content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import sqlite3 def prob8(cur: sqlite3.Cursor) -> pd.DataFrame: """Give a list of the services which connect the stops 'Craiglockhart' and 'Tollcross'. Parameters ---------- cur (sqlite3.Cursor) : The cursor for the database we're accessing. Returns ------- (pd.DataFrame) : Table with the solution. """ cur.execute("""SELECT DISTINCT r1.company, r1.num FROM route AS r1 JOIN route AS r2 ON (r1.company = r2.company AND r1.num = r2.num) JOIN stops AS stops1 ON stops1.id = r1.stop JOIN stops as stops2 ON stops2.id = r2.stop WHERE stops1.name = 'Craiglockhart' AND stops2.name = 'Tollcross'; """) return pd.DataFrame(cur.fetchall())
14e8bbb04befc1116f969ca977d83bc27890664c
3,655,300
def get_command(name): """ return command represented by name """ _rc = COMMANDS[name]() return _rc
22e64898973d2a2ec1cca2ff72fa86eaed4a3546
3,655,301
def _str_struct(a): """converts the structure to a string for logging purposes.""" shape_dtype = lambda x: (jnp.asarray(x).shape, str(jnp.asarray(x).dtype)) return str(jax.tree_map(shape_dtype, a))
96d417c6cd1332d6e71b21472444cf6178cad92a
3,655,302
from typing import Set import os def get_moved_files(dir_path: str) -> Set: """ 获取要移动的文件(夹),包括: - 文件夹 - 损坏的图片 - 非图像文件 - 重复的图片 """ removed_files = set() file_map = {} for file in os.listdir(dir_path): file_path = os.path.join(dir_path, file) # 过滤文件 if os.path.isfile(file_path): # 按文件大小进行分组 # 不同大小的图片一定不一样,所以只需对比相同大小的图片即可,缩小范围 size = os.path.getsize(file_path) file_map.setdefault(size, []).append(file_path) else: removed_files.add(file_path) for files in file_map.values(): duplicate_files = set() m = len(files) for i in range(m): if files[i] in duplicate_files: continue # 损坏图像文件/非图像文件处理 try: img1 = Image.open(files[i]) except UnidentifiedImageError: duplicate_files.add(files[i]) continue image1 = np.array(img1) for j in range(i + 1, m): if files[j] in duplicate_files: continue # 损坏图像文件/非图像文件处理 try: img2 = Image.open(files[j]) except UnidentifiedImageError: duplicate_files.add(files[j]) continue # 判断图片尺寸是否相同 if img1.size == img2.size: # 判断图片内容是否相同 image2 = np.array(img2) if np.array_equal(image1, image2): duplicate_files.add(files[j]) removed_files = removed_files | duplicate_files return removed_files
52520d8e8cd41343945e45bb46da32177175ad34
3,655,303
def delete_interface_address( api_client, interface_id, address_id, **kwargs ): # noqa: E501 """delete_interface_address # noqa: E501 Delete interface address details # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> response = await api.delete_interface_address(interface_id, address_id, async_req=True) :param interface_id int: ID of interface :param address_id int: ID of address :param async_req bool: execute request asynchronously :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: APIResponse or awaitable if async """ local_var_params = locals() collection_formats = {} path_params = {"interface_id": interface_id, "address_id": address_id} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params["Accept"] = api_client.select_header_accept( ["application/json"] ) # noqa: E501 # Authentication setting auth_settings = ["ApiTokenAuth", "basicAuth"] # noqa: E501 return api_client.call_api( "/interfaces/system/{interface_id}/addresses/{address_id}", "DELETE", path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type="object", # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get("async_req"), _return_http_data_only=local_var_params.get( "_return_http_data_only" ), # noqa: E501 _preload_content=local_var_params.get("_preload_content", True), _request_timeout=local_var_params.get("_request_timeout"), collection_formats=collection_formats, )
19d04ef0783988c8eb86983d589d9f07e82ba3b8
3,655,304
import types async def set_promo(message: types.Message, state: FSMContext): """ Команда /setpromo """ arg = message.get_args() if not arg: return await message.answer(_("Укажите аргумент: промокод. Например: <pre>/set_promo my-promo-code</pre>"), parse_mode="HTML") arg = arg.strip() try: UUID(arg) except ValueError: return await message.answer(_("Промокод не найден")) promo = await models.Promo.get_or_none(code=arg) if not promo: return await message.answer(_("Промокод не найден")) if promo.owner: return await message.answer(_("Промокод уже использован")) user, created = await models.User.get_or_create(telegram_id=message.from_user.id) promo.owner = user await promo.save(update_fields=["owner_id"]) await message.answer(_("Промокод активирован! Спасибо 🙌"))
9a15dd1bea20c3da6dd31eee5e2a723ddd110ba2
3,655,305
def plot_waterfall(*sigObjs, step=10, xLim:list=None, Pmin=20, Pmax=None, tmin=0, tmax=None, azim=-72, elev=14, cmap='jet', winPlot=False, waterfallPlot=True, fill=True, lines=False, alpha=1, figsize=(20, 8), winAlpha=0, removeGridLines=False, saveFig=False, bar=False, width=0.70, size=3, lcol=None, filtered=True): """ This function was gently sent by Rinaldi Polese Petrolli. # TO DO Keyword Arguments: step {int} -- [description] (default: {10}) xLim {list} -- [description] (default: {None}) Pmin {int} -- [description] (default: {20}) Pmax {[type]} -- [description] (default: {None}) tmin {int} -- [description] (default: {0}) tmax {[type]} -- [description] (default: {None}) azim {int} -- [description] (default: {-72}) elev {int} -- [description] (default: {14}) cmap {str} -- [description] (default: {'jet'}) winPlot {bool} -- [description] (default: {False}) waterfallPlot {bool} -- [description] (default: {True}) fill {bool} -- [description] (default: {True}) lines {bool} -- [description] (default: {False}) alpha {int} -- [description] (default: {1}) figsize {tuple} -- [description] (default: {(20, 8)}) winAlpha {int} -- [description] (default: {0}) removeGridLines {bool} -- [description] (default: {False}) saveFig {bool} -- [description] (default: {False}) bar {bool} -- [description] (default: {False}) width {float} -- [description] (default: {0.70}) size {int} -- [description] (default: {3}) lcol {[type]} -- [description] (default: {None}) filtered {bool} -- [description] (default: {True}) Returns: [type] -- [description] """ realSigObjs = \ _remove_non_(SignalObj, sigObjs, msgPrefix='plot_waterfall:') if len(realSigObjs) > 0: figs = plot.waterfall(realSigObjs, step, xLim, Pmin, Pmax, tmin, tmax, azim, elev, cmap, winPlot, waterfallPlot, fill, lines, alpha, figsize, winAlpha, removeGridLines, saveFig, bar, width, size, lcol, filtered) return figs else: return
85888e49a938a5e4faac90c52b2df7fa7036610c
3,655,306
import csv import re def indices(input_file): """ Parse the index file or target file and return a list of values. :return: """ index_list = [] line_num = 0 index_file = list(csv.reader(open(input_file), delimiter='\t')) for line in index_file: line_num += 1 col_count = len(line) if col_count > 1 and len(line[0].split("#")[0]) > 1: # Skip any lines that are blank or comments. tmp_line = [] for i in range(col_count): try: line[i] = line[i].split("#")[0] # Strip out end of line comments and white space. except IndexError: raise SystemExit( "There is a syntax error in file {0} on line {1}, column {2} " .format(input_file, str(line_num), str(i))) line[i] = re.sub(",", '', line[i]) # Strip out any commas. tmp_line.append(line[i]) index_list.append(tmp_line) return index_list
ea07d6f2bc8f3d23cf2ae59cb2df6c19158752fc
3,655,307
import argparse def parse_arguments(): """ Parse the arguments from the user """ parser = argparse.ArgumentParser( description="omeClust visualization script.\n", formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( "adist", help="the input file D*N, Rows: D features and columns: N samples OR \n" + "a distance matrix file D*D (rows and columns should be the same and in the same order) \n ", ) parser.add_argument( "clusters", help="the input file D*N, Rows: D features and columns: N samples OR \n" + "a distance matrix file D*D (rows and columns should be the same and in the same order) \n ", ) parser.add_argument( "--metadata", help="metadata", ) parser.add_argument( "--shapeby", type=str, help="the input file D*N, Rows: D features and columns: N samples OR \n" + "a distance matrix file D*D (rows and columns should be the same and in the same order) \n ", ) parser.add_argument( "-o", "--output", help="the output directory\n", required=True) parser.add_argument( "--size-to-plot", type=int, dest='size_to_plot', default=3, help="Minimum size of cluster to be plotted") parser.add_argument("--fig-size", nargs=2, # type=int, dest='fig_size', default=[3, 2.5], help="width and height of plots") parser.add_argument("--point-size", type=int, dest='point_size', default=3, help="width and height of plots") parser.add_argument("--show", help="show ordination plot before save\n", action="store_true", default=False, dest='show') return parser.parse_args()
aaa649b34cdb6819f9a56e7e0d547ccc88bff139
3,655,308
import math from functools import reduce def checkSequences(numl, rowlen, seqlen): """In a square of numbers, represented by the list with the given row length, look for the top product with length of seqlen""" listl=len(numl) collen=math.ceil(listl/rowlen) seqind=seqlen-1 log.debug("List length, collen: %d, %d", listl, collen) ret=[0] def checkProd(mxprod, prodll, i): r=None for prodl in prodll: prod=reduce(lambda x,y: x*y, prodl) if prod > mxprod: log.debug("Found a higher product than previous %d: %d at i=%d", mxprod, prod, i) mxprod=prod r=(prod, i, prodl) return r for i in range(0, listl): # Check the first and last value are in the same row checkrow = (i//rowlen)==((i+seqind)//rowlen) and (i+seqind)<listl checkcol = (i+(rowlen*seqind)) < listl checkdiagr = checkrow and (i+seqind+(rowlen*seqind)) < listl checkdiagl = (i//rowlen)==((i-seqind)//rowlen) and (i-seqind+(rowlen*seqind)) < listl log.debug("i: %d, check (row,col,diagr,diagl): (%d,%d,%d,%d)", i, checkrow, checkcol, checkdiagr, checkdiagl) prodll=[] r=None if checkrow: prodll.append([numl[i+j] for j in range(0,seqlen)]) if checkcol: prodll.append([numl[i+(j*rowlen)] for j in range(0,seqlen)]) if checkdiagr: prodll.append([numl[i+j+(j*rowlen)] for j in range(0,seqlen)]) if checkdiagl: prodll.append([numl[i-j+(j*rowlen)] for j in range(0,seqlen)]) r=checkProd(ret[0], prodll, i) ret = r if r is not None else ret return ret
ec37575a088098fb57dc2a58603ccea6fcc9b5a9
3,655,309
def has_same_facts(ruler_intervals1, ruler_intervals2, D): """ Check whether the two same-pattern ruler lists have the same facts at each corresponding ruler-interval Args: ruler_intervals1: a list of ruler-intervals ruler_intervals2: a list of ruler-intervals D: contain all relational facts Returns: True or False """ for ruler1, ruler2 in zip(ruler_intervals1, ruler_intervals2): for predicate in D: for entity in D[predicate]: if interval_inclusion_intervallist(ruler1, D[predicate][entity]) and \ not interval_inclusion_intervallist(ruler2, D[predicate][entity]): return False return True
210540bd2c2062f3150a34c5911017ec49b5603f
3,655,310
def main(): """ """ undet = argument_parse() print 'Start\t|\tCheck incorrect index' fq_list = split_fastq(undet) print 'Process\t|\tAnalysis undetermined data' combined_df = multi_process(fq_list) sorted_combined_df = combined_df.sort_values( by='count', ascending=False, inplace=False ) print sorted_combined_df.head(10) print 'Process\t|\tWrite out result' sorted_combined_df.to_csv('undetermined_top_index.csv', header=False) for f in fq_list: os.system('rm {}'.format(f)) print 'End\t|\tCheck incorrect index' return True else: print 'End\t|\tCannot analyze index\n' return False
e20f65e172f49ce2f184b32344135ccadb550253
3,655,311
def ruleset_delete(p_engine, p_username, rulesetname, envname): """ Delete ruleset from Masking engine param1: p_engine: engine name from configuration param2: rulesetname: ruleset name return 0 if added, non 0 for error """ return ruleset_worker(p_engine=p_engine, p_username=p_username, rulesetname=rulesetname, envname=envname, function_to_call='do_delete')
470e2d104a6d10737bba975a0cb15a4768238244
3,655,312
def config_from_file(file_name): """Load and return json from file.""" with open(file_name) as config_file: config = ujson.load(config_file) return config
2dd1b57612c528a85dbe04c717800b6908cb9c40
3,655,313
def build_yaml_object( dataset_id: str, table_id: str, config: dict, schema: dict, metadata: dict = dict(), columns_schema: dict = dict(), partition_columns: list = list(), ): """Build a dataset_config.yaml or table_config.yaml Args: dataset_id (str): The dataset id. table_id (str): The table id. config (dict): A dict with the `basedosdados` client configurations. schema (dict): A dict with the JSON Schema of the dataset or table. metadata (dict): A dict with the metadata of the dataset or table. columns_schema (dict): A dict with the JSON Schema of the columns of the table. partition_columns (list): A list with the partition columns of the table. Returns: CommentedMap: A YAML object with the dataset or table metadata. """ properties: dict = schema["properties"] definitions: dict = schema["definitions"] # Drop all properties without yaml_order properties = { key: value for key, value in properties.items() if value.get("yaml_order") } # Add properties yaml = add_yaml_property( yaml=ryaml.CommentedMap(), properties=properties, definitions=definitions, metadata=metadata, ) # Add columns if metadata.get("columns"): yaml["columns"] = [] for metadatum in metadata.get("columns"): properties = add_yaml_property( yaml=ryaml.CommentedMap(), properties=columns_schema["properties"], definitions=columns_schema["definitions"], metadata=metadatum, has_column=True, ) yaml["columns"].append(properties) # Add partitions in case of new dataset/talbe or local overwriting if partition_columns and partition_columns != ["[]"]: yaml["partitions"] = "" for local_column in partition_columns: for remote_column in yaml["columns"]: if remote_column["name"] == local_column: remote_column["is_partition"] = True yaml["partitions"] = ", ".join(partition_columns) # Nullify `partitions` field in case of other-than-None empty values if yaml.get("partitions") == "": yaml["partitions"] = None # Add dataset_id and table_id yaml["dataset_id"] = dataset_id if table_id: yaml["table_id"] = table_id # Add gcloud config variables yaml["source_bucket_name"] = str(config.get("bucket_name")) yaml["project_id_prod"] = str( config.get("gcloud-projects", {}).get("prod", {}).get("name") ) yaml["project_id_staging"] = str( config.get("gcloud-projects", {}).get("staging", {}).get("name") ) return yaml
8fa7d3acac0e9636fda923d9a38e9a82f904afae
3,655,314
import os def read_candidate_data_list(file, path=IEDC_paths.candidates): """ Will read a candidate file and return its data. :param file: Filename of the file to process :param path: Path of the file :return: Dictionary of dataframes for metadata, classifications, and data """ # make it a proper path file = os.path.join(path, file) data = pd.read_excel(file, sheet_name='Data') return data
acf3ed6c93f4e57797b8451bd6b239a4d6564dff
3,655,315
from pathlib import Path def make_cumulative(frame, filedate, unit): """Create a cumulative graph of cases over time""" gb = frame.groupby("Accurate_Episode_Date").agg(patients=("Row_ID", "count")) gb = gb.resample("D").last().fillna(0).reset_index() max_date = gb["Accurate_Episode_Date"].max().strftime("%Y-%m-%d") gb["cumulative"] = gb.patients.cumsum().astype(int) print(gb) print(gb.info()) ax = sns.lineplot( data=gb, x="Accurate_Episode_Date", y="cumulative", linewidth=2, color="red" ) ax.set( ylabel="Cumulative case count", xlabel="Date", title=f"{unit} Cumulative Cases by Episode Date ({max_date})", ) ax2 = plt.twinx() sns.lineplot( data=gb, x="Accurate_Episode_Date", y="patients", ax=ax2, linewidth=0.5 ) ax2.set(ylim=(0, gb["patients"].max() * 2)) plt.gcf().autofmt_xdate() fname = GRAPHDIR / Path(f"{filedate}-cumulative.png") ax.figure.savefig(fname) return fname
44a2a1b3af68c293a86af97b11edf8cca562e6b8
3,655,316
def most_common(l): """ Helper function. :l: List of strings. :returns: most common string. """ # another way to get max of list? #from collections import Counter #data = Counter(your_list_in_here) #data.most_common() # Returns all unique items and their counts #data.most_common(1) count = 0 answer = '' for element in l: if l.count(element) > count: count = l.count(element) answer = element return answer
5010e4e26b00099c287f8597d8dc5881a67c4034
3,655,317
def reduce_avg(reduce_target, lengths, dim): """ Args: reduce_target : shape(d_0, d_1,..,d_dim, .., d_k) lengths : shape(d0, .., d_(dim-1)) dim : which dimension to average, should be a python number """ shape_of_lengths = lengths.get_shape() shape_of_target = reduce_target.get_shape() if len(shape_of_lengths) != dim: raise ValueError(('Second input tensor should be rank %d, ' + 'while it got rank %d') % (dim, len(shape_of_lengths))) if len(shape_of_target) < dim+1 : raise ValueError(('First input tensor should be at least rank %d, ' + 'while it got rank %d') % (dim+1, len(shape_of_target))) rank_diff = len(shape_of_target) - len(shape_of_lengths) - 1 mxlen = tf.shape(reduce_target)[dim] mask = mkMask(lengths, mxlen) if rank_diff!=0: len_shape = tf.concat(axis=0, values=[tf.shape(lengths), [1]*rank_diff]) mask_shape = tf.concat(axis=0, values=[tf.shape(mask), [1]*rank_diff]) else: len_shape = tf.shape(lengths) mask_shape = tf.shape(mask) lengths_reshape = tf.reshape(lengths, shape=len_shape) mask = tf.reshape(mask, shape=mask_shape) mask_target = reduce_target * tf.cast(mask, dtype=reduce_target.dtype) red_sum = tf.reduce_sum(mask_target, axis=[dim], keep_dims=False) red_avg = red_sum / (tf.to_float(lengths_reshape) + 1e-30) return red_avg
3bba229f448d393019857d89d16820076732e932
3,655,318
def _near_mod_2pi(e, t, atol=_DEFAULT_ATOL): """Returns whether a value, e, translated by t, is equal to 0 mod 2 * pi.""" return _near_mod_n(e, t, n=2 * np.pi, atol=atol)
465911aca0fe1a7cd397ed2304426da5fdaaccc3
3,655,319
def create_returns_similarity(strategy: QFSeries, benchmark: QFSeries, mean_normalization: bool = True, std_normalization: bool = True, frequency: Frequency = None) -> KDEChart: """ Creates a new returns similarity chart. The frequency is determined by the specified returns series. Parameters ---------- strategy: QFSeries The strategy series to plot. benchmark: QFSeries The benchmark series to plot. mean_normalization: bool Whether to perform mean normalization on the series data. std_normalization: bool Whether to perform variance normalization on the series data. frequency: Frequency Returns can be aggregated in to specific frequency before plotting the chart Returns ------- KDEChart A newly created KDEChart instance. """ chart = KDEChart() colors = Chart.get_axes_colors() if frequency is not None: aggregate_strategy = get_aggregate_returns(strategy.to_simple_returns(), frequency) aggregate_benchmark = get_aggregate_returns(benchmark.to_simple_returns(), frequency) else: aggregate_strategy = strategy.to_simple_returns() aggregate_benchmark = benchmark.to_simple_returns() scaled_strategy = preprocessing.scale( aggregate_strategy, with_mean=mean_normalization, with_std=std_normalization) strategy_data_element = DataElementDecorator( scaled_strategy, bw="scott", shade=True, label=strategy.name, color=colors[0]) chart.add_decorator(strategy_data_element) scaled_benchmark = preprocessing.scale( aggregate_benchmark, with_mean=mean_normalization, with_std=std_normalization) benchmark_data_element = DataElementDecorator( scaled_benchmark, bw="scott", shade=True, label=benchmark.name, color=colors[1]) chart.add_decorator(benchmark_data_element) # Add a title. title = _get_title(mean_normalization, std_normalization, frequency) title_decorator = TitleDecorator(title, key="title") chart.add_decorator(title_decorator) chart.add_decorator(AxesLabelDecorator("Returns", "Similarity")) return chart
a83a7d2171ee488c1ac9ede80f39778658a4538f
3,655,320
import matplotlib.cm as mpl_color_map from PIL import Image import copy def apply_colormap_on_image(org_im, activation, colormap_name='viridis', alpha=.4, thresh=30): """ Apply heatmap on image Args: org_img (PIL img): Original image activation_map (numpy arr): Activation map (grayscale) 0-255 colormap_name (str): Name of the colormap """ org_im = Image.fromarray(to_img(org_im)) # Get colormap color_map = mpl_color_map.get_cmap(colormap_name) no_trans_heatmap = color_map(activation) # Change alpha channel in colormap to make sure original image is displayed heatmap = copy.copy(no_trans_heatmap) heatmap[:, :, 3] = alpha heatmap[:, :, 3][activation < thresh] = 0 heatmap = Image.fromarray((heatmap * 255).astype(np.uint8)) no_trans_heatmap = Image.fromarray((no_trans_heatmap * 255).astype(np.uint8)) # Apply heatmap on iamge heatmap_on_image = Image.new("RGBA", org_im.size) heatmap_on_image = Image.alpha_composite(heatmap_on_image, org_im.convert('RGBA')) heatmap_on_image = Image.alpha_composite(heatmap_on_image, heatmap) no_trans_heatmap = to_img(no_trans_heatmap) heatmap_on_image = to_img(heatmap_on_image) return no_trans_heatmap, heatmap_on_image
d6f89cb06e8ec489e9bd38cb52f5d04628037b70
3,655,321
def _cli(): """ command line interface :return: """ parser = generate_parser() args = parser.parse_args() return interface(args.bids_dir, args.output_dir, args.aseg, args.subject_list, args.session_list, args.collect, args.ncpus, args.stage, args.bandstop, args.max_cortical_thickness, args.check_outputs_only, args.t1_brain_mask, args.t2_brain_mask, args.study_template, args.t1_reg_method, args.cleaning_json, args.print, args.ignore_expected_outputs, args.multi_template_dir, args.norm_method, args.norm_gm_std_dev_scale, args.norm_wm_std_dev_scale, args.norm_csf_std_dev_scale, args.make_white_from_norm_t1, args.single_pass_pial, args.registration_assist, args.freesurfer_license)
0b37b2eab79c5f50d5f18b5d6b435e3b97682a36
3,655,322
def statusize(): """Posts a status from the web.""" db = get_session(current_app) user_id = session.get('user_id') if not user_id: return forbidden('You must be logged in to statusize!') user = db.query(User).get(user_id) message = request.form.get('message', '') if not message: return page_not_found('You cannot statusize nothing!') status = Status(user_id=user.id, content=message, content_html=message) project = request.form.get('project', '') if project: project = db.query(Project).filter_by(id=project).first() if project: status.project_id = project.id # TODO: reply handling db.add(status) db.commit() # Try to go back from where we came. referer = request.headers.get('referer', url_for('status.index')) redirect_url = request.form.get('redirect_to', referer) return redirect(redirect_url)
b06f711dfbf73b9c75ba2303478799dcc678a28c
3,655,323
import base64 def urlsafe_b64decode_nopadding(val): """Deal with unpadded urlsafe base64.""" # Yes, it accepts extra = characters. return base64.urlsafe_b64decode(str(val) + '===')
22ed00b07e16b4b557dc46b5caeb9f7ce9513c0d
3,655,324
def _subimg_bbox(img, subimage, xc, yc): """ Find the x/y bounding-box pixel coordinates in ``img`` needed to add ``subimage``, centered at ``(xc, yc)``, to ``img``. Returns ``None`` if the ``subimage`` would extend past the ``img`` boundary. """ ys, xs = subimage.shape y, x = img.shape y0 = int(yc - (ys - 1) / 2.0) y1 = y0 + ys x0 = int(xc - (xs - 1) / 2.0) x1 = x0 + xs if (x0 >= 0) and (y0 >= 0) and (x1 < x) and (y1 < y): return (x0, x1, y0, y1) else: return None
b299a6b3726ced525b538b4fea45b235fc0bd56e
3,655,325
from datetime import datetime def _ToDatetimeObject(date_str): """Converts a string into datetime object. Args: date_str: (str) A date and optional time for the oldest article allowed. This should be in ISO 8601 format. (yyyy-mm-dd) Returns: datetime.datetime Object. Raises: ValueError: Invalid date format. """ if not date_str: date_str = datetime.now().strftime('%Y-%m-%d') if not any(date_.match(date_str) for date_ in DATE_REGEXES): raise ValueError('Invalid date format %s' % date_str) return datetime.strptime(date_str, '%Y-%m-%d')
df675cb5391456122bb350a126e0b4a4ed31fc49
3,655,326
def select_most_uncertain_patch(x_image_pl, y_label_pl, fb_pred, ed_pred, fb_prob_mean_bald, kernel_window, stride_size, already_select_image_index, previously_selected_binary_mask, num_most_uncert_patch, method): """This function is used to acquire the #most uncertain patches in the pooling set. Args: x_image_pl: [Num_Im, Im_h, Im_w,3] y_label_pl: [Num_Im, Im_h, Im_w,1] fb_pred: [Num_Im, Im_h, Im_w, 2] ed_pred: [Num_Im, Im_h, Im_w, 2] fb_prob_mean_bald: [num_im, imw, imw] kernel_window: [kh, kw] determine the size of the region stride_size: int, determine the stride between every two regions already_select_image_index: if it's None, then it means that's the first acquistion step, otherwise it's the numeric image index for the previously selected patches previously_selected_binary_mask: [num_already_selected_images, Im_h, Im_w,1] num_most_uncert_patch: int, number of patches that are selected in each acquisition step method: acquisition method: 'B', 'C', 'D' Returns: Most_Uncert_Im: [Num_Selected, Im_h, Im_w, 3]imp Most_Uncert_FB_GT: [Num_Selected, Im_h, Im_w,1] Most_Uncert_ED_GT: [Num_Selected, Im_h, Im_w,1] Most_Uncert_Binary_Mask: [Num_Selected, Im_h, Im_w,1] Selected_Image_Index: [Num_Selected] """ num_im = np.shape(x_image_pl)[0] uncertainty_map_tot = [] for i in range(num_im): if method == 'B': var_stat = get_uncert_heatmap(x_image_pl[i], fb_pred[i]) elif method == 'C': var_stat = get_entropy_heatmap(fb_pred[i]) elif method == 'D': var_stat = get_bald_heatmap(fb_prob_mean_bald[i], fb_pred[i]) uncertainty_map_tot.append(var_stat) uncertainty_map_tot = np.array(uncertainty_map_tot) if already_select_image_index is None: print("--------This is the beginning of the selection process-------") else: print( "----------Some patches have already been annotated, I need to deal with that") previously_selected_binary_mask = np.squeeze(previously_selected_binary_mask, axis=-1) for i in range(np.shape(previously_selected_binary_mask)[0]): uncertainty_map_single = uncertainty_map_tot[already_select_image_index[i]] uncertainty_map_updated = uncertainty_map_single * (1 - previously_selected_binary_mask[i]) uncertainty_map_tot[already_select_image_index[i]] = uncertainty_map_updated selected_numeric_image_index, binary_mask_updated_tot = calculate_score_for_patch(uncertainty_map_tot, kernel_window, stride_size, num_most_uncert_patch) pseudo_fb_la_tot = [] pseudo_ed_la_tot = [] for index, single_selected_image_index in enumerate(selected_numeric_image_index): pseudo_fb_la, pseudo_ed_la = return_pseudo_label(y_label_pl[single_selected_image_index], fb_pred[single_selected_image_index], ed_pred[single_selected_image_index], binary_mask_updated_tot[index]) pseudo_fb_la_tot.append(pseudo_fb_la) pseudo_ed_la_tot.append(pseudo_ed_la) most_uncert_im_tot = x_image_pl[selected_numeric_image_index] most_uncertain = [most_uncert_im_tot, pseudo_fb_la_tot, pseudo_ed_la_tot, binary_mask_updated_tot, selected_numeric_image_index] return most_uncertain
21f40e34b1436d91eca041998cb927800cc10f7b
3,655,327
import requests import json def submit_extraction(connector, host, key, datasetid, extractorname): """Submit dataset for extraction by given extractor. Keyword arguments: connector -- connector information, used to get missing parameters and send status updates host -- the clowder host, including http and port, should end with a / key -- the secret key to login to clowder datasetid -- the dataset UUID to submit extractorname -- registered name of extractor to trigger """ url = "%sapi/datasets/%s/extractions?key=%s" % (host, datasetid, key) result = requests.post(url, headers={'Content-Type': 'application/json'}, data=json.dumps({"extractor": extractorname}), verify=connector.ssl_verify if connector else True) result.raise_for_status() return result.status_code
449fc6c3c37ef8a5206a7ebe18b367885ae319a8
3,655,328
import math def fcmp(x, y, precision): """fcmp(x, y, precision) -> -1, 0, or 1""" if math.fabs(x-y) < precision: return 0 elif x < y: return -1 return 1
905421b36635ab830e2216ab34fee89f75c7f4c4
3,655,329
def parse_vcf_line(line): """ Args: line (str): line in VCF file obj. Returns: parsed_line_lst (lst): with tuple elem (chr, pos, ref, alt) Example: deletion pos 123456789012 reference ATTAGTAGATGT deletion ATTA---GATGT VCF: CHROM POS REF ALT N 4 AGTA A Bambino: chr pos ref alt chr_N 5 GTA - insertion pos 1234***56789012 reference ATTA***GTAGATGT insertion ATTAGTAGTAGATGT VCF: CHROM POS REF ALT N 4 A AGTA Bambino: chr pos ref alt chr_N 5 - GTA """ parsed_line_lst = [] # skip header lines if line.startswith("#"): return parsed_line_lst lst = line.rstrip().split("\t") chr = lst[0] vcf_pos = int(lst[1]) vcf_ref = lst[3] vcf_alts = lst[4].split(",") # possibly multi-allelic if not chr.startswith("chr"): chr = "chr" + chr # skip non canonical chrmosomes if not is_canonical_chromosome(chr): return parsed_line_lst for vcf_alt in vcf_alts: n = count_padding_bases(vcf_ref, vcf_alt) pos = vcf_pos + n if len(vcf_ref) < len(vcf_alt): ref = "-" alt = vcf_alt[n:] parsed_line_lst.append((chr, pos, ref, alt)) elif len(vcf_ref) > len(vcf_alt): ref = vcf_ref[n:] alt = "-" parsed_line_lst.append((chr, pos, ref, alt)) else: pass # not indel return parsed_line_lst
705c3bfe2ed3a0d4552dcbd18e8c08b73b84b40b
3,655,330
def fuzzy_lookup_item(name_or_id, lst): """Lookup an item by either name or id. Looking up by id is exact match. Looking up by name is by containment, and if the term is entirely lowercase then it's also case-insensitive. Multiple matches will throw an exception, unless one of them was an exact match. """ try: idd = int(name_or_id) for val in lst: if val.id == idd: return val raise RuntimeError('Id %d not found!' % idd) except ValueError: insensitive = name_or_id.islower() matches = [] for val in lst: name = val.name or '' if name_or_id == name: return val if insensitive: name = name.lower() if name_or_id in name: matches.append(val) if len(matches) == 1: return matches[0] if not matches: raise RuntimeError(f'No name containing {name_or_id!r} found!') from None raise RuntimeError( f'Multiple matches for {name_or_id!r}: {[x.name for x in matches]}') from None
604b3879d0f97822d5a36db6dcf468ef8eefaac9
3,655,331
import os def _make_output_dirs(root_output_dir, experiment_name): """Get directories for outputs. Create if not exist.""" tf.io.gfile.makedirs(root_output_dir) checkpoint_dir = os.path.join(root_output_dir, 'checkpoints', experiment_name) tf.io.gfile.makedirs(checkpoint_dir) results_dir = os.path.join(root_output_dir, 'results', experiment_name) tf.io.gfile.makedirs(results_dir) summary_dir = os.path.join(root_output_dir, 'logdir', experiment_name) tf.io.gfile.makedirs(summary_dir) return checkpoint_dir, results_dir, summary_dir
df9f6774b74dfb4156414e5c7761a595fb8b6cb3
3,655,332
def fantasy_pros_ecr_scrape(league_dict=config.sean): """Scrape Fantasy Pros ECR given a league scoring format :param league_dict: league dict in config.py used to determine whether to pull PPR/standard/half-ppr """ scoring = league_dict.get('scoring') if scoring == 'ppr': url = 'https://www.fantasypros.com/nfl/rankings/ppr-cheatsheets.php' elif scoring == 'half-ppr': url = 'https://www.fantasypros.com/nfl/rankings/half-point-ppr-cheatsheets.php' else: url = 'https://www.fantasypros.com/nfl/rankings/consensus-cheatsheets.php' html = scrape_dynamic_javascript(url) parsed_dict = parse_ecr_html(html) return pd.DataFrame(parsed_dict)
c20ae9542f9fea096510681bcf3c430b23cbdf29
3,655,333
def lda(X, y, nr_components=2): """ Linear discrimindant analysis :param X: Input vectors :param y: Input classes :param nr_components: Dimension of output co-ordinates :return: Output co-ordinates """ print("Computing Linear Discriminant Analysis projection") X2 = X.copy() X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible return discriminant_analysis.LinearDiscriminantAnalysis(n_components=nr_components).fit_transform(X2, y)
c9db65d494304246cf518833c1ae5c6ed22f3fa6
3,655,334
def _flatten_value_to_list(batch_values): """Converts an N-D dense or sparse batch to a 1-D list.""" # Ravel for flattening and tolist so that we go to native Python types # for more efficient followup processing. # batch_value, = batch_values return batch_value.ravel().tolist()
77bfd9d32cbbf86a16a8da2701417a9ac9b9cc93
3,655,335
def sun_position(time): """ Computes the sun's position in longitude and colatitude at a given time (mjd2000). It is accurate for years 1901 through 2099, to within 0.006 deg. Input shape is preserved. Parameters ---------- time : ndarray, shape (...) Time given as modified Julian date, i.e. with respect to the date 0h00 January 1, 2000 (mjd2000). Returns ------- theta : ndarray, shape (...) Geographic colatitude of sun's position in degrees :math:`[0^\\circ, 180^\\circ]`. phi : ndarray, shape (...) Geographic east longitude of sun's position in degrees :math:`(-180^\\circ, 180^\\circ]`. References ---------- Taken from `here <http://jsoc.stanford.edu/doc/keywords/Chris_Russel/ Geophysical%20Coordinate%20Transformations.htm#appendix2>`_ """ rad = pi / 180 year = 2000 # reference year for mjd2000 assert np.all((year + time // 365.25) < 2099) \ and np.all((year - time // 365.25) > 1901), \ ("Time must be between 1901 and 2099.") frac_day = np.remainder(time, 1) # decimal fraction of a day julian_date = 365 * (year-1900) + (year-1901)//4 + time + 0.5 t = julian_date/36525 v = np.remainder(279.696678 + 0.9856473354*julian_date, 360.) g = np.remainder(358.475845 + 0.985600267*julian_date, 360.) slong = v + (1.91946 - 0.004789*t)*np.sin(g*rad) + 0.020094*np.sin(2*g*rad) obliq = (23.45229 - 0.0130125*t) slp = (slong - 0.005686) sind = np.sin(obliq*rad)*np.sin(slp*rad) cosd = np.sqrt(1.-sind**2) # sun's declination in radians declination = np.arctan(sind/cosd) # sun's right right ascension in radians (0, 2*pi) right_ascension = pi - np.arctan2(sind/(cosd * np.tan(obliq*rad)), -np.cos(slp*rad)/cosd) # Greenwich mean siderial time in radians (0, 2*pi) gmst = np.remainder(279.690983 + 0.9856473354*julian_date + 360.*frac_day + 180., 360.) * rad theta = degrees(pi/2 - declination) # convert to colatitude phi = center_azimuth(degrees(right_ascension - gmst)) return theta, phi
d5465044fbbe650580f4e9afaa13cf83e2cad758
3,655,336
import json def get_assay_description(assay_id, summary=True, attempts=10): """ Get the description of an assay in JSON format. Parameters ---------- assay_id : int The id of the bioassay. summary : bool, optional If true returns a summary of the description of the assay (default=True). attempts : int, optional number of times to try to download the data in case of failure (default=10). Returns -------- dict A dictionary containing the assay description. """ assay_url = base_url + "/assay/aid/{}".format(assay_id) if summary: description_url = assay_url + "/summary/JSON" else: description_url = assay_url + "/description/JSON" data = _get_data(description_url, attempts) return json.loads(data)
13ff3620a1ef3e7aa1c12bd5a9b5aa88b2fb297f
3,655,337
def acos(expr): """ Arc cosine -- output in radians. It is the same that :code:`arccos` moodle math function. """ return Expression('acos({0})'.format(str(expr)))
d064caaa037de619266e322f85ae09c2ba7d9d16
3,655,338
from datetime import datetime def annotate_genes(gene_df, annotation_gtf, lookup_df=None): """ Add gene and variant annotations (e.g., gene_name, rs_id, etc.) to gene-level output gene_df: output from map_cis() annotation_gtf: gene annotation in GTF format lookup_df: DataFrame with variant annotations, indexed by 'variant_id' """ gene_dict = {} print('['+datetime.now().strftime("%b %d %H:%M:%S")+'] Adding gene and variant annotations', flush=True) print(' * parsing GTF', flush=True) with open(annotation_gtf) as gtf: for row in gtf: row = row.strip().split('\t') if row[0][0]=='#' or row[2]!='gene': continue # get gene_id and gene_name from attributes attr = dict([i.split() for i in row[8].replace('"','').split(';') if i!='']) # gene_name, gene_chr, gene_start, gene_end, strand gene_dict[attr['gene_id']] = [attr['gene_name'], row[0], row[3], row[4], row[6]] print(' * annotating genes', flush=True) if 'group_id' in gene_df: gene_info = pd.DataFrame(data=[gene_dict[i] for i in gene_df['group_id']], columns=['gene_name', 'gene_chr', 'gene_start', 'gene_end', 'strand'], index=gene_df.index) else: gene_info = pd.DataFrame(data=[gene_dict[i] for i in gene_df.index], columns=['gene_name', 'gene_chr', 'gene_start', 'gene_end', 'strand'], index=gene_df.index) gene_df = pd.concat([gene_info, gene_df], axis=1) assert np.all(gene_df.index==gene_info.index) col_order = ['gene_name', 'gene_chr', 'gene_start', 'gene_end', 'strand', 'num_var', 'beta_shape1', 'beta_shape2', 'true_df', 'pval_true_df', 'variant_id', 'tss_distance'] if lookup_df is not None: print(' * adding variant annotations from lookup table', flush=True) gene_df = gene_df.join(lookup_df, on='variant_id') # add variant information col_order += list(lookup_df.columns) col_order += ['ma_samples', 'ma_count', 'af', 'pval_nominal', 'slope', 'slope_se', 'pval_perm', 'pval_beta'] if 'group_id' in gene_df: col_order += ['group_id', 'group_size'] col_order += ['qval', 'pval_nominal_threshold'] gene_df = gene_df[col_order] print('done.', flush=True) return gene_df
562ef01380075a3e12eeaecdd6ab1e2285ddbc4f
3,655,339
import torch def y_gate(): """ Pauli y """ return torch.tensor([[0, -1j], [1j, 0]]) + 0j
c0da0112233773e1c764e103599a591bb7a4a7f5
3,655,340
import tarfile def extract_tarball(tarball, install_dir): """Extract tarball to a local path""" if not tarball.path.is_file(): raise IOError(f"<info>{tarball.path}</info> is not a file!") try: with tarfile.open(tarball.path, "r:gz") as f_tarball: extraction_dir = [ obj.name for obj in f_tarball.getmembers() if obj.isdir() and "/" not in obj.name ][0] f_tarball.extractall(install_dir) except tarfile.ReadError as exc: raise IOError(f"<info>{tarball.path}</info> is not a valid tarball!") from exc return install_dir / extraction_dir
da9deeb71da36c7c01611f3be7965a8c4a22dc41
3,655,341
def compose_matrix(scale=None, shear=None, angles=None, translation=None, perspective=None): """Calculates a matrix from the components of scale, shear, euler_angles, translation and perspective. Parameters ---------- scale : [float, float, float] The 3 scale factors in x-, y-, and z-direction. shear : [float, float, float] The 3 shear factors for x-y, x-z, and y-z axes. angles : [float, float, float] The rotation specified through the 3 Euler angles about static x, y, z axes. translation : [float, float, float] The 3 values of translation. perspective : [float, float, float, float] The 4 perspective entries of the matrix. Returns ------- list[list[float]] The 4x4 matrix that combines the provided transformation components. Examples -------- >>> trans1 = [1, 2, 3] >>> angle1 = [-2.142, 1.141, -0.142] >>> scale1 = [0.123, 2, 0.5] >>> M = compose_matrix(scale1, None, angle1, trans1, None) >>> scale2, shear2, angle2, trans2, persp2 = decompose_matrix(M) >>> allclose(scale1, scale2) True >>> allclose(angle1, angle2) True >>> allclose(trans1, trans2) True """ M = [[1. if i == j else 0. for i in range(4)] for j in range(4)] if perspective is not None: P = matrix_from_perspective_entries(perspective) M = multiply_matrices(M, P) if translation is not None: T = matrix_from_translation(translation) M = multiply_matrices(M, T) if angles is not None: R = matrix_from_euler_angles(angles, static=True, axes="xyz") M = multiply_matrices(M, R) if shear is not None: H = matrix_from_shear_entries(shear) M = multiply_matrices(M, H) if scale is not None: S = matrix_from_scale_factors(scale) M = multiply_matrices(M, S) for i in range(4): for j in range(4): M[i][j] /= M[3][3] return M
a186919f8b6fc47637e7c20db30fbdd8e461e059
3,655,342
def dict_merge(set1, set2): """Joins two dictionaries.""" return dict(list(set1.items()) + list(set2.items()))
d88a68720cb9406c46bdef40f46e461a80e588c0
3,655,343
def EucDistIntegral(a, b, x): """[summary] Calculate Integrated Euclidean distance. Args: a (float): a value b (float): b value x (float): x value Returns: val: Integration result """ asq = a * a bsq = b * b xsq = x * x dn = (6 * (1 + asq)**(3 / 2)) cx = (a * b + x + asq * x) / \ sqrt((bsq + 2 * a * b * x + (1 + asq) * xsq)) / sqrt((1 + asq)) if abs(abs(cx) - 1) <= 1E-9 or np.isnan(cx): c1 = x * b**2 else: c1 = b**3 * arctanh(np.float(cx)) c2 = sqrt(bsq + 2 * a * b * x + (1 + asq) * xsq) * \ (2 * b * x + 2 * asq * b * x + a**3 * xsq + a * (bsq + xsq)) if x == 0: c4 = 0 else: c3 = abs(x) / (b + a * x + sqrt(xsq + (b + a * x)**2)) if np.isnan(c3) or np.isinf(c3): if b == 0: c3 = 1 / (sign(x) * a + sqrt(asq + 1)) else: c3 = -2 * b / abs(x) c4 = (1 + asq) * x**3 * log(c3) return (c1 + sqrt(1 + asq) * (c2 - c4)) / dn
3da541356636e8be7f9264d9d59a29dd003c082b
3,655,344
def _VarintSize(value): """Compute the size of a varint value.""" if value <= 0x7f: return 1 if value <= 0x3fff: return 2 if value <= 0x1fffff: return 3 if value <= 0xfffffff: return 4 if value <= 0x7ffffffff: return 5 if value <= 0x3ffffffffff: return 6 if value <= 0x1ffffffffffff: return 7 if value <= 0xffffffffffffff: return 8 if value <= 0x7fffffffffffffff: return 9 return 10
4bd9b1c8d362f5e72e97f9f2c8e0d5711065291f
3,655,345
import requests def send_to_hipchat( message, token=settings.HIPCHAT_API_TOKEN, room=settings.HIPCHAT_ROOM_ID, sender="Trello", color="yellow", notify=False): # noqa """ Send a message to HipChat. Returns the status code of the request. Should be 200. """ payload = { 'auth_token': token, 'notify': notify, 'color': color, 'from': sender, 'room_id': room, 'message': message } return requests.post(HIPCHAT_API_URL, data=payload).status_code
138abbf59f561a4c5d21aea9976856dbd7a581ca
3,655,346
from cStringIO import StringIO import cgi def input(*requireds, **defaults): """ Returns a `storage` object with the GET and POST arguments. See `storify` for how `requireds` and `defaults` work. """ def dictify(fs): return dict([(k, fs[k]) for k in fs.keys()]) _method = defaults.pop('_method', 'both') e = ctx.env.copy() out = {} if _method.lower() in ['both', 'post']: a = {} if e['REQUEST_METHOD'] == 'POST': a = cgi.FieldStorage(fp = StringIO(data()), environ=e, keep_blank_values=1) a = dictify(a) out = dictadd(out, a) if _method.lower() in ['both', 'get']: e['REQUEST_METHOD'] = 'GET' a = dictify(cgi.FieldStorage(environ=e, keep_blank_values=1)) out = dictadd(out, a) try: return storify(out, *requireds, **defaults) except KeyError: badrequest() raise StopIteration
0b3fcd9142dbcd3309b80837c6fc53abdf4aaad6
3,655,347
def nodes_and_edges_valid(dev, num_nodes, node_names, rep): """Asserts that nodes in a device ``dev`` are properly initialized, when there are ``num_nodes`` nodes expected, with names ``node_names``, using representation ``rep``.""" if not set(dev._nodes.keys()) == {"state"}: return False if not len(dev._nodes["state"]) == num_nodes: return False for idx in range(num_nodes): if not dev._nodes["state"][idx].name == node_names[idx]: return False return edges_valid(dev, num_nodes=num_nodes, rep=rep)
ad6dbfdfd92114c9b041617a91ad30dbe8a8189f
3,655,348
def is_android(builder_cfg): """Determine whether the given builder is an Android builder.""" return ('Android' in builder_cfg.get('extra_config', '') or builder_cfg.get('os') == 'Android')
74b1620ba2f6fff46495174158f734c5aa8da372
3,655,349
def twoSum(self, numbers, target): # ! 这个方法可行 """ :type numbers: List[int] :type target: int :rtype: List[int] """ numbers_dict = {} for idn, v in enumerate(numbers): if target - v in numbers_dict: return [numbers_dict[target - v] + 1, idn + 1] numbers_dict[v] = idn
e2b93828b5db7256b9a1e90e7e21adad1ce0b4de
3,655,350
def not_after(cert): """ Gets the naive datetime of the certificates 'not_after' field. This field denotes the last date in time which the given certificate is valid. :return: Datetime """ return cert.not_valid_after
4f084146908d70af5c2cdfa5151f0c26533ac7fe
3,655,351
from datetime import datetime def parse_time_string(time_str: str) -> datetime.time: """Parses a string recognizable by TIME_REGEXP into a datetime.time object. If the string has an invalid format, a ValueError is raised.""" match = TIME_REGEXP.match(time_str) if match is None: raise ValueError("time string {} has an invalid format".format(repr(time_str))) groups = match.groupdict() return datetime.time(int(groups["h"]), int(groups["m"]), int(groups["s"] or 0))
3238abcc6edb5a37c4a3d615b71e9dde6344f0ac
3,655,352
import os def dig(start, outdir, depth=2, max_duration=360): """ Crawls YouTube for source material (as mp3s). Args: - start: the starting YouTube url - outdir: directory to save download tracks to - depth: how many levels of related vids to look through - max_duration: only dl videos shorter than or equal to this in duration """ urls = [start] candidates = [start] # Dig while depth: candidates = sum((_get_related_video_urls(url) for url in candidates), []) urls += candidates depth -= 1 # Remove dupes urls = set(urls) print('Got {0} videos'.format(len(urls))) # Kind of peculiar how this function has to work def _filter(info): if info['duration'] > max_duration: return 'Too long' return None ydl_opts = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192', }], 'match_filter': _filter, 'outtmpl': os.path.join(outdir, '%(title)s-%(id)s.%(ext)s'), } with YoutubeDL(ydl_opts) as ydl: ydl.download(urls)
09cd6c98d117fc71f58373213ed432c1a126a6cf
3,655,353
def get_roc_curve(y_true, y_score, title=None, with_plot=True): """ Plot the [Receiver Operating Characteristic][roc] curve of the given true labels and confidence scores. [roc]: http://en.wikipedia.org/wiki/Receiver_operating_characteristic """ fpr, tpr, thresholds = sklearn.metrics.roc_curve(y_true, y_score) auc = np.trapz(tpr, fpr) fig = None if with_plot: fig = vislab.results_viz.plot_curve_with_area( fpr, tpr, auc, 'False Positive Rate', 'True Positive Rate', 'AUC') ax = fig.get_axes()[0] ax.plot([0, 1], [0, 1], 'k--') if title is not None: ax.set_title(title) return fig, fpr, tpr, auc
7635af1705c6bdaccce1e1c5e99719645026d436
3,655,354
from datetime import datetime def read_err_songs(): """ read song data from xml file to a list of dictionaries """ songfile = open('/home/gabe/python/selfishmusic/errors.xml') soup = BS.BeautifulSoup(songfile.read()) songsxml = soup.findAll('song') songs = [] for song in songsxml: sd = {} sd['songnum'] = int(get_text(song.songnum)) sd['title'] = get_text(song.title) sd['artist'] = get_text(song.artist) date = get_text(song.date) date = [x.strip(' ,') for x in date.split(' ')] sd['date'] = datetime.date(month=MONTHS.index(date[0]) + 1, day=int(date[1]), year=int(date[2])) sd['lyrics'] = get_text(song.lyrics) sd['found_title'] = get_text(song.found_title) sd['found_artist'] = get_text(song.found_artist) songs.append(sd) songfile.close() return songs
287c205c054045b3a88b74cf008e5a21037f9727
3,655,355
def word_value(word: str) -> int: """Returns the sum of the alphabetical positions of each letter in word.""" return (0 if word == '' else word_value(word[:-1]) + alpha.letter_index_upper(word[-1]))
b964faa5a5792e003fb0859c1ffb0b25e63f6a75
3,655,356
def status(): """ Returns json response of api status Returns: JSON: json object """ status = { "status": "OK" } return jsonify(status)
d515e0628bb4c77ad83b0a26b758a3686663d329
3,655,357
def celcius_to_farenheit(x): """calculate celcius to farenheit""" farenheit = (9*x/5) + 32 return farenheit
fa0041451c82b20283e4f20b501a6042ab19ec95
3,655,358
def CheckFlags(node_name, report_per_node, warnings, errors, flags, warning_helper, error_helper): """Check the status flags in each node and bookkeep the results. Args: node_name: Short name of the node. report_per_node: Structure to record warning/error messages per node. Its type should be collections.defaultdict(list). warnings: Structure to record nodes that raise each warning type. Its type should be collections.defaultdict(list). errors: Structure to record nodes that raise each error type. Its type should be collections.defaultdict(list). flags: The status flags to check against. warning_helper: The EnumHelper for warnings. error_helper: The EnumHelper for errors. Returns: True if there are any warnings/errors. """ any_warning_or_error = False if warning_helper: for warning_value in warning_helper.Values(): warning_name = warning_helper.ShortName(warning_value) if avionics_util.CheckWarning(flags, warning_value): report_per_node[node_name].append(('WARNING', warning_name)) warnings[warning_name].append(node_name) any_warning_or_error = True if error_helper: for error_value in error_helper.Values(): error_name = error_helper.ShortName(error_value) if avionics_util.CheckError(flags, error_value): report_per_node[node_name].append(('ERROR', error_name)) errors[error_name].append(node_name) any_warning_or_error = True return any_warning_or_error
63bac7bfa4e3fa9c3cc462f5400d68116dfb898d
3,655,359
def EnrollmentTransaction(): """ :return: """ return b'\x20'
05adff34b6cf100d95e16ab837b38b26b6315b6a
3,655,360
def sentinel_id(vocabulary, return_value=None): """Token ID to use as a sentinel. By default, we use the last token in the vocabulary. Args: vocabulary: a t5.data.vocabularies.Vocabulary return_value: an optional integer Returns: an integer """ if return_value is not None: return return_value return vocabulary.vocab_size - 1
08ad1116b7f41ba7070359675a0133f14b9917bd
3,655,361
from datetime import datetime import urllib import hmac import hashlib import base64 def create_signature(api_key, method, host, path, secret_key, get_params=None): """ 创建签名 :param get_params: dict 使用GET方法时附带的额外参数(urlparams) :return: """ sorted_params = [ ("AccessKeyId", api_key), ("SignatureMethod", "HmacSHA256"), ("SignatureVersion", "2"), ("Timestamp", datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%S")) ] if get_params: sorted_params.extend(list(get_params.items())) sorted_params = list(sorted(sorted_params)) encode_params = urllib.parse.urlencode(sorted_params) payload = [method, host, path, encode_params] payload = "\n".join(payload) payload = payload.encode(encoding="UTF8") secret_key = secret_key.encode(encoding="UTF8") digest = hmac.new(secret_key, payload, digestmod=hashlib.sha256).digest() signature = base64.b64encode(digest) params = dict(sorted_params) params["Signature"] = signature.decode("UTF8") return params
3e38bc883da9f5ebb311e1498f8cc73d1754c38b
3,655,362
def measure_fwhm(image, plot=True, printout=True): """ Find the 2D FWHM of a background/continuum subtracted cutout image of a target. The target should be centered and cropped in the cutout. Use lcbg.utils.cutout for cropping targets. FWHM is estimated using the sigmas from a 2D gaussian fit of the target's flux. The FWHM is returned as a tuple of the FWHM in the x and y directions. Parameters ---------- image : array like Input background/continuum subtracted cutout image. printout : bool Print out info. plot : bool To plot fit or not. Returns ------- tuple : array of floats FWHM in x and y directions. """ # Find FWHM # ---------- fitted_line = fit_gaussian2d(image) # Find fitted center x_mean, y_mean = [i.value for i in [fitted_line.x_mean, fitted_line.y_mean]] # Estimate FWHM using gaussian_sigma_to_fwhm x_fwhm = fitted_line.x_stddev * gaussian_sigma_to_fwhm y_fwhm = fitted_line.y_stddev * gaussian_sigma_to_fwhm # Find half max hm = fitted_line(x_mean, y_mean) / 2. # Find the mean of the x and y direction mean_fwhm = np.mean([x_fwhm, y_fwhm]) mean_fwhm = int(np.round(mean_fwhm)) # Print info about fit and FWHM # ------------------------------ if printout: print("Image Max: {}".format(image.max())) print("Amplitude: {}".format(fitted_line.amplitude.value)) print("Center: ({}, {})".format(x_mean, y_mean)) print("Sigma = ({}, {})".format(fitted_line.x_stddev.value, fitted_line.y_stddev.value, )) print("Mean FWHM: {} Pix ".format(mean_fwhm)) print("FWHM: (x={}, y={}) Pix ".format(x_fwhm, y_fwhm)) if plot: fig, [ax0, ax1, ax2, ax3] = plot_fit(image, fitted_line) # Make x and y grid to plot to y_arange, x_arange = np.mgrid[:image.shape[0], :image.shape[1]] # Plot input image with FWHM and center # ------------------------------------- ax0.imshow(image, cmap='gray_r') ax0.axvline(x_mean - x_fwhm / 2, c='c', linestyle="--", label="X FWHM") ax0.axvline(x_mean + x_fwhm / 2, c='c', linestyle="--") ax0.axhline(y_mean - y_fwhm / 2, c='g', linestyle="--", label="Y FWHM") ax0.axhline(y_mean + y_fwhm / 2, c='g', linestyle="--") ax0.set_title("Center and FWHM Plot") ax0.legend() # Plot X fit # ---------- ax2.axvline(x_mean, linestyle="-", label="Center") ax2.axvline(x_mean - x_fwhm / 2, c='c', linestyle="--", label="X FWHM") ax2.axvline(x_mean + x_fwhm / 2, c='c', linestyle="--") ax2.axhline(hm, c="black", linestyle="--", label="Half Max") ax2.legend() # Plot Y fit # ---------- ax3.axvline(y_mean, linestyle="-", label="Center") ax3.axvline(y_mean - y_fwhm / 2, c='g', linestyle="--", label="Y FWHM") ax3.axvline(y_mean + y_fwhm / 2, c='g', linestyle="--") ax3.axhline(hm, c="black", linestyle="--", label="Half Max") ax3.legend() plt.show() return np.array([x_fwhm, y_fwhm])
c2fdb3a10ffa575ffe6fdeb9e86a47ffaefea5c2
3,655,363
from .mappia_publisher import MappiaPublisherPlugin def classFactory(iface): # pylint: disable=invalid-name """Load MappiaPublisher class from file MappiaPublisher. :param iface: A QGIS interface instance. :type iface: QgsInterface """ # return MappiaPublisherPlugin()
1802094cb49c01b0c9c5ed8b45d3c77bcd9b746a
3,655,364
def mongo_insert_canary(mongo, db_name, coll_name, doc): """ Inserts a canary document with 'j' True. Returns 0 if successful. """ LOGGER.info("Inserting canary document %s to DB %s Collection %s", doc, db_name, coll_name) coll = mongo[db_name][coll_name].with_options( write_concern=pymongo.write_concern.WriteConcern(j=True)) res = coll.insert_one(doc) return 0 if res.inserted_id else 1
d82fe021db76972be19394688a07e9426bff82b7
3,655,365
from typing import Type def is_dict_specifier(value): # type: (object) -> bool """ Check if value is a supported dictionary. Check if a parameter of the task decorator is a dictionary that specifies at least Type (and therefore can include things like Prefix, see binary decorator test for some examples). :param value: Decorator value to check. :return: True if value is a dictionary that specifies at least the Type of the key. """ return isinstance(value, dict) and Type in value
e18ad83a1b79a8150dfda1c65f4ab7e72cc8c8c8
3,655,366
def parse_star_count(stars_str): """Parse strings like 40.3k and get the no. of stars as a number""" stars_str = stars_str.strip() return int(float(stars_str[:-1]) * 1000) if stars_str[-1] == 'k' else int(stars_str)
d47177f26656e6dc33d708a0c4824ff677f3387a
3,655,367
import shutil def is_libreoffice_sdk_available() -> bool: """ do we have idlc somewhere (we suppose it is made available in current path var.) ? """ return shutil.which("idlc") is not None
83f8b158bcf97aa875280b20e177895432116d21
3,655,368
def set_metrics_file(filenames, metric_type): """Create metrics from data read from a file. Args: filenames (list of str): Paths to files containing one json string per line (potentially base64 encoded) metric_type (ts_mon.Metric): any class deriving from ts_mon.Metric. For ex. ts_mon.GaugeMetric. Returns: metric (list of metric_type): the metric instances, filled. """ if not filenames: return [] metrics = [] for filename in filenames: with open(filename, 'r') as f: lines = f.read() # Skip blank lines because it helps humans. lines = [line for line in lines.splitlines() if line.strip()] metrics.extend(set_metrics(lines, metric_type)) return metrics
372ec1fcb4b50711b35e40936e63839d75689dee
3,655,369
def sortino_ratio_nb(returns, ann_factor, required_return_arr): """2-dim version of `sortino_ratio_1d_nb`. `required_return_arr` should be an array of shape `returns.shape[1]`.""" result = np.empty(returns.shape[1], dtype=np.float_) for col in range(returns.shape[1]): result[col] = sortino_ratio_1d_nb(returns[:, col], ann_factor, required_return=required_return_arr[col]) return result
2dfd6be1b7d3747c87484b22eb0cc0b0271c93a6
3,655,370
import re def format_env_var(name: str, value: str) -> str: """ Formats environment variable value. Formatter is chosen according to the kind of variable. :param name: name of environment variable :param value: value of environment variable :return: string representation of value in appropriate format """ formatter = get_formatter(name) new = str(value) new = formatter(new) new = escape(new) new = re.sub("\n", "<br>", new) return new
030b16b897f2222d8465143b462f99ba344ba1eb
3,655,371
from typing import Counter def evenly_divisible(n): """ Idea: - Find factors of numbers 1 to n. Use DP to cache results bottom up. - Amongst all factors, we have to include max counts of prime factors. - For example, in in 1 .. 10, 2 has to be included 3 times since 8 = 2 ^ 3 """ max_counts = Counter() for n in range(n, 1, -1): factors = prime_factorize(n) # Update max counts for k, v in factors.iteritems(): max_counts[k] = max(max_counts[k], v) res = 1 for k, v in max_counts.iteritems(): res *= k ** v return res
68301a33751c2f3863092450235ca5c24b28379e
3,655,372
def gradients(vals, func, releps=1e-3, abseps=None, mineps=1e-9, reltol=1, epsscale=0.5): """ Calculate the partial derivatives of a function at a set of values. The derivatives are calculated using the central difference, using an iterative method to check that the values converge as step size decreases. Parameters ---------- vals: array_like A set of values, that are passed to a function, at which to calculate the gradient of that function func: A function that takes in an array of values. releps: float, array_like, 1e-3 The initial relative step size for calculating the derivative. abseps: float, array_like, None The initial absolute step size for calculating the derivative. This overrides `releps` if set. `releps` is set then that is used. mineps: float, 1e-9 The minimum relative step size at which to stop iterations if no convergence is achieved. epsscale: float, 0.5 The factor by which releps if scaled in each iteration. Returns ------- grads: array_like An array of gradients for each non-fixed value. """ grads = np.zeros(len(vals)) # maximum number of times the gradient can change sign flipflopmax = 10. # set steps if abseps is None: if isinstance(releps, float): eps = np.abs(vals) * releps eps[eps == 0.] = releps # if any values are zero set eps to releps teps = releps * np.ones(len(vals)) elif isinstance(releps, (list, np.ndarray)): if len(releps) != len(vals): raise ValueError("Problem with input relative step sizes") eps = np.multiply(np.abs(vals), releps) eps[eps == 0.] = np.array(releps)[eps == 0.] teps = releps else: raise RuntimeError("Relative step sizes are not a recognised type!") else: if isinstance(abseps, float): eps = abseps * np.ones(len(vals)) elif isinstance(abseps, (list, np.ndarray)): if len(abseps) != len(vals): raise ValueError("Problem with input absolute step sizes") eps = np.array(abseps) else: raise RuntimeError("Absolute step sizes are not a recognised type!") teps = eps # for each value in vals calculate the gradient count = 0 for i in range(len(vals)): # initial parameter diffs leps = eps[i] cureps = teps[i] flipflop = 0 # get central finite difference fvals = np.copy(vals) bvals = np.copy(vals) # central difference fvals[i] += 0.5 * leps # change forwards distance to half eps bvals[i] -= 0.5 * leps # change backwards distance to half eps cdiff = (func(fvals) - func(bvals)) / leps while 1: fvals[i] -= 0.5 * leps # remove old step bvals[i] += 0.5 * leps # change the difference by a factor of two cureps *= epsscale if cureps < mineps or flipflop > flipflopmax: # if no convergence set flat derivative (TODO: check if there is a better thing to do instead) logger.warn("Derivative calculation did not converge: setting flat derivative.") grads[count] = 0. break leps *= epsscale # central difference fvals[i] += 0.5 * leps # change forwards distance to half eps bvals[i] -= 0.5 * leps # change backwards distance to half eps cdiffnew = (func(fvals) - func(bvals)) / leps if cdiffnew == cdiff: grads[count] = cdiff break # check whether previous diff and current diff are the same within reltol rat = (cdiff / cdiffnew) if np.isfinite(rat) and rat > 0.: # gradient has not changed sign if np.abs(1. - rat) < reltol: grads[count] = cdiffnew break else: cdiff = cdiffnew continue else: cdiff = cdiffnew flipflop += 1 continue count += 1 return grads
a3dcc4e0bb9402bd2d4c6b14b37c13647200f1a8
3,655,373
def do_open(user_input): """identical to io.open in PY3""" try: with open(user_input) as f: return f.read() except Exception: return None
72037207adecb2758c844c2f0c7233d834060111
3,655,374
def likely_solution(players): """ Return tuples of cards with the number of players who don't have them """ likely = likely_solution_nums(players) return sorted([(ALLCARDS[n], ct) for n, ct in likely], key=lambda tp: tp[1], reverse=True)
f0531f3188a38ec1b70ca48f95c9cfdc71d723b5
3,655,375
def cns_extended_inp(mtf_infile, pdb_outfile): """ Create CNS iput script (.inp) to create extended PDB file from molecular topology file (.mtf) Parameters ---------- mtf_infile : str Path to .mtf topology file pdb_outfile : str Path where extended .pdb file will be stored Returns ------- str: Input script """ return _cns_render_template( "generate_extended", { "mtf_infile": mtf_infile, "pdb_outfile": pdb_outfile, } )
c850137db9a22fd48559228e3032bcd510c9d69b
3,655,376
def index(request, response_format='html'): """Sales index page""" query = Q(status__hidden=False) if request.GET: if 'status' in request.GET and request.GET['status']: query = _get_filter_query(request.GET) else: query = query & _get_filter_query(request.GET) orders = Object.filter_by_request( request, SaleOrder.objects.filter(query), mode="r") filters = OrderFilterForm(request.user.profile, '', request.GET) statuses = Object.filter_by_request(request, SaleStatus.objects, mode="r") massform = MassActionForm(request.user.profile) return render_to_response('sales/index', {'orders': orders, 'filters': filters, 'statuses': statuses, 'massform': massform }, context_instance=RequestContext(request), response_format=response_format)
afb47a5c9094c9ff125c05c3588712d1875c69f3
3,655,377
import os def getDroppableFilename(mime_data): """ Returns the filename of a file dropped into the canvas (if it was accepted via @see isDroppableMimeType). """ if mime_data.hasUrls(): # Return the first locally existing file for url in mime_data.urls(): fpath = url.toLocalFile() if os.path.exists(fpath): return fpath.strip() if mime_data.hasText(): txt = mime_data.text() if txt.startswith('file://'): return txt[7:].strip() raise ValueError('Unsupported QMimeData for dropped file!')
c49370abf2b56f1cb3ded02c5edfab121a728096
3,655,378
def team_points_leaders(num_results=None, round_name=None): """Returns the team points leaders across all groups, as a dictionary profile__team__name and points. """ size = team_normalize_size() if size: entries = score_mgr.team_points_leaders(round_name=round_name) else: entries = score_mgr.team_points_leaders(num_results=num_results, round_name=round_name) if entries: if size: for entry in entries: team = Team.objects.get(name=entry["profile__team__name"]) if team.size: entry["points"] = int(entry["points"] * float(size / team.size)) # resort the entries after the normalization entries = sorted(entries, key=lambda e: e["points"], reverse=True) return entries[:num_results] else: return entries else: results = Team.objects.all().extra( select={'profile__team__name': 'name', 'points': 0}).values( 'profile__team__name', 'points') if num_results: results = results[:num_results] return results
56b72b28f74f94e428b668b785b3dbd5b0c7c378
3,655,379
def with_color(text, color, bold=False): """ Return a ZSH color-formatted string. Arguments --------- text: str text to be colored color: str ZSH color code bold: bool whether or not to make the text bold Returns ------- str string with ZSH color-coded text """ color_fmt = '$fg_bold[{:s}]' if bold else '$fg[{:s}]' return '%{{{:s}%}}{:s}%{{$reset_color%}}'.format( color_fmt.format(color), text)
40c194d9de76ab504a25592cfb13407cb089da0a
3,655,380
def sample_test(): """Return sample test json.""" return get_sample_json("test.json")
9d135d4fd2f7eb52d16ff96332811e4141139a12
3,655,381
import warnings from io import StringIO def dataframe_from_inp(inp_path, section, additional_cols=None, quote_replace=' ', **kwargs): """ create a dataframe from a section of an INP file :param inp_path: :param section: :param additional_cols: :param skip_headers: :param quote_replace: :return: """ # format the section header for look up in headers OrderedDict sect = remove_braces(section).upper() # get list of all section headers in inp to use as section ending flags headers = get_inp_sections_details(inp_path, include_brackets=False) if sect not in headers: warnings.warn(f'{sect} section not found in {inp_path}') return pd.DataFrame() # extract the string and read into a dataframe start_string = format_inp_section_header(section) end_strings = [format_inp_section_header(h) for h in headers.keys()] s = extract_section_of_file(inp_path, start_string, end_strings, **kwargs) # replace occurrences of double quotes "" s = s.replace('""', quote_replace) # and get the list of columns to use for parsing this section # add any additional columns needed for special cases (build instructions) additional_cols = [] if additional_cols is None else additional_cols cols = headers[sect]['columns'] + additional_cols if headers[sect]['columns'][0] == 'blob': # return the whole row, without specific col headers return pd.read_csv(StringIO(s), delim_whitespace=False) else: try: df = pd.read_csv(StringIO(s), header=None, delim_whitespace=True, skiprows=[0], index_col=0, names=cols) except IndexError: print(f'failed to parse {section} with cols: {cols}. head:\n{s[:500]}') raise return df
8eaefdc08c7de3991f5a85cfe5001a6dcd0aaf7b
3,655,382
def compositional_stratified_splitting(dataset, perc_train): """Given the dataset and the percentage of data you want to extract from it, method will apply stratified sampling where X is the dataset and Y is are the category values for each datapoint. In the case each structure contains 2 types of atoms, the category will be constructed as such: number of atoms of type 1 + number of atoms of type 2 * 100. Parameters ---------- dataset: [Data] A list of Data objects representing a structure that has atoms. subsample_percentage: float Percentage of the dataset. Returns ---------- [Data] Subsample of the original dataset constructed using stratified sampling. """ dataset_categories = create_dataset_categories(dataset) dataset, dataset_categories = duplicate_unique_data_samples( dataset, dataset_categories ) sss_train = sklearn.model_selection.StratifiedShuffleSplit( n_splits=1, train_size=perc_train, random_state=0 ) trainset, val_test_set = generate_partition(sss_train, dataset, dataset_categories) val_test_dataset_categories = create_dataset_categories(val_test_set) val_test_set, val_test_dataset_categories = duplicate_unique_data_samples( val_test_set, val_test_dataset_categories ) sss_valtest = sklearn.model_selection.StratifiedShuffleSplit( n_splits=1, train_size=0.5, random_state=0 ) valset, testset = generate_partition( sss_valtest, val_test_set, val_test_dataset_categories ) return trainset, valset, testset
b57a0b7d651e6f9be4182fec8c918438dcae9b7a
3,655,383
def is_inside_line_segment(x, y, x0, y0, x1, y1): """Return True if the (x, y) lies inside the line segment defined by (x0, y0) and (x1, y1).""" # Create two vectors. v0 = np.array([ x0-x, y0-y ]).reshape((2,1)) v1 = np.array([ x1-x, y1-y ]).reshape((2,1)) # Inner product. prod = v0.transpose().dot(v1) if ( prod <= 0 ): return True else: return False
b653c542d3d573857199d90257e9e36e6c45ccdc
3,655,384
def transition_soil_carbon(area_final, carbon_final, depth_final, transition_rate, year, area_initial, carbon_initial, depth_initial): """This is the formula for calculating the transition of soil carbon .. math:: (af * cf * df) - \ \\frac{1}{(1 + tr)^y} * \ [(af * cf * df) - \ (ai * ci * di)] where * :math:`af` is area_final * :math:`cf` is carbon_final * :math:`df` is depth_final * :math:`tr` is transition_rate * :math:`y` is year * :math:`ai` is area_initial * :math:`ci` is carbon_initial * :math:`di` is depth_initial Args: area_final (float): The final area of the carbon carbon_final (float): The final amount of carbon per volume depth_final (float): The final depth of carbon transition_rate (float): The rate at which the transition occurs year (float): The amount of time in years overwhich the transition occurs area_initial (float): The intial area of the carbon carbon_initial (float): The iniital amount of carbon per volume depth_initial (float): The initial depth of carbon Returns: float: Transition amount of soil carbon """ return (area_final * carbon_final * depth_final) - \ (1/((1 + transition_rate) ** year)) * \ ((area_final * carbon_final * depth_final) - \ (area_initial * carbon_initial * depth_initial))
bfbf83f201eb8b8b0be0ec6a8722e850f6084e95
3,655,385
import json import os def make_global_config(): """load & augment experiment configuration, then add it to global variables""" parser = ArgumentParser(description='Evaluate TRE model.', formatter_class=ArgumentDefaultsHelpFormatter) # parser.add_argument('--config_path', type=str, default="1d_gauss/20200501-0739_0") parser.add_argument('--config_path', type=str, default="gaussians/20200713-1029_4") # parser.add_argument('--config_path', type=str, default="mnist/20200504-1031_0") parser.add_argument('--ais_id', type=int, default=0) parser.add_argument('--eval_epoch_idx', type=str, default="best") parser.add_argument('--do_estimate_log_par', type=int, default=0) # -1 == False, else True parser.add_argument('--do_sample', type=int, default=-1) # -1 == False, else True parser.add_argument('--ais_nuts_max_tree_depth', type=int, default=5) # -1 == False, else True parser.add_argument('--do_assess_subbridges', type=int, default=-1) # -1 == False, else True parser.add_argument('--do_assess_parameters', type=int, default=0) # -1 == False, else True parser.add_argument('--sample_method', type=str, default="nuts") parser.add_argument('--act_threshold_quantile', type=float, default=0.99) # if we are only sampling (i.e. not computing partition function with AIS), then this is the number of sampling # steps we use when performing annealed sampling. If None, then use the default value stored in config file. parser.add_argument('--only_sample_total_n_steps', type=int, default=1000) parser.add_argument('--only_sample_n_chains', type=int, default=-1) # initial step size for annealed sampling parser.add_argument('--ais_step_size_init', type=float, default=0.02) parser.add_argument('--init_post_annealed_step_size', type=float, default=0.02) # when doing annealed sampling with uncalibrated_langevin, we use an exponentially decreasing step size schedule. # The final step size in this schedule is 10^-step_size_reduction_magnitude smaller than the initial step size. parser.add_argument('--step_size_reduction_magnitude', type=float, default=2) # After annealed sampling, we continue sampling from the entire model parser.add_argument('--do_post_annealed_sample', type=int, default=0) # -1 == False, else True parser.add_argument('--post_ais_n_samples_keep', type=int, default=20) parser.add_argument('--post_ais_thinning_factor', type=int, default=0) parser.add_argument('--post_ais_nuts_max_tree_depth', type=int, default=10) parser.add_argument('--parallel_iterations', type=int, default=10) parser.add_argument('--swap_memory', type=int, default=-1) # attempt to save gpu memory by using cpu when possible parser.add_argument('--n_noise_samples_for_variational_losses', type=int, default=1000) parser.add_argument('--frac', type=float, default=1.0) parser.add_argument('--debug', type=int, default=-1) args = parser.parse_args() with open(project_root + "saved_models/{}/config.json".format(args.config_path)) as f: config = json.load(f) rename_save_dir(config) if args.only_sample_n_chains == -1: del args.only_sample_n_chains config.update(vars(args)) config["do_estimate_log_par"] = False if args.do_estimate_log_par == -1 else True config["do_sample"] = False if args.do_sample == -1 else True config["do_post_annealed_sample"] = False if args.do_post_annealed_sample == -1 else True config["do_assess_subbridges"] = False if args.do_assess_subbridges == -1 else True config["do_assess_parameters"] = False if args.do_assess_parameters == -1 else True config["swap_memory"] = False if args.swap_memory == -1 else True config["debug"] = False if args.debug == -1 else True if config["eval_epoch_idx"] == "final": # work out the final epoch number metrics_save_dir = os.path.join(config["save_dir"], "model/every_x_epochs/") epoch_nums = [x.split(".")[0] for x in os.listdir(metrics_save_dir) if "checkpoint" not in x] config["eval_epoch_idx"] = str(max([int(x) for x in epoch_nums])) if "data_dist_name" not in config: config["data_dist_name"] = None save_config(config) if config["debug"]: config["do_assess_subbridges"] = True config["do_assess_parameters"] = True config["do_sample"] = False config["do_estimate_log_par"] = True config["do_post_annealed_sample"] = False config["frac"] = 0.2 config["ais_n_chains"] = 10 config["ais_total_n_steps"] = 10 config["only_sample_n_chains"] = 10 config["only_sample_total_n_steps"] = 10 config["post_ais_n_samples_keep"] = 10 config["post_ais_thinning_factor"] = 5 config["n_noise_samples_for_variational_losses"] = 1000 globals().update(config) return AttrDict(config)
3e4e1a035220ae216b1beb22a27764c833e98566
3,655,386
import sys def dijkstra(graph, source): """Find the shortest path from the source node to every other node in the given graph""" # Declare and initialize result, unvisited, and path result = {i: sys.maxsize if i != source else 0 for i in graph.nodes} # placeholder, by default set distance to maxsize path = dict() unvisited = set(graph.nodes) while unvisited: # As long as unvisited is non-empty min_node = None # Find the unvisited node having smallest known distance from the source node. for node in unvisited: if min_node is None: # base case min_node = node elif result[node] < result[min_node]: min_node = node # switch the nodes, so start with source, then next lowest... """tried to be fancy""" # d = {i[0][1]: i[1] for i in graph.distances.items() if i[0][0] == node} # min_node = min(d, key=d.get) # result[min_node] = d[min_node] current_distance = result[min_node] # For the current node, find all the unvisited neighbours. # For this, you have calculate the distance of each unvisited neighbour. # unvisited_neighbours = unvisited.intersection(graph.neighbours[min_node]) does not work, might not be a path between nodes for neighbour in graph.neighbours[min_node]: if neighbour in unvisited: distance = current_distance + graph.distances[(min_node, neighbour)] # If the calculated distance of the unvisited neighbour is less than the already known distance in result dictionary, # update the shortest distance in the result dictionary. if distance < result[neighbour]: result[neighbour] = distance path[neighbour] = min_node # Remove the current node from the unvisited set. unvisited.remove(min_node) # should do an ASSERT to check no values in result dict equal sys.maxsize return result
4c3fda4922795b8a47e7b94bf3a09016f5eb2551
3,655,387
def _snr_approx(array, source_xy, fwhm, centery, centerx): """ array - frame convolved with top hat kernel """ sourcex, sourcey = source_xy rad = dist(centery, centerx, sourcey, sourcex) ind_aper = draw.circle(sourcey, sourcex, fwhm/2.) # noise : STDDEV in convolved array of 1px wide annulus (while # masking the flux aperture) * correction of # of resolution elements ind_ann = draw.circle_perimeter(int(centery), int(centerx), int(rad)) array2 = array.copy() array2[ind_aper] = array[ind_ann].mean() # quick-n-dirty mask n2 = (2*np.pi*rad)/fwhm - 1 noise = array2[ind_ann].std()*np.sqrt(1+(1/n2)) # signal : central px minus the mean of the pxs (masked) in 1px annulus signal = array[sourcey, sourcex] - array2[ind_ann].mean() snr = signal / noise return sourcey, sourcex, snr
6f055444163c03d0bcc61107db2045b968f06b52
3,655,388
def create_pipeline(training_set, validation_set, test_set): """ Create a pipeline for the training, validation and testing set Parameters: training_set: Training data set validation_set: Validation data set test_set: Test data set Returns: batch_size: Batch size image_size: Image dimensions (width, height) training_batches: Batches of training data set validation_batches: Batches of validation data set testing_batches: Batches of test data set """ # Define batch size and image size batch_size = 64 image_size = 224 # Define function to convert images to appropriate format, resize to fit the input layer and normalize it def format_image(image, label): image = tf.cast(image, tf.float32) image = tf.image.resize(image, [image_size, image_size]) image /= 255 return image, label # Define batches, while modifying images according to above function as well as batch and prefetch them training_batches = training_set.map(format_image).batch(batch_size).prefetch(1) validation_batches = validation_set.map(format_image).batch(batch_size).prefetch(1) testing_batches = test_set.map(format_image).batch(batch_size).prefetch(1) return batch_size, image_size, training_batches, validation_batches, testing_batches
a6af6ff83180a0a11bfc3bacefd6a2e2261aaeed
3,655,389
from typing import Tuple from typing import Any def invalid_request() -> Tuple[Any, int]: """Invalid request API response.""" return jsonify({API.Response.KEY_INFO: API.Response.VAL_INVALID_REQUEST}), 400
76a81f8c85014822f4fa306c917a06d92a89ea70
3,655,390
from pathlib import Path from typing import List from typing import Dict from typing import Any def _add_hyperparameters( ranges_path: Path, defaults_path: Path ) -> List[Dict[str, Any]]: """Returns a list of hyperparameters in a format that is compatible with the json reader of the ConfigSpace API. The list is created from two files: a hp_space file that defines the ranges of the hyperparameters and an options file that defines the default values of the hyperparameters. Both are in json format. Parameters ---------- ranges_path: Path Path to the hp_space file defaults_path: Path Path to the options file Returns ------- List A list of hyperparameters """ # load the ranges of the hyperparameters as a dict ranges_dict = load_data(ranges_path) ranges_dict = flatten_dictionary(ranges_dict) # load the default values of the hyperparameters as a dict defaults_dict = load_data(defaults_path) defaults_dict = flatten_dictionary(defaults_dict) hyperparameter_list = _add_ranges(ranges_dict) hyperparameter_list = _add_defaults(hyperparameter_list, defaults_dict) return hyperparameter_list
9609d3f31ffaee69148360966b1040f1970399b3
3,655,391
def setup(app): """Setup extension.""" app.add_domain(StuffDomain) app.connect("builder-inited", generate_latex_preamble) app.connect("config-inited", init_numfig_format) app.add_css_file("stuff.css") app.add_enumerable_node( StuffNode, "stuff", html=(html_visit_stuff_node, html_depart_stuff_node), singlehtml=(html_visit_stuff_node, html_depart_stuff_node), latex=(latex_visit_stuff_node, latex_depart_stuff_node), ) app.add_node( nodes.caption, override=True, html=(html_visit_caption_node, html_depart_caption_node), singlehtml=(html_visit_caption_node, html_depart_caption_node), latex=(latex_visit_caption_node, latex_depart_caption_node), ) app.add_node( ContentNode, html=(html_visit_content_node, html_depart_content_node), singlehtml=(html_visit_content_node, html_depart_content_node), latex=(latex_visit_content_node, latex_depart_content_node), ) return {"version": __version__, "parallel_read_safe": True}
3c7a5d36c835e7339876cdf88673d79e5f76b590
3,655,392
from pathlib import Path import typing def has_checksum(path: Path, csum: str, csum_fun: typing.Optional[Checksum] = None) -> bool: """ :return: True if the file at the path `path` has given checksum """ return get_checksum(path, csum_fun=csum_fun) == csum
e9bed6e0d82745113412e6dace5869aa32aa4fc9
3,655,393
import numpy as np def remove_outliers(column): """ :param column: list of numbers :return: """ if len(column) < 1: return [] clean_column = [] q1 = np.percentile(column, 25) q3 = np.percentile(column, 75) #k = 1.5 k = 2 # [Q1 - k(Q3 - Q1), Q3 + k(Q3 - Q1)] lower_bound = q1 - k*(q3-q1) upper_bound = q3 + k*(q3-q1) for c in column: if c >= lower_bound and c <= upper_bound: clean_column.append(c) return clean_column
04c1e736e27ffeaef528f25fd303d0f27c3a94ac
3,655,394
import json from datetime import datetime import pytz def lambda_handler(event, context): """ Lambda entry-point """ news_link = "https://news.ok.ubc.ca/feed/" news_items = [] filtered_news_items = [] response_items = get_news_items_from_web(news_link) if len(response_items) == 0: return {"status": "No items in RSS Feed"} # Iterate through list of raw items and parse them, if there is a parsing error, save the raw item that throws an # error to S3 for item in response_items: try: news_item = news_parser(item) news_items.append(news_item) except Exception as e: S3_CLIENT.put_object(Body=json.dumps(item, indent=4), Bucket=S3_BUCKET_NAME, Key=f'ErrorLog/News/{str(datetime.now(tz=pytz.timezone("America/Vancouver")))[:-13]}.json') LOGGER.error(f"Error in parsing a news item, raw item saved to {S3_BUCKET_NAME}/ErrorLog/News") detailed_exception(LOGGER) # Filter the parsed items based on last query time to get only new items try: last_query_time = SSM_CLIENT.get_parameter(Name="NewsQueryTime")["Parameter"]["Value"] for news_item in news_items: if datetime.strptime(last_query_time, "%Y-%m-%d %H:%M:%S") \ < datetime.strptime(news_item["dateModified"], "%Y-%m-%d %H:%M:%S"): filtered_news_items.append(news_item) SSM_CLIENT.put_parameter(Name="NewsQueryTime", Value=str(datetime.now(tz=pytz.timezone("America/Vancouver")))[:-13], Overwrite=True) except SSM_CLIENT.exceptions.InternalServerError as e: LOGGER.error("Error in communicating with Parameter store") detailed_exception(LOGGER) LOGGER.debug(json.dumps(news_items, indent=4)) LOGGER.debug(json.dumps(filtered_news_items, indent=4)) # Save new items to central data lake S3 if len(filtered_news_items) != 0: S3_CLIENT.put_object(Body=json.dumps(filtered_news_items, indent=4), Bucket=S3_BUCKET_NAME, Key=f'News/{str(datetime.now(tz=pytz.timezone("America/Vancouver")))[:-13]}.json') # Insert items into DynamoDB table with appropriate TTL table = DYNAMODB_RESOURCE.Table(NEWS_TABLE) for events_item in filtered_news_items: events_item["expiresOn"] = get_adjusted_unix_time(events_item["dateModified"], "%Y-%m-%d %H:%M:%S", EXPIRY_DAYS_OFFSET * 24) table.put_item(Item=events_item) return {"status": "completed"}
cd188a0179ee74335202b865edb8b5216dbf50b8
3,655,395
def read_photons(photonfile, ra0, dec0, tranges, radius, verbose=0, colnames=['t', 'x', 'y', 'xa', 'ya', 'q', 'xi', 'eta', 'ra', 'dec', 'flags']): """ Read a photon list file and return a python dict() with the expected format. :param photonfile: Name of the photon event file to use. :type photonfile: str :param ra0: Right ascension of the targeted sky position, in degrees. :type ra0: float :param dec0: Declination of the targeted sky position, in degrees. :type dec0: float :param tranges: Set of time ranges from which to retrieve photon events, in GALEX time units :type tranges: list :param radius: The radius, in degrees, defining a cone on the sky that is centered on ra0 and dec0, from which to extract photons. :type radius: float :param verbose: Verbosity level, a value of 0 is minimum verbosity. :type verbose: int :param colnames: Labels of the columns found in the photon event file. :type colnames: list :returns: dict -- The set of photon events and their properties. """ # [Future]: Consider moving this method to 'dbasetools'. if verbose: mc.print_inline('Reading photon list file: {f}'.format(f=photonfile)) data = pd.io.parsers.read_csv(photonfile, names=colnames) ra, dec = np.array(data['ra']), np.array(data['dec']) angsep = mc.angularSeparation(ra0, dec0, ra, dec) ix = np.array([]) for trange in tranges: cut = np.where((angsep <= radius) & (np.isfinite(angsep)))[0] ix = np.concatenate((ix, cut), axis=0) events = {'t':np.array(data['t'][ix])/tscale, 'ra':np.array(data['ra'][ix]), 'dec':np.array(data['dec'][ix]), 'xi':np.array(data['xi'][ix]), 'eta':np.array(data['eta'][ix]), 'x':np.array(data['x'][ix]), 'y':np.array(data['y'][ix])} return events
c83958f8ae541e5df564c5ce53dd40593c9dfc3e
3,655,396
def normElec(surf, electrode, normdist, NaN_as_zeros=True): """ Notes ----- When `normway` is a scalar, it takes the normal of the points of the mesh which are closer than `normway`. However, some points have a normal of (0, 0, 0) (default assigned if the vertex does not belong to any triangle). projectElectrodes.m includes those (0, 0, 0) in the calculation, but it might not be correct. See l. 138 (there are no NaN in normals but only (0, 0, 0)). To replicate the matlab behavior, make sure that `NaN_as_zeros` is True. """ dvect = norm(electrode - surf['pos'], axis=1) # l. 104-112 of projectElectrodes.m closevert = dvect < normdist # l. 120 of projectElectrodes.m normal = surf['pos_norm'][closevert, :].mean(axis=0) # l. 144 of projectElectrodes.m normals2av = surf['pos_norm'][closevert, :].copy() if NaN_as_zeros: normals2av[isnan(normals2av)] = 0 normal = nanmean(normals2av, axis=0) return normal
d449f4518c589a2a68b64ca812d964cb6249694e
3,655,397
def filter_sources(sources, release): """Check if a source has already been consumed. If has not then add it to sources dict. """ source, version, dist, arch = parse_release(release) if source not in sources.keys(): sources[source] = {version: {dist: [arch]}} return True elif version not in sources[source].keys(): sources[source][version] = {dist: [arch]} return True elif dist not in sources[source][version]: sources[source][version][dist] = [arch] return True elif arch not in sources[source][version][dist]: sources[source][version][dist].append(arch) return True return False
661d379291170a4994c0813d24820007e47bd092
3,655,398
from typing import Union from typing import Dict from typing import Any async def train(model, *args: Union[BaseSource, Record, Dict[str, Any]]): """ Train a machine learning model. Provide records to the model to train it. The model should be already instantiated. Parameters ---------- model : Model Machine Learning model to use. See :doc:`/plugins/dffml_model` for models options. *args : list Input data for training. Could be a ``dict``, :py:class:`Record`, filename, one of the data :doc:`/plugins/dffml_source`, or a filename with the extension being one of the data sources. Examples -------- >>> import asyncio >>> from dffml import * >>> >>> model = SLRModel( ... features=Features( ... Feature("Years", int, 1), ... ), ... predict=Feature("Salary", int, 1), ... directory="tempdir", ... ) >>> >>> async def main(): ... await train( ... model, ... {"Years": 0, "Salary": 10}, ... {"Years": 1, "Salary": 20}, ... {"Years": 2, "Salary": 30}, ... {"Years": 3, "Salary": 40}, ... ) >>> >>> asyncio.run(main()) """ sources = _records_to_sources(*args) async with sources as sources, model as model: async with sources() as sctx, model() as mctx: return await mctx.train(sctx)
9a8e1648247a8eb3c8354c324ac2c48a52617899
3,655,399