content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import struct def test_eap_proto_otp_errors(dev, apdev): """EAP-OTP local error cases""" def otp_handler2(ctx, req): logger.info("otp_handler2 - RX " + req.encode("hex")) if 'num' not in ctx: ctx['num'] = 0 ctx['num'] = ctx['num'] + 1 if 'id' not in ctx: ctx['id'] = 1 ctx['id'] = (ctx['id'] + 1) % 256 idx = 0 idx += 1 if ctx['num'] == idx: logger.info("Test: Challenge included") return struct.pack(">BBHBB", EAP_CODE_REQUEST, ctx['id'], 4 + 1 + 1, EAP_TYPE_OTP, ord('A')) return struct.pack(">BBH", EAP_CODE_FAILURE, ctx['id'], 4) srv = start_radius_server(otp_handler2) try: hapd = start_ap(apdev[0]) with alloc_fail(dev[0], 1, "eap_msg_alloc;eap_otp_process"): dev[0].connect("eap-test", key_mgmt="WPA-EAP", scan_freq="2412", eap="OTP", identity="user", password="password", wait_connect=False) wait_fail_trigger(dev[0], "GET_ALLOC_FAIL") dev[0].request("REMOVE_NETWORK all") dev[0].wait_disconnected() finally: stop_radius_server(srv)
c32797121b695ad30f3cb3013a79c0e309d88715
3,654,500
def pivot_proportions(df, groups, responses, weights=1): """ Pivot data to show the breakdown of responses for each group. Parameters: df: a pandas DataFrame with data to be aggregated groups: the name of the column containing the groups to partition by respones: the name of the column that contains responses to aggregate into proportions weights: the statistical weighting associated with each response Returns: a pandas DataFrame containing the proportion of responses within each group """ pivot_data = df[[groups, responses]].assign(weights=weights) pivoted_counts = pd.pivot_table( pivot_data, columns=groups, index=responses, aggfunc='sum' ) pivoted_counts = pivoted_counts['weights'].sort_index(axis=1) return (pivoted_counts / pivoted_counts.sum()).fillna(0)
7bf8cdc199fe800cb1bb280ceb2ffdb489f0d342
3,654,501
def row_stack(a1, a2): """ Stacks data from subsequent sweeps, while padding "empty" columns from subsequent sweeps. Inputs ------ a1: np.array destination array a2: np.array array which is added onto the first array Returns ------- out: np.array stacked destination and additional array, with uniform shape """ [N1, M1] = a1.shape [N2, M2] = a2.shape if M1 > M2: a2 = np.pad(a2, ((0, 0), (0, M1-M2)), mode='constant', constant_values=-9999999) elif M2 < M1: a1 = np.pad(a2, ((0, 0), (0, M2-M1)), mode='constant', constant_values=-9999999) out = np.vstack((a1, a2)) out[out == -9999999] = np.nan return out
4e8961351283a1702bc25349f2523c068cfb5424
3,654,502
def globalPrediction(vid, category_names, vid_probs, predicted_labels): """ Get a matrix of probabilities over the classes for the c3d features of a video. Generate the top 3 predictions from the prob matrix """ anno_list = [] # Idea 1 : To form the hist over the categories, each bin has sum of probs vprobs_sum = vid_probs.sum(axis=0) top_n = vprobs_sum.sort_values(ascending = False)[:3] #counter = collections.Counter(predicted_labels) #top_n = counter.most_common(3) # list of tuples #assert len(top_n)==3 labels = top_n.index.tolist() scores = top_n.values.tolist() for idx,score in enumerate(scores): anno_list.append({'score': score, 'label':labels[idx]}) #for (idx,score) in top_n: # anno_list.append({'score': score, 'label':category_names[idx]}) # Idea 2 : Detect temporal continuity of category predicted. Longer the better # Idea 3 : Count the number of highest votes for top category. (Worse than 1) # If equal votes for >1 category then use Idea 1 # finds the max val index among the columns for each row and the freq of the # occurrence of the column names (in decreasing order) # labels = vid_probs.idxmax(axis=1).value_counts()[:3].index.tolist() # scores = probs_sum[labels].tolist() # for idx,score in enumerate(scores): # anno_list.append({'score': score, 'label':labels[idx]}) return anno_list, vprobs_sum
51676499cbf719874c49b89557d960ed8a136243
3,654,503
def GetApexServerStatus(api_key): """ get the status of Apex Legends servers. :param api_key: The API key to use. Warning You must put either a clickable link to "https://apexlegendsstatus.com" OR have a message such as "Data from apexlegendsstatus.com" when displaying data coming from this API. Your key may be suspended otherwise. """ url = 'https://api.mozambiquehe.re/servers' try: res = get_request(url, {'Authorization': api_key}) response = res[0] if response.status_code == 200: r = response.json() res = ApexTrackerPy.Apexclass.A_Server_Data( row_json=r, elapsed_time=res[1], Origin_login_EU_West=r["Origin_login"]["EU-West"], Origin_login_EU_East=r["Origin_login"]["EU-East"], Origin_login_US_West=r["Origin_login"]["US-West"], Origin_login_US_East=r["Origin_login"]["US-East"], Origin_login_US_Central=r["Origin_login"]["US-Central"], Origin_login_Asia=r["Origin_login"]["Asia"], Origin_login_SouthAmerica=r["Origin_login"]["SouthAmerica"], EA_novafusion_EU_West=r["EA_novafusion"]["EU-West"], EA_novafusion_EU_East=r["EA_novafusion"]["EU-East"], EA_novafusion_US_West=r["EA_novafusion"]["US-West"], EA_novafusion_US_East=r["EA_novafusion"]["US-East"], EA_novafusion_US_Central=r["EA_novafusion"]["US-Central"], EA_novafusion_Asia=r["EA_novafusion"]["Asia"], EA_novafusion_SouthAmerica=r["EA_novafusion"]["SouthAmerica"], EA_accounts_EU_West=r["EA_accounts"]["EU-West"], EA_accounts_EU_East=r["EA_accounts"]["EU-East"], EA_accounts_US_West=r["EA_accounts"]["US-West"], EA_accounts_US_East=r["EA_accounts"]["US-East"], EA_accounts_US_Central=r["EA_accounts"]["US-Central"], EA_accounts_Asia=r["EA_accounts"]["Asia"], EA_accounts_SouthAmerica=r["EA_accounts"]["SouthAmerica"], ApexOauth_Crossplay_EU_West=r["ApexOauth_Crossplay"]["EU-West"], ApexOauth_Crossplay_EU_East=r["ApexOauth_Crossplay"]["EU-East"], ApexOauth_Crossplay_US_West=r["ApexOauth_Crossplay"]["US-West"], ApexOauth_Crossplay_US_East=r["ApexOauth_Crossplay"]["US-East"], ApexOauth_Crossplay_US_Central=r["ApexOauth_Crossplay"]["US-Central"], ApexOauth_Crossplay_Asia=r["ApexOauth_Crossplay"]["Asia"], ApexOauth_Crossplay_SouthAmerica=r["ApexOauth_Crossplay"]["SouthAmerica"], CSServer_Playstation_Network=r["otherPlatforms"]["Playstation-Network"], CSServer_Xbox_Live=r["otherPlatforms"]["Xbox-Live"], ) return res else: raise Exception('HttpError!:The API returned status code '+str(response.status_code)) except Exception as e: raise Exception('HttpError!:An error has occurred during the API call.\n'+str(e))
362ca4e68ffbf395f56ccb6aad65cc9d13ab4545
3,654,504
def construct_mdx(cube_name, rows, columns, contexts=None, suppress=None): """ Method to construct MDX Query from :param cube_name: Name of the Cube :param rows: Dictionary of Dimension Names and Selections :param columns: Dictionary of Dimension Names and Selections (Dimension-MDX, List of Elementnames, Subset, or None) :param contexts: Dictionary of Dimension Names and Selections :param suppress: "Both", "Rows", "Columns" or None :return: Genered MDX Query """ # MDX Skeleton mdx_template = 'SELECT {}{} ON ROWS, {}{} ON COLUMNS FROM [{}] {}' # Suppression mdx_rows_suppress = 'NON EMPTY ' if (suppress in ['Rows', 'Both'] and rows) else '' mdx_columns_suppress = 'NON EMPTY ' if (suppress in ['Columns', 'Both'] and columns) else '' # Rows and Columns mdx_rows = construct_mdx_axis(rows) mdx_columns = construct_mdx_axis(columns) # Context filter (where statement) mdx_where = '' if contexts: mdx_where_parts = ['[{}].[{}]'.format(dim, elem) for dim, elem in contexts.items()] mdx_where += "WHERE (" + ','.join(mdx_where_parts) + ")" # Return Full MDX return mdx_template.format(mdx_rows_suppress, mdx_rows, mdx_columns_suppress, mdx_columns, cube_name, mdx_where)
117d554b71fcb5c065664e51a9064b2edb504ed6
3,654,505
def mock_train_model(spark_context, testserver): """Pre-condition: worker.update_one is assumed to be working.""" inq = Queue() outq = Queue() job = get_job() job['urls'] = [testserver.url] db = get_fake_mongo_client().ophicleide db.models.insert_one(job) inq.put(job) update_model(spark_context, inq, outq, db, 'http://testurl') return db, job['_id']
eb862f8f600a6aa64cb65685f122dd577a6e51df
3,654,506
def calc_number_of_children(*args): """ calc_number_of_children(loc, tif, dont_deref_ptr=False) -> int Calculate max number of lines of a formatted c data, when expanded ( 'PTV_EXPAND' ). @param loc: location of the data ( ALOC_STATIC or ALOC_CUSTOM ) (C++: const argloc_t &) @param tif: type info (C++: const tinfo_t &) @param dont_deref_ptr: consider 'ea' as the ptr value (C++: bool) """ return _ida_typeinf.calc_number_of_children(*args)
cfc7427ec5ff4d0fc78d87d315460c62d130cd3d
3,654,507
def _entity_namespace_key(entity, key): """Return an entry from an entity_namespace. Raises :class:`_exc.InvalidRequestError` rather than attribute error on not found. """ ns = entity.entity_namespace try: return getattr(ns, key) except AttributeError as err: util.raise_( exc.InvalidRequestError( 'Entity namespace for "%s" has no property "%s"' % (entity, key) ), replace_context=err, )
ffd063523a8011a8ee2dd3700920a0523465d6cc
3,654,508
def get_messages(mtype, read=False, uid=None): """ Returns query for messages. If `read` is True it only queries for unread messages """ query = Message.select().where(Message.mtype << mtype) query = query.where(Message.receivedby == current_user.uid if not uid else uid) if read: query = query.where(Message.read.is_null(True)) return query
7959a0510d8f6794ff40d8467d09b0833279be10
3,654,509
import numpy def coords_to_indices(coords, top, left, csx, csy, shape, preserve_out_of_bounds=False): """ Convert coordinates to array indices using the given specs. Coordinates outside of the shape are not returned. :param coords: Tuple of coordinates in the form ([x...], [y...]) :param top: Top coordinate of array :param left: Left coordinate of array :param csx: Cell size in the x-direction :param csy: Cell size in the y-direction :param shape: Shape of array (for bounds) :return: tuple of indices in the form ([i...], [j...]) """ x, y = numpy.asarray(coords[0]), numpy.asarray(coords[1]) i = numpy.int64((top - y) / csy) j = numpy.int64((x - left) / csx) if preserve_out_of_bounds: return i, j else: m = (i >= 0) & (j >= 0) & (i < shape[0]) & (j < shape[1]) return i[m], j[m]
89b99ffc159c56855792d0daeb8bdb5a5d04ad9f
3,654,510
def sanitize_vcf_file(vcf_file, out_file, snp_log_file, sample_log_file, logging, min_count=1, max_missing=0.25, max_alt_states=4, disruptive_threshold=1,window_size=30,max_snps=2): """ Filter a user provided vcf and write a filtered vcf file Parameters ---------- vcf_file [str] : Path to vcf file out_file [str] : Path to write santized vcf file snp_log_file [str] : Path to write SNP log report sample_log_file [str]: Path to write sample report logging [logging obj] : logging object min_count [int] : Minimum number of variable samples ie. if set to 2, at least two samples must differ from the rest max_missing [float] : Percent of samples which can be missing data for a position for that position to be valid max_alt_states [int] : Maxmimum number of bases which can be in the vcf for that position to be valid disruptive_threshold [int]: Identify sequences which are blunting resolution by looking at which ones are missing where other sequences have it. By default, it looks for sequences which are uniquely missing a position conserved in all of the other samples Returns ------- List of sample_id's in vcf """ logging.info("Reading vcf file {}".format(vcf_file)) pandas_vcf_obj = pandas_vcf(vcf_file) samples = pandas_vcf_obj.get_sample_list() num_samples = len(samples) snp_report = open(snp_log_file, 'w') sample_report = open(sample_log_file, 'w') sample_ambig_counts = {} for sample in samples: sample_ambig_counts[sample] = {'total_ambig': 0, 'uniq_ambig': 0, 'low_freq_variants': 0} logging.info("VCF file contains #{} samples".format(len(samples))) logging.info("VCF file samples: {}".format(samples)) count_postitions = 0 valid_position_count = 0 filtered_positions_count = 0 filtered_positions_ambig = 0 filtered_positions_alt = 0 ambiguous_positions = {} snp_data = {} positions = [] position_base_calls = pandas_vcf_obj.get_baselookup() valid_positions = [] for index,row in pandas_vcf_obj.df.iterrows(): calls = get_vcf_row_calls(row, position_base_calls, samples, logging) count_postitions += 1 position = list(calls.keys())[0] positions.append(position) chromosome = calls[position]['chrom'] bases = calls[position]['bases'] ref_base = calls[position]['ref_base'] if not chromosome in snp_data: snp_data[chromosome] = {} if not position in snp_data[chromosome]: snp_data[chromosome][position] = {} count_ref = 0 count_alt = 0 count_missing = 0 count_alt_bases = 0 alt_samples = [] valid_bases = [] for base in bases: if base == ref_base: count_ref = len(bases[base]) elif base == 'N': count_missing = len(bases[base]) if not position in ambiguous_positions: ambiguous_positions[position] = [] ambiguous_positions[position] = bases[base] for sample_id in ambiguous_positions[position]: sample_ambig_counts[sample_id]['total_ambig'] += 1 else: count_alt_bases += 1 count_alt += len(bases[base]) alt_samples += bases[base] valid_bases.append(base) if (count_ref >= min_count) and \ (count_alt >= min_count) and \ (count_missing / num_samples <= max_missing) and \ count_alt_bases <= max_alt_states: valid_position_count += 1 valid_positions.append(position) for base in valid_bases: snp_data[chromosome][position][base] = {'samples':bases[base],'out_bases':list(set(list(bases.keys())) - set([base]))} else: if count_ref < min_count and count_alt < min_count: filtered_positions_count += 1 snp_report.write( "Filtering due to minimum polymorphic sample count\tchrom: {}\tposition: {}\tcount_ref: {}\tcount_alt: {}\tcount_missing: {}\n".format( chromosome, position, count_ref, count_alt, count_missing)) for sample_id in alt_samples: sample_ambig_counts[sample_id]['low_freq_variants'] += 1 if count_missing / num_samples >= max_missing: filtered_positions_ambig += 1 snp_report.write( "Filtering due to maximum missing sample count\tchrom: {}\tposition: {}\tcount_ref: {}\tcount_alt: {}\tcount_missing: {}\n".format( chromosome, position, count_ref, count_alt, count_missing)) if count_alt_bases > max_alt_states: filtered_positions_alt += 1 snp_report.write( "Filtering due to more than allowed alt base states\tchrom: {}\tposition: {}\tcount_ref: {}\tcount_alt: {}\tcount_missing: {}\n".format( chromosome, position, count_ref, count_alt, count_missing)) filtered_df = pandas_vcf_obj.df[pandas_vcf_obj.df['POS'].isin(valid_positions)] filtered_df.to_csv(out_file,sep="\t",header=True,index=False) #for position in positions: logging.info("Read {} positions in file {}".format(count_postitions, vcf_file)) logging.info("Filtered {} positions due to minimum polymorphic sample requirement".format(filtered_positions_count)) logging.info("Filtered {} positions due to missing in more than {}% of samples".format(filtered_positions_ambig, max_missing)) logging.info("Filtered {} positions due to more than allowed alternative base states".format(filtered_positions_alt, max_alt_states)) logging.info("{} positions are valid after filtering".format(valid_position_count)) # Identify for the user unusual sequences that they might want to remove from their analyses disruptive_sequence_check = identify_disruptive_sequences(ambiguous_positions, disruptive_threshold) for sample_id in disruptive_sequence_check: sample_ambig_counts[sample_id]['unique_ambig'] = disruptive_sequence_check[sample_id] # Get 95 percentile for each attribute percentile_total_ambig = get_percentile(sample_ambig_counts, 'total_ambig', percentile=95) percentile_unique_ambig = get_percentile(sample_ambig_counts, 'uniq_ambig', percentile=95) percentile_low_freq_var = get_percentile(sample_ambig_counts, 'low_freq_variants', percentile=95) logging.info( "95% Percentile: Total Ambig={}\t95% Percentile: Unique Ambig={}\t95% Percentile: low frequency variants={}".format( percentile_total_ambig, percentile_unique_ambig, percentile_low_freq_var)) for sample_id in disruptive_sequence_check: status = 'PASS' if sample_ambig_counts[sample_id]['total_ambig'] / count_postitions > max_missing: status = 'FAIL' elif sample_ambig_counts[sample_id]['unique_ambig'] > percentile_unique_ambig: status = 'WARNING: Sample has unusually high number of unique missing core positions' elif sample_ambig_counts[sample_id]['low_freq_variants'] > percentile_low_freq_var: status = 'WARNING: Sample has unusually high number of low frequency variants' elif sample_ambig_counts[sample_id]['total_ambig'] > percentile_total_ambig: status = 'WARNING: Sample has unusually high number of missing core positions' sample_report.write("{}\tTOTAL_AMBIG={}\tUNIQUE_AMBIG={}\tLOW_FREQ_VARIANTS={}\tSTATUS={}\n".format(sample_id, sample_ambig_counts[ sample_id][ 'total_ambig'], sample_ambig_counts[ sample_id][ 'unique_ambig'], sample_ambig_counts[ sample_id][ 'low_freq_variants'], status)) sample_report.close() snp_report.close() return [samples, snp_data]
b5d96e9224b5eddad1dff8dcf2caf558522376bc
3,654,511
from typing import Optional from typing import Any def geq(column: str, value: Optional[Any]) -> str: """ >>> geq("col", None) '1' >>> geq("col", 1) 'col >= 1' >>> geq("col", "1") "col >= '1'" """ if not value: return "1" if isinstance(value, str): return f"{column} >= '{value}'" return f"{column} >= {value}"
9216b8e2480232840ad37d8fe0e5c0f07b88873f
3,654,512
from keras.layers import Conv2D, Dense from palmnet.layers import Conv2DCustom from palmnet.layers.sparse_facto_sparse_tensor_deprecated import SparseFactorisationDense def count_model_param_and_flops(model, dct_layer_sparse_facto_op=None): """ Return the number of params and the number of flops of 2DConvolutional Layers and Dense Layers for both the base model and the compressed model. :return: """ nb_param_base, nb_param_compressed, nb_flop_base, nb_flop_compressed = 0, 0, 0, 0 param_by_layer = {} flop_by_layer = {} for layer in model.layers: logger.warning("Process layer {}".format(layer.name)) if isinstance(layer, Conv2D) or isinstance(layer, Conv2DCustom): nb_param_layer, nb_param_compressed_layer = Palminizable.count_nb_param_layer(layer, dct_layer_sparse_facto_op) nb_flop_layer, nb_flop_compressed_layer = Palminizable.count_nb_flop_conv_layer(layer, nb_param_layer, dct_layer_sparse_facto_op) elif isinstance(layer, Dense) or isinstance(layer, SparseFactorisationDense): nb_param_layer, nb_param_compressed_layer = Palminizable.count_nb_param_layer(layer, dct_layer_sparse_facto_op) nb_flop_layer, nb_flop_compressed_layer = Palminizable.count_nb_flop_dense_layer(layer, nb_param_layer, dct_layer_sparse_facto_op) else: logger.warning("Layer {}, class {}, hasn't been compressed".format(layer.name, layer.__class__.__name__)) nb_param_compressed_layer, nb_param_layer, nb_flop_layer, nb_flop_compressed_layer = 0, 0, 0, 0 param_by_layer[layer.name] = nb_param_layer flop_by_layer[layer.name] = nb_flop_layer nb_param_base += nb_param_layer nb_param_compressed += nb_param_compressed_layer nb_flop_base += nb_flop_layer nb_flop_compressed += nb_flop_compressed_layer return nb_param_base, nb_param_compressed, nb_flop_base, nb_flop_compressed, param_by_layer, flop_by_layer
142b04ad327f662d315d7c92322df8aef2ae9871
3,654,513
def longest_match(list1, list2): """ Find the length of the longest substring match between list1 and list2. >>> longest_match([], []) 0 >>> longest_match('test', 'test') 4 >>> longest_match('test', 'toast') 2 >>> longest_match('supercalifragilisticexpialidocious', 'mystical californication') 5 """ m = len(list1) n = len(list2) data = [[0 for col in range(n+1)] for row in range(m+1)] for a in range(1, m+1): for b in range(1, n+1): if list1[a-1] == list2[b-1]: data[a][b] = 1 + data[a-1][b-1] else: data[a][b] = 0 maxes = [max(row) for row in data] return max(maxes)
4a84dacbb0d59fc7f9c4b59e87e55c72416b8c80
3,654,514
def deserialize_config(data, **kwargs): """Create instance of a JobConfiguration from a dict. Parameters ---------- data : dict Dictionary loaded from a serialized config file. Returns ------- JobConfiguration """ registry = Registry() config_module = data["configuration_module"] config_class = data["configuration_class"] for ext in registry.iter_extensions(): ext_cfg_class = ext[ExtensionClassType.CONFIGURATION] if ext_cfg_class.__module__ == config_module and ext_cfg_class.__name__ == config_class: return ext_cfg_class.deserialize(data, **kwargs) raise InvalidParameter(f"Cannot deserialize {config_module}.{config_class}")
eff887d4e676935742b8169c62a9a581b5f239ce
3,654,515
import numpy def pmat06(date1, date2): """ Wrapper for ERFA function ``eraPmat06``. Parameters ---------- date1 : double array date2 : double array Returns ------- rbp : double array Notes ----- The ERFA documentation is below. - - - - - - - - - - e r a P m a t 0 6 - - - - - - - - - - Precession matrix (including frame bias) from GCRS to a specified date, IAU 2006 model. Given: date1,date2 double TT as a 2-part Julian Date (Note 1) Returned: rbp double[3][3] bias-precession matrix (Note 2) Notes: 1) The TT date date1+date2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, JD(TT)=2450123.7 could be expressed in any of these ways, among others: date1 date2 2450123.7 0.0 (JD method) 2451545.0 -1421.3 (J2000 method) 2400000.5 50123.2 (MJD method) 2450123.5 0.2 (date & time method) The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date & time methods are both good compromises between resolution and convenience. 2) The matrix operates in the sense V(date) = rbp * V(GCRS), where the p-vector V(GCRS) is with respect to the Geocentric Celestial Reference System (IAU, 2000) and the p-vector V(date) is with respect to the mean equatorial triad of the given date. Called: eraPfw06 bias-precession F-W angles, IAU 2006 eraFw2m F-W angles to r-matrix References: Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855 Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981 Copyright (C) 2013-2017, NumFOCUS Foundation. Derived, with permission, from the SOFA library. See notes at end of file. """ (date1, date2,), rbp = arrayify_inputs_and_create_d3_fix( [date1, date2], core_dims=[0, 0], out_core_shape=(3, 3), out_dtype=numpy.double) rbp = ufunc.pmat06(date1, date2, rbp) return rbp
69b38637701d804ca83733d7f55fca1fd57a5b72
3,654,516
def _splitData(data): """Takes either a cursor or result set and returns result set and list of columns.""" if hasattr(data, 'fetchall'): rows = data.fetchall() cols = data.columns() elif isinstance(data, list): rows = data if hasattr(rows[0], '_fields'): cols = rows[0]._fields elif hasattr(rows[0], 'keys'): cols = list(rows[0].keys()) else: raise TypeError('Can not determine the list of columns from the result set.') return (rows, cols)
9953be08f29fb457782e5401c3dfded8f780924b
3,654,517
import multiprocessing def get_cpu_count(): """ Try and estimate the number of CPU on the host. First using multiprocessing native function, other using content of /proc/cpuinfo. If none of those methods did work, 4 is returned. """ try: cpucount = multiprocessing.cpu_count() except: try: s = open("/proc/cpuinfo").read() cpucount = int(s.split('processor')[-1].split(":")[1].split("\n")[0]) cpucount += 1 except: cpucount = 4 return cpucount
db58112537c4a111ec1ef24eeab70227678d6d1e
3,654,518
def get_relation_data(collection, relation_paths): """Prepare relations for usage inside extend_relations.""" out = [] for path in relation_paths: promote = path.get("promote", False) numpy_path = [] for step in path["steps"]: if isinstance(step, str): step_name, max_usage = step, 1 else: step_name, max_usage = step relation = collection.relation(step_name) numpy_path.append((relation.offsets, relation.values, max_usage)) inv_relation = collection.get_inverted_relation(step_name).edges() > 0 out.append((numpy_path, inv_relation, promote)) return out
8b4cd9145995aee5e3c9b880073dfd10320b24e5
3,654,519
def generate_paddle_quads(): """ This function builds a matrix of paddles, each row in the matrix represents the paddle skin (four colors) and each column represents the size. """ paddle_base_width = 32 paddle_height = 16 x = 0 y = paddle_height * 4 spritesheet = [] for _ in range(4): spritesheet.append([ # The smallest paddle is in (0, y) and its dimensions are 32x16. pygame.Rect(x, y, paddle_base_width, paddle_height), # The next paddle is in (32, y) and its dimensions are 64x16. pygame.Rect( x + paddle_base_width, y, paddle_base_width * 2, paddle_height ), # The next paddle is in (96, y) and its dimensions are 96x16. pygame.Rect( x + paddle_base_width * 3, y, paddle_base_width * 3, paddle_height ), # The largest paddle is in (0, y + 16) # and its dimensions are 128x16. pygame.Rect( x, y + paddle_height, paddle_base_width * 4, paddle_height ) ]) # To go to the next color, increment y by 32. y += paddle_height * 2 return spritesheet
e82259d5e203257574c5ae91ad4a5c3a625e5b5a
3,654,520
def cut(img): """ Applies central horizontal threshold in Fourier spectrum """ # Apply fourier transform and shift img_fft = fftn(img) img_fft_shift = fftshift(img_fft) # Print spectrum before plt.imshow(np.abs(img_fft_shift), cmap='gray', norm=LogNorm(vmin=5)) plt.show() # Filter image: remove upper and lower horizontal thirds (1/3) img_fft_shift_filtered = np.copy(img_fft_shift) for x in range(img.shape[0]): for y in range(img.shape[1]): if((x < img.shape[0]//2 - img.shape[0]//30 or \ x > img.shape[0]//2 + img.shape[0]//30) and\ (y < img.shape[1]//2 - img.shape[1]//30 or \ y > img.shape[1]//2 + img.shape[1]//30)): img_fft_shift_filtered[x,y] = 0 if((x < img.shape[0]//3 or \ x > img.shape[0]*2//3) or \ (y < img.shape[1]//3 or \ y > img.shape[1]*2//3)): img_fft_shift_filtered[x, y] = 0 # Print spectrum after plt.imshow(np.abs(img_fft_shift_filtered), cmap='gray', norm=LogNorm(vmin=5)) plt.show() # Return to space domain result image using inverse return np.abs(ifftn(fftshift(img_fft_shift_filtered)))
74ce6db709aaa91fec2321dc6cc70fc6d5a8c552
3,654,521
def csrmm2(m, n, k, descrA, csrValA, csrRowPtrA, csrColIndA, B, handle=None, C=None, nnz=None, transA=CUSPARSE_OPERATION_NON_TRANSPOSE, transB=CUSPARSE_OPERATION_NON_TRANSPOSE, alpha=1.0, beta=0.0, ldb=None, ldc=None, check_inputs=True): """ multiply two sparse matrices: C = transA(A) * transB(B) higher level wrapper to cusparse<t>csrmm2 routines. """ if check_inputs: for item in [csrValA, csrRowPtrA, csrColIndA, B]: if not isinstance(item, pycuda.gpuarray.GPUArray): raise ValueError("csr*, B, must be pyCUDA gpuarrays") if C is not None: if not isinstance(C, pycuda.gpuarray.GPUArray): raise ValueError("C must be a pyCUDA gpuarray or None") # dense matrices must be in column-major order if not B.flags.f_contiguous: raise ValueError("Dense matrix B must be column-major order") if transB == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE: raise ValueError("Conjugate transpose operation not supported " "for dense matrix B") if (transB == CUSPARSE_OPERATION_TRANSPOSE) and \ (transA != CUSPARSE_OPERATION_NON_TRANSPOSE): raise ValueError("if B is transposed, only A non-transpose is " "supported") if handle is None: handle = misc._global_cusparse_handle dtype = csrValA.dtype if C is None: if transA == CUSPARSE_OPERATION_NON_TRANSPOSE: ldc = m else: ldc = k alloc = misc._global_cusparse_allocator C = gpuarray.zeros((ldc, n), dtype=dtype, order='F', allocator=alloc) elif not C.flags.f_contiguous: raise ValueError("Dense matrix C must be in column-major order") if nnz is None: nnz = csrValA.size if ldb is None: ldb = B.shape[0] if ldc is None: ldc = C.shape[0] # perform some basic sanity checks if check_inputs: if csrValA.size != nnz: raise ValueError("length of csrValA array must match nnz") if (B.dtype != dtype) or (C.dtype != dtype): raise ValueError("A, B, C must share a common dtype") if ldb < B.shape[0]: raise ValueError("ldb invalid for matrix B") if transA == CUSPARSE_OPERATION_NON_TRANSPOSE: ldOpA = m # leading dimension for op(A) tdOpA = k # trailing dimension for op(A) else: ldOpA = k tdOpA = m if transB == CUSPARSE_OPERATION_NON_TRANSPOSE: if B.shape[1] != n: raise ValueError("B, n incompatible") if (ldb < tdOpA): raise ValueError("size of A incompatible with B") else: if ldb < n: raise ValueError("B, n incompatible") if (B.shape[1] != tdOpA): raise ValueError("size of A incompatible with B") if (C.shape[1] != n): raise ValueError("bad shape for C") if (ldc != ldOpA): raise ValueError("size of A incompatible with C") if csrRowPtrA.size != m+1: raise ValueError("length of csrRowPtrA invalid") if dtype == np.float32: fn = cusparseScsrmm2 elif dtype == np.float64: fn = cusparseDcsrmm2 elif dtype == np.complex64: fn = cusparseCcsrmm2 elif dtype == np.complex128: fn = cusparseZcsrmm2 else: raise ValueError("unsupported sparse matrix dtype: %s" % dtype) transa = transA transb = transB try: fn(handle, transa, transb, m, n, k, nnz, alpha, descrA, csrValA, csrRowPtrA, csrColIndA, B, ldb, beta, C, ldc) except CUSPARSE_STATUS_INVALID_VALUE as e: print("m={}, n={}, k={}, nnz={}, ldb={}, ldc={}".format( m, n, k, nnz, ldb, ldc)) raise(e) return C
fffbecab90dfb831a4429aed759c0218b065aa4d
3,654,522
def is_translated(path): """ Checks if all files in the translation has at least one translation. Arguments: path (str): path to po-file Returns: True if all files in translation has at least one translation, otherwise False. """ po = polib.pofile(path) files = [] for e in po: files += [f[0] for f in e.occurrences] all_files = sorted(set(files)) translated_entities = [e for e in po if e.translated()] files = [] for e in translated_entities: files += [f[0] for f in e.occurrences] translated_files = sorted(set(files)) return translated_files == all_files
eeacbbc8ff068684e56d79e1aaa65d564b2e33ec
3,654,523
def pylm_component(name): """Decorator for registering a class to lightmetrica""" def pylm_component_(object): # Get base class base = object.__bases__[0] base.reg(object, name) return object return pylm_component_
531c7e3f224b824b438011d4be348a76154b3444
3,654,524
import torch def dice_score(input_mask, target_mask, eps=1e-5): """ input mask: (B * K, HW) #probabilities [0, 1] target_mask: (B * K, HW) #binary """ dims = tuple(range(1, input_mask.ndimension())) intersections = torch.sum(input_mask * target_mask, dims) #(B, N) cardinalities = torch.sum(input_mask + target_mask, dims) dice = ((2. * intersections + eps) / (cardinalities + eps)) return dice
8fbe4b7aaec4a45d7dec4705e4c3feb348250b64
3,654,525
def append_write(filename="", text=""): """ appends a string at the end of a text file (UTF8) and returns the number of characters added """ with open(filename, "a", encoding="utf-8") as f: f.write(text) return len(text)
6767f61b6624b82d732e7277507d03c3f4daf04a
3,654,526
import torch def psnr(img1, img2): """ compute PSNR between two images """ MSE = torch.mean((img1-img2)**2) return 10*torch.log10(1**2/MSE)
f216733631d224aa27f5c5a395c143c3768f8f28
3,654,527
def is_scalar(dims): """ Returns True if a dims specification is effectively a scalar (has dimension 1). """ return np.prod(flatten(dims)) == 1
d2f2f1a1f2dd66ec01d9e653315d37b4ee4990e1
3,654,528
def applyMinv(obj, inputs, shape_cache): """Simple wrapper around a component's applyMinv where we can reshape the arrays for each input and expand any needed array elements into full arrays. """ inputkeys = sorted(inputs.keys()) for key in inputkeys: pre_process_dicts(obj, key, inputs, shape_cache) pre_inputs = inputs.copy() inputs = obj.applyMinv(pre_inputs, inputs) # Result vector needs to be flattened. for key in reversed(inputkeys): post_process_dicts(key, inputs) # Clean out any leftover keys we added for key in inputs.keys(): if key not in inputkeys: inputs.pop(key) return inputs
9fd805408bea659f26eec93b430e450ea9228145
3,654,529
import os def get_para_input(arg): """Get input directory parameter""" input_dir = os.path.abspath(arg) if str(input_dir).endswith('/'): input_dir = input_dir[:-1] input_dir = input_dir.replace('\\', '/') return input_dir
13ad4d14cac7c4b77e40d0e264e5197b2fbb459b
3,654,530
import json import requests import time def get_county_data(): """Get the raw data from coronavirus-tracker-api.herokuapp.com.""" url = ('https://coronavirus-tracker-api.herokuapp.com/v2/locations?source=csbs') raw_data = None while raw_data is None: try: raw_data = json.loads(requests.request('GET', url, verify=False).text) except: print('API Get for county-data failed.') pass time.sleep(5) # If HTTP Request fails, wait 5s and try again. return raw_data
33404a65e6242b7416304f7194dc2a5c7f073d5d
3,654,531
def r2lm(measured_y, estimated_y): """ r^2 based on the latest measured y-values (r2lm) Calculate r^2 based on the latest measured y-values. Measured_y and estimated_y must be vectors. Parameters ---------- measured_y: numpy.array or pandas.DataFrame estimated_y: numpy.array or pandas.DataFrame Returns ------- r2lm : float r^2 based on the latest measured y-values """ measured_y = np.array(measured_y).flatten() estimated_y = np.array(estimated_y).flatten() return float(1 - sum((measured_y - estimated_y) ** 2) / sum((measured_y[1:] - measured_y[:-1]) ** 2))
f75c89ca3f99659a3e2e12555a3968745fad1007
3,654,532
def G_to_NX_sparse(X, Y): """convert sparse adj matrix to NetworkX Graph""" Gs = [] N = len(Y) for n in range(N): x = X[n] G = nx.DiGraph() for i,j,w in x: G.add_edge(i,j, weight=w) Gs.append(G) return Gs, Y
8113ede05a0015119cceaa9c817b8bf3d46003c0
3,654,533
def pmf(k, n, a, b, loc=0): """JAX implementation of scipy.stats.betabinom.pmf.""" return lax.exp(logpmf(k, n, a, b, loc))
efba7202231dde7d0dec1e56df7a52dccf7135a0
3,654,534
def discrete_bottleneck(x, hidden_size, z_size, filter_size, name, mode=None, startup_steps=50000, bottleneck_kind='dvq', num_blocks=2, reshape_method='slice', projection_tensors=None, means=None, beta=0.25, noise_dev=1., decay=0.999, discrete_mix=0.5, random_top_k=1, soft_em=False, inv_temp=1.0, epsilon=1e-5, softmax_k=0, kl_warmup_steps=150000, ema=True, ema_count=None, ema_means=None, summary=True, dp_strength=1.0, dp_decay=1.0, dp_alpha=0.5, slo=False, slo_alpha=10, slo_beta=0.5, c_logits=None): """Discretization bottleneck for latent variables. Args: x: Input to the discretization bottleneck. hidden_size: Dimension of the latent state. z_size: Number of bits used to produce discrete code; discrete codes range from 1 to 2**z_size. filter_size: Filter size to be used for the embedding function. name: Name for the bottleneck scope. mode: Mode represents whether we are training or testing for bottlenecks that differ in behavior (Default: None). startup_steps: Number of steps after which latent predictor is trained (Default: 50000). bottleneck_kind: Kind of discretization bottleneck to use; one of dvq, semhash, gumbel-softmax (Default: dvq). num_blocks: Number of blocks to use for decomposed vector quantization. reshape_method: Method to reshape for DVQ (Default: slice). projection_tensors: If the reshape method is project, then these are the tensors used to project (Default: None). means: The embedding table for dvq (Default: None). beta: Beta factor for the DVQ loss (Default: 0.25). noise_dev: Stddev for noise added for semhash (Default: 0). decay: Decay factor for the exponential moving average (Default: 0.999). discrete_mix: Factor for mixing discrete and non-discrete input for semhash (Default: 0.5). random_top_k: Noisy top-k for DVQ (Default: 1). soft_em: If True then use soft EM rather than hard EM (Default: False). inv_temp: Inverse temperature for soft EM (Default: 1.) epsilon: Epsilon parameter for DVQ (Default: 1e-5). softmax_k: If > 1 then do top-k softmax (Default: 0). kl_warmup_steps: Number of steps for kl warmup (Default: 150000). ema: If True update embeddings using exponential moving averages (Default: True). ema_count: Table of counts for each embedding corresponding to how many examples in a batch it was the closest to (Default: None). ema_means: Exponentially averaged version of the embeddings (Default: None). summary: If True, then write summaries (Default: True). dp_strength: Strength of Dirichlet Process loss prior (Default: 1.0). dp_decay: Decay the dp_strength using an exponential decay using this term (Default: 1.0). dp_alpha: Alpha term (pseudo-count) in Dirichlet Process (Default: 0.5). slo: Smoothed L0 slo_alpha: alpha for smoothed L0 slo_beta: beta for smoothed L0 c_logits: a [num_blocks, block_size] tensor of logits for computing cluster probabilities. Returns: Embedding to pass to the decoder, discrete latent, loss, and the embedding function. Raises: ValueError: If projection_tensors is None for reshape_method project, or ema_count or ema_means is None if we are using ema, or unknown args. """ block_v_size = None if bottleneck_kind == 'dvq': # Define the dvq parameters assert means is not None # Check block dimensions add up if hidden_size % num_blocks != 0: raise ValueError('num_blocks does not divide hidden size') if 2**z_size % num_blocks != 0: raise ValueError('num_blocks does not divide embedding table size') block_v_size = 2**(z_size / num_blocks) block_v_size = int(block_v_size) # Set the reshape method corresponding to projections or slices if reshape_method == 'slice': reshape_fn = partial( slice_hidden, hidden_size=hidden_size, num_blocks=num_blocks) elif reshape_method == 'project': if projection_tensors is None: raise ValueError( 'Projection tensors is None for reshape_method project') reshape_fn = partial( project_hidden, projection_tensors=projection_tensors, hidden_size=hidden_size, num_blocks=num_blocks) else: raise ValueError('Unknown reshape_method') # Check if the ema settings make sense if ema: if ema_count is None: raise ValueError('ema_count is None but ema is True') if ema_means is None: raise ValueError('ema_means is None but ema is True') with tf.variable_scope(name, reuse=tf.AUTO_REUSE): l = tf.constant(0.0) if bottleneck_kind == 'dense': c = tf.layers.dense(x, z_size, name='vcc') h1 = tf.layers.dense(c, filter_size, name='vch1') elif bottleneck_kind == 'vae': c, l, _, _ = vae(x, z_size, 'vae') h1 = tf.layers.dense(c, filter_size, name='vch1') elif bottleneck_kind == 'semhash': c = tf.layers.dense(x, z_size, name='vcc') y_clean = common_layers.saturating_sigmoid(c) if summary: tf.summary.histogram('y_clean', tf.reshape(y_clean, [-1])) if noise_dev > 0 and mode == tf.estimator.ModeKeys.TRAIN: noise = tf.truncated_normal( common_layers.shape_list(c), mean=0.0, stddev=noise_dev) y = common_layers.saturating_sigmoid(c + noise) else: y = y_clean d = tf.to_float(tf.less(0.5, y)) y_discrete = tf.stop_gradient(d) + y - tf.stop_gradient(y) pd = common_layers.inverse_exp_decay(startup_steps * 2) pd *= discrete_mix pd = pd if mode == tf.estimator.ModeKeys.TRAIN else 1.0 c = tf.where( tf.less(tf.random_uniform([common_layers.shape_list(y)[0]]), pd), y_discrete, y) h1a = tf.layers.dense(c, filter_size, name='vch1a') h1b = tf.layers.dense(1.0 - c, filter_size, name='vch1b') h1 = h1a + h1b dx = tf.to_int32(tf.stop_gradient(d)) c = bit_to_int(dx, z_size) elif bottleneck_kind == 'gumbel-softmax': _, hot, l = gumbel_softmax(x, name, z_size, mode, softmax_k, kl_warmup_steps, summary) c = tf.argmax(hot, axis=-1) h1 = tf.layers.dense(hot, hidden_size, name='dae_dense') elif bottleneck_kind == 'dvq': c_probs = None if c_logits is not None: c_probs = tf.nn.softmax(c_logits, axis=-1) x_reshaped = reshape_fn(x) x_means_hot, x_means, q_loss, e_loss = embedding_lookup( x_reshaped, means, num_blocks, block_v_size, random_top_k, soft_em, inv_temp, ema_count, c_probs) # Get the discrete latent represenation x_means_idx = tf.argmax(x_means_hot, axis=-1) # Get the binary representation x_means_bits = int_to_bit( x_means_idx, num_bits=int(z_size / num_blocks), base=2) shape = common_layers.shape_list(x_means_bits) new_shape = shape[:-1] new_shape[-1] = z_size x_means_bits = tf.reshape(x_means_bits, shape=new_shape) c = bit_to_int(tf.to_int32(x_means_bits), num_bits=z_size, base=2) # Adjust shape of c shape_x = common_layers.shape_list(x) new_shape = shape_x[:-1] c = tf.reshape(c, new_shape) # Update the ema variables if ema: tf.logging.info('Using EMA with beta = {}'.format(beta)) updated_ema_count = moving_averages.assign_moving_average( ema_count, tf.reduce_sum( tf.reshape(x_means_hot, shape=[-1, num_blocks, block_v_size]), axis=0), decay, zero_debias=False) # Adding a term that puts a Dirichlet prior over cluster probabilities # Hopefully it'll encourage rich get richer behaviors dp_prior_loss = 0. slo_loss = 0. if dp_strength > 0.0: # Decay dp_strength over time to make it less important dp_strength = tf.train.exponential_decay( dp_strength, global_step=tf.to_int32(tf.train.get_global_step()), decay_steps=20000, decay_rate=dp_decay) dp_count = ema_count + dp_alpha p = dp_count / tf.reduce_sum(dp_count, 1, keepdims=True) dp_prior_loss = tf.log(p) dp_prior_loss = -1.0 * tf.reduce_sum(dp_prior_loss) dp_prior_loss /= (num_blocks * block_v_size) # if using smoothed L0 if slo: # expected log likelihood ell = tf.reduce_sum(ema_count * tf.log(c_probs)) # the prior component in the loss for MAP EM. slo_prior = slo_alpha * tf.reduce_sum(tf.exp(-1.*c_probs/slo_beta)) slo_loss = -1. * (ell + slo_prior)/(num_blocks * block_v_size) x_means_hot_flat = tf.reshape( x_means_hot, shape=[-1, num_blocks, block_v_size]) dw = tf.matmul( tf.transpose(x_means_hot_flat, perm=[1, 2, 0]), tf.transpose(x_reshaped, perm=[1, 0, 2])) updated_ema_means = moving_averages.assign_moving_average( ema_means, dw, decay, zero_debias=False) n = tf.reduce_sum(updated_ema_count, axis=-1, keep_dims=True) updated_ema_count = ((updated_ema_count + epsilon) / (n + 2**z_size * epsilon) * n) updated_ema_means /= tf.expand_dims(updated_ema_count, axis=-1) with tf.control_dependencies([e_loss]): update_means = tf.assign(means, updated_ema_means) with tf.control_dependencies([update_means]): l = beta * e_loss + dp_strength * dp_prior_loss + slo_loss else: l = q_loss + beta * e_loss x_means = tf.reshape(x_means, shape_x) x_reshaped = tf.reshape(x_reshaped, shape_x) h1 = x_reshaped + tf.stop_gradient(x_means - x_reshaped) else: raise ValueError('Unknown discretization method.') h2 = tf.layers.dense(tf.nn.relu(h1), filter_size, name='vch2') res = tf.layers.dense(tf.nn.relu(h2), hidden_size, name='vcfin') embed_fn = partial( embed, hidden_size=hidden_size, z_size=z_size, filter_size=filter_size, name=name, bottleneck_kind=bottleneck_kind, num_blocks=num_blocks, block_v_size=block_v_size, means=means) return res, c, l, embed_fn
ec1576b2b6a19a03995ec6dfb9a67592b925a28c
3,654,535
def binarize_categorical(x, ids): """ replace categorical feature with multiple binary ones """ x_ = np.zeros((x.shape[0], 1)) for idx in ids: x_ = np.hstack((x_, binarize_categorical_feature(x[:, idx:idx+1]))) x = np.delete(x, ids, axis=1) x = np.hstack((x, x_[:, 1:])) return x
625b551b437297c6a0c48f5ebfe2796c3be84c89
3,654,536
def import_json_dataset(fileset): """Returns a list of imported raw JSON data for every file in the fileset. """ d = [] for f in fileset: d.append(import_json_data(f)) return d
043720f9400cf2734598f6fe476077e004b8ef69
3,654,537
import math def angle_difference(angle1, angle2): """ Calculates the difference between the given angles in clockwise direction as radians. :param angle1: float :param angle2: float :return: float; between 0 and 2*Pi """ if (angle1 > 0 and angle2 >= 0) and angle1 > angle2: return abs(angle1 - angle2) elif (angle1 >= 0 and angle2 > 0) and angle1 < angle2: return 2 * math.pi + angle1 - angle2 elif (angle1 < 0 and angle2 <= 0) and angle1 < angle2: return 2 * math.pi + angle1 + abs(angle2) elif (angle1 <= 0 and angle2 < 0) and angle1 > angle2: return abs(angle1 - angle2) elif angle1 <= 0 < angle2: return 2 * math.pi + angle1 - angle2 elif angle1 >= 0 >= angle2: return angle1 + abs(angle2) else: return 0
377d1915e58a96b7f1526dceb31febf45c90567b
3,654,538
def merge_nd(nd_cdp, nd_lldp): """ Merge CDP and LLDP data into one structure """ neis = dict() nd = list() for n in nd_lldp: neis[(n['local_device_id'], n['remote_device_id'], n['local_int'], n['remote_int'])] = n for n in nd_cdp: # Always prefer CDP, but grab description from LLDP if available if (n['local_device_id'], n['remote_device_id'], n['local_int'], n['remote_int']) in n: if 'description' in neis[(n['local_device_id'], n['remote_device_id'], n['local_int'], n['remote_int'])]: n['description'] = neis[(n['local_device_id'], n['remote_device_id'], n['local_int'], n['remote_int'])]['description'] neis[(n['local_device_id'], n['remote_device_id'], n['local_int'], n['remote_int'])] = n for n in neis: nd.append(neis[n]) return nd
90d55ffdabb6c28198ee4c59bc36fdcb6fa54e62
3,654,539
def combine_divisions(division): """Return the new pattern after the rules have been applied to every division""" size = int(sqrt(len(division))) matrix = [] for r in xrange(size): matrix.append([]) for c in xrange(r * size, (r + 1) * size): matrix[len(matrix) - 1].append(division[c]) return np.array((np.bmat(matrix)))
a112449421603a227e4ee470330aa1a1ece47762
3,654,540
def is_repair(expr): """ 判断赋值表达式是否出现过滤函数,如果已经过滤,停止污点回溯,判定漏洞已修复 :param expr: 赋值表达式 :return: """ is_re = False # 是否修复,默认值是未修复 global is_repair_functions if expr in is_repair_functions: logger.debug("[AST] function {} in is_repair_functions, The vulnerability does not exist ".format(expr)) is_re = True return is_re
4184cbedaa006b75d5f6171a5201f218f852820c
3,654,541
import string def modified_greedy(sentences, tokenized, model, stopwords, original_indices, sent_representations, objective_function, min_sentence_length): """Implementation of the MMR summarizer as described in Lin & Bilmes (2010).""" # Initialize stuff # Ground set indices: all indices, stays constant throughout the function all_indices = tuple(range(len(original_indices))) # Candidate indices: all candidates (gets smaller every iteration) candidate_indices = list(range(len(original_indices))) # Summary indices: indices of represented sentences added to summary summary_indices = [] # Scaling factor (r) is taken from original paper: r = 0.3 scaling_factor = .3 # Tf-idf clustering, as described in Lin & Bilmes (2011) n_clusters = len(original_indices) // 5 k_means = KMeans(n_clusters=n_clusters, random_state=42) clustering = k_means.fit_predict(sent_representations) clustered_indices = [np.array(all_indices)[np.where(clustering == i)].tolist() for i in range(n_clusters)] # Make document vector (since w2v sentences are now sums, it is this easy): document_vector = np.sum(sent_representations, axis=0) # Pick the right sentences from sentence list (to match representation matrix) sentences = [sentences[i] for i in original_indices] tokenized = [tokenized[i] for i in original_indices] # Construct bag of words from representable sentences preprocessed = (sentence.lower().split(' ') for i, sentence in enumerate(tokenized)) # POS-tag filtering, and punctuation removal preprocessed = [[word.translate(str.maketrans('', '', string.punctuation)) for word in sentence] for sentence in preprocessed] # Remove OOV words sentence_words = [[word for word in sentence if word in model.model.vocab] for sentence in preprocessed] # Deduplicate & flatten bag_of_words = list(set([word for sentence in sentence_words for word in sentence])) # Look up in-vocabulary word vectors vectorized = [(word, model.model[word]) for word in bag_of_words] # Construct word similarity matrix for all words in article object names, vectors = zip(*vectorized) # word_distance_matrix = pairwise_distances(vectors, metric='euclidean') word_distance_matrix = pairwise_distances(vectors, metric='cosine') # Pandas workaround name_index_tuples = list(zip(list(range(len(names))), names)) # Fill diagonal with nan, to make sure it's never the minimum np.fill_diagonal(word_distance_matrix, np.nan) # Compute sentence similarity matrix based on sentence representations distance_matrix = pairwise_distances(sent_representations, metric='cosine') similarity_matrix = np.subtract(1, distance_matrix) np.fill_diagonal(similarity_matrix, np.nan) # Compute sentence lengths sentence_lengths = [len(s.split()) for s in sentences] length_scaler = np.power(sentence_lengths, scaling_factor).tolist() # Remove sentences that do not have similarity with other sentences from candidate set similarity_sum_per_sentence = np.nansum(similarity_matrix, axis=0) irrelevant_indices = np.where(similarity_sum_per_sentence == 0)[0].tolist() candidate_indices = [index for index in candidate_indices if index not in irrelevant_indices] # Already save the best singleton summary, for comparison to iterative result later singleton_scores = [objective_function(similarity_matrix, sent_representations, name_index_tuples, sentence_words, word_distance_matrix, document_vector, clustered_indices, all_indices, [i]) if sentence_lengths[i] <= 100 else np.nan for i in candidate_indices] best_singleton_score = np.nanmax(singleton_scores) # Note that the singleton index is directly translated to a sentence representation index best_singleton_index = candidate_indices[np.nanargmax(singleton_scores)] # Greedily add sentences to summary summary_length = 0 for iteration in range(len(sentence_lengths)): print("Iteration {}".format(iteration)) # Edge case: value of objective function when summary is empty. if iteration == 0: current_score = 0. else: current_score = objective_function(similarity_matrix, sent_representations, name_index_tuples, sentence_words, word_distance_matrix, document_vector, clustered_indices, all_indices, summary_indices) # Compute all relevant new scores new_scores = [objective_function(similarity_matrix, sent_representations, name_index_tuples, sentence_words, word_distance_matrix, document_vector, clustered_indices, all_indices, summary_indices+[i]) if sentence_lengths[i] > min_sentence_length else np.nan for i in candidate_indices] # If there are no candidates left, break the loop if all(np.isnan(score) for score in new_scores): break # Remove non-candidate elements from length scaler to fit arrays current_length_scaler = [v for i, v in enumerate(length_scaler) if i in candidate_indices] added_values = np.divide(np.subtract(new_scores, current_score), current_length_scaler) best_index = np.nanargmax(added_values) # Pass best index if the sentence does not increase MMR-score (+ empty summary edge case) if not new_scores[best_index] - current_score >= 0 and summary_indices: candidate_indices.pop(best_index) else: summary_indices.append(candidate_indices[best_index]) summary_length += sentence_lengths[candidate_indices[best_index]] candidate_indices.pop(best_index) if summary_length >= 100: break # Last step: compare singleton score with summary score, and pick best as summary final_summary_score = objective_function(similarity_matrix, sent_representations, name_index_tuples, sentence_words, word_distance_matrix, document_vector, clustered_indices, all_indices, summary_indices) if best_singleton_score >= final_summary_score: ranked_sentences = [sentences[i] for i in [best_singleton_index]] ranking = list(zip([best_singleton_index], ranked_sentences)) else: ranked_sentences = [sentences[i] for i in summary_indices] ranking = list(zip(summary_indices, ranked_sentences)) # Replace filtered indices with original ones ranking = [(original_indices[i], s) for i, s in ranking] return ranking
b542c025fe870e1e7d41d33349de10a395a17eb3
3,654,542
def noiseless(rho, unitary): """Returns the noiseless predictions.""" rhotilde = unitary @ rho @ unitary.conj().T elt = rhotilde[0, 0] if elt >= 0.49999999: return 0, elt return 1, elt
bfa265046361b159e7d264aa8312b75cd7a0df3f
3,654,543
def __get_service_info_from_thrift(root_path, idl_service, need_test_methods): """从指定IDL_Service和request_config配置表中,获取测试方法和Request的映射表""" customized_request_config = yaml.load( open(os.path.join(root_path, 'test_red', 'request_config.yaml'))) method_request = collections.OrderedDict() idl_method_request = dict([ (name[:-5], obj) for name, obj in inspect.getmembers(idl_service) if inspect.isclass(obj) and '_args' in name]) for method_name in need_test_methods: if customized_request_config and method_name in customized_request_config: method_request[method_name] = customized_request_config[method_name] elif method_name in idl_method_request: try: request_obj_name = idl_method_request[method_name].thrift_spec[2][3][0].__name__ method_request[method_name] = {__to_underscore(request_obj_name): request_obj_name} except Exception: print 'invalid method name: ' + method_name return method_request
0b736bb6b5411904bc28f887e6596c1242c324c9
3,654,544
def energy_calc(p, t): """ Calculates energy from power and time using the formula: energy = power * time Parameters ---------- p: Int or float The power value of the equation. t: Int or float The time value of the equation (seconds). Returns ------- Int p * t Raises ------ ValueError If p or t is not an integer or float. Examples -------- >>> school_algorithms.energy_calc(5, 2) 10 """ _if_not_int_or_float_raise(p, t) return p * t
7df3180fdb56989e62a69305763455edbfa44ebc
3,654,545
import base64 import uuid import os def copy_data_to_device(device, data, destination, filename=None): """ Copies data into a device and creates a file to store that data. Args: data ('str'): The data to be copied destination ('str'): Folder of where to store file filename ('str'): Name of the file created. If left none then a random name will be generated Raise: Exception: Permission Denied, File Creation Failed Returns: Path (str): path of created file """ try: device.execute('ls {}'.format(destination)) except Exception: raise FileNotFoundError("Directory '{}' does not exist.".format( destination)) # Data must end in new line if len(data) > 0 and not data[-1] == "\n": data += "\n" # Transforms text data into base64 string encoded = base64.b64encode(bytes(data, "utf-8")).decode("utf-8") if filename is None: id = uuid.uuid4().hex filename = os.path.join(destination, id) else: filename = os.path.join(destination, filename) # Decode base 64 data into file device.execute("DATA=\"{}\"".format(encoded)) device_out = device.execute("echo $DATA | base64 -d > {}".format(filename)) if 'Permission denied' in device_out: raise Exception("Permission denied while trying to create file. " + \ "Make sure {} has the correct permissions!".format(filename)) # Verify file has been successfully created try: device.execute("ls {}".format(filename)) except Exception: raise Exception("Creating of file {} has failed. No file created." .format(filename)) if int(device.execute('stat {} --printf="%s\\n"'.format(filename))) == 0: raise Exception("Creating of file {} has failed. Created file has no content" .format(filename)) return filename
73fad19637363a31c19e55c59e42479f2b9b0c84
3,654,546
import logging def api_images_list_json(version): """ Return Docker Image listing https://docs.docker.com/engine/api/v1.41/#tag/Image :param version: Docker API version :return: string of fake images associated with honeypot. """ logging.info("images-list - %s, %s, %s, %s, %s" % ( version, request.remote_addr, request.user_agent, request.data, request.url)) req_objs = util.save_request_obj(request) customLog.info(req_objs) return API_RESP_IMAGES_JSON_LIST
083911840c02ddc79af5ed457c42a29a19f1c57f
3,654,547
def _handle_eval_return(self, result, col, as_pyranges, subset): """Handle return from eval. If col is set, add/update cols. If subset is True, use return series to subset PyRanges. Otherwise return PyRanges or dict of data.""" if as_pyranges: if not result: return pr.PyRanges() first_hit = list(result.values())[0] if isinstance(first_hit, pd.Series): if first_hit.dtype == bool and subset: return self[result] elif col: self.__setattr__(col, result) return self else: raise Exception( "Cannot return PyRanges when function returns a Series! Use as_pyranges=False." ) return pr.PyRanges(result) else: return result
84698bcb3b1f1e961ac7f3c4e347d65ce0790066
3,654,548
def compute_sigma0_sparse(V, dX, W_sensors, W_points, W_observations, column_dict): """ Computes the resulting standard deviation of the residuals for the current state of the bundle network. Parameters ---------- V : ndarray An array of residuals of the difference between registered measure and back projected ground points in image space. dX : ndarray The array of parameter updates ordered according to column_dict W_sensors : scipy.sparse.matrix The sensor weight matrix W_points : dict Dictionary that maps point IDs to their weight matrices. W_observations : ndarray The observation weight matrix (i.e.: measure weights) column_dict : dict Dictionary that maps serial numbers and point IDs to index ranges in dX Returns ------- : float64 Standard deviation of the residuals """ num_image_parameters = W_sensors.shape[0] num_observations = W_observations.shape[0] VTPV = V.dot(W_observations).dot(V) VTPV += dX[:num_image_parameters].dot(W_sensors.dot(dX[:num_image_parameters])) for point_id, W_p in W_points.items(): point_update = dX[column_dict[point_id][0]:column_dict[point_id][1]] VTPV += point_update.dot(W_p.dot(point_update)) dof = num_observations - num_image_parameters - 3 * len(W_points) return np.sqrt(VTPV/dof)
05606efe21d61f67539eae627caea976a532f85f
3,654,549
from typing import Any from sys import version def version_callback() -> Any: """Print the version of the package.""" print(f"version: {version}") return version
987643727d133dc09163cebd6c4293f78b0b7f6a
3,654,550
def fill(bitdef, value): """ Fill undefined bits with a value. For example ``1..0100.1`` becomes ``111010011`` when filled with 1s. Args: bitdef (str): The bitdef to fill. value (str): The value to fill with, "0" or "1". Returns: str: The filled bitdef. """ output = "" for bit in bitdef: if bit == ".": output += value else: output += bit return output
eef3ac59a2a7c4d1a25851a2ca14b3ffed6d1463
3,654,551
import requests import json def get_cman_info(state): """ Will take a list of congressmen and return the relevant attributes :param congress_list: list of divs that contain congress data :param state: state you are scraping :return: list of relevant scraped attributes """ cman_attrs = [] abbrev = states[state] r = requests.get(url_base + abbrev) d = json.loads(r.text) for cman in d['tweeters']: _id = cman.get('_id', '') dateOfBirth = cman.get('dateOfBirth', '') email = cman.get('email', '') facebookUserName = cman.get('facebookUserName', '') fullName = cman.get('fullName', '') gender = cman.get('gender', '') address = cman['office'].get('address', '') chamber = cman['office'].get('chamber', '') country = cman['office'].get('country', '') district = cman['office'].get('district', '') leadershipRole = cman['office'].get('leadershipRole', '') party = cman['office'].get('party', '') state = cman['office'].get('state', '') termEnd = cman['office'].get('termEnd', '') termStart = cman['office'].get('termStart', '') title = cman['office'].get('title', '') phone = cman.get('phone', '') profileImageSmall = cman.get('profileImageSmall', '') slug = cman.get('slug', '') followersCount = cman['twitterProfile'].get('followersCount', '') friendsCount = cman['twitterProfile'].get('friendsCount', '') idStr = cman['twitterProfile'].get('idStr', '') name = cman['twitterProfile'].get('name', '') profileImageUrl = cman['twitterProfile'].get('profileImageUrl', '') screenName = cman['twitterProfile'].get('screenName', '') statusesCount = cman['twitterProfile'].get('statusesCount', '') url = cman['twitterProfile'].get('url', '') verified = cman['twitterProfile'].get('verified', '') twitterUserName = cman.get('twitterUserName', '') website = cman.get('website', '') cman_attrs.append( [_id, dateOfBirth, email, facebookUserName, fullName, gender, address, chamber, country, district, leadershipRole, party, state, termEnd, termStart, title, phone, profileImageSmall, slug, followersCount, friendsCount, idStr, name, profileImageUrl, screenName, statusesCount, url, verified, twitterUserName, website]) return cman_attrs
afe180c4bbd930cfbfe42e28a769d07f2c4378cd
3,654,552
def concatenate_data(data, field='normalized_data'): """ Concatenate trial data in a list of dictionaries :param data: nested dict, contains all trial infos :param field: str, dict key in info dict in general data structure :return: """ time_series = np.concatenate([info[field] for info in data], axis=1) assert time_series.shape[0] == 306 return time_series
7f3dfb7aed2ffedf2124a9f57df0abf8491d1af6
3,654,553
def _find_weight_ops(op, graph, weights): """ Find the vars come from operators with weight. """ pre_ops = graph.pre_ops(op) for pre_op in pre_ops: ### if depthwise conv is one of elementwise's input, ### add it into this same search space if _is_depthwise(pre_op): for inp in pre_op.all_inputs(): if inp._var.persistable: weights.append(inp._var.name) if pre_op.type() in WEIGHT_OP and not _is_depthwise(pre_op): for inp in pre_op.all_inputs(): if inp._var.persistable: weights.append(inp._var.name) return weights return _find_weight_ops(pre_op, graph, weights) return weights
04e4a21079a3857815e39be3fe00e15aeac2f3b3
3,654,554
def get_GUI_presets_dict(): """Return a dictionary of all of the available potential functions.""" preset_dict = {'cosine_potential': np.array([3.14, -6.28, 12.57, 0.01, 0, 0, 0, 0]).astype(str), 'two_gaussian_potential': np.array([2.67, -4, 4, 0.01, 0, 0, 0, 0]).astype(str), 'pv_2D_potential': np.array([1.5, 0, 3.0, 0.01, 0.6, -2.0, 2.0, 0.01]).astype(str), 'muller_brown_potential': np.array([0, 0, 0, 0, 0, 0, 0, 0]).astype(str), 'C_Cl_potential': np.array([0, 0, 0, 0, 0, 0, 0, 0]).astype(str) } return preset_dict
0034ecdbde2f27e1b8db25a82231fca9bc79485c
3,654,555
def _escapeEnds(original): """Comment, function end. Escape comment end, because non-greedy becomes greedy in context. Example: blockCommentNonGreedy = '(\s*/\*[\s\S]+?\*/\s*){0,1}?' """ original = _escapeWildCard(original) commentEscaped = original \ .replace(commentEndEscape, commentEndEscapeEscape) \ .replace(commentEnd, commentEndEscape) return _escapeFunctionEnd(commentEscaped)
5a0df98f42d2df2b424cd6bfa7c533e0016557fe
3,654,556
def handle_bad_request(error: BadRequest) -> Response: """Render the base 400 error page.""" rendered = render_template("base/400.html", error=error, pagetitle="400 Bad Request") response: Response = make_response(rendered) response.status_code = status.BAD_REQUEST return response
70c6c835ef31839ff7b637443c414abbb549bcb0
3,654,557
import torch def top_k_top_p_filtering( logits: torch.FloatTensor, top_k: int = 0, top_p: float = 1.0, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1, ) -> torch.FloatTensor: """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) top_k (`int`, *optional*, defaults to 0): If > 0, only keep the top k tokens with highest probability (top-k filtering) top_p (`float`, *optional*, defaults to 1.0): If < 1.0, only keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimumber of tokens we keep per batch example in the output. From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ if top_k > 0: logits = TopKLogitsWarper(top_k=top_k, filter_value=filter_value, min_tokens_to_keep=min_tokens_to_keep)( None, logits ) if 0 <= top_p <= 1.0: logits = TopPLogitsWarper(top_p=top_p, min_tokens_to_keep=min_tokens_to_keep)(None, logits) return logits
0c2f8392dcc6ada2afb1dc33575465e194a52199
3,654,558
def parseFimo(fimoFile, strand): """ parse the fimo.txt file Args: the fimo.txt file strand = single or double Returns: fimoDict: a dict between motif ID and a list of sequences it occurs in """ #dict to store for each motif list of seqs that it occurs in fimoDict = {} #read the fimo.txt file with open(fimoFile, 'rb') as handler: for line in handler: line = line.strip() #if re.search(r'#', line): #continue if re.search(r'stop', line): continue lineSplit = line.split() motifName = lineSplit[0] seqName = lineSplit[1] start = int(lineSplit[2]) stop = int(lineSplit[3]) pval = float(lineSplit[6]) #check of this is on the negative strand hit if strand == 'single' and inStrand == '-': continue if motifName not in fimoDict: fimoDict[motifName] = [] if seqName not in fimoDict[motifName]: fimoDict[motifName].append(seqName) #check the motifs print '\n\nfimo number of motifs:', len(fimoDict) #for motifName, seqList in fimoDict.items(): #print motifName #print '\t', seqList return fimoDict
ea6e0765c474e367653571e9a88e6449fc947ff5
3,654,559
def pad_batch_dimension_for_multiple_chains( observed_time_series, model, chain_batch_shape): """"Expand the observed time series with extra batch dimension(s).""" # Running with multiple chains introduces an extra batch dimension. In # general we also need to pad the observed time series with a matching batch # dimension. # # For example, suppose our model has batch shape [3, 4] and # the observed time series has shape `concat([[5], [3, 4], [100])`, # corresponding to `sample_shape`, `batch_shape`, and `num_timesteps` # respectively. The model will produce distributions with batch shape # `concat([chain_batch_shape, [3, 4]])`, so we pad `observed_time_series` to # have matching shape `[5, 1, 3, 4, 100]`, where the added `1` dimension # between the sample and batch shapes will broadcast to `chain_batch_shape`. [ # Extract mask and guarantee `event_ndims=2`. observed_time_series, is_missing ] = canonicalize_observed_time_series_with_mask(observed_time_series) event_ndims = 2 # event_shape = [num_timesteps, observation_size=1] model_batch_ndims = ( model.batch_shape.ndims if model.batch_shape.ndims is not None else tf.shape(model.batch_shape_tensor())[0]) # Compute ndims from chain_batch_shape. chain_batch_shape = tf.convert_to_tensor( value=chain_batch_shape, name='chain_batch_shape', dtype=tf.int32) if not chain_batch_shape.shape.is_fully_defined(): raise ValueError('Batch shape must have static rank. (given: {})'.format( chain_batch_shape)) if chain_batch_shape.shape.ndims == 0: # expand int `k` to `[k]`. chain_batch_shape = chain_batch_shape[tf.newaxis] chain_batch_ndims = tf.compat.dimension_value(chain_batch_shape.shape[0]) def do_padding(observed_time_series_tensor): current_sample_shape = tf.shape( observed_time_series_tensor)[:-(model_batch_ndims + event_ndims)] current_batch_and_event_shape = tf.shape( observed_time_series_tensor)[-(model_batch_ndims + event_ndims):] return tf.reshape( tensor=observed_time_series_tensor, shape=tf.concat([ current_sample_shape, tf.ones([chain_batch_ndims], dtype=tf.int32), current_batch_and_event_shape], axis=0)) # Padding is only needed if the observed time series has sample shape. observed_time_series = ps.cond(ps.rank(observed_time_series) > model_batch_ndims + event_ndims, lambda: do_padding(observed_time_series), lambda: observed_time_series) if is_missing is not None: is_missing = ps.cond(ps.rank(is_missing) > model_batch_ndims + event_ndims, lambda: do_padding(is_missing), lambda: is_missing) return missing_values_util.MaskedTimeSeries(observed_time_series, is_missing=is_missing)
ec072f3fa5318ee3f4c82dcc0d3697a5160b257f
3,654,560
from typing import Union import re def get_bytes(size: Union[str, int]) -> int: """Converts string representation of bytes to a number of bytes. If an integer is passed, it is returned as is (no conversion). Args: size (Union[str, int]): A string or integer representation of bytes to be converted. (eg. "0.3 Gib", "3mb", "1024", 65536) Returns: int: A number of bytes represented by the input string or integer. Exceptions: ValueError: If the input string cannot be converted to an integer. TypeError: If the input string is not a string or integer. """ if isinstance(size, int): if size < 0: raise ValueError("Negative size not allowed.") return size if not isinstance(size, str): raise TypeError("Size must be a string or integer.") m = re.match(r"^\s*(?P<size>(([1-9]\d+)|\d)(\.\d+)?)\s*(?P<unit>[a-z]{1,3})?\s*$", size, re.IGNORECASE) if not m: raise ValueError(f"Invalid size string ('{size}').") parsed_size = float(m.group("size")) unit_match = m.group("unit") if unit_match: parsed_unit = unit_match.lower() else: parsed_unit = "b" # default to bytes if parsed_unit not in BYTES_UNIT: raise ValueError(f"Invalid unit ('{parsed_unit}').") return int(parsed_size * BYTES_UNIT[parsed_unit])
76cd67a0d581b79105a79bc84d66126d3201b07a
3,654,561
def port_translation_func(req: AdvancedDataTypeRequest) -> AdvancedDataTypeResponse: """ Convert a passed in AdvancedDataTypeRequest to a AdvancedDataTypeResponse """ resp: AdvancedDataTypeResponse = { "values": [], "error_message": "", "display_value": "", "valid_filter_operators": [ FilterStringOperators.EQUALS, FilterStringOperators.GREATER_THAN_OR_EQUAL, FilterStringOperators.GREATER_THAN, FilterStringOperators.IN, FilterStringOperators.LESS_THAN, FilterStringOperators.LESS_THAN_OR_EQUAL, ], } if req["values"] == [""]: resp["values"].append([""]) return resp for val in req["values"]: string_value = str(val) try: if string_value.isnumeric(): if not 1 <= int(string_value) <= 65535: raise ValueError resp["values"].append( [int(string_value)] if string_value.isnumeric() else port_conversion_dict[string_value] ) except (KeyError, ValueError): resp["error_message"] = str( f"'{string_value}' does not appear to be a port name or number" ) break else: resp["display_value"] = ", ".join( map( lambda x: f"{x['start']} - {x['end']}" if isinstance(x, dict) else str(x), resp["values"], ) ) return resp
b8c41d8c3d3c2fa0a9e67b8ef9ff93422921e7e3
3,654,562
import subprocess def stop(cli): """Wrapper function for the relevant RPC function call. Args: cli (str): Full path to cli binary associated with coin. Returns: String: String containing the command output. """ command = DAEMON_STOP_COMMAND.format(cli) return subprocess.check_output(command).decode(DEFAULT_DECODE)
4b39c08cab60017b22ceecb9d97b626e890731d0
3,654,563
import random def get_two_diff_order_index(start=0, stop=1, order=True, diff=True): """ Returns two integers from a range, they can be: put in order (default) or unordered always different(default) or can be repeated start - integer (default = 0) stop - integer (default= 1) order - boolean ( default= True) """ my_range = stop - start first = int(my_range * random())+start second = int(my_range * random())+start #first = randint(start, stop) #second = randint(start, stop) if diff: while first == second: second = int( my_range * random()) + start #second = randint(start, stop) if order: if first > second: second, first = first, second return first, second
7bd0e17efb969ea59e7a30d8fdaae55d901a718e
3,654,564
import os def setup(args): """ Create configs and perform basic setups. """ cfg = config.get_cfg() if args.gpus is not None: gpus = args.gpus else: gpus = [] gpus_str = "" for g in gpus: gpus_str += str(g) + "," gpus_str = gpus_str[:-1] os.environ['CUDA_VISIBLE_DEVICES'] = gpus_str print(f"Config file {args.config_file}") config_path = get_config_file(args.config_file) cfg.merge_from_file(config_path) cfg.merge_from_list(args.opts) cfg.log_dir = args.log_dir cfg.ckpt_dir = args.ckpt_dir return cfg
de22f24da45bc87d22fa0dd0937b11647996c50b
3,654,565
import math def GriewankRosenbrock(arr: np.ndarray, seed: int = 0) -> float: """Implementation for BBOB GriewankRosenbrock function.""" dim = len(arr) r_x = np.matmul(_R(dim, seed, b"R"), arr) # Slightly off BBOB documentation in order to center optima at origin. # Should be: max(1.0, (dim**0.5) / 8.0) * r_x + 0.5 * np.ones((dim,)). z_arr = max(1.0, (dim**0.5) / 8.0) * r_x + np.ones((dim,)) s_arr = np.zeros(dim) for i in range(dim - 1): s_arr[i] = 100.0 * (z_arr[i]**2 - z_arr[i + 1])**2 + (z_arr[i] - 1)**2 total = 0.0 for i in range(dim - 1): total += (s_arr[i] / 4000.0 - math.cos(s_arr[i])) return (10.0 * total) / (dim - 1) + 10
9a9ca4f043e60fb971c5212de33379c29aaade58
3,654,566
def listCurrentAuctionsByKeyword(username, keyword): """Listar os leilões que estão a decorrer""" try: valid = utils.validateTypes([keyword], [str]) if not valid: return jsonify({'erro': 404}) auctions = db.listAuctions(keyword) if auctions == "noResults": db.connection.commit() return jsonify({'Ups': 'Sem resultados para esta pesquisa!'}) db.connection.commit() return jsonify(auctions) except Exception as e: db.connection.rollback() print(e) return jsonify({'erro': 401})
c02c58a294b3d65821f36872dcf23e4f7abff49b
3,654,567
import os def _get_relative_maddir(maddir, port): """ Return a relative path version of maddir GPDB and HAWQ installations have a symlink outside of GPHOME that links to the current GPHOME. After a DB upgrade, this symlink is updated to the new GPHOME. 'maddir_lib', which uses the absolute path of GPHOME, is hardcoded into each madlib function definition. Replacing the GPHOME path with the equivalent relative path makes it simpler to perform DB upgrades without breaking MADlib. """ if port not in ('greenplum', 'hawq'): # do nothing for postgres return maddir # e.g. maddir_lib = $GPHOME/madlib/Versions/1.9/lib/libmadlib.so # 'madlib' is supposed to be in this path, which is the default folder # used by GPPKG to install madlib try: abs_gphome, tail = maddir.split('madlib/') except ValueError: return maddir link_name = 'greenplum-db' if port == 'greenplum' else 'hawq' # Check outside $GPHOME if there is a symlink to this absolute path # os.pardir is equivalent to .. # os.path.normpath removes the extraneous .. from that path rel_gphome = os.path.normpath(os.path.join(abs_gphome, os.pardir, link_name)) if os.path.islink(rel_gphome) and os.path.realpath(rel_gphome) == os.path.realpath(abs_gphome): # if the relative link exists and is pointing to current location return os.path.join(rel_gphome, 'madlib', tail) else: return maddir
7ad76b8d44f68ebd61813a851672b4f4aa18b77d
3,654,568
from typing import Dict def hash_dict(data: Dict) -> int: """ Hashes a Dictionary recursively. List values are converted to Tuples. WARNING: Hashing nested dictionaries is expensive. """ cleaned_dict: Dict = {} def _clean_dict(data: Dict) -> Dict: d: Dict = {} for k, v in data.items(): if isinstance(v, list) or isinstance(v, set): d[k] = tuple(v) elif isinstance(v, dict): d[k] = hash_dict(v) else: d[k] = v return d cleaned_dict = _clean_dict(data) return hash(tuple(sorted(cleaned_dict.items())))
42b579151c90a42fadf2b53751978eec421ea03c
3,654,569
import logging import os import time import configparser def sele(): """身份验证的JSID获取. Return: 若获取成功,则返回JSID字符串, 若获取失败,则返回空字符串"" """ logger = logging.getLogger("sele.py") logger.info("Start sele") try: # phantomjs请求头设置 dcap = dict(DesiredCapabilities.PHANTOMJS) dcap["phantomjs.page.settings.userAgent"] = ( "Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.75 Safari/537.36" ) # 此处取消PhantomJS的log输出,如需输出,请参考以下代码 # driver = webdriver.PhantomJS(service_log_path='/yourpath/ghostdriver.log') # 输出log到指定目录 browser = webdriver.PhantomJS( desired_capabilities=dcap, service_log_path=os.path.devnull) # 取消log输出 browser.set_page_load_timeout(60) browser.set_script_timeout(60) # 测试时使用URL # browser.get("http://ids1.seu.edu.cn/amserver/UI/Login") browser.get("http://zccx.seu.edu.cn") browser.set_window_size(1200, 800) browser.get_screenshot_as_file("screen.png") element = browser.find_element_by_css_selector( "body > table:nth-child(2) > tbody > tr:nth-child(2) > td > table:nth-child(1) > tbody > tr:nth-child(5) > td:nth-child(4) > img") left = int(element.location['x']) top = int(element.location['y']) right = int(element.location['x'] + element.size['width']) bottom = int(element.location['y'] + element.size['height']) im = Image.open('screen.png') im = im.crop((left, top, right, bottom)) # 加入下面一行代码,你可以选择不加入tesseract到你的PATH中 # pytesseract.pytesseract.tesseract_cmd = '<full_path_to_your_tesseract_executable>' # 示例:pytesseract.pytesseract.tesseract_cmd = 'C:\\Program Files (x86)\\Tesseract-OCR\\tesseract' code = pytesseract.image_to_string(im) im.close() elem1 = browser.find_element_by_id("IDToken1") elem2 = browser.find_element_by_id("IDToken2") elem3 = browser.find_element_by_name("inputCode") time.sleep(3) conf = configparser.ConfigParser() conf.read("spider.cfg") elem1.send_keys(conf["CARD_INFO"]["card_no"]) elem2.send_keys(conf["CARD_INFO"]["card_passwd"]) elem3.send_keys(code) login = browser.find_element_by_css_selector( "body > table:nth-child(2) > tbody > tr:nth-child(2) > td > table:nth-child(1) > tbody > tr:nth-child(2) > td:nth-child(5) > img") login.click() jsid = "" for i in browser.get_cookies(): if i['name'] == 'JSESSIONID': jsid = i['value'] break time.sleep(3) browser.quit() logger.info("Success sele") return jsid except Exception as e: logger.exception("A error happened in running sele.py") browser.quit() return ""
71f89946b5811458450de54ef70354644a135866
3,654,570
def instrument_packages_ip_template(instrument, ip_version, template_name=None): """ Retrieves the specified instrument package template metadata :param instrument: instrument used to make observation :type instrument: str :param ip_version: ip version description here :type ip_version: float :param template_name: template name description goes here :type template_name: str :rtype: InstrumentPackage """ # if connexion.request.is_json: # instrument = InstrumentEnum.from_dict(connexion.request.get_json()) if template_name: return {template_name: get_template_metadata(template_name, ip_version)} query = {"instrument": instrument.upper(), "version": ip_version} fields = {"template_names": 1, "_id": 0} templates = utils.get_fields_by_query(query, fields, 'ipCollect') metadata = {} for template_name in templates["template_names"]: metadata[template_name] = get_template_metadata(template_name, ip_version) return metadata
46d3cd57e05a64c03411c31d2b18ca47f670036d
3,654,571
from typing import Literal def add_feature_metadata(id, description, type): """Generate RDF metadata for a feature :param id: if used to identify the feature :param description: feature description :param type: feature type :return: rdflib graph after loading the feature """ g = Graph() feature_uri = URIRef(OPENPREDICT_NAMESPACE + 'feature/' + id) g.add((feature_uri, RDF.type, MLS['Feature'])) g.add((feature_uri, DC.identifier, Literal(id))) g.add((feature_uri, DC.description, Literal(description))) g.add((feature_uri, OPENPREDICT['embedding_type'], Literal(type))) insert_graph_in_sparql_endpoint(g) return g
0d4987807b3ed97baa50f8b14c588ef162b5c8ac
3,654,572
import copy def sink(input_flow_direction_raster): """ Creates a raster layer identifying all sinks or areas of internal drainage. The value type for the Sink function output raster layer is floating point. For more information, see https://pro.arcgis.com/en/pro-app/help/data/imagery/sink-function.htm Parameters ---------- :param input_flow_direction_raster: The input raster that shows the direction of flow out of each cell. The flow direction raster can be created by running the Flow Direction function. :return: output raster with function applied """ layer, input_flow_direction_raster, raster_ra = _raster_input(input_flow_direction_raster) template_dict = { "rasterFunction" : "GPAdapter", "rasterFunctionArguments" : { "toolName" : "Sink_sa", "PrimaryInputParameterName" : "in_flow_direction_raster", "OutputRasterParameterName" : "out_raster", "in_flow_direction_raster" : input_flow_direction_raster } } function_chain_ra = copy.deepcopy(template_dict) function_chain_ra["rasterFunctionArguments"]["in_flow_direction_raster"] = raster_ra return _gbl_clone_layer(layer, template_dict, function_chain_ra)
6d1b22dacd48a0939b7822d62a4867b2b7574c42
3,654,573
def bad_multi_examples_per_input_estimator_out_of_range_input_refs( export_path, eval_export_path): """Like the above (good) estimator, but the input_refs is out of range.""" estimator = tf.estimator.Estimator(model_fn=_model_fn) estimator.train(input_fn=_train_input_fn, steps=1) return util.export_model_and_eval_model( estimator=estimator, serving_input_receiver_fn=_serving_input_receiver_fn, eval_input_receiver_fn=( _bad_eval_input_receiver_fn_out_of_range_input_refs), export_path=export_path, eval_export_path=eval_export_path)
539ec039451c53db72cb676881f48fbe45874dfa
3,654,574
def vector_to_diagonal(v): """Converts a vector to a diagonal matrix with vector elements as the diagonal elements of the matrix""" diag_matrix = [[0 for i in range(len(v))] for j in range(len(v))] for i in range(len(v)): diag_matrix[i][i] = v[i] return diag_matrix
6cbaf54a083633a47af92acc7f69421ed68a1c0b
3,654,575
from typing import Union from pathlib import Path from typing import List def _get_filenames(path: Union[str, Path], media_type: MediaType) -> List[str]: """ Get filenames from a directory or a path to a file. :param path: Path to the file or to the location that contains files. :param media_type: Type of the media (image or video) :example: >>> path = "../images" >>> _get_filenames(path, media_type=MediaType.image) ['images/4.jpeg', 'images/1.jpeg', 'images/5.jpeg', 'images/3.jpeg', 'images/2.jpeg'] """ extensions = _get_extensions(media_type) filenames: List[str] = [] if media_type == MediaType.camera: raise ValueError( "Cannot get filenames for camera. Only image and video files are supported." ) if isinstance(path, str): path = Path(path) if path.is_file(): if _is_file_with_supported_extensions(path, extensions): filenames = [path.as_posix()] else: raise ValueError("Extension not supported for media type") if path.is_dir(): for filename in path.rglob("*"): if _is_file_with_supported_extensions(filename, extensions): filenames.append(filename.as_posix()) filenames = natsorted(filenames) # type: ignore[assignment] if len(filenames) == 0: raise FileNotFoundError(f"No {media_type.name} file found in {path}!") return filenames
953bcfce17c6db45772a8eac8890fa161c128322
3,654,576
from venusian import attach def method(method_class): """Decorator to use to mark an API method. When invoking L{Registry.scan} the classes marked with this decorator will be added to the registry. @param method_class: The L{Method} class to register. """ def callback(scanner, name, method_class): if method_class.actions is not None: actions = method_class.actions else: actions = [name] if method_class.versions is not None: versions = method_class.versions else: versions = [None] for action in actions: for version in versions: scanner.registry.add(method_class, action=action, version=version) attach(method_class, callback, category="method") return method_class
4e40d265a4a5767686f0e37b4d1adf681ce36722
3,654,577
def generic_validator(check, error_message): """ Validator factory >>> v = generic_validator(is_int, "invalid int") >>> v(6) 6 >>> v("g") Traceback (most recent call last): ... ValidationError: [u'invalid int'] """ # Validator closure def inner_validator(value, *args, **kwargs): if not check(value): raise ValidationError(error_message) return value return inner_validator
21134ecee1d8c23b10e94181c0c1aa602ce4b76e
3,654,578
def get_molec_shape(mol, conf, confId, vdwScale=1.0, boxMargin=2.0, spacing=0.2): """ Get the shape of a conformer of a molecule as a grid representation. """ box = Chem.ComputeConfBox(conf) sideLen = (box[1].x-box[0].x + 2*boxMargin, box[1].y-box[0].y + 2*boxMargin, box[1].z-box[0].z + 2*boxMargin) shape = rdGeometry.UniformGrid3D(2*sideLen[0], 2*sideLen[1], 2*sideLen[2], spacing=spacing) Chem.EncodeShape( mol, shape, confId=confId, ignoreHs=False, vdwScale=vdwScale ) return box, sideLen, shape
6a7b404224a116a52d70f7ab14d4301215c1700f
3,654,579
import math def autoencoder(dimensions=[784, 512, 256, 64]): """Build a deep denoising autoencoder w/ tied weights. Parameters ---------- dimensions : list, optional The number of neurons for each layer of the autoencoder. Returns ------- x : Tensor Input placeholder to the network z : Tensor Inner-most latent representation y : Tensor Output reconstruction of the input cost : Tensor Overall cost to use for training """ # input to the network x = tf.placeholder(tf.float32, [None, dimensions[0]], name='x') # Probability that we will corrupt input. # This is the essence of the denoising autoencoder, and is pretty # basic. We'll feed forward a noisy input, allowing our network # to generalize better, possibly, to occlusions of what we're # really interested in. But to measure accuracy, we'll still # enforce a training signal which measures the original image's # reconstruction cost. # # We'll change this to 1 during training # but when we're ready for testing/production ready environments, # we'll put it back to 0. corrupt_prob = tf.placeholder(tf.float32, [1]) current_input = corrupt(x) * corrupt_prob + x * (1 - corrupt_prob) # Build the encoder encoder = [] for layer_i, n_output in enumerate(dimensions[1:]): n_input = int(current_input.get_shape()[1]) W = tf.Variable( tf.random_uniform([n_input, n_output], -1.0 / math.sqrt(n_input), 1.0 / math.sqrt(n_input))) b = tf.Variable(tf.zeros([n_output])) encoder.append(W) output = tf.nn.tanh(tf.matmul(current_input, W) + b) current_input = output # latent representation z = current_input encoder.reverse() # Build the decoder using the same weights for layer_i, n_output in enumerate(dimensions[:-1][::-1]): W = tf.transpose(encoder[layer_i]) b = tf.Variable(tf.zeros([n_output])) output = tf.nn.tanh(tf.matmul(current_input, W) + b) current_input = output # now have the reconstruction through the network y = current_input # cost function measures pixel-wise difference cost = tf.sqrt(tf.reduce_mean(tf.square(y - x))) return {'x': x, 'z': z, 'y': y, 'corrupt_prob': corrupt_prob, 'cost': cost}
d9cc8b6f2c8e7df0bc4fb580e1de20dc57f93c7a
3,654,580
def _asymptotic_expansion_of_normalized_black_call(h, t): """ Asymptotic expansion of b = Φ(h+t)·exp(x/2) - Φ(h-t)·exp(-x/2) with h = x/s and t = s/2 which makes b = Φ(h+t)·exp(h·t) - Φ(h-t)·exp(-h·t) exp(-(h²+t²)/2) = --------------- · [ Y(h+t) - Y(h-t) ] √(2π) with Y(z) := Φ(z)/φ(z) for large negative (t-|h|) by the aid of Abramowitz & Stegun (26.2.12) where Φ(z) = φ(z)/|z|·[1-1/z^2+...]. We define r A(h,t) := --- · [ Y(h+t) - Y(h-t) ] t with r := (h+t)·(h-t) and give an expansion for A(h,t) in q:=(h/r)² expressed in terms of e:=(t/h)² . :param h: :type h: float :param t: :type t: float :return: :rtype: float """ e = (t / h) * (t / h) r = ((h + t) * (h - t)) q = (h / r) * (h / r) # 17th order asymptotic expansion of A(h,t) in q, sufficient for Φ(h) [and thus y(h)] to have relative accuracy of 1.64E-16 for h <= η with η:=-10. asymptotic_expansion_sum = (2.0 + q * (-6.0E0 - 2.0 * e + 3.0 * q * (1.0E1 + e * (2.0E1 + 2.0 * e) + 5.0 * q * ( -1.4E1 + e * (-7.0E1 + e * (-4.2E1 - 2.0 * e)) + 7.0 * q * ( 1.8E1 + e * (1.68E2 + e * (2.52E2 + e * (7.2E1 + 2.0 * e))) + 9.0 * q * ( -2.2E1 + e * (-3.3E2 + e * (-9.24E2 + e * (-6.6E2 + e * (-1.1E2 - 2.0 * e)))) + 1.1E1 * q * ( 2.6E1 + e * (5.72E2 + e * ( 2.574E3 + e * (3.432E3 + e * (1.43E3 + e * (1.56E2 + 2.0 * e))))) + 1.3E1 * q * ( -3.0E1 + e * (-9.1E2 + e * (-6.006E3 + e * (-1.287E4 + e * ( -1.001E4 + e * (-2.73E3 + e * (-2.1E2 - 2.0 * e)))))) + 1.5E1 * q * ( 3.4E1 + e * (1.36E3 + e * (1.2376E4 + e * (3.8896E4 + e * ( 4.862E4 + e * (2.4752E4 + e * ( 4.76E3 + e * (2.72E2 + 2.0 * e))))))) + 1.7E1 * q * ( -3.8E1 + e * (-1.938E3 + e * (-2.3256E4 + e * ( -1.00776E5 + e * (-1.84756E5 + e * ( -1.51164E5 + e * (-5.4264E4 + e * ( -7.752E3 + e * ( -3.42E2 - 2.0 * e)))))))) + 1.9E1 * q * ( 4.2E1 + e * (2.66E3 + e * (4.0698E4 + e * ( 2.3256E5 + e * (5.8786E5 + e * ( 7.05432E5 + e * (4.0698E5 + e * ( 1.08528E5 + e * (1.197E4 + e * ( 4.2E2 + 2.0 * e))))))))) + 2.1E1 * q * ( -4.6E1 + e * (-3.542E3 + e * ( -6.7298E4 + e * ( -4.90314E5 + e * ( -1.63438E6 + e * ( -2.704156E6 + e * ( -2.288132E6 + e * ( -9.80628E5 + e * ( -2.01894E5 + e * ( -1.771E4 + e * ( -5.06E2 - 2.0 * e)))))))))) + 2.3E1 * q * ( 5.0E1 + e * ( 4.6E3 + e * ( 1.0626E5 + e * ( 9.614E5 + e * ( 4.08595E6 + e * ( 8.9148E6 + e * ( 1.04006E7 + e * ( 6.53752E6 + e * ( 2.16315E6 + e * ( 3.542E5 + e * ( 2.53E4 + e * ( 6.0E2 + 2.0 * e))))))))))) + 2.5E1 * q * ( -5.4E1 + e * ( -5.85E3 + e * ( -1.6146E5 + e * ( -1.77606E6 + e * ( -9.37365E6 + e * ( -2.607579E7 + e * ( -4.01166E7 + e * ( -3.476772E7 + e * ( -1.687257E7 + e * ( -4.44015E6 + e * ( -5.9202E5 + e * ( -3.51E4 + e * ( -7.02E2 - 2.0 * e)))))))))))) + 2.7E1 * q * ( 5.8E1 + e * ( 7.308E3 + e * ( 2.3751E5 + e * ( 3.12156E6 + e * ( 2.003001E7 + e * ( 6.919458E7 + e * ( 1.3572783E8 + e * ( 1.5511752E8 + e * ( 1.0379187E8 + e * ( 4.006002E7 + e * ( 8.58429E6 + e * ( 9.5004E5 + e * ( 4.7502E4 + e * ( 8.12E2 + 2.0 * e))))))))))))) + 2.9E1 * q * ( -6.2E1 + e * ( -8.99E3 + e * ( -3.39822E5 + e * ( -5.25915E6 + e * ( -4.032015E7 + e * ( -1.6934463E8 + e * ( -4.1250615E8 + e * ( -6.0108039E8 + e * ( -5.3036505E8 + e * ( -2.8224105E8 + e * ( -8.870433E7 + e * ( -1.577745E7 + e * ( -1.472562E6 + e * ( -6.293E4 + e * ( -9.3E2 - 2.0 * e)))))))))))))) + 3.1E1 * q * ( 6.6E1 + e * ( 1.0912E4 + e * ( 4.74672E5 + e * ( 8.544096E6 + e * ( 7.71342E7 + e * ( 3.8707344E8 + e * ( 1.14633288E9 + e * ( 2.07431664E9 + e * ( 2.33360622E9 + e * ( 1.6376184E9 + e * ( 7.0963464E8 + e * ( 1.8512208E8 + e * ( 2.7768312E7 + e * ( 2.215136E6 + e * ( 8.184E4 + e * ( 1.056E3 + 2.0 * e))))))))))))))) + 3.3E1 * ( -7.0E1 + e * ( -1.309E4 + e * ( -6.49264E5 + e * ( -1.344904E7 + e * ( -1.4121492E8 + e * ( -8.344518E8 + e * ( -2.9526756E9 + e * ( -6.49588632E9 + e * ( -9.0751353E9 + e * ( -8.1198579E9 + e * ( -4.6399188E9 + e * ( -1.6689036E9 + e * ( -3.67158792E8 + e * ( -4.707164E7 + e * ( -3.24632E6 + e * ( -1.0472E5 + e * ( -1.19E3 - 2.0 * e))))))))))))))))) * q))))))))))))))))) b = ONE_OVER_SQRT_TWO_PI * np.exp((-0.5 * (h * h + t * t))) * (t / r) * asymptotic_expansion_sum return np.abs(np.maximum(b, 0))
9985b36e7f0dec1877d275a23ae747d9a57c1163
3,654,581
def date_read(date_string, *, convert_to_current_timezone: bool = False): """Read the given date (if possible).""" return date_parse(date_string, convert_to_current_timezone=convert_to_current_timezone)
96f21f7fcae995a9a17f6008c8e5a4161ed971f2
3,654,582
import urllib def encode_name(name): """ Encode a unicode as utf-8 and then url encode that string. Use for entity titles in URLs. """ return urllib.quote(name.encode('utf-8'), safe='')
6e9d34516613ecdf0ce94fb9cfc594de7e76b72f
3,654,583
def cmp_str(element1, element2): """ compare number in str format correctley """ try: return cmp(int(element1), int(element2)) except ValueError: return cmp(element1, element2)
7c8df75bc1b1ad3997db4a4d6f1b58a37c4e1dd7
3,654,584
def parse_page_file(page_raw: str, type: str, file_name: str) -> Page: """ FIXME: add documentation """ page_id = extract_page_id(file_name) title, fields = parse_md(page_raw) return Page( id=page_id, type=type, title=title, fields=fields, )
bf53026374c1720cf2cdcf785e256ce3374226ce
3,654,585
from sys import path import joblib def fetch(name): """ Fetches an appropriate model to perform the prediction. :param name: model's name :return: a trained model """ K.clear_session() try: full_weights_path = path.join(path_prefix, *load_weights()[name]) if name == 'svm': return SVMModel(joblib.load(full_weights_path)) elif name == 'cnn': return CNNModel(load(full_weights_path)) elif name == 'mlp': return MLPModel(load(full_weights_path)) except KeyError: raise ModelNotFoundError(f'Model named {name} does not exist.')
fcb82ec61b984e07ece0822c0bcf78dff451eafa
3,654,586
def post(text, appid=2, touser=None, toparty=None): """ party """ #print '=========',type(text) if type(text) is unicode: text = text.encode('utf8') if not touser: touser = [] if not toparty: toparty = ['2'] url = 'https://qyapi.weixin.qq.com/cgi-bin/message/send?access_token={access_token}' url = url.format(access_token=get_access_token()) data = {"touser": "|".join(touser), "toparty": "|".join(toparty), "msgtype": "text", "agentid": str(appid), "text": {"content": text}, "safe": "0", } result = requests.post(url, data=json.dumps(data, ensure_ascii=False)) print result.text return result
b2a92a274007b0502431a856457a244c12b925a9
3,654,587
import six import codecs def hex_encrypt(msg): """Hex encrypts a message. :param bytes msg: string message to be encrypted. :return: string for encrypted version of msg in hex. :rtype: bytes """ if not cipher: return msg if not isinstance(msg, six.binary_type): raise ValueError('only bytes can be encrypted') msg = cipher.encrypt(_pad(msg)) msg = codecs.encode(msg, 'hex') return msg
c2d913d181b8ceb33b3e7d99fc5f21b025da58ea
3,654,588
import requests def http_request(source_id, endpoint_id, args, kwargs, # pylint: disable=too-many-arguments service_addr, auth=None): """Call http endpoint""" headers = {"content-type": "application/json"} if auth is not None: headers["Authorization"] = basic_auth_header(auth) payload = _create_http_message(args, endpoint_id, kwargs, source_id) url = service_addr if not url.startswith("http"): url = "http://" + url LOGGER.debug("Url: %s", url) response = requests.post(url, data=payload, headers=headers) return_value = None if response.status_code < 300: return_value = json_tricks.loads(response.content.decode("utf-8")) return return_value, response.status_code
e259508e78aaa7bf9c663a538a2c6b6471938f5e
3,654,589
import regex async def filter_by_game_stats(opsdroid, string, room, action): """Match incoming messages against the current games stats.""" if room not in STAT_REGEXES.keys(): gamestats = await get_stat_names(opsdroid, room) if not gamestats: return [] STAT_REGEXES[room] = {"set": regex.compile(f"(?:(?:{'|'.join(['!'+s for s in gamestats])}) {MODIFIER_REGEX})", flags=regex.IGNORECASE), "roll": regex.compile("|".join(gamestats), flags=regex.IGNORECASE)} stats = STAT_REGEXES[room][action].findall(string) return stats
4971e5567c8a1b89aa47fdaab2e42e51620f475b
3,654,590
def password_provider(): """ Provides the full password check """ return [(n,) for n in range(5)]
afdb188844e4b0979528b290477130313679e4df
3,654,591
def make_combiparameter(*args, **kwargs): """ Make a combined qcodes parameter. Args: *args : list of gates or parameters (e.g. make_combiparameter("A1", "A3", station.gates.B1 )) """ station = qc.Station.default parameters = [] for i in args: if type(i) == str: parameters.append(getattr(station.gates, i)) else: parameters.append(i) label = "" for i in parameters: label += i.label + " " try: name = kwargs['name'] except: name = 'combi_par' return combi_par(parameters, label, name)
6482187dc463c67e322a281181ba827eb39eb28d
3,654,592
def get_delta_fmt(delta): """arbitrary colour formatting of rank delta more red for bigger losses, more green for bigger gains """ col = (0, 0, 0, 255) n = abs(delta) s = delta if delta < 0: sat = min(n/200 + 0.2, 1) r, g, b = hsv_to_rgb(0, sat, 1) col = (r, g, b, 1) else: s = "+"+str(n) sat = min(n/100 + 0.2, 1) r, g, b = hsv_to_rgb(1/3, sat, 1) col = (r, g, b, 1) return "(" + str(s) + ")", col
a7860df4f19632c9623c39c38ac70a76f405ae56
3,654,593
import sys def calculate_wtv(sample_values, epoch_time_interval=WTV_EPOCH_TIME, relative_to_time=None): """ Calculate the Wear-Time Validation (30-minute epochs) for a given sample ndarray [[time_seconds, accel_x, accel_y, accel_z]]. Based on the method by van Hees et al in PLos ONE 2011 6(7), "Estimation of Daily Energy Expenditure in Pregnant and Non-Pregnant Women Using a Wrist-Worn Tri-Axial Accelerometer". Accelerometer non-wear time is estimated from the standard deviation and range of each accelerometer axis, calculated for consecutive blocks of 30 minutes. A block was classified as non-wear time if the standard deviation was less than 3.0 mg (1 mg = 0.00981 m*s-2) for at least two out of the three axes, or if the value range, for at least two out of three axes, was less than 50 mg. :param epoch_time_interval: seconds per epoch (the algorithm is defined for 30 minutes) :param relative_to_time: None=align epochs to start of data, 0=align epochs to natural time, other=custom alignment :returns: ndarray of [time,worn], where worn is 0 (not worn), or 1 (worn) """ if epoch_time_interval != WTV_EPOCH_TIME: print('WARNING: WTV algorithm is defined for %d seconds, but currently using %d seconds' % (WTV_EPOCH_TIME, epoch_time_interval), file=sys.stderr) # Split samples into epochs epochs = epoch.split_into_epochs(sample_values, epoch_time_interval, relative_to_time=relative_to_time) # Calculate each epoch num_epochs = len(epochs) result = np.empty((num_epochs,2)) for epoch_index in range(num_epochs): this_epoch = epochs[epoch_index] # Epoch start time and sample data epoch_time = this_epoch[0,0] samples = this_epoch[:,1:4] # Per-axis/sample standard deviation and range stddev = np.std(samples, axis=0) value_range = np.ptp(samples, axis=0) # Count axes count_stddev_low = np.sum(stddev < WTV_STD_CUTOFF) count_range_low = np.sum(value_range < WTV_RANGE_CUTOFF) # Determine if worn if count_stddev_low >= WTV_STD_MIN_AXES or count_range_low >= WTV_RANGE_MIN_AXES: epoch_value = 0 else: epoch_value = 1 # Result result[epoch_index,0] = epoch_time result[epoch_index,1] = epoch_value return result
c829825e9875d57cbce94a704ad162349a2143c7
3,654,594
import inner_imports from re import X def function(default=None): """Docstring comes first. Possibly many lines. """ # FIXME: Some comment about why this function is crap but still in production. if inner_imports.are_evil(): # Explains why we have this if. # In great detail indeed. x = X() return x.method1() # type: ignore # This return is also commented for some reason. return default
180e412bdeb275a3d7ca56fd0588a565b64778fd
3,654,595
def fit_pk_parms_1d(p0, x, f, pktype='pvoigt'): """ Performs least squares fit to find parameters for 1d analytic functions fit to diffraction data Required Arguments: p0 -- (m) ndarray containing initial guesses for parameters for the input peaktype x -- (n) ndarray of coordinate positions f -- (n) ndarray of intensity measurements at coordinate positions x pktype -- string, type of analytic function that will be used to fit the data, current options are "gaussian","lorentzian","pvoigt" (psuedo voigt), and "split_pvoigt" (split psuedo voigt) Outputs: p -- (m) ndarray containing fit parameters for the input peaktype (see peak function help for what each parameters corresponds to) Notes: 1. Currently no checks are in place to make sure that the guess of parameters has a consistent number of parameters with the requested peak type """ weight = np.max(f)*10. # hard coded should be changed fitArgs = (x, f, pktype) if pktype == 'gaussian': p, outflag = optimize.leastsq( fit_pk_obj_1d, p0, args=fitArgs, Dfun=eval_pk_deriv_1d, ftol=ftol, xtol=xtol ) elif pktype == 'lorentzian': p, outflag = optimize.leastsq( fit_pk_obj_1d, p0, args=fitArgs, Dfun=eval_pk_deriv_1d, ftol=ftol, xtol=xtol ) elif pktype == 'pvoigt': lb = [p0[0]*0.5, np.min(x), 0., 0., 0., None] ub = [p0[0]*2.0, np.max(x), 4.*p0[2], 1., 2.*p0[4], None] fitArgs = (x, f, pktype, weight, lb, ub) p, outflag = optimize.leastsq( fit_pk_obj_1d_bnded, p0, args=fitArgs, ftol=ftol, xtol=xtol ) elif pktype == 'split_pvoigt': lb = [p0[0]*0.5, np.min(x), 0., 0., 0., 0., 0., None] ub = [p0[0]*2.0, np.max(x), 4.*p0[2], 4.*p0[2], 1., 1., 2.*p0[4], None] fitArgs = (x, f, pktype, weight, lb, ub) p, outflag = optimize.leastsq( fit_pk_obj_1d_bnded, p0, args=fitArgs, ftol=ftol, xtol=xtol ) elif pktype == 'tanh_stepdown': p, outflag = optimize.leastsq( fit_pk_obj_1d, p0, args=fitArgs, ftol=ftol, xtol=xtol) elif pktype == 'dcs_pinkbeam': lb = np.array([0.0, x.min(), -100., -100., -100., -100., 0., 0., -np.inf, -np.inf, -np.inf]) ub = np.array([np.inf, x.max(), 100., 100., 100., 100., 10., 10., np.inf, np.inf, np.inf]) res = optimize.least_squares( fit_pk_obj_1d, p0, jac='2-point', bounds=(lb, ub), method='trf', args=fitArgs, ftol=ftol, xtol=xtol) p = res['x'] outflag = res['success'] else: p = p0 print('non-valid option, returning guess') if np.any(np.isnan(p)): p = p0 print('failed fitting, returning guess') return p
52dbff47fd8ad6f7727b0241bba48d2b10393a18
3,654,596
from meerschaum.utils.debug import dprint from typing import Union def is_pipe_registered( pipe : Union['meerschaum.Pipe', 'meerschaum.Pipe.MetaPipe'], pipes : dict, debug : bool = False ): """ Check if a Pipe or MetaPipe is inside the pipes dictionary. """ ck, mk, lk = pipe.connector_keys, pipe.metric_key, pipe.location_key if debug: dprint(f'{ck}, {mk}, {lk}') dprint(f'{pipe}, {pipes}') return ck in pipes and mk in pipes[ck] and lk in pipes[ck][mk]
b3630de8316858afe9272698593a7dec7f984762
3,654,597
import jinja2 def truncate(s, length=255, killwords=True, end='...'): """ Wrapper for jinja's truncate that checks if the object has a __truncate__ attribute first. Altering the jinja2 default of killwords=False because of https://bugzilla.mozilla.org/show_bug.cgi?id=624642, which could occur elsewhere. """ if s is None: return '' if hasattr(s, '__truncate__'): return s.__truncate__(length, killwords, end) return jinja2.filters.do_truncate(smart_unicode(s), length, killwords, end)
70c154fbfa344bd24f685f5209e2121d8aac0057
3,654,598
def tract_segmentation_single_example_lap (kdt_T_A, prototypes_T_A,sid, num_NN,T_A ): """ step 1: tract segmentation from a single example using Jonker-Volgenant algorithm (LAPJV) """ E_t_filename= 'data/example/'+ str(sid) +'_'+str(tract_name)+'.trk' print("Loading Example tract: %s" % E_t_filename) E_t, hdr= load(E_t_filename, threshold_short_streamlines=threshold_short_streamlines) dm_E_t= dissimilarity(E_t, prototypes_T_A,bundles_distances_mam) #compute the NN of the example tract in order to construcse the cost matrix NN_E_t_NN_Idx= NN (kdt_T_A, dm_E_t,num_NN) print("Computing the cost matrix with mam distance (%s x %s) for RLAP " % (len(E_t), len( NN_E_t_NN_Idx))) cost_matrix = bundles_distances_mam_smarter_faster(E_t, T_A[NN_E_t_NN_Idx]) print("Computing optimal assignmnet with LAPJV") assignment = LinearAssignment(cost_matrix).solution min_cost_values= cost_matrix[np.arange(len(cost_matrix)), assignment] return NN_E_t_NN_Idx[assignment], min_cost_values, len(E_t)
cc14e598f359fc9b92995bdc3a6a98192333b800
3,654,599