content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def home(): """Home page.""" form = LoginForm(request.form) # Handle logging in if request.method == 'POST': if form.validate_on_submit(): login_user(form.user) flash('You are logged in.', 'success') redirect_url = request.args.get('next') or url_for('user.members') return redirect(redirect_url) else: flash_errors(form) return dict(form=form)
4bed46f095b31a61746c382460b6f477a4aa215e
3,654,900
def countingsort(A): """ Sort the list A. A has to be a list of integers. Every element of the list A has to be non-negative. @param A: the list that should get sorted @return the sorted list """ if len(A) == 0: return [] C = [0] * (max(A)+1) B = [""] * len(A) # Count the number of elements for el in A: C[el] += 1 # Now C[i] contains how often i is in A for index in xrange(1, len(C)): C[index] += C[index-1] for el in A[::-1]: B[C[el]-1] = el C[el] -= 1 return B
ebdaac4580f910873f77878978b57e193334a4ea
3,654,901
import math def calc_obstacle_map(ox, oy, resolution, vr): """ Build obstacle map according to the distance of a certain grid to obstacles. Treat the area near the obstacle within the turning radius of the vehicle as the obstacle blocking area and mark it as TRUE. """ min_x = round(min(ox)) min_y = round(min(oy)) max_x = round(max(ox)) max_y = round(max(oy)) x_width = round(max_x - min_x) y_width = round(max_y - min_y) # obstacle map generation obstacle_map = [[False for _ in range(y_width)] for _ in range(x_width)] for ix in range(x_width): x = ix + min_x for iy in range(y_width): y = iy + min_y # print(x, y) for iox, ioy in zip(ox, oy): d = math.sqrt((iox - x)**2 + (ioy - y)**2) if d * resolution <= vr: obstacle_map[ix][iy] = True break return obstacle_map, min_x, min_y, max_x, max_y, x_width, y_width
87d44c5eb799bf3b2ea64ac0717b8d7f260a4a37
3,654,902
import itertools def dilate(poly,eps): """ The function dilates a polytope. For a given polytope a polytopic over apoproximation of the $eps$-dilated set is computed. An e-dilated Pe set of P is defined as: Pe = {x+n|x in P ^ n in Ball(e)} where Ball(e) is the epsilon neighborhood with norm |n|<e The current implementation is quite crude, hyper-boxes are placed over the original vertices and the returned polytope is a qhull of these new vertices. :param poly: original polytope :param eps: positive scalar value with which the polytope is dilated :return: polytope """ if isinstance(poly,polytope.Region): dil_reg = [] for pol in poly.list_poly: assert isinstance(pol,polytope.Polytope) dil_reg += [dilate(pol, eps)] return polytope.Region(dil_reg) vertices = extreme(poly) dim = len(vertices[0]) # this is the dimensionality of the space dil_eps = dim * [[-eps,eps]] dil_eps_v = [np.array(n) for n in itertools.product(*dil_eps)] # vectors with (+- eps,+- eps, +- eps,...) new_vertices = [] for v,d in itertools.product(vertices,dil_eps_v): new_vertices += [[np.array(v).flatten() + np.array(d).flatten()]] # make box # print("add vertices part:", np.array(v).flatten() + np.array(d).flatten()) VV = np.concatenate(new_vertices) # print("V", VV) return qhull(VV)
0ae4d8ea9cb6977939e4d3bed6454ed55e8855cf
3,654,903
def read_files_to_vardf(map_df, df_dict, gridclimname, dataset, metadata, file_start_date, file_end_date, file_delimiter, file_time_step, file_colnames, subset_start_date, subset_end_date, min_elev, max_elev, variable_list=None): """ # reads in the files to generate variables dataframes map_df: (dataframe) the mappingfile clipped to the subset that will be read-in df_dict: (dict) an existing dictionary where new computations will be stored gridclimname: (str) the suffix for the dataset to be named; if None provided, default to dataset name dataset: (str) the name of the dataset catalogged into map_df metadata: (str) the dictionary that contains the metadata explanations; default is None file_start_date: (date) the start date of the files that will be read-in; default is None file_end_date: (date) the end date for the files that will be read in; default is None file_delimiter: (str) a file parsing character to be used for file reading file_time_step: (str) the timedelta code for the difference between time points; default is 'D' (daily) file_colnames: (list) the list of shorthand variables; default is None subset_start_date: (date) the start date of a date range of interest subset_end_date: (date) the end date of a date range of interest min_elev: (float) minimum elevation permitted max_elev: (float) maximum elevation permitted """ # start time starttime = pd.datetime.now() # date range from ogh_meta file met_daily_dates=pd.date_range(file_start_date, file_end_date, freq=file_time_step) met_daily_subdates=pd.date_range(subset_start_date, subset_end_date, freq=file_time_step) # omit null entries or missing data file map_df = map_df.loc[pd.notnull(map_df[dataset]), :] print('Number of data files within elevation range ({0}-{1} m): {2}'.format(min_elev, max_elev, len(map_df))) # establish default list of variables if isinstance(variable_list, type(None)): variable_list = metadata[dataset]['variable_list'] # iterate through each data file for eachvar in metadata[dataset]['variable_list']: # exclude YEAR, MONTH, and DAY if eachvar not in ['YEAR', 'MONTH', 'DAY'] and eachvar in variable_list: # identify the variable column index usecols = [metadata[dataset]['variable_list'].index(eachvar)] # initiate df as a list df_list=[] # loop through each file for ind, row in map_df.iterrows(): # consider rewriting the params to just select one column by index at a time var_series = dask.delayed(pd.read_table)(filepath_or_buffer=row[dataset], delimiter=file_delimiter,header=None,usecols=usecols, names=[tuple(row[['FID', 'LAT', 'LONG_']])]) # append the series into the list of series df_list.append(var_series) # concatenate list of series (axis=1 is column-wise) into a dataframe df1 = dask.delayed(pd.concat)(df_list, axis=1) # set and subset date_range index df2 = df1.set_index(met_daily_dates, inplace=False).loc[met_daily_subdates] # assign dataframe to dictionary object df_dict['_'.join([eachvar, gridclimname])] = dask.compute(df2)[0] print(eachvar+ ' dataframe reading complete:' + str(pd.datetime.now()-starttime)) return(df_dict)
31bc460eb0035d3bbd51f266c96a53f537495a53
3,654,904
import pickle def read_file(pickle_file_name): """Reads composite or non-composite class-activation maps from Pickle file. :param pickle_file_name: Path to input file (created by `write_standard_file` or `write_pmm_file`). :return: gradcam_dict: Has the following keys if not a composite... gradcam_dict['denorm_predictor_matrices']: See doc for `write_standard_file`. gradcam_dict['cam_matrices']: Same. gradcam_dict['guided_cam_matrices']: Same. gradcam_dict['full_storm_id_strings']: Same. gradcam_dict['storm_times_unix_sec']: Same. gradcam_dict['model_file_name']: Same. gradcam_dict['target_class']: Same. gradcam_dict['target_layer_name']: Same. gradcam_dict['sounding_pressure_matrix_pa']: Same. ...or the following keys if composite... gradcam_dict['mean_denorm_predictor_matrices']: See doc for `write_pmm_file`. gradcam_dict['mean_cam_matrices']: Same. gradcam_dict['mean_guided_cam_matrices']: Same. gradcam_dict['model_file_name']: Same. gradcam_dict['non_pmm_file_name']: Same. gradcam_dict['pmm_max_percentile_level']: Same. gradcam_dict['mean_sounding_pressures_pa']: Same. :return: pmm_flag: Boolean flag. True if `gradcam_dict` contains composite, False otherwise. :raises: ValueError: if dictionary does not contain expected keys. """ pickle_file_handle = open(pickle_file_name, 'rb') gradcam_dict = pickle.load(pickle_file_handle) pickle_file_handle.close() pmm_flag = MEAN_PREDICTOR_MATRICES_KEY in gradcam_dict if pmm_flag: missing_keys = list( set(PMM_FILE_KEYS) - set(gradcam_dict.keys()) ) else: missing_keys = list( set(STANDARD_FILE_KEYS) - set(gradcam_dict.keys()) ) if len(missing_keys) == 0: return gradcam_dict, pmm_flag error_string = ( '\n{0:s}\nKeys listed above were expected, but not found, in file ' '"{1:s}".' ).format(str(missing_keys), pickle_file_name) raise ValueError(error_string)
3f2f7fb1a5a904f494e64f840f6a8d6ae207c900
3,654,905
import string def tacodev(val=None): """a valid taco device""" if val in ('', None): return '' val = string(val) if not tacodev_re.match(val): raise ValueError('%r is not a valid Taco device name' % val) return val
4cffd52f9e7673ad45e697aadfbb3515ecd3d209
3,654,906
import torch import os def VioNet_densenet(config, home_path): """ Load DENSENET model config.device config.pretrained_model config.sample_size config.sample_duration """ device = config.device ft_begin_idx = config.ft_begin_idx sample_size = config.sample_size[0] sample_duration = config.sample_duration model = densenet121(num_classes=2, sample_size=sample_size, sample_duration=sample_duration).to(device) # state_dict = torch.load(g_path +'/VioNet/'+ 'weights/DenseNet_Kinetics.pth') state_dict = torch.load(os.path.join(home_path, VIONET_WEIGHTS, 'DenseNet_Kinetics.pth')) model.load_state_dict(state_dict) params = dn.get_fine_tuning_params(model, ft_begin_idx) return model, params
bdaa386b68d41190b4bf711ece571df14bb8012d
3,654,907
def decode_layout_example(example, input_range=None): """Given an instance and raw labels, creates <inputs, label> pair. Decoding includes. 1. Converting images from uint8 [0, 255] to [0, 1.] float32. 2. Mean subtraction and standardization using hard-coded mean and std. 3. Convert boxes from yxyx [0-1] to xyxy un-normalized. 4. Add 1 to all labels to account for background/padding object at label 0. 5. Shuffling dictionary keys to be consistent with the rest of the code. Args: example: dict; Input image and raw labels. input_range: tuple; Range of input. By default we use Mean and StdDev normalization. Returns: A dictionary of {'inputs': input image, 'labels': task label}. """ image = tf.image.convert_image_dtype(example['image'], dtype=tf.float32) # Normalize. if input_range: image = image * (input_range[1] - input_range[0]) + input_range[0] else: mean_rgb = tf.constant(MEAN_RGB, shape=[1, 1, 3], dtype=tf.float32) std_rgb = tf.constant(STDDEV_RGB, shape=[1, 1, 3], dtype=tf.float32) image = (image - mean_rgb) / std_rgb boxes = example['objects']['boxes'] target = { 'boxes': boxes, 'labels': example['objects']['label'] + 1, # 0'th class is padding. 'binary_labels': example['objects']['binary_label'] + 1, 'desc_id': example['objects']['desc_id'], 'resource_id': example['objects']['resource_id'], 'name_id': example['objects']['name_id'], 'obj_mask': example['objects']['obj_mask'], } # Filters objects to exclude degenerate boxes. valid_bbx = tf.logical_and(boxes[:, 2] > boxes[:, 0], boxes[:, 3] > boxes[:, 1]) # -1 is ROOT node, remove it for training & eval. valid_node = tf.greater(example['objects']['label'], -1) keep = tf.where(tf.logical_and(valid_bbx, valid_node))[:, 0] target_kept = {k: tf.gather(v, keep) for k, v in target.items()} target_kept['orig_size'] = tf.cast(tf.shape(image)[0:2], dtype=tf.int32) target_kept['size'] = tf.identity(target_kept['orig_size']) return { 'inputs': image, 'label': target_kept, }
a54b26a8b4d82a6a9e5bc093f9f59b7a74450916
3,654,908
import plotly.figure_factory as ff def bact_plot(samples, bacteroidetes, healthiest_sample): """ Returns a graph of the distribution of the data in a graph ========== samples : pandas.DataFrame The sample data frame. Must contain column `Bacteroidetes` and `Firmicutes` that contain the percentage of those phyla. Returns ======= plotly graph """ hist_data = [samples["Bacteroidetes"]] group_labels = ["Bacteroidetes"] bact = ff.create_distplot(hist_data, group_labels, show_hist=False) bact["layout"].update(title="Bacteroidetes Sample Distribution ") bact["layout"].update( showlegend=False, annotations=[ dict( x=bacteroidetes, y=0, xref="x", yref="y", text="You are here!", showarrow=True, arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor="#0e0f36", ax=70, ay=-30, bordercolor="#06a300", borderwidth=2, borderpad=4, bgcolor="#69f564", opacity=0.8, ), dict( x=healthiest_sample["Bacteroidetes"], y=0, xref="x", yref="y", text="Healthiest Sample", showarrow=True, arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor="#0e0f36", ax=70, ay=30, bordercolor="#4c0acf", borderwidth=2, borderpad=4, bgcolor="#b977f2", opacity=0.8, ), ], ) return bact
d21bb3bd534f92cc6eed3bb467fe355abcf1afd2
3,654,909
import os def dynamic_upload_to(instance, filename): """ 根据链接类型,决定存储的目录 """ file_dir = (LogoImgRelatedDirEnum.APP.value if instance.link_type == LinkTypeEnum.LIGHT_APP.value else LogoImgRelatedDirEnum.ICON.value) return os.path.join(file_dir, filename)
ce8ca6083a8014d7613b7ffa09a1c0c8f0cb0323
3,654,910
def xdraw_lines(lines, **kwargs): """Draw lines and optionally set individual name, color, arrow, layer, and width properties. """ guids = [] for l in iter(lines): sp = l['start'] ep = l['end'] name = l.get('name', '') color = l.get('color') arrow = l.get('arrow') layer = l.get('layer') width = l.get('width') guid = add_line(Point3d(*sp), Point3d(*ep)) if not guid: continue obj = find_object(guid) if not obj: continue attr = obj.Attributes if color: attr.ObjectColor = FromArgb(*color) attr.ColorSource = ColorFromObject else: attr.ColorSource = ColorFromLayer if arrow == 'end': attr.ObjectDecoration = EndArrowhead if arrow == 'start': attr.ObjectDecoration = StartArrowhead if layer and find_layer_by_fullpath: index = find_layer_by_fullpath(layer, True) if index >= 0: attr.LayerIndex = index if width: attr.PlotWeight = width attr.PlotWeightSource = PlotWeightFromObject attr.Name = name obj.CommitChanges() guids.append(guid) return guids
bebeb2d400ed8c779281b67f01007e953f15460f
3,654,911
def _emit_params_file_action(ctx, path, mnemonic, cmds): """Helper function that writes a potentially long command list to a file. Args: ctx (struct): The ctx object. path (string): the file path where the params file should be written. mnemonic (string): the action mnemomic. cmds (list<string>): the command list. Returns: (File): an executable file that runs the command set. """ filename = "%s.%sFile.params" % (path, mnemonic) f = ctx.new_file(ctx.configuration.bin_dir, filename) ctx.file_action(output = f, content = "\n".join(["set -e"] + cmds), executable = True) return f
adafb75e24b2023ad2926e4248e8b2e1e6966b8e
3,654,912
import gettext def annotate_validation_results(results, parsed_data): """Annotate validation results with potential add-on restrictions like denied origins.""" if waffle.switch_is_active('record-install-origins'): denied_origins = sorted( DeniedInstallOrigin.find_denied_origins(parsed_data['install_origins']) ) for origin in denied_origins: insert_validation_message( results, message=gettext( 'The install origin {origin} is not permitted.'.format( origin=origin ) ), ) return results
659ec92f98c2678de2ee8f2552da77c5394047c5
3,654,913
import sys import subprocess import threading from io import StringIO import time def RunCommand(command, input=None, pollFn=None, outStream=None, errStream=None, killOnEarlyReturn=True, verbose=False, debug=False, printErrorInfo=False): """ Run a command, with optional input and polling function. Args: command: list of the command and its arguments. input: optional string of input to feed to the command, it should be short enough to fit in an i/o pipe buffer. pollFn: if present will be called occasionally to check if the command should be finished early. If pollFn() returns true then the command will finish early. outStream: if present, the stdout output of the command will be written to outStream. errStream: if present, the stderr output of the command will be written to errStream. killOnEarlyReturn: if true and pollFn returns true, then the subprocess will be killed, otherwise the subprocess will be detached. verbose: if true, the command is echoed to stderr. debug: if true, prints debugging information to stderr. printErrorInfo: if true, prints error information when the subprocess returns a non-zero exit code. Returns: the output of the subprocess. Exceptions: Raises Error if the subprocess returns an error code. Raises ValueError if called with invalid arguments. """ if verbose: sys.stderr.write("command %s\n" % command) stdin = None if input: stdin = subprocess.PIPE try: process = subprocess.Popen( args=command, stdin=stdin, bufsize=1, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except OSError as e: if not isinstance(command, basestring): command = ' '.join(command) if printErrorInfo: sys.stderr.write("Command failed: '%s'\n" % command) raise Error(e) def StartThread(out): queue = Queue.Queue() def EnqueueOutput(out, queue): for line in iter(out.readline, b''): queue.put(line) out.close() thread = threading.Thread(target=EnqueueOutput, args=(out, queue)) thread.daemon = True thread.start() return queue outQueue = StartThread(process.stdout) errQueue = StartThread(process.stderr) def ReadQueue(queue, out, out2): try: while True: line = queue.get(False) out.write(line) if out2 != None: out2.write(line) except Queue.Empty: pass outBuf = StringIO.StringIO() errorBuf = StringIO.StringIO() if input: process.stdin.write(input) while True: returncode = process.poll() if returncode != None: break ReadQueue(errQueue, errorBuf, errStream) ReadQueue(outQueue, outBuf, outStream) if pollFn != None and pollFn(): returncode = 0 if killOnEarlyReturn: process.kill() break time.sleep(0.1) # Drain queue ReadQueue(errQueue, errorBuf, errStream) ReadQueue(outQueue, outBuf, outStream) out = outBuf.getvalue() error = errorBuf.getvalue() if returncode: if not isinstance(command, basestring): command = ' '.join(command) if printErrorInfo: sys.stderr.write("Command failed: '%s'\n" % command) sys.stderr.write(" stdout: '%s'\n" % out) sys.stderr.write(" stderr: '%s'\n" % error) sys.stderr.write(" returncode: %d\n" % returncode) raise Error("Command failed: %s" % command) if debug: sys.stderr.write("output: %s\n" % out) return out
4ad8a94f6079c33bfbd64e4d975b8c50317e03e9
3,654,914
import textwrap def ignore_firstline_dedent(text: str) -> str: """Like textwrap.dedent(), but ignore first empty lines Args: text: The text the be dedented Returns: The dedented text """ out = [] started = False for line in text.splitlines(): if not started and not line.strip(): continue if not started: started = True out.append(line) return textwrap.dedent("\n".join(out))
04bde49e72e07552f2f88e9112546d00b85a2879
3,654,915
def read_file(filename): """ Read a file and return its binary content. \n @param filename : filename as string. \n @return data as bytes """ with open(filename, mode='rb') as file: file_content = file.read() return file_content
2417aa5cfa0d43303f9f6103e8b1fee9e8d652e2
3,654,916
def getdictkeys(value): """ Returns the ordered keys of a dict """ if type(value) == dict: keys = list(value.keys()) keys.sort(key=toint) return keys return []
adf49dbfa46f5174aa1435756c6e099b08b7c6c9
3,654,917
def exp_lr_scheduler(optimizer, epoch, init_lr=5e-3, lr_decay_epoch=40): """Decay learning rate by a factor of 0.1 every lr_decay_epoch epochs.""" lr = init_lr * (0.1**(epoch // lr_decay_epoch)) if epoch % lr_decay_epoch == 0: print('LR is set to {}'.format(lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr return optimizer
520a7960ee589e033920cf182d75ea896cc8b8b7
3,654,918
from datetime import datetime import os def _check_draw_graph(graph_file): """Check whether the specified graph file should be redrawn. Currently we use the following heuristic: (1) if graph is older than N minutes, redraw it; (2) if admin has active session(s), redraw on every cron run (we detect this by ajax active timestamp). We could also redraw if an interesting parameter has changed (user or s2s count, license limits, timezones, etc). But because these entail RRD accesses, we just use the simpler heuristic above. """ now = datetime.datetime.utcnow() # consider ajax "off-line" if timestamp older than this (or negative) ajax_limit = datetime.timedelta(0, 5*60, 0) # XXX: constants? # redraw graphs if graph age below zero or over limit below graph_zero = datetime.timedelta(0, 0, 0) graph_maxage = datetime.timedelta(0, 15*60, 0) # XXX: constants? if helpers.check_marker_file(constants.WEBUI_ADMIN_ACTIVE_TIMESTAMP): dt = helpers.read_datetime_marker_file(constants.WEBUI_ADMIN_ACTIVE_TIMESTAMP) diff = now - dt if diff < ajax_limit: # ajax active, draw _log.info('ajax active, redraw graph %s' % graph_file) return True else: # fall through, check graph file pass if os.path.exists(graph_file): mtime = datetime.datetime.utcfromtimestamp(os.stat(graph_file).st_mtime) diff = now - mtime if (diff < graph_zero) or (diff > graph_maxage): # bogus or too old, redraw _log.info('graph too old, redraw graph %s' % graph_file) return True else: _log.info('graph not too old, skipping redraw for %s' % graph_file) return False # no graph file, redraw always _log.info('graph does not exist, redraw graph %s' % graph_file) return True
8a1b48f3e38c4cd6e52a6515e11088cb1c35eb0f
3,654,919
def random_shadow(image): """ Function to add shadow in images randomly at random places, Random shadows meant to make the Convolution model learn Lanes and lane curvature patterns effectively in dissimilar places. """ if np.random.rand() < 0.5: # (x1, y1) and (x2, y2) forms a line # xm, ym gives all the locations of the image x1, y1 = image.shape[1] * np.random.rand(), 0 x2, y2 = image.shape[1] * np.random.rand(), image.shape[0] xm, ym = np.mgrid[0:image.shape[0], 0:image.shape[1]] mask = np.zeros_like(image[:, :, 1]) mask[(ym - y1) * (x2 - x1) - (y2 - y1) * (xm - x1) > 0] = 1 # choose which side should have shadow and adjust saturation cond = mask == np.random.randint(2) s_ratio = np.random.uniform(low=0.2, high=0.5) # adjust Saturation in HLS(Hue, Light, Saturation) hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS) hls[:, :, 1][cond] = hls[:, :, 1][cond] * s_ratio return cv2.cvtColor(hls, cv2.COLOR_HLS2RGB) else: return image
118fbffa04bbd3551eff3f4298ba14235b00b7c3
3,654,920
def build_channel_header(type, tx_id, channel_id, timestamp, epoch=0, extension=None, tls_cert_hash=None): """Build channel header. Args: type (common_pb2.HeaderType): type tx_id (str): transaction id channel_id (str): channel id timestamp (grpc.timestamp): timestamp epoch (int): epoch extension: extension Returns: common_proto.Header instance """ channel_header = common_pb2.ChannelHeader() channel_header.type = type channel_header.version = 1 channel_header.channel_id = proto_str(channel_id) channel_header.tx_id = proto_str(tx_id) channel_header.epoch = epoch channel_header.timestamp.CopyFrom(timestamp) if tls_cert_hash: channel_header.tls_cert_hash = tls_cert_hash if extension: channel_header.extension = extension return channel_header
cfd7524de77a61fe75d3b3be58e2ebde4d743393
3,654,921
def get_character(data, index): """Return one byte from data as a signed char. Args: data (list): raw data from sensor index (int): index entry from which to read data Returns: int: extracted signed char value """ result = data[index] if result > 127: result -= 256 return result
5a08102cb9dc8ae7e2adcab9b5653b77ee2c6ae3
3,654,922
def df_to_embed(df, img_folder): """ Extract image embeddings, sentence embeddings and concatenated embeddings from dataset and image folders :param df: dataset file to use :param img_folder: folder where the corresponding images are stored :return: tuple containing sentence embeddings, image embeddings, concatenated embeddings """ sent_embed = extract_all_sentences(df) img_embed = extract_all_images("xception", img_folder) concat = np.concatenate((sent_embed, img_embed), axis=1) return sent_embed, img_embed, concat
cda55f06a74c1b0475bc6a9e35e657b4f3ce0392
3,654,923
from sys import path import pickle def load_release_data(): """ Load the release data. This always prints a warning if the release data contains any release data. :return: """ filen = path.join(PATH_ROOT, PATH_RELEASE_DATA) try: with open(filen, "r") as in_file: data = pickle.load(in_file) if data: print_warning("You are continuing an existing release. If this " "an error, delete the release data file and try " "again. " "Filename = %s" % filen) return data except: return {}
9ccc7d95638f2af8702065d58efd52016da27dc7
3,654,924
import random def generate_player_attributes(): """ Return a list of 53 dicts with player attributes that map to Player model fields. """ # Get player position distribution position_dist = get_position_distribution() # Get player attribute distribution attr_dist = get_attribute_distribution() # Get player names from CSV player_names = read_player_names_from_csv() player_list = [] # Generate 53 players per team for roster_spot in range(0, 53): player = {} # Set player names from parsed CSV data player['first_name'] = player_names[roster_spot][0] player['last_name'] = player_names[roster_spot][1] # Only assign player a position that isn't filled on the roster for pos, dist in position_dist.items(): if dist[0] < dist[1]: player['position'] = pos # Pick a random prototype based on position player['prototype'] = random.choice(list(attr_dist[pos])) dist[0] += 1 break else: continue # Assign player ages based on normal distribution player['age'] = int(random.gauss(1, 0.1) * random.randint(25, 35)) default_rookie_age = 22 player['experience'] = player['age'] - default_rookie_age if player['age'] < 22: player['experience'] = 0 # Generate ratings based on weights and normal distribution base_rating = int(random.gauss(70, 20)) position, prototype = player['position'], player['prototype'] pos_weights = attr_dist[position][prototype] # Apply position and prototype weights after_pos_weights = [] for pw in range(len(pos_weights)): after_pos_weights.append(pos_weights[pw] + base_rating) # Sigmas for standard deviation sigmas = [20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20] final_ratings = list(map(random.gauss, after_pos_weights, sigmas)) i = 0 calc_overall = [] # Assign final ratings to player key for attribute in ('potential', 'confidence', 'iq', 'speed', 'strength', 'agility', 'awareness', 'stamina', 'injury', 'run_off', 'pass_off', 'special_off', 'run_def', 'pass_def', 'special_def'): rating = int(final_ratings[i]) if rating > 99: rating = 99 elif rating < 0: rating = 0 player[attribute] = rating calc_overall.append(rating) i += 1 # Calculate overall rating and add player to list player['overall_rating'] = int(sum(calc_overall) / len(calc_overall)) player_list.append(player) return player_list
57c16d998348b9db1384dc98412bd69e62d0c73d
3,654,925
def colour_from_loadings(loadings, maxLoading=None, baseColor="#FF0000"): """Computes colors given loading values. Given an array of loading values (loadings), returns an array of colors that graphviz can understand that can be used to colour the nodes. The node with the greatest loading uses baseColor, and a node with zero loading uses white (#FFFFFF). This is achieved through clever sneaky use of the alpha channel.""" if maxLoading is None: maxLoading = max(loadings) return [baseColor + hex(int(loading / maxLoading * 255))[2:] for loading in loadings]
8bd65e5b4aa54558d3710a8518bbbe6400559046
3,654,926
def determineDocument(pdf): """ Scans the pdf document for certain text lines and determines the type of investment vehicle traded""" if 'turbop' in pdf or 'turboc' in pdf: return 'certificate' elif 'minil' in pdf: return 'certificate' elif 'call' in pdf or 'put' in pdf: return 'warrant' else: return 'stock'
e6c5adc10168321fd6a534dd8e9fbf2e8ccb1615
3,654,927
import argparse def setup_parser() -> argparse.ArgumentParser: """Set default values and handle arg parser""" parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description="wlanpi-core provides backend services for the WLAN Pi. Read the manual with: man wlanpi-core", ) parser.add_argument( "--reload", dest="livereload", action="store_true", default=False ) parser.add_argument( "--version", "-V", "-v", action="version", version=f"{__version__}" ) return parser
7144ee5d790fbf703e0809d43122e1e94cd68378
3,654,928
from typing import Any import pickle def deserialize_api_types(class_name: str, d: dict) -> Any: """ Deserializes an API type. Allowed classes are defined in: * :mod:`maestral.core` * :mod:`maestral.model` * :mod:`maestral.exceptions` :param class_name: Name of class to deserialize. :param d: Dictionary of serialized class. :returns: Deserialized object. """ bytes_message = serpent.tobytes(d["object"]) check_signature(d["signature"], bytes_message) return pickle.loads(bytes_message)
f9c3962a1c18bd6dfb385af37e90b5062d1e0eef
3,654,929
from click.testing import CliRunner def runner() -> CliRunner: """Fixture for invoking command-line interfaces.""" return testing.CliRunner()
39f241b8192a3c06750e850c8c953822e4db5634
3,654,930
import torch import os def cal_quant_model_accuracy(model, gpu_index, val_loader, args, config_file, record_file): """Save the quantized model and infer the accuracy of the quantized model.""" torch.save({'state_dict': model.state_dict()}, os.path.join(TMP, 'model_best.pth.tar')) print('==> AMCT step3: save_quant_retrain_model..') quantized_pb_path = os.path.join(OUTPUTS, 'ResNet101') amct.save_quant_retrain_model( config_file, model, record_file, quantized_pb_path, get_input_data([(1, 3, SIZE, SIZE)], model), input_names=['input'], output_names=['output'], dynamic_axes={'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}}) print("=> validating fake quant model") quant_top1, quant_top5 = validate_onnx( val_loader, ''.join([quantized_pb_path, '_fake_quant_model.onnx']), args.print_freq) return quant_top1, quant_top5
e3bbc5e26a6824cd7a9d494348441a611a9f6b9d
3,654,931
import math def give_color_to_direction_dynamic(dir): """ Assigns a color to the direction (dynamic-defined colors) Parameters -------------- dir Direction Returns -------------- col Color """ dir = 0.5 + 0.5 * dir norm = mpl.colors.Normalize(vmin=0, vmax=1) nodes = [0.0, 0.01, 0.25, 0.4, 0.45, 0.55, 0.75, 0.99, 1.0] colors = ["deepskyblue", "skyblue", "lightcyan", "lightgray", "gray", "lightgray", "mistyrose", "salmon", "tomato"] cmap = mpl.colors.LinearSegmentedColormap.from_list("mycmap2", list(zip(nodes, colors))) #cmap = cm.plasma m = cm.ScalarMappable(norm=norm, cmap=cmap) rgba = m.to_rgba(dir) r = get_string_from_int_below_255(math.ceil(rgba[0] * 255.0)) g = get_string_from_int_below_255(math.ceil(rgba[1] * 255.0)) b = get_string_from_int_below_255(math.ceil(rgba[2] * 255.0)) return "#" + r + g + b
ece62af230cda4870df099eae50a26b72848b2de
3,654,932
def pfilter(plugins, plugin_type=Analyser, **kwargs): """ Filter plugins by different criteria """ if isinstance(plugins, models.Plugins): plugins = plugins.plugins elif isinstance(plugins, dict): plugins = plugins.values() logger.debug('#' * 100) logger.debug('plugin_type {}'.format(plugin_type)) if plugin_type: if isinstance(plugin_type, PluginMeta): plugin_type = plugin_type.__name__ try: plugin_type = plugin_type[0].upper() + plugin_type[1:] pclass = globals()[plugin_type] logger.debug('Class: {}'.format(pclass)) candidates = filter(lambda x: isinstance(x, pclass), plugins) except KeyError: raise models.Error('{} is not a valid type'.format(plugin_type)) else: candidates = plugins if 'name' in kwargs: kwargs['name'] = kwargs['name'].lower() logger.debug(candidates) def matches(plug): res = all(getattr(plug, k, None) == v for (k, v) in kwargs.items()) logger.debug("matching {} with {}: {}".format(plug.name, kwargs, res)) return res if kwargs: candidates = filter(matches, candidates) return candidates
8a291743e410ca98716c8f71a87346ca1e86115f
3,654,933
import subprocess def tmux_session_detection(session_name: str) -> bool: """ Function checks if session already exists. """ cmd = ['tmux', 'has-session', '-t', session_name] result = subprocess.call(cmd, stderr=subprocess.DEVNULL) if result == 0: return True else: return False
275d85e087fa271c76fe44f2a67ea4c719e0c031
3,654,934
def prune_arms(active_arms, sample_arms, verbose=False): """Remove all arms from ``active_arms`` that have an allocation less than two standard deviations below the current best arm. :param active_arms: list of coordinate-tuples corresponding to arms/cohorts currently being sampled :type active_arms: list of tuple :param sample_arms: all arms from prev and current cohorts, keyed by coordinate-tuples Arm refers specifically to a :class:`moe.bandit.data_containers.SampleArm` :type sample_arms: dict :param verbose: whether to print status messages to stdout :type verbose: bool :return: list of coordinate-tuples that are the *well-performing* members of ``active_arms`` length is at least 1 and at most ``len(active_arms)`` :rtype: list of tuple """ # Find all active sample arms active_sample_arms = {} for active_arm in active_arms: active_sample_arms[active_arm] = sample_arms[active_arm] # Find the best arm # Our objective is a relative CTR, so status_quo is 0.0; we # know that the best arm cannot be worse than status_quo best_arm_val = 0.0 for sample_arm_point, sample_arm in active_sample_arms.iteritems(): arm_value, arm_variance = objective_function( sample_arm, sample_arms[tuple(STATUS_QUO_PARAMETER)], ) if arm_value > best_arm_val: best_arm_val = arm_value # Remove all arms that are more than two standard deviations worse than the best arm pruned_arms = copy.copy(active_arms) for sample_arm_point, sample_arm in active_sample_arms.iteritems(): arm_value, arm_variance = objective_function( sample_arm, sample_arms[tuple(STATUS_QUO_PARAMETER)], ) if sample_arm.total > 0 and arm_value + 2.0 * numpy.sqrt(arm_variance) < best_arm_val: if verbose: print "Removing underperforming arm: {0}".format(sample_arm_point) pruned_arms.remove(sample_arm_point) return pruned_arms
bd82f77503a9f0fa6a49b9f24ce9846849544b00
3,654,935
def prepare_string(dist, digits=None, exact=False, tol=1e-9, show_mask=False, str_outcomes=False): """ Prepares a distribution for a string representation. Parameters ---------- dist : distribution The distribution to be stringified. digits : int or None The probabilities will be rounded to the specified number of digits, using NumPy's around function. If `None`, then no rounding is performed. Note, if the number of digits is greater than the precision of the floats, then the resultant number of digits will match that smaller precision. exact : bool If `True`, then linear probabilities will be displayed, even if the underlying pmf contains log probabilities. The closest rational fraction within a tolerance specified by `tol` is used as the display value. tol : float If `exact` is `True`, then the probabilities will be displayed as the closest rational fraction within `tol`. show_mask : bool If `True`, show the mask for marginal distributions. str_outcomes : bool If `True`, then attempt to convert outcomes which are tuples to just strings. This is only a dislplay technique. Returns ------- pmf : sequence The formatted pmf. This could be a NumPy array (possibly rounded) or a list of Fraction instances. outcomes : sequence The formated outcomes. base : str or float The base of the formatted pmf. colsep : str The column separation for printing. max_length : int The length of the largest outcome, as a string. pstr : str A informative string representing the probability of an outcome. This will be 'p(x)' xor 'log p(x)'. """ colsep = ' ' # Create outcomes with wildcards, if desired and possible. if show_mask: if not dist.is_joint(): msg = '`show_mask` can be `True` only for joint distributions' raise ditException(msg) if show_mask not in [True, False]: # The user is specifying what the mask should look like. wc = show_mask else: wc = '*' ctor = dist._outcome_ctor def outcome_wc(outcome): """ Builds the wildcarded outcome. """ i = 0 e = [] for is_masked in dist._mask: if is_masked: symbol = wc else: symbol = outcome[i] i += 1 e.append(symbol) e = ctor(e) return e outcomes = map(outcome_wc, dist.outcomes) else: outcomes = dist.outcomes # Convert outcomes to strings, if desired and possible. if str_outcomes: if not dist.is_joint(): msg = '`str_outcomes` can be `True` only for joint distributions' raise ditException(msg) try: # First, convert the elements of the outcome to strings. outcomes_ = [map(str, outcome) for outcome in outcomes] # Now convert the entire outcome to a string outcomes_ = map(lambda o: ''.join(o), outcomes_) # Force the iterators to expand in case there are exceptions. outcomes = list(outcomes_) except: outcomes = map(str, outcomes) else: outcomes = map(str, outcomes) outcomes = list(outcomes) if len(outcomes): max_length = max(map(len, outcomes)) else: max_length = 0 # 1) Convert to linear probabilities, if necessary. if exact: # Copy to avoid precision loss d = dist.copy(base='linear') else: d = dist # 2) Round, if necessary, possibly after converting to linear probabilities. if digits is not None and digits is not False: pmf = d.pmf.round(digits) else: pmf = d.pmf # 3) Construct fractions, if necessary. if exact: pmf = [approximate_fraction(x, tol) for x in pmf] if d.is_log(): pstr = 'log p(x)' else: pstr = 'p(x)' base = d.get_base() return pmf, outcomes, base, colsep, max_length, pstr
09abba1e5027049b9a43cb83e8de6f95daf5b431
3,654,936
def verifier(func): """ Creates a `Verifier` by given specifier. Parameters ---------- func: callable, [callable], (str, callable), [(str, callable)] The specifier of `Verifier` which can take various forms and determines the attributes and behaviors of `Verifier`. When it is declared as a list having a specifier, the `Verifier` deals with an input as iterable object and tries to apply inner verifying function to each value. If a tuple of string and callable is given, the string is used as the name of the `Verifier`. Otherwise, its name is determined by `__name__` attribute of the callable object. The callable should be a function taking an input and returns boolean value representing the result of the verification. Returns ------- Verifier Created `Verifier`. """ func, is_iter = (func[0], True) if isinstance(func, list) else (func, False) if isinstance(func, Verifier): return func elif isinstance(func, Variable): return func._verifier elif isinstance(func, partial): ff, n, t_in, t_out, args, kwargs = analyze_specifier(func, (), {}) return Verifier(n, func, is_iter, *args, **kwargs) elif callable(func): return Verifier(func.__name__, func, is_iter) elif isinstance(func, tuple): ff, n, t_in, t_out, args, kwargs = analyze_specifier(func[1], (), {}) return Verifier(func[0], func[1], is_iter, *args, **kwargs) else: raise TypeError("Given value is not valid Verifier specifier.")
665bc9cf5039e568fb2325a1cf0a25f72311eab8
3,654,937
import os def obtain_celeba_images(n_people:int) -> pd.DataFrame: """ Unique labels: 10,177 It is expected for the structure to be as following: <CELEBA_PATH>/ ├─ identity_CelebA.txt ├─ img_align_celeba/ ├─<images> * 'identity_CelebA.txt' is the downloaded identity text annotations without change from the dataset. * 'img_align_celeba' is the folder with all the downloaded images. @returns a pandas DataFrame of a n size sample with the following cols: - path: path to the location of the image - label: name of the person within the image """ df = pd.read_csv( os.path.join(CELEBA_PATH, "identity_CelebA.txt"), names = ["path", "label"], sep=' ' ) # Extract according to unique number of people df = extract_people_images(df, n_people) root = os.path.join(CELEBA_PATH, "img_align_celeba/") df["path"] = root + df["path"] return df
dcaa72c6ef32939dd55ba62a05bcbfba35236402
3,654,938
def get_add_diff_file_list(git_folder): """List of new files. """ repo = Repo(str(git_folder)) repo.git.add("sdk") output = repo.git.diff("HEAD", "--name-only") return output.splitlines()
af6ff7ffb076fb382aaa946e11e473f2f45bad0e
3,654,939
from PIL import Image import os def _save_qr_code(qr_code: str, filepath: str = qr_path, filename: str = qr_name) -> str: """Use it for save QrCode from web.whatsapp.com (copied as string) to PNG file to your path and your filename. :param qr_code: QrCode string from web.whatsapp.com. :param filepath: Your path for saving file. :param filename: Your name for file. :return: Absolute path to saved file. """ path = os.path.join(filepath, filename) background = Image.new('RGB', (background_width, background_height), color='white') img = qrcode.make(qr_code) img_w, img_h = img.size bg_w, bg_h = background.size offset = ((bg_w - img_w) // 2, (bg_h - img_h) // 2) background.paste(img, offset) background.save(path) return path
fa5118f00b3174235fe455c678e08ee5d460fe2d
3,654,940
def has_read_perm(user, group, is_member, is_private): """ Return True if the user has permission to *read* Articles, False otherwise. """ if (group is None) or (is_member is None) or is_member(user, group): return True if (is_private is not None) and is_private(group): return False return True
6c1bc51abd50a5af76e16e7723957c758822c988
3,654,941
import tempfile import os import shutil def _create_docker_build_ctx( launch_project: LaunchProject, dockerfile_contents: str, ) -> str: """Creates build context temp dir containing Dockerfile and project code, returning path to temp dir.""" directory = tempfile.mkdtemp() dst_path = os.path.join(directory, "src") assert launch_project.project_dir is not None shutil.copytree( src=launch_project.project_dir, dst=dst_path, symlinks=True, ) shutil.copy( os.path.join(os.path.dirname(__file__), "templates", "_wandb_bootstrap.py"), os.path.join(directory), ) if launch_project.python_version: runtime_path = os.path.join(dst_path, "runtime.txt") with open(runtime_path, "w") as fp: fp.write(f"python-{launch_project.python_version}") # TODO: we likely don't need to pass the whole git repo into the container # with open(os.path.join(directory, ".dockerignore"), "w") as f: # f.write("**/.git") with open(os.path.join(directory, _GENERATED_DOCKERFILE_NAME), "w") as handle: handle.write(dockerfile_contents) return directory
3c5fc48d025494c2f92b07a5700b827382945d29
3,654,942
def normalize_df(dataframe, columns): """ normalized all columns passed to zero mean and unit variance, returns a full data set :param dataframe: the dataframe to normalize :param columns: all columns in the df that should be normalized :return: the data, centered around 0 and divided by it's standard deviation """ for column in columns: data = dataframe.loc[:, column].values sd = np.std(data) mean = np.mean(data) dataframe.loc[:, column] = (data - mean) / sd return dataframe
39b23a6f11794323f1d732396021d669410c7de1
3,654,943
import json def PeekTrybotImage(chromeos_root, buildbucket_id): """Get the artifact URL of a given tryjob. Args: buildbucket_id: buildbucket-id chromeos_root: root dir of chrome os checkout Returns: (status, url) where status can be 'pass', 'fail', 'running', and url looks like: gs://chromeos-image-archive/trybot-elm-release-tryjob/R67-10468.0.0-b20789 """ command = ( 'cros buildresult --report json --buildbucket-id %s' % buildbucket_id) rc, out, _ = RunCommandInPath(chromeos_root, command) # Current implementation of cros buildresult returns fail when a job is still # running. if rc != 0: return ('running', None) results = json.loads(out)[buildbucket_id] return (results['status'], results['artifacts_url'].rstrip('/'))
c74b7c5a120d3d489e6990bd03e74bb0d22fea27
3,654,944
def frozenset_code_repr(value: frozenset) -> CodeRepresentation: """ Gets the code representation for a frozenset. :param value: The frozenset. :return: It's code representation. """ return container_code_repr("frozenset({", "})", ((el,) for el in value), lambda el: el)
b4a3b283c7d21d0ae888c588471f9dea650215fb
3,654,945
def SRMI(df, n): """ MI修正指标 Args: df (pandas.DataFrame): Dataframe格式的K线序列 n (int): 参数n Returns: pandas.DataFrame: 返回的DataFrame包含2列, 是"a", "mi", 分别代表A值和MI值 Example:: # 获取 CFFEX.IF1903 合约的MI修正指标 from tqsdk import TqApi, TqSim from tqsdk.ta import SRMI api = TqApi(TqSim()) klines = api.get_kline_serial("CFFEX.IF1903", 24 * 60 * 60) srmi = SRMI(klines, 9) print(list(srmi["a"])) print(list(srmi["mi"])) # 预计的输出是这样的: [..., 0.10362397961836425, 0.07062591892459567, -0.03341929372138309, ...] [..., 0.07583104758041452, 0.0752526999519902, 0.06317803398828206, ...] """ new_df = pd.DataFrame() new_df["a"] = np.where(df["close"] < df["close"].shift(n), (df["close"] - df["close"].shift(n)) / df["close"].shift(n), np.where(df["close"] == df["close"].shift(n), 0, (df["close"] - df["close"].shift(n)) / df["close"])) new_df["mi"] = tafunc.sma(new_df["a"], n, 1) return new_df
29726385da068446cd3dd3ee13f8d95b88c36245
3,654,946
def get_purchase_rows(*args, **kwargs): """ 获取列表 :param args: :param kwargs: :return: """ return db_instance.get_rows(Purchase, *args, **kwargs)
505ace358b619a736bc7a71139e307110cd7c27d
3,654,947
def depart_delete(request): """ 删除部门 """ nid = request.GET.get('nid') models.Department.objects.filter(id=nid).delete() return redirect("/depart/list/")
753c01771ad59b789f324a0cb95e94dcf9e48e9d
3,654,948
def create_condor_scheduler(name, host, username=None, password=None, private_key_path=None, private_key_pass=None): """ Creates a new condor scheduler Args: name (str): The name of the scheduler host (str): The hostname or IP address of the scheduler username (str, optional): The username to use when connecting to the scheduler password (str, optional): The password for the username private_key_path (str, optional): The path to the location of the SSH private key file private_key_pass (str, optional): The passphrase for the private key Returns: The newly created condor scheduler Note: The newly created condor scheduler object is not committed to the database. """ condor_scheduler = CondorScheduler(name, host, username=username, password=password, private_key_path=private_key_path, private_key_pass=private_key_pass) return condor_scheduler
d47c8c69fea249139698564b52520d95fbb1a75f
3,654,949
from meerschaum.config._edit import general_edit_config from typing import Optional from typing import List def edit_stack( action : Optional[List[str]] = None, debug : bool = False, **kw ): """ Open docker-compose.yaml or .env for editing """ if action is None: action = [] files = { 'compose' : STACK_COMPOSE_PATH, 'docker-compose' : STACK_COMPOSE_PATH, 'docker-compose.yaml' : STACK_COMPOSE_PATH, } return general_edit_config(action=action, files=files, default='compose', debug=debug)
b9d969040daf30924f72fafca71980ed3ec153b6
3,654,950
def dot_to_underscore(instring): """Replace dots with underscores""" return instring.replace(".", "_")
cf9441702ffb128678a031eabb4fa48be881cae5
3,654,951
def get_birthday_weekday(current_weekday: int, current_day: int, birthday_day: int) -> int: """Return the day of the week it will be on birthday_day, given that the day of the week is current_weekday and the day of the year is current_day. current_weekday is the current day of the week and is in the range 1-7, indicating whether today is Sunday (1), Monday (2), ..., Saturday (7). current_day and birthday_day are both in the range 1-365. >>> get_birthday_weekday(5, 3, 4) 6 >>> get_birthday_weekday(5, 3, 116) 6 >>> get_birthday_weekday(6, 116, 3) 5 """ days_diff = days_difference(current_day, birthday_day) return get_weekday(current_weekday, days_diff)
5b4ba9f2a0efcdb9f150b421c21bb689604fbb11
3,654,952
import matlab.engine import os def matlab_kcit(X: np.ndarray, Y: np.ndarray, Z: np.ndarray, seed: int = None, matlab_engine_instance=None, installed_at=None): """Python-wrapper for original implementation of KCIT by Zhang et al. (2011) References ---------- Zhang, K., Peters, J., Janzing, D., & Schölkopf, B. (2011). Kernel-based Conditional Independence Test and Application in Causal Discovery. In Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (pp. 804–813). Corvallis, Oregon: AUAI Press. """ not_given = matlab_engine_instance is None try: if not_given: matlab_engine_instance = matlab.engine.start_matlab() dir_at = os.path.expanduser(installed_at) matlab_engine_instance.addpath(matlab_engine_instance.genpath(dir_at)) if seed is not None: matlab_engine_instance.RandStream.setGlobalStream(matlab_engine_instance.RandStream('mcg16807', 'Seed', seed)) statistic, v2, boot_p_value, v3, appr_p_value = matlab_engine_instance.CInd_test_new_withGP(np2matlab(X), np2matlab(Y), np2matlab(Z), 0.01, 0, nargout=5) return statistic, v2, boot_p_value, v3, appr_p_value finally: if not_given and matlab_engine_instance is not None: matlab_engine_instance.quit()
0b941742ad4c8c31009064c29bfc003767aad098
3,654,953
def _check(err, msg=""): """Raise error for non-zero error codes.""" if err < 0: msg += ': ' if msg else '' if err == _lib.paUnanticipatedHostError: info = _lib.Pa_GetLastHostErrorInfo() hostapi = _lib.Pa_HostApiTypeIdToHostApiIndex(info.hostApiType) msg += 'Unanticipated host API {0} error {1}: {2!r}'.format( hostapi, info.errorCode, _ffi.string(info.errorText).decode()) else: msg += _ffi.string(_lib.Pa_GetErrorText(err)).decode() raise PortAudioError(msg) return err
2f0b2ccd055bbad814e48b451eb72c60e62f9273
3,654,954
def RunPackage(output_dir, target, package_path, package_name, package_deps, package_args, args): """Copies the Fuchsia package at |package_path| to the target, executes it with |package_args|, and symbolizes its output. output_dir: The path containing the build output files. target: The deployment Target object that will run the package. package_path: The path to the .far package file. package_name: The name of app specified by package metadata. package_args: The arguments which will be passed to the Fuchsia process. args: Structure of arguments to configure how the package will be run. Returns the exit code of the remote package process.""" system_logger = ( _AttachKernelLogReader(target) if args.system_logging else None) try: if system_logger: # Spin up a thread to asynchronously dump the system log to stdout # for easier diagnoses of early, pre-execution failures. log_output_quit_event = multiprocessing.Event() log_output_thread = threading.Thread( target=lambda: _DrainStreamToStdout(system_logger.stdout, log_output_quit_event)) log_output_thread.daemon = True log_output_thread.start() tuf_root = tempfile.mkdtemp() pm_serve_task = None # Publish all packages to the serving TUF repository under |tuf_root|. subprocess.check_call([PM, 'newrepo', '-repo', tuf_root]) all_packages = [package_path] + package_deps for next_package_path in all_packages: PublishPackage(tuf_root, next_package_path) # Serve the |tuf_root| using 'pm serve' and configure the target to pull # from it. # TODO(kmarshall): Use -q to suppress pm serve output once blob push # is confirmed to be running stably on bots. serve_port = common.GetAvailableTcpPort() pm_serve_task = subprocess.Popen( [PM, 'serve', '-d', os.path.join(tuf_root, 'repository'), '-l', ':%d' % serve_port, '-q']) remote_port = common.ConnectPortForwardingTask(target, serve_port, 0) _RegisterAmberRepository(target, tuf_root, remote_port) # Install all packages. for next_package_path in all_packages: install_package_name, package_version = GetPackageInfo(next_package_path) logging.info('Installing %s version %s.' % (install_package_name, package_version)) return_code = target.RunCommand(['amber_ctl', 'get_up', '-n', install_package_name, '-v', package_version], timeout_secs=_INSTALL_TIMEOUT_SECS) if return_code != 0: raise Exception('Error while installing %s.' % install_package_name) if system_logger: log_output_quit_event.set() log_output_thread.join(timeout=_JOIN_TIMEOUT_SECS) if args.install_only: logging.info('Installation complete.') return logging.info('Running application.') command = ['run', _GetComponentUri(package_name)] + package_args process = target.RunCommandPiped(command, stdin=open(os.devnull, 'r'), stdout=subprocess.PIPE, stderr=subprocess.STDOUT) if system_logger: output_fd = MergedInputStream([process.stdout, system_logger.stdout]).Start() else: output_fd = process.stdout.fileno() # Run the log data through the symbolizer process. build_ids_path = os.path.join(os.path.dirname(package_path), 'ids.txt') output_stream = SymbolizerFilter(output_fd, build_ids_path) for next_line in output_stream: print next_line.rstrip() process.wait() if process.returncode == 0: logging.info('Process exited normally with status code 0.') else: # The test runner returns an error status code if *any* tests fail, # so we should proceed anyway. logging.warning('Process exited with status code %d.' % process.returncode) finally: if system_logger: logging.info('Terminating kernel log reader.') log_output_quit_event.set() log_output_thread.join() system_logger.kill() _UnregisterAmberRepository(target) if pm_serve_task: pm_serve_task.kill() shutil.rmtree(tuf_root) return process.returncode
f5251fdbef0a209aa4bfa97a99085cae91acf3e3
3,654,955
def make_flood_fill_unet(input_fov_shape, output_fov_shape, network_config): """Construct a U-net flood filling network. """ image_input = Input(shape=tuple(input_fov_shape) + (1,), dtype='float32', name='image_input') if network_config.rescale_image: ffn = Lambda(lambda x: (x - 0.5) * 2.0)(image_input) else: ffn = image_input mask_input = Input(shape=tuple(input_fov_shape) + (1,), dtype='float32', name='mask_input') ffn = concatenate([ffn, mask_input]) # Note that since the Keras 2 upgrade strangely models with depth > 3 are # rejected by TF. ffn = add_unet_layer(ffn, network_config, network_config.unet_depth - 1, output_fov_shape, n_channels=network_config.convolution_filters) mask_output = Conv3D( 1, (1, 1, 1), kernel_initializer=network_config.initialization, padding=network_config.convolution_padding, name='mask_output', activation=network_config.output_activation)(ffn) ffn = Model(inputs=[image_input, mask_input], outputs=[mask_output]) return ffn
ff8c90b3eecc26384b33fd64afa0a2c4dd44b82d
3,654,956
def FRAC(total): """Returns a function that shows the average percentage of the values from the total given.""" def realFrac(values, unit): r = toString(sum(values) / len(values) / total * 100) r += '%' if max(values) > min(values): r += ' avg' return [r] return realFrac
41946163d5c185d1188f71d615a67d72e6eaee4f
3,654,957
def get_min_max(ints): """ Return a tuple(min, max) out of list of unsorted integers. Args: ints(list): list of integers containing one or more integers """ if len(ints) == 0: return (None, None) low = ints[0] high = ints[0] for i in ints: if i < low: low = i elif i > high: high = i return (low, high)
14c7d4cc73947c8de38bb598e295d9a1b4b7e5f6
3,654,958
def gen_sweep_pts(start: float=None, stop: float=None, center: float=0, span: float=None, num: int=None, step: float=None, endpoint=True): """ Generates an array of sweep points based on different types of input arguments. Boundaries of the array can be specified using either start/stop or using center/span. The points can be specified using either num or step. Args: start (float) : start of the array stop (float) : end of the array center (float) : center of the array N.B. 0 is chosen as a sensible default for the span. it is argued that no such sensible default exists for the other types of input. span (float) : span the total range of values to span num (int) : number of points in the array step (float) : the stepsize between points in the array endpoint (bool): whether to include the endpoint """ if (start is not None) and (stop is not None): if num is not None: return np.linspace(start, stop, num, endpoint=endpoint) elif step is not None: # numpy arange does not natively support endpoint return np.arange(start, stop + endpoint*step/100, step) else: raise ValueError('Either "num" or "step" must be specified') elif (center is not None) and (span is not None): if num is not None: return span_num(center, span, num, endpoint=endpoint) elif step is not None: return span_step(center, span, step, endpoint=endpoint) else: raise ValueError('Either "num" or "step" must be specified') else: raise ValueError('Either ("start" and "stop") or ' '("center" and "span") must be specified')
fb67623acfea433331babf7b7e1217cfa4e9e7ae
3,654,959
def set_lang_owner(cursor, lang, owner): """Set language owner. Args: cursor (cursor): psycopg2 cursor object. lang (str): language name. owner (str): name of new owner. """ query = "ALTER LANGUAGE \"%s\" OWNER TO \"%s\"" % (lang, owner) executed_queries.append(query) cursor.execute(query) return True
07cf4a33ca766a8ccf468f59d33318bab88c4529
3,654,960
def rstrip_tuple(t: tuple): """Remove trailing zeroes in `t`.""" if not t or t[-1]: return t right = len(t) - 1 while right > 0 and t[right - 1] == 0: right -= 1 return t[:right]
a10e74ea4a305d588fbd1555f32dda1d4b95266e
3,654,961
def _calc_active_face_flux_divergence_at_node(grid, unit_flux_at_faces, out=None): """Calculate divergence of face-based fluxes at nodes (active faces only). Given a flux per unit width across each face in the grid, calculate the net outflux (or influx, if negative) divided by cell area, at each node that lies within a cell. Construction:: _calc_active_face_flux_divergence_at_node(grid, unit_flux_at_faces, out=None) Parameters ---------- grid : ModelGrid A ModelGrid. unit_flux_at_faces : ndarray or field name (x number of faces) Flux per unit width associated with faces. out : ndarray (x number of nodes), optional Buffer to hold the result. Returns ------- ndarray (x number of nodes) Flux divergence at nodes. Examples -------- >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY >>> rg = RasterModelGrid(3, 4, 10.0) >>> z = rg.add_zeros('node', 'topographic__elevation') >>> z[5] = 50.0 >>> z[6] = 36.0 >>> fg = rg.calc_grad_at_link(z)[rg.link_at_face] # there are 7 faces >>> fg array([ 5. , 3.6, 5. , -1.4, -3.6, -5. , -3.6]) >>> _calc_active_face_flux_divergence_at_node(rg, -fg) array([ 0. , 0. , 0. , 0. , 0. , 1.64, 0.94, 0. , 0. , 0. , 0. , 0. ]) >>> rg.set_status_at_node_on_edges(right=CLOSED_BOUNDARY) >>> rg.set_status_at_node_on_edges(top=CLOSED_BOUNDARY) >>> _calc_active_face_flux_divergence_at_node(rg, -fg) array([ 0. , 0. , 0. , 0. , 0. , 1.14, 0.22, 0. , 0. , 0. , 0. , 0. ]) Notes ----- Performs a numerical flux divergence operation on cells, and returns the result in an array of length equal to the number of nodes. Nodes without cells (those on the grid perimeter) are not affected (i.e., their value is either zero, or if `out` is given, whatever the prior value in `out` was). """ if out is None: out = grid.zeros(at='node') out[grid.node_at_cell] = \ _calc_net_active_face_flux_at_cell(grid, unit_flux_at_faces) \ / grid.area_of_cell return out
82c485935a3190c07ab12f7c838d52f5fecb78d0
3,654,962
def get_EL(overlaps): """ a) 1 +++++++++|---|--- 2 --|---|++++++++++ b) 1 ---|---|+++++++++++++ 2 ++++++++++|---|--- """ EL1a = overlaps['query_start'] EL2a = overlaps['target_len'] - overlaps['target_end'] - 1 EL1b = overlaps['query_len'] - overlaps['query_end'] - 1 EL2b = overlaps['target_start'] final_EL = [] for i in range(overlaps.shape[0]): if extend_right(overlaps['query_end'][i], overlaps['query_len'][i], overlaps['target_end'][i], overlaps['target_len'][i]): final_EL.append([EL1b[i], EL2b[i]]) elif extend_left(overlaps['query_start'][i], overlaps['target_start'][i]): final_EL.append([EL1a[i], EL2a[i]]) else: # TODO filtriraj one koji uopce ne produzuju nista ni sa jedne strane continue final_EL = np.array(final_EL).reshape(-1,2) return np.split(final_EL, 2, axis=1)
c0416091ecbfe40110fcda75cf12aae411cc4eba
3,654,963
from typing import NoReturn def get_line(prompt: str = '') -> Effect[HasConsole, NoReturn, str]: """ Get an `Effect` that reads a `str` from stdin Example: >>> class Env: ... console = Console() >>> greeting = lambda name: f'Hello {name}!' >>> get_line('What is your name? ').map(greeting).run(Env()) name? # input e.g 'John Doe' 'Hello John Doe!' Args: prompt: prompt to display in console Return: an `Effect` that produces a `str` read from stdin """ return depend(HasConsole).and_then(lambda env: env.console.input(prompt))
47c58bb6ab794fdf789f0812dc1dc6d977106b60
3,654,964
def reconstruct_wave(*args: ndarray, kwargs_istft, n_sample=-1) -> ndarray: """ construct time-domain wave from complex spectrogram Args: *args: the complex spectrogram. kwargs_istft: arguments of Inverse STFT. n_sample: expected audio length. Returns: audio (numpy) """ if len(args) == 1: spec = args[0].squeeze() mag = None phase = None assert np.iscomplexobj(spec) elif len(args) == 2: spec = None mag = args[0].squeeze() phase = args[1].squeeze() assert np.isrealobj(mag) and np.isrealobj(phase) else: raise ValueError kwarg_len = dict(length=n_sample) if n_sample != -1 else dict() if spec is None: spec = mag * np.exp(1j * phase) wave = librosa.istft(spec, **kwargs_istft, **kwarg_len) return wave
8624602efe1ab90304da05c602fb46ac52ec86e0
3,654,965
def perfect_score(student_info): """ :param student_info: list of [<student name>, <score>] lists :return: first `[<student name>, 100]` or `[]` if no student score of 100 is found. """ # first = [] student_names = [] score = [] print (student_info) for name in student_info: print('1', 'name', name[0]) print ('2','score',name[1]) print(type(name[1])) score = int(name[1]) print(type(score)) if (score == 100 ): print('3', score) print(name) return name return first
ac7580cce134627e08764031ef2812e1b70ba00f
3,654,966
import argparse def parse_args(): """Parses command line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( "--cl_kernel_dir", type=str, default="./mace/ops/opencl/cl/", help="The cl kernels directory.") parser.add_argument( "--output_path", type=str, default="./mace/examples/codegen/opencl/opencl_encrypted_program.cc", help="The path of encrypted opencl kernels.") return parser.parse_known_args()
86b45bfeb0ebfbc4e3e4864b55736b6c5bb42954
3,654,967
def get_composite_component(current_example_row, cache, model_config): """ maps component_id to dict of {cpu_id: False, ...} :param current_example_row: :param cache: :param model_config: :return: nested mapping_dict = { #there can be multiple components component_id = { #components can be deployed on multiple servers cpu_id: False, ... }, ... } """ mapping_dict = defaultdict(lambda: {}) # for context in for column_name in model_config["components"]: allocation_name = column_name.replace("AllocationDegreeImpl:", "") context = get_element_by_identifier(element_tree=cache.get_xml_tree("allocation"), search_string=allocation_name, attribute="entityName") system_id = get_linkage_id(identifier="assemblyContext_AllocationContext", element_tree=context) assembly_context = get_by_id(element=cache.get_xml_tree("system"), element_id=system_id) component = assembly_context.find("./encapsulatedComponent__AssemblyContext") if component.get(get_xml_schema_type()) == "repository:CompositeComponent": repo_id = get_linkage_id(element_tree=assembly_context, identifier="encapsulatedComponent__AssemblyContext") composite_component = get_by_id(element=cache.get_xml_tree("repository"), element_id=repo_id) for composed_structure in composite_component.findall("./assemblyContexts__ComposedStructure"): component_id = composed_structure.get("encapsulatedComponent__AssemblyContext") # check if column (with name of component) of current test data is allocated to existing server if current_example_row[column_name] in model_config["server"].keys(): # if component is allocated to existing server append allocation to list for server_id in model_config["server"]: # if component is part of composite if current_example_row[column_name] == server_id: temp_server_id = model_config["server"][current_example_row[column_name]] mapping_dict[component_id].update({temp_server_id: False}) return mapping_dict
201db2016ea59cbf4a20ce081813bfd60d58bf67
3,654,968
def presigned_url_both(filename, email): """ Return presigned urls both original image url and thumbnail image url :param filename: :param email: :return: """ prefix = "photos/{0}/".format(email_normalize(email)) prefix_thumb = "photos/{0}/thumbnails/".format(email_normalize(email)) key_thumb = "{0}{1}".format(prefix_thumb, filename) key_origin = "{0}{1}".format(prefix, filename) try: s3_client = boto3.client('s3') thumb_url = s3_client.generate_presigned_url( 'get_object', Params={'Bucket': conf['S3_PHOTO_BUCKET'], 'Key': key_thumb}, ExpiresIn=conf['S3_PRESIGNED_EXP']) origin_url = s3_client.generate_presigned_url( 'get_object', Params={'Bucket': conf['S3_PHOTO_BUCKET'], 'Key': key_origin}, ExpiresIn=conf['S3_PRESIGNED_EXP']) except Exception as e: raise ChaliceViewError(e) return thumb_url, origin_url
7f37cf388ef944d740f2db49c5125435b819e0e8
3,654,969
def check_if_event_exists(service, new_summary): """ Description: checks if the event summary exists using a naive approach """ event_exists = False page_token = None calendarId = gcalendarId while True: events = ( service.events().list(calendarId=calendarId, pageToken=page_token).execute() ) for event in events["items"]: # purge location from summary string if new_summary in event["summary"]: event_exists = True break page_token = events.get("nextPageToken") if not page_token: break return event_exists
c6cc8bd3e4548cda11f9eaad6fd2d3da7a5c7e20
3,654,970
def retry(func, *args, **kwargs): """ You can use the kwargs to override the 'retries' (default: 5) and 'use_account' (default: 1). """ global url, token, parsed, conn retries = kwargs.get('retries', 5) use_account = 1 if 'use_account' in kwargs: use_account = kwargs['use_account'] del kwargs['use_account'] use_account -= 1 attempts = 0 backoff = 1 while attempts <= retries: attempts += 1 try: if not url[use_account] or not token[use_account]: url[use_account], token[use_account] = \ get_auth(swift_test_auth, swift_test_user[use_account], swift_test_key[use_account]) parsed[use_account] = conn[use_account] = None if not parsed[use_account] or not conn[use_account]: parsed[use_account], conn[use_account] = \ http_connection(url[use_account]) return func(url[use_account], token[use_account], parsed[use_account], conn[use_account], *args, **kwargs) except (socket.error, HTTPException): if attempts > retries: raise parsed[use_account] = conn[use_account] = None except AuthError, err: url[use_account] = token[use_account] = None continue except InternalServerError, err: pass if attempts <= retries: sleep(backoff) backoff *= 2 raise Exception('No result after %s retries.' % retries)
7749fcd63f8d795692097b0257adde4147ecb569
3,654,971
def eval_f(angles, data=None): """ function to minimize """ x1, x2, d, zt, z, alpha, beta, mask, b1, b2 = data thetaxm, thetaym, thetazm, thetaxp, thetayp, thetazp = angles rm = rotation(thetaxm, thetaym, thetazm) rp = rotation(thetaxp, thetayp, thetazp) x1r = rm.dot(x1.T).T x2r = rp.dot(x2.T).T + d obj = poisson_complete_ll(x1r, x2r, zt, z, alpha, beta, mask, b1, b2) return obj
622c18d21224ab40d597a165bff3e0493db4cdcc
3,654,972
def clamp(min_v, max_v, value): """ Clamps a value between a min and max value Args: min_v: Minimum value max_v: Maximum value value: Value to be clamped Returns: Returns the clamped value """ return min_v if value < min_v else max_v if value > max_v else value
1a9aaf3790b233f535fb864215444b0426c17ad8
3,654,973
def collatz(n): """Sequence generation.""" l = [] while n > 1: l.append(n) if n % 2 == 0: n = n / 2 else: n = (3 * n) + 1 l.append(n) return l
69d993147604889fe6b03770efbfa6fb7f034258
3,654,974
import os import transformers def _load_tokenizer(path, **kwargs): """TODO: add docstring.""" if not os.path.isdir(path): raise ValueError( "transformers.AutoTokenizer.from_pretrained" " should be called with a path to a model directory." ) return transformers.AutoTokenizer.from_pretrained(path, **kwargs)
07b061448017960bca4e146a628c860e25ff4a19
3,654,975
def generate_anchors(base_size=16, ratios=[0.5, 1, 2], scales=2 ** np.arange(3, 6), stride=16): """ Generate anchor (reference) windows by enumerating aspect ratios X scales wrt a reference (0, 0, 15, 15) window. """ base_anchor = np.array([1, 1, base_size, base_size]) - 1 ratio_anchors = _ratio_enum(base_anchor, ratios) anchors = np.vstack([_scale_enum(ratio_anchors[i, :], scales) for i in range(ratio_anchors.shape[0])]) return anchors
083bfad62fac67e0f7fb02251bc3db7904629bd5
3,654,976
import re def number_format(number_string, fill=2): """ add padding zeros to make alinged numbers ex. >>> number_format('2') '02' >>> number_format('1-2') '01-02' """ output = [] digits_spliter = r'(?P<digit>\d+)|(?P<nondigit>.)' for token in [m.groups() for m in re.finditer(digits_spliter, number_string)]: if token[0] is None: output.append(token[1]) else: output.append(token[0].zfill(2)) return ''.join(output)
ee44167b4597fbe7c9f01fa5b26e02d7608c3677
3,654,977
def box_postp2use(pred_boxes, nms_iou_thr=0.7, conf_thr=0.5): """Postprocess prediction boxes to use * Non-Maximum Suppression * Filter boxes with Confidence Score Args: pred_boxes (np.ndarray dtype=np.float32): pred boxes postprocessed by yolo_output2boxes. shape: [cfg.cell_size * cfg.cell_size *cfg.boxes_per_cell, 6] nms_iou_thr (float): Non-Maximum Suppression IoU Threshold conf_thr (float): Confidence Score Threshold Returns: np.ndarray (dtype=np.float32) """ boxes_nms = nms(pred_boxes=pred_boxes, iou_thr=nms_iou_thr) boxes_conf_filtered = boxes_nms[boxes_nms[:, 4] >= conf_thr] return boxes_conf_filtered
07be8b953b82dbbcc27daab0afa71713db96efc1
3,654,978
from functools import reduce def many_hsvs_to_rgb(hsvs): """Combine list of hsvs otf [[(h, s, v), ...], ...] and return RGB list.""" num_strips = len(hsvs[0]) num_leds = len(hsvs[0][0]) res = [[[0, 0, 0] for ll in range(num_leds)] for ss in range(num_strips)] for strip in range(num_strips): for led in range(num_leds): # for some reason the conversion screws this up? # # import bibliopixel as bp # c1 = bp.colors.conversions.hsv2rgb((0, 0, 0)) # c2 = bp.colors.conversions.hsv2rgb((0, 0, 0)) # c3 = bp.colors.conversions.hsv2rgb((0, 0, 0)) # bp.colors.arithmetic.color_blend( # bp.colors.arithmetic.color_blend(c1, c2), # c3) # # = (2, 2, 2) if all(hsv[strip][led][2] == 0 for hsv in hsvs): rgb = (0, 0, 0) else: rgbs = [bp.colors.conversions.hsv2rgb(hsv[strip][led]) for hsv in hsvs] rgb = reduce(bp.colors.arithmetic.color_blend, rgbs) res[strip][led] = rgb return res
0842ecb4a42560fb6dae32a91ae12588152db621
3,654,979
def _convert_paths_to_flask(transmute_paths): """flask has it's own route syntax, so we convert it.""" paths = [] for p in transmute_paths: paths.append(p.replace("{", "<").replace("}", ">")) return paths
f8ea95e66c68481f0eb5a6d83cf61d098806f6be
3,654,980
def check_isup(k, return_client=None): """ Checks ping and returns status Used with concurrent decorator for parallel checks :param k: name to ping :param return_client: to change return format as '{k: {'comments': comments}}' :return(str): ping ok / - """ if is_up(k): comments = 'ping ok' else: comments = ' - ' if return_client: comments = {k: {'comments': comments}} return comments
8ebb346eb74cb54aa978b4fff7cd310b344ece50
3,654,981
def percent_uppercase(text): """Calculates percentage of alphabetical characters that are uppercase, out of total alphabetical characters. Based on findings from spam.csv that spam texts have higher uppercase alphabetical characters (see: avg_uppercase_letters())""" alpha_count = 0 uppercase_count = 0 for char in text: if char.isalpha(): alpha_count += 1 if char.isupper(): uppercase_count += 1 # calculate percentage - make sure not to divide by 0 try: perc_uppercase = float(uppercase_count) / float(alpha_count) return str(perc_uppercase) except ZeroDivisionError: return "0"
61ccf42d06ffbae846e98d1d68a48de21f52c299
3,654,982
def get_move() -> tuple: """ Utility function to get the player's move. :return: tuple of the move """ return get_tuple('What move to make?')
ef35ab6fcb9cdfd60ecc91ff044b39600659c80f
3,654,983
def set_value(parent, type, name, value) : """ Sets a value in the format Mitsuba Renderer expects """ curr_elem = etree.SubElement(parent, type) curr_elem.set("name", name) curr_elem.set("id" if type in ["ref", "shapegroup"] else "value", value) # The can be an id return curr_elem
6ace9a4a5858f3fb80bbe585580345369d7f6e63
3,654,984
def create_bst(nodes) -> BST: """Creates a BST from a specified nodes.""" root = BST(nodes[0]) for i in range(1, len(nodes)): root.insert(nodes[i]) return root
d93164dcc94f36ea9d5643467cf157d0f387c149
3,654,985
from typing import Generator import math def get_dec_arch(gen: Generator) -> nn.Sequential: """ Get decoder architecture associated with given generator. Args: gen (Generator): Generator associated with the decoder. Returns: nn.Sequential: Decoder architecture. """ # As defined in the paper. len_z = len(gen.latent_space_mean()) h_size = math.floor(len_z / 2) decoder = nn.Sequential( nn.Linear(len_z, h_size), nn.ReLU(inplace=True), nn.Linear(h_size, len_z), ) return decoder
dbadcb662e0c9a3089a4f152675d91b0d3e8898d
3,654,986
import xml def add_page_to_xml(alto_xml, alto_xml_page, page_number=0): """ Add new page to end of alto_xml or replace old page. """ # If book empty if (alto_xml == None): page_dom = xml.dom.minidom.parseString(alto_xml_page) page_dom.getElementsByTagName("Page")[0].setAttribute("ID", 'page_1') alto_xml_page = page_dom.toxml(encoding="utf-8") return(alto_xml_page) # If not book_dom = xml.dom.minidom.parseString(alto_xml) page_dom = xml.dom.minidom.parseString(alto_xml_page) page = page_dom.getElementsByTagName("Page")[0] if(page_number==0): # Find last page page_number = book_dom.getElementsByTagName("Page").length # and add page to end book_dom.getElementsByTagName("Layout")[0].appendChild(page) page.setAttribute("ID", 'page_%d' % (page_number+1)) # If new page is not last page else: old_page = book_dom.getElementsByTagName("Page")[page_number-1] book_dom.getElementsByTagName("Layout")[0].replaceChild(page, old_page) page.setAttribute("ID", 'page_%d' % page_number) return(book_dom.toxml(encoding="utf-8"))
d9303db2e6ce9c672d0548f81ddece36b1e59be3
3,654,987
def calculate_performance(all_data): """ Calculates the performance metrics as found in "benchmarks" folder of scikit-optimize and prints them in console. Parameters ---------- * `all_data`: dict Traces data collected during run of algorithms. For more details, see 'evaluate_optimizer' function. """ sorted_traces = defaultdict(list) for model in all_data: for dataset in all_data[model]: for algorithm in all_data[model][dataset]: data = all_data[model][dataset][algorithm] # leave only best objective values at particular iteration best = [[v[-1] for v in d] for d in data] supervised_learning_type = "Regression" if ("Regressor" in model) else "Classification" # for every item in sorted_traces it is 2d array, where first dimension corresponds to # particular repeat of experiment, and second dimension corresponds to index # of optimization step during optimization key = (algorithm, supervised_learning_type) sorted_traces[key].append(best) # calculate averages for key in sorted_traces: # the meta objective: average over multiple tasks mean_obj_vals = np.mean(sorted_traces[key], axis=0) minimums = np.min(mean_obj_vals, axis=1) f_calls = np.argmin(mean_obj_vals, axis=1) min_mean = np.mean(minimums) min_stdd = np.std(minimums) min_best = np.min(minimums) f_mean = np.mean(f_calls) f_stdd = np.std(f_calls) f_best = np.min(f_calls) def fmt(float_value): return ("%.3f" % float_value) output = str(key[0]) + " | " + " | ".join( [fmt(min_mean) + " +/- " + fmt(min_stdd)] + [fmt(v) for v in [min_best, f_mean, f_stdd, f_best]]) result = table_template + output print("") print(key[1]) print(result)
0b2d185c2cafdddc632ee5b94a6e37c7450f096b
3,654,988
def connected_components(num_nodes, Ap, Aj, components): """connected_components(int const num_nodes, int const [] Ap, int const [] Aj, int [] components) -> int""" return _amg_core.connected_components(num_nodes, Ap, Aj, components)
a3306dd4357b6db91bdbb3033b53effe8f5e376d
3,654,989
def get_drm_version(): """ Return DRM library version. Returns: str: DRM library version. """ path = _join(PROJECT_DIR, "CMakeLists.txt") with open(path, "rt") as cmakelists: for line in cmakelists: if line.startswith("set(ACCELIZEDRM_VERSION "): version = f"v{line.split(' ')[1].strip().strip(')')}" print(f"Detected DRM library version: {version}") return version raise ValueError(f'ACCELIZEDRM_VERSION not found in "{path}"')
b94da9049be428fc38992c34c829e202e98cb69d
3,654,990
def pmx(p1, p2): """Perform Partially Mapped Crossover on p1 and p2.""" return pmx_1(p1, p2), pmx_1(p2, p1)
60ac365efe3fd66eea24859afd9cfa470c061de2
3,654,991
import os def get_met_rxn_names(raw_data_dir: str, model_name: str) -> tuple: """ Gets the names of metabolites and reactions in the model. Args: raw_data_dir: path to folder with the raw data. model_name: named of the model. Returns: A list with the metabolite names and another with the reaction names. """ file_met_names = os.path.join(raw_data_dir, f'{model_name}_metsActive.dat') met_names = pd.read_csv(file_met_names, sep='\n').values met_names = list(met_names.transpose()[0]) met_names = [met_name.replace('m_m_', '') for met_name in met_names] # get reaction names file_rxn_names = os.path.join(raw_data_dir, f'{model_name}_rxnsActive.dat') rxn_names = pd.read_csv(file_rxn_names, sep='\n').values rxn_names = list(rxn_names.transpose()[0]) rxn_names = [rxn_name.replace('r_', '') for rxn_name in rxn_names] return met_names, rxn_names
8036037b83b92756d2d5e703387bcb6a25fb1436
3,654,992
def meshparameterspace(shape=(20, 20), psi_limits=(None, None), eta_limits=(None, None), psi_spacing="linear", eta_spacing="linear", user_spacing=(None, None)): """Builds curvilinear mesh inside parameter space. :param psi_spacing and eta_spacing: - 'linear': uniform spacing on interior of the surface - 'cosine': cosine spacing - 'uniform': spacing matches the spacing along edge - 'user': user spacing that is passed in through user_spacing :param psi_limits and eta_limits: only define if 'uniform'. Should be points where intersection is located. """ if psi_spacing == "cosine": x_spacing = cosine_spacing() elif psi_spacing == "linear": x_spacing = np.linspace elif psi_spacing == "uniform": x_spacing = _uniform_spacing(eta_limits, 0) elif psi_spacing == "user": if user_spacing[0] is not None: x_spacing = user_spacing[0] else: raise RuntimeError("must provide user_spacing w/ psi_spacing=user") else: raise RuntimeError("specified spacing not recognized") if eta_spacing == "cosine": y_spacing = cosine_spacing() elif eta_spacing == "linear": y_spacing = np.linspace elif eta_spacing == "uniform": y_spacing = _uniform_spacing(psi_limits, 1) elif eta_spacing == "user": if user_spacing[1] is not None: y_spacing = user_spacing[1] else: raise RuntimeError("must provide user_spacing w/ psi_spacing=user") else: raise RuntimeError("specified spacing not recognized") n_psi, n_eta = shape psi_lower, psi_upper = psi_limits eta_lower, eta_upper = eta_limits # if limits aren't specified, set lower to 0 and upper to 1 if psi_lower is None: psi_lower = np.full((n_eta, 2), 0.) eta_min = eta_lower[0, 1] if eta_lower is not None else 0. eta_max = eta_upper[0, 1] if eta_upper is not None else 1. psi_lower[:, 1] = y_spacing(eta_min, eta_max, n_eta) if psi_upper is None: psi_upper = np.full((n_eta, 2), 1.) eta_min = eta_lower[-1, 1] if eta_lower is not None else 0. eta_max = eta_upper[-1, 1] if eta_upper is not None else 1. psi_upper[:, 1] = y_spacing(eta_min, eta_max, n_eta) if eta_lower is None: eta_lower = np.full((n_psi, 2), 0.) psi_min = psi_lower[0, 0] if psi_lower is not None else 0. psi_max = psi_upper[0, 0] if psi_upper is not None else 1. eta_lower[:, 0] = x_spacing(psi_min, psi_max, n_psi) if eta_upper is None: eta_upper = np.full((n_psi, 2), 1.) psi_min = psi_lower[-1, 0] if psi_lower is not None else 0. psi_max = psi_upper[-1, 0] if psi_upper is not None else 1. eta_upper[:, 0] = x_spacing(psi_min, psi_max, n_psi) grid = mesh_curvilinear(psi_lower, psi_upper, eta_lower, eta_upper, x_spacing, y_spacing) # TODO: the following probably belongs outside the scope of this class # if flip: # grid = np.flipud(grid) return grid[:, :, 0], grid[:, :, 1]
87c928bb598bfd86f29c9ecf83534c6994a11441
3,654,993
def get_key_information(index, harness_result: HarnessResult, testbed_parser, esapi_instance: ESAPI): """ 1. key_exception_dic是以引擎名为key的字典,若能提取错误信息,value为引擎的关键报错信息,若所有引擎均没有报错信息,则value为引擎的完整输出 返回[double_output_id, engine_name, key_exception_dic, api_name, 过滤类型]。过滤类型分为两种:第一类型是指异常结果 存在错误信息,第二类型是指异常结果没有错误信息的, 第三类型是指所有引擎均没有报错(即不一致是由于执行结果不一致导致的)。 其值的取值是[1,2,3],其含义是[第一类型,第二类型,第三类型] """ suspicious_output = None for output in harness_result.outputs: if output.id == index: suspicious_output = output if suspicious_output is None: raise Exception("Harness result does not contain special index") key_exception = list_normalized_essential_exception_message(suspicious_output.stderr + suspicious_output.stdout) key_exception_dic = {} double_output_id = index engine_name = testbed_parser.parse_engine_name(suspicious_output.testbed) no_exception_info_engine_counter = 0 es_api_node_ast_in_testcase = None # 差分测试不一致的的结果中存在报错信息,第一类型 if key_exception != "": filter_type = FilerType.TYPE1.value [api_name, es_api_node_ast_in_testcase] = getExecptionStatementApi.get_exception_statement_api( esapi_instance, harness_result.testcase, suspicious_output.stderr + suspicious_output.stdout, es_api_node_ast_in_testcase) if api_name is None: api_name = "NoApi" key_exception_dic = {engine_name: key_exception} # 差分测试不一致的结果中不存在报错信息,第二类型 else: filter_type = FilerType.TYPE2.value no_exception_info_engine_counter += 1 # 差分后得到的测试结果无法提取错误信息 api_list = [] for output in harness_result.outputs: if output.id != index: exception_engine_name = testbed_parser.parse_engine_name(output.testbed) exception_info = list_normalized_essential_exception_message(output.stderr + output.stdout) if exception_info == "": no_exception_info_engine_counter += 1 key_exception_dic.update({exception_engine_name: exception_info}) [api, es_api_node_ast_in_testcase] = getExecptionStatementApi.get_exception_statement_api( esapi_instance, harness_result.testcase, output.stderr + output.stdout, es_api_node_ast_in_testcase) api = "NoApi" if api is None else api api_list.append(api) most_frequent_api, most_frequent_count = get_highest_frequency(api_list) if most_frequent_count < len(api_list) * 1 / 2: api_name = "NoApi" else: api_name = most_frequent_api # 所有引擎均为报错,仅仅是输出不一致,第三类型 if no_exception_info_engine_counter == len(harness_result.outputs): # return None filter_type = FilerType.TYPE3.value for output in harness_result.outputs: exception_engine_name = testbed_parser.parse_engine_name(output.testbed) output = output.stderr + output.stdout key_exception_dic.update({exception_engine_name: output}) api_name = "NoApi" return [double_output_id, engine_name, key_exception_dic, api_name, filter_type]
734838a08760e5203701bc2bb21ff38c6e579873
3,654,994
from io import StringIO def open_image(asset): """Opens the image represented by the given asset.""" try: asset_path = asset.get_path() except NotImplementedError: return Image.open(StringIO(asset.get_contents())) else: return Image.open(asset_path)
11e2ca552ab898801dba4dea9e8776b93532ac11
3,654,995
def gather_audio_video_eavesdropping(x) : """ @param x : a Analysis instance @rtype : a list strings for the concerned category, for exemple [ 'This application makes phone calls', "This application sends an SMS message 'Premium SMS' to the '12345' phone number" ] """ result = [] result.extend ( detect_MediaRecorder_Voice_record(x) ) result.extend ( detect_MediaRecorder_Video_capture(x) ) return result
01a4cc13865e8810a26d8d08ec3cf684d4a1c8a1
3,654,996
def vdw_radius_single(element): """ Get the Van-der-Waals radius of an atom from the given element. [1]_ Parameters ---------- element : str The chemical element of the atoms. Returns ------- The Van-der-Waals radius of the atom. If the radius is unknown for the element, `None` is returned. See also -------- vdw_radius_protor References ---------- .. [1] A Bondi, "Van der Waals volumes and radii." J Phys Chem, 86, 441-451 (1964). Examples -------- >>> print(vdw_radius_single("C")) 1.7 """ return _SINGLE_RADII.get(element.upper())
6c705ce2309b470c3b6d8445701e831df35853ec
3,654,997
import typing def evaluate_ins_to_proto(ins: typing.EvaluateIns) -> ServerMessage.EvaluateIns: """Serialize flower.EvaluateIns to ProtoBuf message.""" parameters_proto = parameters_to_proto(ins.parameters) config_msg = metrics_to_proto(ins.config) return ServerMessage.EvaluateIns(parameters=parameters_proto, config=config_msg)
e7cbbf7d78f2ac37b6248d61fe7e797b151bba31
3,654,998
def avatar_synth_df(dir, batch_size, num_threads): """ Get data for training and evaluating the AvatarSynthModel. :param dir: The data directory. :param batch_size: The minibatch size. :param num_threads: The number of threads to read and process data. :return: A dataflow for parameter to bitmoji data """ df = AvatarSynthDataFlow(dir) df = process_avatar_synth_data(df, batch_size, num_threads) return df
1fcecb5769d7c38c84bcd02cff8159381e113861
3,654,999