x_min: x_max + 1, y_min: y_max + 1].float() patch_sequence[:, t_p, k, ...] = positive_patch evaluated_kpts.append((t_p, k)) L_pos = L_pos + torch.norm(positive_patch - anchor_patch, p=2) L_pos = L_pos + torch.norm(kpt_sequence[:, t, k, :] - kpt_sequence[:, t_p, k, :], p=2) L_pos = (L_pos / (len(t_range) - 1)) if len(t_range) > 2 else L_pos # # NEGATIVES # L_neg = torch.tensor([0]).to(kpt_sequence.device) # for t_n in range(0, T): for t_n in t_range: for k_n in range(0, K): if (t_n in t_range or t_n == t) and k_n == k: continue else: if (t_n, k_n) in evaluated_kpts: negative_patch = patch_sequence[:, t_n, k_n].float() else: x_min, x_max, y_min, y_max = get_box_within_image_border(kpt_sequence, patch_size, H, W, t_n, k_n) negative_patch = image_sequence[:, t_n, :, x_min:x_max + 1, y_min:y_max + 1].float() patch_sequence[:, t_n, k_n, ...] = negative_patch evaluated_kpts.append((t_n, k_n)) L_neg = L_neg + torch.norm(negative_patch - anchor_patch, p=2) L_neg = L_neg + torch.norm(kpt_sequence[:, t, k, :] - kpt_sequence[:, t_n, k_n, :], p=2) L_neg = L_neg / (T*(K - 1) + T - len(t_range) + 1) print(f't: {t} k: {k} = ', max(L_pos - L_neg + alpha, torch.tensor([0.0])).mean().item()) L[:, t, k] = max(L_pos - L_neg + alpha, torch.tensor([0.0])) return torch.mean(L, dim=[0, 2])
8591d9359773a9b0445974da3926b3cade64d830
3,654,233
import scipy def array_wishart_rvs(df, scale, **kwargs): """ Wrapper around scipy.stats.wishart to always return a np.array """ if np.size(scale) == 1: return np.array([[ scipy.stats.wishart(df=df, scale=scale, **kwargs).rvs() ]]) else: return scipy.stats.wishart(df=df, scale=scale, **kwargs).rvs()
d14b26d8f1b05de1ac961499d96c604028fca379
3,654,234
def get_mpl_colors(): """ ================== Colormap reference ================== Reference for colormaps included with Matplotlib. This reference example shows all colormaps included with Matplotlib. Note that any colormap listed here can be reversed by appending "_r" (e.g., "pink_r"). These colormaps are divided into the following categories: Sequential: These colormaps are approximately monochromatic colormaps varying smoothly between two color tones---usually from low saturation (e.g. white) to high saturation (e.g. a bright blue). Sequential colormaps are ideal for representing most scientific data since they show a clear progression from low-to-high values. Diverging: These colormaps have a median value (usually light in color) and vary smoothly to two different color tones at high and low values. Diverging colormaps are ideal when your data has a median value that is significant (e.g. 0, such that positive and negative values are represented by different colors of the colormap). Qualitative: These colormaps vary rapidly in color. Qualitative colormaps are useful for choosing a set of discrete colors. For example:: color_list = plt.cm.Set3(np.linspace(0, 1, 12)) gives a list of RGB colors that are good for plotting a series of lines on a dark background. Miscellaneous: Colormaps that don't fit into the categories above. """ # Have colormaps separated into categories: # http://matplotlib.org/examples/color/colormaps_reference.html return [('Perceptually Uniform Sequential', [ 'viridis', 'plasma', 'inferno', 'magma']), ('Sequential', [ 'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds', 'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu', 'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn']), ('Sequential (2)', [ 'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink', 'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia', 'hot', 'afmhot', 'gist_heat', 'copper']), ('Diverging', [ 'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', 'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic']), ('Qualitative', [ 'Pastel1', 'Pastel2', 'Paired', 'Accent', 'Dark2', 'Set1', 'Set2', 'Set3', 'tab10', 'tab20', 'tab20b', 'tab20c']), ('Miscellaneous', [ 'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern', 'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg', 'hsv', 'gist_rainbow', 'rainbow', 'jet', 'nipy_spectral', 'gist_ncar'])]
5926f878b59f3f41282968c67020f611ad928f28
3,654,235
async def async_setup_entry(hass, entry): """Set up Jenkins from a config entry.""" hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, "sensor") ) return True
c46912d11630c36effc07eed3273e42325c9b2b8
3,654,236
import math def signal_to_dataset(raw, fsamp, intvs, labels): """Segmentize raw data into list of epochs. returns dataset and label_array : a list of data, each block is 1 second, with fixed size. width is number of channels in certain standard order. Args: raw: EEG signals. Shape: (n_channel, n_sample). fsamp(int): sampling rate, i.e., window size of resulting epoch. Unit: Hz intvs: list of [start, end]. Unit: second labels: list of labels. Must be same len as INTVS Returns: tuple (dataset, labels): - dataset: list of data; (n_epochs, n_channels, n_sample_per_epoch) - labels: list of labels """ ds, lbl = [], [] for i, inv in enumerate(intvs): tstart, tend = inv chopped_sig = chop_signal( [ch[math.ceil(tstart*fsamp):math.floor(tend*fsamp)] for ch in raw], fsamp) ds.extend(chopped_sig) lbl.extend([labels[i]] * len(chopped_sig)) return ds, lbl
340bbb91bd6a36d1d3a20d0689e25c29e5b879c5
3,654,237
def project_dynamic_property_graph(graph, v_prop, e_prop, v_prop_type, e_prop_type): """Create project graph operation for nx graph. Args: graph (:class:`nx.Graph`): A nx graph. v_prop (str): The node attribute key to project. e_prop (str): The edge attribute key to project. v_prop_type (str): Type of the node attribute. e_prop_type (str): Type of the edge attribute. Returns: Operation to project a dynamic property graph. Results in a simple graph. """ check_argument(graph.graph_type == types_pb2.DYNAMIC_PROPERTY) config = { types_pb2.GRAPH_NAME: utils.s_to_attr(graph.key), types_pb2.GRAPH_TYPE: utils.graph_type_to_attr(types_pb2.DYNAMIC_PROJECTED), types_pb2.V_PROP_KEY: utils.s_to_attr(v_prop), types_pb2.E_PROP_KEY: utils.s_to_attr(e_prop), types_pb2.V_DATA_TYPE: utils.s_to_attr(utils.data_type_to_cpp(v_prop_type)), types_pb2.E_DATA_TYPE: utils.s_to_attr(utils.data_type_to_cpp(e_prop_type)), } op = Operation( graph._session_id, types_pb2.PROJECT_GRAPH, config=config, output_types=types_pb2.GRAPH, ) return op
6e54180a4ef257c50a02104cc3a4cbbae107d233
3,654,238
def eqfm_(a, b): """Helper for comparing floats AND style names.""" n1, v1 = a n2, v2 = b if type(v1) is not float: return eq_(a, b) eqf_(v1, v2) eq_(n1, n2)
1ee53203baa6c8772a4baf240f68bb5898a5d516
3,654,239
def flatten_comment(seq): """Flatten a sequence of comment tokens to a human-readable string.""" # "[CommentToken(value='# Extra settings placed in ``[app:main]`` section in generated production.ini.\\n'), CommentToken(value='# Example:\\n'), CommentToken(value='#\\n'), CommentToken(value='# extra_ini_settings: |\\n'), CommentToken(value='# mail.host = mymailserver.internal\\n'), CommentToken(value='# websauna.superusers =\\n'), CommentToken(value='# [email protected]\\n'), CommentToken(value='#\\n')] if not seq: return "" result = [] for item in seq: if not item: continue if isinstance(item, CommentToken): # Mangle away # comment start from the line s = item.value s = s.strip(" ") s = s.lstrip("#") s = s.rstrip("\n") if s.startswith(" "): s = s[1:] result.append(s) if result: raw_comment = "\n".join(result) else: return "" section_header = raw_comment.rfind("---") if section_header >= 0: raw_comment = raw_comment[section_header + 3:] return raw_comment
56104eb6e0109b6c677964cd1873244ff05f27fc
3,654,240
def get_community(community_id): """ Verify that a community with a given id exists. :param community_id: id of test community :return: Community instance :return: 404 error if doesn't exist """ try: return Community.objects.get(pk=community_id) except Community.DoesNotExist: return
33d16db86c53b7dd68dec8fe80639b560e41f457
3,654,241
import csv import pprint def load_labeled_info(csv4megan_excell, audio_dataset, ignore_files=None): """Read labeled info from spreat sheet and remove samples with no audio file, also files given in ignore_files """ if ignore_files is None: ignore_files = set() with open(csv4megan_excell) as csvfile: reader = csv.DictReader(csvfile) reader = list(reader) reader_strip = [] for row in reader: row = {r: row[r].strip() for r in row} reader_strip.append(row) reader = reader_strip.copy() missing_audio_files = [] for row in reader: if audio_dataset.get(row['File Name'], None) is None: missing_audio_files.append(row['File Name']) missing_audio_files = set(missing_audio_files) print((f'{len(missing_audio_files)} files are missing' + ' corresponding to excell entries')) megan_data_sheet = [] for row in reader: if row['File Name'] not in ignore_files: if row['File Name'] not in missing_audio_files: megan_data_sheet.append(row) deleted_files = set() deleted_files.update(ignore_files) deleted_files.update(missing_audio_files) pprint((f'-> {len(deleted_files)} number of samples are DELETED due to ' + 'ignore_files and missing_audio_files')) return megan_data_sheet, list(deleted_files)
f196b02c8667ebe5e8d2d89a79be78c6eb838afe
3,654,242
def de_dupe_list(input): """de-dupe a list, preserving order. """ sam_fh = [] for x in input: if x not in sam_fh: sam_fh.append(x) return sam_fh
bbf1936f21c19195369e41b635bf0f99704b3210
3,654,243
def donwload_l10ns(): """Download all l10ns in zip archive.""" url = API_PREFIX + 'download/' + FILENAME + KEY_SUFFIX l10ns_file = urllib2.urlopen(url) with open('all.zip','wb') as f: f.write(l10ns_file.read()) return True
26770dfc8f32947c1a32a287f811e95ffe314822
3,654,244
def _constant_velocity_heading_from_kinematics(kinematics_data: KinematicsData, sec_from_now: float, sampled_at: int) -> np.ndarray: """ Computes a constant velocity baseline for given kinematics data, time window and frequency. :param kinematics_data: KinematicsData for agent. :param sec_from_now: How many future seconds to use. :param sampled_at: Number of predictions to make per second. """ x, y, vx, vy, _, _, _, _, _, _ = kinematics_data preds = [] time_step = 1.0 / sampled_at for time in np.arange(time_step, sec_from_now + time_step, time_step): preds.append((x + time * vx, y + time * vy)) return np.array(preds)
2b6781ceb9e012486d3063b8f3cff29164ff8743
3,654,245
def arg_int(name, default=None): """ Fetch a query argument, as an integer. """ try: v = request.args.get(name) return int(v) except (ValueError, TypeError): return default
110088655bc81363e552f31d9bbd8f4fa45abd1b
3,654,246
import os def db(app, request): """Session-wide test database.""" if os.path.exists(os.path.join(INSTANCE_FOLDER_PATH, 'test.sqlite')): os.unlink(os.path.join(INSTANCE_FOLDER_PATH, 'test.sqlite')) def teardown(): _db.drop_all() os.unlink(os.path.join(INSTANCE_FOLDER_PATH, 'test.sqlite')) _db.app = app apply_migrations(app) request.addfinalizer(teardown) return _db
c14b929a9fac6978a7dcb5b0815297598c8a94e1
3,654,247
def adapter_rest(request, api_module_rest, api_client_rest): """Pass.""" return { "adapter": request.param, "api_module": api_module_rest, "api_client": api_client_rest, }
8b96313cb190f6f8a97a853e24a5fcfade291d76
3,654,248
import numpy import os import shutil def extract(lon, lat, dep, prop=['rho', 'vp', 'vs'], **kwargs): """ Simple CVM-S extraction lon, lat, dep: Coordinate arrays prop: 'rho', 'vp', or 'vs' nproc: Optional, number of processes Returns: (rho, vp, vs) material arrays """ lon = numpy.asarray(lon, 'f') lat = numpy.asarray(lat, 'f') dep = numpy.asarray(dep, 'f') shape = dep.shape nsample = dep.size cwd = os.getcwd() if os.path.exists('cvms-tmp'): shutil.rmtree('cvms-tmp') os.mkdir('cvms-tmp') os.chdir('cvms-tmp') cfg = configure(**kwargs) lon.tofile(cfg['file_lon']) lat.tofile(cfg['file_lat']) dep.tofile(cfg['file_dep']) del(lon, lat, dep) run(nsample=nsample, **kwargs) out = [] if type(prop) not in [list, tuple]: prop = [prop] for v in prop: f = cfg['file_' + v.lower()] out += [numpy.fromfile(f, 'f').reshape(shape)] os.chdir(cwd) shutil.rmtree('cvms-tmp') return out
1503faebece8accb380ad47c0e7108a3313a2080
3,654,249
def remove_quotes(string): """Function to remove quotation marks surrounding a string""" string = string.strip() while len(string) >= 3 and string.startswith('\'') and string.endswith('\''): string = string[1:-1] string = quick_clean(string) string = quick_clean(string) return string
c6585c054abaef7248d30c1814fb13b6b9d01852
3,654,250
def compute_list_featuretypes( data, list_featuretypes, fourier_n_largest_frequencies, wavelet_depth, mother_wavelet, ): """ This function lets the user choose which combination of features they want to have computed. list_featuretypes: "Basic" - min, max, mean, kurt ,skew, std, sum. "FourierComplete" - all frequencies amplitudes and phases. "FourierNLargest" - n largest frequencies and their values. "WaveletComplete" - all approximation and details coefficients at each depth. "WaveletBasic" - takes "Basic" (min, max, etc) at each depth. Args: data (pd.DataFrame()) : one column from which to make features. list_featuretypes (list) : list of feature types to be computed. fourier_n_largest_frequencies (int) : amount of fourier features. wavelet_depth (int) : level of depth up to which the wavelet is computed. mother_wavelet (str) : type of wavelet used for the analysis. Returns: features (pd.DataFrame()) : row of features. """ if type(list_featuretypes) != list: raise AttributeError("'list_featuretypes' must be a list.") allowed_components = ["Basic", "FourierNLargest", "WaveletComplete", "WaveletBasic", "FourierComplete"] for argument in list_featuretypes: if argument not in allowed_components: raise ValueError(f"argument must be one of {allowed_components}") features_basic = pd.DataFrame() features_fourier = pd.DataFrame() features_wavelet = pd.DataFrame() features_wavelet_basic = pd.DataFrame() features_fft2 = pd.DataFrame() if "Basic" in list_featuretypes: features_basic = compute_basic(data) if "FourierNLargest" in list_featuretypes: features_fourier = compute_fourier_n_largest(data, fourier_n_largest_frequencies) if "FourierComplete" in list_featuretypes: features_fft2 = compute_fourier_complete(data) if "WaveletComplete" in list_featuretypes: features_wavelet = compute_wavelet_complete(data, wavelet_depth, mother_wavelet) if "WaveletBasic" in list_featuretypes: features_wavelet_basic = compute_wavelet_basic( data, wavelet_depth, mother_wavelet ) features = pd.concat( [features_basic, features_fourier, features_fft2, features_wavelet, features_wavelet_basic], axis=1, ) return features
f1c8fea04a01f6b7a3932434e27aba7ea2e17948
3,654,251
def select(locator): """ Returns an :class:`Expression` for finding selects matching the given locator. The query will match selects that meet at least one of the following criteria: * the element ``id`` exactly matches the locator * the element ``name`` exactly matches the locator * the element ``id`` exactly matches the ``for`` attribute of a corresponding ``label`` element whose text matches the locator * the element is nested within a ``label`` element whose text matches the locator Args: locator (str): A string that identifies the desired selects. Returns: Expression: An :class:`Expression` object matching the desired selects. """ field_expr = x.descendant("select") return _locate_field(field_expr, locator)
a3cd093a62d6c926fd9f782cdec35eadc34eba67
3,654,252
def send_image(filename): """Route to uploaded-by-client images Returns ------- file Image file on the server (see Flask documentation) """ return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
68b99ca59d6d4b443a77560d3eb1913422407764
3,654,253
def swissPairings(): """Returns a list of pairs of players for the next round of a match. Assuming that there are an even number of players registered, each player appears exactly once in the pairings. Each player is paired with another player with an equal or nearly-equal win record, that is, a player adjacent to him or her in the standings. Returns: A list of tuples, each of which contains (id1, name1, id2, name2) id1: the first player's unique id name1: the first player's name id2: the second player's unique id name2: the second player's name """ with get_cursor() as cursor: cursor.execute("SELECT * FROM pairings") pairings = cursor.fetchall() return pairings
f83a8a108f2d926c948999014f0dbb79a3b1c428
3,654,254
import torch def split(data, batch): """ PyG util code to create graph batches """ node_slice = torch.cumsum(torch.from_numpy(np.bincount(batch)), 0) node_slice = torch.cat([torch.tensor([0]), node_slice]) row, _ = data.edge_index edge_slice = torch.cumsum(torch.from_numpy(np.bincount(batch[row])), 0) edge_slice = torch.cat([torch.tensor([0]), edge_slice]) # Edge indices should start at zero for every graph. data.edge_index -= node_slice[batch[row]].unsqueeze(0) data.__num_nodes__ = torch.bincount(batch).tolist() slices = {'edge_index': edge_slice} if data.x is not None: slices['x'] = node_slice if data.edge_attr is not None: slices['edge_attr'] = edge_slice if data.y is not None: if data.y.size(0) == batch.size(0): slices['y'] = node_slice else: slices['y'] = torch.arange(0, batch[-1] + 2, dtype=torch.long) return data, slices
69af8b969d7f0da28a1f7fda951f64974c238da0
3,654,255
def _get_shadowprice_data(scenario_id): """Gets data necessary for plotting shadow price :param str/int scenario_id: scenario id :return: (*tuple*) -- interconnect as a str, bus data as a data frame, lmp data as a data frame, branch data as a data frame and congestion data as a data frame """ s = Scenario(scenario_id) interconnect = s.info["interconnect"] interconnect = " ".join(interconnect.split("_")) s_grid = s.state.get_grid() # Get bus and add location data bus_map = project_bus(s_grid.bus) # get branch and add location data branch_map = project_branch(s_grid.branch) # get congestion congu = s.state.get_congu() congl = s.state.get_congl() cong_abs = pd.DataFrame( np.maximum(congu.to_numpy(), congl.to_numpy()), columns=congu.columns, index=congu.index, ) return interconnect, bus_map, s.state.get_lmp(), branch_map, cong_abs
57488b7ff6984cc292dce3bf76d18d0b2585b7ff
3,654,256
import json def get_city_reviews(city): """ Given a city name, return the data for all reviews. Returns a pandas DataFrame. """ with open(f"{DATA_DIR}/{city}/review.json", "r") as f: review_list = [] for line in f: review = json.loads(line) review_list.append(review) # convert to pandas DataFrame reviews = to_pandas([city], {city: review_list}) # optimize memory usage reviews = optimize(reviews, {'city': 'category'}) return reviews
e0723ab90dafc53059677928fb553cf197abecc1
3,654,257
def extract_rows_from_table(dataset, col_names, fill_null=False): """ Extract rows from DB table. :param dataset: :param col_names: :return: """ trans_dataset = transpose_list(dataset) rows = [] if type(col_names).__name__ == 'str': col_names = [col_names] for col_name in col_names: if col_name in dataset[0]: idx = dataset[0].index(col_name) rows.append(trans_dataset[idx]) else: if fill_null: null_list = [''] * (len(trans_dataset[0])-1) null_list = [col_name] + null_list rows.append(null_list) else: pass if len(col_names) == 1: return rows[0] else: return transpose_list(rows)
91371215f38a88b93d08c467303ccbd45f57b369
3,654,258
def CalculateHydrogenNumber(mol): """ ################################################################# Calculation of Number of Hydrogen in a molecule ---->nhyd Usage: result=CalculateHydrogenNumber(mol) Input: mol is a molecule object. Output: result is a numeric value. ################################################################# """ i = 0 Hmol = Chem.AddHs(mol) for atom in Hmol.GetAtoms(): if atom.GetAtomicNum() == 1: i = i + 1 return i
0b9fbad14c8e9f46beab5208ab0f929fef1ab263
3,654,259
def check_update (): """Return the following values: (False, errmsg) - online version could not be determined (True, None) - user has newest version (True, (version, url string)) - update available (True, (version, None)) - current version is newer than online version """ version, value = get_online_version() if version is None: # value is an error message return False, value if version == CurrentVersion: # user has newest version return True, None if is_newer_version(version): # value is an URL linking to the update package return True, (version, value) # user is running a local or development version return True, (version, None)
8bba3e7fbe11ce6c242f965450628dc94b6c2c0b
3,654,260
import torch def count_regularization_baos_for_both(z, count_tokens, count_pieces, mask=None): """ Compute regularization loss, based on a given rationale sequence Use Yujia's formulation Inputs: z -- torch variable, "binary" rationale, (batch_size, sequence_length) percentage -- the percentage of words to keep Outputs: a loss value that contains two parts: continuity_loss -- \sum_{i} | z_{i-1} - z_{i} | sparsity_loss -- |mean(z_{i}) - percent| """ # (batch_size,) if mask is not None: mask_z = z * mask seq_lengths = torch.sum(mask, dim=1) else: mask_z = z seq_lengths = torch.sum(z - z + 1.0, dim=1) mask_z_ = torch.cat([mask_z[:, 1:], mask_z[:, -1:]], dim=-1) continuity_ratio = torch.sum(torch.abs(mask_z - mask_z_), dim=-1) / seq_lengths #(batch_size,) percentage = count_pieces * 2 / seq_lengths # continuity_loss = F.threshold(continuity_ratio - percentage, 0, 0, False) continuity_loss = torch.abs(continuity_ratio - percentage) sparsity_ratio = torch.sum(mask_z, dim=-1) / seq_lengths #(batch_size,) percentage = count_tokens / seq_lengths #(batch_size,) # sparsity_loss = F.threshold(sparsity_ratio - percentage, 0, 0, False) sparsity_loss = torch.abs(sparsity_ratio - percentage) return continuity_loss, sparsity_loss
7925c8621866a20f0c6130cd925afffe144e1c7c
3,654,261
def unsqueeze_samples(x, n): """ """ bn, d = x.shape x = x.reshape(bn//n, n, d) return x
0c7b95e97df07aea72e9c87996782081763664cf
3,654,262
def f_snr(seq): """compute signal to noise rate of a seq Args: seq: input array_like sequence paras: paras array, in this case should be "axis" """ seq = np.array(seq, dtype=np.float64) result = np.mean(seq)/float(np.std(seq)) if np.isinf(result): print "marker" result = 0 return result
b018b5e4c249cfafcc3ce8b485c917bfcdd19ce2
3,654,263
def _lorentzian_pink_beam(p, x): """ @author Saransh Singh, Lawrence Livermore National Lab @date 03/22/2021 SS 1.0 original @details the lorentzian component of the pink beam peak profile obtained by convolution of gaussian with normalized back to back exponentials. more details can be found in Von Dreele et. al., J. Appl. Cryst. (2021). 54, 3–6 p has the following parameters p = [A,x0,alpha0,alpha1,beta0,beta1,fwhm_l] """ A,x0,alpha,beta,fwhm_l = p del_tth = x - x0 p = -alpha*del_tth + 1j*0.5*alpha*fwhm_l q = -beta*del_tth + 1j*0.5*beta*fwhm_l y = np.zeros(x.shape) f1 = exp1exp(p) f2 = exp1exp(q) y = -(alpha*beta)/(np.pi*(alpha+beta))*(f1+f2).imag mask = np.isnan(y) y[mask] = 0. y *= A return y
7de93743da63ab816133e771075a8e8f0386ad35
3,654,264
def get_q_HPU_ave(Q_HPU): """1時間平均のヒートポンプユニットの平均暖房出力 (7) Args: Q_HPU(ndarray): 1時間当たりのヒートポンプユニットの暖房出力 (MJ/h) Returns: ndarray: 1時間平均のヒートポンプユニットの平均暖房出力 (7) """ return Q_HPU * 10 ** 6 / 3600
fdf339d7f8524f69409711d4daefd1e2aaccbc76
3,654,265
def particles(t1cat): """Return a list of the particles in a T1 catalog DataFrame. Use it to find the individual particles involved in a group of events.""" return particles_fromlist(t1cat.particles.tolist())
38f9a077b7bab55b76a19f467f596ddb28e40c60
3,654,266
def interp_coeff_lambda3(i2,dx2,nx): """ NOTE: input and output index from 0 to nx-1 !!! """ i2=i2+1 # TODO, waiting for script to be updated # Find index of other cells i1 = i2 - 1 i3 = i2 + 1 i4 = i2 + 2 # Find normalised distance to other cells dx1 = dx2 + 1.0 dx3 = 1.0 - dx2 dx4 = 2.0 - dx2 # lambda 3 kernel ax1 = 1.0 / 6.0 * (1.0 - dx1) * (2.0 - dx1) * (3.0 - dx1) ax2 = 1.0 / 2.0 * (1 - dx2 ** 2) * (2 - dx2) ax3 = 1.0 / 2.0 * (1 - dx3 ** 2) * (2 - dx3) ax4 = 1.0 / 6.0 * (1.0 - dx4) * (2.0 - dx4) * (3.0 - dx4) if i2==nx-1: i1 ,i2 ,i3 ,i4 = 1 ,1 ,1 ,1 ax1,ax2,ax3,ax4 = 0.,0.,0.,0. elif i2 == 1: i1 ,i2 ,i3 ,i4 = 1 ,1 ,1 ,1 ax1,ax2,ax3,ax4 = 0.,0.,0.,0. elif i2 < 1: # Should not happen i1 ,i2 ,i3 ,i4 = 1 ,1 ,1 ,1 ax1,ax2,ax3,ax4 = 0.,0.,0.,0. elif (i2 > nx - 1): # Should not happen i1 ,i2 ,i3 ,i4 = 1 ,1 ,1 ,1 ax1,ax2,ax3,ax4 = 0.,0.,0.,0. elif i1 <= 0 or i2 <= 0: # Might happen if on grid i1 ,i2 ,i3 ,i4 = 1 ,1 ,1 ,1 ax1,ax2,ax3,ax4 = 0.,0.,0.,0. elif i4 > nx or i3 > nx: # Might happen if on grid i1 ,i2 ,i3 ,i4 = 1 ,1 ,1 ,1 ax1,ax2,ax3,ax4 = 0.,0.,0.,0. return ax1,ax2,ax3,ax4,i1-1,i2-1,i3-1,i4-1
560125921588e6302da8ab16e2d7394169fdcbea
3,654,267
def prime_list(num): """ This function returns a list of prime numbers less than natural number entered. :param num: natural number :return result: List of primes less than natural number entered """ prime_table = [True for _ in range(num+1)] i = 2 while i ** 2 <= num: if prime_table[i]: j = i + i while j <= num: prime_table[j] = False j += i i += 1 result = [i for i in range(num) if prime_table[i] and i >= 2] return result
c8e05aae2a59c229cfafb997469dd8ccacdda0fc
3,654,268
import time def check_deadline_exceeded_and_store_partial_minimized_testcase( deadline, testcase_id, job_type, input_directory, file_list, file_to_run_data, main_file_path): """Store the partially minimized test and check the deadline.""" testcase = data_handler.get_testcase_by_id(testcase_id) store_minimized_testcase(testcase, input_directory, file_list, file_to_run_data, main_file_path) deadline_exceeded = time.time() > deadline if deadline_exceeded: attempts = testcase.get_metadata( 'minimization_deadline_exceeded_attempts', default=0) if attempts >= MAX_DEADLINE_EXCEEDED_ATTEMPTS: _skip_minimization(testcase, 'Exceeded minimization deadline too many times.') else: testcase.set_metadata('minimization_deadline_exceeded_attempts', attempts + 1) tasks.add_task('minimize', testcase_id, job_type) return deadline_exceeded
443c09a8b5bcd8141f721b8ea90348879bc3b8c5
3,654,269
import ipaddress def _item_to_python_repr(item, definitions): """Converts the given Capirca item into a typed Python object.""" # Capirca comments are just appended to item strings s = item.split("#")[0].strip() # A reference to another network if s in definitions.networks: return s # IPv4 address / network try: return ipaddress.IPv4Address(s) except ValueError: pass try: return ipaddress.IPv4Network(s, strict=False) except ValueError: pass # IPv6 address / network try: return ipaddress.IPv6Address(s) except ValueError: pass try: return ipaddress.IPv6Network(s, strict=False) except ValueError: pass raise ValueError("Unknown how to convert {s}".format(s=s))
9881e304e923eb2cea8223224273f4c9ef81696b
3,654,270
import numpy def floor_divide(x1, x2, out=None, where=True, **kwargs): """ Return the largest integer smaller or equal to the division of the inputs. It is equivalent to the Python ``//`` operator and pairs with the Python ``%`` (`remainder`), function so that ``a = a % b + b * (a // b)`` up to roundoff. Args: x1 (numpoly.ndpoly): Numerator. x2 (numpoly.ndpoly): Denominator. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out (Optional[numpy.ndarray]): A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where (Optional[numpy.ndarray]): This condition is broadcast over the input. At locations where the condition is True, the `out` array will be set to the ufunc result. Elsewhere, the `out` array will retain its original value. Note that if an uninitialized `out` array is created via the default ``out=None``, locations within it where the condition is False will remain uninitialized. kwargs: Keyword args passed to numpy.ufunc. Returns: (numpoly.ndpoly): This is a scalar if both `x1` and `x2` are scalars. Examples: >>> xyz = [1, 2, 4]*numpoly.symbols("x y z") >>> numpoly.floor_divide(xyz, 2.) polynomial([0.0, y, 2.0*z]) >>> numpoly.floor_divide(xyz, [1, 2, 4]) polynomial([x, y, z]) >>> numpoly.floor_divide([1, 2, 4], xyz) Traceback (most recent call last): ... ValueError: only constant polynomials can be converted to array. """ x1, x2 = numpoly.align_polynomials(x1, x2) x2 = x2.tonumpy() no_output = out is None if no_output: out = numpoly.ndpoly( exponents=x1.exponents, shape=x1.shape, names=x1.indeterminants, dtype=numpy.common_type(x1, numpy.array(1.)), ) for key in x1.keys: numpy.floor_divide(x1[key], x2, out=out[key], where=where, **kwargs) if no_output: out = numpoly.clean_attributes(out) return out
9269d088c0893b9b6b4c3b27e8dc83c4493ac2c9
3,654,271
from typing import Callable import click def node_args_argument(command: Callable[..., None]) -> Callable[..., None]: """ Decorate a function to allow choosing arguments to run on a node. """ function = click.argument( 'node_args', type=str, nargs=-1, required=True, )(command) # type: Callable[..., None] return function
89365a41b7665cf291f5c15852db81e89aeef9a7
3,654,272
import functools import unittest def _tag_error(func): """Decorates a unittest test function to add failure information to the TestCase.""" @functools.wraps(func) def decorator(self, *args, **kwargs): """Add failure information to `self` when `func` raises an exception.""" self.test_failed = False try: func(self, *args, **kwargs) except unittest.SkipTest: raise except Exception: # pylint: disable=broad-except self.test_failed = True raise # re-raise the error with the original traceback. return decorator
a2818c63647410abea3fde0b7f4fdae667b558bf
3,654,273
import fnmatch import sys import traceback import logging import os def create_drizzle_products(total_obj_list, custom_limits=None): """ Run astrodrizzle to produce products specified in the total_obj_list. Parameters ---------- total_obj_list: list List of TotalProduct objects, one object per instrument/detector combination is a visit. The TotalProduct objects are comprised of FilterProduct and ExposureProduct objects. custom_limits : list, optional 4-element list containing the mosaic bounding rectangle X min and max and Y min and max values for custom mosaics RETURNS ------- product_list: list A list of output products """ # Get rules files rules_files = {} log.info("Processing with astrodrizzle version {}".format(drizzlepac.astrodrizzle.__version__)) # Generate list of all input exposure filenames that are to be processed edp_names = [] for t in total_obj_list: edp_names += [e.full_filename for e in t.edp_list] # Define dataset-specific rules filenames for each input exposure for imgname in edp_names: rules_files[imgname] = proc_utils.get_rules_file(imgname) print('Generated RULES_FILE names of: \n{}\n'.format(rules_files)) # Keep track of all the products created for the output manifest product_list = [] # For each detector (as the total detection product are instrument- and detector-specific), # create the drizzle-combined filtered image, the drizzled exposure (aka single) images, # and finally the drizzle-combined total detection image. for filt_obj in total_obj_list: filt_obj.rules_file = rules_files[filt_obj.edp_list[0].full_filename] log.info("~" * 118) # Get the common WCS for all images which are part of a total detection product, # where the total detection product is detector-dependent. meta_wcs = filt_obj.generate_metawcs(custom_limits=custom_limits) log.info("CREATE DRIZZLE-COMBINED FILTER IMAGE: {}\n".format(filt_obj.drizzle_filename)) filt_obj.wcs_drizzle_product(meta_wcs) product_list.append(filt_obj.drizzle_filename) product_list.append(filt_obj.trl_filename) # Add individual single input images with updated WCS headers to manifest for exposure_obj in filt_obj.edp_list: product_list.append(exposure_obj.full_filename) # Create Drizzled images for each input on SkyCell pixels exposure_obj.wcs_drizzle_product(meta_wcs) # Add drizzled FLC images to manifest product_list.append(exposure_obj.drizzle_filename) product_list.append(exposure_obj.trl_filename) # Ensure that all drizzled products have headers that are to specification try: log.info("Updating these drizzle products for CAOM compatibility:") fits_files = fnmatch.filter(product_list, "*dr?.fits") for filename in fits_files: log.info(" {}".format(filename)) proc_utils.refine_product_headers(filename, total_obj_list) except Exception: log.critical("Trouble updating drizzle products for CAOM.") exc_type, exc_value, exc_tb = sys.exc_info() traceback.print_exception(exc_type, exc_value, exc_tb, file=sys.stdout) logging.exception("message") # Remove rules files copied to the current working directory for rules_filename in list(rules_files.values()): log.info("Removed rules file {}".format(rules_filename)) os.remove(rules_filename) # Add primary header information to all objects for filt_obj in total_obj_list: filt_obj = poller_utils.add_primary_fits_header_as_attr(filt_obj) # Return product list for creation of pipeline manifest file return product_list
838ad7e0f3590e3dab4f7383f33f9c5d5c55e6d7
3,654,274
from datetime import datetime def get_submission_praw(n, sub, n_num): """ Returns a list of results for submission in past: 1st list: current result from n hours ago until now 2nd list: prev result from 2n hours ago until n hours ago """ mid_interval = datetime.today() - timedelta(hours=n) timestamp_mid = int(mid_interval.timestamp()) timestamp_start = int((mid_interval - timedelta(hours=n)).timestamp()) timestamp_end = int(datetime.today().timestamp()) recent = {} prev = {} subreddit = reddit.subreddit(sub) all_results = [] for post in subreddit.new(limit=n_num): all_results.append([post.title, post.link_flair_text, post.selftext, post.score, post.num_comments, post.created_utc]) # start --> mid --> end recent[sub] = [posts for posts in all_results if timestamp_mid <= posts[5] <= timestamp_end] prev[sub] = [posts for posts in all_results if timestamp_start <= posts[5] < timestamp_mid] return recent, prev
692af49736fac07a2de51d1cd0c4abcfe7bb8ee3
3,654,275
import scipy def memory_kernel_logspace(dt, coeffs, dim_x, noDirac=False): """ Return the value of the estimated memory kernel Parameters ---------- dt: Timestep coeffs : Coefficients for diffusion and friction dim_x: Dimension of visible variables noDirac: Remove the dirac at time zero Returns ------- timespan : array-like, shape (n_samples, ) Array of time to evaluate memory kernel kernel_evaluated : array-like, shape (n_samples, dim_x,dim_x) Array of values of the kernel at time provided """ Avv = coeffs["A"][:dim_x, :dim_x] Ahv = coeffs["A"][dim_x:, :dim_x] Avh = coeffs["A"][:dim_x, dim_x:] Ahh = coeffs["A"][dim_x:, dim_x:] eigs = np.linalg.eigvals(Ahh) Kernel = np.zeros((150, dim_x, dim_x)) final_time = 25 / np.min(np.abs(np.real(eigs))) times = np.logspace(np.log10(dt), np.log10(final_time), num=150) for n, t in enumerate(times): Kernel[n, :, :] = -np.matmul(Avh, np.matmul(scipy.linalg.expm(-1 * t * Ahh), Ahv)) if not noDirac: Kernel[0, :, :] = Kernel[0, :, :] + Avv return times, Kernel
21e6aed08bebd91f359efa216ab1331cf9ace310
3,654,276
def _is_constant(x, atol=1e-7, positive=None): """ True if x is a constant array, within atol """ x = np.asarray(x) return (np.max(np.abs(x - x[0])) < atol and (np.all((x > 0) == positive) if positive is not None else True))
0b272dd843adbd4eaa4ebbe31efe6420de05a6dd
3,654,277
def estimate_M(X, estimator, B, ratio): """Estimating M with Block or incomplete U-statistics estimator :param B: Block size :param ratio: size of incomplete U-statistics estimator """ p = X.shape[1] x_bw = util.meddistance(X, subsample = 1000)**2 kx = kernel.KGauss(x_bw) if estimator == 'inc': hsic_M = hsic.HSIC_Inc(kx, kx, ratio = ratio) else: # 'block' hsic_M = hsic.HSIC_Block(kx, kx, bsize = B) M_true = np.zeros((p, p)) for i in range(p): for j in range(i+1): M_true[i, j] = np.mean(hsic_M.estimates(X[:, i, np.newaxis], X[:, j, np.newaxis])) M_true[j, i] = M_true[i, j] M = nearestPD(M_true) # positive definite approximation return M_true, M
656b83eac9e522b1feb20a4b5b56649b9553ecb0
3,654,278
def query_yes_no(question, default="yes"): """Queries user for confimration""" valid = {"yes": True, "y": True, "ye": True, "no": False, "n": False} if default is None: prompt = " [y/n] " elif default == "yes": prompt = " [Y/n] " elif default == "no": prompt = " [y/N] " else: raise ValueError("invalid default answer: '%s'" % default) while True: console.print(question + escape(prompt)) choice = input().lower() if default is not None and choice == '': return valid[default] elif choice in valid: return valid[choice] else: console.print("Please respond with 'yes' or 'no' " "(or 'y' or 'n').\n")
58e9bba831155ca9f4d4879a5e960949757b0562
3,654,279
import base64 import binascii def decode(password, encoded, notice): """ :type password: str :type encoded: str """ dec = [] try: encoded_bytes = base64.urlsafe_b64decode(encoded.encode()).decode() except binascii.Error: notice("Invalid input '{}'".format(encoded)) return for i in range(len(encoded_bytes)): key_c = password[i % len(password)] dec_c = chr((256 + ord(encoded_bytes[i]) - ord(key_c)) % 256) dec.append(dec_c) return "".join(dec)
5cf82bfbbe7eee458914113f648dadbe7b15dee8
3,654,280
def read_file_unlabelled_data(file_name): """ read_file_unlabelled_data reades from file_name These files are to be in csv-format with one token per line (see the example project). returns text_vector: Ex: [['7_7', 'perhaps', 'there', 'is', 'a_a', 'better', 'way', '._.'], ['2_2', 'Why', 'are', 'you, 'doing','doing', 'it', '._.']] """ # Read file, to get text, grouped into sentences text_vector = [] current_text = [] f = open(file_name) for line in f: word = line.strip() if word != "": if len(word) == 1: word = word + "_" + word # to cover for a bug in scikit learn's tokenization current_text.append(word) else: if len(current_text) != 0: # end of sentence text_vector.append(current_text) current_text = [] if len(current_text) != 0: # the last sentence text_vector.append(current_text) f.close() return text_vector
f171ac6c4728aa67ef59b523acc0a006b3b4f16a
3,654,281
from functools import reduce def replace(data, replacements): """ Allows to performs several string substitutions. This function performs several string substitutions on the initial ``data`` string using a list of 2-tuples (old, new) defining substitutions and returns the resulting string. """ return reduce(lambda a, kv: a.replace(*kv), replacements, data)
37b2ad5b9b6d50d81a8c1bcded9890de3c840722
3,654,282
def fake_kafka() -> FakeKafka: """Fixture for fake kafka.""" return FakeKafka()
35fdcf2030dda1cab2be1820549f67dc246cf88f
3,654,283
from typing import Union import operator def rr20(prec: pd.Series) -> Union[float, int]: """Function for count of heavy precipitation (days where rr greater equal 20mm) Args: prec (list): value array of precipitation Returns: np.nan or number: the count of icing days """ assert isinstance(prec, pd.Series) op = operator.ge num = 20.0 return number_of(prec, num, op)
4686eccac5be53b4a888d8bf0649c72e65d81bdb
3,654,284
def get_neg_label(cls_label: np.ndarray, num_neg: int) -> np.ndarray: """Generate random negative samples. :param cls_label: Class labels including only positive samples. :param num_neg: Number of negative samples. :return: Label with original positive samples (marked by 1), negative samples (marked by -1), and ignored samples (marked by 0) """ seq_len, num_scales = cls_label.shape cls_label = cls_label.copy().reshape(-1) cls_label[cls_label < 0] = 0 # reset negative samples neg_idx, = np.where(cls_label == 0) np.random.shuffle(neg_idx) neg_idx = neg_idx[:num_neg] cls_label[neg_idx] = -1 cls_label = np.reshape(cls_label, (seq_len, num_scales)) return cls_label
3cd0ad5c1973eff969330f014c405f39092b733b
3,654,285
def G12(x, a): """ Eqs 20, 24, 25 of Khangulyan et al (2014) """ alpha, a, beta, b = a pi26 = np.pi ** 2 / 6.0 G = (pi26 + x) * np.exp(-x) tmp = 1 + b * x ** beta g = 1.0 / (a * x ** alpha / tmp + 1.0) return G * g
6b84d5f5978a9faf8c9d77a2b9351f73f5717f48
3,654,286
def binomial(n, k): """ binomial coefficient """ if k < 0 or k > n: return 0 if k == 0 or k == n: return 1 num = 1 den = 1 for i in range(1, min(k, n - k) + 1): # take advantage of symmetry num *= (n + 1 - i) den *= i c = num // den return c
78910202202f749f8e154b074a55f6a5ddf91f64
3,654,287
def pagination(page): """ Generates the series of links to the pages in a paginated list. """ paginator = page.paginator page_num = page.number #pagination_required = (not cl.show_all or not cl.can_show_all) and cl.multi_page if False: #not pagination_required: page_range = [] else: ON_EACH_SIDE = 3 ON_ENDS = 2 # If there are 10 or fewer pages, display links to every page. # Otherwise, do some fancy if paginator.num_pages <= 10: page_range = range(1, paginator.num_pages + 1) else: # Insert "smart" pagination links, so that there are always ON_ENDS # links at either end of the list of pages, and there are always # ON_EACH_SIDE links at either end of the "current page" link. page_range = [] if page_num > (ON_EACH_SIDE + ON_ENDS): page_range.extend(range(1, ON_ENDS)) page_range.append(DOT) page_range.extend(range(page_num - ON_EACH_SIDE, page_num + 1)) else: page_range.extend(range(1, page_num + 1)) if page_num < (paginator.num_pages - ON_EACH_SIDE - ON_ENDS): page_range.extend(range(page_num + 1, page_num + ON_EACH_SIDE + 1)) page_range.append(DOT) page_range.extend(range(paginator.num_pages - ON_ENDS, paginator.num_pages + 1)) else: page_range.extend(range(page_num + 1, paginator.num_pages + 1)) #need_show_all_link = cl.can_show_all and not cl.show_all and cl.multi_page return { 'paginator': paginator, 'page_obj': page, 'page': page.number, #'pagination_required': pagination_required, #'show_all_url': need_show_all_link and cl.get_query_string({ALL_VAR: ''}), 'page_range': page_range, #'ALL_VAR': ALL_VAR, '1': 1, 'is_paginated': True, }
60d90adfbeceab9d159652b641e60da8fa995954
3,654,288
def bubbleSort(arr): """ >>> bubbleSort(arr) [11, 12, 23, 25, 34, 54, 90] """ n = len(arr) for i in range(n-1): for j in range(0, n-i-1): if arr[j] > arr[j+1]: arr[j], arr[j+1] = arr[j+1], arr[j] return arr
28bc9d505ef44a4b403c0f91a971cccf74644c5a
3,654,289
def generate_kronik_feats(fn): """Generates features from a Kronik output file""" header = get_tsv_header(fn) return generate_split_tsv_lines(fn, header)
8b98f346ef5d833e0bfb876a7985c8bb3ced905c
3,654,290
import time import sys def regressor_contrast(model1:RegressorMixin, model2:RegressorMixin, test_data:pd.DataFrame, label_data:pd.Series, threshold:int=10)->pd.DataFrame: """Compute 11 metrics to compare a Sckit-learn regression models and make statistical test for residual normality""" np.random.seed(33) models_time = [] models_memory = [] models_predictions = [] models_acc = [] models_dagostino = [] models_dagostino_p = [] models_explained_variance = [] models_r2 = [] models_rmse = [] models_mae = [] models_shapiro = [] models_shapiro_p = [] for m in [model1, model2]: t1 = time() predictions = m.predict(test_data) t2 = time() models_time.append(t2 -t1) models_predictions.append(predictions) models_explained_variance.append(round(explained_variance_score(label_data,predictions),5)) models_r2.append(round(r2_score(label_data,predictions),5)) models_rmse.append(round(mean_squared_error(label_data,predictions, squared = False ),5)) models_mae.append(round(mean_absolute_error(label_data,predictions),5)) models_acc.append(round(percentaje_acc(label_data,predictions, threshold=threshold),5)) models_memory.append(sys.getsizeof(m)/1024) shap_sta, shap_p, dagostino_sta, dagostino_p = _multiples_normality_test(predictions, label_data) models_shapiro.append(round(shap_sta,5)) models_dagostino.append(round(dagostino_sta,5)) models_shapiro_p.append(shap_p) models_dagostino_p.append(dagostino_p) table = pd.DataFrame({ "Model": ["Model1", "Model2"], "Exec time(seg)": models_time, "Memory (Kb)": models_memory, "R2":models_r2, "MAE": models_mae, "RMSE": models_rmse, "Explained Variance": models_explained_variance, "Residual Shapiro Test Stat": models_shapiro , "Residual Shapiro Test p-value": models_shapiro_p, "Residual D’Agostino’s Statical": models_dagostino , "Residual D’Agostino’s p-value": models_dagostino_p, "Ratio errors in Threshold": models_acc }) return table
18c55de497009555a30ffd9a3a2b5c5a0f1b53ee
3,654,291
def delete_product(uuid: str, db: Session = Depends(auth)): """Delete a registered product.""" if product := repo.get_product_by_uuid(db=db, uuid=uuid): if product.taken: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Cannot delete products already taken.", ) repo.delete_product(db=db, product=product) return { "deleted": True, "product": product, } raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="No product found for the code specified.", )
97aa45eec0ae98a58984f8ca97d584b5a715cba6
3,654,292
import functools def CreateMnemonicsC(mnemonicsIds): """ Create the opcodes arrays for C header files. """ opsEnum = "typedef enum {\n\tI_UNDEFINED = 0, " pos = 0 l2 = sorted(mnemonicsIds.keys()) for i in l2: s = "I_%s = %d" % (i.replace(" ", "_").replace(",", ""), mnemonicsIds[i]) if i != l2[-1]: s += "," pos += len(s) if pos >= 70: s += "\n\t" pos = 0 elif i != l2[-1]: s += " " opsEnum += s opsEnum += "\n} _InstructionType;" # Mnemonics are sorted by insertion order. (Psuedo mnemonics depend on this!) # NOTE: EXTRA BACKSLASHES FORE RE.SUB !!! s = "const unsigned char _MNEMONICS[] =\n\"\\\\x09\" \"UNDEFINED\\\\0\" " l = list(zip(mnemonicsIds.keys(), mnemonicsIds.values())) l = sorted(l, key=functools.cmp_to_key(lambda x, y: x[1] - y[1])) for i in l: s += "\"\\\\x%02x\" \"%s\\\\0\" " % (len(i[0]), i[0]) if len(s) - s.rfind("\n") >= 76: s += "\\\\\n" s = s[:-1] + ";" # Ignore last space. # Return enum & mnemonics. return (opsEnum, s)
a20a01fbefc1175c24144753264edc938258cdca
3,654,293
import math def create_windows(c_main, origin, J=None, I=None, depth=None, width=None): """ Create windows based on contour and windowing parameters. The first window (at arc length = 0) is placed at the spline origin. Note: to define the windows, this function uses pseudo-radial and pseudo-angular coordinates. The pseudo-radial coordinate is based on the distance transform of the rasterized version of the continuous spline that defines the contour of the cell. The pseudo-angular coordinate for layer j is based on the distance transform of the discrete contour of layer j. So there is a bit of an inconsistency between continuous and discrete contours. Parameters ---------- c_main: 2d array A rasterized version of the contour, as obtained by spline_to_param_image. origin: tuple (y, x) coordinates of the origin of the curve. J: int Number of window layers. I: list of int Vector of dimension J specifying the number of windows per layer. depth: int Desired depth of the windows. width: int Desired width of the windows. Returns ------- w: 3d list w[i][j][0] and w[i][j][1] are 1d arrays representing lists of x,y indices of pixels belonging to window in i'th layer in j'th window J: int number of layers (calculated if not provided as input) I: list of int number of windows per layer (calculated if not provided as input) """ origin = [origin[1], origin[0]] # Compute the distance transform of the main contour D_main = distance_transform_edt(-1 == c_main) # Compute the mask corresponding to the main contour mask_main = binary_fill_holes( -1 < c_main ) # Maybe not necessary? Can't we just use the segmented mask here? # Divide the radial coordinate into J layers with specified depth Dmax = np.amax(D_main * mask_main) if J is None: J = int(math.ceil(Dmax / depth)) b = np.linspace( 0, Dmax, J + 1 ) # Boundaries of the layers in terms of distances to the main contour if I is None: compute_num_win = True I = [] else: compute_num_win = False w = [] for j in range(J): w.append([]) # The mask containing the interior of the cell starting from # the j-th layer mask = (b[j] <= D_main) * mask_main # Extract the contour of the mask # We must fix certain frames where multiple contours are returned. # So we choose the longest contour. Some pixels may be lost in the process, # i.e., the windows may not cover the entire cell. clist = find_contours(mask, 0, fully_connected="high") cvec = np.asarray( clist[np.argmax([cel.shape[0] for cel in clist])], dtype=np.int ) # An alternative fix using OpenCV's findContours routine---doesn't solve the problem # contours, hierarchy = cv.findContours(np.asarray(mask, dtype=np.uint8), cv.RETR_LIST, cv.CHAIN_APPROX_NONE) # cvec = np.asarray(contours[np.argmax([cel.shape[0] for cel in contours])], dtype=np.int) # cvec = cvec.reshape((cvec.shape[0], cvec.shape[2])) # cvec = cvec[::-1, [1,0]] # Sort boundary pixels in clockwise direction and switch (x, y) coordinates # Lvec = compute_discrete_arc_length(cvec) # c = create_arc_length_image(mask.shape, cvec, Lvec) # plt.figure() # plt.imshow(c, 'gray', vmin=-Lvec[-1], vmax=Lvec[-1]) # plt.plot(origin[1], origin[0], 'or') # # plt.show() # Adjust the origin of the contour: # on the discrete contour cvec, find the closest point to the origin, # then apply a circular shift to cvec to make this point the first one. n0 = np.argmin(np.linalg.norm(cvec - origin, axis=1)) cvec = np.roll(cvec, -n0, axis=0) # Compute the discrete arc length along the contour Lvec = compute_discrete_arc_length(cvec) # Create an image of the contour where the intensity is the arc length arc = create_arc_length_image(mask.shape, cvec, Lvec) # Compute the feature transform of this image: # for each pixel position, we get the coordinates of the closest pixel on the contour F = distance_transform_edt( -1 == arc, return_distances=False, return_indices=True ) # Fill array with arc lengths of closest points on the contour # L = np.zeros(c.shape) # for u in range(c.shape[0]): # for v in range(c.shape[1]): # L[u, v] = c[F[0, u, v], F[1, u, v]] # gridx, gridy = np.meshgrid(range(c.shape[1]), range(c.shape[0])) # L = c[F[0,:,:][gridy, gridx], F[1,:,:][gridy, gridx]] L = arc[F[0, :, :], F[1, :, :]] # Create sampling windows for the j-th layer if compute_num_win: I.append(int(math.ceil(Lvec[-1] / width))) w_borders = np.linspace(0, Lvec[-1], I[j] + 1) for i in range(I[j]): # w[-1].append(np.where(mask & (s1[i] <= L) & (L < s1[i+1]) & (b[0] <= D) & (D < b[1]))) w[-1].append( np.where( mask & (w_borders[i] <= L) & (L < w_borders[i + 1]) & (b[j] <= D_main) & (D_main < b[j + 1]) ) ) # plt.figure() # plt.imshow(w[j][i]) # plt.show() # # Compute positions on the contour that will be used for the displacement estimation # if j == 0: # t = define_contour_positions(Lvec, I[0], cvec, c_main) return w, J, I
c5e3989b8f8f0f558cdc057b6f3bb9901c4363cf
3,654,294
from bs4 import BeautifulSoup def extractsms(htmlsms) : """ extractsms -- extract SMS messages from BeautifulSoup tree of Google Voice SMS HTML. Output is a list of dictionaries, one per message. """ msgitems = [] # accum message items here # Extract all conversations by searching for a DIV with an ID at top level. tree = BeautifulSoup.BeautifulSoup(htmlsms) # parse HTML into tree conversations = tree.findAll("div",attrs={"id" : True},recursive=False) for conversation in conversations : # For each conversation, extract each row, which is one SMS message. rows = conversation.findAll(attrs={"class" : "gc-message-sms-row"}) for row in rows : # for all rows # For each row, which is one message, extract all the fields. msgitem = {"id" : conversation["id"]} # tag this message with conversation ID spans = row.findAll("span",attrs={"class" : True}, recursive=False) for span in spans : # for all spans in row cl = span["class"].replace('gc-message-sms-', '') msgitem[cl] = (" ".join(span.findAll(text=True))).strip() # put text in dict msgitems.append(msgitem) # add msg dictionary to list return msgitems
e31a66ae5ee56faf4eab131044c395fcd8de3a2a
3,654,295
def load_ch_wubi_dict(dict_path=e2p.E2P_CH_WUBI_PATH): """Load Chinese to Wubi Dictionary. Parameters --------- dict_path : str the absolute path to chinese2wubi dictionary. In default, it's E2P_CH_WUBI_PATH. Returns ------- dict : Dictionary a mapping between Chinese to Wubi Code """ return load_dict(dict_path)
e9297968b5dc4d1811659084e03ef0b2156c8a00
3,654,296
def middle_flow(middle_inputs: Tensor) -> Tensor: """ Middle flow Implements the second of the three broad parts of the model :param middle_inputs: middle_inputs: Tensor output generate by the Entry Flow, having shape [*, new_rows, new_cols, 728] :return: Output tensor of shape [*, new_rows, new_cols, 728] """ # Block 4 - Conv B (Green) middle_outputs = middle_inputs for _ in range(8): res = middle_outputs for _ in range(3): middle_outputs = separable_convolutional_unit(middle_outputs, 728) middle_outputs = Add()([res, middle_outputs]) return middle_outputs
80fedffbb6da2f3e0b99a931d66d593bf627bdbe
3,654,297
def feature_extraction(sample_index, labels, baf, lrr, rawcopy_pred, data_shape, margin=10000, pad_val=-2): """ Extract features at sample index :param sample_index: sample index :param labels: break point labels :param baf: b-allele frequency values :param lrr: log r ratio values :param rawcopy_pred: rawcop predictions :param data_shape: shape of the data :param margin: margin to use :param pad_val: padding value for windows appearing on start or end of data sequence :return: """ window_size = margin * 4 if sample_index < margin * 2: running_idx = margin * 2 - sample_index running_idx2 = margin * 2 + sample_index if running_idx2 >= len(baf): running_idx2 = len(baf) - 1 ix = range(sample_index, sample_index + margin) baf_ix = range(0, running_idx2) baf_ = baf[baf_ix] baf = np.pad(baf_, (running_idx, 0), 'constant', constant_values=pad_val) lrr_ = lrr[baf_ix] lrr = np.pad(lrr_, (running_idx, 0), 'constant', constant_values=pad_val) elif sample_index + margin * 2 > data_shape[0]: running_idx = sample_index - margin * 2 ix = range(sample_index - margin, data_shape[0]) baf_ix = range(running_idx, data_shape[0]) baf_ = baf[baf_ix] baf = np.pad(baf_, (0, running_idx), 'constant', constant_values=pad_val) lrr_ = lrr[baf_ix] lrr = np.pad(lrr_, (0, running_idx), 'constant', constant_values=pad_val) else: ix = range(sample_index - margin, sample_index + margin) baf_ix = range(sample_index - margin * 2, sample_index + margin * 2) baf = baf[baf_ix] lrr = lrr[baf_ix] label = [] for l in labels[baf_ix]: if label == []: label.append(l) elif l != label[-1]: label.append(l) rc_pred = [] for l in rawcopy_pred[baf_ix]: if rc_pred == []: rc_pred.append(l) elif l != label[-1]: rc_pred.append(l) assert baf.shape[0] == window_size assert lrr.shape[0] == window_size feat = np.vstack((baf, lrr)) return feat, rc_pred, label, ix
2b70229d3e4021d4a0cce9bf7dce2222956e299d
3,654,298
def get_filename(file_fullpath): """ Returns the filename without the full path :param file_fullpath: :return: Returns the filename """ filename = file_fullpath.split("/")[-1].split(".")[0] return filename
903cb26c89d1d18c9ebafe1a468c7fa66c51f119
3,654,299