content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def assign_material(obj, materialname): """This function assigns a material to an objects mesh. :param obj: The object to assign the material to. :type obj: bpy.types.Object :param materialname: The materials name. :type materialname: str """ if materialname not in bpy.data.materials: if materialname in defs.defaultmaterials: materials.createPhobosMaterials() else: # print("###ERROR: material to be assigned does not exist.") log("Material to be assigned does not exist.", "ERROR") return None # obj.data.materials[0] = bpy.data.materials[materialname] obj.data.materials.append(bpy.data.materials[materialname])
929d4750d5c6e9710fdc8fc735b3792a3b4a63f4
3,655,000
def _check_stack_axis(axis, dims, default='unnamed'): """ check or get new axis name when stacking array or datasets (just to have that in one place) """ if axis is None: axis = default if axis in dims: i = 1 while default+"_{}".format(i) in dims: i+=1 axis = default+"_{}".format(i) if type(axis) is int: raise TypeError("axis must be a str (new axis name)") if axis in dims: raise ValueError("please provide an axis name which does not \ already exist, or use `concatenate`") return axis
4dc74da450d6be4872a5f03e61ec16700b197d94
3,655,001
from typing import Optional from typing import Dict from typing import Union from typing import List from typing import Any def eval_push_time_ratios(problem_size: int = 3000) -> Optional[TimeRatioType]: """ Function that calculates the execution time ratios, for the different time complexities. Here, a process pool is created in order to speed up the process of generating the lists of time ratios, for each time complexity. """ stack: Stack = Stack() time_ratios: Dict[str, Union[str, List[Number]]] = { func_name: [] for func_name in TIME_COMPLEXITIES } arguments: List[Any] = [ (stack, problem_size, function) for function in TIME_COMPLEXITIES ] pool: ProcessPoolType = ProcessPool(get_cpu_count(), set_low_priority_to_process) for response in pool.imap(_push_time_ratio_worker, arguments): time_ratios.update(response) time_ratios.update({ 'data_struct_name': Stack.__name__.lower(), 'target_name': Stack.push.__name__, }) return time_ratios
72f1a32f227d52040e14af77d91e4419e25480c2
3,655,002
from ..models import Sprint from ..forms import SprintForm def validate_pbi_sprint(sprint, snapshot_date): """ Validate sprint in a pbi, try to create it if possible """ if sprint is None: raise ValidationError('Sprint cannot be null') sprt = Sprint.objects.get(id=sprint.id) if sprt is not None: # si la date du pbi est en dehors du sprint nbr_day = (sprt.end_date - sprt.start_date).days if sprt.start_date >= snapshot_date or sprt.end_date <= snapshot_date: #if pbi is outside this sprint, check if it exists a sprint with those dates/teams sprint = Sprint.objects.filter(start_date__lte=snapshot_date, end_date__gte=snapshot_date, team__id=sprt.team.id) if sprint != None and sprint.count() == 1: logger.debug(f"Updating PBI : from sprint {sprint} to {sprint[0]}") return sprint[0] elif sprint.count() > 1: raise ValidationError('More than one active sprints at the same time for the same team') else: #create new sprint #import here otherwise we will have an issue sprint_form = SprintForm(data={'goal' : 'GOAL UNDEFINED', 'team' : sprt.team.id, 'start_date' : snapshot_date , 'end_date' : snapshot_date + timedelta(days=nbr_day)}) if sprint_form.is_valid(): new_sprint = sprint_form.save() #f"A new sprint has been created for team {sprt.team}, sprint id: {self.sprint.id}, start date: {self.sprint.start_date}, end date: {self.sprint.end_date}", logger.debug(f"Updating PBI : new sprint created id: {new_sprint.id} {new_sprint}") send_mail( 'New sprint automatically created', "A new sprint has been created for team "+ str(sprt.team)+", sprint id: "+str(new_sprint.id)+", start date: "+str(new_sprint.start_date)+", end date: "+str(new_sprint.end_date), settings.EMAIL_HOST_USER, settings.EMAIL_AVADOS_TO_EMAIL, fail_silently=False, ) return new_sprint else: raise ValidationError('Invalid sprint'+str(new_sprint.id)) else: return sprt else: raise ValidationError('Invalid sprint'+str(sprint.id))
8608381c5a57a9f4e776542f11a7f3e38ff4f2e5
3,655,003
def _load_data(): """ Internal function to get the data to plot. """ # Load homicides homicides = gv_data.PoliceHomicides.get() # Calculate concentrated disadvantage sub_data = [] for cls in [ "PublicAssistance", "FemaleHouseholders", "PercentInPoverty", "PercentUnder18", ]: subset = [] for year in YEARS: df = getattr(gv_data, cls).get(year=year) df["year"] = year subset.append(df) sub_data.append(pd.concat(subset).set_index(["census_tract_id", "year"])) data = sub_data[0] for df in sub_data[1:]: data = data.join(df.drop(labels=["geometry"], axis=1)) # Do min/max normalization on each for col in [ "percent_public_assistance", "percent_female_householder", "percent_in_poverty", "percent_under_18", ]: data[col + "_normed"] = (data[col] - data[col].min()) / ( data[col].max() - data[col].min() ) # Normalize sum to 0 to 1 data["index"] = data.filter(regex="_normed").sum(axis=1) / 5.0 return homicides, data
de691b9b1a6b0ce3c75075619024358fd1c09783
3,655,004
def test_auto_add_dataloader_idx(tmpdir, add_dataloader_idx): """test that auto_add_dataloader_idx argument works.""" class TestModel(BoringModel): def val_dataloader(self): dl = super().val_dataloader() return [dl, dl] def validation_step(self, *args, **kwargs): output = super().validation_step(*args[:-1], **kwargs) if add_dataloader_idx: name = "val_loss" else: name = f"val_loss_custom_naming_{args[-1]}" self.log(name, output["x"], add_dataloader_idx=add_dataloader_idx) return output model = TestModel() model.validation_epoch_end = None trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=2) trainer.fit(model) logged = trainer.logged_metrics # Check that the correct keys exist if add_dataloader_idx: assert "val_loss/dataloader_idx_0" in logged assert "val_loss/dataloader_idx_1" in logged else: assert "val_loss_custom_naming_0" in logged assert "val_loss_custom_naming_1" in logged
51ae3f22709db4a9d2b244b49cc6ac638ee7205d
3,655,005
def move(x_pos, y_pos): """Return the G-CODE describing motion to x_pos, y_pos.""" out = "" out += "G1X"+str(x_pos)+"Y"+str(y_pos)+"F"+str(FEEDRATE)+";\n" out += "M400;\n" return out
0bfaf1e53b4a90094adc28eab4c6f1eba5bd32e8
3,655,006
def load_scrub_optional_upload(storage_folder: str, filename: str) -> str: """Loads a option file that was previously saved in the storage folder. :param storage_folder: A string representing the path of the storage folder. :param filename: A string representing the name of the file that is being loaded. :return: The file string that was saved in the folder (empty if there is no string to load). """ try: return general_functions.load_file_from_disk( loc_folder=storage_folder, filename=filename) except FileNotFoundError: return ""
fdb5abf217a767c6ac9309e098cecf9f1b70608b
3,655,007
from typing import Dict def compute_error_decrease(fun, VX, EToV) -> Dict[int, float]: """ Computes estimate of possible error decrease for each element in mesh. :param fun: Function float -> float :param VX: dict from point id to its position on x axis. :param EToV: dict from element id to a tuple of its boundary points. """ L2_loss = dict() for e, (idx1, idx2) in EToV.items(): x1 = VX[idx1] x2 = VX[idx2] y1 = fun(x1) # This line should be updated in 1.7 y2 = fun(x2) # This line should be updated in 1.7 x_half = (x1 + x2) / 2 y_half = fun(x_half) slope0 = (y2 - y1) / (x2 - x1) slope1 = (y_half - y1) / (x_half - x1) slope2 = (y2 - y_half) / (x2 - x_half) L2_loss1 = compute_L2_error(x_half - x1, slope0, slope1) L2_loss2 = compute_L2_error(x_half - x1, slope0, slope2) L2_loss[e] = np.sqrt(L2_loss1 + L2_loss2) return L2_loss
46b3570c7d0ad5f07faa54a954d63ecbce64c3b7
3,655,008
def file_name_to_title_name(file_name): """ #Arguments check_mk_url (str): URL to Check_Mk web application, check file names and print for each file in the directory in the correct format #Examples file_name_to_title_name('activate_mode') output = 'Activate Mode: activate_mode.md' """ file_name_list = file_name.split('.py') file_name = file_name_list[0] title = file_name.replace('_', ' ').title() filename2 = ': ' + file_name + '.md' return title + filename2
330eae5c34cd55f01aaf520ea9df467ea4042b1e
3,655,009
def save_binary_mask_triple( rgb_img: np.ndarray, label_img: np.ndarray, save_fpath: str, save_to_disk: bool = False ) -> np.ndarray: """Currently mask img background is light-blue. Instead, could set it to white. np.array([255,255,255]) Args: rgb_img: label_img: save_fpath save_to_disk Returns: Array, representing 3 horizontally concatenated images: from left-to-right, they are RGB, RGB+Semantic Masks, Semantic Masks """ img_h, img_w, _ = rgb_img.shape rgb_with_mask = highlight_binary_mask(label_img, rgb_img.copy()) blank_img = np.ones((img_h, img_w, 3), dtype=np.uint8) * 255 y, x = np.where(label_img == 0) blank_img[y, x, :] = LIME_GREEN # LIGHT_BLUE mask_img = highlight_binary_mask(label_img, blank_img) return form_hstacked_imgs([rgb_img, rgb_with_mask, mask_img], save_fpath, save_to_disk)
ffc9dbd6550200e48548d29e6dedacde6eced3c2
3,655,010
def get_random_fortune(fortune_file): """ Get a random fortune from the specified file. Barfs if the corresponding `.dat` file isn't present. :Parameters: fortune_file : str path to file containing fortune cookies :rtype: str :return: the random fortune """ fortunes = list(_read_fortunes(fortune_file)) randomRecord = _random_int(0, len(fortunes) - 1) return fortunes[randomRecord]
d7486abbacc95a2b737471f899d002fd642f72b7
3,655,011
from typing import List import pathlib from typing import Callable from typing import Dict from typing import Optional import sys def output_data( files : List[pathlib.Path], parser : Callable[[List[str]], List[Dict[str, DataValue]]] ) -> Optional[OutputData]: """Parses output datapoints from a list of output files. Args: files: A list of data output files to parse parser: A function that turns a list of data lines into a list of data points. Each data point is a dict that maps parameter and value names to their values. For an example parser, see last_value(). Returns: An OutputData object summarizing the data, or None if an error occurs. """ records = [] parameter_names = [] value_names = [] command = None for file_path in files: assert file_path.is_file() data = file_data(file_path) if not data: return None if command is not None and data.command != command: print("Warning: command mismatch between output files", file=sys.stderr) command = data.command values_list = parser(data.data_lines) if values_list is None: return None if not values_list: print("Warning: no values found for output", file_path, file=sys.stderr) for param in data.params.keys(): if param not in parameter_names: parameter_names.append(param) for values in values_list: for value_name in values.keys(): if value_name not in value_names: value_names.append(value_name) if data.params.keys() & values.keys(): print("Warning: overlap between parameter and value names in", file_path, file=sys.stderr) records.append({**data.params, **values}) return OutputData(command, parameter_names, value_names, records)
3531ca105380145f83b12a9da6ad9a41c223cb70
3,655,012
async def delete_item(item_id: int, db: Session = Depends(get_db)): """ Delete the Item with the given ID provided by User stored in database """ db_item = ItemRepo.fetch_by_id(db, item_id) if db_item is None: raise HTTPException(status_code=404, detail="Item not found with the given ID") await ItemRepo.delete(db, item_id) return "Item deleted successfully!"
a73ebafa7cc73c24133e4795aabbe2cb0a72172d
3,655,013
import logging from pycaret import preprocess def get_clusters(data, model = None, num_clusters = 4, ignore_features = None, normalize = True, transformation = False, pca = False, pca_components = 0.99, ignore_low_variance=False, combine_rare_levels=False, rare_level_threshold=0.1, remove_multicollinearity=False, multicollinearity_threshold=0.9, n_jobs = None): """ Callable from any external environment without requiring setup initialization. """ if model is None: model = 'kmeans' if ignore_features is None: ignore_features_pass = [] else: ignore_features_pass = ignore_features global X, data_, seed, n_jobs_param, logging_param, logger data_ = data.copy() seed = 99 n_jobs_param = n_jobs logging_param = False logger = logging.getLogger('logs') logger.setLevel(logging.DEBUG) # create console handler and set level to debug if logger.hasHandlers(): logger.handlers.clear() ch = logging.FileHandler('logs.log') ch.setLevel(logging.DEBUG) # create formatter formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(message)s') # add formatter to ch ch.setFormatter(formatter) # add ch to logger logger.addHandler(ch) X = preprocess.Preprocess_Path_Two(train_data = data, features_todrop = ignore_features_pass, display_types = False, scale_data = normalize, scaling_method = 'zscore', Power_transform_data = transformation, Power_transform_method = 'yj', apply_pca = pca, pca_variance_retained_or_number_of_components = pca_components, apply_zero_nearZero_variance = ignore_low_variance, club_rare_levels=combine_rare_levels, rara_level_threshold_percentage=rare_level_threshold, remove_multicollinearity=remove_multicollinearity, maximum_correlation_between_features=multicollinearity_threshold, random_state = seed) try: c = create_model(model=model, num_clusters=num_clusters, verbose=False, system=False) except: c = create_model(model=model, verbose=False, system=False) dataset = assign_model(c, verbose=False) return dataset
adfede338050b85f792e56205ede83ec46c9ea15
3,655,014
def process_messages(deck, messages, encrypt_or_decrypt): """(list of int, list of str, str) -> list of str Return the messages encrypted or decrypted using the specified deck. The parameter encrypt_or_decrypt will be ENCRYPT to encrpyt the message, and DECRYPT to decrypt the message >>>deck = [1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 3, 6, 9, 12, 15, 18, 21, 24, 27, 2, 5, 8, 11, 14, 17, 20, 23, 26] >>>process_messages(deck, ['Patty', 'Cakes'], ENCRYPT) ['AJQAI', 'BLVLT'] >>>deck = [1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 3, 6, 9, 12, 15, 18, 21, 24, 27, 2, 5, 8, 11, 14, 17, 20, 23, 26] >>>process_messages(deck, ['AJQAI', 'BLVLT'], DECRYPT) ['PATTY', 'CAKES'] """ returned_message = [] for message in messages: new_message = '' cleaned_message = clean_message(message) # Cleans the message of # punctation and makes it all upper case for letter in cleaned_message: keystream_value = get_next_keystream_value(deck) # Generates a keystream value for each letter if encrypt_or_decrypt == ENCRYPT: new_message = new_message + encrypt_letter(letter, keystream_value) else: # Where encrypt_or_decrypt == DECRYPT new_message = new_message + decrypt_letter(letter, keystream_value) returned_message.append(new_message) return returned_message
4b9f2506edd44c916ac69a4c6d1d12a3b58ff89d
3,655,015
def clip(wavelength, spectra, threshold, substitute=None): """ Removes or substitutes values above the given threshold. Args: wavelength <numpy.ndarray>: Vector of wavelengths. spectra <numpy.ndarray>: NIRS data matrix. threshold <float>: threshold value for rejection substitute <float>: substitute value for rejected values (None removes values from the spectra) Returns: wavelength <numpy.ndarray>: Vector of wavelengths. spectra <numpy.ndarray>: NIR spectra with threshold exceeding values removed. """ if substitute == None: # remove threshold violations mask = np.any(spectra > threshold, axis=1) spectra = spectra[~mask, :] wavelength = wavelength[~mask] else: # substitute threshold violations with a value spectra[spectra > threshold] = substitute return wavelength, spectra return wavelength, spectra
79d79c6353468f77dacb995cfcca9b717e8ef8e0
3,655,016
def findMachines(fqpn): """ Recursively yield L{MethodicalMachine}s and their FQPNs in and under the a Python object specified by an FQPN. The discovery heuristic considers L{MethodicalMachine} instances that are module-level attributes or class-level attributes accessible from module scope. Machines inside nested classes will be discovered, but those returned from functions or methods will not be. @type within: an FQPN @param within: Where to start the search. @return: a generator which yields FQPN, L{MethodicalMachine} pairs. """ return findMachinesViaWrapper(wrapFQPN(fqpn))
71689b8ffe166dd4b8b8f126d04b3bcf8123257e
3,655,017
def asynchronous_prod_milp_constraint_rule(backend_model, loc_tech, timestep): """ BigM limit set on `carrier_prod`, forcing it to either be zero or non-zero, depending on whether `prod` is zero or one, respectively. .. container:: scrolling-wrapper .. math:: \\boldsymbol{carrier_prod}[loc::tech::carrier, timestep] \\leq \\text{bigM} \\times \\boldsymbol{prod_con_switch}[loc::tech, timestep] \\forall loc::tech \\in loc::techs_{asynchronous_prod_con}, \\forall timestep \\in timesteps """ model_dict = backend_model.__calliope_model_data loc_tech_carrier = model_dict["data"]["lookup_loc_techs"][loc_tech] return ( backend_model.carrier_prod[loc_tech_carrier, timestep] <= backend_model.prod_con_switch[loc_tech, timestep] * backend_model.bigM )
049454e9a3aafecc8531225bc5f09b666d892fcb
3,655,018
import os def user_cilogon_certificates_directory_path(instance): """ Return full path to filename based on User UUID value :param instance: :param filename: :return: """ # file will be uploaded to MEDIA_ROOT/cilogon_certificates/user_<uuid>/<filename> return os.path.join(MEDIA_ROOT, 'cilogon_certificates/user_{0}'.format(instance.uuid))
66ae355a5c7f86181175d02c3e56edd1d06e0593
3,655,019
def drawCurveArc(self): #---- only for ELLIPSE ------------------------------------------------------------- """Given a dxf ELLIPSE object return a blender_curve. """ center = self.loc radius = self.radius start = self.start_angle end = self.end_angle if start > end: start = start - 360.0 startmatrix = Mathutils.RotationMatrix(start, 3, "Z") startpoint = startmatrix * Mathutils.Vector((radius, 0, 0)) endmatrix = Mathutils.RotationMatrix(end, 3, "Z") endpoint = endmatrix * Mathutils.Vector((radius, 0, 0)) # Note: handles must be tangent to arc and of correct length... a = Curve.New('arc') # create new curve data p1 = (0, -radius, 0) p2 = (radius, 0, 0) p3 = (0, radius, 0) p4 = (-radius, 0, 0) p1 = BezTriple.New(p1) p2 = BezTriple.New(p2) p3 = BezTriple.New(p3) p4 = BezTriple.New(p4) curve = a.appendNurb(p1) curve.append(p2) curve.append(p3) curve.append(p4) for point in curve: point.handleTypes = [AUTO, AUTO] point.radius = 1.0 curve.flagU = 1 # Set curve cyclic a.update() ob = Object.New('Curve', 'arc') # make curve object return ob
d8332b171fe9ef654c0fe71b8ce0b636b23221a8
3,655,020
import pickle def read_pickle(filename, protocol=-1, **kwargs): """ read grid saved in PICKLE format into a GridData object :param filename: full path to the filename :type filename: str :rtype: ~uquake.core.data.grid.Grid """ return pickle.load(open(filename, 'rb'))
8115b5a91698cc508ea05c3097d8d69b0bb77561
3,655,021
def linked_ims(im_list, pix_per_um, shape=(2,2), x_range=None, y_range=None, scale_fig=1, scale_height=1.4, brightness=1, palette='Turbo256', cmap_range='from zero', show_fig=True, title_list=[], t_fs=24, ax_fs=16, tk_fs=12, cb_fs=14): """ Shows multiple frames with linked panning and zooming. Uses format_im(). """ # list of figures p = [] # creates images for i, im in enumerate(im_list): if len(title_list) == len(im_list): title = title_list[i] p_new = format_im(im, pix_per_um, x_range=x_range, y_range=y_range, scale_fig=scale_fig, scale_height=scale_height, title=title, brightness=brightness, palette=palette, cmap_range=cmap_range, show_fig=False, t_fs=t_fs, ax_fs=ax_fs, tk_fs=tk_fs, cb_fs=cb_fs) p += [p_new] # makes grid plot p_grid = make_gridplot(p, shape) # shows figure if show_fig: show(p_grid) return p_grid
5a6e0cb821a9d9d49243de297d74f5b656825f13
3,655,022
def read_qmcpack_hamiltonian(filename): """Read Hamiltonian from QMCPACK format. Parameters ---------- filename : string QMPACK Hamiltonian file. Returns ------- hamil : dict Data read from file. """ try: hc, chol, enuc, nmo, nelec, nmok, qkk2 = ( read_qmcpack_cholesky_kpoint(filename) ) hamil = { 'hcore': hc, 'chol': chol, 'enuc': enuc, 'nelec': nelec, 'nmo': nmo, 'nmo_pk': nmok, 'qk_k2': qkk2 } except KeyError: try: hc, chol, enuc, nmo, nelec = read_qmcpack_cholesky(filename) hamil = { 'hcore': hc, 'chol': chol, 'enuc': enuc, 'nmo': nmo, 'nelec': nelec } except KeyError: print("Error reading Hamiltonian file. Hamiltonian not found.") hamil = None return hamil
0fb0a6d0e80ab3180da3cb4d0c6d31ba54749f1d
3,655,023
def run_rnn(file): # define model params """ Run the process to train/test a recurrent neural network using LSTM using a given dataset file. :param string file: Location of CSV-formatted dataset file :return: Model with expected (test) targets and associated scores :rtype: object, dataframe, object """ num_epochs = 2 sequence_length = 20 # grab train and test data from CSV X_train, y_train, X_test, y_test = split_test_training(file, sequence_length) print(X_train) # build model model = build_model() model.fit(X_train, y_train, epochs=num_epochs, batch_size=64, validation_split=0.2) # predict predict = model.predict(X_test) predict = np.reshape(predict, predict.size) # evaluate score = model.evaluate(X_test, y_test, verbose=0) print("Accuracy: ", score[1]*100, "%") # save model to h5 file (same folder as data) model_location_folder = get_latest_dataset_folder() model.save(model_location_folder + '/RNN_' + current_dt + '.h5') return model, y_test, predict
e159594350d35a207db904b76ea1fbea2509b235
3,655,024
def lab_results(request, format=None): """Get lab results data.""" if request.method == 'GET': limit = request.query_params.get("limit", 1000) if limit: limit = int(limit) order_by = request.query_params.get("order_by", "") # TODO: Get any filters from dict(request.query_params) docs = get_collection('tests/leaf/lab_results', order_by=order_by, limit=limit, filters=[]) return Response(docs, content_type="application/json") if request.method == 'POST': print('TODO: Create lab results') return NotImplementedError
87d2136e515ad94241540b093c49422b96d3affe
3,655,025
def load(file, file_format=None, **kwargs): """Load data from json, yaml, or pickle files. This method provides a unified api for loading data from serialized files. Args: file (str or file-like object): Filename or a file-like object. file_format (str, optional): If not specified, the file format will be inferred from the file extension, otherwise use the specified one. Currently supported formats include "json", "yaml/yml" and "pickle/pkl". Returns: The content from the file. """ if file_format is None and isinstance(file, str): file_format = file.split('.')[-1] if file_format not in file_handlers: raise TypeError('Unsupported format: {}'.format(file_format)) handler = file_handlers[file_format] if isinstance(file, str): obj = handler.load_from_path(file, **kwargs) elif hasattr(file, 'read'): obj = handler.load_from_fileobj(file, **kwargs) else: raise TypeError('"file" must be a filepath str or a file-object') return obj
14970d1f9e477f94f358f6bbb220d4ae1e388ecd
3,655,026
import os from pathlib import Path def get_criteo(root): """Download the Criteo data if it doesn't exist.""" url = 'https://s3-eu-west-1.amazonaws.com/kaggle-display-advertising-challenge-dataset/dac.tar.gz' raw_folder = os.path.join(root, 'criteo', 'raw') processed_folder = os.path.join(root, 'criteo', 'processed') makedir_exist_ok(raw_folder) makedir_exist_ok(processed_folder) # download files and extract filename = url.rpartition('/')[2] print('Downloading...') download_url(url, root=raw_folder, filename=filename, md5=None) print('Extracting...') extract_file(os.path.join(raw_folder, filename), processed_folder) print('Done!') return Path(processed_folder)
9698458a7f8a2475da9a21b7cf91313cd52f2cdc
3,655,027
def StepToGeom_MakeAxis2Placement_Convert(*args): """ :param SA: :type SA: Handle_StepGeom_Axis2Placement3d & :param CA: :type CA: Handle_Geom_Axis2Placement & :rtype: bool """ return _StepToGeom.StepToGeom_MakeAxis2Placement_Convert(*args)
003e8c9986214de4f33eceb35ee9975726a0efe9
3,655,028
import pwd def results(year: hug.types.text, firstName: hug.types.text, lastName: hug.types.text): """Returns the results for a given candidate for a given year""" engine = create_engine( 'postgresql://%s:%s@%s/%s' %(user,pwd,ip,user), client_encoding='utf8',echo=False) conn = engine.connect() Base = declarative_base() query = "SELECT * FROM names WHERE election_year = '%s' AND candidate_first_name = '%s' AND candidate_last_name = '%s'" %(str(year),firstName.upper(),lastName.upper()) df = pd.read_sql(query, conn) candidateId = df['candidate_id'].tolist()[0] resultQuery = "SELECT * FROM votes WHERE candidate_id = '%s';" %(str(candidateId)) result = pd.read_sql(resultQuery,conn) officeId, districtId = result['office_code'].tolist()[0], result['district_code'].tolist()[0] totalQuery = "Select office_code, district_code, county_code, city_code, ward_number, precinct_number, SUM(precinct_votes) AS total_votes FROM votes WHERE office_code = '%s' AND district_code = '%s' AND election_year = '%s' GROUP BY 1,2,3,4,5,6" %(str(officeId),str(districtId),str(year)) totalTable = pd.read_sql(totalQuery,conn) output = pd.merge(result,totalTable, on = ['office_code', 'district_code', 'county_code', 'city_code', 'ward_number', 'precinct_number'], how="inner") output['candidate_percentage'] = 100*output['precinct_votes']/output['total_votes'] conn.close() engine.dispose() return output.reset_index().to_json(orient="records")
a9c010d8f2633ef1c77f0903b6cf07d315486f5c
3,655,029
async def get_user_from_event(event): """ Get the user from argument or replied message. """ args = event.pattern_match.group(1).split(':', 1) extra = None if event.reply_to_msg_id and not len(args) == 2: previous_message = await event.get_reply_message() user_obj = await event.client.get_entity(previous_message.from_id) extra = event.pattern_match.group(1) elif len(args[0]) > 0: user = args[0] if len(args) == 2: extra = args[1] if user.isnumeric(): user = int(user) if not user: await event.edit(f"`{JAVES_NNAME}`: ** Pass the user's username, id or reply!**") return if event.message.entities is not None: probable_user_mention_entity = event.message.entities[0] if isinstance(probable_user_mention_entity, MessageEntityMentionName): user_id = probable_user_mention_entity.user_id user_obj = await event.client.get_entity(user_id) return user_obj try: user_obj = await event.client.get_entity(user) except (TypeError, ValueError) as err: await event.edit(str(err)) return None return user_obj, extra
b503868848a78f8bfacd4fc5e211642001104e7d
3,655,030
import torch from typing import Optional from typing import Tuple def stat_scores_multiple_classes( pred: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, argmax_dim: int = 1, reduction: str = 'none', ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ .. deprecated:: Use :func:`torchmetrics.functional.stat_scores`. Will be removed in v1.4.0. """ rank_zero_deprecation( "This `stat_scores_multiple_classes` was deprecated in v1.2.0 in favor of" " `from pytorch_lightning.metrics.functional import stat_scores`." " It will be removed in v1.4.0" ) if pred.ndim == target.ndim + 1: pred = to_categorical(pred, argmax_dim=argmax_dim) num_classes = get_num_classes(pred=pred, target=target, num_classes=num_classes) if pred.dtype != torch.bool: pred = pred.clamp_max(max=num_classes) if target.dtype != torch.bool: target = target.clamp_max(max=num_classes) possible_reductions = ('none', 'sum', 'elementwise_mean') if reduction not in possible_reductions: raise ValueError("reduction type %s not supported" % reduction) if reduction == 'none': pred = pred.view((-1, )).long() target = target.view((-1, )).long() tps = torch.zeros((num_classes + 1, ), device=pred.device) fps = torch.zeros((num_classes + 1, ), device=pred.device) fns = torch.zeros((num_classes + 1, ), device=pred.device) sups = torch.zeros((num_classes + 1, ), device=pred.device) match_true = (pred == target).float() match_false = 1 - match_true tps.scatter_add_(0, pred, match_true) fps.scatter_add_(0, pred, match_false) fns.scatter_add_(0, target, match_false) tns = pred.size(0) - (tps + fps + fns) sups.scatter_add_(0, target, torch.ones_like(match_true)) tps = tps[:num_classes] fps = fps[:num_classes] tns = tns[:num_classes] fns = fns[:num_classes] sups = sups[:num_classes] elif reduction == 'sum' or reduction == 'elementwise_mean': count_match_true = (pred == target).sum().float() oob_tp, oob_fp, oob_tn, oob_fn, oob_sup = stat_scores(pred, target, num_classes, argmax_dim) tps = count_match_true - oob_tp fps = pred.nelement() - count_match_true - oob_fp fns = pred.nelement() - count_match_true - oob_fn tns = pred.nelement() * (num_classes + 1) - (tps + fps + fns + oob_tn) sups = pred.nelement() - oob_sup.float() if reduction == 'elementwise_mean': tps /= num_classes fps /= num_classes fns /= num_classes tns /= num_classes sups /= num_classes return tps.float(), fps.float(), tns.float(), fns.float(), sups.float()
e4b64a881de64b93f6ca8018484e9de52d6ab786
3,655,031
def build_resnet( repetitions=(2, 2, 2, 2), include_top=True, input_tensor=None, input_shape=None, classes=1000, block_type='usual', class_detector_top=False): """ TODO """ # Determine proper input shape input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=197, data_format='channels_last', require_flatten=include_top) if input_tensor is None: img_input = Input(shape=input_shape, name='data') else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor # get parameters for model layers no_scale_bn_params = get_bn_params(scale=False) bn_params = get_bn_params() conv_params = get_conv_params() init_filters = 64 if block_type == 'basic': conv_block = basic_conv_block identity_block = basic_identity_block else: conv_block = usual_conv_block identity_block = usual_identity_block # resnet bottom x = BatchNormalization(name='bn_data', **no_scale_bn_params)(img_input) x = ZeroPadding2D(padding=(3, 3))(x) x = Conv2D(init_filters, (7, 7), strides=(2, 2), name='conv0', **conv_params)(x) x = BatchNormalization(name='bn0', **bn_params)(x) x = Activation('relu', name='relu0')(x) x = ZeroPadding2D(padding=(1, 1))(x) x = MaxPooling2D((3, 3), strides=(2, 2), padding='valid', name='pooling0')(x) # resnet body for stage, rep in enumerate(repetitions): for block in range(rep): filters = init_filters * (2**stage) # first block of first stage without strides because we have maxpooling before if block == 0 and stage == 0: x = conv_block(filters, stage, block, strides=(1, 1))(x) elif block == 0: x = conv_block(filters, stage, block, strides=(2, 2))(x) else: x = identity_block(filters, stage, block)(x) x = BatchNormalization(name='bn1', **bn_params)(x) x = Activation('relu', name='relu1')(x) # resnet top if include_top: x = GlobalAveragePooling2D(name='pool1')(x) x = Dense(classes, name='fc1')(x) x = Activation('softmax', name='softmax')(x) if class_detector_top: x = GlobalMaxPooling2D()(x) x = Dense(1, name='fc1')(x) x = Activation('sigmoid')(x) # Ensure that the model takes into account any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x) return model
4d248d0def20b713dda2b6cd281cbaa48450d1dc
3,655,032
import requests def correct_doi(file_name: str): """Attempt extract a DOI from a filename which contains a DOI.""" if file_name.startswith("acs.jced") or file_name.startswith("je"): doi = f"10.1021/{file_name}" elif file_name.startswith("j.jct"): doi = f"10.1016/{file_name}" elif file_name.startswith("j.fluid"): doi = f"10.1016/{file_name}" elif file_name.startswith("j.tca"): doi = f"10.1016/{file_name}" elif file_name.startswith("s"): doi = f"10.1007/{file_name}" else: raise NotImplementedError() doi = doi.replace(".xml", "") doi_request = requests.get( f"https://doi.org/{doi}", headers={"Accept": "application/x-bibtex"} ) doi_request.raise_for_status() return doi
e01ddf648660e0fd126720042cc16b16ffe078d3
3,655,033
import os def getTextFromFile(filename): """ """ filepath = os.path.join(CHAPTERDIR, filename) txt = open(filepath).read() return txt
85c3d6698c4c2d1022431259d209f779944c6455
3,655,034
import sys import base64 def decode_base64(data): """Decode base64, padding being optional. :param data: Base64 data as an ASCII byte string :returns: The decoded byte string. """ if sys.version_info.major > 2: data = bytes(data, 'utf-8') missing_padding = len(data) % 4 if missing_padding != 0: data += b'='* (4 - missing_padding) return base64.b64decode(data)
3b5d20d1617826a53cfd1949da0658f06a230275
3,655,035
from typing import Sequence from typing import Dict from typing import Tuple from typing import Any def create_multi_dataset_generic_benchmark( train_datasets: Sequence[SupportedDataset], test_datasets: Sequence[SupportedDataset], *, other_streams_datasets: Dict[str, Sequence[SupportedDataset]] = None, complete_test_set_only: bool = False, train_transform=None, train_target_transform=None, eval_transform=None, eval_target_transform=None, other_streams_transforms: Dict[str, Tuple[Any, Any]] = None, dataset_type: AvalancheDatasetType = None) -> GenericCLScenario: """ Creates a benchmark instance given a list of datasets. Each dataset will be considered as a separate experience. Contents of the datasets must already be set, including task labels. Transformations will be applied if defined. This function allows for the creation of custom streams as well. While "train" and "test" datasets must always be set, the experience list for other streams can be defined by using the `other_streams_datasets` parameter. If transformations are defined, they will be applied to the datasets of the related stream. :param train_datasets: A list of training datasets. :param test_datasets: A list of test datasets. :param other_streams_datasets: A dictionary describing the content of custom streams. Keys must be valid stream names (letters and numbers, not starting with a number) while the value must be a list of dataset. If this dictionary contains the definition for "train" or "test" streams then those definition will override the `train_datasets` and `test_datasets` parameters. :param complete_test_set_only: If True, only the complete test set will be returned by the benchmark. This means that the ``test_dataset_list`` parameter must be list with a single element (the complete test set). Defaults to False. :param train_transform: The transformation to apply to the training data, e.g. a random crop, a normalization or a concatenation of different transformations (see torchvision.transform documentation for a comprehensive list of possible transformations). Defaults to None. :param train_target_transform: The transformation to apply to training patterns targets. Defaults to None. :param eval_transform: The transformation to apply to the test data, e.g. a random crop, a normalization or a concatenation of different transformations (see torchvision.transform documentation for a comprehensive list of possible transformations). Defaults to None. :param eval_target_transform: The transformation to apply to test patterns targets. Defaults to None. :param other_streams_transforms: Transformations to apply to custom streams. If no transformations are defined for a custom stream, then "train" transformations will be used. This parameter must be a dictionary mapping stream names to transformations. The transformations must be a two elements tuple where the first element defines the X transformation while the second element is the Y transformation. Those elements can be None. If this dictionary contains the transformations for "train" or "test" streams then those transformations will override the `train_transform`, `train_target_transform`, `eval_transform` and `eval_target_transform` parameters. :param dataset_type: The type of the dataset. Defaults to None, which means that the type will be obtained from the input datasets. If input datasets are not instances of :class:`AvalancheDataset`, the type UNDEFINED will be used. :returns: A :class:`GenericCLScenario` instance. """ transform_groups = dict( train=(train_transform, train_target_transform), eval=(eval_transform, eval_target_transform)) if other_streams_transforms is not None: for stream_name, stream_transforms in other_streams_transforms.items(): if isinstance(stream_transforms, Sequence): if len(stream_transforms) == 1: # Suppose we got only the transformation for X values stream_transforms = (stream_transforms[0], None) else: # Suppose it's the transformation for X values stream_transforms = (stream_transforms, None) transform_groups[stream_name] = stream_transforms input_streams = dict( train=train_datasets, test=test_datasets) if other_streams_datasets is not None: input_streams = {**input_streams, **other_streams_datasets} if complete_test_set_only: if len(input_streams['test']) != 1: raise ValueError('Test stream must contain one experience when' 'complete_test_set_only is True') stream_definitions = dict() for stream_name, dataset_list in input_streams.items(): initial_transform_group = 'train' if stream_name in transform_groups: initial_transform_group = stream_name stream_datasets = [] for dataset_idx in range(len(dataset_list)): dataset = dataset_list[dataset_idx] stream_datasets.append(AvalancheDataset( dataset, transform_groups=transform_groups, initial_transform_group=initial_transform_group, dataset_type=dataset_type)) stream_definitions[stream_name] = (stream_datasets,) return GenericCLScenario( stream_definitions=stream_definitions, complete_test_set_only=complete_test_set_only)
74160f178bcd173d53c3e954fe43e2dbeff8c680
3,655,036
def convert_to_xml_string(string): """ For input strings with escaped tags and special characters issue a set of conversion functions to prepare it prior to adding it to an article object """ string = entity_to_unicode(string) string = decode_brackets(string) string = eautils.replace_tags(string, "i", "italic") string = eautils.replace_tags(string, "u", "underline") string = eautils.replace_tags(string, "b", "bold") string = eautils.replace_tags(string, "em", "italic") string = etoolsutils.escape_unmatched_angle_brackets(string, allowed_tags()) return string
7211ade270167e3bb681aa2c450da79f276ea169
3,655,037
def read_shear_catalog_type(stage): """ Determine the type of shear catalog a stage is using as input. Returns a string, e.g. metacal, lensfit. Also sets shear_catalog_type in the stage's configuration so that it is available later and is saved in output. """ with stage.open_input('shear_catalog', wrapper=True) as f: shear_catalog_type = f.catalog_type stage.config['shear_catalog_type'] = shear_catalog_type return shear_catalog_type
26dd03f3a2ef66acab47741df044ac8f2a92bbfb
3,655,038
from typing import Sequence from typing import List import math import cmath def inverse_fft_iterative( poly: Sequence, has_imaginary: bool = False, imag_threshold: float = 1e-14 ) -> List: """Perform inverse iterative discrete fast Fourier transform (DFT) of a polynomial with a degree that is `2^t-1`, t being a positive integer (ie `len(poly)` should be an exact power of 2). Input is point-value form, output is coefficient form. """ # For algo detail, cf. CLRS Ch30.3. # Time complexity: Theta(N log N), but the const in Theta is smaller than that in # fft_recursive() n = len(poly) if n == 1: return poly bit_reversed_poly = _bit_reversal_permutation(poly) for s in range(1, int(math.log2(n) + 1)): # s is the level of recursion counting from bottom, lowest being 1, 2nd-highest # (ie the level just below the root = the orig list) being log2(n). # Length of the target sublists in level s+1 (eg for s=1, target is len of lv2) target_len = 2 ** s # Compute omega_{target_len} principal_root_of_unity = cmath.exp(-(2 * cmath.pi / target_len) * 1j) for k in range(0, n, target_len): omega = 1 for j in range(target_len // 2): body = bit_reversed_poly[k + j] twiddle = omega * bit_reversed_poly[k + j + target_len // 2] # Butterfly operation in-place bit_reversed_poly[k + j] = 1/2 * (body + twiddle) bit_reversed_poly[k + j + target_len // 2] = 1/2 * (body - twiddle) omega *= principal_root_of_unity if not has_imaginary: # This will return a cleaner inverse by discarding imag parts whose # absolute value is less than imag_threshold bit_reversed_poly = [item.real if abs(item.imag) < imag_threshold else item for item in bit_reversed_poly] return bit_reversed_poly
8f12b9d4ab8e4c54aca025a0f8117192c5d49e6b
3,655,039
def admin_uri(): """ Helper fucntion to get the admin url quickly :returns: admin url, redirect or print friendly :rtype: string """ return '/' + app.global_content['options']['admin-url'].value
64a95effb177afbb8a68b5462967130cc6d72f2b
3,655,040
def rlencode(x, check = True, dropna = False): """ Run length encoding. Based on http://stackoverflow.com/a/32681075, which is based on the rle function from R. See https://gist.github.com/nvictus/66627b580c13068589957d6ab0919e66 Parameters ---------- x : 1D array_like Input array to encode dropna: bool, optional Drop all runs of NaNs. Returns ------- start positions, run lengths, run values """ where = np.flatnonzero x = np.asarray(x) n = len(x) if n == 0: return (np.array([], dtype=int), np.array([], dtype=int), np.array([], dtype=x.dtype)) if check: starts = np.r_[0, where(~np.isclose(x[1:], x[:-1], equal_nan=True)) + 1] else: starts = np.r_[0, where(x[1:] != x[:-1]) + 1] lengths = np.diff(np.r_[starts, n]) values = x[starts] if dropna: mask = ~np.isnan(values) starts, lengths, values = starts[mask], lengths[mask], values[mask] return starts, lengths, values
f1d38b11413da3b9d00950b829f193ca2a11f37f
3,655,041
def config_load(config_path): """Load a json config from a file.""" return files.json_load(config_path)
510fb5db9bfa7e73fa8a88a26b540d4d46f8e199
3,655,042
from pytz import timezone def tz2utc(date, tz): """Offset between local time and UTC. Parameters ---------- date : various The local time, in any format acceptable to `date2time`. tz : string date will be processed via `pytz`. Returns ------- offset : datetime.timedelta The UTC offset. """ return timezone(tz).utcoffset(date2time(date).datetime)
f70d35c13865a4dde75ddac0359e74d420fe55fd
3,655,043
import time def replace_from_execution_report(replace_id, execution_report): """Create OrderCancelReplaceRequest from given execution report For more info about OrderCancelReplaceRequest look at https://support.xena.exchange/support/solutions/articles/44000222082-ws-trading-api#order_cancel_replace_request """ cmd = order_pb2.OrderCancelReplaceRequest() cmd.MsgType = constants.MsgType_OrderCancelReplaceRequestMsgType cmd.ClOrdId = replace_id cmd.OrigClOrdId = execution_report.ClOrdId cmd.Symbol = execution_report.Symbol cmd.Side = execution_report.Side cmd.TransactTime = int(time.time() * 1000000000) cmd.Account = execution_report.Account cmd.Price = execution_report.Price cmd.StopPx = execution_report.StopPx cmd.CapPrice = execution_report.CapPrice cmd.OrderQty = execution_report.OrderQty cmd.PegPriceType = execution_report.PegPriceType cmd.PegOffsetType = execution_report.PegOffsetType cmd.PegOffsetValue = execution_report.PegOffsetValue for element in execution_report.SLTP: sltp = cmd.SLTP.add() sltp.OrdType = element.OrdType sltp.Price = element.Price sltp.StopPx = element.StopPx sltp.CapPrice = element.CapPrice sltp.PegPriceType = element.PegPriceType sltp.PegOffsetType = element.PegOffsetType sltp.PegOffsetValue = element.PegOffsetValue return cmd
0b4524f4cfee1d795b7eb6b5e88799374adeb950
3,655,044
def convert_unit(value, factor, offset): """Return converted value depending on the provided factor and offset.""" return num2decimal(value) * num2decimal(factor) + num2decimal(offset)
eec519f1977a3881feb18ea33a0f81295bfbf080
3,655,045
def single_chromosome_graph_scatter( df, chromosome, chosen_template, marker_width, colors, font_size, xaxis_gridlines, yaxis_gridlines, font_family, samples, ): """ Filter out current chromosome and set x- and y-max""" curr_chrom_data = df[df["Chromosome"] == chromosome] y_max = float(curr_chrom_data["Value"].max()) fig = px.scatter( curr_chrom_data, x='Window', y='Value', category_orders={"Sample": samples}, color='Sample', color_discrete_sequence=colors, height=500, ) fig.update_layout( font=dict( size=font_size, family=font_family, ), legend=dict( itemsizing='trace', orientation="h", xanchor="left", x=0, y=1.02, yanchor="bottom", ), showlegend=True, template=chosen_template, title_x=0.5, ) fig.update_xaxes( title="Position", rangemode='tozero', showgrid=xaxis_gridlines, ) fig.update_yaxes( title="Value", range=[0, y_max], fixedrange=True, showgrid=yaxis_gridlines, ) fig.update_traces( marker=dict(size=float(marker_width)), ) return fig
9d49d8dc74e140dedc931de22b00c84e695966b5
3,655,046
def _findall_rmaps_using_reference(filename, observatory="hst"): """Return the basename of all reference mappings which mention `filename`.""" return uses_files([filename], observatory, "rmap")
7dc7a67fb890681d4c94996f4fede550a1010ff5
3,655,047
def batchGD_bp(X, y, d=3, nH=10, c=3, lr=0.8, T=100, eps=0.0): """ BP算法, 每轮迭代使用全部样本 :param X: 训练样本的特征矩阵 :param y: 训练样本的标签向量 :param d: 训练样本的特征维数 :param nH: 隐层的节点数 :param c: 类别数 :param lr: 学习率 :param T: 停机条件1(最大迭代轮数) :param eps: 停机条件2(相邻两次迭代loss之差的最大允许值), 设为0.0表示不使用这个条件 :return: """ W_H = np.random.normal(size=(nH, d)) # np.random.random(size=(nH, d)) # [0.0, 1.0)之间均匀分布 b_H = np.array([0.0] * nH).reshape(nH, 1) W_c = np.random.normal(size=(c, nH)) b_c = np.array([0.0] * c).reshape(c, 1) Loss = []; loss = 0; false_num = [] for t in range(T): loss_last = loss y_ = [] for idx, x in enumerate(X): ## 前向传播 x = x.reshape(d, 1) net_H = np.dot(W_H, x) + b_H z_H = np.tanh(net_H) net = np.dot(W_c, z_H) + b_c z = sigmoid(net) y_.append(z.argmax()) y_x = y[idx].reshape(d, 1) loss = 0.5 * np.sum(np.square(y_x - z)) ## 误差反向传播 # 输出层 delta_c = z * (1 - z) * (z - y_x) # element-wise grad_Wc = np.dot(delta_c, np.transpose(z_H)) grad_bc = delta_c W_c -= lr * grad_Wc b_c -= lr * grad_bc # 隐层 delta_H = (1 - np.square(z_H)) * (np.dot(np.transpose(W_c), delta_c)) grad_WH = np.dot(delta_H, np.transpose(x)) grad_bH = delta_H W_H -= lr * grad_WH b_H -= lr * grad_bH Loss.append(loss) ## 计算本轮过后错分的样本数 y_ = np.array(y_).reshape((30,)) tOf = (np.argmax(y, axis=1) == y_) false_num.append(np.where(tOf == False)[0].shape[0]) if false_num[-1] == 0: # or abs(loss_last - loss) <= eps: # 停机条件 return t, Loss, false_num return T, Loss, false_num
ef20400eb0f1012832780eddf73e7fec34579cd9
3,655,048
from typing import Dict from typing import Any from typing import List import os def run_ase_opt( atoms: Atoms, fmax: float = 0.01, max_steps: int = 100, optimizer: str = "FIRE", opt_kwargs: Dict[str, Any] = None, scratch_dir: str = SETTINGS.SCRATCH_DIR, gzip: bool = SETTINGS.GZIP_FILES, copy_files: List[str] = None, ) -> trajectory: """ Run an ASE-based optimization in a scratch directory and copy the results back to the original directory. This can be useful if file I/O is slow in the working directory, so long as file transfer speeds are reasonable. This is a wrapper around the optimizers in ASE. Note: This function does not modify the atoms object in-place. Parameters ---------- atoms : .Atoms The Atoms object to run the calculation on. fmax : float Tolerance for the force convergence (in eV/A). max_steps : int Maximum number of steps to take. optimizer : str Name of optimizer class to use. opt_kwargs : dict Dictionary of kwargs for the optimizer. scratch_dir : str Path where a tmpdir should be made for running the calculation. If None, the current working directory will be used. gzip : bool Whether to gzip the output files. copy_files : List[str] Filenames to copy from source to scratch directory. Returns ------- traj The ASE trajectory object. """ if atoms.calc is None: raise ValueError("Atoms object must have attached calculator.") atoms = copy_atoms(atoms) cwd = os.getcwd() scratch_dir = scratch_dir or cwd symlink = os.path.join(cwd, "tmp_dir") opt_kwargs = opt_kwargs or {} opt_kwargs["trajectory"] = "opt.traj" opt_kwargs["restart"] = "opt.pckl" # Get optimizer if optimizer.lower() == "bfgs": opt_class = BFGS elif optimizer.lower() == "bfgslinesearch": opt_class = BFGSLineSearch elif optimizer.lower() == "lbfgs": opt_class = LBFGS elif optimizer.lower() == "lbfgslinesearch": opt_class = LBFGSLineSearch elif optimizer.lower() == "gpmin": opt_class = GPMin elif optimizer.lower() == "mdmin": opt_class = MDMin elif optimizer.lower() == "fire": opt_class = FIRE else: raise ValueError(f"Unknown optimizer: {optimizer}") tmpdir = mkdtemp(prefix="quacc-tmp", dir=scratch_dir) if os.name != "nt": if os.path.islink(symlink): os.unlink(symlink) os.symlink(tmpdir, symlink) # Copy files to scratch and decompress them if needed if copy_files: copy_decompress(copy_files, tmpdir) # Run calculation os.chdir(tmpdir) dyn = opt_class(atoms, **opt_kwargs) dyn.run(fmax=fmax, steps=max_steps) os.chdir(cwd) # Check convergence if not dyn.converged: raise ValueError("Optimization did not converge.") # Read trajectory traj = read(os.path.join(tmpdir, "opt.traj"), index=":") # Gzip files in tmpdir if gzip: gzip_dir(tmpdir) # Copy files back to run_dir copy_r(tmpdir, cwd) # Remove symlink if os.path.islink(symlink): os.remove(symlink) os.chdir(cwd) return traj
366196552fc646622443ef7811c01cfd72a45d92
3,655,049
def __slicer(my_str, sub): """ Remove everything in a string before a specified substring is found. Throw exception if substring is not found in string https://stackoverflow.com/questions/33141595/how-can-i-remove-everything-in-a-string-until-a-characters-are-seen-in-python Args: my_str (string): the string to slice. sub (string): the substring to stop slicing at. Returns: str: substring of my_str, without everything before sub. Raises: Exception: Sub string specified is not found in my_str. """ index = my_str.find(sub) if index != -1: return my_str[index:] else: # raise Exception('Sub string not found!') return my_str
50f9ef952ee2f9319c39948505852a209e434690
3,655,050
def load_nii(src_path, as_array=False, as_numpy=False): """ Load a brain from a nifti file :param str src_path: The path to the nifty file on the filesystem :param bool as_array: Whether to convert the brain to a numpy array of keep it as nifty object :param bool as_numpy: Whether to convert the image to a numpy array in memory (rather than a memmap) :return: The loaded brain (format depends on the above flag) """ src_path = str(src_path) nii_img = nib.load(src_path) if as_array: image = nii_img.get_data() if as_numpy: image = np.array(image) return image else: return nii_img
a6f34c9164476245a5e9754730bfe748fbe80f5e
3,655,051
def case34_3ph(): """ Create the IEEE 34 bus from IEEE PES Test Feeders: "https://site.ieee.org/pes-testfeeders/resources/”. OUTPUT: **net** - The pandapower format network. """ net = pp.create_empty_network() # Linedata # CF-300 line_data = {'c_nf_per_km': 3.8250977, 'r_ohm_per_km': 0.69599766, 'x_ohm_per_km': 0.5177677, 'c0_nf_per_km': 1.86976748, 'r0_ohm_per_km': 1.08727498, 'x0_ohm_per_km': 1.47374703, 'max_i_ka': 0.23, 'type': 'ol'} pp.create_std_type(net, line_data, name='CF-300', element='line') # CF-301 line_data = {'c_nf_per_km': 3.66884364, 'r_ohm_per_km': 1.05015841, 'x_ohm_per_km': 0.52265586, 'c0_nf_per_km': 1.82231544, 'r0_ohm_per_km': 1.48350255, 'x0_ohm_per_km': 1.60203942, 'max_i_ka': 0.18, 'type': 'ol'} pp.create_std_type(net, line_data, name='CF-301', element='line') # CF-302 line_data = {'c_nf_per_km': 0.8751182, 'r_ohm_per_km': 0.5798427, 'x_ohm_per_km': 0.30768221, 'c0_nf_per_km': 0.8751182, 'r0_ohm_per_km': 0.5798427, 'x0_ohm_per_km': 0.30768221, 'max_i_ka': 0.14, 'type': 'ol'} pp.create_std_type(net, line_data, name='CF-302', element='line') # CF-303 line_data = {'c_nf_per_km': 0.8751182, 'r_ohm_per_km': 0.5798427, 'x_ohm_per_km': 0.30768221, 'c0_nf_per_km': 0.8751182, 'r0_ohm_per_km': 0.5798427, 'x0_ohm_per_km': 0.30768221, 'max_i_ka': 0.14, 'type': 'ol'} pp.create_std_type(net, line_data, name='CF-303', element='line') # CF-304 line_data = {'c_nf_per_km': 0.90382554, 'r_ohm_per_km': 0.39802955, 'x_ohm_per_km': 0.29436416, 'c0_nf_per_km': 0.90382554, 'r0_ohm_per_km': 0.39802955, 'x0_ohm_per_km': 0.29436416, 'max_i_ka': 0.18, 'type': 'ol'} pp.create_std_type(net, line_data, name='CF-304', element='line') # Busses bus0 = pp.create_bus(net, name='Bus 0', vn_kv=24.9, type='n', zone='34_BUS') bus_800 = pp.create_bus(net, name='Bus 800', vn_kv=24.9, type='n', zone='34_BUS') bus_802 = pp.create_bus(net, name='Bus 802', vn_kv=24.9, type='n', zone='34_BUS') bus_806 = pp.create_bus(net, name='Bus 806', vn_kv=24.9, type='n', zone='34_BUS') bus_808 = pp.create_bus(net, name='Bus 808', vn_kv=24.9, type='n', zone='34_BUS') bus_810 = pp.create_bus(net, name='Bus 810', vn_kv=24.9, type='n', zone='34_BUS') bus_812 = pp.create_bus(net, name='Bus 812', vn_kv=24.9, type='n', zone='34_BUS') bus_814 = pp.create_bus(net, name='Bus 814', vn_kv=24.9, type='n', zone='34_BUS') bus_850 = pp.create_bus(net, name='Bus 850', vn_kv=24.9, type='n', zone='34_BUS') bus_816 = pp.create_bus(net, name='Bus 816', vn_kv=24.9, type='n', zone='34_BUS') bus_818 = pp.create_bus(net, name='Bus 818', vn_kv=24.9, type='n', zone='34_BUS') bus_820 = pp.create_bus(net, name='Bus 820', vn_kv=24.9, type='n', zone='34_BUS') bus_822 = pp.create_bus(net, name='Bus 822', vn_kv=24.9, type='n', zone='34_BUS') bus_824 = pp.create_bus(net, name='Bus 824', vn_kv=24.9, type='n', zone='34_BUS') bus_826 = pp.create_bus(net, name='Bus 826', vn_kv=24.9, type='n', zone='34_BUS') bus_828 = pp.create_bus(net, name='Bus 828', vn_kv=24.9, type='n', zone='34_BUS') bus_830 = pp.create_bus(net, name='Bus 830', vn_kv=24.9, type='n', zone='34_BUS') bus_854 = pp.create_bus(net, name='Bus 854', vn_kv=24.9, type='n', zone='34_BUS') bus_852 = pp.create_bus(net, name='Bus 852', vn_kv=24.9, type='n', zone='34_BUS') bus_832 = pp.create_bus(net, name='Bus 832', vn_kv=24.9, type='n', zone='34_BUS') bus_858 = pp.create_bus(net, name='Bus 858', vn_kv=24.9, type='n', zone='34_BUS') bus_834 = pp.create_bus(net, name='Bus 834', vn_kv=24.9, type='n', zone='34_BUS') bus_842 = pp.create_bus(net, name='Bus 842', vn_kv=24.9, type='n', zone='34_BUS') bus_844 = pp.create_bus(net, name='Bus 844', vn_kv=24.9, type='n', zone='34_BUS') bus_846 = pp.create_bus(net, name='Bus 846', vn_kv=24.9, type='n', zone='34_BUS') bus_848 = pp.create_bus(net, name='Bus 848', vn_kv=24.9, type='n', zone='34_BUS') bus_860 = pp.create_bus(net, name='Bus 860', vn_kv=24.9, type='n', zone='34_BUS') bus_836 = pp.create_bus(net, name='Bus 836', vn_kv=24.9, type='n', zone='34_BUS') bus_840 = pp.create_bus(net, name='Bus 840', vn_kv=24.9, type='n', zone='34_BUS') bus_862 = pp.create_bus(net, name='Bus 862', vn_kv=24.9, type='n', zone='34_BUS') bus_838 = pp.create_bus(net, name='Bus 838', vn_kv=24.9, type='n', zone='34_BUS') bus_864 = pp.create_bus(net, name='Bus 864', vn_kv=24.9, type='n', zone='34_BUS') bus_888 = pp.create_bus(net, name='Bus 888', vn_kv=4.16, type='n', zone='34_BUS') bus_890 = pp.create_bus(net, name='Bus 890', vn_kv=4.16, type='n', zone='34_BUS') bus_856 = pp.create_bus(net, name='Bus 856', vn_kv=24.9, type='n', zone='34_BUS') # Lines pp.create_line(net, bus_800, bus_802, length_km=0.786384, std_type='CF-300', name='Line 0') pp.create_line(net, bus_802, bus_806, length_km=0.527304, std_type='CF-300', name='Line 1') pp.create_line(net, bus_806, bus_808, length_km=9.823704, std_type='CF-300', name='Line 2') pp.create_line(net, bus_808, bus_810, length_km=1.769059, std_type='CF-303', name='Line 3') pp.create_line(net, bus_808, bus_812, length_km=11.43000, std_type='CF-300', name='Line 4') pp.create_line(net, bus_812, bus_814, length_km=9.061704, std_type='CF-300', name='Line 5') # pp.create_line(net, bus_814, bus_850, length_km=0.003048, std_type='CF-301', # name='Line 6') pp.create_line(net, bus_816, bus_818, length_km=0.521208, std_type='CF-302', name='Line 7') pp.create_line(net, bus_816, bus_824, length_km=3.112008, std_type='CF-301', name='Line 8') pp.create_line(net, bus_818, bus_820, length_km=14.67612, std_type='CF-302', name='Line 9') pp.create_line(net, bus_820, bus_822, length_km=4.187952, std_type='CF-302', name='Line 10') pp.create_line(net, bus_824, bus_826, length_km=0.923544, std_type='CF-303', name='Line 11') pp.create_line(net, bus_824, bus_828, length_km=0.256032, std_type='CF-301', name='Line 12') pp.create_line(net, bus_828, bus_830, length_km=6.230112, std_type='CF-301', name='Line 13') pp.create_line(net, bus_830, bus_854, length_km=0.158496, std_type='CF-301', name='Line 14') pp.create_line(net, bus_832, bus_858, length_km=1.493520, std_type='CF-301', name='Line 15') pp.create_line(net, bus_834, bus_860, length_km=0.615696, std_type='CF-301', name='Line 16') pp.create_line(net, bus_834, bus_842, length_km=0.085344, std_type='CF-301', name='Line 17') pp.create_line(net, bus_836, bus_840, length_km=0.262128, std_type='CF-301', name='Line 18') pp.create_line(net, bus_836, bus_862, length_km=0.085344, std_type='CF-301', name='Line 19') pp.create_line(net, bus_842, bus_844, length_km=0.411480, std_type='CF-301', name='Line 20') pp.create_line(net, bus_844, bus_846, length_km=1.109472, std_type='CF-301', name='Line 21') pp.create_line(net, bus_846, bus_848, length_km=0.161544, std_type='CF-301', name='Line 22') pp.create_line(net, bus_850, bus_816, length_km=0.094488, std_type='CF-301', name='Line 23') # pp.create_line(net, bus_852, bus_832, length_km=0.003048, std_type='CF-301', # name='Line 24') pp.create_line(net, bus_854, bus_856, length_km=7.110984, std_type='CF-303', name='Line 25') pp.create_line(net, bus_854, bus_852, length_km=11.22578, std_type='CF-301', name='Line 26') pp.create_line(net, bus_858, bus_864, length_km=0.493776, std_type='CF-302', name='Line 27') pp.create_line(net, bus_858, bus_834, length_km=1.776984, std_type='CF-301', name='Line 28') pp.create_line(net, bus_860, bus_836, length_km=0.816864, std_type='CF-301', name='Line 29') pp.create_line(net, bus_860, bus_838, length_km=1.481328, std_type='CF-304', name='Line 30') pp.create_line(net, bus_888, bus_890, length_km=3.218688, std_type='CF-300', name='Line 31') # Substation pp.create_transformer_from_parameters(net, bus0, bus_800, sn_mva=2.5, vn_hv_kv=24.9, vn_lv_kv=24.9, vkr_percent=1.0, vk_percent=8.062257, pfe_kw=0.0, i0_percent=0.0, shift_degree=0.0, vkr0_percent=1.0, vk0_percent=8.062257, vector_group='YNyn', mag0_percent=100.0, mag0_rx=0, si0_hv_partial=0.9, tap_side='lv', tap_neutral=0, tap_max=2, tap_min=-2, tap_step_percent=2.5, tap_pos=-2, name='Substation') # Regulator 1 pp.create_transformer_from_parameters(net, bus_814, bus_850, sn_mva=1, vn_hv_kv=24.9, vn_lv_kv=24.9, vkr_percent=0.320088, vk_percent=0.357539, pfe_kw=0.0, i0_percent=0.0, shift_degree=0.0, vkr0_percent=0.452171, vk0_percent=0.665505, vector_group='YNyn', mag0_percent=100.0, mag0_rx=0, si0_hv_partial=0.9, tap_side='lv', tap_neutral=0, tap_max=16, tap_min=-16, tap_step_percent=0.625, tap_pos=0, tap_phase_shifter=False, name='Regulator 1') # Regulator 2 pp.create_transformer_from_parameters(net, bus_852, bus_832, sn_mva=1, vn_hv_kv=24.9, vn_lv_kv=24.9, vkr_percent=0.320088, vk_percent=0.357539, pfe_kw=0.0, i0_percent=0.0, shift_degree=0.0, vkr0_percent=0.452171, vk0_percent=0.665505, vector_group='YNyn', mag0_percent=100.0, mag0_rx=0, si0_hv_partial=0.9, tap_side='lv', tap_neutral=0, tap_max=16, tap_min=-16, tap_step_percent=0.625, tap_pos=0, tap_phase_shifter=False, name='Regulator 2') # Traformer pp.create_transformer_from_parameters(net, bus_832, bus_888, sn_mva=0.5, vn_hv_kv=24.9, vn_lv_kv=4.16, vkr_percent=1.9, vk_percent=4.5, pfe_kw=0.0, i0_percent=0.0, shift_degree=0.0, vkr0_percent=1.9, vk0_percent=4.5, vector_group='YNyn', mag0_percent=100.0, mag0_rx=0, si0_hv_partial=0.9, name='Traformer') # Loads pp.create_asymmetric_load(net, bus_806, p_a_mw=0, p_b_mw=0.03, p_c_mw=0.025, q_a_mvar=0, q_b_mvar=0.015, q_c_mvar=0.014, name='Load 806', type='wye') pp.create_asymmetric_load(net, bus_810, p_a_mw=0, p_b_mw=0.016, p_c_mw=0, q_a_mvar=0, q_b_mvar=0.008, q_c_mvar=0, name='Load 810', type='wye') pp.create_asymmetric_load(net, bus_820, p_a_mw=0.034, p_b_mw=0, p_c_mw=0, q_a_mvar=0.017, q_b_mvar=0, q_c_mvar=0, name='Load 820', type='wye') pp.create_asymmetric_load(net, bus_822, p_a_mw=0.135, p_b_mw=0, p_c_mw=0, q_a_mvar=0.07, q_b_mvar=0, q_c_mvar=0, name='Load 822', type='wye') pp.create_asymmetric_load(net, bus_824, p_a_mw=0, p_b_mw=0.005, p_c_mw=0, q_a_mvar=0, q_b_mvar=0.002, q_c_mvar=0, name='Load 824', type='delta') pp.create_asymmetric_load(net, bus_826, p_a_mw=0, p_b_mw=0.04, p_c_mw=0, q_a_mvar=0, q_b_mvar=0.02, q_c_mvar=0, name='Load 826', type='wye') pp.create_asymmetric_load(net, bus_828, p_a_mw=0, p_b_mw=0, p_c_mw=0.004, q_a_mvar=0, q_b_mvar=0, q_c_mvar=0.002, name='Load 828', type='wye') pp.create_asymmetric_load(net, bus_830, p_a_mw=0.007, p_b_mw=0, p_c_mw=0, q_a_mvar=0.003, q_b_mvar=0, q_c_mvar=0, name='Load 830', type='wye') pp.create_asymmetric_load(net, bus_856, p_a_mw=0, p_b_mw=0.004, p_c_mw=0, q_a_mvar=0, q_b_mvar=0.002, q_c_mvar=0, name='Load 856', type='wye') pp.create_asymmetric_load(net, bus_858, p_a_mw=0.007, p_b_mw=0.002, p_c_mw=0.006, q_a_mvar=0.003, q_b_mvar=0.001, q_c_mvar=0.003, name='Load 858', type='delta') pp.create_asymmetric_load(net, bus_864, p_a_mw=0.002, p_b_mw=0, p_c_mw=0, q_a_mvar=0.001, q_b_mvar=0, q_c_mvar=0, name='Load 864', type='wye') pp.create_asymmetric_load(net, bus_834, p_a_mw=0.004, p_b_mw=0.015, p_c_mw=0.013, q_a_mvar=0.002, q_b_mvar=0.008, q_c_mvar=0.007, name='Load 834', type='delta') pp.create_asymmetric_load(net, bus_860, p_a_mw=0.016, p_b_mw=0.02, p_c_mw=0.11, q_a_mvar=0.008, q_b_mvar=0.01, q_c_mvar=0.055, name='Load 860', type='delta') pp.create_asymmetric_load(net, bus_836, p_a_mw=0.03, p_b_mw=0.01, p_c_mw=0.042, q_a_mvar=0.015, q_b_mvar=0.006, q_c_mvar=0.022, name='Load 836', type='delta') pp.create_asymmetric_load(net, bus_840, p_a_mw=0.018, p_b_mw=0.022, p_c_mw=0, q_a_mvar=0.009, q_b_mvar=0.011, q_c_mvar=0, name='Load 840', type='delta') pp.create_asymmetric_load(net, bus_838, p_a_mw=0, p_b_mw=0.028, p_c_mw=0, q_a_mvar=0, q_b_mvar=0.014, q_c_mvar=0, name='Load 838', type='wye') pp.create_asymmetric_load(net, bus_844, p_a_mw=0.009, p_b_mw=0, p_c_mw=0, q_a_mvar=0.005, q_b_mvar=0, q_c_mvar=0, name='Load 844', type='wye') pp.create_asymmetric_load(net, bus_846, p_a_mw=0, p_b_mw=0.025, p_c_mw=0.012, q_a_mvar=0, q_b_mvar=0.02, q_c_mvar=0.011, name='Load 846', type='wye') pp.create_asymmetric_load(net, bus_848, p_a_mw=0, p_b_mw=0.023, p_c_mw=0, q_a_mvar=0, q_b_mvar=0.011, q_c_mvar=0, name='Load 848', type='wye') pp.create_asymmetric_load(net, bus_860, p_a_mw=0.02, p_b_mw=0.02, p_c_mw=0.02, q_a_mvar=0.016, q_b_mvar=0.016, q_c_mvar=0.016, name='Load 860 spot', type='wye') pp.create_asymmetric_load(net, bus_840, p_a_mw=0.009, p_b_mw=0.009, p_c_mw=0.009, q_a_mvar=0.007, q_b_mvar=0.007, q_c_mvar=0.007, name='Load 840 spot', type='wye') pp.create_asymmetric_load(net, bus_844, p_a_mw=0.135, p_b_mw=0.135, p_c_mw=0.135, q_a_mvar=0.105, q_b_mvar=0.105, q_c_mvar=0.105, name='Load 844 spot', type='wye') pp.create_asymmetric_load(net, bus_848, p_a_mw=0.02, p_b_mw=0.02, p_c_mw=0.02, q_a_mvar=0.016, q_b_mvar=0.016, q_c_mvar=0.016, name='Load 848 spot', type='delta') pp.create_asymmetric_load(net, bus_890, p_a_mw=0.15, p_b_mw=0.15, p_c_mw=0.15, q_a_mvar=0.075, q_b_mvar=0.075, q_c_mvar=0.075, name='Load 890 spot', type='delta') pp.create_asymmetric_load(net, bus_830, p_a_mw=0.01, p_b_mw=0.01, p_c_mw=0.025, q_a_mvar=0.005, q_b_mvar=0.005, q_c_mvar=0.01, name='Load 830 spot', type='delta') # External grid pp.create_ext_grid(net, bus0, vm_pu=1.0, va_degree=0.0, s_sc_max_mva=10.0, s_sc_min_mva=10.0, rx_max=1, rx_min=1, r0x0_max=1, x0x_max=1) # Distributed generators pp.create_sgen(net, bus_848, p_mw=0.66, q_mvar=0.500, name='DG 1', max_p_mw=0.66, min_p_mw=0, max_q_mvar=0.5, min_q_mvar=0) pp.create_sgen(net, bus_890, p_mw=0.50, q_mvar=0.375, name='DG 2', max_p_mw=0.50, min_p_mw=0, max_q_mvar=0.375, min_q_mvar=0) pp.create_sgen(net, bus_822, p_mw=0.2, type='PV', name='PV 1', max_p_mw=0.2, min_p_mw=0, max_q_mvar=0, min_q_mvar=0) pp.create_sgen(net, bus_856, p_mw=0.2, type='PV', name='PV 2', max_p_mw=0.2, min_p_mw=0, max_q_mvar=0, min_q_mvar=0) pp.create_sgen(net, bus_838, p_mw=0.2, type='PV', name='PV 3', max_p_mw=0.2, min_p_mw=0, max_q_mvar=0, min_q_mvar=0) pp.create_sgen(net, bus_822, p_mw=0.3, type='WP', name='WP 1', max_p_mw=0.3, min_p_mw=0, max_q_mvar=0, min_q_mvar=0) pp.create_sgen(net, bus_826, p_mw=0.3, type='WP', name='WP 2', max_p_mw=0.3, min_p_mw=0, max_q_mvar=0, min_q_mvar=0) pp.create_sgen(net, bus_838, p_mw=0.3, type='WP', name='WP 3', max_p_mw=0.3, min_p_mw=0, max_q_mvar=0, min_q_mvar=0) # Shunt capacity bank pp.create_shunt(net, bus_840, q_mvar=-0.12, name='SCB 1', step=4, max_step=4) pp.create_shunt(net, bus_864, q_mvar=-0.12, name='SCB 2', step=4, max_step=4) # storage pp.create_storage(net, bus_810, p_mw=0.2, max_e_mwh=1.0, sn_mva=1.0, soc_percent=50, min_e_mwh=0.2, name='Storage') pp.add_zero_impedance_parameters(net) return net
f65a01b8d52fc829b368de1414c3dd7df29bff76
3,655,052
from datetime import datetime from dateutil import tz def generate_daily_stats(): """ Generates dummy daily stats for one year """ times = [1577836800 + (i * 86400) for i in range(0,366)] stats_arr = [[]] for time in times: vals = [uniform(0,100) for i in range(843)] stats_arr[0].append({ 'min': np.min(vals), 'max': np.max(vals), 'mean': np.mean(vals), 'cnt': 843, 'std': np.std(vals), 'time': int(time), 'iso_time': datetime.utcfromtimestamp(int(time)).replace(tzinfo=tz('UTC')).strftime('%Y-%m-%dT%H:%M:%S%z') }) clim_stats = {datetime.utcfromtimestamp(result['time']).month: result for result in stats_arr[0]} return stats_arr, clim_stats
fc1e172ed0eb3bc9711a1b9e38668d46e3939f9b
3,655,053
def create_mask(imsize: tuple, bbox: tuple) -> Image: """ Args: imsize: (w, h) bboxes: (x0, y0, x1, y1) """ mask = Image.new("L", imsize) draw = ImageDraw.Draw(mask) draw.rectangle(bbox, fill=255) return mask
5064ab08e27725211796967ca26e10760b2ec45f
3,655,054
def build_resolved_spec(api, spec_lookup, cache, force_build, spec, version, ecosystem_hash): """Builds a resolved spec at a specific version, then uploads it. Args: * api - The ThirdPartyPackagesNGApi's `self.m` module collection. * spec_lookup ((package_name, platform) -> ResolvedSpec) - A function to lookup (possibly cached) ResolvedSpec's for things like dependencies and tools. * cache (dict) - A map of (package_name, version, platform) -> CIPDSpec. The `build_resolved_spec` function fully manages the content of this dictionary. * force_build (bool) - If True, don't consult CIPD server to see if the package is already built. This also disables uploading the source and built results, to avoid attempting to upload a duplicately-tagged package. * spec (ResolvedSpec) - The resolved spec to build. * version (str) - The symver (or 'latest') version of the package to build. * ecosystem_hash(str) - If specified, tells 3pp hash used for this build. Returns the CIPDSpec of the built package; If the package already existed on the remote server, it will return the CIPDSpec immediately (without attempting to build anything). """ keys = [(spec.cipd_pkg_name, version, spec.platform)] if keys[0] in cache: return cache[keys[0]] def set_cache(spec): for k in keys: cache[k] = spec return spec with api.step.nest('building %s' % (spec.cipd_pkg_name,)): env = { '_3PP_PLATFORM': spec.platform, '_3PP_TOOL_PLATFORM': spec.tool_platform, '_3PP_CIPD_PACKAGE_NAME': spec.cipd_pkg_name, # CIPD uses 'mac' instead of 'darwin' for historical reasons. 'GOOS': spec.platform.split('-')[0].replace('mac', 'darwin'), # CIPD encodes the GOARCH/GOARM pair of ('arm', '6') as 'armv6l'. # Since GOARCH=6 is the default, we don't need to specify it. 'GOARCH': spec.platform.split('-')[1].replace('armv6l', 'arm'), } if spec.platform.startswith('mac-'): if spec.platform == 'mac-arm64': # ARM64 support is added in macOS 11. env['MACOSX_DEPLOYMENT_TARGET'] = '11.0' # Mac builds don't use Docker/Dockcross, so we handle cross-build # setup here. Setting CCC_OVERRIDE_OPTIONS passes the target to # Clang globally, so we don't need to plumb it through each individual # install script. We use '^' to indicate this option is inserted at # the beginning of the compiler options list -- this gives the ability # to override it later if needed. if resolved_spec.platform_for_host(api) != spec.platform: env['CROSS_TRIPLE'] = 'aarch64-apple-darwin' env['CCC_OVERRIDE_OPTIONS'] = '^--target=arm64-apple-macos' else: # Make sure to clear these options if not cross-compiling, since # we may be switching back and forth between building host tools # and target-platform binaries. env.pop('CROSS_TRIPLE', None) env.pop('CCC_OVERRIDE_OPTIONS', None) else: env['MACOSX_DEPLOYMENT_TARGET'] = '10.10' if spec.create_pb.source.patch_version: env['_3PP_PATCH_VERSION'] = spec.create_pb.source.patch_version with api.context(env=env): # Resolve 'latest' versions. Done inside the env because 'script' based # sources need the $_3PP* envvars. is_latest = version == 'latest' git_hash = '' if is_latest: version, git_hash = source.resolve_latest(api, spec) keys.append((spec.cipd_pkg_name, version, spec.platform)) if keys[-1] in cache: return set_cache(cache[keys[-1]]) cipd_spec = spec.cipd_spec(version) # See if the specific version is uploaded if force_build or not cipd_spec.exists_in_cipd(): # Otherwise, build it _build_impl( api, cipd_spec, is_latest, spec_lookup, force_build, (lambda spec, version: build_resolved_spec( api, spec_lookup, cache, force_build, spec, version, ecosystem_hash)), spec, version, git_hash, ecosystem_hash) return set_cache(cipd_spec)
789cb1f0492b73af763778d35ed095f7d0a4799c
3,655,055
def set_diff(seq0, seq1): """Return the set difference between 2 sequences as a list.""" return list(set(seq0) - set(seq1))
ff10464acc65b60e9355e8971c45fbca8025fda6
3,655,056
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, output_mode): """Loads a data file into a list of input features.""" ''' output_mode: classification or regression ''' if (label_list != None): label_map = {label : i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[:(max_seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = ["[CLS]"] + tokens_a + ["[SEP]"] segment_ids = [0] * len(tokens) if tokens_b: tokens += tokens_b + ["[SEP]"] segment_ids += [1] * (len(tokens_b) + 1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert(len(input_ids) == max_seq_length) assert(len(input_mask) == max_seq_length) assert(len(segment_ids) == max_seq_length) if (label_list != None): if output_mode == "classification": label_id = label_map[example.label] elif output_mode == "regression": label_id = float(example.label) else: raise KeyError(output_mode) else: label_id = None features.append( InputFeatures(tokens=tokens, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id)) return features
0d043a98e1a2e2159c0b0653266d65788284fa39
3,655,057
from .parameter import ModelParameters import multiprocessing as mp from .neural import test_dataset def test_set_wrapper(): """ Wrapper function to compute test datasets of fixed widths using multiprocessing. Widths are defined in the parameter file. Ouputs are in Neural/ folder """ a = ModelParameters() widths = a.test_sigma_widths p = mp.Pool() # Do all 5 in parallel p.imap_unordered(test_dataset,widths) return None
fe6bf41681f1a1344cffcc15d41e77b3f46c3c46
3,655,058
from typing import List def get_unapproved_csr_names(kubeconfig_path: str) -> List[str]: """ Returns a list of names of all CertificateSigningRequest resources which are unapproved. May raise SubprocessError """ return [ csr["metadata"]["name"] for csr in oc_list(kubeconfig_path, "csr") if not _has_condition(resource=csr, type="Approved", status="True") ]
287674bb774982b0fc7ab17edeff9c12ea92b7cd
3,655,059
import string def function(n, m, f): """Assumes that n = m = 1. The argument f is a Python function that takesas input an n-bit string alpha and returns as output an m-bit string f(alpha). See deutschTest for examples of f. This function returns the (n + m)-qbit gate F that corresponds to f. """ F = np.zeros((2**(n+m),2**(n+m)), dtype=one.dtype) for a in range(0,2**n): for b in range(0,2**m): alpha = string(n,a) beta = string(m,b) beta_new = addition(beta,f(alpha)) row_bits = alpha + beta_new col_bits = alpha + beta F[integer(row_bits)][integer(col_bits)] = 1 + 0j return F
f77fe869e278ede37f477b2479012861b0bb5638
3,655,060
from functools import reduce import operator def get_study_list_qs(user, query_dict): """Gets a study list query set annotated with response counts. TODO: Factor in all the query mutation from the (view) caller. TODO: Upgrade to Django 2.x and use the improved query mechanisms to clean this up. Args: user: django.utils.functional.SimpleLazyObject masquerading as a user. query_dict: django.http.QueryDict from the self.request.GET property. Returns: A heavily annotated queryset for the list of studies. """ annotated_responses_qs = get_annotated_responses_qs().only( "id", "completed", "completed_consent_frame", "date_created", "date_modified", "is_preview", ) queryset = ( studies_for_which_user_has_perm(user, StudyPermission.READ_STUDY_DETAILS) # .select_related("lab") # .select_related("creator") .only( "id", "state", "uuid", "name", "date_modified", "short_description", "image", "comments", "lab__name", "creator__given_name", "creator__family_name", ) .exclude(state="archived") .filter(lab_id__isnull=False, creator_id__isnull=False) .annotate( lab_name=F("lab__name"), creator_name=Concat( "creator__given_name", Value(" "), "creator__family_name" ), completed_responses_count=SubqueryCount( Response.objects.filter( study=OuterRef("pk"), is_preview=False, completed_consent_frame=True, completed=True, ).values("id") ), incomplete_responses_count=SubqueryCount( Response.objects.filter( study=OuterRef("pk"), is_preview=False, completed_consent_frame=True, completed=False, ).values("id") ), valid_consent_count=SubqueryCount( annotated_responses_qs.filter( study=OuterRef("pk"), is_preview=False, current_ruling="accepted" ) ), pending_consent_count=SubqueryCount( annotated_responses_qs.filter( study=OuterRef("pk"), is_preview=False, current_ruling="pending" ) ), starting_date=Subquery( StudyLog.objects.filter(study=OuterRef("pk")) .order_by("-created_at") .filter(action="active") .values("created_at")[:1] ), ending_date=Subquery( StudyLog.objects.filter(study=OuterRef("pk")) .order_by("-created_at") .filter(action="deactivated") .values("created_at")[:1] ), ) ) # Request filtering state = query_dict.get("state") if state and state != "all": if state == "myStudies": queryset = queryset.filter(creator=user) else: queryset = queryset.filter(state=state) match = query_dict.get("match") if match: queryset = queryset.filter( reduce( operator.and_, ( Q(name__icontains=term) | Q(short_description__icontains=term) for term in match.split() ), ) ) sort = query_dict.get("sort", "") if "name" in sort: queryset = queryset.order_by( Lower("name").desc() if "-" in sort else Lower("name").asc() ) elif "beginDate" in sort: queryset = queryset.order_by("starting_date") elif "endDate" in sort: queryset = queryset.order_by("ending_date") return queryset
79faa7eb68df1b8148366ce501099cedcb7144db
3,655,061
def get_life_stages(verbose: bool = False) -> pd.DataFrame: """Get table of life stages. Parameters ---------- verbose : bool If True, prints the SQL statement used to query the database. Returns ------- pandas DataFrame """ return __basic_query(LifeStage, verbose=verbose)
316bbfedd4d550c5bac0bdaf9d1e04bbea6a378e
3,655,062
def bytes_to(value_in_bytes: float, rnd: int | None = ...) -> str: """ :param value_in_bytes: the value in bytes to convert :param rnd: number of digits to round to :return: formatted string """ sizes = ["bytes", "KB", "MB", "GB", "TB"] now = int() while value_in_bytes > 1024: value_in_bytes /= 1024 now += 1 if rnd is not ...: value_in_bytes = round(value_in_bytes, rnd) return f"{value_in_bytes} {sizes[now]}"
fc2bf917fe7520780b84c6ad3ce572e0ed0341ae
3,655,063
import json def lambda_handler(event, context): """Main Function""" page_iterator = PAGINATOR.paginate(**OPERATION_PARAMETERS) for page in page_iterator: functions = page['Functions'] for function in functions: funct = { "Name": function['FunctionName'], "Version": function['Version'], "CodeSize": function['CodeSize'] } funct = json.dumps(funct) ALL_FUNCTIONS.add(funct) total = 0 for i in sorted(ALL_FUNCTIONS): i = json.loads(i) print("{function:48}:{version:8} {size:,.2f}".format( function=i['Name'], version=i['Version'], size=i['CodeSize'])) total += i['CodeSize'] # Convert bytes to MB total = total / 1024 / 1024 data = "Lambda code storage: {}".format(str(total)) print(data) return { 'statusCode': 200, 'body': json.dumps(data) }
3ff4796b5adc4de1c91ab6a72ea8f5426fcbf7c9
3,655,064
def _find_first_print(body): """ This function finds the first print of something """ for (i, inst) in enumerate(body): if isinstance(inst, ir.Print): return i return -1
863490b6fdca04fd093c72c8fc098b90dde6c946
3,655,065
def list_mix(set_key, encoding, in_set = ""): """ Returns: Seeded Random Shuffle of Input Set by Input Key. """ if in_set == "": char_set = list(encoding["set"]) else: char_set = in_set seed(set_key) return sample(char_set, len(char_set))
cd672d19e252bb8f6bf717cddfc9cc1b89e3ba38
3,655,066
def leslie(f, s): """Create a Leslie matrix. Given the length n array of fecundity coefficients ``f`` and the length n-1 array of survival coefficients ``s``, return the associated Leslie matrix. Args: f (cupy.ndarray): The "fecundity" coefficients. s (cupy.ndarray): The "survival" coefficients, has to be 1-D. The length of ``s`` must be one less than the length of ``f``, and it must be at least 1. Returns: cupy.ndarray: The array is zero except for the first row, which is ``f``, and the first sub-diagonal, which is ``s``. The data-type of the array will be the data-type of ``f[0]+s[0]``. .. seealso:: :func:`scipy.linalg.leslie` """ if f.ndim != 1: raise ValueError('Incorrect shape for f. f must be 1D') if s.ndim != 1: raise ValueError('Incorrect shape for s. s must be 1D') n = f.size if n != s.size + 1: raise ValueError('Length of s must be one less than length of f') if s.size == 0: raise ValueError('The length of s must be at least 1.') a = cupy.zeros((n, n), dtype=cupy.result_type(f, s)) a[0] = f cupy.fill_diagonal(a[1:], s) return a
65b37856e5e4db4d89574a08b91424f75ad424d1
3,655,067
import logging def __convert_node(node, default_value='', default_flags=vsflags()): """Converts a XML node to a JSON equivalent.""" name = __get_attribute(node, 'Name') logging.debug('Found %s named %s', node.tagName, name) converted = {} converted['name'] = name switch = __get_attribute(node, 'Switch') separator = __get_attribute(node, 'Separator') converted['switch'] = __normalize_switch(switch, separator) converted['comment'] = __get_attribute(node, 'DisplayName') converted['value'] = default_value # Check for the Flags attribute in case it was created during preprocessing flags = __get_attribute(node, 'Flags') if flags: flags = flags.split(',') else: flags = default_flags converted['flags'] = flags return converted
bf23b3927ec1d9165bbd08e9e49377127ef4be5c
3,655,068
def clone(output, replace=None, *args, **kwargs): """ Use as theano.clone(). TODO: Something useful with non-symbolic output ? """ if not core.is_theano_object(output): raise ValueError("`shim.graph.clone()` is undefined for non-symbolic outputs") return core.gettheano().clone(output, replace, *args, **kwargs)
01013b77ca0f4dd089ccd4acd16835a715fe07d2
3,655,069
from datetime import datetime def get_clustermgtd_heartbeat(clustermgtd_heartbeat_file_path): """Get clustermgtd's last heartbeat.""" # Use subprocess based method to read shared file to prevent hanging when NFS is down # Do not copy to local. Different users need to access the file, but file should be writable by root only # Only use last line of output to avoid taking unexpected output in stdout heartbeat = ( check_command_output( f"cat {clustermgtd_heartbeat_file_path}", timeout=DEFAULT_COMMAND_TIMEOUT, shell=True, # nosec ) .splitlines()[-1] .strip() ) # Note: heartbeat must be written with datetime.strftime to convert localized datetime into str # datetime.strptime will not work with str(datetime) # Example timestamp written to heartbeat file: 2020-07-30 19:34:02.613338+00:00 return datetime.strptime(heartbeat, TIMESTAMP_FORMAT)
307baba7c399e8c1277622c5cd2bd2f613ba1974
3,655,070
def logout(): """ Logs out user by deleting token cookie and redirecting to login page """ APP.logger.info('Logging out.') resp = make_response(redirect(url_for('login_page', _external=True, _scheme=APP.config['SCHEME']))) resp.delete_cookie(APP.config['TOKEN_NAME']) return resp
ab10628ec8e9b7a70edfbdc2f511214df7fcdfc9
3,655,071
import sys def fileDescribe(*args, **kwargs): """ .. deprecated:: 0.42.0 Use :func:`file_describe()` instead. """ print("dxpy.fileDescribe is deprecated; please use file_describe instead.", file=sys.stderr) return file_describe(*args, **kwargs)
ab4101a55bc7b1c35cea3fb0382752ac2ef547a0
3,655,072
def ATR(df, n, high_column='High', low_column='Low', close_column='Close', join=None, dropna=False, dtype=None): """ Average True Range """ high_series = df[high_column] low_series = df[low_column] close_prev_series = df[close_column].shift(1) tr = np.max(( (high_series.values - low_series.values), np.abs(high_series.values - close_prev_series.values), np.abs(low_series.values - close_prev_series.values), ), 0) tr = pd.Series(tr, name=type(join) is list and join[0] or join) if len(tr) > n: tr[n] = tr[1:n+1].mean() nm1 = n - 1 for i in range(n+1, len(tr)): tr[i] = (tr[i-1] * nm1 + tr[i]) / n tr[:n] = np.nan return out(df, tr, bool(join), dropna, dtype)
f3835e289f23c0095d9fd0563a26d4ee4e5423cf
3,655,073
import os import urllib import requests def lookup(symbol): """Look up quote for symbol.""" # Contact API try: api_key = os.environ.get("API_KEY") url = f"https://cloud-sse.iexapis.com/stable/stock/{urllib.parse.quote_plus(symbol)}/quote?token={api_key}" response = requests.get(url) response.raise_for_status() except requests.RequestException: return None # Parse response try: quote = response.json() return { "name": quote["companyName"], "price": float(quote["latestPrice"]), "symbol": quote["symbol"] } except (KeyError, TypeError, ValueError): return None
56929dff46ebe26d8e9cea88fa18eceac1afced1
3,655,074
def get_full_history(sender, dialog_id): """Download the full history for the selected dialog""" page = 0 limit = 100 history = [] print('Downloading messages...') while True: sleep(REQUEST_DELAY) offset = page * limit try: history[0:0] = sender.history(dialog_id, limit, offset) print('.', end=' ', flush=True) except IllegalResponseException: print('\n{} messages found in selected dialog'.format(len(history))) break page += 1 print('') return history
1316ebfd592404243392fdbb9e538cf818e3c6ac
3,655,075
def predict_transposition_cost(shape, perm, coefs=None): """ Given a shape and a permutation, predicts the cost of the transposition. :param shape: shape :param perm: permutation :param coefs: trained coefficients or None to get the default ones :return: dictionary of features """ if coefs is None: coefs = _ml_transpose_coefs feat = compute_transposition_features(shape, perm) res = 0 for k, v in feat.items(): res += v * coefs[k] return max(0., res / 1000)
502e14cfcc38357e7f915985a8fd15fb5c798bd4
3,655,076
def checkBuildAMR(parfile,cellfile,**kwargs): """ Purpose ------- Check that BuildAMRfromParticles.f90 builds the cells around the particles created by mkClouds.f90 in the right places. Only cloud cells are plotted. If you want to include the field cells, in BuildAMRfromParticles.f90's subroutine CountCells() remove the part " .and. CurrentCell%phase.eq.1" from the if statement (and recompile). Keywords -------- Robs: Plot only within Robs kpc of center Usage ----- >>> checkBuildAMR('clouds_par.dat','clouds_cell.dat',Robs=.1) """ def _iltR(x,y,z,R): return np.where((x<=R) & (y<=R) & (z<=R)) fig = plt.figure(figsize=(5,5)) ax = fig.add_subplot(111, projection='3d') x,y,z = np.loadtxt(parfile,unpack=True) print('n_par =', len(x)) if len(x) > 100000: print('WARNING: This is going to be slow!') # ax.set_alpha(.01) if 'Robs' in kwargs: Robs = kwargs['Robs'] ax.set_xlim([-Robs,Robs]) ax.set_ylim([-Robs,Robs]) ax.set_zlim([-Robs,Robs]) ind = _iltR(x,y,z,Robs) ax.scatter(x[ind],y[ind],z[ind],s=1,label='Particles') else: ax.scatter(x,y,z,s=1,label='Particles') x,y,z = np.loadtxt(cellfile,unpack=True) print('n_cell =', len(x)) if 'Robs' in kwargs: ind = _iltR(x,y,z,Robs) ax.scatter(x[ind],y[ind],z[ind],s=1,label='Cells (excluding ICM cells)') else: ax.scatter(x,y,z,s=1,label='Cells (excluding ICM cells)') ax.legend()
7497181ab92b723f68cb4448c0d80bfd0f21c0a2
3,655,077
def dist(df): """ Calculate Euclidean distance on a dataframe. Input columns are arranged as x0, x1, y0, y1. """ return np.sqrt((df.iloc[:,0] - df.iloc[:,2])**2 + (df.iloc[:,1] - df.iloc[:,3])**2)
87cc27c655bce16bc42b0f715be6462af7535d19
3,655,078
def B_Calc(T, n=2): """ Calculate B (Constant in the mass transfer term). :param T: cell operation temperature [K] :type T : float :param n: number of moles of electrons transferred in the balanced equation occurring in the fuel cell :type n: int :return: B as float """ try: return (R * T) / (n * F) except (TypeError, ZeroDivisionError): return None
1f1e8fb60797787c01bfd916b2989c1a640d0a08
3,655,079
import re def get_page_likes(response): """Scan a page and create a dictionary of the image filenames and displayed like count for each image. Return the dictionary.""" # find all flowtow divs flowtows = response.html.find_all('div', class_='flowtow') result = dict() for div in flowtows: # get the filename from the form hidden input input = div.find("input", attrs={'name': "filename"}) filename = input['value'] # find the likes element likesel = div.find(class_='likes') # grab the integer from this element m = re.search('\d+', likesel.text) if m: likes = int(m.group()) else: likes = 0 result[filename] = likes return result
e956e54d18d6540d1a8fd07250a5c758b696bcc5
3,655,080
def firm(K, eta, alpha, delta): """Calculate return, wage and aggregate production. r = eta * K^(alpha-1) * L^(1-alpha) + (1-delta) w = eta * K^(alpha) * L^(-alpha) Y = eta * K^(alpha) * L^(1-alpha) + (1-delta) * K Args: K: aggregate capital, eta: TFP value, alpha: output elasticity, delta: depreciation value. Returns: return: return (marginal product of capital), wage: wage (marginal product of labor), Y: aggregate production. """ L = tf.ones_like(K) r = alpha * eta * K**(alpha - 1) * L**(1 - alpha) + (1 - delta) w = (1 - alpha) * eta * K**alpha * L**(-alpha) Y = eta * K**alpha * L**(1 - alpha) + (1 - delta) * K return r, w, Y
29be01360e23555d30cccca33cd556f0bd406088
3,655,081
def get_col(arr, col_name): """ returns the column from a multi-dimensional array """ return map(lambda x : x[col_name], arr)
faf36e88c73a1f03efce94fd74a1d6b378f74bdb
3,655,082
import urllib import json def get_articles(id): """function that process the articles and a list of articles objects """ get_articles_url = articles_url.format(id, api_key) with urllib.request.urlopen(get_articles_url) as url: news_article_results = json.loads(url.read()) news_article_object = None if news_article_results['articles']: news_article_object = process_news_source(news_article_results['articles']) return news_article_object
503b8260b6aeaaa526837f091c7e94687bfdd0de
3,655,083
def check_slot_exist(start_time,end_time): """ Description: check_slot_exists is responsible for checking that a slot exists before a volunteer can create it. Parameters: Takes two parameters of type datetime: start_time:datetime end_time:datetime return: returns Boolean type: True or False:Boolean """ slot_data = read_from_local_data_file.read_from_file() slots = slot_data['items'] for slot in slots: end_time_slot = slot["end"]["dateTime"] start_time_slot = slot["start"]["dateTime"] if start_time >= start_time_slot.split("+",1)[0] and start_time <= end_time_slot.split("+",1)[0]: if end_time >= start_time_slot.split("+",1)[0] and end_time <= end_time_slot.split("+",1)[0]: return True return False
1492cfb6b118d491166fc1abe202ca84a7fd26ed
3,655,084
from datetime import datetime def format_relative_date(date): """Takes a datetime object and returns the date formatted as a string e.g. "3 minutes ago", like the real site. This is based roughly on George Edison's code from StackApps: http://stackapps.com/questions/1009/how-to-format-time-since-xxx-e-g-4-minutes-ago-similar-to-stack-exchange-site/1018#1018""" now = datetime.datetime.now() diff = (now - date).seconds # Anti-repetition! These simplify the code somewhat. plural = lambda d: 's' if d != 1 else '' frmt = lambda d: (diff / float(d), plural(diff / float(d))) if diff < 60: return '%d second%s ago' % frmt(1) elif diff < 3600: return '%d minute%s ago' % frmt(60) elif diff < 86400: return '%d hour%s ago' % frmt(3600) elif diff < 172800: return 'yesterday' else: return date.strftime('M j / y - H:i')
5dc8614fb3007ee90032cb0e2baa0b2fc910f275
3,655,085
def Jacobian_rkhs_gaussian(x, vf_dict, vectorize=False): """analytical Jacobian for RKHS vector field functions with Gaussian kernel. Arguments --------- x: :class:`~numpy.ndarray` Coordinates where the Jacobian is evaluated. vf_dict: dict A dictionary containing RKHS vector field control points, Gaussian bandwidth, and RKHS coefficients. Essential keys: 'X_ctrl', 'beta', 'C' Returns ------- J: :class:`~numpy.ndarray` Jacobian matrices stored as d-by-d-by-n numpy arrays evaluated at x. d is the number of dimensions and n the number of coordinates in x. """ if x.ndim == 1: K, D = con_K(x[None, :], vf_dict['X_ctrl'], vf_dict['beta'], return_d=True) J = (vf_dict['C'].T * K) @ D[0].T elif not vectorize: n, d = x.shape J = np.zeros((d, d, n)) for i, xi in enumerate(x): K, D = con_K(xi[None, :], vf_dict['X_ctrl'], vf_dict['beta'], return_d=True) J[:, :, i] = (vf_dict['C'].T * K) @ D[0].T else: K, D = con_K(x, vf_dict['X_ctrl'], vf_dict['beta'], return_d=True) if K.ndim == 1: K = K[None, :] J = np.einsum('nm, mi, njm -> ijn', K, vf_dict['C'], D) return -2 * vf_dict['beta'] * J
0f45147587c02dbcbf879a3f8ed26d4d9eeaea2e
3,655,086
from typing import Tuple import glob import os def predict_images(detection_graph: tf.Graph, image_path: str, output_path: str, output_csv_path: str, threshold: float = 0.3, save_csv: bool = True) -> Tuple[np.ndarray]: """Predict detection on image Args: detection_graph (tf.Graph): Graph of model to detect image_path (str): path to image output_path (str): output folder to write detected images to output_csv_path (str): output folder to write csv of detections to threshold (float, optional): detection threshold. Defaults to 0.3. save_csv (bool, optional): whether csv files of detection should be saved. Defaults to True. Returns: Tuple[np.ndarray]: tuple of np arrays (all_boxes, all_scores, all_classes, all_num_detections) """ data = pd.DataFrame(columns=[ 'filename', 'width', 'height', 'class', 'score', 'xmin', 'ymin', 'xmax', 'ymax']) all_boxes, all_scores, all_classes, all_num_detections = [], [], [], [] with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: for img in sorted(glob.glob(image_path)): image_np, orig_w, orig_h = image_load_encode(img) # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) #print('Image expanded: ', image_np.shape, image_np_expanded.shape) image_tensor = detection_graph.get_tensor_by_name( 'image_tensor:0') # Each box represents a part of the image where a particular object was detected. boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. scores = detection_graph.get_tensor_by_name( 'detection_scores:0') classes = detection_graph.get_tensor_by_name( 'detection_classes:0') num_detections = detection_graph.get_tensor_by_name( 'num_detections:0') # Actual detection. (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: image_np_expanded}) #print('Boxes: ', boxes, 'scores', scores, 'classes', classes, 'num dets', num_detections) if save_csv: all_boxes.append(boxes) all_scores.append(scores) all_classes.append(classes) all_num_detections.append(num_detections) boxes = boxes[0] * np.array([[512, 512, 512, 512]]) scores = scores[0] classes = classes[0] num_detections = int(num_detections[0]) # convert boxes to xmin, ymin, xmax, ymax. Currently it is ymin, xmin, ymax, xmax boxes = boxes[:, [1, 0, 3, 2]] # find out where scores are greater than at threshold and change everything according to that thresh_indices = np.where(scores >= threshold)[0] boxes = boxes[thresh_indices] scores = scores[thresh_indices] classes = classes[thresh_indices] boxes, scores = postprocess(boxes, scores, theta=args.theta) # Visualization of the results of a detection, but only if output_path is provided if output_path is not None: image_np = draw_boxes( image_np, boxes, scores, disable_thresh=True) orig_name = img.split('/')[-1].split('\\')[-1] img_output_path = os.path.join(output_path, orig_name) cv2.imwrite(img_output_path, image_np) # always saving data to dataframe if save_csv: _ = write_to_df(data, img, orig_w, orig_h, output_csv_path, 'spine', boxes, scores, disable_thresh=True) print('[INFO] Finished detection of image '+img+'.') return all_boxes, all_scores, all_classes, all_num_detections
07fd773457de758405e0fbcce3da8f58fd1140f9
3,655,087
def load_pickle(file): """Gets the file from the cPickle file.""" f = open(file, 'r') d = cPickle.load(f) f.close() logger = get_logger() logger.info("file %s loaded" % file) return d
68caaa36fde8adaad3da60b567488c8e8df1bd69
3,655,088
def test_register_op_with_extending_steps_works(): """ Calling the custom pipeline operation with an argument should yield the same arguments passed back as a result :return: """ test_pipe = Pipeline(STEPS, **PIPELINE_DEF_KWARGS) def custom_op(doc, context=None, settings=None, **kwargs): return settings custom_argument = {'argument': 1} test_pipe.register_operation('CUSTOM_STEP', custom_op) test_pipe.steps.append(('CUSTOM_STEP', custom_argument)) results = test_pipe(TEXT) assert results['CUSTOM_STEP'] == custom_argument
c4de3ab07fb3a6659e413f61d77bd48057a025d0
3,655,089
from typing import Tuple def get_dates_for_last_30_days( end_date: date, ) -> Tuple[Tuple[date, date], Tuple[date, date]]: """Returns dates for running RCA on the last 30 days. The first tuple contains t-61, t-31. The second tuple contains t-30, t. """ rca_start_date = end_date - timedelta(days=30) base_end_date = rca_start_date - timedelta(days=1) base_start_date = base_end_date - timedelta(days=30) return (base_start_date, base_end_date), (rca_start_date, end_date)
c174f457ec46fabaf724665a322d697b541e815f
3,655,090
from datetime import datetime def get_3rd_friday(): """获取当前月的第三个星期五""" first_day_in_month = datetime.now().replace(day=1) # 本月第一天 # 获取当前月的所有星期5的日 fridays = [i for i in range(1, 28) if (first_day_in_month + timedelta(days=i - 1)).isoweekday() == 5] if len(fridays) < 3: raise Exception(f'获取当前月异常:{fridays}') # 第三个星期五,是第几天 third_friday = fridays[2] return datetime.now().replace(day=third_friday)
ae83cbb3648fc24940ef874d492f56e9ece56481
3,655,091
import requests def retrieve_article_pdf_from_ads(bibcode, eprint_or_pub="PUB"): """ Get the PDF file for a given bibcode """ endpoint = f"{eprint_or_pub.upper()}_PDF" safe_bibcode = quote(bibcode) pdf_filename = f"{safe_bibcode}_{eprint_or_pub.lower()}.pdf" url = f"{LINK_GATEWAY_BASE_URL}/{safe_bibcode}/{endpoint}" r = requests.get( url, allow_redirects=True, ) with open(pdf_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=128): f.write(chunk) return pdf_filename
fb747a25e3415531e74a980afb476d8d27cb66a6
3,655,092
import requests def get_account_info(): """account information""" method = 'GET' path = '/open/api/v2/account/info' url = '{}{}'.format(ROOT_URL, path) params = _sign(method, path) response = requests.request(method, url, params=params) return response.json()
5e4835933935db48d5cdbde3a786cbcd6fc83c31
3,655,093
def str_product(string): """ Calculate the product of all digits in a string """ product = 1 for i in string: product *= int(i) return product
c0c7442ac53aaf49760feffa7d08408d7520d9b4
3,655,094
def convolution_filter_grad_backward(inputs, base_axis=1, pad=None, stride=None, dilation=None, group=1, channel_last=False): """ Args: inputs (list of nn.Variable): Incomming grads/inputs to/of the forward function. kwargs (dict of arguments): Dictionary of the corresponding function arguments. Return: list of Variable: Return the gradients wrt inputs of the corresponding function. """ gdw = inputs[0] dy = inputs[1] x0 = inputs[2] ctx = nn.get_current_context() dfx = ConvolutionDataGrad( ctx, base_axis, pad, stride, dilation, group, channel_last) dfx.xshape = x0.shape gdy = F.convolution(x0, gdw, None, base_axis, pad, stride, dilation, group, channel_last) gx0 = dfx(dy, gdw) return gdy, gx0
5d33b4b4c96be6bc95c119e422fcda40ac698309
3,655,095
def do_after_terminate(source, after_terminate): """Invokes an action after an on_complete() or on_error() event. This can be helpful for debugging, logging, and other side effects when completion or an error terminates an operation on_terminate -- Action to invoke after on_complete or throw is called """ def subscribe(observer, scheduler=None): def on_completed(): observer.on_completed() try: after_terminate() except Exception as err: # pylint: disable=broad-except observer.on_error(err) def on_error(exception): observer.on_error(exception) try: after_terminate() except Exception as err: # pylint: disable=broad-except observer.on_error(err) return source.subscribe(observer.on_next, on_error, on_completed, scheduler) return Observable(subscribe)
39958d49252a228f525bdd2a346eeb08ee52d8d8
3,655,096
def _get_dload_scale(dload, xyz_scale: float, velocity_scale: float, accel_scale: float, force_scale: float) -> None: """ LOAD asssumes force """ if dload.Type == 'LOAD': scale = force_scale elif dload.Type == 'DISP': scale = xyz_scale elif dload.Type == 'VELO': scale = velocity_scale elif dload.Type == 'ACCE': scale = accel_scale else: raise RuntimeError(dload) return scale
f3a0a7d26d915ebc8231d9e4cab223f27afba2a2
3,655,097
def job_complete(job): """ Should be called whenever a job is completed. This will update the Git server status and make any additional jobs ready. """ job_complete_pr_status(job) create_issue_on_fail(job) start_canceled_on_fail(job) ParseOutput.set_job_info(job) ProcessCommands.process_commands(job) job.update_badge() all_done = job.event.set_complete_if_done() if all_done: event_complete(job.event) unrunnable = job.event.get_unrunnable_jobs() for norun in unrunnable: logger.info("Job %s: %s will not run due to failed dependencies" % (norun.pk, norun)) job_wont_run(norun) return all_done
5692ea76a5ab1ac6be0a30f74a8daec4ce5bd6a0
3,655,098
def direct(sp_script_str, run_dir, nsamp, njobs, tgt_geo, bath_geo, thy_info, charge, mult, smin=3.779, smax=11.339, spin_method=1, ranseeds=None): """ Write input and run output. :param sp_script_str: submission script for single-point calculation :type sp_script_str: str :param run_dir: directory where all OneDMin jobs are run :type run_dir: str :param nsamp: number of samples to run PER OneDMin job :type nsamp: int :param njobs: number of OneDMin instances to run in parallel :type njobs: int :param tgt_geo: geometry of the target molecule :type tgt_geo: automol geometry data structure :param bath_geo: geometry of the bath molecule :type bath_geo: automol geometry data structure :param thy_info: theory info object (prog, method, basis, orb_lbl) :type thy_info: tuple(str, str, str, str) :param charge: charge of the target-molecule complex :type charge: int :param mult: multiplicity of the target-molecule complex :type mult: int :param smin: minimum allowed intermolecular separation :type smin: float :param smax: maximum allowed intermolecular separation :type smax: float :param spin_method: parameter for the spin method :type spin_method: int :param ranseed: seed-integer for the orientational sampling :type ranseed: int :rtype: (float, float) """ # Write the main input files for all runs (breaks if ranseeds not given) input_str_lst = () for ranseed in ranseeds: input_str_lst += ( onedmin_io.writer.input_file( nsamp, smin, smax, ranseed=ranseed, spin_method=spin_method), ) # Write the aux inputs; same for all runs tgt_str = automol.geom.string(tgt_geo) bath_str = automol.geom.string(bath_geo) elstruct_inp_str, onedmin_exe_name = _set_pot_info(thy_info, charge, mult) aux_dct = { 'target.xyz': tgt_str, 'bath.xyz': bath_str, 'qc.mol': elstruct_inp_str, 'qc.x': sp_script_str } # Write the script string for submission (for all runs) script_str = onedmin_io.writer.submission_script( njobs, run_dir, onedmin_exe_name) # Run the code output_str_lst = from_parallel_input_strings( script_str, run_dir, input_str_lst, aux_dct=aux_dct, input_name=INPUT_NAME, output_names=OUTPUT_NAMES) return input_str_lst, elstruct_inp_str, output_str_lst
d8f977e46f71a61c23a28dc1bd3a58dfec43ba9f
3,655,099