content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import tkinter def _colorvar_patch_destroy(fn): """Internal function.\n Deletes the traces if any when widget is destroy.""" def _patch(self): """Interanl function.""" if self._tclCommands is not None: # Deletes the widget from the _all_traces_colorvar # and deletes the traces too. for key, value in dict(_all_traces_colorvar).items(): if self == key[0]: var, cbname = value try: var.trace_vdelete('w', cbname) except tkinter.TclError: pass _all_traces_colorvar.pop(key) return fn(self) return _patch
d38380316932d8ff2fee8bed8b931b5567588774
3,654,800
import os def distros_for_filename(filename, metadata=None): """Yield possible egg or source distribution objects based on a filename""" return distros_for_location( normalize_path(filename), os.path.basename(filename), metadata )
154fa2158dc6e980c57c8b8bcea339fcadca772e
3,654,801
def pres_from_hybrid(psfc, hya, hyb, p0=100000.): """Return pressure field on hybrid-sigma coordinates, assuming formula is p = a(k)*p0 + b(k)*ps. """ return hya*p0 + hyb*psfc
4ebd90fb807ab9ea4c2b45d27da6f8b420c107f7
3,654,802
import urllib def url_exist(file_url): """ Check if an url exist Parameters ---------- file_url : string url of www location Returns ------- verdict : dtype=boolean verdict if present """ try: urllib.request.urlopen(file_url).code == 200 return True except: return False
717ee7073ab56e8611eb46f042ab7c18f2db0f33
3,654,803
from scipy import stats def chi_square(observed, expected): """ Compute the chi square test """ # glen cowan pp61 temp = [] for (n, nu) in zip(observed, expected): if nu != 0: temp += [((n - nu) ** 2) / nu] # compute p value mychi = sum(temp) p = stats.chi2.sf(mychi, len(temp)) return mychi, p
4b0577ec4e4b4dc6b99b00a54e78f1014b9cf93a
3,654,804
def fix_deform_for_children(pmx: pmxstruct.Pmx, me: int, already_visited=None) -> int: """ Recursively ensure everything that inherits from the specified bone will deform after it. Only cares about parent and partial-inherit, doesnt try to understand IK groups. Return the number of bones that were changed. :param pmx: full PMX object :param me: int index of current bone :param already_visited: leave empty, used to prevent recursive looping :return: number of bones that were changed """ def guarantee_good_relationship(parent: int, child: int) -> bool: # check & fix the relationship between these two bones # if the deform layers are improper, then fix them and return True # if the deform layers are proper, then return False # todo: do i care about deform_after_phys? child_deform = pmx.bones[child].deform_layer parent_deform = pmx.bones[parent].deform_layer if child < parent: # if the child has lower index than parent, then the child MUST have greater deform_layer if child_deform <= parent_deform: pmx.bones[child].deform_layer = pmx.bones[parent].deform_layer + 1 return True else: return False elif child > parent: # if the child has greater index than parent, then the child MUST have greater (or equal) deform_layer if child_deform < parent_deform: pmx.bones[child].deform_layer = pmx.bones[parent].deform_layer return True else: return False else: # if child == parent, idk? don't change anything tho return False retme = 0 # safety system to prevent infinite recursion: if already_visited is None: already_visited = set() if me in already_visited: return 0 else: already_visited.add(me) # check every single bone to find the ones that inherit from "me" for d,bone in enumerate(pmx.bones): # if bone d is inheriting from "me", if (bone.parent_idx == me) or ((bone.inherit_rot or bone.inherit_trans) and (bone.inherit_parent_idx == me)): # check/fix their relationship. return True if something was changed. if guarantee_good_relationship(me, d): # the check also fixes it, all thats left is to recurse print(d) retme += 1 retme += fix_deform_for_children(pmx, d, already_visited) return retme
1757e8f4c39c2ac93f9ef63397b194412342fbae
3,654,805
def theta_8(p, q, h, phi, a, b): """Lower limit of integration for the case rho > a, rho > b.""" result = np.arctan(r_8(p, q, phi, a, b)/h) return(result)
913ceb462885fba93cbdb6bddaa5523c119821bc
3,654,806
def collect_genewise(fst_file, file_name, gene_names, gene_to_fst): """take in the file name, opens it. populates a dictionary to [gene] = fst file_name = defaultdict(str) FBgn0031208 500000 16 0.002 21.0 1:2=0.05752690 """ file_name = file_name.split("_gene")[0] f_in = open(fst_file, "r") for line in f_in: if test_line(line): data = line.split() if "1:2=" in line: gene = data[0].strip() gene_names.add(gene) fst = data[5].strip() fst = fst.split("=")[1] data = "%s\t%s" % (gene, fst) gene_to_fst[file_name].append(data) return gene_to_fst, gene_names
ea62da67a7084103859244bf7f192c2f4433124c
3,654,807
import torch def bbox_overlaps_batch(anchors, gt_boxes): """ :param anchors: (N, 4) ndarray of float :param gt_boxes: (b, K, 5) ndarray of float :return: (N, K) ndarray of overlap between boxes and query_boxes """ batch_size = gt_boxes.size(0) if anchors.dim() == 2: N = anchors.size(0) K = gt_boxes.size(1) anchors = anchors.view(1, N, 4).expand(batch_size, N, 4).contiguous() gt_boxes = gt_boxes[:,:,:4].contiguous() gt_boxes_x = (gt_boxes[:,:,2] - gt_boxes[:,:,0] + 1) gt_boxes_y = (gt_boxes[:,:,3] - gt_boxes[:,:,1] + 1) gt_boxes_area = (gt_boxes_x * gt_boxes_y).view(batch_size, 1, K) anchors_boxes_x = (anchors[:,:,2] - anchors[:,:,0] + 1) anchors_boxes_y = (anchors[:,:,3] - anchors[:,:,1] + 1) anchors_area = (anchors_boxes_x * anchors_boxes_y).view(batch_size, N, 1) gt_area_zero = (gt_boxes_x == 1) & (gt_boxes_y == 1) anchors_area_zero = (anchors_boxes_x == 1) & (anchors_boxes_y == 1) boxes = anchors.view(batch_size, N, 1, 4).expand(batch_size, N, K, 4) query_boxes = gt_boxes.view(batch_size, 1, K, 4).expand(batch_size, N, K, 4) iw = (torch.min(boxes[:,:,:,2], query_boxes[:,:,:,2]) - torch.max(boxes[:,:,:,0], query_boxes[:,:,:,0]) + 1) iw[iw < 0] = 0 ih = (torch.min(boxes[:,:,:,3], query_boxes[:,:,:,3]) - torch.max(boxes[:,:,:,1], query_boxes[:,:,:,1]) + 1) ih[ih < 0] = 0 ua = anchors_area + gt_boxes_area - (iw * ih) overlaps = iw * ih / ua # mask the overlap here. overlaps.masked_fill_(gt_area_zero.view(batch_size, 1, K).expand(batch_size, N, K), 0) overlaps.masked_fill_(anchors_area_zero.view(batch_size, N, 1).expand(batch_size, N, K), -1) elif anchors.dim() == 3: N = anchors.size(1) K = gt_boxes.size(1) if anchors.size(2) == 4: anchors = anchors[:,:,:4].contiguous() else: anchors = anchors[:,:,1:5].contiguous() gt_boxes = gt_boxes[:,:,:4].contiguous() gt_boxes_x = (gt_boxes[:,:,2] - gt_boxes[:,:,0] + 1) gt_boxes_y = (gt_boxes[:,:,3] - gt_boxes[:,:,1] + 1) gt_boxes_area = (gt_boxes_x * gt_boxes_y).view(batch_size, 1, K) anchors_boxes_x = (anchors[:,:,2] - anchors[:,:,0] + 1) anchors_boxes_y = (anchors[:,:,3] - anchors[:,:,1] + 1) anchors_area = (anchors_boxes_x * anchors_boxes_y).view(batch_size, N, 1) gt_area_zero = (gt_boxes_x == 1) & (gt_boxes_y == 1) anchors_area_zero = (anchors_boxes_x == 1) & (anchors_boxes_y == 1) boxes = anchors.view(batch_size, N, 1, 4).expand(batch_size, N, K, 4) query_boxes = gt_boxes.view(batch_size, 1, K, 4).expand(batch_size, N, K, 4) iw = (torch.min(boxes[:,:,:,2], query_boxes[:,:,:,2]) - torch.max(boxes[:,:,:,0], query_boxes[:,:,:,0]) + 1) iw[iw < 0] = 0 ih = (torch.min(boxes[:,:,:,3], query_boxes[:,:,:,3]) - torch.max(boxes[:,:,:,1], query_boxes[:,:,:,1]) + 1) ih[ih < 0] = 0 ua = anchors_area + gt_boxes_area - (iw * ih) overlaps = iw * ih / ua # mask the overlap here. overlaps.masked_fill_(gt_area_zero.view(batch_size, 1, K).expand(batch_size, N, K), 0) overlaps.masked_fill_(anchors_area_zero.view(batch_size, N, 1).expand(batch_size, N, K), -1) else: raise ValueError('anchors input dimension is not correct.') return overlaps
cc5a88e6a1d5cd42b1827091cbee311e4f33bbb6
3,654,808
from typing import Tuple from typing import Callable from typing import Any import re def extract_curve_and_test(curve_names: str, name: str) -> Tuple[str, Callable[[Any], bool]]: """Return a curve and a test to apply for which of it's components to twist.""" twist_match = re.match(rf"(?P<curve>[{curve_names}])_(?P<n>-?\d+)$", name) twist_index_match = re.match(rf"(?P<curve>[{curve_names}])\[ *(?P<n>-?\d+) *\]$", name) twist_slice_match = re.match(rf"(?P<curve>[{curve_names}])(\[ *(?P<start>-?\d*) *: *(?P<stop>-?\d*) *(: *(?P<step>-?\d*) *)?\])?$", name) twist_expr_match = re.match(rf"(?P<curve>[{curve_names}])\{{(?P<expr>.*)\}}$", name) if twist_match is not None: parameters = twist_match.groupdict() curve = parameters["curve"] n = int(parameters["n"]) test = lambda edge: edge == n elif twist_index_match is not None: parameters = twist_index_match.groupdict() curve = parameters["curve"] n = int(parameters["n"]) test = lambda edge: edge == n elif twist_slice_match is not None: parameters = twist_slice_match.groupdict() curve = parameters["curve"] start = int(parameters["start"]) if parameters["start"] else -inf stop = int(parameters["stop"]) if parameters["stop"] else inf step = int(parameters["step"]) if parameters["step"] else 1 test = lambda edge: start <= edge < stop and (edge % step == (0 if start == -inf else start % step)) elif twist_expr_match is not None: parameters = twist_expr_match.groupdict() curve = parameters["curve"] test = lambda n: eval(parameters["expr"], {"n": n, **globals()}) # pylint: disable=eval-used else: raise ValueError(f"Unknown mapping class {name}") return curve, test
e4849ff7145bae0c2c900d0aa747ec7a14fb96ac
3,654,809
import numpy def psf_gaussian(psf_shape, psf_waist, psf_physical_size=1, psf_nphoton=2): """Return 3D gaussian approximation of PSF.""" def f(index): s = psf_shape[index] // 2 * psf_physical_size c = numpy.linspace(-s, s, psf_shape[index]) c *= c c *= -2.0 / (psf_waist[index] * psf_waist[index]) return c psf = numpy.exp( numpy.sum( numpy.meshgrid(f(0), f(1), f(2), indexing='ij', sparse=False), axis=0, ) ) if psf_nphoton != 1: numpy.power(psf, psf_nphoton, out=psf) return psf
77ccab6aaa141564751a0eafd13398f904673006
3,654,810
def get_employee_record(id_num): """Gets an employee's details if record exists. Arguments: id_num -- ID of employee record to fetch """ if not id_num in names or not id_num in cities: return 'Error viewing record' return f'{id_num} {names[id_num]} {cities[id_num]}'
108b6e3482022e8e65e09bda1dd8a78ca7850cfe
3,654,811
def list_aliases(): """ Gets the list of aliases for the current account. An account has at most one alias. :return: The list of aliases for the account. """ try: response = iam.meta.client.list_account_aliases() aliases = response['AccountAliases'] if len(aliases) > 0: logger.info("Got aliases for your account: %s.", ','.join(aliases)) else: logger.info("Got no aliases for your account.") except ClientError: logger.exception("Couldn't list aliases for your account.") raise else: return response['AccountAliases']
13fa5d4ded6811bbcbd6062cf7f690b08c41354e
3,654,812
def MapToSingleIncrease(val): """ Need 30 minute values to be sequential for some of the tools(i.e. 1,2,3,4) so using a format like 5,10,15,20 won't work. """ return val/5
fe89d7ccb8bef511e2ad90a07ad0346c58ba894d
3,654,813
def get_columns_for_table(instance, db, table): """ Get a list of columns in a table Args: instance - a hostAddr object db - a string which contains a name of a db table - the name of the table to fetch columns Returns A list of columns """ conn = connect_mysql(instance) cursor = conn.cursor() ret = list() param = {'db': db, 'table': table} sql = ("SELECT COLUMN_NAME " "FROM information_schema.columns " "WHERE TABLE_SCHEMA=%(db)s AND" " TABLE_NAME=%(table)s") cursor.execute(sql, param) for column in cursor.fetchall(): ret.append(column['COLUMN_NAME']) return ret
567a7e3e6ebbf33cee3cb088e1725bd2b11edcef
3,654,814
def registra_aluno(nome, ano_entrada, ano_nascimento, **misc): """Cria a entrada do registro de um aluno.""" registro = {'nome': nome, 'ano_entrada': ano_entrada, 'ano_nascimento': ano_nascimento} for key in misc: registro[key] = misc[key] return registro
e56da99ec90de9ebca204ccc3c3f3555b9bbbc64
3,654,815
def define_output_ports(docstring, short_description_word_count=4): """ Turn the 'Returns' fields into VisTrails output ports Parameters ---------- docstring : NumpyDocString #List of strings? The scraped docstring from the function being autowrapped into vistrails Returns ------- input_ports : list List of input_ports (Vistrails type IPort) """ output_ports = [] idx = 0 # now look at the return Returns section for (the_name, the_type, the_description) in docstring['Returns']: # when the return parameter has no name but only type and description if the_type == '': the_type = the_name the_name = 'def_output' + str(idx) idx += 1 base_type, is_optional = _type_optional(the_type) if is_optional: continue type_base, is_enum, enum_list = _enum_type(the_type) normed_type = None # this is to deal with malformed docstrings like {array, scalar} if is_enum and type_base == 'str': try_norm = _normalize_type(' or '.join(enum_list)) if try_norm is not None: is_enum = False enum_list = [] logger.warning("abuse of enum %s | <%s>|", docstring['Signature'], the_type) normed_type = try_norm # first try to parse if normed_type is None: normed_type = _normalize_type(type_base) # deal with if we fail to parse if normed_type is None: raise AutowrapError("Malformed output type |{}: <{}>|".format( the_name, the_type)) for port_name in (_.strip() for _ in the_name.split(',')): if not port_name: raise AutowrapError("A Port with no name") pdict = {'name': port_name, 'signature': sig_map[normed_type]} output_ports.append(pdict) # some numpy functions lack a Returns section and have and 'output' # optional input (mostly for in-place operations) if len(output_ports) < 1: for (the_name, the_type, the_description) in docstring['Parameters']: if the_name.lower() in ['output', 'out']: the_type, _ = _type_optional(the_type) the_type = _normalize_type(the_type) if the_type is None: # TODO dillify raise AutowrapError("Malformed type") output_ports.append(dict(name=the_name, signature=sig_map[the_type])) return output_ports
c02737fd1eb29cc1570e47df32ecdb34e1467cea
3,654,816
import signal import errno import os def kill(pidfile, logger, signum=signal.SIGTERM): """Sends `signum` to the pid specified by `pidfile`. Logs messages to `logger`. Returns True if the process is not running, or signal was sent successfully. Returns False if the process for the pidfile was running and there was an error sending the signal.""" daemon_pid = read_pid(pidfile, logger) if daemon_pid is None: return True try: send_signal(daemon_pid, signum, logger) return True except OSError as e: if e.errno == errno.ESRCH: logger.warning("Daemon not running (Stale lockfile)") os.remove(pidfile) return True elif e.errno == errno.EPERM: logger.error("Unable to kill %d (EPERM)", daemon_pid) return False raise
a2dd0ea54bb6e23dd0446646f41f3e34240d713e
3,654,817
def create_small_table(small_dict): """ Create a small table using the keys of small_dict as headers. This is only suitable for small dictionaries. Args: small_dict (dict): a result dictionary of only a few items. Returns: str: the table as a string. """ keys, values = tuple(zip(*small_dict.items())) table = tabulate( [values], headers=keys, tablefmt="pipe", floatfmt=".3f", stralign="center", numalign="center", ) return table
08da78580fbf4cee8c30acb21ce7fa928a9c17b1
3,654,818
def get_normalized_list_for_every_month(variable_r, list_of_ranges_r, tags_r): """ :param variable_r: big list with all the data [sizes][months] :param list_of_ranges_r: sorted list of range (sizes...Enormous, etc.) :return: normalized list for each month (numbers are percentage respect to the total bytes/requests in a given month) """ number_of_months = len(tags_r) temp_list = [[] for lil in range(0, number_of_months)] total_requests_in_each_month = [[] for lil in range(0, number_of_months)] maxima_each_month = [[] for lil in range(0, number_of_months)] new_list_normalized = [[] for lil in range(0, number_of_months)] for month in range(0, number_of_months): for ciao in range(0, len(list_of_ranges_r), 1): temp_list[month].append(variable_r[ciao][month]) # change second index to change the month: 0,1,2,...23 for month in range(0, number_of_months): total_requests_in_each_month[month] = float(sum(temp_list[month])) #print("total bytes requested in month 0: %f" % total_requests_in_each_month[0]) # list of maxima for each month for month in range(0, number_of_months): maxima_each_month[month] = max(temp_list[month]) #print("maxima for the first month: %d", maxima_each_month[0]) for month in range(0, number_of_months): for zeta in temp_list[month]: new_list_normalized[month].append((zeta/total_requests_in_each_month[month])*100) return new_list_normalized
4a3b837e6bf254dbd3255a8ca0a5d103d34bd2a9
3,654,819
def mark_as_possible_cluster_member(g, possible_cluster_member, cluster, confidence, system, uri_ref=None): """ Mark an entity or event as a possible member of a cluster. :param rdflib.graph.Graph g: The underlying RDF model :param rdflib.term.URIRef possible_cluster_member: The entity or event to mark as a possible member of the specified cluster :param rdflib.term.URIRef cluster: The cluster to associate with the possible cluster member :param float confidence: The confidence with which to mark the cluster membership :param rdflib.term.URIRef system: The system object for the system which marked the specified cluster :param str uri_ref: A string URI representation of the cluster member (Default is None) :returns: The cluster membership assertion :rtype: rdflib.term.BNode """ cluster_member_assertion = _make_aif_resource(g, uri_ref, AIDA_ANNOTATION.ClusterMembership, system) g.add((cluster_member_assertion, AIDA_ANNOTATION.cluster, cluster)) g.add((cluster_member_assertion, AIDA_ANNOTATION.clusterMember, possible_cluster_member)) mark_confidence(g, cluster_member_assertion, confidence, system) return cluster_member_assertion
851da7d12781723c7c2fb4bc13ac14172c890daf
3,654,820
def twodcontourplot(tadata_nm, tadata_timedelay, tadata_z_corr): """ make contour plot Args: tadata_nm: wavelength array tadata_timedelay: time delay array tadata_z_corr: matrix of z values """ timedelayi, nmi = np.meshgrid(tadata_timedelay, tadata_nm) # find the maximum and minimum # these are used for color bar z_min = np.amin(np.amin(tadata_z_corr, axis=1)) z_max = np.amax(np.amax(tadata_z_corr, axis=1)) return [nmi, timedelayi, z_min, z_max]
2e8850e1c8153c9c307ff785ddd1d1d127163190
3,654,821
def make_example_dags(module_path): """Loads DAGs from a module for test.""" dagbag = DagBag(module_path) return dagbag.dags
ffc2fd47bbee7d2124da199d6b5101103500fbf2
3,654,822
def count_good_deals(df): """ 7. Считает число прибыльных сделок :param df: - датафрейм с колонкой '<DEAL_RESULT>' :return: - число прибыльных сделок """ # http://stackoverflow.com/questions/27140860/count-occurrences-of-number-by-column-in-pandas-data-frame?rq=1 return (df['<DEAL_RESULT>'] > 0).sum()
1f3ef9b9e0f7924d45d5ce84a77938f19386b6bc
3,654,823
import time import itertools import sh def match_lines_by_hausdorff(target_features, match_features, distance_tolerance, azimuth_tolerance=None, length_tolerance=0, match_features_sindex=None, match_fields=False, match_stats=False, field_suffixes=('', '_match'), match_strings=None, constrain_target_features=False, target_features_sindex=None, match_vectors=False, expand_target_features=False, closest_match=False, closest_target=False, verbose=False): """Conflate attributes between line features based on Hausdorff distance. target_features : :class:`geopandas.GeoDataFrame` Features to which ``match_features`` will be matched. Must have LineString geometries. All ``target_features`` will be included in output, with or without a match. match_features : :class:`geopandas.GeoDataFrame` Features to be matched to ``target_features``. Must have LineString geometries. Only successfully matched features will be included in output. Multiple ``match_features`` may be matched to a single target feature. Must have the same spatial reference as ``target_features``. distance_tolerance : :obj:`float` Maximum Hausdorff distance between each target feature and candidate ``match_features`` Because directed Hausdorff distances are calculated from target to match and match to target, ``distance_tolerance`` will be assessed based on the smaller of these two values. If feature segments are matched (e.g., 1:n, m:1, or m:n), Hausdorff distances are calculated for each segment. In spatial unit of ``target_features``. azimuth_tolerance : :obj:`float`, optional, default = ``None`` Maximum azimuth difference (in degrees) between target feature and potential match features. Feature azimuths are calculated as the azimuth of the feature's "major axis" (the longest axis of the feature's minimum bounding rectangle). If feature segments are matched (e.g., 1:n, m:1, or m:n), azimuths are calculated for each segment. length_tolerance : :obj:`float`, optional, default = 0 Proportion of target feature length required for potential match features. For example, 0.25 specifies that a match candidates must be at least 25% as long as target features to be viable matches. Must be between 0 and 1. If target and match features are split, length proportions are calculated between split segments, not original features. match_features_sindex : :class:`rtree.index.Index`, optional, default = ``None`` Spatial index for ``match_features``. If provided, will not have to be constructed for each function call. match_fields : :obj:`bool`, optional, default = ``False`` * ``True``: Fields from match features will be included in output. * ``False``: Only row indices for match features will be included in output. match_stats : :obj:`bool`, optional, default = ``False`` * ``True``: Statistics related to tolerances will be included in output. * ``False``: No match statistics will be included in ouput. field_suffixes : :obj:`tuple`, optional, default = ``('', '_match')`` Suffixes to be appended to output field names for ``target_features`` and ``match_features``, respectively. Only used if ``match_stats=True``. match_strings : :obj:`tuple`, optional, default = ``None`` Fields used to compute fuzzy string comparisions. Typically, these are street name fields for the ``target_features`` and ``match_features``, respectively. String comparisions do not affect matches, but can be post-processed to help assess match quality. constrain_target_features : :obj:`bool`, optional, default = ``False`` * ``True``: Extents of ``match_features``, plus a ``distance_tolerance`` buffer, will be used to select relevent ``target_features`` prior to matching. When the extent or number of ``match_features`` is small relative to ``target_features``, this dramatically improves performance because fewer ``target_features`` are analyzed for potential matches. * ``False``: All ``target_features`` are analyzed for potential matches. target_features_sindex : :class:`rtree.index.Index`, optional, default = ``None`` If ``constrain_target_features=True``, a spatial index for the ``target_features`` will be computed unless one is provided. If the same ``target_features`` are specified in multiple function calls, pre-computing a spatial index will improve performance. If ``constrain_target_features=False``, ``target_features_sindex`` is unnecessary. match_vectors : :obj:`bool`, optional, default = ``False`` * ``True``: Constructs LineStrings between midpoint of ``target_features`` and the closest points along matched ``match_features``. Useful for vizualizing match results. expand_target_features : :obj:`bool`, optional, default = ``False`` * ``True`` : Target features that match to multiple ``match_features`` will be expanded into multiple segments, each corresponding to a single match feature. Each target feature segment will be output as a seperate record with an index field identifying original row-wise indices from ``target_features``. closest_match : :obj:`bool`, optional, default = ``False`` * ``True`` : Only the closest available match feature will be matched to each target feature, based on Hausdorff distance * ``False`` : All available match features will match to each target feature closest_target : :obj:`bool`, optional, default = ``False`` * ``True`` : A target feature will only match with a match feature if it is the closest available target, based on Hausdorff distance * ``False`` : A target feature will match with all available match features, regardless of whether it has also matched with other target features verbose : :obj:`bool`, optional, default = ``False`` * ``True`` : Reports status by printing to standard output """ # Copy input features to the function doesn't modify the originals target_features = target_features.copy() match_features = match_features.copy() original_target_feature_columns = target_features.columns original_crs = target_features.crs if verbose: start = time() length = len(target_features) counter = 0 # Constrain target features to those near available match features if constrain_target_features: if not target_features_sindex: target_features_sindex = target_features.sindex nearby_target_idx = [] for match_feature in match_features.geometry: nearby_target_idx.extend( list(target_features_sindex.intersection( match_feature.buffer(distance_tolerance).bounds))) nearby_target_idx = list(set(nearby_target_idx)) operating_target_features = target_features[['geometry']].iloc[nearby_target_idx].copy() else: operating_target_features = target_features[['geometry']].copy() # Make a spatial index for match features, if one isn't supplied if not match_features_sindex: match_features_sindex = match_features.sindex # Initiate lists to store match results match_indices = [] match_types = [] h_tms_matches = [] t_props_matches = [] t_segs_matches = [] t_linrefs_matches = [] h_mts_matches = [] m_props_matches = [] m_segs_matches = [] m_linrefs_matches = [] if match_vectors: match_vectors = [] # Iterate through target features: for i, target in enumerate(operating_target_features.geometry): # Initiate lists to store matches m_ids = [] m_types = [] h_tms = [] t_props = [] t_segs = [] t_linrefs = [] h_mts = [] m_props = [] m_segs = [] m_linrefs = [] # Only analyze targets with length if target.length > 0: # Roughly filter candidates with a spatial index search_area = target.buffer(distance_tolerance).bounds candidate_IDs = list(match_features_sindex.intersection(search_area)) candidates = match_features[['geometry']].iloc[candidate_IDs].reset_index() # Calculate Hausdorff distances from feature to each candidate (h_fc) h_tm_list = [directed_hausdorff(target, candidate) for candidate in candidates.geometry] candidates['h_tm'] = pd.Series(h_tm_list) # Calculate Hausdorff distances from each candidate to feature (h_cf) h_mt_list = [directed_hausdorff(candidate, target) for candidate in candidates.geometry] candidates['h_mt'] = pd.Series(h_mt_list) # Define function to compare major axis azimuths def azimuth_match(target, candidate, azimuth_tolerance): if azimuth_tolerance: target_azimuth = major_axis_azimuth(target) candidate_azimuth = major_axis_azimuth(candidate) azimuth_difference_ = azimuth_difference(target_azimuth, candidate_azimuth, directional=False) if azimuth_difference_ <= azimuth_tolerance: return True else: return False else: return True # Examine each candidate's relationship to the target feature for candidate in candidates.itertuples(): # Only analyze candidates with length if candidate.geometry.length > 0: # Initialize default match values m_type = None h_tm = None t_prop = None t_seg = None t_linref = None h_mt = None m_prop = None m_seg = None m_linref = None # 1:1 if ( (candidate.h_tm <= distance_tolerance) and (candidate.h_mt <= distance_tolerance) and # Check that azimuth is acceptable azimuth_match(target, candidate.geometry, azimuth_tolerance) and # Check relative length (abs(candidate.geometry.length - target.length) < (1- length_tolerance) * target.length)): # Whole target matches candidate h_tm = candidate.h_tm t_prop = 1 t_seg = target t_linref = (0, target.length) # Whole candidate matches target h_mt = candidate.h_mt m_prop = 1 m_seg = candidate.geometry m_linref = (0, candidate.geometry.length) m_type = '1:1' # m:1 elif ( (candidate.h_tm <= distance_tolerance) and (candidate.h_mt > distance_tolerance)): # Find the candidate segment matching the target candidate_seg = find_parallel_segment(target, candidate.geometry) if (candidate_seg and candidate_seg.length > 0 and azimuth_match(target, candidate_seg, azimuth_tolerance) and # Check relative length (abs(candidate_seg.length - target.length) < (1- length_tolerance) * target.length)): # Whole target matches candidate h_tm = directed_hausdorff(target, candidate_seg) t_prop = 1 t_seg = target t_linref = (0, target.length) # Calculate proportion of candidate included in segment h_mt = directed_hausdorff(candidate_seg, target) m_prop = candidate_seg.length / candidate.geometry.length m_seg = candidate_seg m_linref = segment_linear_reference(candidate.geometry, candidate_seg) m_type = 'm:1' # 1:n elif ( (candidate.h_tm > distance_tolerance) and (candidate.h_mt <= distance_tolerance)): # Find the target segment matching the candidate target_seg = find_parallel_segment( candidate.geometry, target, snap_distance=distance_tolerance) if (target_seg and target_seg.length > 0 and azimuth_match(target_seg, candidate.geometry, azimuth_tolerance) and # Check relative length (abs(candidate.geometry.length - target_seg.length) < (1- length_tolerance) * target_seg.length)): # Calculate proportion of target included in segment h_tm = directed_hausdorff(target_seg, candidate.geometry) t_prop = target_seg.length / target.length t_seg = target_seg t_linref = segment_linear_reference(target, target_seg) # Whole candidate matches target h_mt = directed_hausdorff(candidate.geometry, target_seg) m_prop = 1 m_seg = candidate.geometry m_linref = (0, candidate.geometry.length) m_type = '1:n' # potential m:n elif ( (candidate.h_tm > distance_tolerance) and (candidate.h_mt > distance_tolerance)): # See if parallel segments can be identified target_seg = find_parallel_segment( candidate.geometry, target, snap_distance=distance_tolerance) candidate_seg = find_parallel_segment( target, candidate.geometry) # Measure hausdorff distance (non-directed) between parallel segments if target_seg and candidate_seg: h_tm_seg = directed_hausdorff(target_seg, candidate_seg) h_mt_seg = directed_hausdorff(candidate_seg, target_seg) if ((h_tm_seg <= distance_tolerance) and (h_mt_seg <= distance_tolerance) and target_seg.length > 0 and candidate_seg.length > 0 and azimuth_match(target_seg, candidate_seg, azimuth_tolerance) and # Check relative length (abs(candidate_seg.length - target_seg.length) < (1- length_tolerance) * target_seg.length)): h_tm = h_tm_seg t_prop = target_seg.length / target.length t_seg = target_seg t_linref = segment_linear_reference(target, target_seg) h_mt = h_mt_seg m_prop = candidate_seg.length / candidate.geometry.length m_seg = candidate_seg m_linref = segment_linear_reference(candidate.geometry, candidate_seg) m_type = 'm:n' if t_prop is not None: m_ids.append(candidate.index) m_types.append(m_type) h_tms.append(h_tm) t_props.append(t_prop) t_segs.append(t_seg) t_linrefs.append(t_linref) h_mts.append(h_mt) m_props.append(m_prop) m_segs.append(m_seg) m_linrefs.append(m_linref) # Record match stats match_indices.append(m_ids) match_types.append(m_types) h_tms_matches.append(h_tms) t_props_matches.append(t_props) t_segs_matches.append(t_segs) t_linrefs_matches.append(t_linrefs) h_mts_matches.append(h_mts) m_props_matches.append(m_props) m_segs_matches.append(m_segs) m_linrefs_matches.append(m_linrefs) # Construct match vector if isinstance(match_vectors, list): vectors = [] for t_seg, m_seg in zip(t_segs_matches, m_segs_matches): if t_seg and m_seg: vectors.append(LineString([midpoint(t_seg), midpoint(m_seg)])) match_vectors.append(vectors) # Report status if verbose: if counter % round(length / 10) == 0 and counter > 0: percent_complete = (counter // round(length / 10)) * 10 minutes = (time()-start) / 60 print('{}% ({} segments) complete after {:04.2f} minutes'.format(percent_complete, counter, minutes)) counter += 1 # Merge joined data with target features operating_target_features['match_index'] = pd.Series( match_indices, index=operating_target_features.index) operating_target_features['match_type'] = pd.Series( match_types, index=operating_target_features.index) operating_target_features['h_tm'] = pd.Series( h_tms_matches, index=operating_target_features.index) operating_target_features['t_prop'] = pd.Series( t_props_matches, index=operating_target_features.index) operating_target_features['t_seg'] = pd.Series( t_segs_matches, index=operating_target_features.index) operating_target_features['t_linref'] = pd.Series( t_linrefs_matches, index=operating_target_features.index) operating_target_features['h_mt'] = pd.Series( h_mts_matches, index=operating_target_features.index) operating_target_features['m_prop'] = pd.Series( m_props_matches, index=operating_target_features.index) operating_target_features['m_seg'] = pd.Series( m_segs_matches, index=operating_target_features.index) operating_target_features['m_linref'] = pd.Series( m_linrefs_matches, index=operating_target_features.index) if isinstance(match_vectors, list): operating_target_features['match_vectors'] = pd.Series( match_vectors, index=operating_target_features.index) # Store original target feature IDs operating_target_features = operating_target_features.reset_index().rename(columns={'index': 'target_index'}) # Expand targets with more than one match # Look for lists of match IDs in each row expanded_targets = [] for i, target in enumerate(operating_target_features.itertuples()): if isinstance(target.match_index, list): # Make duplicate rows for each match ID with respective attributes for j, match in enumerate(target.match_index): new_row = target._asdict() new_row.pop('Index', None) for key, value in target._asdict().items(): if isinstance(value, list): new_row[key] = value[j] # Append new row to end of dataframe operating_target_features = operating_target_features.append(new_row, ignore_index=True) # Mark original row for deletion expanded_targets.append(i) # Delete expanded targets operating_target_features = operating_target_features.drop(expanded_targets) # Only analyze matches if there are any if len(operating_target_features) > 0: # Identify and add records for unmatched portions of target features # Get target records that have unmatched portions unmatched_segments = operating_target_features.copy() unmatched_segments = unmatched_segments[ (unmatched_segments['t_prop'].notnull()) & (unmatched_segments['t_prop'] < 1)] new_target_records = [] # Iterate through groups of target records for target_index, target_group in unmatched_segments.groupby('target_index'): # Get the linref intervals associated with each of the matched segments matched_linrefs = target_group['t_linref'].tolist() # Combine the intervals matched_linrefs_merged = merge_intervals(matched_linrefs) # Get the original target geometry orig_target_geometry = target_group.iloc[0]['geometry'] # Construct linref intervals for the unmatched parts geometry_extents = [0, orig_target_geometry.length] matched_linrefs_list = [linref for tup in matched_linrefs_merged for linref in tup] all_linrefs_list = sorted(geometry_extents + matched_linrefs_list) unmatched_linrefs = [ (all_linrefs_list[i], all_linrefs_list[i + 1]) for i in range(0, len(all_linrefs_list), 2)] unmatched_lines = [ split_line_at_dists(orig_target_geometry, pair)[1] for pair in unmatched_linrefs] # For each unmatched line, make a new target record for unmatched_line, unmatched_linref in zip(unmatched_lines, unmatched_linrefs): if unmatched_line.length > 1: # Get all the attributes associated with the original target record new_target_record = target_group.iloc[0].to_dict() # Modify the match attributes new_target_record['match_index'] = np.nan new_target_record['match_type'] = np.nan new_target_record['h_tm'] = np.nan new_target_record['t_prop'] = np.nan new_target_record['t_seg'] = unmatched_line new_target_record['t_linref'] = unmatched_linref new_target_record['h_mt'] = np.nan new_target_record['m_prop'] = np.nan new_target_record['m_seg'] = np.nan new_target_record['m_linref'] = np.nan new_target_record['geometry'] = orig_target_geometry new_target_records.append(new_target_record) # Add new target records to operating features new_target_records = gpd.GeoDataFrame(new_target_records, geometry='geometry') operating_target_features = pd.concat([operating_target_features, new_target_records]) # Replace target geometries with target segments (if not NaN) ##### This appears to be duplicated below; not sure if it needs to happen twice operating_target_features['geometry'] = operating_target_features.apply( lambda row: row['t_seg'] if isinstance(row['t_seg'], LineString) else row['geometry'], axis=1) # For each unique target geometry, delete all matches except the closest one # (expanded targets are deleted if they don't have the closest match) # Required if 'closest_target' if closest_match or closest_target: # Identify sets of records with identical targets equivalent_target_sets = [d for _, d in operating_target_features.groupby( ['target_index','t_linref']) if len(d) > 1] # Identify which of these records has the closest match equivalent_record_ids = [] closest_records = gpd.GeoDataFrame(crs=operating_target_features.crs) for equivalent_target_set in equivalent_target_sets: # Keep track of IDs for equivalent records equivalent_record_ids.extend(equivalent_target_set.index.tolist()) # Identify minimum tc and ct distances and associated indices h_tm_min_idx = equivalent_target_set['h_tm'].astype(float).idxmin() h_tm_min = equivalent_target_set['h_tm'].astype(float).min() h_mt_min_idx = equivalent_target_set['h_mt'].astype(float).idxmin() h_mt_min = equivalent_target_set['h_mt'].astype(float).min() # Identify overall closest match min_idx = h_tm_min_idx if h_tm_min < h_mt_min else h_mt_min_idx closest_records = closest_records.append( operating_target_features.loc[[min_idx]], ignore_index=True) # Drop equivalent records operating_target_features = operating_target_features.drop( equivalent_record_ids) # Add back those with the closest match operating_target_features = operating_target_features.append( closest_records, ignore_index=True) # Ensure that each match feature is only matched to one, closest target feature # (No targets are deleted, but matches are removed if a given target isn't closest) if closest_target: # Identify sets of records with the same match id match_id_sets = [d for _, d in operating_target_features.groupby( 'match_index') if len(d) > 1] # Within these sets, identify sets with overlapping linear references for match_id_set in match_id_sets: # Get ID for match feature match_id = match_id_set.iloc[0]['match_index'] # Get raw geometry for match feature match_geom = match_features.loc[match_id]['geometry'] # Find overlapping linear reference ranges among the original matches lin_ref_ranges = merge_intervals(match_id_set['m_linref'].tolist()) # Identify sets of records within each range lin_ref_sets = [match_id_set[match_id_set['m_linref'].apply( lambda x: True if (x[0] >= lower and x[1] <= upper) else False)] for lower, upper in lin_ref_ranges] # Analyze each set of targets with overlapping matches for lin_ref_set, lin_ref_range in zip(lin_ref_sets, lin_ref_ranges): # Get the portion of the raw match feature within the linear reference range _, range_match_geom, _ = split_line_at_dists(match_geom, lin_ref_range) # Split the linear reference feature into segments parallel to match features t_seg_endpoints = [x for t_seg in lin_ref_set['t_seg'] for x in endpoints(t_seg)] t_seg_endpoint_lin_refs = [range_match_geom.project(x) for x in t_seg_endpoints] range_match_segments = split_line_at_dists(range_match_geom, t_seg_endpoint_lin_refs) # For each segment, see which target feature is closest based on hausdorff distance closest_targets = [ nearest_neighbor( segment, GeoDataFrame(geometry=lin_ref_set['t_seg']), hausdorff_distance=True ).index[0] for segment in range_match_segments] # Group adjacent segments with the same target groups = [list(group) for _, group in itertools.groupby( zip(closest_targets, range_match_segments), key=lambda x: x[0])] closest_targets = [group[0][0] for group in groups] match_segments = [[x[1] for x in group] for group in groups] match_segments = [sh.ops.linemerge(x) for x in match_segments] # Only move forward if there are match LineString match segments to work with if LineString in [type(x) for x in match_segments]: # Remove any non-LineString geometries (e.g., GeometryCollection) try: match_segments, closest_targets = zip( *[(segment, idx) for segment, idx in zip(match_segments, closest_targets) if isinstance(segment, LineString)]) except: match_segment_types = [type(x) for x in match_segments] closest_target_types = [type(x) for x in closest_targets] print('match segments: {}, {}'.format(str(match_segment_types), str(match_segments))) print('closest_targets: {}, {}'.format(str(closest_target_types), str(closest_targets))) # Calculate the match prop and lin_ref bounds for the grouped match segments match_props = [x.length/match_geom.length for x in match_segments] match_lin_refs = [tuple([match_geom.project(point) for point in endpoints(segment)]) for segment in match_segments] # Update match info for the chosen target for idx, match_prop, match_segment, match_lin_ref in zip( closest_targets, match_props, match_segments, match_lin_refs): # lin_ref_set.at[idx, 'match_index'] = match_id lin_ref_set.at[idx, 'm_prop'] = match_prop lin_ref_set.at[idx, 'm_seg'] = match_segment lin_ref_set.at[idx, 'm_linref'] = match_lin_ref lin_ref_set.at[idx, 'h_tm'] = directed_hausdorff( lin_ref_set.at[idx, 't_seg'], match_segment) lin_ref_set.at[idx, 'h_mt'] = directed_hausdorff( match_segment, lin_ref_set.at[idx, 't_seg']) # Remove match info for other targets in set not_closest_targets = [x for x in lin_ref_set.index if x not in closest_targets] for idx in not_closest_targets: lin_ref_set.at[idx, 't_prop'] = np.nan # lin_ref_set.at[lin_ref_set_idx, 't_seg'] = np.nan ########### Maybe don't get rid of the t_seg? lin_ref_set.at[idx, 't_linref'] = np.nan lin_ref_set.at[idx, 'm_prop'] = np.nan lin_ref_set.at[idx, 'm_seg'] = np.nan lin_ref_set.at[idx, 'm_linref'] = np.nan lin_ref_set.at[idx, 'h_tm'] = np.nan lin_ref_set.at[idx, 'h_mt'] = np.nan lin_ref_set.at[idx, 'match_index'] = np.nan # Remove original lin_ref_set rows from the operating_target_features operating_target_features = operating_target_features.drop(lin_ref_set.index) # Append rows from lin_ref_set back onto operating_target_features operating_target_features = operating_target_features.append(lin_ref_set) # Gather values from fields of match features if match_fields and isinstance(match_fields, bool): match_fields = match_features.columns.tolist() match_fields.remove('geometry') elif isinstance(match_fields, list): match_fields = match_fields else: match_fields = [] if match_strings and (match_strings[1] not in match_fields): match_fields.append(match_strings[1]) # Join fields for matches operating_target_features = operating_target_features.merge( match_features[match_fields], how='left', left_on='match_index', right_index=True) # Join operating target features back onto all target features target_features = target_features.merge( operating_target_features.drop(columns=['geometry']), how='outer', left_index=True, right_on='target_index', suffixes=field_suffixes) # Sort by original index target_features = target_features.sort_values(['target_index']) # Convert empty lists to NaN target_features = target_features.applymap( lambda x: np.nan if x == [] else x) # Convert single-element lists to their sole elements target_features = target_features.applymap( lambda x: x[0] if (isinstance(x, list) and len(x) == 1) else x) # Calculate string matches, if specified if match_strings: def fuzzy_score(row, col_a, col_b): a = row[col_a] b = row[col_b] def standardize_and_score(a, b): a = standardize_streetname(str(a)) b = standardize_streetname(str(b)) return (fuzz.token_set_ratio(a, b) / 100) # Inputs could be lists, so make them lists if they aren't a_list = listify(a) b_list = listify(b) # Get fuzzy scores for each string combination scores = [] for a in a_list: for b in b_list: if (pd.notnull(a) and pd.notnull(b)): scores.append(standardize_and_score(a, b)) if len(scores) > 0: return scores else: return np.nan target_string, match_string = match_strings if match_string in original_target_feature_columns: target_string = target_string + field_suffixes[0] match_string = match_string + field_suffixes[1] target_features['match_strings'] = target_features.apply( fuzzy_score, args=(target_string, match_string), axis=1) # Replace geometry with t_seg if there is one available target_features['geometry'] = target_features.apply( lambda row: row['t_seg'] if isinstance(row['t_seg'], LineString) else row['geometry'], axis=1) # Drop stats columns if not specifically requested if not match_stats: target_features = target_features.drop( columns=['h_tm','t_prop','t_seg','t_linref','h_mt','m_prop','m_seg','m_linref']) # Move target index to front target_features = df_first_column(target_features, 'target_index') # Move the geometry column to the end target_features = df_last_column(target_features, 'geometry') # Reset the index target_features = target_features.reset_index(drop=True) # Ensure that crs is the same as original target_features.crs = original_crs # Report done if verbose: print('100% ({} segments) complete after {:04.2f} minutes'.format(counter, (time()-start) / 60)) return target_features
d9c08e8e156a525495a03e5e9d6881c33ecdf0a2
3,654,824
import os from typing import Callable import stat import shutil def git_rmtree(path: os.PathLike) -> None: """Remove the given recursively. :note: we use shutil rmtree but adjust its behaviour to see whether files that couldn't be deleted are read-only. Windows will not remove them in that case""" def onerror(func: Callable, path: os.PathLike, _) -> None: # Is the error an access error ? os.chmod(path, stat.S_IWUSR) try: func(path) # Will scream if still not possible to delete. except Exception: raise return shutil.rmtree(path, False, onerror)
25471f9f791ef091106915cec2f5e16bf91b067c
3,654,825
def get_num_streams(): """Force an offset so high that the payload is small and quick. In it, there will be a total number to base our reverse search from""" result = get_streams() logger.debug(result) if "error" in result: raise Exception("error in request: " + str(result)) total = int(result.get('_total', 0)) logger.info("Total live streams: %d", total) return total
bae59352d4962b0916e8cf09215ea108fb3e8948
3,654,826
import os def compute_corr_active(params): """ Compute correlation only for active positions, i.e. where at least one of the two signal tracks is non-zero :param params: :return: """ with pd.HDFStore(params['inputfilea'], 'r') as hdf: load_group = os.path.join(params['inputgroupa'], params['chrom']) data = hdf[load_group].values dataset1 = np.ma.masked_where(data > 0, data) with pd.HDFStore(params['inputfileb'], 'r') as hdf: load_group = os.path.join(params['inputgroupb'], params['chrom']) data = hdf[load_group].values dataset2 = np.ma.masked_where(data > 0, data) comb_mask = np.ma.getmask(dataset1) & np.ma.getmask(dataset2) dataset1 = np.ma.array(dataset1.data, mask=comb_mask) dataset2 = np.ma.array(dataset2.data, mask=comb_mask) results = dict() for ms in params['measure']: corr_fun = get_corr_fun(params[ms], masked=True) res = corr_fun(dataset1, dataset2) try: corr, pv = res except (ValueError, TypeError): corr, pv = res, -1 infos = {'stat': corr, 'pv': pv.data} results[ms] = infos return params['chrom'], results
4d26eaab548aa02521c2cb0341e93803315e46bf
3,654,827
def create_anchors_3d_stride(grid_size, voxel_size=[0.16, 0.16, 0.5], coordinates_offsets=[0, -19.84, -2.5], dtype=np.float32): """ Args: feature_size: list [D, H, W](zyx) sizes: [N, 3] list of list or array, size of anchors, xyz Returns: anchors: [*feature_size, num_sizes, num_rots, 7] tensor. """ # almost 2x faster than v1 x_stride, y_stride, z_stride = voxel_size x_offset, y_offset, z_offset = coordinates_offsets x_centers = np.arange(grid_size[0], dtype=dtype) y_centers = np.arange(grid_size[1], dtype=dtype) z_centers = np.arange(grid_size[2], dtype=dtype) z_centers = z_centers * z_stride + z_offset + 0.25 y_centers = y_centers * y_stride + y_offset + 0.08 x_centers = x_centers * x_stride + x_offset + 0.08 xx, yy, zz = np.meshgrid(x_centers, y_centers, z_centers) sizes = np.stack((xx, yy , zz), axis=-1) sizes = np.reshape(sizes, [-1,3]) return sizes
129e54a855bbacb2026eb08b5741ab70dd0374f4
3,654,828
def combined_roidb(imdb_names): """ Combine multiple roidbs """ def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) imdb.set_proposal_method("gt") print('Set proposal method: {:s}'.format("gt")) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = imdb2(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) return imdb, roidb
4660a6ffff11511c449629c9fdb7f5d566a886f9
3,654,829
from re import A def render_locations_profile(list_id, item_id, resource, rfields, record): """ Custom dataList item renderer for Locations on the Profile Page - UNUSED @param list_id: the HTML ID of the list @param item_id: the HTML ID of the item @param resource: the S3Resource to render @param rfields: the S3ResourceFields to render @param record: the record as dict """ record_id = record["gis_location.id"] item_class = "thumbnail" raw = record._row name = record["gis_location.name"] location_url = URL(c="gis", f="location", args=[record_id, "profile"]) # Placeholder to maintain style #logo = DIV(IMG(_class="media-object"), # _class="pull-left") # We don't Edit Locations # Edit Bar # permit = current.auth.s3_has_permission # table = current.db.gis_location # if permit("update", table, record_id=record_id): # vars = {"refresh": list_id, # "record": record_id, # } # f = current.request.function # if f == "organisation" and organisation_id: # vars["(organisation)"] = organisation_id # edit_btn = A(I(" ", _class="icon icon-edit"), # _href=URL(c="gis", f="location", # args=[record_id, "update.popup"], # vars=vars), # _class="s3_modal", # _title=current.response.s3.crud_strings.gis_location.title_update, # ) # else: # edit_btn = "" # if permit("delete", table, record_id=record_id): # delete_btn = A(I(" ", _class="icon icon-trash"), # _class="dl-item-delete", # ) # else: # delete_btn = "" # edit_bar = DIV(edit_btn, # delete_btn, # _class="edit-bar fright", # ) # Render the item item = DIV(DIV(DIV(#SPAN(A(name, # _href=location_url, # ), # _class="location-title"), #" ", #edit_bar, P(A(name, _href=location_url, ), _class="card_comments"), _class="span5"), # card-details _class="row", ), ) return item
dbec0b41b16fa48996a735372bfb001b386c7300
3,654,830
import larch import sys def enable_plugins(): """add all available Larch plugin paths """ if 'larch_plugins' not in sys.modules: sys.modules['larch_plugins'] = larch return sys.modules['larch_plugins']
a58100359d749d876976e8bb13b6766edf6ea8b3
3,654,831
def exception_log_and_respond(exception, logger, message, status_code): """Log an error and send jsonified respond.""" logger.error(message, exc_info=True) return make_response( message, status_code, dict(exception_type=type(exception).__name__, exception_message=str(exception)), )
c784efd4b8adbbc463ff1d2a499ffd598253349d
3,654,832
import re def parse_cdhit_clusters(cluster_file): """ Parses cdhit output into three collections in a named tuple: clusters: list of lists of gene ids. reps: list of representative gene for each cluster lookup: dict mapping from gene names to cluster index In this setup, cluster ids are the position in either of the first two lists. """ # re-call with file-like object if we are give an path if isinstance(cluster_file, str): with open(cluster_file) as cluster_handle: return parse_cdhit_clusters(cluster_handle) # initialize final containers clusters = [] cluster_reps = [] cluster_lookup = {} # expression for parsing cluster line (captures gene name and alignment) gene_expr = re.compile(r"\s>(\S+)\.\.\.\s\s*(.+)\s*$") # loop over lines for line in cluster_file: if line.startswith(">"): # create a new cluster cluster = [] cluster_id = len(clusters) clusters.append(cluster) continue # parse gene name from line gene, alignment = gene_expr.search(line).groups() if alignment.strip() == "*": cluster_reps.append(gene) cluster_lookup[gene] = cluster_id cluster.append(gene) # done return CdhitClusters(clusters, cluster_reps, cluster_lookup)
fe0634c1991f0bd687f8be675ff15cb3290c919c
3,654,833
import torch def evaluate(model: nn.Module, dataloader: DataLoader) -> Scores: """ Evaluate a model without gradient calculation :param model: instance of a model :param dataloader: dataloader to evaluate the model on :return: tuple of (accuracy, loss) values """ score = 0 loss = 0 loss_func = nn.LogSoftmax(dim=1).to("cuda") for i, x in enumerate(dataloader): img = x[0] ans = x[1] ques = x[2] if torch.cuda.is_available(): img = img.cuda() ans = ans.cuda() ques = ques.cuda() y_hat = model((img, ques)) img = None ques = None nll = -loss_func(y_hat) score += train_utils.batch_accuracy(y_hat, ans.data).sum() ans = answer_norm(ans) loss += (nll * ans).sum(dim=1).mean() loss /= len(dataloader.dataset) score /= len(dataloader.dataset) score *= 100 print("val loss = ", loss) return score, loss
f23fbd72a24122b3a665f29918c52bbd5515d204
3,654,834
from operator import and_ def remote_judge_get_problem_info(problem_id: str, contest_id: int = -1, contest_problem_id: int = -1): """ { "code":0, "data":{ "isContest":"是否在比赛中", "problemData":{ "title":"题目名", "content":"题目内容", "background":"题目背景", "inputFormat":"输入格式", "outputFormat":'输出格式', "examples":[{"input":"样例输入","output":"样例输出"}], "createTime":"创建时间", "uploaderProfile":{ "uid":"用户ID", "username":"用户名" }, "remoteProblemID":"远程题目ID", "remoteOJ":{ "id":"远程OJID", "display":"远程OJ显示名", "availableLanguages":[ {"id":"0","display":"C++"} ] }, "public":"是否公开", "hint":"提示", "recentDiscussions":[ { "id":123, "title":"qw" } ], "acceptedCount":"", "submissionCount":"" }, "userData":{ "lastCode":"上次提交的代码", "lastLanguage":"上次选择的语言", "status":"qwq", "id":"", "accounts":{ "id":{ "username":"用户名", "oj":"OJ", "accountID":"ID" } } } } } """ # in_contest = contest_id != -1 contest: Contest = Contest.by_id(contest_id) if contest: # pass if not contest.running() and not permission_manager.has_permission(session.get("uid"), "contest.manage"): return make_response(-1, message="你没有权限查看此题目") print(contest_problem_id,"contest_problem_id") problem: Problem = db.session.query(Problem).filter( Problem.id == contest.problems[contest_problem_id]["id"]).one_or_none() else: problem: Problem = db.session.query(Problem).filter( Problem.id == problem_id).one_or_none() if not permission_manager.has_permission(session.get("uid"), "remote_judge.use") and problem.uploader_id != int(session.get("uid")): return make_response(-1, message="你没有权限查看该题目") if not problem: return make_response(-1, message="未知题目ID") if problem.problem_type != "remote_judge": return make_response(-1, message="此题目非远程评测题目") uploader: User = db.session.query(User.id, User.username).filter( User.id == problem.uploader_id).one() last_submission: Submission = db.session.query(Submission).filter(and_( Submission.problem_id == problem.id, Submission.uid == session.get("uid") )).order_by(Submission.score.desc()).order_by(Submission.id.desc()) last_code, last_language, submission_id, status = "", next(iter( config.REMOTE_JUDGE_OJS[problem.remote_judge_oj]["availableLanguages"].keys())), -1, None if last_submission.count(): last_submission = last_submission.first() last_code = last_submission.code last_language = last_submission.language status = last_submission.status submission_id = last_submission.id discussions = [ ] discussions_query = db.session.query(Discussion.id, Discussion.title).filter( Discussion.path == f"discussion.problem.{problem.id}").order_by(Discussion.id.desc()).limit(5) for item in discussions_query: discussions.append({ "id": item.id, "title": item.title }) accounts = {} for item in db.session.query(RemoteAccount.account_id, RemoteAccount.username, RemoteAccount.oj).filter( and_( RemoteAccount.uid == session.get("uid", -1), RemoteAccount.oj == problem.remote_judge_oj ) ): accounts[item.account_id] = { "username": item.username, "oj": config.REMOTE_JUDGE_OJS[item.oj]["display"], "accountID": item.account_id } return make_response(0, data={ "isContest": contest is not None, "problemData": { "title": problem.title, "content": problem.content, "background": problem.background, "inputFormat": problem.input_format, "outputFormat": problem.output_format, "examples": problem.example, "createTime": problem.create_time, "uploaderProfile": { "uid": uploader.id, "username": uploader.username } if not contest else None, "remoteProblemID": problem.remote_problem_id if not contest else None, "remoteOJ": { "id": problem.remote_judge_oj, **config.REMOTE_JUDGE_OJS[problem.remote_judge_oj] }, "public": problem.public if not contest else None, "hint": problem.hint, "recentDiscussions": discussions if not contest else None, "acceptedCount": db.session.query(Submission).filter(Submission.problem_id == problem.id).filter(Submission.status == "accepted").count() if not contest else None, "submissionCount": db.session.query(Submission).filter(Submission.problem_id == problem.id).count() if not contest else None, "id": problem.id }, "userData": { "lastCode": last_code, "lastLanguage": last_language, "status": status, "id": submission_id, "managable": permission_manager.has_permission( session.get("uid", None), "problem.manage"), "accounts": accounts } })
aa7f8100bc7516659cf535e0fa7222b6f7b1a065
3,654,835
def can_write(obj, user): """ Takes article or related to article model. Check if user can write article. """ return obj.can_write(user)
9cb7cc046b63fb82670c4667abe169d6a1a279e4
3,654,836
def create_external_question(url: str, height: int) -> str: """Create XML for an MTurk ExternalQuestion.""" return unparse({ 'ExternalQuestion': { '@xmlns': 'http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2006-07-14/ExternalQuestion.xsd', 'ExternalURL': url, 'FrameHeight': height } }, full_document=False)
d249e82225ab2c1546bd871c166e9b683622a15d
3,654,837
def credentials_batch_account_key_secret_id(config): # type: (dict) -> str """Get Batch account key KeyVault Secret Id :param dict config: configuration object :rtype: str :return: keyvault secret id """ try: secid = config[ 'credentials']['batch']['account_key_keyvault_secret_id'] if util.is_none_or_empty(secid): raise KeyError() except KeyError: return None return secid
4e7cfb100c2d50ef13d47295ff0b5bb0e3351986
3,654,838
import re def is_C2D(lname): """ """ pattns = ['Conv2D'] return any([bool(re.match(t,lname)) for t in pattns])
a12bfd9857543e568148659f782615b3f2de4b83
3,654,839
def encounter_media(instance, filename): """Return an upload file path for an encounter media attachment.""" if not instance.encounter.id: instance.encounter.save() return 'encounter/{0}/{1}'.format(instance.encounter.source_id, filename)
79e4d8fae1d41edf362e99e6da11442a71565aa0
3,654,840
def findFonts(pattern, lazy=True): """Answers a list of Font instances where the pattern fits the font path. If pattern is a list, all parts should have a match. # TODO: make case insensitive """ """ >>> findFonts('Roboto-Thi') [<Font Roboto-Thin>, <Font Roboto-ThinItalic>] >>> # Select on family and name parts. >>> findFonts(('Robo', 'Ita', 'Thi')) [<Font Roboto-ThinItalic>] >>> # Select on style parts only. >>> findFonts(('Ita', 'Bol', 'Con')) [<Font RobotoCondensed-BoldItalic>] """ fontPaths = getFontPaths() fonts = [] if not isinstance(pattern, (list, tuple)): pattern = [pattern] for fontPath in fontPaths: found = True for match in pattern: if not match in fontPath: found = False break if found: fonts.append(findFont(fontPath, lazy=lazy)) return fonts
dd5d0a9818292c1dadfc77f8b834b348e55ae777
3,654,841
from datetime import datetime def time_range_cutter_at_time(local,time_range,time_cut=(0,0,0)): """ Given a range, return a list of DateTimes that match the time_cut between start and end. :param local: if False [default] use UTC datetime. If True use localtz :param time_range: the TimeRange object :param time_cut: HH:MM:SS of when to cut. eg: (0,0,0) for midnight """ ( start, end ) = time_range.get(local) index = start.replace( hour=time_cut[0], minute=time_cut[1], second=time_cut[2] ) cuts = [] index += datetime.timedelta(days=1) while index < end: cuts.append(index) index += datetime.timedelta(days=1) if local: index = time_range.normalize(index) return cuts
57e851fb5b6ae8873dde5719dec668c25561f687
3,654,842
def _darknet_conv( x: np.ndarray, filters: int, size: int, strides: int = 1, batch_norm: bool = True ) -> tf.Tensor: """create 1 layer with [padding], conv2d, [bn and relu]""" if strides == 1: padding = "same" else: x = ZeroPadding2D(((1, 0), (1, 0)))(x) # top left half-padding padding = "valid" x = Conv2D( filters=filters, kernel_size=size, strides=strides, padding=padding, use_bias=not batch_norm, kernel_regularizer=l2(0.0005), )(x) if batch_norm: x = BatchNormalization()(x) x = LeakyReLU(alpha=0.1)(x) return x
f58153aa0c8af8df93289b872309f1c907941848
3,654,843
def _build_topic_to_consumer_topic_state_map(watermarks): """Builds a topic_to_consumer_topic_state_map from a kafka get_topics_watermarks response""" return { topic: ConsumerTopicState({ partition: int((marks.highmark + marks.lowmark) / 2) for partition, marks in watermarks_map.items() }, None) for topic, watermarks_map in watermarks.items() }
78ef0710e4823031ad079313484dba0eacc37135
3,654,844
from typing import Optional def elgamal_keypair_from_secret(a: ElementModQ) -> Optional[ElGamalKeyPair]: """ Given an ElGamal secret key (typically, a random number in [2,Q)), returns an ElGamal keypair, consisting of the given secret key a and public key g^a. """ secret_key_int = a if secret_key_int < 2: log_error("ElGamal secret key needs to be in [2,Q).") return None return ElGamalKeyPair(a, g_pow_p(a))
35de350b6bb434e1bb3d2c52d90f9a96be72dc1f
3,654,845
def current_default_thread_limiter(): """Get the default `~trio.CapacityLimiter` used by `trio.to_thread.run_sync`. The most common reason to call this would be if you want to modify its :attr:`~trio.CapacityLimiter.total_tokens` attribute. """ try: limiter = _limiter_local.get() except LookupError: limiter = CapacityLimiter(DEFAULT_LIMIT) _limiter_local.set(limiter) return limiter
7abec5d74b9cfdaa663fd432587ea19440b7132f
3,654,846
import copy def _mask_board(board): """ A function that copies the inputted board replaces all ships with empty coordinates to mask them. :param board: a 2D numpy array containing a string representation of the board. All ships should be visible. :return: a 2D numpy array containing a string representation of the board, with all ships hidden. """ masked = copy.deepcopy(board) # copy operation for (y, x), val in np.ndenumerate(board): if val.isdigit(): masked[y][x] = '' return masked
c6832c90ac96d61563e37482773abf627d92a05a
3,654,847
from sys import stdout def query_yes_no(question, default="no", color=_constants.COLORS.RESET): """Ask a yes/no question via raw_input() and return their answer. "question" is a string that is presented to the user. "default" is the presumed answer if the user just hits <Enter>. It must be "yes" (the default), "no" or None (meaning an answer is required of the user). The "answer" return value is True for "yes" or False for "no". """ valid = {"yes": True, "y": True, "ye": True, "no": False, "n": False} if default is None: prompt = " [y/n] " elif default == "yes": prompt = " [Y/n] " elif default == "no": prompt = " [y/N] " else: raise ValueError("invalid default answer: '%s'" % default) while True: stdout.write(color + question + COLORS.RESET + prompt) choice = input().lower() if default is not None and choice == '': return valid[default] elif choice in valid: return valid[choice] else: stdout.write("Please respond with 'yes' or 'no' (or 'y' or 'n').\n")
eee02b61b3ba9ffdded0ba8c50c6bdd8e52d3c00
3,654,848
def remove_head_id(ref, hyp): """Assumes that the ID is the begin token of the string which is common in Kaldi but not in Sphinx.""" ref_id = ref[0] hyp_id = hyp[0] if ref_id != hyp_id: print('Reference and hypothesis IDs do not match! ' 'ref="{}" hyp="{}"\n' 'File lines in hyp file should match those in the ref file.'.format(ref_id, hyp_id)) exit(-1) ref = ref[1:] hyp = hyp[1:] return ref, hyp
210798e8a02f555f70a1d9f2de9ce098dd0669fb
3,654,849
def convert_image_np(inp): """Convert a Tensor to numpy image.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) return inp
446feda40cc6698b5cbc80c3b14fa3212ef2800b
3,654,850
def get_miner_day_list(): """ 存储提供者每天的miner数据 :return: """ miner_no = request.form.get("miner_no") date = request.form.get("date") data = MinerService.get_miner_day_list(miner_no, date) return response_json(data)
4fd523e8855ba498a1d694e532d27c863e7f9407
3,654,851
def get_notebook_logs(experiment_id, operator_id): """ Get logs from a Experiment notebook. Parameters ---------- experiment_id : str operator_id : str Returns ------- dict or None Operator's notebook logs. Or None when the notebook file is not found. """ notebook = get_jupyter_notebook(experiment_id, operator_id) if not notebook: return None notebook = notebook["content"] logs = {} for cell in notebook["cells"]: try: metadata = cell["metadata"]["papermill"] if metadata["exception"] and metadata["status"] == "failed": for output in cell["outputs"]: if output["output_type"] == "error": error_log = output["traceback"] traceback = remove_ansi_escapes(error_log) logs = {"exception": output["ename"], "traceback": traceback} except KeyError: pass return logs
d98865cdbca25839bb6010ab5e726fd35d162ada
3,654,852
from typing import Callable def modify_env2( function: Callable[[_UpdatedType], _SecondType], ) -> Kinded[Callable[ [Kind2[_Reader2Kind, _FirstType, _SecondType]], Kind2[_Reader2Kind, _FirstType, _UpdatedType], ]]: """ Modifies the second type argument of a ``ReaderBased2``. In other words, it modifies the function's signature from: ``a -> b`` to: ``Container[x, a] -> Container[x, b]`` .. code:: python >>> from returns.pointfree import modify_env2 >>> from returns.context import RequiresContext >>> def multiply(arg: int) -> RequiresContext[int, int]: ... return RequiresContext(lambda deps: arg * deps) >>> assert modify_env2(int)(multiply(3))('4') == 12 Note, that this function works with only ``Kind2`` containers with ``.modify_env`` method. See :class:`returns.primitives.interfaces.specific.reader.ReaderBased2` for more info. """ @kinded def factory( container: Kind2[_Reader2Kind, _FirstType, _SecondType], ) -> Kind2[_Reader2Kind, _FirstType, _UpdatedType]: return internal_modify_env2(container, function) return factory
5ed2c5deaaa376e4884f31e3ba08d3b2839cc1a5
3,654,853
def model_trees(z, quantiles, normed=False, dbhfile='c:\\projects\\MLM_Hyde\\Data\\hyde_runkolukusarjat.txt', plot=False, biomass_function='marklund'): """ reads runkolukusarjat from Hyde and creates lad-profiles for pine, spruce and decid. Args: z - grid (m) quantiles - cumulative frequency limits for grouping trees normed - True returns sum(lad*dz) normalized to unity Returns: lad_p, lad_s, lad_d - leaf-area density profiles for model treegroups (m2/m3) n_p, n_s, n_d - trees / ha in model treegroups """ dat = np.loadtxt(dbhfile, skiprows=1) dz = z[1]-z[0] M = len(quantiles) # year 2008 data pine = dat[:, [0, 1]] spruce = dat[:, [0, 2]] decid = dat[:, [0, 3]] # pines h, hb, mleaf, L, a = profiles_hyde(pine, 'pine', z, biomass_function=biomass_function) n = pine[:, 1] c = np.cumsum(n) / np.maximum(sum(n), eps) # relative frequency m = 0.0 lad_p = np.zeros([len(z), M]) n_p = np.zeros(M) lai_p = np.zeros(M) for k in range(M): f = np.where((c > m) & (c <= quantiles[k]))[0] lad_p[:, k] = np.sum(a[:, f], axis=1) n_p[k] = np.sum(n[f]) lai_p[k] = sum(dz*lad_p[:,k]) m = quantiles[k] if normed: lad_p[:, k] = lad_p[:, k] / np.maximum(np.sum(lad_p[:, k] * dz), eps) # spruces h, hb, mleaf, L, a = profiles_hyde(spruce, 'spruce', z, biomass_function=biomass_function) n = spruce[:, 1] c = np.cumsum(n) / np.maximum(sum(n), eps) # relative frequency m = 0.0 lad_s = np.zeros([len(z), M]) n_s = np.zeros(M) lai_s = np.zeros(M) for k in range(M): f = np.where((c > m) & (c <= quantiles[k]))[0] lad_s[:, k] = np.sum(a[:, f], axis=1) n_s[k] = np.sum(n[f]) lai_s[k] = sum(dz*lad_s[:,k]) m = quantiles[k] if normed: lad_s[:, k] = lad_s[:, k] / np.maximum(np.sum(lad_s[:, k] * dz), eps) # decid h, hb, mleaf, L, a = profiles_hyde(decid, 'birch', z, biomass_function=biomass_function) n = decid[:, 1] c = np.cumsum(n) / np.maximum(sum(n), eps) # relative frequency m = 0.0 lad_d = np.zeros([len(z), M]) n_d = np.zeros(M) lai_d = np.zeros(M) for k in range(M): f = np.where((c > m) & (c <= quantiles[k]))[0] lad_d[:, k] = np.sum(a[:, f], axis=1) n_d[k] = np.sum(n[f]) lai_d[k] = sum(dz*lad_d[:,k]) m = quantiles[k] if normed: lad_d[:, k] = lad_d[:, k] / np.maximum(np.sum(lad_d[:, k] * dz), eps) if plot: prop_cycle = plt.rcParams['axes.prop_cycle'] colors = prop_cycle.by_key()['color'] plt.figure(figsize=(2.5,3.5)) for k in range(M): plt.plot(lad_p[:, k],z,color=colors[0], label='pine, %.2f m$^2$m$^{-2}$' % lai_p[k])#,lad_g,z) plt.plot(lad_s[:, k],z,color=colors[1], label='spruce, %.2f m$^2$m$^{-2}$' % lai_s[k]) plt.plot(lad_d[:, k],z,color=colors[2], label='decid, %.2f m$^2$m$^{-2}$' % lai_d[k]) plt.title(" ")#dbhfile.split("/")[-1]) plt.ylabel('height [m]') if normed: plt.xlabel('normalized lad [-]') else: plt.xlabel('lad [m$^2$m$^{-3}$]') plt.tight_layout() return lad_p, lad_s, lad_d, n_p, n_s, n_d, lai_p, lai_s, lai_d
ba3c1ea345031a8b5434e1dd4f005b1c2c1e74ce
3,654,854
def inject_general_timeline(): """This function injects the function object 'Tweet.get_general_timeline' into the application context so that 'get_general_timeline' can be accessed in Jinja2 templates. """ return dict(get_general_timeline=Tweet.get_general_timeline)
56b395da0facda561061c8f63eb3eb26c07f3605
3,654,855
def is_a(file_name): """ Tests whether a given file_name corresponds to a Cosmo Skymed file. Returns a reader instance, if so. Parameters ---------- file_name : str the file_name to check Returns ------- CSKReader|None `CSKReader` instance if Cosmo Skymed file, `None` otherwise """ if h5py is None: return None try: csk_details = CSKDetails(file_name) print('File {} is determined to be a Cosmo Skymed file.'.format(file_name)) return CSKReader(csk_details) except (IOError, KeyError, ValueError): # TODO: what all should we catch? return None
f1292033411236f1e445e36458571e5025996a2b
3,654,856
def get_vaccinated_model(model, area=None): """Get all states that can be vaccinated or recovered (by area). Parameters ---------- model : amici.model Amici model which should be evaluated. areas : list List of area names as strings. Returns ------- states : list List of states that can be vaccinated. """ if area is None: states = [ x for x in model.getStateNames() if not ("vac0" in x) and (("susceptible" in x) or ("infectious" in x)) or ("recovered" in x) ] else: states = [ x for x in model.getStateNames() if ( not ("vac0" in x) and (("susceptible" in x) or ("infectious" in x)) or ("recovered" in x) ) and (area in x) ] return states
c03a9d048abb08561463b1975ffec663f24267b3
3,654,857
from datetime import datetime def MicrosecondsToDatetime(microseconds): """Returns a datetime given the number of microseconds, or None.""" if microseconds: return datetime.utcfromtimestamp(float(microseconds) / 1000000) return None
69fd3dc3b8d1a97e7a64037cabe988365b2c6e63
3,654,858
import subprocess def update() -> bool: """ Pull down the latest Docker image build and prune old image versions. """ current_image = DEFAULT_IMAGE latest_image = latest_build_image(current_image) if latest_image == current_image: print(colored("bold", "Updating Docker image %s…" % current_image)) else: print(colored("bold", "Updating Docker image from %s to %s…" % (current_image, latest_image))) print() # Pull the latest image down try: subprocess.run( ["docker", "image", "pull", latest_image], check = True) except (OSError, subprocess.CalledProcessError): return False # Update the config file to point to the new image so we use it by default # going forward. config.set("docker", "image", latest_image) # Prune any old images which are now dangling to avoid leaving lots of # hidden disk use around. We don't use `docker image prune` because we # want to just remove _our_ dangling images, not all. We very much don't # want to automatically prune unrelated images. print() print(colored("bold", "Pruning old images…")) print() try: images = dangling_images(current_image) \ + old_build_images(current_image) if images: subprocess.run( ["docker", "image", "rm", *images], check = True) except (OSError, subprocess.CalledProcessError) as error: warn() warn("Update succeeded, but an error occurred pruning old image versions:") warn(" ", error) warn() return True
1a5b8b4cf6cadccc8d95c4d9d8f5ca016199bd6e
3,654,859
def get_default_accept_image_formats(): """With default bentoML config, this returns: ['.jpg', '.png', '.jpeg', '.tiff', '.webp', '.bmp'] """ return [ extension.strip() for extension in config("apiserver") .get("default_image_handler_accept_file_extensions") .split(",") ]
9f2e8514ed1dcc4d533be0e3f2e501a9a9784abb
3,654,860
import sys import glob def findports(): """Returns an array of the serial ports that have a command interpreter.""" if sys.platform.startswith('win'): ports = ['COM%s' % (i + 1) for i in range(255)] elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'): # this excludes your current terminal "/dev/tty" ports = glob.glob('/dev/tty[A-Za-z]*') elif sys.platform.startswith('darwin'): ports = glob.glob('/dev/tty.*') else: raise EnvironmentError('Unsupported platform') result = [] for port in ports: try: cmd= Cmd() cmd.open(port) cmd.close(True) result.append(port) except (OSError, serial.SerialException, CmdException) as error: # print(error) pass return result
38b16c56059c5f045b7c627cf1065c0754f7db28
3,654,861
import copy def cells_handler(results, cl): """ Changes result cell attributes based on object instance and field name """ suit_cell_attributes = getattr(cl.model_admin, 'suit_cell_attributes', None) if not suit_cell_attributes: return results class_pattern = 'class="' td_pattern = '<td' th_pattern = '<th' for row, result in enumerate(results): instance = cl.result_list[row] for col, item in enumerate(result): field_name = cl.list_display[col] attrs = copy(suit_cell_attributes(instance, field_name)) if not attrs: continue # Validate if not isinstance(attrs, dict): raise TypeError('"suit_cell_attributes" method must return dict. ' 'Got: %s: %s' % ( attrs.__class__.__name__, attrs)) # Merge 'class' attribute if class_pattern in item.split('>')[0] and 'class' in attrs: css_class = attrs.pop('class') replacement = '%s%s ' % (class_pattern, css_class) result[col] = mark_safe( item.replace(class_pattern, replacement)) # Add rest of attributes if any left if attrs: cell_pattern = td_pattern if item.startswith( td_pattern) else th_pattern result[col] = mark_safe( result[col].replace(cell_pattern, td_pattern + dict_to_attrs(attrs))) return results
c49bdb89597e191d0c6b65df1b58a80ac6bd5f9e
3,654,862
def dynamic_import(import_string): """ Dynamically import a module or object. """ # Use rfind rather than rsplit for Python 2.3 compatibility. lastdot = import_string.rfind('.') if lastdot == -1: return __import__(import_string, {}, {}, []) module_name, attr = import_string[:lastdot], import_string[lastdot + 1:] parent_module = __import__(module_name, {}, {}, [attr]) return getattr(parent_module, attr)
f6418ff17f3d480b22abac1146d946a5f990cb3c
3,654,863
from typing import Union from typing import List def _split_on_parenthesis(text_in: Union[str, list[str]]) -> List[str]: """Splits text up into a list of strings based on parenthesis locations.""" if isinstance(text_in, list): if None in text_in: return text_in text_list = text_in elif isinstance(text_in, str): text_list = [text_in] else: return text_in for i, text in enumerate(text_list): if isinstance(text, str) and "(" in text: text_inside = text[text.find("(")+1:text.rfind(")")] out_add = _split_list(text, text_inside) out_add[0] = out_add[0][:-1] # remove ( out_add[2] = out_add[2][1:] # remove ) out_add[1] = _get_unit(text_inside) out_add = [text for text in out_add if text != ""] out_add = [text for text in out_add if text != None] text_list[i] = out_add return _flatten_list(text_list)
7c7994590838c0293869786841eb7f97c60b16e8
3,654,864
from typing import Callable import functools import sys def shell_command_error2exit_decorator(func: Callable): """Decorator to convert given ShellCommandException to an exit message This avoids displaying nasty stack traces to end-users """ @functools.wraps(func) def func_wrapper(*args, **kwargs): try: func(*args, **kwargs) except ShellCommandException as e: e = e.__cause__ print(f"{e}:\n{e.output}") sys.exit(1) return func_wrapper
db2a51401c6616a8cf54928fc709923de3057a73
3,654,865
import requests def getExternalIP(): """ Returns external ip of system """ ip = requests.get("http://ipv4.myexternalip.com/raw").text.strip() if ip == None or ip == "": ip = requests.get("http://ipv4.icanhazip.com").text.strip() return ip
77847063a2da7c6484dd6e569786a012b3a0a62f
3,654,866
def intersection_indices(a, b): """ :param list a, b: two lists of variables from different factors. returns a tuple of (indices in a of the variables that are in both a and b, indices of those same variables within the list b) For example, intersection_indices([1,2,5,4,6],[3,5,1,2]) returns ([0, 1, 2], [2, 3, 1]). """ bind = {} for i, elt in enumerate(b): if elt not in bind: bind[elt] = i mapA = [] mapB = [] for i, itm in enumerate(a): if itm in bind: mapA.append(i) mapB.append(bind.get(itm)) return mapA, mapB
55264faaa4fd5e6dc5365b675ebd3b7f6a1e1280
3,654,867
def test_extract_requested_slot_from_entity_with_intent(): """Test extraction of a slot value from entity with the different name and certain intent """ # noinspection PyAbstractClass class CustomFormAction(FormAction): def slot_mappings(self): return {"some_slot": self.from_entity(entity="some_entity", intent="some_intent")} form = CustomFormAction() tracker = Tracker('default', {'requested_slot': 'some_slot'}, {'intent': {'name': 'some_intent', 'confidence': 1.0}, 'entities': [{'entity': 'some_entity', 'value': 'some_value'}]}, [], False, None, {}, 'action_listen') slot_values = form.extract_requested_slot(CollectingDispatcher(), tracker, {}) # check that the value was extracted for correct intent assert slot_values == {'some_slot': 'some_value'} tracker = Tracker('default', {'requested_slot': 'some_slot'}, {'intent': {'name': 'some_other_intent', 'confidence': 1.0}, 'entities': [{'entity': 'some_entity', 'value': 'some_value'}]}, [], False, None, {}, 'action_listen') slot_values = form.extract_requested_slot(CollectingDispatcher(), tracker, {}) # check that the value was not extracted for incorrect intent assert slot_values == {}
0b457700781183f275a8512e16bac53aa058d762
3,654,868
def graph_cases(selenium, host): """ Factory method that allows to draw preconfigured graphs and manipulate them with a series of helpful methods. :type selenium: selenium.webdriver.remote.webdriver.WebDriver :type host: qmxgraph.server.Host :rtype: GraphCaseFactory :return: Factory able to create cases. """ return GraphCaseFactory(selenium=selenium, host=host)
2df048d35a337e8d335844b7a1bb98db77816e5d
3,654,869
def figure_8(): """ Notes ----- Colors from Bang Wong's color-blind friendly colormap. Available at: https://www.nature.com/articles/nmeth.1618 Wong's map acquired from David Nichols page. Available at: https://davidmathlogic.com/colorblind/. """ # choosing test sample and network. sample = const.SAMPLE_232p3_wet network_folder = const.FOLDER_PRED_UNET # we will return a 10 x 10 matthews matrix; each for a crop matthews_coefs = np.ones((10, 10)) worst_indexes = np.zeros((10, 10)) # a variable to obtain inlay data. inlay_data = [] # reading input data. is_registered = sample['registered_path'] is not None data_pred, data_gs = _pred_and_goldstd(sample, folder_prediction=network_folder, is_registered=is_registered, is_binary=True) data_pred = data_pred[slice(*sample['segmentation_interval'])] # comp_color starts as gray (background). comp_color = np.ones( (*data_pred[0].shape, 3) ) * (np.asarray((238, 238, 238)) / 255) for idx, (img_pred, img_gs) in enumerate(zip(data_pred, data_gs)): # crop images in 100 (256, 256) pieces. crop_pred = util.view_as_blocks(img_pred, block_shape=(256, 256)) crop_gs = util.view_as_blocks(img_gs, block_shape=(256, 256)) for i, _ in enumerate(crop_pred): for j, _ in enumerate(crop_pred[i]): # calculate the Matthews coefficient for each crop. aux_conf = _confusion_matrix(crop_gs[i, j], crop_pred[i, j]) aux_matthews = _measure_matthews(aux_conf) # if smaller than previously, save results. # restricting aux_matthews > 0.1 due to errors in all-TN regions if (0.1 < aux_matthews < matthews_coefs[i, j]): matthews_coefs[i, j] = aux_matthews worst_indexes[i, j] = idx aux_comp = _comparison_color(crop_gs[i, j], crop_pred[i, j]) comp_color[i*256:(i+1)*256, j*256:(j+1)*256] = aux_comp # grab inlay data from crops we want to highlight. for i, j in [(2, 2), (8, 7)]: inlay_data.append(comp_color[i*256:(i+1)*256, j*256:(j+1)*256]) # Figure 8(a). plt.figure(figsize=FIGURE_SIZE) plt.imshow(comp_color) for idx in np.arange(start=0, stop=2560, step=256): # according to image plt.axvline(idx, color='white') plt.axhline(idx, color='white') matthews_coefs = np.round(matthews_coefs * 100, decimals=2) for i, j in product(range(10), repeat=2): facecolor, textcolor = _label_color(matthews_coefs[j, i]) plt.text(x=i*256 + 30, y=j*256 + 50, s=str(matthews_coefs[j, i]), fontsize=8, color=textcolor, bbox=dict(facecolor=facecolor, alpha=0.9)) _check_if_folder_exists(folder='./figures') plt.savefig('figures/Fig_08a' + SAVE_FIG_FORMAT, bbox_inches='tight') plt.close() # Figures 8(b, c). indexes = {0: 'b', 1: 'c'} for idx in indexes.keys(): plt.figure(figsize=FIGURE_SIZE) plt.imshow(inlay_data[idx]) _check_if_folder_exists(folder='./figures') plt.savefig(f'figures/Fig_08{indexes[idx]}' + SAVE_FIG_FORMAT, bbox_inches='tight') plt.close() return None
2a72f24673b96b577fc4f4a23a1869740e90c3ec
3,654,870
import re def check_threats(message): """Return list of threats found in message""" threats = [] for threat_check in get_threat_checks(): for expression in threat_check["expressions"]: if re.search(expression, message, re.I | re.U): del threat_check["expressions"] threats += [threat_check] break return threats
091d370e4a2e6cbdf674d6dde73bf616b994498b
3,654,871
def data_processing_max(data, column): """Compute the max of a column.""" return costly_compute_cached(data, column).max()
299075ea3e1953abe0ffbd71afb42525c6270c49
3,654,872
from typing import Sequence def type_of_target(y): """Determine the type of data indicated by the target. Note that this type is the most specific type that can be inferred. For example: * ``binary`` is more specific but compatible with ``multiclass``. * ``multiclass`` of integers is more specific but compatible with ``continuous``. * ``multilabel-indicator`` is more specific but compatible with ``multiclass-multioutput``. Parameters ---------- y : array-like Returns ------- target_type : string One of: * 'continuous': `y` is an array-like of floats that are not all integers, and is 1d or a column vector. * 'continuous-multioutput': `y` is a 2d array of floats that are not all integers, and both dimensions are of size > 1. * 'binary': `y` contains <= 2 discrete values and is 1d or a column vector. * 'multiclass': `y` contains more than two discrete values, is not a sequence of sequences, and is 1d or a column vector. * 'multiclass-multioutput': `y` is a 2d array that contains more than two discrete values, is not a sequence of sequences, and both dimensions are of size > 1. * 'multilabel-indicator': `y` is a label indicator matrix, an array of two dimensions with at least two columns, and at most 2 unique values. * 'unknown': `y` is array-like but none of the above, such as a 3d array, sequence of sequences, or an array of non-sequence objects. Examples -------- >>> import numpy as np >>> type_of_target([0.1, 0.6]) 'continuous' >>> type_of_target([1, -1, -1, 1]) 'binary' >>> type_of_target(['a', 'b', 'a']) 'binary' >>> type_of_target([1.0, 2.0]) 'binary' >>> type_of_target([1, 0, 2]) 'multiclass' >>> type_of_target([1.0, 0.0, 3.0]) 'multiclass' >>> type_of_target(['a', 'b', 'c']) 'multiclass' >>> type_of_target(np.array([[1, 2], [3, 1]])) 'multiclass-multioutput' >>> type_of_target([[1, 2]]) 'multilabel-indicator' >>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]])) 'continuous-multioutput' >>> type_of_target(np.array([[0, 1], [1, 1]])) 'multilabel-indicator' """ valid = ((isinstance(y, (Sequence, spmatrix)) or hasattr(y, '__array__')) and not isinstance(y, str)) if not valid: raise ValueError('Expected array-like (array or non-string sequence), ' 'got %r' % y) sparse_pandas = (y.__class__.__name__ in ['SparseSeries', 'SparseArray']) if sparse_pandas: raise ValueError("y cannot be class 'SparseSeries' or 'SparseArray'") if is_multilabel(y): return 'multilabel-indicator' try: y = np.asarray(y) except ValueError: # Known to fail in numpy 1.3 for array of arrays return 'unknown' # The old sequence of sequences format try: if (not hasattr(y[0], '__array__') and isinstance(y[0], Sequence) and not isinstance(y[0], str)): raise ValueError('You appear to be using a legacy multi-label data' ' representation. Sequence of sequences are no' ' longer supported; use a binary array or sparse' ' matrix instead - the MultiLabelBinarizer' ' transformer can convert to this format.') except IndexError: pass # Invalid inputs if y.ndim > 2 or (y.dtype == object and len(y) and not isinstance(y.flat[0], str)): return 'unknown' # [[[1, 2]]] or [obj_1] and not ["label_1"] if y.ndim == 2 and y.shape[1] == 0: return 'unknown' # [[]] if y.ndim == 2 and y.shape[1] > 1: suffix = "-multioutput" # [[1, 2], [1, 2]] else: suffix = "" # [1, 2, 3] or [[1], [2], [3]] # check float and contains non-integer float values if y.dtype.kind == 'f' and np.any(y != y.astype(int)): # [.1, .2, 3] or [[.1, .2, 3]] or [[1., .2]] and not [1., 2., 3.] _assert_all_finite(y) return 'continuous' + suffix if (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1): return 'multiclass' + suffix # [1, 2, 3] or [[1., 2., 3]] or [[1, 2]] else: return 'binary'
2c721ab04cdba3209794a21b2b25fe10485be106
3,654,873
from typing import List def extract_data_from_csv_stream(client: Client, alert_id: str, attachment_id: str, delimiter: bytes = b'\r\n') -> List[dict]: """ Call the attachment download API and parse required fields. Args: client (Client): Cyberint API client. alert_id (str): ID of the alert the attachment belongs to. attachment_id (str): ID of the attachment itself. delimiter (bytes): Delimeter for the CSV file. Returns: list(dict): List of all the data found using the wanted fields. """ first_line = True field_indexes = {} # {wanted_field_name: wanted_field_index...} information_found = [] for csv_line in client.get_csv_file(alert_id, attachment_id, delimiter): csv_line_separated = csv_line.split(',') if first_line: for field in CSV_FIELDS_TO_EXTRACT: try: field_indexes[field] = csv_line_separated.index(field) except ValueError: pass first_line = False else: try: extracted_field_data = {field_name.lower(): csv_line_separated[field_index] for field_name, field_index in field_indexes.items()} if extracted_field_data: information_found.append(extracted_field_data) except IndexError: pass return information_found
992679004ae94da2731b04eaf41918a755d8306a
3,654,874
import re def validate_password(password, password_repeat=None): """ Validate user password. :param password: password as string :param password_repeat: repeat password :return: False - valid password """ if password_repeat: if password != password_repeat: return "Passwords did not match." flag = False if len(password) < 8: flag = True elif not re.search("[a-z]", password): flag = True elif not re.search("[A-Z]", password): flag = True elif not re.search("[0-9]", password): flag = True elif re.search("\s", password): flag = True if flag: return ( "Password must contain at least a lower case, an upper case, a number, no spaces " "and be at least 9 characters." ) return False
2987a1bec151e173156ab6a72345864c84dcb61c
3,654,875
def get_large_circuit(backend: IBMBackend) -> QuantumCircuit: """Return a slightly larger circuit that would run a bit longer. Args: backend: Backend on which the circuit will run. Returns: A larger circuit. """ n_qubits = min(backend.configuration().n_qubits, 20) circuit = QuantumCircuit(n_qubits, n_qubits) for qubit in range(n_qubits - 1): circuit.h(qubit) circuit.cx(qubit, qubit + 1) circuit.measure(list(range(n_qubits)), list(range(n_qubits))) return circuit
a35a9ee67d6268911f49936095a703b4fd227a56
3,654,876
import os import time def loadUserProject(): """ Loads a project that contains only the contents of user.dev. This project will not be cached, so every call will reload it.""" userFilePath = os.path.join(os.path.expanduser(devon.userPath), userFileName) project = DevonProject("", time.time()) __mergeProject(project, "", userFilePath) return project
56edecff5feba9062770f164a33e281cf8232144
3,654,877
import torch def top_k(loc_pred, loc_true, topk): """ count the hit numbers of loc_true in topK of loc_pred, used to calculate Precision, Recall and F1-score, calculate the reciprocal rank, used to calcualte MRR, calculate the sum of DCG@K of the batch, used to calculate NDCG Args: loc_pred: (batch_size * output_dim) loc_true: (batch_size * 1) topk: Returns: tuple: tuple contains: hit (int): the hit numbers \n rank (float): the sum of the reciprocal rank of input batch \n dcg (float): dcg """ assert topk > 0, "top-k ACC评估方法:k值应不小于1" loc_pred = torch.FloatTensor(loc_pred) val, index = torch.topk(loc_pred, topk, 1) index = index.numpy() hit = 0 rank = 0.0 dcg = 0.0 for i, p in enumerate(index): target = loc_true[i] if target in p: hit += 1 rank_list = list(p) rank_index = rank_list.index(target) # rank_index is start from 0, so need plus 1 rank += 1.0 / (rank_index + 1) dcg += 1.0 / np.log2(rank_index + 2) return hit, rank, dcg
8796312e1fa4d43fb992c0dd7903070a9e061e1b
3,654,878
def enviar_contacto(request): """ Enviar email con el formulario de contacto a soporte tecnico """ formulario = ContactoForm() if request.method == 'POST': formulario = ContactoForm(request.POST) if formulario.is_valid(): mail = EmailMessage(subject='HPC Contacto', from_email=formulario.cleaned_data['email'], to=EMAIL_TO) mail.body = 'El usuario %s ha comentado: %s' \ % (formulario.cleaned_data['nombre'], formulario.cleaned_data['mensaje']) mail.send() messages.success(request, "El personal de soporte técnico ha recibido su consulta, " "pronto nos pondremos en contacto.") return HttpResponseRedirect('/') ctx = {'form': formulario} return render_to_response('contacto/enviar_contacto.html', ctx, context_instance=RequestContext(request))
2f17e0cd0fbd5c5df345484c5fe08a420272785a
3,654,879
def dict_depth(d): """ 递归地获取一个dict的深度 d = {'a':1, 'b': {'c':{}}} --> depth(d) == 3 """ if isinstance(d, dict): return 1 + (max(map(dict_depth, d.values())) if d else 0) return 0
16f4164fdea08af9d5846a5866428c81848726b9
3,654,880
def apercorr(psf,image,objects,psfobj,verbose=False): """ Calculate aperture correction. Parameters ---------- psf : PSF object The best-fitting PSF model. image : string or CCDData object The input image to fit. This can be the filename or CCDData object. objects : table The output table of best-fit PSF values for all of the sources. psfobj : table The table of PSF objects. verbose : boolean, optional Verbose output to the screen. Default is False. Returns ------- objects : table The output table with an "apcorr" column inserted and the aperture correction applied to "psfmag". apcor : float The aperture correction in mag. cgrow : numpy array The cumulative aperture correction array. Example ------- apcor = apercorr(psf,image,objects,psfobj) """ # Get model of all stars except the PSF stars ind1,ind2 = dln.match(objects['id'],psfobj['id']) left = np.delete(np.arange(len(objects)),ind1) neiobj = objects[left] neimodel = image.copy() neimodel.data *= 0 neimodel.error[:] = 1 neimodelim = psf.add(neimodel,neiobj) neimodel.data = neimodelim # Subtract everything except the PSF stars from the image resid = image.copy() if image.mask is not None: resid.data[~resid.mask] -= neimodel.data[~resid.mask] else: resid.data -= modelnei.data residim = np.maximum(resid.data-resid.sky,0) resid.data = residim resid.sky[:] = 0.0 # Do aperture photometry with lots of apertures on the PSF # stars # rk = (20/3.)**(1/11.) * rk-1 for k=2,..,12 rseeing = psf.fwhm()*0.5 apers = np.cumprod(np.hstack((3.0,np.ones(11,float)*(20/3.)**(1/11.)))) #apers = np.array([3.0,3.7965,4.8046,6.0803,7.6947,9.7377,12.3232, # 15.5952,19.7360,24.9762,31.6077,40.0000]) apercat = aperphot(resid,psfobj,apers) # Fit curve of growth # use magnitude differences between successive apertures. apars, agrow, derr = fitgrowth(apercat,apers,rseeing=psf.fwhm()*0.5) # Get magnitude difference errors nstars = len(apercat) napers = len(apers) derr = np.zeros((nstars,napers-1),float) for i in range(len(apers)-1): err1 = apercat['magerr_aper'+str(i+1)] err2 = apercat['magerr_aper'+str(i+2)] derr[:,i] = np.sqrt(err1**2+err2**2) wt = 1/derr**2 # THE CURVE TURNS OVER AT LARGE RADIUS!!!!??? # It shouldn't EVER do that. # Calculate empirical growth curve egrow,egrowerr = empgrowth(apercat,apers) # Get "adopted" growth curve by taking the weighted average # of the analytical and empirical growth curves # with the empirical weighted higher at small r and # the analytical weighted higher at large r gwt = np.mean(wt,axis=0) # mean weights over the stars adopgrow = (egrow*gwt + agrow*(1/(0.1*agrow))**2) / (gwt+(1/(0.1*agrow))**2) adopgrowerr = 1 / (gwt+(1/(0.1*agrow))**2) # Adopted cumulative growth curve # sum from the outside in, with an outer tail given by # extrapolation of the analytic model to 2*outer aperture cadopgrow = np.cumsum(adopgrow[::-1])[::-1] # add extrapolation from rlast t=o2*rlast tail = diffprofile([2*apers[-1],apers[-1]],*apars) cadopgrow += tail cadopgrow = np.hstack((cadopgrow,tail)) # add value for outer aperture cadopgrowerr = np.hstack((adopgrowerr,0.0)) # Calculate "total" magnitude for the PSF stars totmag,toterr = totphot(apercat,apers,cadopgrow,cadopgrowerr) # Calculate median offset between total and PSF magnitude # psf - total ind1,ind2 = dln.match(objects['id'],psfobj['id']) diffmag = objects['psfmag'][ind1] - totmag[ind2] apcor = np.median(diffmag) # positive value # Apply aperture correction to the data # add apcorr column and keep initial mags in instmag objects['apcorr'] = apcor objects['inst_psfmag'] = objects['psfmag'] objects['psfmag'] -= apcor # make brighter if verbose: print('Aperture correction = %.3f mag' % apcor) return objects, apcor, cadopgrow
bc4bb936801fe06a55648ed9a11545eacb24fd7d
3,654,881
from typing import Dict from typing import Tuple def product_loading_factor_single_discount(skus: str, product_list: Dict[str, object], product: Dict[str, int], product_name: str, rules: list) -> Tuple[int, str]: """ Single product loading factor for calculating discounts with one rule Parameters ---------- skus: str String containing indiviudal product skus product_list: Dict[str, object] Product discount list used for applying discounts product: Dict[str, int] Product list used for returning the current products price product_name: str The name of the product rules: List List of discount rules names to apply Returns ------- Tuple: price: int Calculated price skus: str Updated skus list """ number_of_products = skus.count(product_name) product_price = product[product_name] product_discount_data_object = product_list[product_name][rules[0]] discount_threshold = product_discount_data_object['discount_threshold'] while number_of_products > 0: if number_of_products > 0 and number_of_products % discount_threshold == 0: product_discount_data_object['count'] += 1 number_of_products -= discount_threshold else: number_of_products -= 1 applied_discount = product_discount_data_object['count'] remainder_product_count = skus.count(product_name) - (applied_discount * discount_threshold) discount_to_apply = product_discount_data_object['discount'] apply_discount = (applied_discount * product_price * discount_threshold) - (applied_discount * discount_to_apply) price = apply_discount + (remainder_product_count * product_price) return price, skus
44e12d02be7c8b54d1ea64ef2dc3cbec29a870bc
3,654,882
import re def clean_text(page): """Return the clean-ish running text parts of a page.""" return re.sub(_UNWANTED, "", _unescape_entities(page))
8042cc5049b2d8b6646c10655b84c5552e315274
3,654,883
def calculate_recall(tp, n): """ :param tp: int Number of True Positives :param n: int Number of total instances :return: float Recall """ if n == 0: return 0 return tp / n
b8a36488af59e036acdb50821716ae34287e6b8f
3,654,884
def authenticate_user_password(password : 'bytes', encryption_dict : 'dict', id_array : 'list'): """ Authenticate the user password. Parameters ---------- password : bytes The password to be authenticated as user password. encryption_dict : dict The dictionary containing all the information about the encryption procedure. id_array : list The two elements array ID, contained in the trailer dictionary. Returns ------- The encryption key if the user password is valid, None otherwise. """ R = encryption_dict["R"] U = encryption_dict["U"] U = U.value if isinstance(U, PDFLiteralString) else unhexlify(U.value) encryption_key = compute_encryption_key(password, encryption_dict, id_array) if R == 2: cipher = rc4(PASSWORD_PADDING, encryption_key) else: input_to_md5 = bytearray() input_to_md5.extend(PASSWORD_PADDING) input_to_md5.extend(id_array[0]) computed_hash = md5(input_to_md5).digest() cipher = rc4(computed_hash, encryption_key) for counter in range(1, 20): cipher = rc4(cipher, bytes(x ^ counter for x in encryption_key)) correct_password = (U[:16] == cipher[:16]) if R >= 3 else (U == cipher) return encryption_key if correct_password else None
b608a921fb02cedf9da9d8ea8e0d8f8139a6a9bd
3,654,885
def date_to_num(date): """Convert datetime to days since 1901""" num = (date.year - 1901) * 365.25 num += [ 0, 31, 59.25, 90.25, 120.25, 151.25, 181.25, 212.25, 243.25, 273.25, 304.25, 334.25 ][date.month - 1] num += date.day return int(num)
88e342e0fc80a5998df8e5f1ab0002e0f7fe808e
3,654,886
from typing import Tuple def load_world(filename: str, size: Tuple[int, int], resolution: int) -> np.array: """Load a preconstructred track to initialize world. Args: filename: Full path to the track file (png). size: Width and height of the map resolution: Resolution of the grid map (i.e. into how many cells) one meter is divided into. Returns: An initialized gridmap based on the preconstructed track as an n x m dimensional numpy array, where n is the width (num cells) and m the height (num cells) - (after applying resolution). """ width_in_cells, height_in_cells = np.multiply(size, resolution) world = np.array(png_to_ogm( filename, normalized=True, origin='lower')) # If the image is already in our desired shape, no need to rescale it if world.shape == (height_in_cells, width_in_cells): return world # Otherwise, scale the image to our desired size. resized_world = resize(world, (width_in_cells, height_in_cells)) return resized_world
8ccf97efb83b3c365fb95a2732d0737100d5f254
3,654,887
import torch def generate_image(model, img_size, n_flow, n_block, n_sample, temp=0.7, ctx=None, label=None): """Generate a single image from a Glow model.""" # Determine sizes of each layer z_sample = [] z_shapes = calc_z_shapes(3, img_size, n_flow, n_block) for z in z_shapes: z_new = torch.randn(n_sample, *z) * temp z_sample.append(z_new.to(device)) assert ctx is None or label is None # can either insert label or context if label is not None: return model.reverse(z_sample, label=label) else: # handles both cases where only context is provided or no label or context is provided return model.reverse(z_sample, ctx=ctx)
bee9c45cbbd028351e580729da51092604f87288
3,654,888
def quote_spaces(arg): """Generic function for putting double quotes around any string that has white space in it.""" if ' ' in arg or '\t' in arg: return '"%s"' % arg else: return str(arg)
e0171c3b0eee18c7fcc44cbdfe007949feabba9a
3,654,889
def slice_map(center, radius, m): """ :func:`slice_map` for slicing Map object based on center and radius. :param center: x, y tuple of center of sliced map :param radius: - :class:`int` center of sliced map :param m: - :class:`Map` Map object that want to be sliced return :class:`Map` """ # TODO # it should slice player list and kingdom list too results = dict() for cell in m.gen_tiles(): if distance(center, (cell.coordinate.x, cell.coordinate.y)) <= radius: if cell.region_id not in results: results[cell.region_id] = [] results[cell.region_id].append(cell) new_map = Map(m.client) new_map._raw_data = deepcopy(m._raw_data) new_map._raw_data["response"]["1"]["region"] = results return new_map
fe30795d2330a1a2572361438a79e1e8fa9bc3cf
3,654,890
from pathlib import Path import requests import shutil def download_file(url) -> Path: """Better download""" name = Path(urlparse(unquote(url)).path).name with mktempdir() as tmpdir: @backoff.on_exception(backoff.expo, requests.exceptions.RequestException, max_time=30) def get(): with requests.get(url, stream=True) as r: save_path = tmpdir.joinpath(name) with open(save_path, "wb") as f: shutil.copyfileobj(r.raw, f, length=16 * 1024 * 1024) return save_path yield get()
5ff6c05e5e1eb3379918c65d945d57af7e8d56be
3,654,891
def creategui(handlerfunctions): """Initializes and returns the gui.""" gui = GUI(handlerfunctions) # root.title('DBF Utility') return gui
17be3bae6eb105aca770327898a01027271e6f9c
3,654,892
import torch def rank_src_trgs(enc_dec_gen, src_list, trg_list): """ """ batch_size = len(trg_list) x, y = enc_dec_gen.encode_inputs(src_list, trg_list, add_bos=True, add_eos=True) y_len = torch.sum(y.ne(enc_dec_gen.model.PAD), -1) with torch.no_grad(): y_target = y[:, 1:] y = y[:, :-1] enc_self_attn_mask = enc_dec_gen.model.get_attn_mask(x, x) enc_outputs = enc_dec_gen.model.encoder(x, enc_self_attn_mask) enc_output = enc_outputs[0] n = y.size(0)//x.size(0) x = x.repeat([1,n]).view(y.size(0), -1) enc_output = enc_output.repeat([1, n, 1]).view(x.size(0), x.size(1), -1) dec_self_attn_mask = enc_dec_gen.model.get_subsequent_mask(y) dec_self_attn_mask = dec_self_attn_mask | enc_dec_gen.model.get_attn_mask(y, y) dec_enc_attn_mask = enc_dec_gen.model.get_attn_mask(y, x) trg_embedding = None if enc_dec_gen.model.share_src_trg_emb == True: trg_embedding = enc_dec_gen.model.encoder.src_embedding dec_outputs = enc_dec_gen.model.decoder(y, enc_output, dec_self_attn_mask, dec_enc_attn_mask, trg_embedding=trg_embedding) logits = dec_outputs[0] logits = logits.view(-1, enc_dec_gen.trg_vocab_size) log_probs = -F.nll_loss(F.log_softmax(logits, -1), y_target.contiguous().view(-1), ignore_index=enc_dec_gen.model.PAD, reduction='none') log_probs = torch.sum(log_probs.view(batch_size, -1), -1) norm = 1 if enc_dec_gen.normalize == "gnmt": norm = torch.pow(5. + y_len, enc_dec_gen.gamma) / np.power(6., enc_dec_gen.gamma) elif enc_dec_gen.normalize == "linear": norm = y_len log_probs = log_probs / norm log_probs = log_probs.cpu().numpy() return log_probs
f5472889489676e21a7bec032e13ef99c850f2da
3,654,893
def plugin_poll(handle): """ Extracts data from the sensor and returns it in a JSON document as a Python dict. Available for poll mode only. Args: handle: handle returned by the plugin initialisation call Returns: returns a sensor reading in a JSON document, as a Python dict, if it is available None - If no reading is available Raises: Exception """ try: time_stamp = utils.local_timestamp() data = {'asset': handle['assetName']['value'], 'timestamp': time_stamp, 'readings': {"random": next(generate_data())}} except (Exception, RuntimeError) as ex: _LOGGER.exception("Exception is {}".format(str(ex))) raise ex else: return data
c3d7b32b6816c81d244f689ce4185d1dcd9a16fe
3,654,894
def top_average_pathways(document, file, max_sets, get_all=False): """ Read the pathways file and get the top average pathways """ # read in the samples and get the data with out the stratification by bug samples, pathways, data = document.read_table(file) pathway_names = utilities.pathway_names(pathways) pathways, data = utilities.remove_stratified_pathways(pathways, data, remove_description=True) # remove extra identifier from sample name if included in workflow samples = [sample.replace("_Abundance","").replace("-RPKs","") for sample in samples] # get the average abundance for the pathways if get_all: top_pathways, top_data = pathways, data else: top_pathways, top_data = utilities.top_rows(pathways, data, max_sets, function="average") # get the top names with descriptions top_names_and_descriptions = [name+":"+pathway_names[name] for name in top_pathways] return samples, top_pathways, top_data, top_names_and_descriptions
4d4ed4fa9156ac98466197090afc52ded517af95
3,654,895
import torch def ltria2skew(L): """ assume L has already passed the assertion check :param L: lower triangle matrix, shape [N, 3] :return: skew sym A [N, 3, 3] """ if len(L.shape) == 2: N = L.shape[0] # construct the skew-sym matrix A = torch.zeros(N, 3, 3).cuda() # [N, 3, 3] A[:, 1, 0] = L[:, 0] A[:, 2, 0] = L[:, 1] A[:, 2, 1] = L[:, 2] A[:, 0, 1] = -L[:, 0] A[:, 0, 2] = -L[:, 1] A[:, 1, 2] = -L[:, 2] return A elif len(L.shape) == 1: A = torch.zeros(3, 3).cuda() A[1, 0] = L[0] A[2, 0] = L[1] A[2, 1] = L[2] A[0, 1] = -L[0] A[0, 2] = -L[1] A[1, 2] = -L[2] return A else: raise NotImplementedError
6e74c181fc8efcdc28ba35578f31fb6f2a7fa1bb
3,654,896
def gamma_contrast(data_sample, num_patches=324, num_channel=2, shape_data=None, gamma_range=(0.5, 1.7), invert_image=False, per_channel=False, retain_stats=False): """Performs gamma contrast transformation""" epsilon = 1e-7 data_sample_patch = [] gamma_range_tensor = tf.convert_to_tensor(gamma_range) for patch in range(num_patches): if invert_image: data_sample = - data_sample if not per_channel: # if np.random.random() < 0.5 and gamma_range[0] < 1: # gamma = np.random.uniform(gamma_range[0], 1) # else: # gamma = np.random.uniform(max(gamma_range[0], 1), gamma_range[1]) def true_fn(): gamma_fn = tf.random.uniform(shape=(), minval=gamma_range[0], maxval=1, seed=1) return gamma_fn def false_fn(): gamma_fn = tf.random.uniform(shape=(), minval=tf.math.maximum(gamma_range[0], 1), maxval=gamma_range[1], seed=1) return gamma_fn cond = tf.math.logical_and(tf.math.less(tf.random.uniform(shape=(), minval=0, maxval=0.99, seed=1), 0.5), tf.math.less(gamma_range_tensor[0], 1)) gamma = tf.cond(cond, true_fn, false_fn) min_val_ten = tf.math.reduce_min(data_sample[patch, ...]) range_tensor = tf.math.reduce_max(data_sample[patch, ...]) - min_val_ten data_sample_norm = tf.math.divide(tf.math.subtract(data_sample[patch, ...], min_val_ten), tf.math.add(range_tensor, epsilon)) data_img = tf.image.adjust_gamma(image=data_sample_norm, gamma=gamma, gain=tf.math.add(range_tensor, epsilon)) data_img = tf.math.add(data_img, min_val_ten) data_sample_patch.append(data_img) else: data_sample_per_channel = [] for c in range(num_channel): def true_fn(): gamma_fn = tf.random_uniform_initializer(minval=gamma_range[0], maxval=1, seed=1) return gamma_fn def false_fn(): gamma_fn = tf.random_uniform_initializer(minval=tf.math.maximum(gamma_range[0], 1), maxval=gamma_range[1], seed=1) return gamma_fn cond = tf.math.logical_and(tf.math.less(tf.random.uniform(shape=(), minval=0, maxval=0.99, seed=1), 0.5), tf.math.less(gamma_range_tensor[0], 1)) gamma = tf.cond(cond, true_fn, false_fn) min_val_ten = tf.math.reduce_min(data_sample[patch, :, :, :, c]) #rnge_tensor = tf.math.reduce_max(data_sample[patch, :, :, :, c]) - min_val_ten data_sample_norm = tf.math.divide(tf.math.subtract(data_sample[patch, ..., c], min_val_ten), tf.math.add(range_tensor, epsilon)) data_img = tf.image.adjust_gamma(image=data_sample_norm, gamma=gamma, gain=tf.math.add(range_tensor, epsilon)) data_img = tf.math.add(data_img, min_val_ten) data_sample_per_channel.append(data_img) data_sample_channel = tf.stack(data_sample_per_channel) data_sample_channel = tf.transpose(data_sample_channel, perm=[1, 2, 3, 0]) data_sample_patch.append(data_sample_channel) data_sample_return = tf.stack(data_sample_patch) # data_sample_return = tf.transpose(data_sample_return, perm=[1, 2, 3, 4, 0]) return data_sample_return
373f3f7e602de69c1cbce328ec3ff1322a44d013
3,654,897
def _converge(helper, rcs, group): """ Function to be passed to :func:`_oob_disable_then` as the ``then`` parameter that triggers convergence. """ return group.trigger_convergence(rcs)
8aab701dc7e29d83d6c8ab8b71c37837feb72847
3,654,898
def HybridClientFactory(jid, password): """ Client factory for XMPP 1.0. This is similar to L{client.XMPPClientFactory} but also tries non-SASL autentication. """ a = HybridAuthenticator(jid, password) return xmlstream.XmlStreamFactory(a)
283d9182c0e7bce254bc9f04cd42c15b9e3aed46
3,654,899