content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def url(method): """对于每一个URL的请求访问装饰器,在出错时返回对应的信息""" @wraps(method) def error_handler(*args, **kwargs): try: return success(method(*args, **kwargs)) except RequestError as r: current_app.logger.exception(r) # 返回对应异常类的字符串文档 return failed(reason=r.err_num(), message=r.err_msg()) except Exception as e: current_app.logger.exception(e) return failed() return error_handler
cb2c36981372738b6b708d4e28566d4bb8ffcd90
3,654,600
def is_abbreviation(sentence): """ Evaluate a word to be an abbreviation if the immediate word before the period contains a capital letter and not a single word sentence. """ sentence_split = sentence.split(" ") if len(sentence_split) == 1: return False elif len(sentence_split[-1]) <= 3 and \ any(x.isupper() for x in sentence_split[-1]): return True else: return False
a6f6ceae5b3b9adb7817a913e80a6af86b6d27d5
3,654,601
def compose_redis_key(vim_name, identifier, identifier_type="vdu"): """Compose the key for redis given vim name and vdu uuid Args: vim_name (str): The VIM name identifier (str): The VDU or VNF uuid (NFVI based) identifier_type (str): the identifier type. Default type is vdu. Also vnf is supported. Returns: str: the key for redis """ if identifier_type == "vnf": return "{}:vnf#{}".format(vim_name.lower(), identifier) else: return "{}:{}".format(vim_name.lower(), identifier)
e9a03cf9ff704fea8b9cdf75c59695568e366649
3,654,602
def calGridID(locs, id, SPLIT = 0.0005): """ 根据城市网格编号还原经纬度信息 :param locs: :param id: :param SPLIT=0.05: """ centerincrement = SPLIT/2.0 LNGNUM = int((locs['east'] - locs['west']) / SPLIT + 1) latind = int(id / LNGNUM) lngind = id - latind * LNGNUM lat = (locs['south'] + latind * SPLIT) lng = (locs['west'] + lngind * SPLIT) lngcen = (lng + centerincrement) latcen = (lat + centerincrement) return "%.3f,%.3f" % (latcen, lngcen) # { # 'lat': latcen, # 'lng': lngcen # }
8df119ff82bc1d3c14dbdfe358af6d956d6a52a2
3,654,603
def linear(x, *p): """[summary] Arguments: x {[type]} -- [description] Returns: [type] -- [description] """ return p[0] * x + p[1]
07ef5fc7c5e78148528cccd09fe14c37cad22ead
3,654,604
def convert_price_text(t): """ convert "$175/month' to 175 :param t: :return: price, unit (i.e. 175, 'month') """ tok = t.split('$')[1] if '/' in tok: price, unit = tok.split('/') else: price = tok unit = None return float(price.strip().strip('$').replace(',', '')), unit
b42d26dcd4eb1b2c2f8c5a63ddc9d48469e30a52
3,654,605
async def async_setup(hass, config): """Set up the WWLLN component.""" if DOMAIN not in config: return True conf = config[DOMAIN] latitude = conf.get(CONF_LATITUDE, hass.config.latitude) longitude = conf.get(CONF_LONGITUDE, hass.config.longitude) identifier = '{0}, {1}'.format(latitude, longitude) if identifier in configured_instances(hass): return True if hass.config.units.name == CONF_UNIT_SYSTEM_IMPERIAL: unit_system = CONF_UNIT_SYSTEM_IMPERIAL else: unit_system = CONF_UNIT_SYSTEM_METRIC hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={'source': SOURCE_IMPORT}, data={ CONF_LATITUDE: latitude, CONF_LONGITUDE: longitude, CONF_RADIUS: conf[CONF_RADIUS], CONF_WINDOW: conf[CONF_WINDOW], CONF_UNIT_SYSTEM: unit_system, })) return True
3f0a4f5a017340780c8c1122425804e7862c3d0f
3,654,606
from typing import Any def __are_nearly_overlapped( plane_predicted: NDArray[Any, np.int32], plane_gt: NDArray[Any, np.int32], required_overlap: np.float64, ) -> (bool, bool): """ Calculate if planes are overlapped enough (required_overlap %) to be used for PP-PR metric :param required_overlap: overlap threshold which will b checked to say that planes overlaps :param plane_predicted: predicted segmentation :param plane_gt: ground truth segmentation :return: true if planes are overlapping by required_overlap % or more, false otherwise """ intersection = np.intersect1d(plane_predicted, plane_gt) return ( intersection.size / plane_predicted.size >= required_overlap and intersection.size / plane_gt.size >= required_overlap, intersection.size > 0, )
7b686e7bb4b18e4e2e116cdfd14878acbcc4c92d
3,654,607
def _get_prob_k_given_L(B, N=None): """ Helper function. """ if N is None: N = int(B[0, 1]) return B / N
be1d0848b148b3413aaee2c5549bd6063e1f2d33
3,654,608
def base64_encode(s): """unicode-safe base64 base64 API only talks bytes """ if not isinstance(s, bytes): s = s.encode('ascii', 'replace') encoded = encodebytes(s) return encoded.decode('ascii')
6ef0722014aa56e22de102aa0ce8286416640f86
3,654,609
def _unpack_tableswitch(bc, offset): """ function for unpacking the tableswitch op arguments """ jump = (offset % 4) if jump: offset += (4 - jump) (default, low, high), offset = _unpack(_struct_iii, bc, offset) joffs = list() for _index in xrange((high - low) + 1): j, offset = _unpack(_struct_i, bc, offset) joffs.append(j) return (default, low, high, joffs), offset
af08ab85def5bf132227f20da8cb6032e2a9dff1
3,654,610
def force_orders(self, **kwargs): """User's Force Orders (USER_DATA) GET /fapi/v1/forceOrders https://binance-docs.github.io/apidocs/futures/en/#user-39-s-force-orders-user_data Keyword Args: symbol (str, optional) autoCloseType (str, optional): "LIQUIDATION" for liquidation orders, "ADL" for ADL orders. startTime (int, optional) endTime (int, optional) limit (int, optional): Default 50; max 100. recvWindow (int, optional) Notes: If "autoCloseType" is not sent, orders with both of the types will be returned If "startTime" is not sent, data within 7 days before "endTime" can be queried """ payload = {**kwargs} url_path = "/fapi/v1/forceOrders" return self.sign_request("GET", url_path, payload)
6e848820e17e54df0f275ec4087d9c609d4e08fa
3,654,611
def prosp_power_analysis_norm(d, sigma, pow_lev, alpha, direction): """ This function conducts pre-testing power analysis and calculates the minimally required sample size for a normal sample. @param d: difference between the mean differences under H1 and H0 @param sigma: standard deviation @param pow_lev: power level @param alpha: significance level @param direction: direction of the test, two-sided or one-sided @return: required minimal sample size """ # first calculates for a z test n_z = np.ceil(z_test_sample_size(d, sigma, alpha, pow_lev, direction)) # first iteration for t test n_t_1 = np.ceil(t_test_sample_size(d, sigma, n_z-1, alpha, pow_lev, direction)) # second iteration for t test n_t_2 = np.ceil(t_test_sample_size(d, sigma, n_t_1-1, alpha, pow_lev, direction)) return(np.ceil(n_t_2 ))
319daf6434b774dcf3bf3f6f936a566e1640c175
3,654,612
def decision_tree_construction(examples, target_attribute, attributes, depth): """ :param examples: The data we will use to train the tree(x) :param target_attribute: The label we want to classify(y) :param attributes: The number(index) of the labels/attributes of the data-set :return: The tree corresponding to the given data """ # This is the first base condition of the algorithm. It is used if the attributes variable is empty, then we return # the single-node tree Root, with label = most common value of target_attribute in examples # The base condition for the recursion when we check if all the variables are same or not in the node and if they # are same then we return that value as the node if len(attributes) == 0 or len(np.unique(target_attribute)) == 1: unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: i = 0 if unique_value_of_attribute[0] == 1: # More positive values return 1, depth elif unique_value_of_attribute[0] == 0: # More negative values return 0, depth # This is the recursion part of the algorithm in which we try to find the sub-tree's by using recursion and # information gain else: Information_Gain = Information_Gain_Heuristic(examples, attributes, target_attribute) best_attribute_number = attributes[np.argmax(Information_Gain)] # Since we now have the best_attribute(A in algorithm) we will create the root node of the tree/sub-tree with # that and name the root as the best attribute among all Here we make the tree as a dictionary for testing # purposes tree = dict([(best_attribute_number, dict())]) if isinstance(tree, int): # If the given value is a int value then it's definitely a leaf node and if it's a dictionary then its a # node tree[best_attribute_number]["type_of_node"] = "leaf" tree[best_attribute_number]["depth"] = depth unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: # Here we can have an index error since in some case it may happen that the array has only one type # of value and thus accessing the index [1] is not possible i = 0 tree[best_attribute_number]["majority_target_attribute"] = unique_value_of_attribute[0] tree[best_attribute_number]["best_attribute_number"] = best_attribute_number else: tree[best_attribute_number]["type_of_node"] = "node" tree[best_attribute_number]["depth"] = depth unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: # Here we can have an index error since in some case it may happen that the array has only one type # of value and thus accessing the index [1] is not possible i = 0 tree[best_attribute_number]["majority_target_attribute"] = unique_value_of_attribute[0] tree[best_attribute_number]["best_attribute_number"] = best_attribute_number attributes.remove(best_attribute_number) # Now we do the recursive algorithm which will be used to create the tree after the root node. depth_of_node = [] for each_unique_value in np.unique(examples[best_attribute_number]): # We use those values for which the examples[best_attribute_number] == each_unique_value class1 = each_unique_value new_target_attribute = pd.DataFrame(target_attribute) total_data = pd.concat([examples, new_target_attribute], axis=1, sort=False) # WE do this step so that we can pick the values which belong to the best_attribute = [0,1], i.e. We now # want to divide our data so that the values for the best_attribute is divided among the branches. And # thus we will have 4 arrays now, two for the data and two for target attribute. new_data_after_partition = total_data.loc[total_data[best_attribute_number] == class1] new_target_attribute, new_examples_after_partition = get_attributes_and_labels(new_data_after_partition) # This is also a condition for our algorithm in which we check if the number of examples after the # partition are positive or not. If the values are less than 1 then we return the most frequent value in # the node if len(new_examples_after_partition) == 0: unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: i = 0 if unique_value_of_attribute[0] == 1: # More positive values return 1, depth elif unique_value_of_attribute[0] == 0: # More negative values return 0, depth # This is the recursion step, in which we make new decision trees till the case when any of the base # cases are true new_sub_tree_after_partition, deptha = decision_tree_construction(new_examples_after_partition, new_target_attribute, attributes, depth + 1) depth_of_node.append(deptha) # Here we are adding the depth of the node so that we can do the depth based pruning tree[best_attribute_number][each_unique_value] = new_sub_tree_after_partition if isinstance(new_sub_tree_after_partition, int): tree[best_attribute_number]["type_of_node"] = "leaf" tree[best_attribute_number]["depth"] = depth unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: i = 0 tree[best_attribute_number]["majority_target_attribute"] = unique_value_of_attribute[0] tree[best_attribute_number]["best_attribute_number"] = best_attribute_number else: tree[best_attribute_number]["type_of_node"] = "node" tree[best_attribute_number]["depth"] = depth unique_value_of_attribute, counts_of_attribute = np.unique(target_attribute, return_counts=True) try: if counts_of_attribute[0] < counts_of_attribute[1]: counts_of_attribute = np.flipud(counts_of_attribute) unique_value_of_attribute = np.flipud(unique_value_of_attribute) except IndexError: i = 0 tree[best_attribute_number]["majority_target_attribute"] = unique_value_of_attribute[0] tree[best_attribute_number]["best_attribute_number"] = best_attribute_number return tree, max(depth_of_node)
c9529deb71d3c0a89bbae053aae07e587d277255
3,654,613
import numpy def mass_centered(geo): """ mass-centered geometry """ geo = translate(geo, numpy.negative(center_of_mass(geo))) return geo
1081141d77383f857f986031fa03510fd2608741
3,654,614
def binaryMatrix(l, value=PAD_token): """ :param l: :param value: :return: seq: [3,4,5,0,0] m: [[1],[1],[1],[0],[0]] """ m = [] for i, seq in enumerate(l): m.append([]) for token in seq: if token == PAD_token: m[i].append(0) else: m[i].append(1) return m
3c123b1ce8531bcde7c6673f8ca8a91f1300f0bb
3,654,615
def load_map(mappath): """ Attempt to load map with known loaders """ data = None shirtloader = lambda path: fio.load_map(path)[0][0:3] maploaders = [load_pfire_map, shirtloader] for loader in maploaders: try: data = loader(mappath) except (ValueError, OSError): pass if data is not None: break if data is None: raise RuntimeError("Failed to load map \"{}\"".format(mappath)) return data
2ab5c46e0b1ec0ed2e613b42c0553a1d6bcede36
3,654,616
def ifttt_account_options_topup_source(): """ Option values for topup source account selection""" return ifttt_account_options(False, "Internal")
83a0082ccc829c06c12fca2bb588db31468f51ef
3,654,617
from bs4 import BeautifulSoup def strip_classes(soup:BeautifulSoup, *args:str): """ Strip class from given tags in a BeautifulSoup object. Args: soup (BeautifulSoup): soup to clean args ([str]): A list of tags to be unclassed Returns: soup (BeautifulSoup) Modules: bs4 (BeautifulSoup) """ if not args: args = ['em', 'strong', 'sup'] # delete classes associated with selected tags: for arg in args: for tag in soup.find_all(arg): if tag.has_attr('class'): del tag.attrs['class'] return(soup)
c2195cd0eaf2cb3f741247b75411d252c7a85e8c
3,654,618
import trace def take_measurement(n_grid: np.int, n_rays: np.int, r_theta: np.float64) -> ( np.ndarray, np.ndarray, np.ndarray, np.ndarray): """ Take a measurement with the tomograph from direction r_theta. Arguments: n_grid: number of cells of grid in each direction n_rays: number of parallel rays r_theta: direction of rays (in radians) Return: intensities: measured intensities for all <n_rays> rays of the measurement. intensities[n] contains the intensity for the n-th ray ray_indices: indices of rays that intersect a cell isect_indices: indices of intersected cells lengths: lengths of segments in intersected cells The tuple (ray_indices[n], isect_indices[n], lengths[n]) stores which ray has intersected which cell with which length. n runs from 0 to the amount of ray/cell intersections (-1) of this measurement. Raised Exceptions: - Side Effects: - """ # compute ray direction in Cartesian coordinates cs = np.cos(r_theta) sn = np.sin(r_theta) r_dir = np.array([-cs, -sn]) # compute start positions for rays r_pos = np.zeros((n_rays, 2)) for i, g in enumerate(np.linspace(-0.99, 0.99, n_rays)): r_pos[i] = np.array([cs - sn * g, sn + cs * g]) else: r_pos[0] = np.array([cs, sn]) # compute measures intensities for each ray intensities = np.zeros(n_rays) for i, rs in enumerate(r_pos): intensities[i] = trace(rs, r_dir) # take exponential fall off into account intensities = np.log(1.0 / intensities) # compute traversal distance in each grid cell ray_indices, isect_indices, lengths = grid_intersect(n_grid, r_pos, r_dir) return intensities, ray_indices, isect_indices, lengths
f0ffac9da088402cff126bab9ee880ff33c460f1
3,654,619
def chrom_karyo_sort(chroms): """ :param chroms: :return: """ ordered = [] unordered = [] for cname, size in chroms: try: ord = int(cname.lower().strip('chr')) ordered.append((cname, size, ord * 10)) except ValueError: ord = check_special_chroms(cname) if ord > 0: ordered.append((cname, size, ord)) else: unordered.append((cname, size, -1)) unordered = sorted(unordered, key=lambda x: x[1], reverse=True) ordered = sorted(ordered, key=lambda x: x[2]) ordered.extend(unordered) return [(t[0], t[1]) for t in ordered]
4531be10ad0c51e0257089aabda778357b2d7950
3,654,620
from typing import List def calibrate_stereo(observations_left: List, observations_right: List, detector: FiducialCalibrationDetector, num_radial: int = 4, tangential: bool = False, zero_skew: bool = True) -> (StereoParameters, List): """ Calibrates a stereo camera using a Brown camera model :param observations: List of {"points":(boofcv detections),"width":(image width),"height":(image height)} :param detector: :param num_radial: :param tangential: :param zero_skew: :return: """ jlayout = detector.java_obj.getLayout(0) # Hard coded for a single target jcalib_planar = gateway.jvm.boofcv.abst.geo.calibration.CalibrateStereoPlanar(jlayout) jcalib_planar.configure(zero_skew, int(num_radial), tangential) for idx in range(len(observations_left)): jobs_left = convert_into_boof_calibration_observations(observations_left[idx]) jobs_right = convert_into_boof_calibration_observations(observations_right[idx]) jcalib_planar.addPair(jobs_left, jobs_right) stereo_parameters = StereoParameters(jcalib_planar.process()) errors = [] for jerror in jcalib_planar.computeErrors(): errors.append({"mean": jerror.getMeanError(), "max_error": jerror.getMaxError(), "bias_x": jerror.getBiasX(), "bias_y": jerror.getBiasY()}) return (stereo_parameters, errors)
bf9ee5b369f8614728db0023674c85a958a2559f
3,654,621
from typing import Type def register_producer_class(cls: Type[C]) -> Type[C]: """Registers the producer class and returns it unmodified.""" if not cls.TYPES: raise ProducerInterfaceError( f"Invalid producer. When defining producer, make sure to specify at least 1 type in the TYPES class variable." ) for artifact_type in cls.ARTIFACT_TYPES: if not ( isclass(artifact_type) and issubclass(artifact_type, BaseArtifact) ): raise ProducerInterfaceError( f"Associated artifact type {artifact_type} for producer is not a class or is not a subclass of BaseArtifact." ) artifact_types = cls.ARTIFACT_TYPES or (BaseArtifact,) for t in cls.TYPES: if not isclass(t): raise ProducerInterfaceError( f"Associated type {t} for producer is not a class." ) producer_registry.register_producer( t, cls, ) type_registry.register_artifact_type( t, artifact_types, ) return cls
7155ddb85077e2774fcc20c2d80345bd52ee86b1
3,654,622
import glob import os def get_file_list(var, obsname, start_date, end_date): """ Get a list of data set files that covers the time period defined by start_date and end_date provided in the function call. Parameters ---------- var: str Input variable, e.g. 'tas' obsname: str Name of dataset to use, e.g. 'EOBS' start_date: str Start date of time period, format YYYYMM end_date: str End date of time period, format YYYYMM Returns ------- file_list: list List of obs data files """ meta_data = obs_data() data_dict = meta_data[var][obsname] file_pattern = data_dict['file pattern'] sidx = file_pattern.find('YYYYMM') eidx = file_pattern.rfind('YYYYMM') obs_path_list = glob.glob(os.path.join(data_dict['path'], file_pattern[:sidx] + '*.nc')) obs_path_list.sort() obs_file_list = [l.split('/')[-1] for l in obs_path_list] obs_dates = ['{}-{}'.format(f[sidx:sidx+6], f[eidx:eidx+6]) for f in obs_file_list] idx_start = [d.split('-')[0] <= start_date <= d.split('-')[1] for d in obs_dates] msg = "Files not found OR selected start date {} ".format(start_date) +\ "does not match any obs file dates!" assert np.sum(idx_start) != 0, msg idx_start = np.where(idx_start)[0][0] idx_end = [d.split('-')[0] <= end_date <= d.split('-')[1] for d in obs_dates] msg = "Files not found OR selected end date {} ".format(end_date) +\ "does not match any obs file dates!" assert np.sum(idx_end) != 0, msg idx_end = np.where(idx_end)[0][0] return obs_path_list[idx_start: idx_end + 1]
de9780faca7830a7c26864f57b077e75eb1c7246
3,654,623
def structures_at_boundaries(gdf, datamodel, areas, structures, tolerance, distance): """ Check if there are structures near area (typically water-level areas) boundaries. Parameters ---------- gdf : ExtendedGeoDataframe ExtendedGeoDataFrame, HyDAMO hydroobject layer datamodel : HyDAMO HyDAMO datamodel class areas : str HyDAMO datamodel class with areas ("peilgebiedenpraktijk") structures : str List with structure-types to be expected on the boundary tolerance : numeric Tolerance to dermine if a structure is on the hydroobject distance : numeric Max distance between structure and area-boundary Returns ------- Pandas Series Default dtype is bool """ areas_gdf = getattr(datamodel, areas) areas_sindex = areas_gdf.sindex struc_series = _layers_from_datamodel(structures, datamodel) struc_sindex = struc_series.sindex return gdf.apply( lambda x: _structures_at_boundaries( x, areas_gdf, areas_sindex, struc_series, struc_sindex, tolerance, distance ), axis=1, )
6f1c83f2ac02b6773bf51f64326ed4f6e3c7c354
3,654,624
from typing import List from typing import Tuple from typing import Union def above_cutoff(gene_freq_tup_list: List[Tuple[Union[str, tuple], Tuple[str, str]]], cutoff: int) -> List[str]: """Return the genes/edges that are are in at least the given cutoff's networks Parameters ---------- gene_freq_tup_list : List[Tuple[Union[str, tuple], Tuple[str, str]]] list of (comparison_object, (frequency_count, percent)) tuples in order of most common should be return from most_common() cutoff : int number to be used as minimum for how many networks the object must be present in to be returned Returns ------- list of objects that were in at least as many networks as the cutoff given """ above = [] for gene, freq in gene_freq_tup_list: if count_in_freq(freq) >= cutoff: above.append(gene) else: break # since it's ordered, no need wasting time checking the rest return above
c5679743d0b87fcbf7b6955a755aa8bbb11f5f95
3,654,625
def normalizeWindows(X): """ Do point centering and sphere normalizing to each window to control for linear drift and global amplitude Parameters ---------- X: ndarray(N, Win) An array of N sliding windows Returns XRet: ndarray(N, Win) An array in which the mean of each row is zero and the norm of each row is 1 """ XRet = X - np.mean(X, 1)[:, None] Norm = np.sqrt(np.sum(XRet**2, 1)) Norm[Norm == 0] = 1 XRet /= Norm[:, None] return XRet
013b5829153ee21979bcf9dac8457beb1adbe2a2
3,654,626
import torch def cost_matrix_slow(x, y): """ Input: x is a Nxd matrix y is an optional Mxd matirx Output: dist is a NxM matrix where dist[i,j] is the square norm between x[i,:] and y[j,:] if y is not given then use 'y=x'. i.e. dist[i,j] = ||x[i,:]-y[j,:]||^2 """ x_norm = (x ** 2).sum(1).view(-1, 1) if y is not None: y_t = torch.transpose(y, 0, 1) y_norm = (y ** 2).sum(1).view(1, -1) else: y_t = torch.transpose(x, 0, 1) y_norm = x_norm.view(1, -1) dist = x_norm + y_norm - 2.0 * torch.mm(x, y_t) # Ensure diagonal is zero if x=y # if y is None: # dist = dist - torch.diag(dist.diag) return torch.clamp(dist, 0.0, np.inf)
c27889346d6fb1a075eabf908f5e56ececb554d0
3,654,627
def get_dists(ts1_sax, ts2_sax, lookup_table): """ Compute distance between each symbol of two words (series) using a lookup table ts1_sax and ts2_sax are two sax representations (strings) built under the same conditions """ # Verify integrity if ts1_sax.shape[0] != ts2_sax.shape[0]: return -1 # convert symbol series into series of indexes (symbol indexes) ts1_sax_id = symbol2index(ts1_sax) ts2_sax_id = symbol2index(ts2_sax) # array of distances between symbols dists = np.zeros(ts1_sax.shape[0]) for i in range(ts1_sax_id.shape[0]): dists[i] = lookup_table[ts1_sax_id[i], ts2_sax_id[i]] return dists
3da21a1c57952225326c97bb7a58238545131e94
3,654,628
def get_dom_coords(string, dom): """Get Coordinates of a DOM specified by the string and dom number. Parameters ---------- string : int String number (between 1 and 86) dom : int DOM number (between 1 and 60) Returns ------- tuple(float, float, float) The x, y, z coordinates of the DOM. """ assert string > 0 and string <= 86, 'String must be within [1, 86]' assert dom > 0 and dom <= 60, 'DOM must be within [1, 86]' a, b = get_matrix_indices(string) dom_id = dom - 1 return x_ic78_coords[a, b, dom_id]
08e0817ab85e71caa38e6c247e1cc488d03ce1c0
3,654,629
def relevance_ka(x): """ based on code from https://www.kaggle.com/aleksandradeis/regression-addressing-extreme-rare-cases see paper: https://www.researchgate.net/publication/220699419_Utility-Based_Regression use the sigmoid function to create the relevance function, so that relevance function has values close to 1 when the target variable is greater than 0.6 Args: x: the x values for which the relevance should be returned """ x = np.array(x) return sigmoid((x-0.5) * 15)
e056c8ae1b1c527dc1a875c201967eacf914d7e0
3,654,630
from datetime import datetime def now(mydateformat='%Y%m%dT%H%M%S'): """ Return current datetime as string. Just a shorthand to abbreviate the common task to obtain the current datetime as a string, e.g. for result versioning. Args: mydateformat: optional format string (default: '%Y%m%dT%H%M%S') Returns: datetime.now(), formated to string with argument mydateformat, e.g. YYYYMMDDThhmmss ==> 20131007H123456 """ return datetime.now().strftime(mydateformat)
f4f98116700888a4be273143d635c62859c96e03
3,654,631
import os def getOnePackageInfo(pkgpath): """Gets receipt info for a single bundle-style package""" pkginfo = {} plist = getBundleInfo(pkgpath) if plist: pkginfo['filename'] = os.path.basename(pkgpath) try: if 'CFBundleIdentifier' in plist: pkginfo['packageid'] = plist['CFBundleIdentifier'] elif 'Bundle identifier' in plist: # special case for JAMF Composer generated packages. pkginfo['packageid'] = plist['Bundle identifier'] else: pkginfo['packageid'] = os.path.basename(pkgpath) if 'CFBundleName' in plist: pkginfo['name'] = plist['CFBundleName'] if 'IFPkgFlagInstalledSize' in plist: pkginfo['installed_size'] = int(plist['IFPkgFlagInstalledSize']) pkginfo['version'] = getBundleVersion(pkgpath) except (AttributeError, FoundationPlist.NSPropertyListSerializationException): pkginfo['packageid'] = 'BAD PLIST in %s' % \ os.path.basename(pkgpath) pkginfo['version'] = '0.0' ## now look for applications to suggest for blocking_applications #bomlist = getBomList(pkgpath) #if bomlist: # pkginfo['apps'] = [os.path.basename(item) for item in bomlist # if item.endswith('.app')] else: # look for old-style .info files! infopath = os.path.join( pkgpath, 'Contents', 'Resources', 'English.lproj') if os.path.exists(infopath): for item in osutils.listdir(infopath): if os.path.join(infopath, item).endswith('.info'): pkginfo['filename'] = os.path.basename(pkgpath) pkginfo['packageid'] = os.path.basename(pkgpath) infofile = os.path.join(infopath, item) infodict = parseInfoFile(infofile) pkginfo['version'] = infodict.get('Version', '0.0') pkginfo['name'] = infodict.get('Title', 'UNKNOWN') break return pkginfo
5161eaf806a0f616814c92d2b9693a02c16bdff4
3,654,632
from datetime import datetime def cmp_point_identities(a, b): """ Given point identities a, b (may be string, number, date, etc), collation algorithm compares: (a) strings case-insensitively (b) dates and datetimes compared by normalizing date->datetime. (c) all other types use __cmp__(self, other) defaults from type. """ dt = lambda d: datetime(*d.timetuple()[0:6]) # date|datetime -> datetime if isinstance(a, basestring) and isinstance(b, basestring): return cmp(a.upper(), b.upper()) if isinstance(a, date) or isinstance(b, date): return cmp(dt(a), dt(b)) return cmp(a, b)
475206398fc0c2f301446c5c264bf67d1671a2ad
3,654,633
def shortest_complement(t, m, l): """ Given a primitive slope t and the holonomies of the current meridian and longitude, returns a shortest complementary slope s so that s.t = +1. """ c, d = t # second slope _, a, b = xgcd(d, c) # first slope b = -b assert a*d - b*c == 1 return a_shortest_lattice_point_on_line((a, b), (c, d), m, l)
4653a7eac7af7ed8a67ce298f1453236cfeabf73
3,654,634
def run_pii(text, lang): """ Runs the given set of regexes on the data "lines" and pulls out the tagged items. The lines structure stores the language type(s). This can be used for language-specific regexes, although we're dropping that for now and using only "default"/non-language-specific regexes. """ #print('Detecting....') # What is this for...? text = text.encode().decode() matches = detect_pii(text, lang, high_risk_tags) #print(matches) match_set = (text, {}) if len(matches) > 0: # !!! REDACTION HAPPENS HERE !!! redacted_str, metadata = redact_pii(text, matches) metadata_out = {"regex metadata":metadata, "original": text, "redacted": redacted_str} match_set = (redacted_str, metadata_out) return match_set
e9f34686be27773952f64a9231e86c76c0170483
3,654,635
def get_ref_cat(butler, visit, center_radec, radius=2.1): """ Get the reference catalog for the desired visit for the requested sky location and sky cone radius. """ ref_cats = RefCat(butler) try: band = list(butler.subset('src', visit=visit))[0].dataId['filter'] except dp.butlerExceptions.NoResults: band = list(butler.subset('src', expId=visit))[0].dataId['filter'] centerCoord = lsst_geom.SpherePoint(center_radec[0]*lsst_geom.degrees, center_radec[1]*lsst_geom.degrees) return ref_cats(centerCoord, band, radius)
d2814729aeb775668d6eff6fdc68a0676168b16e
3,654,636
def replace_dict(d, **kwargs): """ Replace values by keyword on a dict, returning a new dict. """ e = d.copy() e.update(kwargs) return e
be1cc21be5320eeea13307dd4ed5025b51339eec
3,654,637
def pageHeader( headline="", tagline=""): """ *Generate a pageHeader - TBS style* **Key Arguments:** - ``headline`` -- the headline text - ``tagline`` -- the tagline text for below the headline **Return:** - ``pageHeader`` -- the pageHeader """ pageHeader = """ <div class="page-header" id=" "> <h1>%(headline)s<br><small>%(tagline)s</small></h1> </div>""" % locals() return pageHeader
7d9e91df8af2fff92b0b7096cd1a13198d899e15
3,654,638
def get_counter_merge_suggestion(merge_suggestion_tokens): """Return opposite of merge suggestion Args: merge_suggestion_tokens (list): tokens in merge suggestion Returns: str: opposite of merge suggestion """ counter_merge_suggestion = ' '.join(merge_suggestion_tokens) if merge_suggestion_tokens[-1][-1] == '་': counter_merge_suggestion += " " return counter_merge_suggestion
e32e0f1b64fe77acaa8d88d72dca9304b7427674
3,654,639
import re from datetime import datetime import pytz def parse_rfc3339_utc_string(rfc3339_utc_string): """Converts a datestamp from RFC3339 UTC to a datetime. Args: rfc3339_utc_string: a datetime string in RFC3339 UTC "Zulu" format Returns: A datetime. """ # The timestamp from the Google Operations are all in RFC3339 format, but # they are sometimes formatted to millisconds, microseconds, sometimes # nanoseconds, and sometimes only seconds: # * 2016-11-14T23:05:56Z # * 2016-11-14T23:05:56.010Z # * 2016-11-14T23:05:56.010429Z # * 2016-11-14T23:05:56.010429380Z m = re.match(r'(\d{4})-(\d{2})-(\d{2})T(\d{2}):(\d{2}):(\d{2}).?(\d*)Z', rfc3339_utc_string) # It would be unexpected to get a different date format back from Google. # If we raise an exception here, we can break people completely. # Instead, let's just return None and people can report that some dates # are not showing up. # We might reconsider this approach in the future; it was originally # established when dates were only used for display. if not m: return None groups = m.groups() if len(groups[6]) not in (0, 3, 6, 9): return None # Create a UTC datestamp from parsed components # 1- Turn components 0-5 from strings to integers # 2- If the last component does not exist, set it to 0. # If it does exist, make sure to interpret it as milliseconds. g = [int(val) for val in groups[:6]] fraction = groups[6] if not fraction: micros = 0 elif len(fraction) == 3: micros = int(fraction) * 1000 elif len(fraction) == 6: micros = int(fraction) elif len(fraction) == 9: # When nanoseconds are provided, we round micros = int(round(int(fraction) // 1000)) else: assert False, 'Fraction length not 0, 6, or 9: {}'.format(len(fraction)) try: return datetime.datetime( g[0], g[1], g[2], g[3], g[4], g[5], micros, tzinfo=pytz.utc) except ValueError as e: assert False, 'Could not parse RFC3339 datestring: {} exception: {}'.format( rfc3339_utc_string, e)
04653bd5673c5ca7713c9e6014947886781f3f5e
3,654,640
from datetime import datetime def response(code, body='', etag=None, last_modified=None, expires=None, **kw): """Helper to build an HTTP response. Parameters: code : An integer status code. body : The response body. See `Response.__init__` for details. etag : A value for the ETag header. Double quotes will be added unless the string starts and ends with a double quote. last_modified : A value for the Last-Modified header as a datetime.datetime object or Unix timestamp. expires : A value for the Expires header as number of seconds, datetime.timedelta or datetime.datetime object. Note: a value of type int or float is interpreted as a number of seconds in the future, *not* as Unix timestamp. **kw : All other keyword arguments are interpreted as response headers. The names will be converted to header names by replacing underscores with hyphens and converting to title case (e.g. `x_powered_by` => `X-Powered-By`). """ if etag is not None: if not (etag[0] == '"' and etag[-1] == '"'): etag = '"%s"' % etag kw['etag'] = etag if last_modified is not None: kw['last_modified'] = datetime_to_httpdate(last_modified) if expires is not None: if isinstance(expires, datetime): kw['expires'] = datetime_to_httpdate(expires) else: kw['expires'] = timedelta_to_httpdate(expires) headers = [(k.replace('_', '-').title(), v) for k, v in sorted(kw.items())] return Response(code, headers, body)
094e7dc99114d4b742808c0aa123001fb301fb14
3,654,641
def oauth2callback(): """ The 'flow' has this one place to call back to. We'll enter here more than once as steps in the flow are completed, and need to keep track of how far we've gotten. The first time we'll do the first step, the second time we'll skip the first step and do the second, and so on. """ app.logger.debug("Entering oauth2callback") app.logger.debug(flask.url_for('oauth2callback', _external=True)) #return_url = "http://localhost:5000" + flask.url_for('oauth2callback') flow = client.flow_from_clientsecrets( CLIENT_SECRET_FILE, scope= SCOPES, redirect_uri=flask.url_for('oauth2callback', _external=True)) ## Note we are *not* redirecting above. We are noting *where* ## we will redirect to, which is this function. ## The *second* time we enter here, it's a callback ## with 'code' set in the URL parameter. If we don't ## see that, it must be the first time through, so we ## need to do step 1. app.logger.debug("Got flow") if 'code' not in flask.request.args: app.logger.debug("Code not in flask.request.args") auth_uri = flow.step1_get_authorize_url() return flask.redirect(auth_uri) ## This will redirect back here, but the second time through ## we'll have the 'code' parameter set else: ## It's the second time through ... we can tell because ## we got the 'code' argument in the URL. app.logger.debug("Code was in flask.request.args") auth_code = flask.request.args.get('code') credentials = flow.step2_exchange(auth_code) flask.session['credentials'] = credentials.to_json() ## Now I can build the service and execute the query, ## but for the moment I'll just log it and go back to ## the main screen app.logger.debug("Got credentials") return flask.redirect(flask.url_for('getCalendars',muID=flask.session['meetupId']))
07c232275ad93d2b8d47a6d0b7de03f57fa356c8
3,654,642
from datetime import datetime import click def parse_tweet(raw_tweet, source, now=None): """ Parses a single raw tweet line from a twtxt file and returns a :class:`Tweet` object. :param str raw_tweet: a single raw tweet line :param Source source: the source of the given tweet :param Datetime now: the current datetime :returns: the parsed tweet :rtype: Tweet """ if now is None: now = datetime.now(timezone.utc) raw_created_at, text = raw_tweet.split("\t", 1) created_at = parse_iso8601(raw_created_at) if created_at > now: raise ValueError("Tweet is from the future") return Tweet(click.unstyle(text.strip()), created_at, source)
85f90ce469091cc82dd120e6c100859f8bcc8f2c
3,654,643
import requests def scopes(request, coalition_id): """ Update coalition required scopes with a specific set of scopes """ scopes = [] for key in request.POST: if key in ESI_SCOPES: scopes.append(key) url = f"{GLOBAL_URL}/{coalition_id}" headers = global_headers(request, {"Content-type": "application/json"}) data = "{\"mandatory_esi_scopes\": [\"" + "\",\"".join(scopes) + "\"]}" request_change_scopes = requests.put(url, headers=headers, data=data) if request_change_scopes.status_code != 200: return render_error(request_change_scopes) params = urlencode({"changed_scopes": "true"}) return_url = reverse("coalition-sheet", args=[coalition_id]) + "?" + params return redirect(return_url)
71d07be26815a8e30ed37074b4452fa7574d07b5
3,654,644
def recursive_dictionary_cleanup(dictionary): """Recursively enrich the dictionary and replace object links with names etc. These patterns are replaced: [phobostype, bpyobj] -> {'object': bpyobj, 'name': getObjectName(bpyobj, phobostype)} Args: dictionary(dict): dictionary to enrich Returns: : dict -- dictionary with replace/enriched patterns """ for key, value in dictionary.items(): # handle everything as list, so we can loop over it unlist = False if not isinstance(value, list): value = [value] unlist = True itemlist = [] for item in value: if isinstance(item, list) and item: # (phobostype, bpyobj) -> {'object': bpyobj, 'name': getObjectName(bpyobj)} if ( len(item) == 2 and isinstance(item[0], str) and (item[0] in ['joint'] + [enum[0] for enum in defs.phobostypes]) and isinstance(item[1], bpy.types.Object) ): itemlist.append( { 'object': item[1], 'name': nUtils.getObjectName(item[1], phobostype=item[0]), } ) # recursion on subdictionaries elif isinstance(item, dict): itemlist.append(recursive_dictionary_cleanup(item)) else: itemlist.append(item) # extract single items back out of the list dictionary[key] = itemlist if not unlist else itemlist[0] return dictionary
b49798dd1918401951bae57e544406ee1d14ebd6
3,654,645
def validate_dtype(dtype_in): """ Input is an argument represention one, or more datatypes. Per column, number of columns have to match number of columns in csv file: dtype = [pa.int32(), pa.int32(), pa.int32(), pa.int32()] dtype = {'__columns__': [pa.int32(), pa.int32(), pa.int32(), pa.int32()]} Default: dtype_in = pa.int32() dtype_out = {'__default__': pa.int32()} Not yet supported: Default, optional column overwrite: dtype_in = {'__default__': pa.int32(), '__columns__': {'colname': pa.int32()}} dtype_out = raise ValueError dtype_in = {'colname': pa.int32()} dtype_out = raise ValueError """ if dtype_in is None: # use default datatype dtype_in = pa.float32() argtype = type(dtype_in) valid_types = _dtypes_from_arrow() if argtype is pa.DataType: if dtype_in not in list(valid_types.keys()): raise ValueError('Not supporting type: ' + dtype_in.__str__()) return {'__default__': valid_types[dtype_in]} if argtype is dict: raise ValueError('Not yet supported dict') if argtype is list and dtype_in.__len__() > 0: matches = [dtype in list(valid_types.keys()) for dtype in dtype_in] if False in matches: mismatches = [dtype_in[j].__str__() + '(column:' + str(j) + ')' for j in range(0, len(matches)) if matches[j] is False] raise ValueError('List contains unsupported datatype: ' + ','.join(mismatches)) if set(dtype_in).__len__() == 1: # all list members are of same type return {'__default__': valid_types[dtype_in[0]]} return {'__columns__': list([valid_types[dtype] for dtype in dtype_in])} raise ValueError('No input to match datatypes')
274df2e010314867f31c14951f1e0b18190218ad
3,654,646
import os import sys def get_secret(name): """Load a secret from file or env Either provide ``{name}_FILE`` or ``{name}`` in the environment to configure the value for ``{name}``. """ try: with open(os.environ[name + "_FILE"]) as secret_file: return secret_file.read().strip() except (FileNotFoundError, PermissionError, KeyError): try: return os.environ[name] except KeyError: if os.path.basename(sys.argv[0]) == 'sphinx-build': # We won't have nor need secrets when building docs return None raise ValueError( f"Missing secrets: configure {name} or {name}_FILE to contain or point at secret" ) from None
3b240f7b494c7817f58c8ab3f7f9000ff7f85844
3,654,647
from typing import Callable from re import T from typing import List from typing import Any from typing import Dict def cache( cache_class: Callable[[], base_cache.BaseCache[T]], serializer: Callable[[], cache_serializer.CacheSerializer], conditional: Callable[[List[Any], Dict[str, Any]], bool] = _always_true): """ cache ===== parameters: cache_class (base_cache.BaseCache) conditional (Callable[[List[Any], Dict[str, Any]]) Decorator that caches function results using the provided class. The class must be a subclass of base_cache, providing get and set methods with appropriate signatures. An optional conditional can be passed, which receives the *args and **kwargs of the called function. This function determines whether or not to cache, or to always recompute, based on whether it returns True or False. """ serializer_instance = serializer() cache_instance = cache_class() return curry(_wrapper, cache_instance, serializer_instance, conditional)
c4d5318d471e13f5001eb12b6d3dc4f278478855
3,654,648
def words2chars(images, labels, gaplines): """ Transform word images with gaplines into individual chars """ # Total number of chars length = sum([len(l) for l in labels]) imgs = np.empty(length, dtype=object) newLabels = [] height = images[0].shape[0] idx = 0; for i, gaps in enumerate(gaplines): for pos in range(len(gaps) - 1): imgs[idx] = images[i][0:height, gaps[pos]:gaps[pos+1]] newLabels.append(char2idx(labels[i][pos])) idx += 1 print("Loaded chars from words:", length) return imgs, newLabels
e04bf5b1e9b47c2f930600433b4214343e067f26
3,654,649
def create_spark_session(spark_jars: str) -> SparkSession: """ Create Spark session :param spark_jars: Hadoop-AWS JARs :return: SparkSession """ spark = SparkSession \ .builder \ .config("spark.jars.packages", spark_jars) \ .appName("Sparkify ETL") \ .getOrCreate() return spark
576072460e465610fff98da377cc20a8472c537f
3,654,650
from datetime import datetime def make_expired(request, pk): """ 将号码状态改为过号 """ try: reg = Registration.objects.get(pk=pk) except Registration.DoesNotExist: return Response('registration not found', status=status.HTTP_404_NOT_FOUND) data = { 'status': REGISTRATION_STATUS_EXPIRED } serializer = RegistrationSerializer(reg, data=data, partial=True) if serializer.is_valid(): reg = serializer.save() reg.end_time = datetime.datetime.now() reg.save() # 通知后面第n位的顾客就餐 _notify_ready(reg.table_type) return Response(serializer.data, status=status.HTTP_200_OK) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
827f45c12bcbb973eb073662d8a14765422fdf51
3,654,651
def word2vec_similarity(segmented_topics, accumulator, with_std=False, with_support=False): """For each topic segmentation, compute average cosine similarity using a :class:`~gensim.topic_coherence.text_analysis.WordVectorsAccumulator`. Parameters ---------- segmented_topics : list of lists of (int, `numpy.ndarray`) Output from the :func:`~gensim.topic_coherence.segmentation.s_one_set`. accumulator : :class:`~gensim.topic_coherence.text_analysis.WordVectorsAccumulator` or :class:`~gensim.topic_coherence.text_analysis.InvertedIndexAccumulator` Word occurrence accumulator. with_std : bool, optional True to also include standard deviation across topic segment sets in addition to the mean coherence for each topic. with_support : bool, optional True to also include support across topic segments. The support is defined as the number of pairwise similarity comparisons were used to compute the overall topic coherence. Returns ------- list of (float[, float[, int]]) Сosine word2vec similarities per topic (with std/support if `with_std`, `with_support`). Examples -------- .. sourcecode:: pycon >>> import numpy as np >>> from gensim.corpora.dictionary import Dictionary >>> from gensim.topic_coherence import indirect_confirmation_measure >>> from gensim.topic_coherence import text_analysis >>> >>> # create segmentation >>> segmentation = [[(1, np.array([1, 2])), (2, np.array([1, 2]))]] >>> >>> # create accumulator >>> dictionary = Dictionary() >>> dictionary.id2token = {1: 'fake', 2: 'tokens'} >>> accumulator = text_analysis.WordVectorsAccumulator({1, 2}, dictionary) >>> _ = accumulator.accumulate([['fake', 'tokens'], ['tokens', 'fake']], 5) >>> >>> # should be (0.726752426218 0.00695475919227) >>> mean, std = indirect_confirmation_measure.word2vec_similarity(segmentation, accumulator, with_std=True)[0] """ topic_coherences = [] total_oov = 0 for topic_index, topic_segments in enumerate(segmented_topics): segment_sims = [] num_oov = 0 for w_prime, w_star in topic_segments: if not hasattr(w_prime, '__iter__'): w_prime = [w_prime] if not hasattr(w_star, '__iter__'): w_star = [w_star] try: segment_sims.append(accumulator.ids_similarity(w_prime, w_star)) except ZeroDivisionError: num_oov += 1 if num_oov > 0: total_oov += 1 logger.warning( "%d terms for topic %d are not in word2vec model vocabulary", num_oov, topic_index) topic_coherences.append(aggregate_segment_sims(segment_sims, with_std, with_support)) if total_oov > 0: logger.warning("%d terms for are not in word2vec model vocabulary", total_oov) return topic_coherences
1a3d439e75c4732138f42ea14e7fd50eb6e7d5cb
3,654,652
def addGroupsToKey(server, activation_key, groups): """ Add server groups to a activation key CLI Example: .. code-block:: bash salt-run spacewalk.addGroupsToKey spacewalk01.domain.com 1-my-key '[group1, group2]' """ try: client, key = _get_session(server) except Exception as exc: # pylint: disable=broad-except err_msg = "Exception raised when connecting to spacewalk server ({}): {}".format( server, exc ) log.error(err_msg) return {"Error": err_msg} all_groups = client.systemgroup.listAllGroups(key) groupIds = [] for group in all_groups: if group["name"] in groups: groupIds.append(group["id"]) if client.activationkey.addServerGroups(key, activation_key, groupIds) == 1: return {activation_key: groups} else: return {activation_key: "Failed to add groups to activation key"}
346690a9eac24f62f4410b23f60bb589d174c9ed
3,654,653
def get_user_for_delete(): """Query for Users table.""" delete_user = Users.query \ .get(DELETE_USER_ID) return delete_user
208dbbe47550c6889848b7ff61324acf23a4c495
3,654,654
from typing import List from typing import Optional def station_code_from_duids(duids: List[str]) -> Optional[str]: """ Derives a station code from a list of duids ex. BARRON1,BARRON2 => BARRON OSBAG,OSBAG => OSBAG """ if type(duids) is not list: return None if not duids: return None if len(duids) == 0: return None duids_uniq = list(set(duids)) common = findcommonstart(duids_uniq) if not common: return None # strip last character if we have one if is_single_number(common[-1]): common = common[:-1] if common.endswith("_"): common = common[:-1] if len(common) > 2: return common return None
1f976ee0b7a82453673ea07c20070e502df5fcf5
3,654,655
def erosion(image, selem, out=None, shift_x=False, shift_y=False): """Return greyscale morphological erosion of an image. Morphological erosion sets a pixel at (i,j) to the minimum over all pixels in the neighborhood centered at (i,j). Erosion shrinks bright regions and enlarges dark regions. Parameters ---------- image : ndarray Image array. selem : ndarray The neighborhood expressed as a 2-D array of 1's and 0's. out : ndarray The array to store the result of the morphology. If None is passed, a new array will be allocated. shift_x, shift_y : bool shift structuring element about center point. This only affects eccentric structuring elements (i.e. selem with even numbered sides). Returns ------- eroded : uint8 array The result of the morphological erosion. Examples -------- >>> # Erosion shrinks bright regions >>> import numpy as np >>> from skimage.morphology import square >>> bright_square = np.array([[0, 0, 0, 0, 0], ... [0, 1, 1, 1, 0], ... [0, 1, 1, 1, 0], ... [0, 1, 1, 1, 0], ... [0, 0, 0, 0, 0]], dtype=np.uint8) >>> erosion(bright_square, square(3)) array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], dtype=uint8) """ if image is out: raise NotImplementedError("In-place erosion not supported!") image = img_as_ubyte(image) selem = img_as_ubyte(selem) return cmorph._erode(image, selem, out=out, shift_x=shift_x, shift_y=shift_y)
2e7c2547b862add24cc6a4355cf3e0308cb2f342
3,654,656
def NE(x=None, y=None): """ Compares two values and returns: true when the values are not equivalent. false when the values are equivalent. See https://docs.mongodb.com/manual/reference/operator/aggregation/ne/ for more details :param x: first value or expression :param y: second value or expression :return: Aggregation operator """ if x is None and y is None: return {'$ne': []} return {'$ne': [x, y]}
be721daf480ec0cb465a3c010c4f910a10fbbb1d
3,654,657
def TCPs_from_tc(type_constraint): """ Take type_constraint(type_param_str, allowed_type_strs) and return list of TypeConstraintParam """ tys = type_constraint.allowed_type_strs # Get all ONNX types tys = set( [onnxType_to_Type_with_mangler(ty) for ty in tys] ) # Convert to Knossos and uniquify return [ TypeConstraintParam(type_constraint.type_param_str, ty) for ty in tys ]
7c2162bb2dde0b00caf289511f20804cadaa17e5
3,654,658
def _randomde(allgenes, allfolds, size): """Randomly select genes from the allgenes array and fold changes from the allfolds array. Size argument indicates how many to draw. Parameters ---------- allgenes : numpy array numpy array with all the genes expressed in the cells where de is generated allfolds : numpy array an array of fold changes from which the simulation should draw size : int number of non-zero weights (typically number of DE genes) Returns ------- type : PandasDataFrame DataFrame with randomly chosen genes and weights. """ rdgenes = np.random.choice(allgenes, size, replace = False) rdfolds = np.random.choice(allfolds, size, replace = False) rdDF = pd.DataFrame({'id' : rdgenes, 'weights' : rdfolds}) return(rdDF)
1a5f38eab8933b90697f4999cb7571fe602db3f9
3,654,659
import time def XCor(spectra, mask_l, mask_h, mask_w, vel, lbary_ltopo, vel_width=30,\ vel_step=0.3, start_order=0, spec_order=9,iv_order=10,sn_order=8,max_vel_rough=300.): """ Calculates the cross-correlation function for a Coralie Spectra """ # speed of light, km/s c = 2.99792458E5 # loop over orders norders = spectra.shape[1] # determine minimum velocities vel_min = vel - vel_width vel_max = vel + vel_width N = int(np.ceil( (2*vel_width) / vel_step )) Xcor_full = np.zeros( (N, norders+1) ) sn = np.zeros( (norders) ) nlines_used = np.zeros( (norders) ) velocities = vel_min + np.arange( N ) * vel_step Xcor_full[:,0] = velocities weight=0.0 mask_middle = 0.5*(mask_l + mask_h) W = np.zeros( norders ) vwt = 300 for j in range(start_order,norders): t1 = time.time() LL = np.where( spectra[spec_order,j,:] != 0 ) if len(LL[0]) > 0: x1 = np.min( LL ) x2 = np.max( LL ) w1 = np.argmin( np.absolute( spectra[0,j,:] - spectra[0,j,x1] ) ) w2 = np.argmin( np.absolute( spectra[0,j,:] - spectra[0,j,x2] ) ) l1_0 = spectra[0,j,w1] / lbary_ltopo l2_0 = spectra[0,j,w2] / lbary_ltopo ww1 = np.argmin( np.abs( spectra[0,j,:] - l1_0*(1+(31+max_vel_rough)/c) ) ) ww2 = np.argmin( np.abs( spectra[0,j,:] - l2_0*(1-(31+max_vel_rough)/c) ) ) # should not happen, but hey, just in case... if (ww1 < w1): ww1 = w1 if (ww2 > w2): ww2 = w2 l1 = spectra[0,j,ww1] l2 = spectra[0,j,ww2] II = np.where( (mask_l > l1) & (mask_h < l2) ) #if len(II[0])>0: #print j,II[0][0],II[0][-1] nlu = len(II[0]) nlines_used[j] = nlu snw1 = int(0.25*spectra.shape[2]) snw2 = int(0.75*spectra.shape[2]) if (nlu > 0): # calculate median S/N #median_sn = np.median( spectra[5,j,w1:w2] * np.sqrt( spectra[6,j,w1:w2] ) ) median_sn = np.median( spectra[sn_order,j,snw1:snw2] ) sn[j] = median_sn S = spectra[spec_order,j,w1:w2] #iv = spectra[iv_order,j,w1:w2] signal2noise = spectra[sn_order,j,w1:w2] snwa = np.zeros(N) for k in range(N): #print k Xcor_full[k,j+1], snw = CCF.ccfcos(mask_l[II], mask_h[II], spectra[0,j,w1:w2], S,\ mask_w[II], signal2noise, vel_min + k*vel_step) snwa[k] = snw if np.isnan(Xcor_full[k,j+1]): Xcor_full[k,j+1] = Xcor_full[k-1,j+1] snwa[k] = snwa[k-1] #if k ==182 and j==35: # #print mask_l[II], mask_h[II], spectra[0,j,w1:w2], S,mask_w[II], signal2noise, vel_min + k*vel_step # #for z in range(len(mask_l[II])): # # III = np.where((spectra[0,j,w1:w2]>=mask_l[II][z])&(spectra[0,j,w1:w2]<=mask_h[II][z]))[0] # # print spectra[0,j,w1:w2][III],S[III] # #print Xcor_full[k,j+1] # #print snw # #print gfd xc_weight = np.median( snwa ) Xcor_full[:,j+1] /= snwa #xc_weight W[j] = xc_weight return velocities, Xcor_full, sn, nlines_used, W
7007c56e5173999b9d20dfbd8018133a59bb777c
3,654,660
import json def marks_details(request, pk): """ Display details for a given Mark """ # Check permission if not has_access(request): raise PermissionDenied # Get context context = get_base_context(request) # Get object mark = get_object_or_404(Mark, pk=pk) mark.category_clean = mark.get_category_display() context['mark'] = mark # Get users connected to the mark context['mark_users'] = mark.given_to.all() # AJAX if request.method == 'POST': if request.is_ajax and 'action' in request.POST: resp = {'status': 200} context, resp = _handle_mark_detail(request, context, resp) # Set mark resp['mark'] = {'last_changed_date': context['mark'].last_changed_date.strftime("%Y-%m-%d"), 'last_changed_by': context['mark'].last_changed_by.get_full_name()} # Return ajax return HttpResponse(json.dumps(resp), status=resp['status']) # Render view return render(request, 'marks/dashboard/marks_details.html', context)
1f193c67f1e047ecd6da0e5eec1d29da50f6595e
3,654,661
from bs4 import BeautifulSoup def clean_text(text): """ text: a string return: modified initial string """ text = BeautifulSoup(text, "lxml").text # HTML decoding text = text.lower() # lowercase text # replace REPLACE_BY_SPACE_RE symbols by space in text text = REPLACE_BY_SPACE_RE.sub(' ', text) # delete symbols which are in BAD_SYMBOLS_RE from text text = BAD_SYMBOLS_RE.sub('', text) # delete stopwors from text text = ' '.join(word for word in text.split() if word not in STOPWORDS) return text
6594bd61c2f1ff885948755a0dfc74e7256b9a3e
3,654,662
import logging import sys def get_input_device(config): """ Create the InputDevice instance and handle errors """ dev_path = config['flirc_device_path'] logging.debug('get_input_device() dev_path: %s', dev_path) try: input_device = InputDevice(dev_path) return input_device except FileNotFoundError as exception: logging.error('Error opening device path %s', dev_path) logging.error('Error was: %s', exception) logging.error('FLIRC is likely not attached or the device path (FLIRC_DEV_PATH) is wrong') sys.exit(1)
fef51e92f6e81ff873d0df821e871545a86eb900
3,654,663
def _simpsons_interaction(data, groups): """ Calculation of Simpson's Interaction index Parameters ---------- data : a pandas DataFrame groups : list of strings. The variables names in data of the groups of interest of the analysis. Returns ------- statistic : float Simpson's Interaction Index core_data : a pandas DataFrame A pandas DataFrame that contains the columns used to perform the estimate. Notes ----- Based on Equation 1 of page 37 of Reardon, Sean F., and Glenn Firebaugh. "Measures of multigroup segregation." Sociological methodology 32.1 (2002): 33-67. Simpson's interaction index (I) can be simply interpreted as the probability that two individuals chosen at random and independently from the population will be found to not belong to the same group. Higher values means lesser segregation. Simpson's Concentration + Simpson's Interaction = 1 Reference: :cite:`reardon2002measures`. """ core_data = data[groups] data = _nan_handle(core_data) df = np.array(core_data) Pk = df.sum(axis=0) / df.sum() I = (Pk * (1 - Pk)).sum() return I, core_data, groups
d7c4bc8bfb2d6db17868f0d140c2547e65cfd666
3,654,664
import os def find_includes(armnn_include_env: str = INCLUDE_ENV_NAME): """Searches for ArmNN includes. Args: armnn_include_env(str): Environmental variable to use as path. Returns: list: A list of paths to include. """ armnn_include_path = os.getenv(armnn_include_env) if armnn_include_path is not None and os.path.exists(armnn_include_path): armnn_include_path = [armnn_include_path] else: armnn_include_path = ['/usr/local/include', '/usr/include'] return armnn_include_path
b601f8253d9c7e3f1966f0b5e8810d8f12576621
3,654,665
import sys def read_missing_oids(oid_lines): """ Parse lines into oids. >>> list(read_missing_oids([ ... "!!! Users 0 ?", "POSKeyError: foo", ... "!!! Users 0 ?", ... "!!! Users 1 ?", ... "bad xref name, 1", "bad db", ])) [0, 1] """ result = OidSet() for line in oid_lines: if line.startswith('bad') or ':' in line: continue if line.startswith('!!!'): # zc.zodbdgc output. bad OID is always the # third field. try: oid = int(line.split()[2]) except (ValueError, IndexError): logger.info("Malformed zc.zodbdgc input: %s", line) continue result.add(oid) else: # Just an int try: oid = int(line) except ValueError: logger.info("Malformed input: %s", line) else: result.add(oid) if oid_lines != sys.stdin: oid_lines.close() return result
0f408ba7673fa78b57b2533d9ffe8ab5296a633c
3,654,666
import json def run(target='192.168.1.1', ports=[21,22,23,25,80,110,111,135,139,443,445,554,993,995,1433,1434,3306,3389,8000,8008,8080,8888]): """ Run a portscan against a target hostname/IP address `Optional` :param str target: Valid IPv4 address :param list ports: Port numbers to scan on target host :returns: Results in a nested dictionary object in JSON format Returns onlne targets & open ports as key-value pairs in dictionary (JSON) object """ global tasks global threads global results if not util.ipv4(target): raise ValueError("target is not a valid IPv4 address") if _ping(target): for port in ports: tasks.put_nowait((_scan, (target, port))) for i in range(1, tasks.qsize()): threads['portscan-%d' % i] = _threader() for t in threads: threads[t].join() return json.dumps(results[target]) else: return "Target offline"
201e4dc1809553eb4fb57848d9e5f8001ccdef23
3,654,667
import torch def subsequent_mask(size: int): """ Mask out subsequent positions (to prevent attending to future positions) Transformer helper function. :param size: size of mask (2nd and 3rd dim) :return: Tensor with 0s and 1s of shape (1, size, size) """ mask = np.triu(np.ones((1, size, size)), k=1).astype("uint8") return torch.from_numpy(mask) == 0
f4e40d2e9ac944d3582ed16088e8096f75a5f29e
3,654,668
from typing import Type def _get_dist_class( policy: Policy, config: TrainerConfigDict, action_space: gym.spaces.Space ) -> Type[TorchDistributionWrapper]: """Helper function to return a dist class based on config and action space. Args: policy (Policy): The policy for which to return the action dist class. config (TrainerConfigDict): The Trainer's config dict. action_space (gym.spaces.Space): The action space used. Returns: Type[TFActionDistribution]: A TF distribution class. """ if hasattr(policy, "dist_class") and policy.dist_class is not None: return policy.dist_class elif config["model"].get("custom_action_dist"): action_dist_class, _ = ModelCatalog.get_action_dist( action_space, config["model"], framework="torch" ) return action_dist_class elif isinstance(action_space, Discrete): return TorchCategorical elif isinstance(action_space, Simplex): return TorchDirichlet else: assert isinstance(action_space, Box) if config["normalize_actions"]: return ( TorchSquashedGaussian if not config["_use_beta_distribution"] else TorchBeta ) else: return TorchDiagGaussian
6511786dff734ddb78ce7c28e19b651c70fe86e2
3,654,669
def timeexec(fct, number, repeat): """ Measures the time for a given expression. :param fct: function to measure (as a string) :param number: number of time to run the expression (and then divide by this number to get an average) :param repeat: number of times to repeat the computation of the above average :return: dictionary """ rep = timeit_repeat(fct, number=number, repeat=repeat) ave = sum(rep) / (number * repeat) std = (sum((x / number - ave)**2 for x in rep) / repeat)**0.5 fir = rep[0] / number fir3 = sum(rep[:3]) / (3 * number) las3 = sum(rep[-3:]) / (3 * number) rep.sort() mini = rep[len(rep) // 20] / number maxi = rep[-len(rep) // 20] / number return dict(average=ave, deviation=std, first=fir, first3=fir3, last3=las3, repeat=repeat, min5=mini, max5=maxi, run=number)
01ea6d74bed9d8a7d1b7793d3f8473bc6442f83f
3,654,670
import sys def is_bst(root): """ checks if binary tree is binary search tree """ def is_bst_util(root, min_value, max_value): """ binary search tree check utility function """ if root is None: return True if (root.data >= min_value and root.data < max_value and is_bst_util(root.left, min_value, root.data) and is_bst_util(root.right, root.data, max_value)): return True return False return is_bst_util(root, -sys.maxsize - 1, sys.maxsize)
46828b5b3fc1827908faf7b9bb646bc3b6594b30
3,654,671
def regexify(w, tags): """Convert a single component of a decomposition rule from Weizenbaum notation to regex. Parameters ---------- w : str Component of a decomposition rule. tags : dict Tags to consider when converting to regex. Returns ------- w : str Component of a decomposition rule converted to regex form. """ # 0 means "an indefinite number of words" if w == '0': w = '.*' # A positive non-zero integer means "this specific amount of words" elif w.isnumeric() and int(w) > 0: w = r'(?:\b\w+\b[\s\r\n]*){' + w + '}' # A word starting with @ signifies a tag elif w[0] == "@": # Get tag name tag_name = w[1:].lower() w = tag_to_regex(tag_name, tags) else: # Add word boundaries to match on a whole word basis w = r'\b' + w + r'\b' return w
113a631674c5984d81f830c5e8ca840d95678aa1
3,654,672
def row_dot_product(a: np.ndarray, b: np.ndarray) -> np.ndarray: """ Returns a vectorized dot product between the rows of a and b :param a: An array of shape (N, M) or (M, ) (or a shape that can be broadcast to (N, M)) :param b: An array of shape (N, M) or (M, ) (or a shape that can be broadcast to (N, M)) :return: A vector of shape (N, ) whose elements are the dot product of rows a, b """ return np.einsum('ij,ij->i', np.atleast_2d(a), np.atleast_2d(b))
d2544f2957963d343bdeb079418a1a5d96373eb4
3,654,673
def pmg_pickle_dump(obj, filobj, **kwargs): """ Dump an object to a pickle file using PmgPickler. Args: obj : Object to dump. fileobj: File-like object \\*\\*kwargs: Any of the keyword arguments supported by PmgPickler """ return PmgPickler(filobj, **kwargs).dump(obj)
4ac72623538ce463b1bfc183bcac90919e47c513
3,654,674
def condition_header(header, needed_keys=None): """Return a dictionary of all `needed_keys` from `header` after passing their values through the CRDS value conditioner. """ header = { key.upper():val for (key, val) in header.items() } if not needed_keys: needed_keys = header.keys() else: needed_keys = [ key.upper() for key in needed_keys ] conditioned = { key:condition_value(header[key]) for key in needed_keys } return conditioned
cd8c39e355a05367d479e76bda6f0869c10f8130
3,654,675
from typing import OrderedDict def get_generic_path_information(paths, stat_prefix=""): """ Get an OrderedDict with a bunch of statistic names and values. """ statistics = OrderedDict() returns = [sum(path["rewards"]) for path in paths] # rewards = np.vstack([path["rewards"] for path in paths]) rewards = np.concatenate([path["rewards"] for path in paths]) statistics.update( create_stats_ordered_dict( "Rewards", rewards, stat_prefix=stat_prefix, always_show_all_stats=True ) ) statistics.update( create_stats_ordered_dict( "Returns", returns, stat_prefix=stat_prefix, always_show_all_stats=True ) ) # print(paths[0]["env_infos"]) if "is_success" in paths[0]["env_infos"][0].keys(): acc_sum = [(np.sum([x['is_success'] for x in path["env_infos"]])>0).astype(float) for path in paths] acc = np.sum(acc_sum) * 1.0 / len(paths) statistics.update( create_stats_ordered_dict( "Success Num", np.sum(acc_sum), stat_prefix=stat_prefix, always_show_all_stats=True ) ) statistics.update( create_stats_ordered_dict( "Traj Num", len(paths), stat_prefix=stat_prefix, always_show_all_stats=True ) ) statistics.update( create_stats_ordered_dict( "Success Rate", acc, stat_prefix=stat_prefix, always_show_all_stats=True ) ) actions = [path["actions"] for path in paths] # if isinstance(actions[0][0], np.ndarray): # actions = np.vstack([path["actions"] for path in paths]) # else: # actions = np.hstack([path["actions"] for path in paths]) statistics.update( create_stats_ordered_dict( "Actions", actions, stat_prefix=stat_prefix, always_show_all_stats=True ) ) statistics.update( create_stats_ordered_dict( "Ep. Len.", np.array([len(path["terminals"]) for path in paths]), stat_prefix=stat_prefix, always_show_all_stats=True, ) ) statistics["Num Paths"] = len(paths) return statistics
a90995c43d588cee4869bfa8b3f6a1026d265aab
3,654,676
import math import numpy as np def pad_images(images, nlayers): """ In Unet, every layer the dimension gets divided by 2 in the encoder path. Therefore the image size should be divisible by 2^nlayers. """ divisor = 2**nlayers nlayers, x, y = images.shape # essentially setting nlayers to z direction so return is z, x, y x_pad = int((math.ceil(x / float(divisor)) * divisor) - x) y_pad = int((math.ceil(y / float(divisor)) * divisor) - y) padded_image = np.pad(images, ((0,0),(0, x_pad), (0, y_pad)), 'constant', constant_values=(0, 0)) return padded_image
671fa940d0a0ed87819335b60d12d9e268bf9932
3,654,677
def remove_measurements(measurements, model_dict, params=None): """Remove measurements from a model specification. If provided, a params DataFrame is also reduced correspondingly. Args: measurements (str or list): Name(s) of the measurement(s) to remove. model_dict (dict): The model specification. See: :ref:`model_specs`. params (pandas.DataFrame or None): The params DataFrame for the full model. Returns: dict: The reduced model dictionary pandas.DataFrame: The reduced parameter DataFrame (only if params is not None) """ out = deepcopy(model_dict) for factor in model_dict["factors"]: full = model_dict["factors"][factor]["measurements"] reduced = [_remove_from_list(meas_list, measurements) for meas_list in full] out["factors"][factor]["measurements"] = reduced norminfo = model_dict["factors"][factor].get("normalizations", {}) if "loadings" in norminfo: out["factors"][factor]["normalizations"][ "loadings" ] = _remove_measurements_from_normalizations( measurements, norminfo["loadings"] ) if "intercepts" in norminfo: out["factors"][factor]["normalizations"][ "intercepts" ] = _remove_measurements_from_normalizations( measurements, norminfo["intercepts"] ) if params is not None: out_params = _reduce_params(params, out) out = (out, out_params) return out
fffddf4368579c999648c29b4746006b38de140c
3,654,678
def good2Go(SC, L, CC, STR): """ Check, if all input is correct and runnable """ if SC == 1 and L == 1 and CC == 1 and STR == 1: return True else: print(SC, L, CC, STR) return False
e49229df6b9b187e1840d5bc5c8a1a8e087a5a4e
3,654,679
def __validate_tweet_name(tweet_name: str, error_msg: str) -> str: """Validate the tweet's name. Parameters ---------- tweet_name : str Tweet's name. error_msg : str Error message to display for an invalid name. Returns ------- str Validated tweet name. Raises ------ InvalidTweetName Raised for invalid tweet names. """ if tweet_name == "": raise InvalidTweetName(error_msg) else: return tweet_name
7086aeac6ccd0afcad0d13e947f3b454f7333b9f
3,654,680
def convert_event(obj): """ :type obj: :class:`sir.schema.modelext.CustomEvent` """ event = models.event(id=obj.gid, name=obj.name) if obj.comment: event.set_disambiguation(obj.comment) if obj.type is not None: event.set_type(obj.type.name) event.set_type_id(obj.type.gid) lifespan = convert_life_span(obj.begin_date, obj.end_date, obj.ended) if lifespan.get_begin() is not None or lifespan.get_end() is not None: event.set_life_span(lifespan) if obj.time is not None: event.set_time(datetime_to_string(obj.time)) if obj.area_links: event.add_relation_list(convert_event_area_relation_list(obj.area_links)) if obj.artist_links: event.add_relation_list(convert_artist_relation_list(obj.artist_links)) if obj.place_links: event.add_relation_list(convert_place_relation_list(obj.place_links)) if obj.aliases: event.set_alias_list(convert_alias_list(obj.aliases)) if obj.tags: event.set_tag_list(convert_tag_list(obj.tags)) return event
23a6a31abca03d0c92f6162ce28b8548dc95bdda
3,654,681
from typing import Any import requests import json def get_pr_review_status(pr: PullRequestDetails, per_page: int = 100) -> Any: """ References: https://developer.github.com/v3/pulls/reviews/#list-reviews-on-a-pull-request """ url = (f"https://api.github.com/repos/{pr.repo.organization}/{pr.repo.name}" f"/pulls/{pr.pull_id}/reviews" f"?per_page={per_page};access_token={pr.repo.access_token}") response = requests.get(url) if response.status_code != 200: raise RuntimeError( 'Get review failed. Code: {}. Content: {}.'.format( response.status_code, response.content)) return json.JSONDecoder().decode(response.content.decode())
5ce662ab5d82e374def95e5f3cc4da9f2d4dbf96
3,654,682
def make_sph_model(filename): """reads a spherical model file text file and generates interpolated values Args: filename: Returns: model: """ M = np.loadtxt(filename, dtype={'names': ('rcurve', 'potcurve', 'dpotcurve'),'formats': ('f4', 'f4', 'f4')},skiprows=1) model = spherical_model() model.rcurve = M['rcurve'] model.potcurve = M['potcurve'] model.dpotcurve = M['dpotcurve'] model.rcurve = M['rcurve'] model.potcurve = UnivariateSpline(model.rcurve,M['potcurve'],k=3) model.dpotcurve = UnivariateSpline(model.rcurve,M['dpotcurve'],k=3) return model
d86a88ffca93ee0618cf5a19aa015077247cffb0
3,654,683
import os def list_dir(filepath): """List the files in the directory""" return sorted(list(map(lambda x: os.path.join(filepath, x), os.listdir(filepath))))
29c50f132b5abfdfea819db58a816a83e6efaccd
3,654,684
def minimum(x, y): """ Returns the min of x and y (i.e. x < y ? x : y) element-wise. Parameters ---------- x : tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64. y : A Tensor. Must have the same type as x. name : str A name for the operation (optional). Returns ------- A Tensor. Has the same type as x """ return pd.minimum(x, y)
384e7d15687d03f7b639fc50707712c94029620f
3,654,685
def seconds_to_timestamp(seconds): """ Convert from seconds to a timestamp """ minutes, seconds = divmod(float(seconds), 60) hours, minutes = divmod(minutes, 60) return "%02d:%02d:%06.3f" % (hours, minutes, seconds)
8b9806f05fe4796baae51001e69455e82fb51eed
3,654,686
def query(querystring: str, db: tsdb.Database, **kwargs): """ Perform query *querystring* on the testsuite *ts*. Note: currently only 'select' queries are supported. Args: querystring (str): TSQL query string ts (:class:`delphin.itsdb.TestSuite`): testsuite to query over kwargs: keyword arguments passed to the more specific query function (e.g., :func:`select`) Example: >>> list(tsql.query('select i-id where i-length < 4', ts)) [[142], [1061]] """ queryobj = _parse_query(querystring) if queryobj['type'] in ('select', 'retrieve'): return _select( queryobj['projection'], queryobj['relations'], queryobj['condition'], db, record_class=kwargs.get('record_class', None)) else: # not really a syntax error; replace with TSQLError or something # when the proper exception class exists raise TSQLSyntaxError(queryobj['type'] + ' queries are not supported', text=querystring)
fa43123b3e0c4706b738104c641836fa08a4fc35
3,654,687
def TTF_SizeUTF8(font, text, w, h): """Calculates the size of a UTF8-encoded string rendered with a given font. See :func:`TTF_SizeText` for more info. Args: font (:obj:`TTF_Font`): The font object to use. text (bytes): A UTF8-encoded bytestring of text for which the rendered surface size should be calculated. w (byref(:obj:`~ctypes.c_int`)): A pointer to an integer in which to store the calculated surface width (in pixels). h (byref(:obj:`~ctypes.c_int`)): A pointer to an integer in which to store the calculated surface height (in pixels). Returns: int: 0 on success, or -1 on error (e.g. if a glyph is not found in the font). """ return _funcs["TTF_SizeUTF8"](font, text, w, h)
3d24382222b1795caa0981c659d00a717c22fc86
3,654,688
def get_mse(y_true, y_hat): """ Return the mean squared error between the ground truth and the prediction :param y_true: ground truth :param y_hat: prediction :return: mean squared error """ return np.mean(np.square(y_true - y_hat))
3d4c1828abf5bf88607e4ca1a263c483105733aa
3,654,689
def generate_v2_token(username, version, client_ip, issued_at_timestamp, email=''): """Creates the JSON Web Token with a new schema :Returns: String :param username: The name of person who the token identifies :type username: String :param version: The version number for the token :type version: Integer/String :param client_ip: The IP of machine the client used to request a token. :type client_ip: String :param email: The email address associated with a user. :type email: String """ claims = {'exp' : issued_at_timestamp + const.AUTH_TOKEN_TIMEOUT, 'iat' : issued_at_timestamp, 'iss' : const.VLAB_URL, 'username' : username, 'version' : version, 'client_ip' : client_ip, 'email' : email, } return jwt.encode(claims, const.AUTH_TOKEN_SECRET, algorithm=const.AUTH_TOKEN_ALGORITHM)
dee10b68fc15ec730a7b8921f95a77804618879c
3,654,690
import math def choose(n, k): """return n choose k resilient (though not immune) to integer overflow""" if n == 1: # optimize by far most-common case return 1 return fact_div(n, max(k, n - k)) / math.factorial(min(k, n - k))
fecd411a4148127f998f58d8d27668777bf5efbe
3,654,691
from typing import List def part_one(puzzle_input: List[str]) -> int: """Find the highest seat ID on the plane""" return max(boarding_pass_to_seat_id(line) for line in puzzle_input)
1ae95a7784f5348bb435483228630c8795d62d30
3,654,692
def readbit(val, bitidx): """ Direct word value """ return int((val & (1<<bitidx))!=0)
4ca368f89b2496ec46c1641835c1f2a0a1cdd573
3,654,693
def matrix_bombing_plan(m): """ This method calculates sum of the matrix by trying every possible position of the bomb and returns a dictionary. Dictionary's keys are the positions of the bomb and values are the sums of the matrix after the damage """ matrix = deepcopy(m) rows = len(m) columns = len(m[0]) d = {} for x in range(0, rows): for y in range(0, columns): p = (x, y) neighbours = find_neighbour(matrix, (x, y)) d[p] = sum_matrix(neighbours) return d
013d1dc3685013fa6fd5c87cfc2513e07e66e310
3,654,694
def coord_to_gtp(coord, board_size): """ From 1d coord (0 for position 0,0 on the board) to A1 """ if coord == board_size ** 2: return "pass" return "{}{}".format("ABCDEFGHJKLMNOPQRSTYVWYZ"[int(coord % board_size)],\ int(board_size - coord // board_size))
a0419e8a7f39cd282585ed1d29d94bbded0e3f1c
3,654,695
def test_alternative_clusting_method(ClusterModel): """ Test that users can supply alternative clustering method as dep injection """ def clusterer(X: np.ndarray, k: int, another_test_arg): """ Function to wrap a sklearn model as a clusterer for OptimalK First two arguments are always the data matrix, and k, and can supply """ m = ClusterModel() m.fit(X) assert another_test_arg == "test" return m.cluster_centers_, m.predict(X) optimalk = OptimalK( n_jobs=-1, parallel_backend="joblib", clusterer=clusterer, clusterer_kwargs={"another_test_arg": "test"}, ) X, y = make_blobs(n_samples=50, n_features=2, centers=3) n_clusters = optimalk(X, n_refs=3, cluster_array=np.arange(1, 5)) assert isinstance(n_clusters, int)
173e376726abe943f15fae44aa746bf9abe7dd53
3,654,696
def load_dataset(spfile, twfile): """Loads dataset given the span file and the tweets file Arguments: spfile {string} -- path to span file twfile {string} -- path to tweets file Returns: dict -- dictionary of tweet-id to Tweet object """ tw_int_map = {} # for filen in os.listdir(txt_dir): # twid = filen.split(".")[0] # if twid == "tweet_id": # continue # tweet = Tweet(twid) # tw_int_map[twid] = tweet for line in open(twfile, 'r'): #parts = line.split("\t") #twid, text = parts[0], parts[1] twid = get_basename_without_extension(line.strip('\n')) # ANTONIO tweet = Tweet(twid) if twid in tw_int_map: log.warning("Possible duplicate %s", twid) tw_int_map[twid] = tweet # Load annotations for line in open(spfile, 'r'): parts = [x.strip() for x in line.split("\t")] if len(parts) != 5: log.warning("Tab delimited not correct:" + str(len(parts))) continue if len(parts) == 5: twid, start, end, atype, prof = parts if twid == "tweet_id": continue if twid in tw_int_map: tweet = tw_int_map[twid] else: log.warning("Invalid tweetid %s not found.", twid) continue valid_labels = ["PROTEINAS", "NORMALIZABLES", "UNCLEAR","NO-NORMALIZABLES"] if atype in valid_labels: ann = Ann(prof.strip(), atype, start, end) tweet.anns.append(ann) tweet.has_ann = (tweet.has_ann or atype in valid_labels) num_anns = sum([len(x.anns) for _, x in tw_int_map.items()]) log.info("Loaded dataset %s tweets. %s annotations.", len(tw_int_map), num_anns) return tw_int_map
e25c382b3fe8c321b70206894e483c3f04ade2ed
3,654,697
from typing import Union from typing import Tuple def nameof(var, *more_vars, # *, keyword only argument, supported with python3.8+ frame: int = 1, vars_only: bool = True) -> Union[str, Tuple[str]]: """Get the names of the variables passed in Examples: >>> a = 1 >>> nameof(a) # 'a' >>> b = 2 >>> nameof(a, b) # ('a', 'b') >>> x = lambda: None >>> x.y = 1 >>> nameof(x.y, full=True) # 'x.y' Note: This function works with the environments where source code is available, in other words, the callee's node can be retrieved by `executing`. In some cases, for example, running code from python shell/REPL or from `exec`/`eval`, we try to fetch the variable name from the bytecode. This requires only a single variable name is passed to this function and no keyword arguments, meaning that getting full names of attribute calls are not supported in such cases. Args: var: The variable to retrieve the name of *more_vars: Other variables to retrieve the names of frame: The this function is called from the wrapper of it. `frame=1` means no wrappers. Note that the calls from standard libraries are ignored. Also note that the wrapper has to have signature as this one. vars_only: Whether only allow variables/attributes as arguments or any expressions. If `True`, then the sources of the arguments will be returned. Returns: The names/sources of variables/expressions passed in. If a single argument is passed, return the name/source of it. If multiple variables are passed, return a tuple of their names/sources. If the argument is an attribute (e.g. `a.b`) and `vars_only` is `False`, only `"b"` will returned. Set `vars_only` to `True` to get `"a.b"`. Raises: VarnameRetrievingError: When the callee's node cannot be retrieved or trying to retrieve the full name of non attribute series calls. """ # Frame is anyway used in get_node frameobj = IgnoreList.create( ignore_lambda=False, ignore_varname=False ).get_frame(frame) node = get_node_by_frame(frameobj, raise_exc=True) if not node: # We can't retrieve the node by executing. # It can be due to running code from python/shell, exec/eval or # other environments where sourcecode cannot be reached # make sure we keep it simple (only single variable passed and no # full passed) to use bytecode_nameof # # We don't have to check keyword arguments here, as the instruction # will then be CALL_FUNCTION_KW. if not more_vars: return bytecode_nameof(frameobj.f_code, frameobj.f_lasti) # We are anyway raising exceptions, no worries about additional burden # of frame retrieval again source = frameobj.f_code.co_filename if source == '<stdin>': raise VarnameRetrievingError( "Are you trying to call nameof in REPL/python shell? " "In such a case, nameof can only be called with single " "argument and no keyword arguments." ) if source == '<string>': raise VarnameRetrievingError( "Are you trying to call nameof from exec/eval? " "In such a case, nameof can only be called with single " "argument and no keyword arguments." ) raise VarnameRetrievingError( "Source code unavailable, nameof can only retrieve the name of " "a single variable, and argument `full` should not be specified." ) return argname( var, *more_vars, func=nameof, frame=frame, vars_only=vars_only, pos_only=True )
4a7c7d8390dad2597cad65409aaa6cd3f716a8a8
3,654,698
import os def cache_get_filepath(key): """Returns cache path.""" return os.path.join(settings.CACHE_PATH, key)
7b6ace1c68a4783a95390b4dcf1c658b7b9db0b2
3,654,699