content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import os import platform def get_os(): """ if called in powershell returns "powershell" if called in cygwin returns "cygwin" if called in darwin/osx returns "osx" for linux returns "linux" """ env = os.environ p = platform.system().lower() terminal = p operating_system = p if p == 'windows': terminal = "powershell" if 'TERM' in env: terminal = env['TERM'] if p == 'darwin': terminal = 'osx' return terminal
843dc64f40b50e7adc45f1f4c092550c578cddd3
3,655,400
def setup_model_and_optimizer(args): """Setup model and optimizer.""" print ("setting up model...") model = get_model(args) print ("setting up optimizer...") optimizer = get_optimizer(model, args) print ("setting up lr scheduler...") lr_scheduler = get_learning_rate_scheduler(optimizer, args) if DEEPSPEED_WRAP and args.deepspeed: print_rank_0("DeepSpeed is enabled.") print ("Calling deepspeed.initialize with our model, optimizer and scheduler") model, optimizer, _, lr_scheduler = DEEPSPEED_WRAP.deepspeed.initialize( model=model, optimizer=optimizer, args=args, lr_scheduler=lr_scheduler, mpu=mpu, dist_init_required=False ) print ("We've wrapped our model, optimizer and scheduler in DeepSpeed") if args.load is not None: print_rank_0("Load checkpoint from " + args.load) args.iteration = load_checkpoint(model, optimizer, lr_scheduler, args, deepspeed=DEEPSPEED_WRAP and args.deepspeed) print_rank_0("Checkpoint loaded") else: args.iteration = 0 print ("returning our model, optimizer and scheduler") return model, optimizer, lr_scheduler
9283ec825b55ff6619ac2ee2f7ac7cce9e4bced7
3,655,401
def ensure_str(origin, decode=None): """ Ensure is string, for display and completion. Then add double quotes Note: this method do not handle nil, make sure check (nil) out of this method. """ if origin is None: return None if isinstance(origin, str): return origin if isinstance(origin, int): return str(origin) elif isinstance(origin, list): return [ensure_str(b) for b in origin] elif isinstance(origin, bytes): if decode: return origin.decode(decode) return _literal_bytes(origin) else: raise Exception(f"Unknown type: {type(origin)}, origin: {origin}")
0409bc75856b012cf3063d9ed2530c2d7d5bf3e4
3,655,402
from typing import Union from typing import Dict from typing import Any from typing import Optional def restore( collection: str, id: Union[str, int, Dict[str, Any]] ) -> Optional[Dict[str, Any]]: """Restrieve cached data from database. :param collection: The collection to be retrieved. Same name as API commands. :type collection: str :param id: The unique identifier for a particular collection. This varies by command. :type id: Union[str, int] :return: The retrieved data if exists, else None. :rtype: Optional[Dict[str, Any]] """ db = _get_connection() if not db: return None if not isinstance(id, dict): id = dict(_id=id) return db[collection].find_one(id, dict(_id=0))
a0b2ccb995661b5c3286dee3b3f5f250cb728011
3,655,403
def encode_bits(data, number): """Turn bits into n bytes of modulation patterns""" # 0000 00BA gets encoded as: # 128 64 32 16 8 4 2 1 # 1 B B 0 1 A A 0 # i.e. a 0 is a short pulse, a 1 is a long pulse #print("modulate_bits %s (%s)" % (ashex(data), str(number))) shift = number-2 encoded = [] for i in range(int(number/2)): bits = (data >> shift) & 0x03 #print(" shift %d bits %d" % (shift, bits)) encoded.append(ENCODER[bits]) shift -= 2 #print(" returns:%s" % ashex(encoded)) return encoded
0299a30c4835af81e97e518e116a51fa08006999
3,655,404
import io import os def compute_session_changes(session, task=None, asset=None, app=None): """Compute the changes for a Session object on asset, task or app switch This does *NOT* update the Session object, but returns the changes required for a valid update of the Session. Args: session (dict): The initial session to compute changes to. This is required for computing the full Work Directory, as that also depends on the values that haven't changed. task (str, Optional): Name of task to switch to. asset (str or dict, Optional): Name of asset to switch to. You can also directly provide the Asset dictionary as returned from the database to avoid an additional query. (optimization) app (str, Optional): Name of app to switch to. Returns: dict: The required changes in the Session dictionary. """ changes = dict() # If no changes, return directly if not any([task, asset, app]): return changes # Get asset document and asset asset_document = None if asset: if isinstance(asset, dict): # Assume asset database document asset_document = asset asset = asset["name"] else: # Assume asset name asset_document = io.find_one({"name": asset, "type": "asset"}) assert asset_document, "Asset must exist" # Detect any changes compared session mapping = { "AVALON_ASSET": asset, "AVALON_TASK": task, "AVALON_APP": app, } changes = {key: value for key, value in mapping.items() if value and value != session.get(key)} if not changes: return changes # Update silo and hierarchy when asset changed if "AVALON_ASSET" in changes: # Update silo changes["AVALON_SILO"] = asset_document.get("silo") or "" # Update hierarchy parents = asset_document['data'].get('parents', []) hierarchy = "" if len(parents) > 0: hierarchy = os.path.sep.join(parents) changes['AVALON_HIERARCHY'] = hierarchy # Compute work directory (with the temporary changed session so far) project = io.find_one({"type": "project"}) _session = session.copy() _session.update(changes) anatomy = Anatomy(project["name"]) template_data = template_data_from_session(_session) anatomy_filled = anatomy.format(template_data) changes["AVALON_WORKDIR"] = anatomy_filled["work"]["folder"] return changes
2705a9ef6fe0afbfa375f03c28915c6f84c2211b
3,655,405
from typing import Tuple def _tf_get_negs( all_embed: "tf.Tensor", all_raw: "tf.Tensor", raw_pos: "tf.Tensor", num_neg: int ) -> Tuple["tf.Tensor", "tf.Tensor"]: """Get negative examples from given tensor.""" if len(raw_pos.shape) == 3: batch_size = tf.shape(raw_pos)[0] seq_length = tf.shape(raw_pos)[1] else: # len(raw_pos.shape) == 2 batch_size = tf.shape(raw_pos)[0] seq_length = 1 raw_flat = _tf_make_flat(raw_pos) total_candidates = tf.shape(all_embed)[0] all_indices = tf.tile( tf.expand_dims(tf.range(0, total_candidates, 1), 0), (batch_size * seq_length, 1), ) shuffled_indices = tf.transpose( tf.random.shuffle(tf.transpose(all_indices, (1, 0))), (1, 0) ) neg_ids = shuffled_indices[:, :num_neg] bad_negs = _tf_get_bad_mask(raw_flat, all_raw, neg_ids) if len(raw_pos.shape) == 3: bad_negs = tf.reshape(bad_negs, (batch_size, seq_length, -1)) neg_embed = _tf_sample_neg(batch_size * seq_length, all_embed, neg_ids) if len(raw_pos.shape) == 3: neg_embed = tf.reshape( neg_embed, (batch_size, seq_length, -1, all_embed.shape[-1]) ) return neg_embed, bad_negs
9cef1cf3fc869108d400704f8cd90d432382ac2e
3,655,406
import os def remove(store_config, shardid): # FIXME require config instead """Remove a shard from the store. Args: store_config: Dict of storage paths to optional attributes. limit: The dir size limit in bytes, 0 for no limit. use_folder_tree: Files organized in a folder tree (always on for fat partitions). shardid: Id of the shard to be removed. Raises: AssertionError: If input not valid. Example: import storjlib id = "2c26b46b68ffc68ff99b453c1d30413413422d706483bfa0f98a5e886266e7ae" store_config = {"path/alpha": None, "path/beta": None} storjlib.store.manager.remove(store_config, id) """ shard_path = find(store_config, shardid) if shard_path is not None: _log.info("Removing shard {0} from store.".format(shardid)) return os.remove(shard_path)
a02f686f34707b0cfd940a2990f0a561ba7e33d3
3,655,407
from typing import Union from typing import Optional import sqlite3 import os def init_db(path: Union[str, 'os.PathLike'] = db_constants.DB_PATH) -> Optional[sqlite3.dbapi2.Connection]: """Initialises the DB. Returns a sqlite3 connection, which will be passed to the db thread. """ # TODO: change saving version from float to string def db_layout(cursor: sqlite3.dbapi2.Cursor) -> None: c = cursor # version c.execute(""" CREATE TABLE IF NOT EXISTS version(version REAL) """) c.execute("""INSERT INTO version(version) VALUES(?)""", (db_constants.CURRENT_DB_VERSION,)) log_i("Constructing database layout") log_d("Database Layout:\n\t{}".format(STRUCTURE_SCRIPT)) c.executescript(STRUCTURE_SCRIPT) def new_db(p: Union[str, 'os.PathLike'], new: bool = False) -> sqlite3.dbapi2.Connection: connection = sqlite3.connect(p, check_same_thread=False) connection.row_factory = sqlite3.Row if new: c = connection.cursor() db_layout(c) connection.commit() return connection if os.path.isfile(path): conn = new_db(path) if path == db_constants.DB_PATH and not check_db_version(conn): return None else: create_db_path() conn = new_db(path, True) conn.isolation_level = None conn.execute("PRAGMA foreign_keys = on") return conn
5faced34ef7ee8698ed188801efe90c26f05ae16
3,655,408
def load_pdb(path): """ Loads all of the atomic positioning/type arrays from a pdb file. The arrays can then be transformed into density (or "field") tensors before being sent through the neural network. Parameters: path (str, required): The full path to the pdb file being voxelized. Returns: dictionary: A dictionary containing the following arrays from the pdb file: num_atoms, atom_types, positions, atom_type_set, xcoords, ycoords, zcoords, residues, residue_set """ pdb = PandasPdb().read_pdb(path) # This just creates a dataframe from the pdb file using biopandas #print('This is vars',vars(pdb)) pdf = pdb.df['ATOM'] # atomic coordinates x_coords = pdf['x_coord'].values y_coords = pdf['y_coord'].values z_coords = pdf['z_coord'].values # create an array containing tuples of x,y,z for every atom positions = [] for i, x in enumerate(x_coords): position_tuple = (x_coords[i], y_coords[i], z_coords[i]) positions.append(position_tuple) positions = np.array(positions) # names of all the atoms contained in the protein atom_types = pdf['atom_name'].values num_atoms = len(atom_types) atom_type_set = np.unique(atom_types) num_atom_types = len(atom_type_set) # residue names residue_names = pdf['residue_name'].values residue_set = np.unique(residue_names) protein_dict = {'x_coords':x_coords, 'y_coords':y_coords, 'z_coords':z_coords, 'positions':positions, 'atom_types':atom_types, 'num_atoms':num_atoms, 'atom_type_set':atom_type_set, 'num_atom_types':num_atom_types, 'residues':residue_names, 'residue_set':residue_set} # add a value to the dictionary, which is all of the atomic coordinates just # shifted to the origin protein_dict = shift_coords(protein_dict) return protein_dict
aa7fe0f338119b03f00a2acb727608afcd5c1e0d
3,655,409
from typing import List import os def validate_workspace( workspace_option: str, available_paths: List[str] = list(WORKSPACE_PATHS.values()) ) -> str: """Validate and return workspace. :param workspace_option: A string of the workspace to validate. :type workspace_option: string :param available_paths: A list of the available workspaces. :type available_paths: list :returns: A string of the validated workspace. """ if workspace_option: available = any( os.path.join(os.path.abspath(workspace_option), "").startswith( os.path.join(os.path.abspath(path), "") ) for path in available_paths ) if not available: raise REANAValidationError( f'Desired workspace "{workspace_option}" is not valid.\n' f'Available workspace prefix values are: {", ".join(available_paths)}', ) return workspace_option
d84e60aa5073333503b62361d77c32c4823a9da8
3,655,410
def __filter_handler(query_set, model, params): """ Handle user-provided filtering requests. Args: query_set: SQLAlchemy query set to be filtered. model: Data model from which given query set is generated. params: User-provided filter params, with format {"query": [...], ...}. For query format see "__build_filter_exp" function. Returns: A query set with user-provided filters applied. """ query = params.get("query") if query: filter_exp = __build_filter_exp(query, model) return query_set.filter(filter_exp) else: return query_set
c91b7d55795399f453106d0dda52e80a0c998075
3,655,411
def split_data_set(data_set, axis, value): """ 按照给定特征划分数据集,筛选某个特征为指定特征值的数据 (然后因为是按该特征进行划分了,该特征在以后的划分中就不用再出现,所以把该特征在新的列表中移除) :param data_set: 待划分的数据集,格式如下,每一行是一个list,list最后一个元素就是标签,其他元素是特征 :param axis: 划分数据集的特征(特征的序号) :param value: 需要返回的特征的值(筛选特征的值要等于此值) :return: >>>myDat = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']] >>>split_data_set(myDat,0,1) [[1, 'yes'], [1, 'yes'], [0, 'no']] >>>split_data_set(myDat,0,0) [[1, 'no'], [1, 'no']] """ # 创建新的list对象 ret_data_set = [] for feature_vec in data_set: if feature_vec[axis] == value: # 抽取, 把指定特征从列表中去掉,组成一个新的特征+标签的列表 reduced_feature_vec = feature_vec[:axis] reduced_feature_vec.extend(feature_vec[axis + 1:]) ret_data_set.append(reduced_feature_vec) return ret_data_set
f90fdffee3bbee4b4477e371a9ed43094051126a
3,655,412
import ast import six import types import inspect import textwrap def get_ast(target_func_or_module): """ See :func:``bettertimeit`` for acceptable types. :returns: an AST for ``target_func_or_module`` """ if isinstance(target_func_or_module, ast.AST): return target_func_or_module if not isinstance(target_func_or_module, (six.string_types, six.binary_type)): handled_types = ( types.ModuleType, types.FunctionType, getattr(types, "UnboundMethodType", types.MethodType), types.MethodType, ) if not isinstance(target_func_or_module, handled_types): raise TypeError("Don't know how to handle objects of types '%s'" % type(target_func_or_module)) target_func_or_module = inspect.getsource(target_func_or_module) target_func_or_module = textwrap.dedent(target_func_or_module) return ast.parse(target_func_or_module)
929a8f1b915850c25369edf0dcf0dc8bc2fe16e9
3,655,413
from typing import List from re import T from typing import Callable from typing import Tuple def enumerate_spans(sentence: List[T], offset: int = 0, max_span_width: int = None, min_span_width: int = 1, filter_function: Callable[[List[T]], bool] = None) -> List[Tuple[int, int]]: """ Given a sentence, return all token spans within the sentence. Spans are `inclusive`. Additionally, you can provide a maximum and minimum span width, which will be used to exclude spans outside of this range. Finally, you can provide a function mapping ``List[T] -> bool``, which will be applied to every span to decide whether that span should be included. This allows filtering by length, regex matches, pos tags or any Spacy ``Token`` attributes, for example. Parameters ---------- sentence : ``List[T]``, required. The sentence to generate spans for. The type is generic, as this function can be used with strings, or Spacy ``Tokens`` or other sequences. offset : ``int``, optional (default = 0) A numeric offset to add to all span start and end indices. This is helpful if the sentence is part of a larger structure, such as a document, which the indices need to respect. max_span_width : ``int``, optional (default = None) The maximum length of spans which should be included. Defaults to len(sentence). min_span_width : ``int``, optional (default = 1) The minimum length of spans which should be included. Defaults to 1. filter_function : ``Callable[[List[T]], bool]``, optional (default = None) A function mapping sequences of the passed type T to a boolean value. If ``True``, the span is included in the returned spans from the sentence, otherwise it is excluded.. """ max_span_width = max_span_width or len(sentence) filter_function = filter_function or (lambda x: True) spans: List[Tuple[int, int]] = [] for start_index in range(len(sentence)): last_end_index = min(start_index + max_span_width, len(sentence)) first_end_index = min(start_index + min_span_width - 1, len(sentence)) for end_index in range(first_end_index, last_end_index): start = offset + start_index end = offset + end_index # add 1 to end index because span indices are inclusive. if filter_function(sentence[slice(start_index, end_index + 1)]): spans.append((start, end)) return spans
68df595e4fd55d2b36645660df6fa9198a8d28ef
3,655,414
def fixed_mu(mu, data, qty, comp='muAI', beads_2_M=1): """ """ return fixed_conc(mu*np.ones([len(data.keys())]), data, qty, comp=comp, beads_2_M=beads_2_M)
f7241e8b1534d5d537a1817bce4f019e5a4081a7
3,655,415
def error_nrmse(y_true, y_pred, time_axis=0): """ Computes the Normalized Root Mean Square Error (NRMSE). The NRMSE index is computed separately on each channel. Parameters ---------- y_true : np.array Array of true values. If must be at least 2D. y_pred : np.array Array of predicted values. If must be compatible with y_true' time_axis : int Time axis. All other axes define separate channels. Returns ------- NRMSE : np.array Array of r_squared value. """ SSE = np.mean((y_pred - y_true)**2, axis=time_axis) RMSE = np.sqrt(SSE) NRMSE = RMSE/np.std(y_true, axis=time_axis) return NRMSE
39461cdf0337c9d681d4247168ba32d7a1cbd364
3,655,416
import shutil def rmdir_empty(f): """Returns a count of the number of directories it has deleted""" if not f.is_dir(): return 0 removable = True result = 0 for i in f.iterdir(): if i.is_dir(): result += rmdir_empty(i) removable = removable and not i.exists() else: removable = removable and (i.name == '.DS_Store') if removable: items = list(f.iterdir()) assert not items or items[0].name == '.DS_Store' print(f) shutil.rmtree(f) result += 1 return result
f2dba5bb7e87c395886574ca5f3844a8bab609d9
3,655,417
def generic_exception_json_response(code): """ Turns an unhandled exception into a JSON payload to respond to a service call """ payload = { "error": "TechnicalException", "message": "An unknown error occured", "code": code } resp = make_response(jsonify(payload), code) resp.headers["Content-type"] = "application/json" return resp
fc2f0edfc774a56e6b6ccfc8a746b37ad19f6536
3,655,418
def UnN(X, Z, N, sampling_type, kernel="prod"): """Computes block-wise complete U-statistic.""" def fun_block(x, z): return Un(x, z, kernel=kernel) return UN(X, Z, N, fun_block, sampling_type=sampling_type)
962788706d3b4d71a0f213f925e89fd78f220791
3,655,419
def delete_card(request): """Delete card""" return delete_container_element(request)
128b521ed89077ebae019942147fc3b4af1a5cdf
3,655,420
import os def build_estimator(tf_transform_dir, config, hidden_units=None): """Build an estimator for predicting the tipping behavior of taxi riders. Args: tf_transform_dir: directory in which the tf-transform model was written during the preprocessing step. config: tf.contrib.learn.RunConfig defining the runtime environment for the estimator (including model_dir). hidden_units: [int], the layer sizes of the DNN (input layer first) Returns: Resulting DNNLinearCombinedClassifier. """ metadata_dir = os.path.join(tf_transform_dir, transform_fn_io.TRANSFORMED_METADATA_DIR) transformed_metadata = metadata_io.read_metadata(metadata_dir) transformed_feature_spec = transformed_metadata.schema.as_feature_spec() transformed_feature_spec.pop(transformed_name(LABEL_KEY)) real_valued_columns = [ tf.feature_column.numeric_column(key, shape=()) for key in transformed_names(DENSE_FLOAT_FEATURE_KEYS) ] categorical_columns = [ tf.feature_column.categorical_column_with_identity( key, num_buckets=VOCAB_SIZE + OOV_SIZE, default_value=0) for key in transformed_names(VOCAB_FEATURE_KEYS) ] categorical_columns += [ tf.feature_column.categorical_column_with_identity( key, num_buckets=FEATURE_BUCKET_COUNT, default_value=0) for key in transformed_names(BUCKET_FEATURE_KEYS) ] categorical_columns += [ tf.feature_column.categorical_column_with_identity( key, num_buckets=num_buckets, default_value=0) for key, num_buckets in zip( transformed_names(CATEGORICAL_FEATURE_KEYS), # MAX_CATEGORICAL_FEATURE_VALUES) ] #return tf.estimator.DNNLinearCombinedClassifier( return tf.estimator.DNNLinearCombinedRegressor( config=config, linear_feature_columns=categorical_columns, dnn_feature_columns=real_valued_columns, dnn_hidden_units=hidden_units or [100, 70, 50, 25])
474aeffb6c44b50a9e81c8db7b340489230a9216
3,655,421
def get_plot_grid_size(num_plots, fewer_rows=True): """ Returns the number of rows and columns ideal for visualizing multiple (identical) plots within a single figure Parameters ---------- num_plots : uint Number of identical subplots within a figure fewer_rows : bool, optional. Default = True Set to True if the grid should be short and wide or False for tall and narrow Returns ------- nrows : uint Number of rows ncols : uint Number of columns """ assert isinstance(num_plots, Number), 'num_plots must be a number' # force integer: num_plots = int(num_plots) if num_plots < 1: raise ValueError('num_plots was less than 0') if fewer_rows: nrows = int(np.floor(np.sqrt(num_plots))) ncols = int(np.ceil(num_plots / nrows)) else: ncols = int(np.floor(np.sqrt(num_plots))) nrows = int(np.ceil(num_plots / ncols)) return nrows, ncols
e83f14db347cd679e9e7b0761d928cd563444712
3,655,422
def check_source(module): """ Check that module doesn't have any globals. Example:: def test_no_global(self): result, line = check_source(self.module) self.assertTrue(result, "Make sure no code is outside functions.\\nRow: " + line) """ try: source = module.__file__ except Exception: raise Exception('Varmista, että koodin suoritus onnistuu') allowed = [ "import ", "from ", "def ", "class ", " ", "\t", "#", "if __name__", "@", ] with open(source) as file: for line in file.readlines(): if line.strip() == "": continue for prefix in allowed: if line.startswith(prefix): break else: return (False, line) return (True, "")
6bc012892d6ec7bb6788f20a565acac0f6d1c662
3,655,423
def pre_processing(X): """ Center and sphere data.""" eps = 1e-18 n = X.shape[0] cX = X - np.mean(X, axis=0) # centering cov_mat = 1.0/n * np.dot(cX.T, cX) eigvals, eigvecs = eigh(cov_mat) D = np.diag(1./np.sqrt(eigvals+eps)) W = np.dot(np.dot(eigvecs, D), eigvecs.T) # whitening matrix wcX = np.dot(cX, W) return wcX
802ce958c6616dcf03de5842249be8480e6a5a7c
3,655,424
def get_as_tags(bundle_name, extension=None, config="DEFAULT", attrs=""): """ Get a list of formatted <script> & <link> tags for the assets in the named bundle. :param bundle_name: The name of the bundle :param extension: (optional) filter by extension, eg. "js" or "css" :param config: (optional) the name of the configuration :param attrs: (optional) further attributes on the tags :return: a list of formatted tags as strings """ bundle = _get_bundle(bundle_name, extension, config) return _render_tags(bundle, attrs)
ec54184ff2b13bd4f37de8395276685191535948
3,655,425
def psql(statement, timeout=30): """Execute a statement using the psql client.""" LOG.debug('Sending to local db: {0}'.format(statement)) return execute('psql', '-c', statement, timeout=timeout)
86eb9775bf4e3da3c18b23ebdf397747947914c9
3,655,426
def devpiserver_get_credentials(request): """Search request for X-Remote-User header. Returns a tuple with (X-Remote-User, '') if credentials could be extracted, or None if no credentials were found. The first plugin to return credentials is used, the order of plugin calls is undefined. """ if 'X-Remote-User' in request.headers: remote_user = request.headers['X-Remote-User'] threadlog.info("Found X-Remote-User in request: %s", remote_user) return remote_user, ''
bc6ccaa52b719c25d14784c758d6b78efeae104d
3,655,427
def vader_sentiment( full_dataframe, grading_column_name, vader_columns=COLUMN_NAMES, logger=config.LOGGER ): """apply vader_sentiment analysis to dataframe Args: full_dataframe (:obj:`pandas.DataFrame`): parent dataframe to apply analysis to grading_column_name (str): column with the data to grade vader_columns (:obj:`list`. optional): names to map vader results to ['neu', 'pos', 'compound', 'neg'] logger (:obj:`logging.logger`, optional): logging handle Returns; (:obj:`pandas.DataFrame`): updated dataframe with vader sentiment """ logger.info('applying vader sentiment analysis to `%s`', grading_column_name) logger.info('--applying vader_lexicon') vader_df = map_vader_sentiment( full_dataframe[grading_column_name], column_names=vader_columns ) logger.info('--merging results into original dataframe') joined_df = full_dataframe.merge( vader_df, how='left', on=grading_column_name ) return joined_df
43572857ecc382f800b243ee12e6f3fe3b1f5d5a
3,655,428
def _overlayPoints(points1, points2): """Given two sets of points, determine the translation and rotation that matches them as closely as possible. Parameters ---------- points1 (numpy array of simtk.unit.Quantity with units compatible with distance) - reference set of coordinates points2 (numpy array of simtk.unit.Quantity with units compatible with distance) - set of coordinates to be rotated Returns ------- translate2 - vector to translate points2 by in order to center it rotate - rotation matrix to apply to centered points2 to map it on to points1 center1 - center of points1 Notes ----- This is based on W. Kabsch, Acta Cryst., A34, pp. 828-829 (1978). """ if len(points1) == 0: return (mm.Vec3(0, 0, 0), np.identity(3), mm.Vec3(0, 0, 0)) if len(points1) == 1: return (points1[0], np.identity(3), -1*points2[0]) # Compute centroids. center1 = unit.sum(points1)/float(len(points1)) center2 = unit.sum(points2)/float(len(points2)) # Compute R matrix. R = np.zeros((3, 3)) for p1, p2 in zip(points1, points2): x = p1-center1 y = p2-center2 for i in range(3): for j in range(3): R[i][j] += y[i]*x[j] # Use an SVD to compute the rotation matrix. (u, s, v) = lin.svd(R) return (-1*center2, np.dot(u, v).transpose(), center1)
c3d1df9569705bcee33e112596e8ab2a332e947e
3,655,429
def return_request(data): """ Arguments: data Return if call detect: list[dist1, dist2, ...]: dist = { "feature": feature } Return if call extract: list[dist1, dist2, ...]: dist = { "confidence_score": predict probability, "class": face, "bounding_box": [xmin, ymin, xmax, ymax], "keypoints": {'left_eye': (x,y), 'right_eye':(x,y), 'nose': (x,y), 'mouth_left': (x,y), 'mouth_right': (x,y)} } """ contents = [] try: boxs = data['predictions'] print(type(boxs)) print(boxs) # for box in boxs: # contents.append({ # "confidence_score": box[4], # "class": 'face', # "bounding_box": [box[0], box[1], box[2], box[3]] # }) except: pass try: features = data['features'] for feature in features: contents.append({ "feature": feature }) except: pass return contents
11887921c89a846ee89bc3cbb79fb385382262fa
3,655,430
def get_recent_messages_simple(e: TextMessageEventObject): """ Command to get the most recent messages with default count. This command has a cooldown of ``Bot.RecentActivity.CooldownSeconds`` seconds. This command will get the most recent ``Bot.RecentActivity.DefaultLimitCountDirect`` messages without the message that called this command. :param e: message event that called this command :return: default count of most recent messages with a link to the recent activity page """ return get_recent_messages(e, Bot.RecentActivity.DefaultLimitCountLink)
58d03a4b34254dc532ad6aa53747ea730446cd31
3,655,431
def parse_systemctl_units(stdout:str, stderr:str, exitcode:int) -> dict: """ UNIT LOAD ACTIVE SUB DESCRIPTION mono-xsp4.service loaded active running LSB: Mono XSP4 motd-news.service loaded inactive dead Message of the Day ● mountkernfs.service masked inactive dead mountkernfs.service systemd-machine-id-commit.service loaded inactive dead Commit a transient machine-id on disk ● systemd-modules-load.service loaded failed failed Load Kernel Modules systemd-networkd-resolvconf-update.service loaded inactive dead Update resolvconf for networkd DNS sysinit.target loaded active active System Initialization ● syslog.target not-found inactive dead syslog.target time-sync.target loaded active active System Time Synchronized LOAD = Reflects whether the unit definition was properly loaded. ACTIVE = The high-level unit activation state, i.e. generalization of SUB. SUB = The low-level unit activation state, values depend on unit type. 354 loaded units listed. To show all installed unit files use 'systemctl list-unit-files'. """ if exitcode != 0: raise Exception() # split into list of lines lines = LineList(stdout) assert isinstance(lines, LineList) # now we must separate a trailing description. lineNumbers = lines.getLineNumbersOfEmptyLines() assert lineNumbers assert lineNumbers[0] > 0 del lines[lineNumbers[0]:] # get column split positions wordPos = [ 0 ] + getPositionsOfWords(lines[0]) table = lines.createDataTableFromColumns(wordPos, bLStrip=True, bRStrip=True, bFirstLineIsHeader=True, columnDefs=[ ColumnDef("MARK", _parseMark), ColumnDef("UNIT"), ColumnDef("LOAD"), ColumnDef("ACTIVE"), ColumnDef("SUB"), ColumnDef("DESCRIPTION"), ]) # build output matrix: use service names as keys ret = {} for record in table: key = record[1] pos = key.rfind(".") category = key[pos+1:] + "s" # pluralize the category key = key[:pos] if category not in ret: ret[category] = {} ret[category][key] = record return ret
d9e7e4c71f418311799345c7dacfb9655912475f
3,655,432
def resnet_model_fn(is_training, feature, label, data_format, params): """Build computation tower (Resnet). Args: is_training: true if is training graph. feature: a Tensor. label: a Tensor. data_format: channels_last (NHWC) or channels_first (NCHW). params: params for the model to consider Returns: A tuple with the loss for the tower, the gradients and parameters, and predictions. """ num_layers = params.num_layers batch_norm_decay = params.batch_norm_decay batch_norm_epsilon = params.batch_norm_epsilon weight_decay = params.weight_decay model = cifar10_with_resnet_model.ResNetCifar10( num_layers, batch_norm_decay=batch_norm_decay, batch_norm_epsilon=batch_norm_epsilon, is_training=is_training, data_format=data_format) logits = model.forward_pass(feature, input_data_format='channels_last') predictions = { 'classes': tf.argmax(input=logits, axis=1), 'probabilities': tf.nn.softmax(logits) } loss = tf.losses.sparse_softmax_cross_entropy( logits=logits, labels=label) loss = tf.reduce_mean(loss) model_params = tf.trainable_variables() loss += weight_decay * tf.add_n( [tf.nn.l2_loss(v) for v in model_params]) gradients = tf.gradients(loss, model_params) return loss, zip(gradients, model_params), predictions
70f30b4c5b4485ed1c4f362cc7b383cb192c57c4
3,655,433
def permutate_touched_latent_class(untouched_classes, class_info_np, gran_lvl_info): """untouch certain class num latent class, permute the rest (reserve H(Y))""" # get untouched instance index untouched_instance_index = [] for i in untouched_classes: index = np.where(class_info_np == i)[0] untouched_instance_index.append(index) untouched_instance_index_np = np.concatenate(untouched_instance_index) # permutate touched id my_gran_lvl_info = gran_lvl_info * np.ones(gran_lvl_info.shape) # replicate the gran_lvl_info untouched_latent_class_np = my_gran_lvl_info[untouched_instance_index_np] touched_index = np.delete(np.arange(my_gran_lvl_info.shape[0]), untouched_instance_index_np, 0) # exclude untouched index tourched_latent_class = my_gran_lvl_info[touched_index] my_gran_lvl_info[touched_index] = np.random.permutation(tourched_latent_class) return my_gran_lvl_info.astype(np.int32)
ebae2213508260474a9e9c581f6b42fd81006a22
3,655,434
from datetime import datetime import pytz def get_interarrival_times(arrival_times, period_start): """ Given a list of report dates, it returns the list corresponding to the interrival times. :param arrival_times: List of arrival times. :return: List of inter-arrival times. """ interarrival_times = [] for position, created_date in enumerate(arrival_times): if position > 0: distance = created_date - arrival_times[position - 1] interarrival_times.append(get_distance_in_hours(distance)) else: if isinstance(created_date, np.datetime64): created_date = datetime.datetime.utcfromtimestamp(created_date.tolist() / 1e9) created_date = pytz.utc.localize(created_date) distance = get_distance_in_hours(created_date - period_start) if distance > 0: interarrival_times.append(distance) return pd.Series(data=interarrival_times)
b6d345ff73e16d8c7502509ddd36e2a1d7f12252
3,655,435
def _indexOp(opname): """ Wrapper function for Series arithmetic operations, to avoid code duplication. """ def wrapper(self, other): func = getattr(self.view(np.ndarray), opname) return func(other) return wrapper
a9bdccca9d0bc1ffa2334132c6cfd4b965b95878
3,655,436
def safe_log(a): """ Return the element-wise log of an array, checking for negative array elements and avoiding divide-by-zero errors. """ if np.any([a < 0]): raise ValueError('array contains negative components') return np.log(a + 1e-12)
7ac5f01272f4c90110c4949aba8dfb9f783c82b9
3,655,437
import os import sys def parse_treepath(k=23): """Parse treepath results""" results = {} treepath_file = "treepath.k{}.csv".format(k) if not os.path.isfile(treepath_file): print("No treepath results found", file=sys.stderr) return with open(treepath_file, 'rb') as f: f.readline() # skip header for line in f: temp = line.strip().split(",") sample = temp[0] strains = [] for strain in temp[5].split(" "): strains.append(":".join(strain.split(":")[:-1])) results[sample] = strains return results
e43ed769ee13813953b92dfe093f169107d6ec72
3,655,438
from typing import List from typing import Dict from functools import reduce def deduplicate( timeseries: List[TimeseriesEntry], margins: Dict[str, float] = {}, ) -> List[TimeseriesEntry]: """ Remove duplicates from the supplied `timeseries`. Currently the deduplication relies on `timemseries` being formatted according to how data is stored in `Weather.series.values()`. The function removes duplicates if the start and stop timestamps of consecutive segments are equal and the values are either equal or, if they are numeric, if their differences are smaller than a certain margin of error. Parameters ---------- timeseries : List[TimeseriesEntry] The timeseries to duplicate. margins : Dict[str, float] The margins of error. Can contain one or both of the strings :code:`"absolute"` and :code:`"relative"` as keys with the numbers stored under these keys having the following meaning: - for :code:`absolute` value of the difference between the two values has to be smaller than or equal to this while - for :code:`relative` this difference has to be smaller than or equal to this when interpreted as a fraction of the maximum of the absolute values of the two compared values. By default these limits are set to be infinitely big. Returns ------- timeseries : List[TimeseriesEntry] A copy of the input data with duplicate values removed. Raises ------ ValueError If the data contains duplicates outside of the allowed margins. """ # TODO: Fix the data. If possible add a constraint preventing this from # happending again alongside the fix. # This is just here because there's duplicate data (that we know) # at the end of 2017. The last timestamp of 2017 is duplicated in # the first timespan of 2018. And unfortunately it's not exactly # duplicated. The timestamps are equal, but the values are only # equal within a certain margin. # TODO: Use [`unique_iter`][0] for unsafe removal, i.e. if both margins # are infinite. Or find an alternative in [`more-itertools`][1]. # [0]: https://boltons.readthedocs.io/en/latest/iterutils.html # #boltons.iterutils.unique_iter # [1]: https://pypi.org/project/more-itertools/ margins = { **{"absolute": float("inf"), "relative": float("inf")}, **margins, } multiples = [ run for run in reduce(runs, enumerate(timeseries), [[]]) if len(run) > 1 ] compressed = [compress(m, margins) for m in multiples] errors = [c for c in compressed if len(c) > 1] if errors: raise ValueError( "Found duplicate timestamps while retrieving data:\n{}".format( pformat(errors) ) ) compressed.reverse() result = timeseries.copy() for c in compressed: result[c[0][0]] = (c[0][1],) return result
de61b31250c5fd4317becfb4bca1d582d4b7e465
3,655,439
import os import textwrap import time def build_windows_subsystem(profile, make_program): """ The AutotoolsDeps can be used also in pure Makefiles, if the makefiles follow the Autotools conventions """ # FIXME: cygwin in CI (my local machine works) seems broken for path with spaces client = TestClient(path_with_spaces=False) client.run("new hello/0.1 --template=cmake_lib") # TODO: Test Windows subsystems in CMake, at least msys is broken os.rename(os.path.join(client.current_folder, "test_package"), os.path.join(client.current_folder, "test_package2")) client.save({"profile": profile}) client.run("create . --profile=profile") main = gen_function_cpp(name="main", includes=["hello"], calls=["hello"]) makefile = gen_makefile(apps=["app"]) conanfile = textwrap.dedent(""" from conans import ConanFile from conan.tools.gnu import AutotoolsToolchain, Autotools, AutotoolsDeps class TestConan(ConanFile): requires = "hello/0.1" settings = "os", "compiler", "arch", "build_type" exports_sources = "Makefile" generators = "AutotoolsDeps", "AutotoolsToolchain" def build(self): autotools = Autotools(self) autotools.make() """) client.save({"app.cpp": main, "Makefile": makefile, "conanfile.py": conanfile, "profile": profile}, clean_first=True) client.run("install . --profile=profile") cmd = environment_wrap_command(["conanbuildenv", "conanautotoolstoolchain", "conanautotoolsdeps"], make_program, cwd=client.current_folder) client.run_command(cmd) client.run_command("app") # TODO: fill compiler version when ready check_exe_run(client.out, "main", "gcc", None, "Release", "x86_64", None) assert "hello/0.1: Hello World Release!" in client.out client.save({"app.cpp": gen_function_cpp(name="main", msg="main2", includes=["hello"], calls=["hello"])}) # Make sure it is newer t = time.time() + 1 touch(os.path.join(client.current_folder, "app.cpp"), (t, t)) client.run("build .") client.run_command("app") # TODO: fill compiler version when ready check_exe_run(client.out, "main2", "gcc", None, "Release", "x86_64", None, cxx11_abi=0) assert "hello/0.1: Hello World Release!" in client.out return client.out
0e8b1902c8eff0d902af991b4299b954518b75d5
3,655,440
def make_batch_keys(args, extras=None): """depending on the args, different data are used by the listener.""" batch_keys = ['objects', 'tokens', 'target_pos'] # all models use these if extras is not None: batch_keys += extras if args.obj_cls_alpha > 0: batch_keys.append('class_labels') if args.lang_cls_alpha > 0: batch_keys.append('target_class') return batch_keys
a86c2a5cff58f811a67cbdd5eed322c86aa3e0e0
3,655,441
import collections from re import DEBUG def init_dic_OP(universe_woH, dic_atname2genericname, resname): """Initialize the dictionary of result (`dic_op`). Initialize also the dictionary of correspondance between residue number (resid) and its index in dic_OP (`dic_corresp_numres_index_dic_OP`). To calculate the error, we need to first average over the trajectory, then over residues. Thus in dic_OP, we want for each key a list of lists, for example: OrderedDict([ (('C1', 'H11'), [[], [], ..., [], []]), (('C1', 'H12'), [[], ..., []]), ... ]) Thus each sublist will contain OPs for one residue. e.g. ('C1', 'H11'), [[OP res 1 frame1, OP res1 frame2, ...], [OP res 2 frame1, OP res2 frame2, ...], ...] Parameters ---------- universe_woH : MDAnalysis universe instance This is the universe *without* hydrogen. dic_atname2genericname: ordered dictionary dict of correspondance between generic H names and PDB names. resname: str The name of the lipid. Returns ------- ordered dictionary Each key of this dict is a couple carbon/H, and at the beginning it contains an empty list. dictionary contains the correspondance between the residue number and its index in dic_op """ dic_OP = collections.OrderedDict() # Get list of residue id from the lipid name all_resids = universe_woH.select_atoms( f"resname {resname}").residues.resids nb_residus = len(all_resids) # Each key contain a list which contains a number of list equals to # the number of residus for key in dic_atname2genericname: dic_OP[key] = [[] for _ in range(nb_residus)] # We also need the correspondance between residue number (resid) and # its index in dic_OP. # the index will always start at 0 and goes to the number of residus = range(nb_residus) dic_corresp_numres_index_dic_OP = dict(zip(all_resids, range(nb_residus))) if DEBUG: print("Initial dic_OP:", dic_OP) print("dic_corresp_numres_index_dic_OP:", dic_corresp_numres_index_dic_OP) return dic_OP, dic_corresp_numres_index_dic_OP
ce981df06717387286171b172c0400e42747dbfc
3,655,442
from typing import List def magic_split(value: str, sep=",", open="(<", close=")>"): """Split the value according to the given separator, but keeps together elements within the given separator. Useful to split C++ signature function since type names can contain special characters... Examples: - magic_split("a,b,c", sep=",") -> ["a", "b", "c"] - magic_split("a<b,c>,d(e,<k,c>),p) -> ["a<b,c>", "d(e,<k,c>)", "p"] Args: value: String to split. sep: Separator to use. open: List of opening characters. close: List of closing characters. Order must match open. Returns: The list of split parts from value. """ i, j = 0, 0 s: List[str] = [] r = [] while i < len(value): j = i + 1 while j < len(value): c = value[j] # Separator found and the stack is empty: if c == sep and not s: break # Check close/open: if c in open: s.append(open.index(c)) elif c in close: # The stack might be empty if the separator is also an opening element: if not s and sep in open and j + 1 == len(value): pass else: t = s.pop() if t != close.index(c): raise ValueError( "Found closing element {} for opening element {}.".format( c, open[t] ) ) j += 1 r.append(value[i:j]) i = j + 1 return r
9f152c9cfa82778dcf5277e3342b5cab25818a55
3,655,443
def update_group_annotation(name=None, annotation_name=None, x_pos=None, y_pos=None, angle=None, opacity=None, canvas=None, z_order=None, network=None, base_url=DEFAULT_BASE_URL): """Update Group Annotation Updates a group annotation, changing the given properties. Args: name (UUID or str): Single UUID or str naming group object annotation_name (UUID or str): Name of annotation by UUID or name x_pos (int): X position in pixels from left; default is center of current view y_pos (int): Y position in pixels from top; default is center of current view angle (float): Angle of text orientation; default is 0.0 (horizontal) canvas (str): Canvas to display annotation, i.e., foreground (default) or background z_order (int): Arrangement order specified by number (larger values are in front of smaller values); default is 0 network (SUID or str or None): Name or SUID of the network. Default is the "current" network active in Cytoscape. base_url (str): Ignore unless you need to specify a custom domain, port or version to connect to the CyREST API. Default is http://localhost:1234 and the latest version of the CyREST API supported by this version of py4cytoscape. Returns: dict: A named list of annotation properties, including UUID Raises: CyError: if invalid name requests.exceptions.HTTPError: if can't connect to Cytoscape or Cytoscape returns an error Examples: >>> update_group_annotation(annotation_name='Group 1', angle=180) {'canvas': 'foreground', 'rotation': '180.0', 'name': 'Group 1', 'x': '2450.0', 'y': '1883.0', 'z': '0', 'type': 'org.cytoscape.view.presentation.annotations.GroupAnnotation', 'uuid': 'b9bf3184-3c5a-4e8b-9651-4bc4403af158', 'memberUUIDs': 'bb3061c5-d8d5-4fca-ac5c-9b7bf8fb9fd0,32f89c1d-e987-4867-9b8a-787aaac6e165,ec73aad8-b00b-4f4d-9361-a4b93f70c8f8'} >>> update_group_annotation(name='2c0a77f8-a6d0-450d-b6ee-1bfe3c8f8aea', annotation_name=group_uuid, x_pos=101, y_pos=201, angle=180, canvas='foreground') {'canvas': 'foreground', 'rotation': '180.0', 'name': 'Group 1', 'x': '101.0', 'y': '201.0', 'z': '0', 'type': 'org.cytoscape.view.presentation.annotations.GroupAnnotation', 'uuid': '2c0a77f8-a6d0-450d-b6ee-1bfe3c8f8aea', 'memberUUIDs': '8872c2f6-42ad-4b6a-8fb9-1d1b13da504d,2c830227-7f6a-4e58-bbef-2070f1b5a603,8d04e34d-86b8-486f-9927-581184cbe03e'} """ cmd_string, net_suid = _build_base_cmd_string('annotation update group', network, base_url) # a good start cmd_string += _get_annotation_name_cmd_string(annotation_name, 'Must provide the UUID or name of group') # x and y position cmd_string += _get_x_y_pos_cmd_string(x_pos, y_pos, net_suid, base_url) # optional params cmd_string += _get_angle_cmd_string(angle) cmd_string += _get_name_cmd_string(name, network, base_url) cmd_string += _get_canvas_cmd_string(canvas) cmd_string += _get_z_order_cmd_string(z_order) # execute command res = commands.commands_post(cmd_string, base_url=base_url) return res
fd515728ee3a3dece381bb65e2c6816b9c96b41e
3,655,444
import urllib def _extract_properties(properties_str): """Return a dictionary of properties from a string in the format ${key1}={value1}&${key2}={value2}...&${keyn}={valuen} """ d = {} kv_pairs = properties_str.split("&") for entry in kv_pairs: pair = entry.split("=") key = urllib.parse.unquote(pair[0]).lstrip("$") value = urllib.parse.unquote(pair[1]) d[key] = value return d
4f22cae8cbc2dd5b73e6498d5f8e6d10e184f91c
3,655,445
from typing import Any def first_fail_second_succeed(_: Any, context: Any) -> str: """ Simulate Etherscan saying for the first time 'wait', but for the second time 'success'. """ context.status_code = 200 try: if first_fail_second_succeed.called: # type: ignore return '{ "status": "1", "result" : "Pass - Verified", "message" : "" }' except AttributeError: # first time pass first_fail_second_succeed.called = True # type: ignore return '{ "status": "0", "result" : "wait for a moment", "message" : "" }'
5feb3188bdee2d0d758584709df13dc876c37391
3,655,446
def get_ipsw_url(device, ios_version, build): """Get URL of IPSW by specifying device and iOS version.""" json_data = fw_utils.get_json_data(device, "ipsw") if build is None: build = fw_utils.get_build_id(json_data, ios_version, "ipsw") fw_url = fw_utils.get_firmware_url(json_data, build) if fw_url is None: print("[w] could not get IPSW url, exiting...") return fw_url
75b9d85d93b03b1ebda681aeb51ac1c9b0a30474
3,655,447
from typing import Any def escape_parameter(value: Any) -> str: """ Escape a query parameter. """ if value == "*": return value if isinstance(value, str): value = value.replace("'", "''") return f"'{value}'" if isinstance(value, bytes): value = value.decode("utf-8") return f"'{value}'" if isinstance(value, bool): return "TRUE" if value else "FALSE" if isinstance(value, (int, float)): return str(value) return f"'{value}'"
00b706681b002a3226874f04e74acbb67d54d12e
3,655,448
def Get_Query(Fq): """ Get_Query """ Q = "" EoF = False Ok = False while True: l = Fq.readline() if ("--" in l) : # skip line continue elif l=="": EoF=True break else: Q += l if ";" in Q: Ok = True break return EoF, Ok, Q
a1850799f7c35e13a5b61ba8ebbed5d49afc08df
3,655,449
def get_path_segments(url): """ Return a list of path segments from a `url` string. This list may be empty. """ path = unquote_plus(urlparse(url).path) segments = [seg for seg in path.split("/") if seg] if len(segments) <= 1: segments = [] return segments
fe8daff2269d617516a22f7a2fddc54bd76c5025
3,655,450
import typing from pathlib import Path def get_config_file(c: typing.Union[str, ConfigFile, None]) -> typing.Optional[ConfigFile]: """ Checks if the given argument is a file or a configFile and returns a loaded configFile else returns None """ if c is None: # See if there's a config file in the current directory where Python is being run from current_location_config = Path("flytekit.config") if current_location_config.exists(): logger.info(f"Using configuration from Python process root {current_location_config.absolute()}") return ConfigFile(str(current_location_config.absolute())) # If not, see if there's a config in the user's home directory home_dir_config = Path(Path.home(), ".flyte", "config") # _default_config_file_name in main.py if home_dir_config.exists(): logger.info(f"Using configuration from home directory {home_dir_config.absolute()}") return ConfigFile(str(home_dir_config.absolute())) # If not, see if the env var that flytectl sandbox tells the user to set is set, # or see if there's something in the default home directory location flytectl_path = Path(Path.home(), ".flyte", "config.yaml") flytectl_path_from_env = getenv(FLYTECTL_CONFIG_ENV_VAR, None) if flytectl_path_from_env: flytectl_path = Path(flytectl_path_from_env) if flytectl_path.exists(): logger.info(f"Using flytectl/YAML config {flytectl_path.absolute()}") return ConfigFile(str(flytectl_path.absolute())) # If not, then return None and let caller handle return None if isinstance(c, str): return ConfigFile(c) return c
6e176167a81bccaa0e0f4570c918fcb32a406edb
3,655,451
import logging def get_logger(tag: str) -> Logger: """ Produces logger with given message tag which will write logs to the console and file stored in LOG_FILE_PATH directory :param tag: tag for messages of the logger :return: logger object """ logger = logging.getLogger(tag) logger.setLevel(logging.DEBUG) # create console handler which logs even debug messages console_handler = logging.StreamHandler() console_handler.setLevel(logging.DEBUG) # create file handler which logs info messages file_handler = TimedRotatingFileHandler(LOG_FILE_PATH, when='midnight', interval=1, backupCount=1) file_handler.setLevel(logging.INFO) # create formatter and add it to the handlers formatter = logging.Formatter('%(asctime)s - %(levelname)s - ' + tag + ': %(message)s') console_handler.setFormatter(formatter) file_handler.setFormatter(formatter) # add the handlers to the logger logger.addHandler(console_handler) logger.addHandler(file_handler) return logger
baebbd8b6724a00c52a730897a22d7df3092e94d
3,655,452
def get_index(): """Redirects the index to /form """ return redirect("/form")
e52323397156a5a112e1d6b5d619136ad0fea3f0
3,655,453
def _register_network(network_id: str, chain_name: str): """Register a network. """ network = factory.create_network(network_id, chain_name) cache.infra.set_network(network) # Inform. utils.log(f"registered {network.name_raw} - metadata") return network
8e9b84670057974a724df1387f4a8cf9fc886a56
3,655,454
from pathlib import Path def file(base_path, other_path): """ Returns a single file """ return [[Path(base_path), Path(other_path)]]
3482041757b38929a58d7173731e84a915225809
3,655,455
import io def get_md_resource(file_path): """Read the file and parse into an XML tree. Parameters ---------- file_path : str Path of the file to read. Returns ------- etree.ElementTree XML tree of the resource on disk. """ namespaces = Namespaces().get_namespaces(keys=('gmd', 'gmi')) with io.open(file_path, mode='r', encoding='utf-8') as f: data = f.read().encode('utf-8') data = etree.fromstring(data) mdelem = data.find('.//' + util.nspath_eval( 'gmd:MD_Metadata', namespaces)) if mdelem is None: mdelem = data.find( './/' + util.nspath_eval('gmi:MI_Metadata', namespaces)) if mdelem is None and data.tag in ['{http://www.isotc211.org/2005/gmd}MD_Metadata', '{http://www.isotc211.org/2005/gmi}MI_Metadata']: mdelem = data return mdelem
809ea7cef3c9191db9589e0eacbba4016c2e9893
3,655,456
def fmin_style(sfmin): """convert sfmin to style""" return Struct( is_valid=good(sfmin.is_valid, True), has_valid_parameters=good(sfmin.has_valid_parameters, True), has_accurate_covar=good(sfmin.has_accurate_covar, True), has_posdef_covar=good(sfmin.has_posdef_covar, True), has_made_posdef_covar=good(sfmin.has_made_posdef_covar, False), hesse_failed=good(sfmin.hesse_failed, False), has_covariance=good(sfmin.has_covariance, True), is_above_max_edm=good(sfmin.is_above_max_edm, False), has_reached_call_limit=caution(sfmin.has_reached_call_limit, False), )
44ecba0a25c38a5a61cdba7750a6b8ad53d78c3d
3,655,457
def xirr(cashflows,guess=0.1): """ Calculate the Internal Rate of Return of a series of cashflows at irregular intervals. Arguments --------- * cashflows: a list object in which each element is a tuple of the form (date, amount), where date is a python datetime.date object and amount is an integer or floating point number. Cash outflows (investments) are represented with negative amounts, and cash inflows (returns) are positive amounts. * guess (optional, default = 0.1): a guess at the solution to be used as a starting point for the numerical solution. Returns -------- * Returns the IRR as a single value Notes ---------------- * The Internal Rate of Return (IRR) is the discount rate at which the Net Present Value (NPV) of a series of cash flows is equal to zero. The NPV of the series of cash flows is determined using the xnpv function in this module. The discount rate at which NPV equals zero is found using the secant method of numerical solution. * This function is equivalent to the Microsoft Excel function of the same name. * For users that do not have the scipy module installed, there is an alternate version (commented out) that uses the secant_method function defined in the module rather than the scipy.optimize module's numerical solver. Both use the same method of calculation so there should be no difference in performance, but the secant_method function does not fail gracefully in cases where there is no solution, so the scipy.optimize.newton version is preferred. _irr = xirr( [ (date(2010, 12, 29), -10000), (date(2012, 1, 25), 20), (date(2012, 3, 8), 10100)] ) """ val = -666 try: val = optimize.newton(lambda r: xnpv(r,cashflows),guess) except: print("Failed to converge after, returning: -666") return val
a6adbd091fd5a742c7b27f0816021c2e8499c42f
3,655,458
def check_rt_druid_fields(rt_table_columns, druid_columns): """ 对比rt的字段,和druid物理表字段的区别 :param rt_table_columns: rt的字段转换为druid中字段后的字段信息 :param druid_columns: druid物理表字段 :return: (append_fields, bad_fields),需变更增加的字段 和 有类型修改的字段 """ append_fields, bad_fields = [], [] for key, value in rt_table_columns.items(): col_name, col_type = key.lower(), value.lower() if druid_columns[col_name]: # 再对比类型 druid_col_type = druid_columns[col_name] ok = ( (col_type == druid_col_type) or (col_type == STRING and druid_col_type == VARCHAR) or (col_type == LONG and druid_col_type == BIGINT) ) if not ok: bad_fields.append({col_name: f"difference between rt and druid({col_type} != {druid_col_type})"}) else: append_fields.append({FIELD_NAME: col_name, FIELD_TYPE: col_type}) return append_fields, bad_fields
1c60f49e4316cf78f1396689a55d9a1c71123fe8
3,655,459
from operator import ne def is_stuck(a, b, eta): """ Check if the ricci flow is stuck. """ return ne.evaluate("a-b<eta/50").all()
53f4bb934cc48d2890289fda3fdb3574d5f6aa4c
3,655,460
def make_map(mapping): """ Takes a config.yml mapping, and returns a dict of mappers. """ # TODO: Is this the best place for this? Should it be a @staticmethod, # or even part of its own class? fieldmap = {} for field, config in mapping.items(): if type(config) is str: # Default case: Map directly from spreadsheet fieldmap[field] = Map({"field": mapping[field]}) else: # Complex case! classname = map_type[config.get("type", "map")] fieldmap[field] = classname(mapping[field]) return fieldmap
e388bb3789690e443fd17814071e4c24faa12d90
3,655,461
from typing import Sized def stable_seasoal_filter(time_series: Sized, freq: int): """ Стабильный сезонный фильтр для ряда. :param time_series: временной ряд :param freq: частота расчета среднего значения :return: значения сезонной составляющей """ length = len(time_series) if length < freq: raise ValueError(f'Length of time series is less than freq ({length} < {freq}') if not isinstance(freq, int): raise TypeError(f'freq must be an integer') if freq < 1: raise ValueError(f'freq must be greater than zero (actually is {freq})') values = time_series.values if isinstance(time_series, pd.DataFrame) else time_series seasonal = list() for i in range(freq): seasonal_values = [values[i + j * freq] for j in range(length) if i + j * freq < length] seasonal.append(np.mean(seasonal_values)) seasonals = [seasonal for i in range(length)] return pd.DataFrame([i for i in chain(*seasonals)][:length])
fb4997b637d5229ee7f7a645ce19bbd5fcbab0bc
3,655,462
import os def load_dataset(dataset, batch_size=512): """Load dataset with given dataset name. Args: dataset (str): name of the dataset, it has to be amazoncat-13k, amazoncat-14k, eurlex-4.3k or rcv1-2k batch_size (int): batch size of tf dataset Returns: (tf.dataset, tf.dataset, int, int, int, int): training dataset, testing dataset, number of training data, number of testing data, number of features, number of labels """ if dataset not in ['amazoncat-13k', 'amazoncat-14k', 'eurlex-4.3k', 'rcv1-2k']: raise ValueError( 'dataset has to be amazoncat-13k, amazoncat-14k, eulrex-4.3k or rcv1-2k') # Download dataset downloader.dataset(task='extreme') path_to_train = None path_to_test = None if dataset == 'amazoncat-13k': path_to_train = os.path.join('dataset', 'AmazonCat-13K', 'train.txt') path_to_test = os.path.join('dataset', 'AmazonCat-13K', 'test.txt') elif dataset == 'amazoncat-14k': path_to_train = os.path.join('dataset', 'AmazonCat-14K', 'train.txt') path_to_test = os.path.join('dataset', 'AmazonCat-14K', 'test.txt') elif dataset == 'eurlex-4.3k': path_to_train = os.path.join('dataset', 'EURLex-4.3K', 'train.txt') path_to_test = os.path.join('dataset', 'EURLex-4.3K', 'test.txt') elif dataset == 'rcv1-2k': path_to_train = os.path.join('dataset', 'RCV1-2K', 'train.txt') path_to_test = os.path.join('dataset', 'RCV1-2K', 'test.txt') assert path_to_train is not None and path_to_test is not None num_train, num_test, num_features, num_labels = obtain_dataset_info( path_to_train, path_to_test) ds_train = tf.data.TextLineDataset(path_to_train) ds_train = ds_train.skip(1).map(lambda x: tf_function(x, num_features=num_features, num_labels=num_labels)).batch(batch_size) ds_test = tf.data.TextLineDataset(path_to_test) ds_test = ds_test.skip(1).map(lambda x: tf_function(x, num_features=num_features, num_labels=num_labels)).batch(batch_size) return ds_train, ds_test, num_train, num_test, num_features, num_labels
f62f7bd4681811e86e075fa9c9439352bb5bd56e
3,655,463
def make_str_lst_unc_val(id, luv): """ make_str_lst_unc_val(id, luv) Make a formatted string from an ID string and a list of uncertain values. Input ----- id A number or a string that will be output as a string. luv A list of DTSA-II UncertainValue2 items. These will be printed as comma-delimited pairs with 6 digits following the decimal. Return ------ A string with comma-delimited values with the ID and mean and uncertainty for each item in the list. This is suitable for writing output to a .csv file. Example: -------- import dtsa2.jmGen as jmg import gov.nist.microanalysis.Utility as epu nmZnO1 = 40.1 uvOKa1 = epu.UncertainValue2(0.269157,0.000126) uvZnLa1 = epu.UncertainValue2(0.259251,9.4e-05) uvSiKa1 = epu.UncertainValue2(0.654561,8.4e-05) l_uvals = [uvOKa1, uvZnLa1, uvSiKa1] out = jmg.make_list_unc_val_string(nmZnO1, l_uvals) print(out) 1> 40.1, 0.269157, 0.000126, 0.259251, 0.000094, 0.654561, 0.000084 """ lv = len(luv) i = 0 rv = "%s, " % (id) for uv in luv: rc = round(uv.doubleValue(), 6) uc = round(uv.uncertainty(), 6) if i == lv-1: rv += "%g, %.6f" % (rc, uc) else: rv += "%g, %.6f, " % (rc, uc) i += 1 return(rv)
c65b9bb0c6539e21746a06f7a864acebc2bade03
3,655,464
def plot_faces(ax, coordinates, meta, st): """plot the faces""" for s in st.faces: # check that this face isnt in the cut region def t_param_difference(v1, v2): return abs(meta["t"][v1] - meta["t"][v2]) if all(all(t_param_difference(v1, v2) < 2 for v2 in s) for v1 in s): pts = np.array([coordinates[v] for v in s]) pts = np.array([nearest(np.max(pts, 0), p) for p in pts]) center = np.mean(pts, 0) pts = (pts - center) / 1.8 + center color = (0, 0, 1, .5) if meta["s_type"][s] == (2, 1): color = (1, 0, 0, .5) p = Polygon(pts, closed=False, color=color) ax.add_patch(p)
a7eef2d209f7c15d8ba232b25d20e4c751075013
3,655,465
import typing def translate_null_strings_to_blanks(d: typing.Dict) -> typing.Dict: """Map over a dict and translate any null string values into ' '. Leave everything else as is. This is needed because you cannot add TableCell objects with only a null string or the client crashes. :param Dict d: dict of item values. :rtype Dict: """ # Beware: locally defined function. def translate_nulls(s): if s == "": return " " return s new_d = {k: translate_nulls(v) for k, v in d.items()} return new_d
1a6cfe2f8449d042eb01774054cddde08ba56f8c
3,655,466
import json def HttpResponseRest(request, data): """ Return an Http response into the correct output format (JSON, XML or HTML), according of the request.format parameters. Format is automatically added when using the :class:`igdectk.rest.restmiddleware.IGdecTkRestMiddleware` and views decorators. """ if request.format == Format.JSON: encoded = json.dumps(data, cls=ComplexEncoder) return HttpResponse(encoded, content_type=Format.JSON.content_type) elif request.format == Format.HTML: return HttpResponse(data) elif request.format == Format.XML: encoded = igdectk.xmlio.dumps(data) return HttpResponse(encoded, content_type=Format.XML.content_type) elif request.format == Format.TEXT: return HttpResponse(data, content_type=Format.TEXT.content_type) else: return None
56682e808dcb9778ea47218d48fb74612ac44b5d
3,655,467
def build_server_update_fn(model_fn, server_optimizer_fn, server_state_type, model_weights_type): """Builds a `tff.tf_computation` that updates `ServerState`. Args: model_fn: A no-arg function that returns a `tff.learning.TrainableModel`. server_optimizer_fn: A no-arg function that returns a `tf.keras.optimizers.Optimizer`. server_state_type: type_signature of server state. model_weights_type: type_signature of model weights. Returns: A `tff.tf_computation` that updates `ServerState`. """ @tff.tf_computation(server_state_type, model_weights_type.trainable) def server_update_tf(server_state, model_delta): """Updates the `server_state`. Args: server_state: The `ServerState`. model_delta: The model difference from clients. Returns: The updated `ServerState`. """ model = model_fn() server_optimizer = server_optimizer_fn() # Create optimizer variables so we have a place to assign the optimizer's # state. server_optimizer_vars = _create_optimizer_vars(model, server_optimizer) return server_update(model, server_optimizer, server_optimizer_vars, server_state, model_delta) return server_update_tf
c0b8285a5d12c40157172d3b48a49cc5306a567b
3,655,468
def madgraph_tarball_filename(physics): """Returns the basename of a MadGraph tarball for the given physics""" # Madgraph tarball filenames do not have a part number associated with them; overwrite it return svj_filename("step0_GRIDPACK", Physics(physics, part=None)).replace( ".root", ".tar.xz" )
a0a8bacb5aed0317b5c0fd8fb3de5382c98e267d
3,655,469
def _mk_cmd(verb, code, payload, dest_id, **kwargs) -> Command: """A convenience function, to cope with a change to the Command class.""" return Command.from_attrs(verb, dest_id, code, payload, **kwargs)
afd5804937a55d235fef45358ee12088755f9dc9
3,655,470
def getobjname(item): """return obj name or blank """ try: objname = item.Name except BadEPFieldError as e: objname = ' ' return objname
f8875b6e9c9ed2b76affe39db583c091257865d8
3,655,471
def process_fire_data(filename=None, fire=None, and_save=False, timezone='Asia/Bangkok', to_drop=True): """ Add datetime, drop duplicate data and remove uncessary columns. """ if filename: fire = pd.read_csv(filename) # add datetime fire = add_datetime_fire(fire, timezone) # drop duplicate data print('before drop', fire.shape) # sort values by brightness try: # for MODIS file fire = fire.sort_values( ['datetime', 'lat_km', 'long_km', 'brightness'], ascending=False) except BaseException: # for VIIRS fire = fire.sort_values( ['datetime', 'lat_km', 'long_km', 'bright_ti4'], ascending=False) if to_drop: fire = fire.drop_duplicates(['datetime', 'lat_km', 'long_km']) # drop unncessary columns try: columns_to_drop = [ 'acq_date', 'satellite', 'instrument', 'version', 'daynight', 'bright_t31', 'type'] columns_to_drop = [s for s in columns_to_drop if s in fire.columns] fire = fire.drop(columns_to_drop, axis=1) except BaseException: columns_to_drop = [ 'acq_date', 'satellite', 'instrument', 'version', 'daynight', 'bright_ti5', 'type'] columns_to_drop = [s for s in columns_to_drop if s in fire.columns] fire = fire.drop(columns_to_drop, axis=1) fire = fire.sort_values('datetime') fire = fire.set_index('datetime') # remove the data before '2002-07-04' because there is only one satellite fire = fire.loc['2002-07-04':] print('after drop', fire.shape) if and_save: fire.to_csv(filename, index=False) else: return fire
767bb77db2b3815a5646f185b72727aec74ee8d8
3,655,472
def create_controllable_source(source, control, loop, sleep): """Makes an observable controllable to handle backpressure This function takes an observable as input makes it controllable by executing it in a dedicated worker thread. This allows to regulate the emission of the items independently of the asyncio event loop. Args: - source: An observable emitting the source items. - control: [Optional] The control observable emitting delay items in seconds. - sleep: the sleep function to used. Needed only for testing. Returns: An observable similar to the source observable, with emission being controlled by the control observable. """ if control is not None: typed_control = control.pipe( ops.observe_on(NewThreadScheduler()), ops.map(ControlItem), ) scheduled_source = source.pipe( ops.subscribe_on(NewThreadScheduler()), ops.merge(typed_control), ops.map(lambda i: control_sync(i, sleep)), ops.filter(lambda i: i is not ControlItem), ops.observe_on(AsyncIOThreadSafeScheduler(loop)), ) else: scheduled_source = source.pipe( ops.subscribe_on(NewThreadScheduler()), ops.observe_on(AsyncIOThreadSafeScheduler(loop)), ) return scheduled_source
2092de1aaeace275b2fea2945e8d30f529309874
3,655,473
def getE5(): """ Returns the e5 Args: """ return E5.get()
35526332b957628a6aa3fd90f7104731749e10ed
3,655,474
def triangulate(pts_subset): """ This function encapsulates the whole triangulation algorithm into four steps. The function takes as input a list of points. Each point is of the form [x, y], where x and y are the coordinates of the point. Step 1) The list of points is split into groups. Each group has exactly two or three points. Step 2) For each group of two point, a single edge is generated. For each group of three points, three edges forming a triangle are generated. These are the 'primitive' triangulations. Step 3) The primitive triangulations are paired into groups. Step 4) The groups are then recursively merged until there is only a single triangulation of all points remaining. Parameters ---------- pts_subset : list A list of points with the form [ [x1, y1], [x2, y2], ..., [xn, yn] ] The first element of each list represents the x-coordinate, the second entry the y-coordinate. Returns ------- out : list List with a single element. The TriangulationEdges class object with the completed Delauney triangulation of the input points. See TriangulationEdges docstring for further info. """ split_pts = split_list.groups_of_3(pts_subset) primitives = make_primitives(split_pts) groups = [primitives[i:i+2] for i in range(0, len(primitives), 2)] groups = recursive_group_merge(groups) return groups[0][0]
55e145a44303409a4e1ede7f14e4193c06efd769
3,655,475
def get_session(region, default_bucket): """Gets the sagemaker session based on the region. Args: region: the aws region to start the session default_bucket: the bucket to use for storing the artifacts Returns: `sagemaker.session.Session instance """ boto_session = boto3.Session(region_name=region) sagemaker_client = boto_session.client("sagemaker") runtime_client = boto_session.client("sagemaker-runtime") return sagemaker.session.Session( boto_session=boto_session, sagemaker_client=sagemaker_client, sagemaker_runtime_client=runtime_client, default_bucket=default_bucket, )
1bfbea7aeb30f33772c1b748580f0776463203a4
3,655,476
def intp_sc(x, points): """ SCurve spline based interpolation args: x (list) : t coordinate list points (list) : xyz coordinate input points returns: x (relative coordinate point list) o (xyz coordinate points list, resplined) """ sc = vtk.vtkSCurveSpline() for i in points: sc.AddPoint(i[0], i[1]) o = [] for i in x: o.append(sc.Evaluate(i)) return x, o
13df2e19c91ff0469ce68467e9e4df36c0e4831b
3,655,477
def backend(): """Publicly accessible method for determining the current backend. # Returns String, the name of the backend PyEddl is currently using. # Example ```python >>> eddl.backend.backend() 'eddl' ``` """ return _BACKEND
b811dd6a760006e572aa02fc246fdf72ac7e608c
3,655,478
import json def query_collection_mycollections(): """ Query Content API Collection with access token. """ access_token = request.args.get("access_token", None) if access_token is not None and access_token != '': # Construct an Authorization header with the value of 'Bearer <access token>' headers = { "Accept": "application/json", "Authorization": "Bearer " + access_token } url = APP_CONFIG['CONTENTAPI_COLLECTIONS_URL'] + 'mycollections' r = s.get(url, headers=headers, verify=(app.config['SSLVERIFY'] == 'True')) if r.status_code in (400,500): # Handle known errors result = r.json() return jsonify(result) elif r.status_code == 200: result = r.json() params = { 'access_token': access_token, 'endpoint_path': '/mycollections', 'mycollections_results': json.dumps(result, indent=2), 'mycollections_results_obj': result } return render_template('mycollections.html', **params) else: # Handle unknown error return (r.text, r.status_code, r.headers.items()) else: return "access_token not specified"
98b8a75ea515255fde327d11c959f5e9b6d9ea43
3,655,479
def xmlbuildmanual() -> __xml_etree: """ Returns a empty xml ElementTree obj to build/work with xml data Assign the output to var This is using the native xml library via etree shipped with the python standard library. For more information on the xml.etree api, visit: https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree """ return __xml_etree
e08d83aca4b140c2e289b5173e8877e3c3e5fee1
3,655,480
def graclus_cluster(row, col, weight=None, num_nodes=None): """A greedy clustering algorithm of picking an unmarked vertex and matching it with one its unmarked neighbors (that maximizes its edge weight). Args: row (LongTensor): Source nodes. col (LongTensor): Target nodes. weight (Tensor, optional): Edge weights. (default: :obj:`None`) num_nodes (int, optional): The number of nodes. (default: :obj:`None`) Examples:: >>> row = torch.LongTensor([0, 1, 1, 2]) >>> col = torch.LongTensor([1, 0, 2, 1]) >>> weight = torch.Tensor([1, 1, 1, 1]) >>> cluster = graclus_cluster(row, col, weight) """ num_nodes = row.max().item() + 1 if num_nodes is None else num_nodes if row.is_cuda: # pragma: no cover row, col = sort_row(row, col) else: row, col = randperm(row, col) row, col = randperm_sort_row(row, col, num_nodes) row, col = remove_self_loops(row, col) cluster = row.new_empty((num_nodes, )) graclus(cluster, row, col, weight) return cluster
c586ffd325697302a2413e613a75fe4302741af6
3,655,481
def _get_serve_tf_examples_fn(model, tf_transform_output): """Returns a function that parses a serialized tf.Example.""" model.tft_layer = tf_transform_output.transform_features_layer() @tf.function def serve_tf_examples_fn(serialized_tf_examples): """Returns the output to be used in the serving signature.""" feature_spec = tf_transform_output.raw_feature_spec() feature_spec.pop(_LABEL_KEY) parsed_features = tf.io.parse_example(serialized_tf_examples, feature_spec) transformed_features = model.tft_layer(parsed_features) return model(transformed_features) return serve_tf_examples_fn
801bfde2b72823b2ba7b8329f080774ca9aa536f
3,655,482
import decimal def get_profitable_change(day_candle): """ Get the potential daily profitable price change in pips. If prices rise enough, we have: close_bid - open_ask (> 0), buy. If prices fall enough, we have: close_ask - open_bid (< 0), sell. if prices stay relatively still, we don't buy or sell. It's 0. Args: day_candle: candles.Candle object representing a daily candle. Returns: profitable_change: Decimal. The profitable rate change described above, in two decimal places. """ multiplier = day_candle.instrument.multiplier change = 0 if day_candle.close_bid > day_candle.open_ask: change = multiplier * (day_candle.close_bid - day_candle.open_ask) elif day_candle.close_ask < day_candle.open_bid: change = multiplier * (day_candle.close_ask - day_candle.open_bid) return decimal.Decimal(change).quantize(TWO_PLACES)
94adc63d984e7797590a2dd3eb33c8d98b09c76e
3,655,483
import os from pathlib import Path import glob import re def load_all_functions(path, tool, factorize=True, agents_quantities=False, rewards_only=False, f_only=False): """ Loads all results of parameter synthesis from *path* folder into two maps - f list of rational functions for each property, and rewards list of rational functions for each reward Args: path (string): file name regex factorize (bool): if true it will factorise polynomial results rewards_only (bool): if true it parse only rewards f_only (bool): if true it will parse only standard properties agents_quantities (list of numbers or False): of population sizes to be used, if False, the whole path used tool (string): a tool of which is the output from (PRISM/STORM) Returns: (f,reward), where f: dictionary N -> list of rational functions for each property rewards: dictionary N -> list of rational functions for each reward """ ## Setting the current directory default_directory = os.getcwd() if not Path(path).is_absolute(): if tool.lower().startswith("p"): os.chdir(prism_results) elif tool.lower().startswith("s"): os.chdir(storm_results) else: print("Selected tool unsupported.") return ({}, {}) f = {} rewards = {} # print(str(path)) new_dir = os.getcwd() if not glob.glob(str(path)): if not Path(path).is_absolute(): os.chdir(default_directory) print("No files match the pattern " + os.path.join(new_dir, path)) return ({}, {}) no_files = True ## Choosing files with the given pattern for functions_file in glob.glob(str(path)): try: population_size = int(re.findall(r'\d+', functions_file)[0]) except IndexError: population_size = 0 ## Parsing only selected agents quantities if agents_quantities: if population_size not in agents_quantities: continue else: no_files = False print("parsing ", os.path.join(os.getcwd(), functions_file)) # print(os.getcwd(), file) with open(functions_file, "r") as file: i = -1 here = "" f[population_size] = [] rewards[population_size] = [] ## PARSING PRISM/STORM OUTPUT line_index = 0 if tool == "unknown": # print(line) if line.lower().startswith("prism"): tool = "prism" elif line.lower().startswith("storm"): tool = "storm" else: print("Tool not recognised!!") for line in file: if line.startswith('Parametric model checking:') or line.startswith('Model checking property'): i = i + 1 here = "" ## STORM check if rewards if "R[exp]" in line: here = "r" ## PRISM check if rewards if line.startswith('Parametric model checking: R'): here = "r" if i >= 0 and line.startswith('Result'): ## PARSE THE EXPRESSIONload_pickled_data # print("line:", line) if tool.lower().startswith("p"): line = line.split(":")[2] elif tool.lower().startswith("s"): line = line.split(":")[1] ## CONVERT THE EXPRESSION TO PYTHON FORMAT line = line.replace("{", "") line = line.replace("}", "") ## PUTS "* " BEFORE EVERY WORD (VARIABLE) line = re.sub(r'([a-z|A-Z]+)', r'* \1', line) # line = line.replace("p", "* p") # line = line.replace("q", "* q") line = line.replace("**", "*") line = line.replace("* *", "*") line = line.replace("* *", "*") line = line.replace("+ *", "+") line = line.replace("^", "**") line = line.replace(" ", "") line = line.replace("*|", "|") line = line.replace("|*", "|") line = line.replace("|", "/") line = line.replace("(*", "(") line = line.replace("+*", "+") line = line.replace("-*", "-") if line.startswith('*'): line = line[1:] if line[-1] == "\n": line = line[:-1] if here == "r" and not f_only: # print(f"pop: {N}, formula: {i+1}", line) if factorize: try: rewards[population_size].append(str(factor(line))) except TypeError: print("Error while factorising rewards, used not factorised instead") rewards[population_size].append(line) # os.chdir(cwd) else: rewards[population_size].append(line) elif not here == "r" and not rewards_only: # print(f"pop: {N}, formula: {i+1}", line[:-1]) if factorize: try: f[population_size].append(str(factor(line))) except TypeError: print(f"Error while factorising polynomial f[{population_size}][{i + 1}], used not factorised instead") f[population_size].append(line) # os.chdir(cwd) else: f[population_size].append(line) line_index = line_index + 1 os.chdir(default_directory) if no_files and agents_quantities: print("No files match the pattern " + os.path.join(new_dir, path) + " and restriction " + str(agents_quantities)) return (f, rewards)
262fdd5ad796889028e61541cc0347b3263407c8
3,655,484
def run_epoch(): """Runs one epoch and returns reward averaged over test episodes""" rewards = [] for _ in range(NUM_EPIS_TRAIN): run_episode(for_training=True) for _ in range(NUM_EPIS_TEST): rewards.append(run_episode(for_training=False)) return np.mean(np.array(rewards))
d9f5e33e00eaeedfdff7ebb4d3a7731d679beff1
3,655,485
def _max_pool(heat, kernel=3): """ NCHW do max pooling operation """ # print("heat.shape: ", heat.shape) # default: torch.Size([1, 1, 152, 272]) pad = (kernel - 1) // 2 h_max = nn.functional.max_pool2d(heat, (kernel, kernel), stride=1, padding=pad) # print("h_max.shape: ", h_max.shape) # default: torch.Size([1, 1, 152, 272]) keep = (h_max == heat).float() # 将boolean类型的Tensor转换成Float类型的Tensor # print("keep.shape: ", keep.shape, "keep:\n", keep) return heat * keep
68edc979d78ee2fc11f94efd2dfb5e9140762a0e
3,655,486
def getBool(string): """ Stub function, set PshellServer.py softlink to PshellServer-full.py for full functionality """ return (True)
de7f6a4b124b6a1f6e1b878daf01cc14e5d5eb08
3,655,487
from typing import Counter def multi_dists( continuous, categorical, count_cutoff, summary_type, ax=None, stripplot=False, order="ascending", newline_counts=False, xtick_rotation=45, xtick_ha="right", seaborn_kwargs={}, stripplot_kwargs={}, ): """ Compare the distributions of a continuous variable when grouped by a categorical one. Parameters ---------- continuous : Series continuous values to plot categorical : Series categorical values (groups) to plot count_cutoff : boolean minimum number of samples per groups to include summary_type : string, "box" or "violin" type of summary plot to make ax : MatPlotLib axis axis to plot in (will create new one if not provided) stripplot : boolean whether or not to plot the raw values order : "ascending", "descending", or list of categories how to sort categories in the plot newline_counts : boolean whether to add category counts as a separate line in the axis labels xtick_rotation : float how much to rotate the xtick labels by (in degree) xtick_ha : string horizontal alignment of the xtick labels seaborn_kwargs : dictionary additional arguments to pass to Seaborn boxplot/violinplot stripplot_kwargs : dictionary additional arguments to pass to Seaborn stripplot (if stripplot=True) Returns ------- ax : MatPlotLib axis axis with plot data """ if ax is None: ax = plt.subplot(111) # remove NaNs and convert continuous continuous = pd.Series(continuous).dropna() categorical = pd.Series(categorical).dropna().astype(str) # series names continuous_name = str(continuous.name) categorical_name = str(categorical.name) # handle cases where series names are missing or identical if continuous_name is None: continuous_name = "continuous" if categorical_name is None: categorical_name = "categorical" if continuous_name == categorical_name: continuous_name += "_continuous" categorical_name += "_categorical" merged = pd.concat([continuous, categorical], axis=1, join="inner") merged.columns = [continuous_name, categorical_name] # counts per category, with cutoff categorical_counts = Counter(merged[categorical_name]) merged["count"] = merged[categorical_name].apply(categorical_counts.get) merged = merged[merged["count"] >= count_cutoff] merged_sorted = ( merged.groupby([categorical_name])[continuous_name] .aggregate(np.median) .reset_index() ) # sort categories by mean if order == "ascending": merged_sorted = merged_sorted.sort_values( continuous_name, ascending=True ) order = merged_sorted[continuous_name] elif order == "descending": merged_sorted = merged_sorted.sort_values( continuous_name, ascending=False ) order = merged_sorted[continuous_name] else: merged_sorted["continuous_idx"] = merged_sorted[ categorical_name ].apply(order.index) merged_sorted = merged_sorted.sort_values( "continuous_idx", ascending=True ) # recompute category counts after applying cutoff counts = merged_sorted[categorical_name].apply(categorical_counts.get) counts = counts.astype(str) # x-axis labels with counts if newline_counts: x_labels = merged_sorted[categorical_name] + "\n(" + counts + ")" else: x_labels = merged_sorted[categorical_name] + " (" + counts + ")" if summary_type == "violin": sns.violinplot( x=categorical_name, y=continuous_name, data=merged, order=merged_sorted[categorical_name], inner=None, ax=ax, **seaborn_kwargs, ) elif summary_type == "box": sns.boxplot( x=categorical_name, y=continuous_name, data=merged, order=merged_sorted[categorical_name], notch=True, ax=ax, **seaborn_kwargs, ) if stripplot: sns.stripplot( x=categorical_name, y=continuous_name, data=merged, order=merged_sorted[categorical_name], size=2, alpha=0.5, linewidth=1, jitter=0.1, edgecolor="black", ax=ax, **stripplot_kwargs, ) ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.set_xticklabels(x_labels, rotation=xtick_rotation, ha=xtick_ha) return ax
84302dfc359c62c67ef0757ea7c0841e5292b19d
3,655,488
import xdg def expand_xdg(xdg_var: str, path: str) -> PurePath: """Return the value of an XDG variable prepended to path. This function expands an XDG variable, and then concatenates to it the given path. The XDG variable name can be passed both uppercase or lowercase, and either with or without the 'XDG_' prefix. """ xdg_var = xdg_var if xdg_var.startswith('XDG_') else 'XDG_' + xdg_var return getattr(xdg, xdg_var.upper()) / path
13b8885a08c384d29636c5f5070a86e05c30b43a
3,655,489
def follow_index(request): """Просмотр подписок""" users = request.user.follower.all() paginator = Paginator(users, 3) page_number = request.GET.get('page') page = paginator.get_page(page_number) return render(request, 'recipes/follow_index.html', {'page': page, 'paginator': paginator})
00851ccffde0e76544e5732d0f651f6e00bc45d4
3,655,490
def test_drawcounties_cornbelt(): """draw counties on the map""" mp = MapPlot(sector="cornbelt", title="Counties", nocaption=True) mp.drawcounties() return mp.fig
8bba5c33c374bf3f4e892bc984b72de22c97e38d
3,655,491
import torch def atomic_degrees(mol: IndigoObject) -> dict: """Get the number of atoms direct neighbors (except implicit hydrogens) in a molecule. Args: IndigoObject: molecule object Returns: dict: key - feature name, value - torch.tensor of atomic degrees """ degrees = [] for atom in mol.iterateAtoms(): degrees.append(atom.degree()) return {"degrees": torch.tensor(degrees).unsqueeze(1)}
114431622574985bd016276a7a809560c896e1bc
3,655,492
def hotspots(raster, kernel, x='x', y='y'): """Identify statistically significant hot spots and cold spots in an input raster. To be a statistically significant hot spot, a feature will have a high value and be surrounded by other features with high values as well. Neighborhood of a feature defined by the input kernel, which currently support a shape of circle, annulus, or custom kernel. The result should be a raster with the following 7 values: 90 for 90% confidence high value cluster 95 for 95% confidence high value cluster 99 for 99% confidence high value cluster -90 for 90% confidence low value cluster -95 for 95% confidence low value cluster -99 for 99% confidence low value cluster 0 for no significance Parameters ---------- raster: xarray.DataArray Input raster image with shape=(height, width) kernel: Kernel Returns ------- hotspots: xarray.DataArray """ # validate raster if not isinstance(raster, DataArray): raise TypeError("`raster` must be instance of DataArray") if raster.ndim != 2: raise ValueError("`raster` must be 2D") if not (issubclass(raster.values.dtype.type, np.integer) or issubclass(raster.values.dtype.type, np.floating)): raise ValueError( "`raster` must be an array of integers or float") raster_dims = raster.dims if raster_dims != (y, x): raise ValueError("raster.coords should be named as coordinates:" "(%s, %s)".format(y, x)) # apply kernel to raster values mean_array = convolve_2d(raster.values, kernel / kernel.sum(), pad=True) # calculate z-scores global_mean = np.nanmean(raster.values) global_std = np.nanstd(raster.values) if global_std == 0: raise ZeroDivisionError("Standard deviation " "of the input raster values is 0.") z_array = (mean_array - global_mean) / global_std out = _hotspots(z_array) result = DataArray(out, coords=raster.coords, dims=raster.dims, attrs=raster.attrs) return result
ab091924bb36576e338c38d752df3f856de331cb
3,655,493
import os def create_from_image(input_path, output_path=None, fitimage="FITDEF", compress="NORMAL", zoom=0, # %; 0=100% size=Point(0, 0), # Point (in mm), int or str; 1,2..10=A3R,A3..B5 align=("CENTER", "CENTER"), # LEFT/CENTER/RIGHT, TOP/CENTER/BOTTOM maxpapersize="DEFAULT", ): """XDW generator from image file. fitimage 'FITDEF' | 'FIT' | 'FITDEF_DIVIDEBMP' | 'USERDEF' | 'USERDEF_FIT' compress 'NORMAL' | 'LOSSLESS' | 'NOCOMPRESS' | 'HIGHQUALITY' | 'HIGHCOMPRESS' | 'JPEG' | 'JPEG_TTN2' | 'PACKBITS' | 'G4' | 'MRC_NORMAL' | 'MRC_HIGHQUALITY' | 'MRC_HIGHCOMPRESS' zoom (float) in percent; 0 means 100%. < 1/1000 is ignored. size (Point) in mm; for fitimange 'userdef' or 'userdef_fit' (int) 1=A3R, 2=A3, 3=A4R, 4=A4, 5=A5R, 6=A5, 7=B4R, 8=B4, 9=B5R, 10=B5 align (horiz, vert) where: horiz 'CENTER' | 'LEFT' | 'RIGHT' vert 'CENTER' | 'TOP' | 'BOTTOM' maxpapersize 'DEFAULT' | 'A3' | '2A0' Returns actual pathname of generated document, which may be different from `output_path' argument. """ input_path = adjust_path(input_path) root, ext = os.path.splitext(input_path) output_path = adjust_path(output_path or root, ext=".xdw") output_path = derivative_path(output_path) opt = XDW_CREATE_OPTION_EX2() opt.nFitImage = XDW_CREATE_FITIMAGE.normalize(fitimage) opt.nCompress = XDW_COMPRESS.normalize(compress) #opt.nZoom = int(zoom) opt.nZoomDetail = int(zoom * 1000) # .3f # NB. Width and height are valid only for XDW_CREATE_USERDEF(_FIT). if not isinstance(size, Point): size = XDW_SIZE.normalize(size) size = XDW_SIZE_MM[size or 3] # default=A4R size = Point(*size) opt.nWidth = int(size.x * 100) # .2f opt.nHeight = int(size.y * 100) # .2f; opt.nHorPos = XDW_CREATE_HPOS.normalize(align[0]) opt.nVerPos = XDW_CREATE_VPOS.normalize(align[1]) opt.nMaxPaperSize = XDW_CREATE_MAXPAPERSIZE.normalize(maxpapersize) if XDWVER < 8: XDW_CreateXdwFromImageFile(cp(input_path), cp(output_path), opt) else: XDW_CreateXdwFromImageFileW(input_path, output_path, opt) return output_path
68328baeaae8fa804f2182592158b9e1de7e8cba
3,655,494
import configparser import logging def _read_config(filename): """Reads configuration file. Returns DysonLinkCredentials or None on error. """ config = configparser.ConfigParser() logging.info('Reading "%s"', filename) try: config.read(filename) except configparser.Error as ex: logging.critical('Could not read "%s": %s', filename, ex) return None try: username = config['Dyson Link']['username'] password = config['Dyson Link']['password'] country = config['Dyson Link']['country'] return DysonLinkCredentials(username, password, country) except KeyError as ex: logging.critical('Required key missing in "%s": %s', filename, ex) return None
bb1282e94500c026072a0e8d76fdf3dcd68e9062
3,655,495
def view_share_link(request, token): """ Translate a given sharelink to a proposal-detailpage. :param request: :param token: sharelink token, which includes the pk of the proposal :return: proposal detail render """ try: pk = signing.loads(token, max_age=settings.MAXAGESHARELINK) except signing.SignatureExpired: return render(request, "base.html", { "Message": "Share link has expired!" }) except signing.BadSignature: return render(request, "base.html", { "Message": "Invalid token in share link!" }) obj = get_object_or_404(Proposal, pk=pk) return render(request, "proposals/detail_project.html", { "proposal": obj, "project": obj })
9d88375f1f3c9c0b94ad2beab4f47ce74ea2464e
3,655,496
from sklearn.pipeline import Pipeline def create(pdef): """Scikit-learn Pipelines objects creation (deprecated). This function creates a list of sklearn Pipeline objects starting from the list of list of tuples given in input that could be created using the adenine.core.define_pipeline module. Parameters ----------- pdef : list of list of tuples This arguments contains the specification needed by sklearn in order to create a working Pipeline object. Returns ----------- pipes : list of sklearn.pipeline.Pipeline objects The list of Piplines, each of them can be fitted and trasformed with some data. """ return [Pipeline(p) for p in pdef]
552014c652d7de236ba917592108315acfd9c694
3,655,497
def pressure_differentiable(altitude): """ Computes the pressure at a given altitude with a differentiable model. Args: altitude: Geopotential altitude [m] Returns: Pressure [Pa] """ return np.exp(interpolated_log_pressure(altitude))
a6a9e7dcc38ac855f3ba5c9a117506a87a981217
3,655,498
def create_optimizer(hparams, global_step, use_tpu=False): """Creates a TensorFlow Optimizer. Args: hparams: ConfigDict containing the optimizer configuration. global_step: The global step Tensor. use_tpu: If True, the returned optimizer is wrapped in a CrossShardOptimizer. Returns: A TensorFlow optimizer. Raises: ValueError: If hparams.optimizer is unrecognized. """ optimizer_name = hparams.optimizer.lower() optimizer_params = {} if optimizer_name == "momentum": optimizer_class = tf.train.MomentumOptimizer optimizer_params["momentum"] = hparams.get("momentum", 0.9) optimizer_params["use_nesterov"] = hparams.get("use_nesterov", False) elif optimizer_name == "sgd": optimizer_class = tf.train.GradientDescentOptimizer elif optimizer_name == "adagrad": optimizer_class = tf.train.AdagradOptimizer elif optimizer_name == "adam": optimizer_class = tf.train.AdamOptimizer elif optimizer_name == "rmsprop": optimizer_class = tf.RMSPropOptimizer else: raise ValueError("Unknown optimizer: {}".format(hparams.optimizer)) # Apply weight decay wrapper. optimizer_class = ( tf.contrib.opt.extend_with_decoupled_weight_decay(optimizer_class)) # Create optimizer. learning_rate, weight_decay = create_learning_rate_and_weight_decay( hparams, global_step) optimizer = optimizer_class( weight_decay=weight_decay, learning_rate=learning_rate, **optimizer_params) if use_tpu: optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer) return optimizer
9ff18644fe513e3d01b297e30538c396546746ab
3,655,499