content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def compare_dirs_ignore_words(dir1, dir2, ignore_words, ignore_files=None): """Same as compare_dirs but ignores lines with words in ignore_words. """ return compare_dirs( dir1, dir2, ignore=ignore_files, function=lambda file1, file2: compare_text_files_ignore_lines(file1, file2, ignore_words) )
2794027a638a7f775ae559b250a500e28a218e4a
3,655,500
def float_to_wazn(value): """Converts a float value to an integer in the WAZN notation. The float format has a maxium of 6 decimal digits. :param value: value to convert from float to WAZN notation :returns: converted value in WAZN notation """ return int(Decimal(value) / MICRO_WAZN)
6bf10dfbefe51b2a785c4d0504e446662487b485
3,655,501
import time def timer(func): """ Decorator to measure execution time """ def wrapper(*args, **kwargs): start_time = time.time() ret = func(*args, **kwargs) elapsed = time.time() - start_time print('{:s}: {:4f} sec'.format(func.__name__, elapsed)) return ret return wrapper
0f6a8a4dc8eff1aa49efaf5d26ac46e0cc483b3e
3,655,502
import uuid def _create_keyword_plan_campaign(client, customer_id, keyword_plan): """Adds a keyword plan campaign to the given keyword plan. Args: client: An initialized instance of GoogleAdsClient customer_id: A str of the customer_id to use in requests. keyword_plan: A str of the keyword plan resource_name this keyword plan campaign should be attributed to.create_keyword_plan. Returns: A str of the resource_name for the newly created keyword plan campaign. Raises: GoogleAdsException: If an error is returned from the API. """ keyword_plan_campaign_service = client.get_service( "KeywordPlanCampaignService" ) operation = client.get_type("KeywordPlanCampaignOperation") keyword_plan_campaign = operation.create keyword_plan_campaign.name = f"Keyword plan campaign {uuid.uuid4()}" keyword_plan_campaign.cpc_bid_micros = 1000000 keyword_plan_campaign.keyword_plan = keyword_plan network = client.enums.KeywordPlanNetworkEnum.GOOGLE_SEARCH keyword_plan_campaign.keyword_plan_network = network geo_target = client.get_type("KeywordPlanGeoTarget") # Constant for U.S. Other geo target constants can be referenced here: # https://developers.google.com/google-ads/api/reference/data/geotargets geo_target.geo_target_constant = "geoTargetConstants/2840" keyword_plan_campaign.geo_targets.append(geo_target) # Constant for English language = "languageConstants/1000" keyword_plan_campaign.language_constants.append(language) response = keyword_plan_campaign_service.mutate_keyword_plan_campaigns( customer_id=customer_id, operations=[operation] ) resource_name = response.results[0].resource_name print(f"Created keyword plan campaign with resource name: {resource_name}") return resource_name
b6ce2ee2ec40e1192461c41941f18fe04f901344
3,655,503
def word2vec(sentences, year): """ Creates a word2vec model. @param sentences: list of list of words in each sentence (title + abstract) @return word2vec model """ print("Creating word2vec model") model = Word2Vec(sentences, size=500, window=5, min_count=1, workers=4) model.save(f"models/decades/word2vec_{str(year)}-{str(year+9)}.model") print("Saved word2vec model") return model
745bd15f4c0cea5b9417fd0562625426bd5cd293
3,655,504
def true_rjust(string, width, fillchar=' '): """ Justify the string to the right, using printable length as the width. """ return fillchar * (width - true_len(string)) + string
53a8cbfd049c21821b64e1a218c9af2a7b4c8b7d
3,655,505
def threshold_generator_with_values(values, duration, num_classes): """ Args: values: A Tensor with shape (-1,) Values = strictly positive, float thresholds. duration: An int. num_classes: An int. Returns: thresh: A Tensor with shape (len(list_values), duration, num_classes, num_classes). In each matrix, diag = 0, and off-diag shares a single value > 0. Matrices are sorted in ascending order of the values w.r.t. axis=0. """ num_thresh = values.shape[0] thresh = tf.reshape(values, [num_thresh, 1, 1, 1]) thresh = tf.tile(thresh, [1, duration, num_classes, num_classes]) # (num thresh, num cls, num cls) mask = tf.linalg.tensor_diag([-1.] * num_classes) + 1 thresh *= mask # Now diag = 0. thresh += mask * 1e-11 # Avoids 0 threholds, which may occur # when logits for different classes have the same value, # e.g., 0, due to loss of significance. # This operation may cause sparsity of SAT curve # if llr_min is << 1e-11, but such a case is ignorable # in practice, according to my own experience. return thresh
58aa50e08beaba8f299af3ec9dfeb3de652e6471
3,655,506
def is_hermitian(mx, tol=1e-9): """ Test whether mx is a hermitian matrix. Parameters ---------- mx : numpy array Matrix to test. tol : float, optional Tolerance on absolute magitude of elements. Returns ------- bool True if mx is hermitian, otherwise False. """ (m, n) = mx.shape for i in range(m): if abs(mx[i, i].imag) > tol: return False for j in range(i + 1, n): if abs(mx[i, j] - mx[j, i].conjugate()) > tol: return False return True
31e9a1faff21707b2fc44c7824bb05fc85967f00
3,655,507
def argmax(a, b, axis=1, init_value=-1, name="argmax"): """ sort in axis with ascending order """ assert axis<len(a.shape) and len(a.shape)<=2, "invalid axis" assert b.shape[axis] == 2, "shape mismatch" size = a.shape[axis] # save max arg index def argmax2d(A, B): init = hcl.compute((2,), lambda x: init_value) r = hcl.reduce_axis(0, size, name="rdx") # Y as reducer tensor def sreduce(x, Y): with hcl.if_(x > Y[1]): Y[0] = r Y[1] = x my_argmax = hcl.reducer(init, sreduce) if axis == 1: return hcl.update(B, lambda x, _y: my_argmax(A[x, r], axis=r), name=name) else: # reduce in y axis return hcl.update(B, lambda _x, y: my_argmax(A[r, y], axis=r), name=name) # return decorated function mod = hcl.def_([a.shape, b.shape], name=name)(argmax2d) mod(a, b)
3626126cae255498cab854f8b898a7d0f730b20d
3,655,508
def morphology(src, operation="open", kernel_shape=(3, 3), kernel_type="ones"): """Dynamic calls different morphological operations ("open", "close", "dilate" and "erode") with the given parameters Arguments: src (numpy.ndarray) : source image of shape (rows, cols) operation (str, optional) : name of a morphological operation: ``("open", "close", "dilate", "erode")`` Defaults to ``"open"``. kernel_shape (tuple, optional) : shape of the kernel (rows, cols). Defaults to (3,3). kernel_type (str, optional) : type of kernel. ``("ones", "upper_triangle", "lower_triangle", "x", "plus", "ellipse")`` Defaults to ``"ones"``. Returns: numpy.ndarray: a copy of the source image after apply the effect. """ kernel = create_2D_kernel(kernel_shape, kernel_type) if operation == "open": return open(src, kernel) elif operation == "close": return close(src, kernel) elif operation == "dilate": return dilate(src, kernel) elif operation == "erode": return erode(src, kernel) else: valid_operations = ["open", "close", "dilate", "erode"] raise ValueError( f"Invalid morphology operation '{operation}'. Valid morphological operations are {valid_operations}" )
f8258616f07b9dd0089d323d9237483c05b86c2e
3,655,509
def msd(traj, mpp, fps, max_lagtime=100, detail=False, pos_columns=None): """Compute the mean displacement and mean squared displacement of one trajectory over a range of time intervals. Parameters ---------- traj : DataFrame with one trajectory, including columns frame, x, and y mpp : microns per pixel fps : frames per second max_lagtime : intervals of frames out to which MSD is computed Default: 100 detail : See below. Default False. Returns ------- DataFrame([<x>, <y>, <x^2>, <y^2>, msd], index=t) If detail is True, the DataFrame also contains a column N, the estimated number of statistically independent measurements that comprise the result at each lagtime. Notes ----- Input units are pixels and frames. Output units are microns and seconds. See also -------- imsd emsd """ if traj['frame'].max() - traj['frame'].min() + 1 == len(traj): # no gaps: use fourier-transform algorithm return _msd_fft(traj, mpp, fps, max_lagtime, detail, pos_columns) else: # there are gaps in the trajectory: use slower algorithm return _msd_gaps(traj, mpp, fps, max_lagtime, detail, pos_columns)
4511eb3e0d69ab5581635ba93db6dedfd387eb84
3,655,510
import random def build_rnd_graph(golden, rel, seed=None): """Build a random graph for testing.""" def add_word(word): if word not in words: words.add(word) def add_edge(rel, word1, word2): data.append((rel, word1, word2)) random.seed(seed) m, _ = golden.shape words = set() for i in range(m): if golden['relation'][i] != rel: continue add_word(golden['word1_id'][i]) add_word(golden['word2_id'][i]) data = [] for word1 in words: for word2 in words: if word1 >= word2: continue if random.randint(0, 1): add_edge(rel, word1, word2) add_edge(rel, word2, word1) df = pd.DataFrame(data, columns=('relation', 'word1_id', 'word2_id'), index=range(len(data))) return df
46eacb5a51cf94ee27ed33757887afca4cc153ff
3,655,511
from typing import Union import pathlib from typing import IO from typing import AnyStr import inspect import pandas def _make_parser_func(sep): """ Create a parser function from the given sep. Parameters ---------- sep: str The separator default to use for the parser. Returns ------- A function object. """ def parser_func( filepath_or_buffer: Union[str, pathlib.Path, IO[AnyStr]], sep=sep, delimiter=None, header="infer", names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression="infer", thousands=None, decimal: str = ".", lineterminator=None, quotechar='"', quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, doublequote=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None, ): # ISSUE #2408: parse parameter shared with pandas read_csv and read_table and update with provided args _pd_read_csv_signature = { val.name for val in inspect.signature(pandas.read_csv).parameters.values() } _, _, _, f_locals = inspect.getargvalues(inspect.currentframe()) if f_locals.get("sep", sep) is False: f_locals["sep"] = "\t" kwargs = {k: v for k, v in f_locals.items() if k in _pd_read_csv_signature} return _read(**kwargs) return parser_func
318edb7e761e163c828878a1c186edc535d824a1
3,655,512
import glob import os def load_and_join(LC_DIR): """ load and join quarters together. Takes a list of fits file names for a given star. Returns the concatenated arrays of time, flux and flux_err """ fnames = sorted(glob.glob(os.path.join(LC_DIR, "*fits"))) hdulist = fits.open(fnames[0]) t = hdulist[1].data time = t["TIME"] flux = t["PDCSAP_FLUX"] flux_err = t["PDCSAP_FLUX_ERR"] q = t["SAP_QUALITY"] m = np.isfinite(time) * np.isfinite(flux) * np.isfinite(flux_err) * \ (q == 0) x = time[m] med = np.median(flux[m]) y = flux[m]/med - 1 yerr = flux_err[m]/med for fname in fnames[1:]: hdulist = fits.open(fname) t = hdulist[1].data time = t["TIME"] flux = t["PDCSAP_FLUX"] flux_err = t["PDCSAP_FLUX_ERR"] q = t["SAP_QUALITY"] m = np.isfinite(time) * np.isfinite(flux) * np.isfinite(flux_err) * \ (q == 0) x = np.concatenate((x, time[m])) med = np.median(flux[m]) y = np.concatenate((y, flux[m]/med - 1)) yerr = np.concatenate((yerr, flux_err[m]/med)) return x, y, yerr
39345f4439d516b19707c68f29ab71987a54ec56
3,655,513
def dcm_to_pil_image_gray(file_path): """Read a DICOM file and return it as a gray scale PIL image""" ds = dcmread(file_path) # Get the image after apply clahe img_filtered = Image.fromarray(apply_clahe(ds.pixel_array).astype("uint8")) # Normalize original image to the interval [0, 255] img = cv.normalize(ds.pixel_array, None, alpha=0, beta=255, norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U) img = Image.fromarray(img.astype("uint8")) return [img, img_filtered]
c85b149dd1d02f24e60411ffb6d0dccfb1afd949
3,655,514
from typing import Any def get_object_unique_name(obj: Any) -> str: """Return a unique string associated with the given object. That string is constructed as follows: <object class name>_<object_hex_id> """ return f"{type(obj).__name__}_{hex(id(obj))}"
f817abf636673f7ef6704cbe0ff5a7a2b897a3f6
3,655,515
def create_voting_dict(): """ Input: a list of strings. Each string represents the voting record of a senator. The string consists of - the senator's last name, - a letter indicating the senator's party, - a couple of letters indicating the senator's home state, and - a sequence of numbers (0's, 1's, and negative 1's) indicating the senator's votes on bills all separated by spaces. Output: A dictionary that maps the last name of a senator to a list of numbers representing the senator's voting record. Example: >>> vd = create_voting_dict(['Kennedy D MA -1 -1 1 1', 'Snowe R ME 1 1 1 1']) >>> vd == {'Snowe': [1, 1, 1, 1], 'Kennedy': [-1, -1, 1, 1]} True You can use the .split() method to split each string in the strlist into a list; the first element of the list will be the senator's name, the second will be his/her party affiliation (R or D), the third will be his/her home state, and the remaining elements of the list will be that senator's voting record on a collection of bills. You can use the built-in procedure int() to convert a string representation of an integer (e.g. '1') to the actual integer (e.g. 1). The lists for each senator should preserve the order listed in voting data. In case you're feeling clever, this can be done in one line. """ voting_dic = {} for s in voting_data: s = s.strip() items = s.split(' ') voting_dic[items[0]] = [int(v) for v in items[3:]] return voting_dic
4a662c110b88ae92ea548da6caa15b01b82f1cf2
3,655,516
def areFriends(profile1, profile2): """Checks wether profile1 is connected to profile2 and profile2 is connected to profile1""" def check(p1, p2): if p1.isServiceIdentity: fsic = get_friend_serviceidentity_connection(p2.user, p1.user) return fsic is not None and not fsic.deleted else: friend_map = get_friends_map(p1.user) return friend_map is not None and remove_slash_default(p2.user) in friend_map.friends return check(profile1, profile2) and check(profile2, profile1)
89eb04d0b8cce054e75d26d194d3f88f9b5970db
3,655,517
def filter_dict(regex_dict, request_keys): """ filter regular expression dictionary by request_keys :param regex_dict: a dictionary of regular expressions that follows the following format: { "name": "sigma_aldrich", "regexes": { "manufacturer": { "regex": "[C|c]ompany(?P\u003cdata\u003e.{80})", "flags": "is" }, "product_name": { "regex": "\\s[P|p]roduct\\s(?P\u003cdata\u003e.{80})", "flags": "is" }, ... } returns { 'sigma_aldrich': { "manufacturer": { "regex": "[C|c]ompany(?P\u003cdata\u003e.{80})", "flags": "is" }, } :param request_keys: a list of dictionary keys that correspond to valid regex lookups i.e. ['manufacturer', 'product_name'] """ out_dict = dict() nested_regexes = regex_dict['regexes'] for request_key in request_keys: if request_key in nested_regexes: out_dict[request_key] = nested_regexes[request_key] return {'name': regex_dict['name'], 'regexes': out_dict}
fb503f0d4df0a7965c276907b7a9e43bd14f9cac
3,655,518
import six def calculate_partition_movement(prev_assignment, curr_assignment): """Calculate the partition movements from initial to current assignment. Algorithm: For each partition in initial assignment # If replica set different in current assignment: # Get Difference in sets :rtype: tuple dict((partition, (from_broker_set, to_broker_set)), total_movements """ total_movements = 0 movements = {} for prev_partition, prev_replicas in six.iteritems(prev_assignment): curr_replicas = curr_assignment[prev_partition] diff = len(set(curr_replicas) - set(prev_replicas)) if diff: total_movements += diff movements[prev_partition] = ( (set(prev_replicas) - set(curr_replicas)), (set(curr_replicas) - set(prev_replicas)), ) return movements, total_movements
180a47944523f0c814748d1918935e47d9a7ada4
3,655,519
from typing import List from typing import Union import torch from typing import Sequence def correct_crop_centers( centers: List[Union[int, torch.Tensor]], spatial_size: Union[Sequence[int], int], label_spatial_shape: Sequence[int], ) -> List[int]: """ Utility to correct the crop center if the crop size is bigger than the image size. Args: ceters: pre-computed crop centers, will correct based on the valid region. spatial_size: spatial size of the ROIs to be sampled. label_spatial_shape: spatial shape of the original label data to compare with ROI. """ spatial_size = fall_back_tuple(spatial_size, default=label_spatial_shape) if not (np.subtract(label_spatial_shape, spatial_size) >= 0).all(): raise ValueError("The size of the proposed random crop ROI is larger than the image size.") # Select subregion to assure valid roi valid_start = np.floor_divide(spatial_size, 2) # add 1 for random valid_end = np.subtract(label_spatial_shape + np.array(1), spatial_size / np.array(2)).astype(np.uint16) # int generation to have full range on upper side, but subtract unfloored size/2 to prevent rounded range # from being too high for i, valid_s in enumerate(valid_start): # need this because np.random.randint does not work with same start and end if valid_s == valid_end[i]: valid_end[i] += 1 for i, c in enumerate(centers): center_i = c if c < valid_start[i]: center_i = valid_start[i] if c >= valid_end[i]: center_i = valid_end[i] - 1 centers[i] = center_i corrected_centers: List[int] = [c.item() if isinstance(c, torch.Tensor) else c for c in centers] # type: ignore return corrected_centers
d8a28d464a4d0fcd8c1ad8ed0b790713aaa878e2
3,655,520
def contrast_normalize(data, centered=False): """Normalizes image data to have variance of 1 Parameters ---------- data : array-like data to be normalized centered : boolean When False (the default), centers the data first Returns ------- data : array-like normalized data """ if not centered: data = center(data) data = np.divide(data, np.sqrt(np.var(data))) return data
e85e5488e0c69bcf0233c03f3595a336b3ad7921
3,655,521
def create_gdrive_folders(website_short_id: str) -> bool: """Create gdrive folder for website if it doesn't already exist""" folder_created = False service = get_drive_service() base_query = "mimeType = 'application/vnd.google-apps.folder' and not trashed and " query = f"{base_query}name = '{website_short_id}'" fields = "nextPageToken, files(id, name, parents)" folders = list(query_files(query=query, fields=fields)) if settings.DRIVE_UPLOADS_PARENT_FOLDER_ID: filtered_folders = [] for folder in folders: ancestors = get_parent_tree(folder["parents"]) if settings.DRIVE_UPLOADS_PARENT_FOLDER_ID in [ ancestor["id"] for ancestor in ancestors ]: filtered_folders.append(folder) else: filtered_folders = folders if len(filtered_folders) == 0: folder_metadata = { "name": website_short_id, "mimeType": DRIVE_MIMETYPE_FOLDER, } if settings.DRIVE_UPLOADS_PARENT_FOLDER_ID: folder_metadata["parents"] = [settings.DRIVE_UPLOADS_PARENT_FOLDER_ID] else: folder_metadata["parents"] = [settings.DRIVE_SHARED_ID] folder = ( service.files() .create(supportsAllDrives=True, body=folder_metadata, fields="id") .execute() ) folder_created = True else: folder = filtered_folders[0] Website.objects.filter(short_id=website_short_id).update(gdrive_folder=folder["id"]) for subfolder in [ DRIVE_FOLDER_FILES, DRIVE_FOLDER_FILES_FINAL, DRIVE_FOLDER_VIDEOS_FINAL, ]: query = f"{base_query}name = '{subfolder}' and parents = '{folder['id']}'" folders = list(query_files(query=query, fields=fields)) if len(folders) == 0: folder_metadata = { "name": subfolder, "mimeType": DRIVE_MIMETYPE_FOLDER, "parents": [folder["id"]], } service.files().create( supportsAllDrives=True, body=folder_metadata, fields="id" ).execute() folder_created = True return folder_created
21928843c47bbc3b175b65a7268eb63e0bec1275
3,655,522
def filter_for_recognized_pumas(df): """Written for income restricted indicator but can be used for many other indicators that have rows by puma but include some non-PUMA rows. Sometimes we set nrows in read csv/excel but this approach is more flexible""" return df[df["puma"].isin(get_all_NYC_PUMAs())]
fe3c608495603f74300dc79a4e50d185d87ca799
3,655,523
import pandas as pd import os def hotspots2006(path): """Hawaian island chain hotspot Argon-Argon ages Ar-Ar Ages (millions of years) and distances (km) from Kilauea along the trend of the chain of Hawaian volcanic islands and other seamounts that are believed to have been created by a moving "hot spot". A data frame with 10 observations on the following 6 variables. `age` Ar-Ar age `CI95lim` Measurement error; 95% CI `geoErr` Geological Uncertainty `totplus` Total uncertainty (+) `totminus` Total uncertainty (-) `distance` Distance in kilometers Warren D. Sharp and David A. Clague, 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific Plate motion. Science 313: 1281-1284 (2006). Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `hotspots2006.csv`. Returns: Tuple of np.ndarray `x_train` with 10 rows and 6 columns and dictionary `metadata` of column headers (feature names). """ path = os.path.expanduser(path) filename = 'hotspots2006.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/DAAG/hotspots2006.csv' maybe_download_and_extract(path, url, save_file_name='hotspots2006.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
fce88e988e62227c8247fd58575db1fafd35e73f
3,655,524
def school_booking_cancel(request, pk_booking): """Render the school booking cancel page for a school representative. :param request: httprequest received :type request: HttpRequest :param pk_booking: Primary Key of a Booking :type pk_booking: int :return: Return a HttpResponse whose content is filled with the result of the passed arguments. :rtype: HttpResponse """ booking = Booking.objects.get(id=pk_booking) if request.method == "POST": booking.status = "Cancelled" booking.reason_cancellation = request.POST["reason_cancellation"] booking.save() admin_email = ADMIN_EMAIL send_email_booking_cancellation(admin_email, booking) return redirect("school-dashboard") data = {"booking": booking} return render(request, "schoolApp/school-booking-cancel.html", data)
1b0e09119ba453efdf486e11a57d92c508a497ff
3,655,525
def bandpass_filter(df, spiky_var): """Detect outliers according to a passband filter specific to each variable. Parameters ---------- df: pandas DataFrame that contains the spiky variable spiky_var: string that designate the spiky variable Returns ------- id_outlier: index of outliers""" if spiky_var == 'LE': id_bandpass = ( df[spiky_var] < -35 ) | ( df[spiky_var] > 300 ) # in [W+1m-2] elif spiky_var == 'H': id_bandpass = ( df[spiky_var] < -100 ) | ( df[spiky_var] > 400 ) # in [W+1m-2] elif spiky_var == 'CO2_flux': id_bandpass = ( df[spiky_var] < -10 ) | ( df[spiky_var] > 20 ) # in [µmol+1s-1m-2] elif spiky_var == 'CH4_flux': id_bandpass = ( df[spiky_var] < -0.1 ) | ( df[spiky_var] > 0.25 ) # in [µmol+1s-1m-2] return id_bandpass
a20e3861f04212fe8b3e44d278da9ed58d545d1c
3,655,526
def load_energy(): """Loads the energy file, skipping all useluss information and returns it as a dataframe""" energy = pd.read_excel("Energy Indicators.xls", skiprows=17, header=0, skip_footer=53-15, na_values="...", usecols=[2,3,4,5]) # Rename columns energy.columns = ["Country", "Energy Supply [Petajoules]", "Energy Supply per Capita [Gigajoules]", "% Renewable"] # Exclude numbers from country names energy["Country"] = energy["Country"].str.replace("\d+", "") # Delete the parentheses energy["Country"] = energy["Country"].str.replace("\(.*\)", "") return energy
10c9e638398d74eed57ccab414cac5577623c6cf
3,655,527
import re def list_list_to_string(list_lists,data_delimiter=None,row_formatter_string=None,line_begin=None,line_end=None): """Repeatedly calls list to string on each element of a list and string adds the result . ie coverts a list of lists to a string. If line end is None the value defaults to "\n", for no seperator use '' """ if line_end is None: line_end="\n" check_arg_type(list_lists,ListType) string_out="" for index,row in enumerate(list_lists): if index==len(list_lists)-1: if line_end is "\n": last_end="" else: last_end=re.sub("\n","",line_end,count=1) string_out=string_out+list_to_string(row,data_delimiter=data_delimiter, row_formatter_string=row_formatter_string, begin=line_begin,end=last_end) else: string_out=string_out+list_to_string(row,data_delimiter=data_delimiter, row_formatter_string=row_formatter_string, begin=line_begin,end=line_end) return string_out
d1e69d21205fcc21e186a8dd160c1817fb1f0f68
3,655,528
import os def get_env_loader(package, context): """This function returns a function object which extends a base environment based on a set of environments to load.""" def load_env(base_env): # Copy the base environment to extend job_env = dict(base_env) # Get the paths to the env loaders env_loader_paths = get_env_loaders(package, context) # If DESTDIR is set, set _CATKIN_SETUP_DIR as well if context.destdir is not None: job_env['_CATKIN_SETUP_DIR'] = context.package_dest_path(package) for env_loader_path in env_loader_paths: # print(' - Loading resultspace env from: {}'.format(env_loader_path)) resultspace_env = get_resultspace_environment( os.path.split(env_loader_path)[0], base_env=job_env, quiet=True, cached=context.use_env_cache, strict=False) job_env.update(resultspace_env) return job_env return load_env
acc7e5bf5b23c885dfeed2af71e054205c5b1aa9
3,655,529
def sampen(L, m): """ """ N = len(L) r = (np.std(L) * .2) B = 0.0 A = 0.0 # Split time series and save all templates of length m xmi = np.array([L[i: i + m] for i in range(N - m)]) xmj = np.array([L[i: i + m] for i in range(N - m + 1)]) # Save all matches minus the self-match, compute B B = np.sum([np.sum(np.abs(xmii - xmj).max(axis=1) <= r) - 1 for xmii in xmi]) # Similar for computing A m += 1 xm = np.array([L[i: i + m] for i in range(N - m + 1)]) A = np.sum([np.sum(np.abs(xmi - xm).max(axis=1) <= r) - 1 for xmi in xm]) # Return SampEn return -np.log(A / B)
0a97e8dd8c4edbf2ec4cbbdff3241af7de3f2a66
3,655,530
from typing import Union def total(score: Union[int, RevisedResult]) -> int: """ Return the total number of successes (negative for a botch). If `score` is an integer (from a 1st/2nd ed. die from :func:`standard` or :func:`special`) then it is returned unmodified. If `score` is a :class:`RevisedResult` (from :func:`revised_standard` or :func:`revised_special`) then the value returned is the net successes, except in the special case where there were successes but they were all cancelled out by botches. In that case return 0 even if the net successes is negative. """ return int(score)
849b757875ea461b0ea6bf4a63270e6f5fbac28c
3,655,531
import torch import os def load_vgg16(model_dir, gpu_ids): """ Use the model from https://github.com/abhiskk/fast-neural-style/blob/master/neural_style/utils.py """ # if not os.path.exists(model_dir): # os.mkdir(model_dir) # if not os.path.exists(os.path.join(model_dir, 'vgg16.weight')): # if not os.path.exists(os.path.join(model_dir, 'vgg16.t7')): # os.system('wget https://www.dropbox.com/s/76l3rt4kyi3s8x7/vgg16.t7?dl=1 -O ' + os.path.join(model_dir, 'vgg16.t7')) # vgglua = load_lua(os.path.join(model_dir, 'vgg16.t7')) # vgg = Vgg16() # for (src, dst) in zip(vgglua.parameters()[0], vgg.parameters()): # dst.data[:] = src # torch.save(vgg.state_dict(), os.path.join(model_dir, 'vgg16.weight')) vgg = Vgg16() # vgg.cuda() vgg.cuda(device=gpu_ids[0]) vgg.load_state_dict(torch.load(os.path.join(model_dir, 'vgg16.weight'))) vgg = torch.nn.DataParallel(vgg, gpu_ids) return vgg
7e6499c5ce8f81f693015916eeb8649263dc3039
3,655,532
def rbbox_overlaps_v3(bboxes1, bboxes2, mode='iou', is_aligned=False): """Calculate overlap between two set of bboxes. Args: bboxes1 (torch.Tensor): shape (B, m, 5) in <cx, cy, w, h, a> format or empty. bboxes2 (torch.Tensor): shape (B, n, 5) in <cx, cy, w, h, a> format or empty. mode (str): "iou" (intersection over union), "iof" (intersection over foreground) or "giou" (generalized intersection over union). Default "iou". is_aligned (bool, optional): If True, then m and n must be equal. Default False. Returns: Tensor: shape (m, n) if ``is_aligned`` is False else shape (m,) """ assert mode in ['iou', 'iof'] # Either the boxes are empty or the length of boxes's last dimension is 5 assert (bboxes1.size(-1) == 5 or bboxes1.size(0) == 0) assert (bboxes2.size(-1) == 5 or bboxes2.size(0) == 0) rows = bboxes1.size(0) cols = bboxes2.size(0) if is_aligned: assert rows == cols if rows * cols == 0: return bboxes1.new(rows, 1) if is_aligned else bboxes1.new(rows, cols) return obb_overlaps(bboxes1, bboxes2, mode, is_aligned)
cdd414b02ac08c5a8bc494ed7319942e26bc5f02
3,655,533
import warnings def get_target_compute_version(target=None): """Utility function to get compute capability of compilation target. Looks for the arch in three different places, first in the target attributes, then the global scope, and finally the GPU device (if it exists). Parameters ---------- target : tvm.target.Target, optional The compilation target Returns ------- compute_version : str compute capability of a GPU (e.g. "8.0") """ # 1. Target if target: if "arch" in target.attrs: compute_version = target.attrs["arch"] major, minor = compute_version.split("_")[1] return major + "." + minor # 2. Global scope from tvm.autotvm.env import AutotvmGlobalScope # pylint: disable=import-outside-toplevel if AutotvmGlobalScope.current.cuda_target_arch: major, minor = AutotvmGlobalScope.current.cuda_target_arch.split("_")[1] return major + "." + minor # 3. GPU if tvm.gpu(0).exist: return tvm.gpu(0).compute_version warnings.warn( "No CUDA architecture was specified or GPU detected." "Try specifying it by adding '-arch=sm_xx' to your target." ) return None
ad55cbb81fb74521175ea6fbdcba54cc14a409cb
3,655,534
def get_poet_intro_by_id(uid): """ get poet intro by id :param uid: :return: """ return Poet.get_poet_by_id(uid)
d6fd84bd150ee8ce72becdb6b27b67d1c21c7a9b
3,655,535
from datetime import datetime def create_post(): """Создать пост""" user = get_user_from_request() post = Post( created_date=datetime.datetime.now(), updated_date=datetime.datetime.now(), creator=user, ) json = request.get_json() url = json["url"] if Post.get_or_none(Post.url == url) is not None: return errors.post_url_already_taken() error = set_blog(post, json, user) if error is not None: error_response = { BlogError.NoBlog: errors.blog_not_found(), BlogError.NoAccess: errors.blog_no_access(), }[error] return error_response fill_post_from_json(post, json) post.save() set_tags_for_post(post, json) manage_jam_entries(post, json) return jsonify({"success": 1, "post": post.to_json()})
7b8eaf74cda78198d08ca6eac66f1f13a12c4341
3,655,536
import async_timeout async def fetch(session, url): """Method to fetch data from a url asynchronously """ async with async_timeout.timeout(30): async with session.get(url) as response: return await response.json()
d8ff22df047fece338dcfe4c6286766a563ff9aa
3,655,537
def recurse_while(predicate, f, *args): """ Accumulate value by executing recursively function `f`. The function `f` is executed with starting arguments. While the predicate for the result is true, the result is fed into function `f`. If predicate is never true then starting arguments are returned. :param predicate: Predicate function guarding execution. :param f: Function to execute. :param *args: Starting arguments. """ result = f(*args) result = result if type(result) == tuple else (result, ) while predicate(*result): args = result # predicate(args) is always true result = f(*args) result = result if type(result) == tuple else (result, ) return args if len(args) > 1 else args[0]
fd3313760c246336519a2e89281cc94a2bee6833
3,655,538
from typing import Optional import ast import sys def unparse(node: Optional[ast.AST]) -> Optional[str]: """Unparse an AST to string.""" if node is None: return None elif isinstance(node, str): return node elif node.__class__ in OPERATORS: return OPERATORS[node.__class__] elif isinstance(node, ast.arg): if node.annotation: return "%s: %s" % (node.arg, unparse(node.annotation)) else: return node.arg elif isinstance(node, ast.arguments): return unparse_arguments(node) elif isinstance(node, ast.Attribute): return "%s.%s" % (unparse(node.value), node.attr) elif isinstance(node, ast.BinOp): return " ".join(unparse(e) for e in [node.left, node.op, node.right]) elif isinstance(node, ast.BoolOp): op = " %s " % unparse(node.op) return op.join(unparse(e) for e in node.values) elif isinstance(node, ast.Bytes): return repr(node.s) elif isinstance(node, ast.Call): args = ([unparse(e) for e in node.args] + ["%s=%s" % (k.arg, unparse(k.value)) for k in node.keywords]) return "%s(%s)" % (unparse(node.func), ", ".join(args)) elif isinstance(node, ast.Dict): keys = (unparse(k) for k in node.keys) values = (unparse(v) for v in node.values) items = (k + ": " + v for k, v in zip(keys, values)) return "{" + ", ".join(items) + "}" elif isinstance(node, ast.Ellipsis): return "..." elif isinstance(node, ast.Index): return unparse(node.value) elif isinstance(node, ast.Lambda): return "lambda %s: ..." % unparse(node.args) elif isinstance(node, ast.List): return "[" + ", ".join(unparse(e) for e in node.elts) + "]" elif isinstance(node, ast.Name): return node.id elif isinstance(node, ast.NameConstant): return repr(node.value) elif isinstance(node, ast.Num): return repr(node.n) elif isinstance(node, ast.Set): return "{" + ", ".join(unparse(e) for e in node.elts) + "}" elif isinstance(node, ast.Str): return repr(node.s) elif isinstance(node, ast.Subscript): return "%s[%s]" % (unparse(node.value), unparse(node.slice)) elif isinstance(node, ast.UnaryOp): return "%s %s" % (unparse(node.op), unparse(node.operand)) elif isinstance(node, ast.Tuple): if node.elts: return ", ".join(unparse(e) for e in node.elts) else: return "()" elif sys.version_info > (3, 6) and isinstance(node, ast.Constant): # this branch should be placed at last return repr(node.value) else: raise NotImplementedError('Unable to parse %s object' % type(node).__name__)
b0fafc4c423af192cb4c15b1e063f7b1c8dfa568
3,655,539
import timeit import logging def construct_lookup_variables(train_pos_users, train_pos_items, num_users): """Lookup variables""" index_bounds = None sorted_train_pos_items = None def index_segment(user): lower, upper = index_bounds[user:user + 2] items = sorted_train_pos_items[lower:upper] negatives_since_last_positive = np.concatenate( [items[0][np.newaxis], items[1:] - items[:-1] - 1]) return np.cumsum(negatives_since_last_positive) start_time = timeit.default_timer() inner_bounds = np.argwhere(train_pos_users[1:] - train_pos_users[:-1])[:, 0] + 1 (upper_bound,) = train_pos_users.shape index_bounds = np.array([0] + inner_bounds.tolist() + [upper_bound]) # Later logic will assume that the users are in sequential ascending order. assert np.array_equal(train_pos_users[index_bounds[:-1]], np.arange(num_users)) sorted_train_pos_items = train_pos_items.copy() for i in range(num_users): lower, upper = index_bounds[i:i + 2] sorted_train_pos_items[lower:upper].sort() total_negatives = np.concatenate([ index_segment(i) for i in range(num_users)]) logging.info("Negative total vector built. Time: {:.1f} seconds".format( timeit.default_timer() - start_time)) return total_negatives, index_bounds, sorted_train_pos_items
c3e1087cce5a38d681379f30d7c6dee8d1544e60
3,655,540
def total_allocation_constraint(weight, allocation: float, upper_bound: bool = True): """ Used for inequality constraint for the total allocation. :param weight: np.array :param allocation: float :param upper_bound: bool if true the constraint is from above (sum of weights <= allocation) else from below (sum of weights <= allocation) :return: np.array """ if upper_bound: return allocation - weight.sum() else: return weight.sum() - allocation
b92c4bd18d1c6246ff202987c957a5098fd66ba1
3,655,541
def sigmoid(x): """ computes sigmoid of x """ return 1.0/(1.0 + np.exp(-x))
cd34b4ed9fe08607ea3fec1dce89bee7c34efeb0
3,655,542
def handle_error(err): """Catches errors with processing client requests and returns message""" code = 500 error = 'Error processing the request' if isinstance(err, HTTPError): code = err.code error = str(err.message) return jsonify(error=error, code=code), code
d6f9051bab504852720f657d04bc6afa72794047
3,655,543
from pyunitwizard.kernel import default_form, default_parser from pyunitwizard import convert as _convert, get_dimensionality as _get_dimensionality from typing import Dict def dimensionality(quantity_or_unit: str) -> Dict[str, int]: """ Returns the dimensionality of the quantity or unit. Parameters ----------- quantity_or_unit : str A quanitity or a unit Returns ------- dimensionality_dict : dict Dictionary which keys are fundamental units and values are the exponent of each unit in the quantity. """ tmp_quantity_or_unit = _convert(quantity_or_unit, to_form=default_form, parser=default_parser) return _get_dimensionality(tmp_quantity_or_unit)
4c334c6283a57704036c414cfd52f79b875a93fc
3,655,544
import re def split_prec_rows(df): """Split precincts into two rows. NOTE: Because this creates a copy of the row values, don't rely on total vote counts, just look at percentage. """ for idx in df.index: # look for rows with precincts that need to be split if re.search('\d{4}/\d{4}',idx): row_values = df.loc[idx] split = idx.split('/') for p in split: df.loc[p] = row_values # delete original row df = df.drop(idx, axis=0) return(df)
72ba424080b0ff3e04ecc5d248bc85b4f409167c
3,655,545
def socfaker_elasticecsfields_host(): """ Returns an ECS host dictionary Returns: dict: Returns a dictionary of ECS host fields/properties """ if validate_request(request): return jsonify(str(socfaker.products.elastic.document.fields.host))
41a2624eda28eae736398ece87aee2ee2028987c
3,655,546
from textwrap import dedent def _moog_writer(photosphere, filename, **kwargs): """ Writes an :class:`photospheres.photosphere` to file in a MOOG-friendly format. :param photosphere: The photosphere. :path filename: The filename to write the photosphere to. """ def _get_xi(): xi = photosphere.meta["stellar_parameters"].get("microturbulence", 0.0) if 0 >= xi: logger.warn("Invalid microturbulence value: {:.3f} km/s".format(xi)) return xi if photosphere.meta["kind"] == "marcs": xi = _get_xi() output = dedent(""" WEBMARCS MARCS (2011) TEFF/LOGG/[M/H]/XI {1:.0f}/{2:.3f}/{3:.3f}/{4:.3f} NTAU {0:.0f} 5000.0 """.format(len(photosphere), photosphere.meta["stellar_parameters"]["effective_temperature"], photosphere.meta["stellar_parameters"]["surface_gravity"], photosphere.meta["stellar_parameters"]["metallicity"], xi)).lstrip() for i, line in enumerate(photosphere): output += " {0:>3.0f} {0:>3.0f} {1:10.3e} {0:>3.0f} {2:10.3e} "\ "{3:10.3e} {4:10.3e}\n".format(i + 1, line["lgTau5"], line["T"], line["Pe"], line["Pg"]) output += " {0:.3f}\n".format(xi) output += "NATOMS 0 {0:.3f}\n".format( photosphere.meta["stellar_parameters"]["metallicity"]) output += "NMOL 0\n" elif photosphere.meta["kind"] == "castelli/kurucz": xi = _get_xi() output = dedent(""" KURUCZ CASTELLI/KURUCZ (2004) {1:.0f}/{2:.3f}/{3:.3f}/{4:.3f}/{5:.3f} NTAU {0:.0f} """.format(len(photosphere), photosphere.meta["stellar_parameters"]["effective_temperature"], photosphere.meta["stellar_parameters"]["surface_gravity"], photosphere.meta["stellar_parameters"]["metallicity"], photosphere.meta["stellar_parameters"]["alpha_enhancement"], xi)).lstrip() for line in photosphere: output += " {0:.8e} {1:10.3e}{2:10.3e}{3:10.3e}{4:10.3e}\n".format( line["RHOX"], line["T"], line["P"], line["XNE"], line["ABROSS"]) output += " {0:.3f}\n".format(xi) output += "NATOMS 0 {0:.3f}\n".format( photosphere.meta["stellar_parameters"]["metallicity"]) output += "NMOL 0\n" # MOOG11 fails to read if you don't add an extra line output += "\n" else: raise ValueError("photosphere kind '{}' cannot be written to a MOOG-"\ "compatible format".format(photosphere.meta["kind"])) with open(filename, "w") as fp: fp.write(output) return None
da5a952e15984aecd914ebcf9381900924fdeff1
3,655,547
def upcomingSplits( symbol="", exactDate="", token="", version="stable", filter="", format="json", ): """This will return all upcoming estimates, dividends, splits for a given symbol or the market. If market is passed for the symbol, IPOs will also be included. https://iexcloud.io/docs/api/#upcoming-events Args: symbol (str): Symbol to look up exactDate (str): exactDate Optional. Exact date for which to get data token (str): Access token version (str): API version filter (str): filters: https://iexcloud.io/docs/api/#filter-results format (str): return format, defaults to json Returns: dict or DataFrame: result """ return _baseEvent( "splits", symbol=symbol, exactDate=exactDate, token=token, version=version, filter=filter, format=format, )
ae21f8c04bf7bf2eacd8b16aa62c9fae7750e042
3,655,548
def mu_model(u, X, U, k): """ Returns the utility of the kth player Parameters ---------- u X U k Returns ------- """ M = X.T @ X rewards = M @ u penalties = u.T @ M @ U[:, :k] * U[:, :k] return rewards - penalties.sum(axis=1)
59bce1ce8617f0e11340d1c1ab18315fd81e6925
3,655,549
def tokenizer_init(model_name): """simple wrapper for auto tokenizer""" tokenizer = AutoTokenizer.from_pretrained(model_name) return tokenizer
c54accf802fcbcf1479ccb0745266a5182edb73b
3,655,550
def insert_message(nick, message, textDirection): """ Insert record """ ins = STATE['messages_table'].insert().values( nick=nick, message=message, textDirection=textDirection) res = STATE['conn'].execute(ins) ltr = 1 if textDirection == 'ltr' else 0 rtl = 1 if textDirection == 'rtl' else 0 STATE['conn'].execute( 'update message_stats set ltr = ltr + ?, rtl = rtl + ?', ltr, rtl) return { 'id': res.lastrowid }
1163fab2342aa5e41b321055bbf75f4c23fbb031
3,655,551
from typing import Tuple from typing import Dict def process_metadata(metadata) -> Tuple[Dict[str, str], Dict[str, str]]: """ Returns a tuple of valid and invalid metadata values. """ if not metadata: return {}, {} valid_values = {} invalid_values = {} for m in metadata: key, value = m.split("=", 1) if key in supported_metadata_keys: valid_values[key] = value else: invalid_values[key] = value return valid_values, invalid_values
fbd7affaa8743d6c45bb2a02067d737dac990eb4
3,655,552
def rightOfDeciSeperatorToDeci(a): """This function only convert value at the right side of decimal seperator to decimal""" deciNum = 0 for i in range(len(a)): deciNum += (int(a[i]))*2**-(i+1) return deciNum
14cfd187758836d329ac4778a30167ddece0f2a0
3,655,553
import torch def conv(input, weight): """ Returns the convolution of input and weight tensors, where input contains sequential data. The convolution is along the sequence axis. input is of size [batchSize, inputDim, seqLength] """ output = torch.nn.functional.conv1d(input=input, weight=weight) return output
e213be11c423ff63a1ebffda55331298fcf53443
3,655,554
import torch def irr_repr(order, alpha, beta, gamma, dtype = None): """ irreducible representation of SO3 - compatible with compose and spherical_harmonics """ cast_ = cast_torch_tensor(lambda t: t) dtype = default(dtype, torch.get_default_dtype()) alpha, beta, gamma = map(cast_, (alpha, beta, gamma)) return wigner_d_matrix(order, alpha, beta, gamma, dtype = dtype)
ff054a05c2d79a4dcfc903116cefdfce4fa56c8f
3,655,555
from typing import List from typing import Optional def label_to_span(labels: List[str], scheme: Optional[str] = 'BIO') -> dict: """ convert labels to spans :param labels: a list of labels :param scheme: labeling scheme, in ['BIO', 'BILOU']. :return: labeled spans, a list of tuples (start_idx, end_idx, label) """ assert scheme in ['BIO', 'BILOU'], ValueError("unknown labeling scheme") labeled_spans = dict() i = 0 while i < len(labels): if labels[i] == 'O' or labels[i] == 'ABS': i += 1 continue else: if scheme == 'BIO': if labels[i][0] == 'B': start = i lb = labels[i][2:] i += 1 try: while labels[i][0] == 'I': i += 1 end = i labeled_spans[(start, end)] = lb except IndexError: end = i labeled_spans[(start, end)] = lb i += 1 # this should not happen elif labels[i][0] == 'I': i += 1 elif scheme == 'BILOU': if labels[i][0] == 'U': start = i end = i + 1 lb = labels[i][2:] labeled_spans[(start, end)] = lb i += 1 elif labels[i][0] == 'B': start = i lb = labels[i][2:] i += 1 try: while labels[i][0] != 'L': i += 1 end = i labeled_spans[(start, end)] = lb except IndexError: end = i labeled_spans[(start, end)] = lb break i += 1 else: i += 1 return labeled_spans
01e3a1f3d72f8ec0b1cfa2c982fc8095c06c09f8
3,655,556
from typing import Optional def get_storage_account(account_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetStorageAccountResult: """ The storage account. :param str account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :param str resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. """ __args__ = dict() __args__['accountName'] = account_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:storage/v20160501:getStorageAccount', __args__, opts=opts, typ=GetStorageAccountResult).value return AwaitableGetStorageAccountResult( access_tier=__ret__.access_tier, creation_time=__ret__.creation_time, custom_domain=__ret__.custom_domain, encryption=__ret__.encryption, id=__ret__.id, kind=__ret__.kind, last_geo_failover_time=__ret__.last_geo_failover_time, location=__ret__.location, name=__ret__.name, primary_endpoints=__ret__.primary_endpoints, primary_location=__ret__.primary_location, provisioning_state=__ret__.provisioning_state, secondary_endpoints=__ret__.secondary_endpoints, secondary_location=__ret__.secondary_location, sku=__ret__.sku, status_of_primary=__ret__.status_of_primary, status_of_secondary=__ret__.status_of_secondary, tags=__ret__.tags, type=__ret__.type)
c818e801d152f2b11bedac42bcefe322b94ab16e
3,655,557
def format_and_add(graph, info, relation, name): """ input: graph and three stirngs function formats the strings and adds to the graph """ info = info.replace(" ", "_") name = name.replace(" ", "_") inf = rdflib.URIRef(project_prefix + info) rel = rdflib.URIRef(project_prefix + relation) nm = rdflib.URIRef(project_prefix + name) graph.add((inf, rel, nm)) return None
abbe87b923d4ac37262e391a7d9a878b65e4ff41
3,655,558
import os def get_dataset(dir, batch_size, num_epochs, reshape_size, padding='SAME'): """Reads input data num_epochs times. AND Return the dataset Args: train: Selects between the training (True) and validation (False) data. batch_size: Number of examples per returned batch. num_epochs: Number of times to read the input data, or 0/None to train forever. padding: if 'SAME' , have ceil(#samples / batch_size) * epoch_nums batches if 'VALID', have floor(#samples / batch_size) * epoch_nums batches Returns: A tuple (images, labels), where: * images is a float tensor with shape [batch_size, mnist.IMAGE_PIXELS] in the range [-0.5, 0.5]. * labels is an int32 tensor with shape [batch_size] with the true label, a number in the range [0, mnist.NUM_CLASSES). This function creates a one_shot_iterator, meaning that it will only iterate over the dataset once. On the other hand there is no special initialization required. """ if not num_epochs: num_epochs = None filenames = [os.path.join(dir, i) for i in os.listdir(dir)] with tf.name_scope('input'): # TFRecordDataset opens a protobuf and reads entries line by line # could also be [list, of, filenames] dataset = tf.data.TFRecordDataset(filenames) dataset = dataset.repeat(num_epochs) # map takes a python function and applies it to every sample dataset = dataset.map(decode) dataset = dataset.map(extract) dataset = dataset.map(cast_type) dataset = dataset.map(augment) dataset = dataset.map(normalize) dataset = dataset.map(set_parameter(reshape, reshape_size=reshape_size)) # the parameter is the queue size dataset = dataset.shuffle(1000 + 3 * batch_size) dataset = dataset.batch(batch_size) return dataset
cdb47a4a4fcbe01f53a878c95755a711906224b1
3,655,559
def to_log_space(p:float, bounds: BOUNDS_TYPE): """ Interprets p as a point in a rectangle in R^2 or R^3 using Morton space-filling curve :param bounds [ (low,high), (low,high), (low,high) ] defaults to unit cube :param dim Dimension. Only used if bounds are not supplied. Very similar to "to_space" but assumes speed varies with logarithm """ assert 0 <= p <= 1 dim = len(bounds) us = list(reversed(ZCurveConventions().to_cube(zpercentile=p, dim=dim))) # 0 < us[i] < 1 return [to_log_space_1d(u, low=b[0], high=b[1]) for u, b in zip(us, bounds)]
2ab53687481100bda229456b8aa5fad4d8ef817d
3,655,560
def rsi_tradingview(ohlc: pd.DataFrame, period: int = 14, round_rsi: bool = True): """ Implements the RSI indicator as defined by TradingView on March 15, 2021. The TradingView code is as follows: //@version=4 study(title="Relative Strength Index", shorttitle="RSI", format=format.price, precision=2, resolution="") len = input(14, minval=1, title="Length") src = input(close, "Source", type = input.source) up = rma(max(change(src), 0), len) down = rma(-min(change(src), 0), len) rsi = down == 0 ? 100 : up == 0 ? 0 : 100 - (100 / (1 + up / down)) plot(rsi, "RSI", color=#8E1599) band1 = hline(70, "Upper Band", color=#C0C0C0) band0 = hline(30, "Lower Band", color=#C0C0C0) fill(band1, band0, color=#9915FF, transp=90, title="Background") :param ohlc: :param period: :param round_rsi: :return: an array with the RSI indicator values """ delta = ohlc["close"].diff() up = delta.copy() up[up < 0] = 0 up = pd.Series.ewm(up, alpha=1/period).mean() down = delta.copy() down[down > 0] = 0 down *= -1 down = pd.Series.ewm(down, alpha=1/period).mean() rsi = np.where(up == 0, 0, np.where(down == 0, 100, 100 - (100 / (1 + up / down)))) return np.round(rsi, 2) if round_rsi else rsi
5b9d96d5e174d6534c2d32a3ece83a5fb09b28ba
3,655,561
def bin_by(x, y, nbins=30): """Bin x by y, given paired observations of x & y. Returns the binned "x" values and the left edges of the bins.""" bins = np.linspace(y.min(), y.max(), nbins+1) # To avoid extra bin for the max value bins[-1] += 1 indicies = np.digitize(y, bins) output = [] for i in xrange(1, len(bins)): output.append(x[indicies==i]) # Just return the left edges of the bins bins = bins[:-1] return output, bins
ff0f9e79f3561cabf2a6498e31a78836be38bfb3
3,655,562
def calc_stats_with_cumsum(df_tgt, list_tgt_status, dict_diff, calc_type=0): """ Calculate statistics with cumulative sum of target status types. \n "dict_diff" is dictionaly of name key and difference value. ex) {"perweek": 7, "per2week": 14} \n calc_type=0: calculate for each simulation result. \n calc_type=1: calculate for each daycount result. """ # Prepare front side of dataframe. if calc_type == 0: sim_num = len(df_tgt[list_tgt_status[0]].columns) output_df = pd.DataFrame([i for i in range(sim_num)], columns=["sim_num"]) else: output_df = df_tgt.iloc[:, :2].copy() # Calculate statistics with cumulative sum. for one_status in list_tgt_status: # Extract target status data. one_tgt_df = df_tgt[one_status] # Calculate the days difference in dict_diff. dict_df_diff = {} for one_key, one_diff in dict_diff.items(): temp_df_diff = one_tgt_df.cumsum().diff(one_diff) temp_df_diff.iloc[one_diff-1, :] = one_tgt_df.cumsum().iloc[one_diff-1, :] dict_df_diff[one_key] = temp_df_diff if calc_type == 0: # Each simulation. output_df.loc[:, "{}_perday_mean".format(one_status)] = one_tgt_df.T.mean(axis=1).values output_df.loc[:, "{}_perday_std".format(one_status)] = one_tgt_df.T.std(axis=1).values output_df.loc[:, "{}_perday_min".format(one_status)] = one_tgt_df.T.min(axis=1).values output_df.loc[:, "{}_perday_quartile1".format(one_status)] = one_tgt_df.T.quantile(q=0.25, axis=1).values output_df.loc[:, "{}_perday_median".format(one_status)] = one_tgt_df.T.median(axis=1).values output_df.loc[:, "{}_perday_quartile3".format(one_status)] = one_tgt_df.T.quantile(q=0.75, axis=1).values output_df.loc[:, "{}_perday_max".format(one_status)] = one_tgt_df.T.max(axis=1).values for one_key, one_diff in dict_diff.items(): output_df.loc[:, "{}_{}_mean".format(one_status, one_key)] = dict_df_diff[one_key].T.mean(axis=1).values output_df.loc[:, "{}_{}_std".format(one_status, one_key)] = dict_df_diff[one_key].T.std(axis=1).values output_df.loc[:, "{}_{}_min".format(one_status, one_key)] = dict_df_diff[one_key].T.min(axis=1).values output_df.loc[:, "{}_{}_quartile1".format(one_status, one_key)] = dict_df_diff[one_key].T.quantile(q=0.25, axis=1).values output_df.loc[:, "{}_{}_median".format(one_status, one_key)] = dict_df_diff[one_key].T.median(axis=1).values output_df.loc[:, "{}_{}_quartile3".format(one_status, one_key)] = dict_df_diff[one_key].T.quantile(q=0.75, axis=1).values output_df.loc[:, "{}_{}_max".format(one_status, one_key)] = dict_df_diff[one_key].T.max(axis=1).values else: # Each day. output_df.loc[:, "{}_perday_mean".format(one_status)] = one_tgt_df.mean(axis=1) output_df.loc[:, "{}_perday_std".format(one_status)] = one_tgt_df.std(axis=1) output_df.loc[:, "{}_perday_min".format(one_status)] = one_tgt_df.min(axis=1) output_df.loc[:, "{}_perday_quartile1".format(one_status)] = one_tgt_df.quantile(q=0.25, axis=1) output_df.loc[:, "{}_perday_median".format(one_status)] = one_tgt_df.median(axis=1) output_df.loc[:, "{}_perday_quartile3".format(one_status)] = one_tgt_df.quantile(q=0.75, axis=1) output_df.loc[:, "{}_perday_max".format(one_status)] = one_tgt_df.max(axis=1) for one_key, one_diff in dict_diff.items(): # Note: Processing is well done, but numpy warning occurs. # Note: Because all the data of first few days in "perweek" and "per2week" become np.NaN. output_df.loc[:, "{}_{}_mean".format(one_status, one_key)] = dict_df_diff[one_key].mean(axis=1) output_df.loc[:, "{}_{}_std".format(one_status, one_key)] = dict_df_diff[one_key].std(axis=1) output_df.loc[:, "{}_{}_min".format(one_status, one_key)] = dict_df_diff[one_key].min(axis=1) output_df.loc[:, "{}_{}_quartile1".format(one_status, one_key)] = dict_df_diff[one_key].quantile(q=0.25, axis=1) output_df.loc[:, "{}_{}_median".format(one_status, one_key)] = dict_df_diff[one_key].median(axis=1) output_df.loc[:, "{}_{}_quartile3".format(one_status, one_key)] = dict_df_diff[one_key].quantile(q=0.75, axis=1) output_df.loc[:, "{}_{}_max".format(one_status, one_key)] = dict_df_diff[one_key].max(axis=1) return output_df
2dcdd95b8723f250a24afae548b8fd4ce9b5f51c
3,655,563
def _normalize_handler_method(method): """Transforms an HTTP method into a valid Python identifier.""" return method.lower().replace("-", "_")
aad23dba304ba39708e4415de40019479ccf0195
3,655,564
def getContentType(the_type): """ Get the content type based on the type name which is in settings :param the_type: :return: """ if the_type not in settings.XGDS_MAP_SERVER_JS_MAP: return None the_model_name = settings.XGDS_MAP_SERVER_JS_MAP[the_type]['model'] splits = the_model_name.split('.') content_type = ContentType.objects.get(app_label=splits[0], model=splits[1]) return content_type
25031eb0dce8fe7828f94bdbc99d5c574f0e5ea6
3,655,565
import scipy import math import numpy def calculateGravityAcceleration(stateVec, epoch, useGeoid): """ Calculate the acceleration due to gravtiy acting on the satellite at a given state (3 positions and 3 velocities). Ignore satellite's mass, i.e. use a restricted two-body problem. Arguments ---------- numpy.ndarray of shape (1,6) with three Cartesian positions and three velocities in an inertial reference frame in metres and metres per second, respectively. epoch - datetime corresponding to the UTC epoch at which the rate of change is to be computed. useGeoid - bool, whether to compute the gravity by using EGM geopotential expansion (True) or a restricted two-body problem (False). Returns ---------- numpy.ndarray of shape (1,3) with three Cartesian components of the acceleration in m/s2 given in an inertial reference frame. """ if useGeoid: " Compute geocentric co-latitude, longitude & radius. " colatitude,longitude,r = calculateGeocentricLatLon(stateVec, epoch) " Find the gravitational potential at the desired point. " # See Eq. 1 in Cunningham (1996) for the general form of the geopotential expansion. gravitationalPotential = 0.0 # Potential of the gravitational field at the stateVec location. for degree in range(0, MAX_DEGREE+1): # Go through all the desired orders and compute the geoid corrections to the sphere. temp = 0. # Contribution to the potential from the current degree and all corresponding orders. legendreCoeffs = scipy.special.legendre(degree) # Legendre polynomial coefficients corresponding to the current degree. for order in range(degree+1): # Go through all the orders corresponding to the currently evaluated degree. if (abs(colatitude-math.pi/2. <= 1E-16)) or (abs(colatitude-3*math.pi/2. <= 1E-16)): # We're at the equator, cos(colatitude) will be zero and things will break. temp += legendreCoeffs[order] * 1.0 * (Ccoeffs[degree][order]*math.cos( order*longitude ) + Scoeffs[degree][order]*math.sin( order*longitude )) else: temp += legendreCoeffs[order] * math.cos(colatitude) * (Ccoeffs[degree][order]*math.cos( order*longitude ) + Scoeffs[degree][order]*math.sin( order*longitude )) gravitationalPotential += math.pow(EarthRadius/r, degree) * temp # Add the contribution from the current degree. gravitationalPotential *= GM/r # Final correction (*GM for acceleration, /r to get r^(n+1) in the denominator). " Compute the acceleration due to the gravity potential at the given point. " # stateVec is defined w.r.t. Earth's centre of mass, so no need to account # for the geoid shape here. gravityAcceleration = gravitationalPotential/r* (-1.*stateVec[:3]/r) # First divide by the radius to get the acceleration value, then get the direction (towards centre of the Earth). else: r = numpy.linalg.norm(stateVec[:3]) # Earth-centred radius. gravityAcceleration = GM/(r*r) * (-1.*stateVec[:3]/r) # First compute the magnitude, then get the direction (towards centre of the Earth). return gravityAcceleration
a2ea0ff1c8feb9f0a678911130e3ca6e96838b7c
3,655,566
import math def points_on_line(r0, r1, spacing): """ Coordinates of points spaced `spacing` apart between points `r0` and `r1`. The dimensionality is inferred from the length of the tuples `r0` and `r1`, while the specified `spacing` will be an upper bound to the actual spacing. """ dim = len(r0) v = np.array(r1) - np.array(r0) length = np.linalg.norm(v) steps = math.ceil(1.0 * length / spacing) + 1 points = np.zeros((steps, dim)) for i in xrange(dim): points[:, i] = np.linspace(r0[i], r1[i], steps) return points
eb2795cba55566823632c75b7a72f34731b5e36e
3,655,567
def index() -> Response: """ Return application index. """ return APP.send_static_file("index.html")
37d299ec548fe4f83d8f55f063e3bf9f5fb64c4e
3,655,568
def compare_files(og_maxima,new_maxima, compare_file, until=100, divisor=1000): """ given input of the maxima of a graph, compare it to the maxima from data100.txt maxima will be a series of x,y coordinates corresponding to the x,y values of a maximum from a file. First see if there is a maxima with the same x value as data100.txt, if there is not expand the x value ranges until a maximum is found. Find out what this dx is for the new file. Note do it for all the peaks of data100.txt at once, so that if it finds a peak for the 2nd peak of data100.txt, it doesn't also assign this to the first peak as well. kewyword arguments until and divisor: for the dx loop the loop will increase dx from 0 until until/divisor in steps of 1/divisor eg for default values until=100 and divisor=1000, it will increase dx from 0 until 100/1000 (=0.1) in steps of 1/1000 (=0.001) changing these arguments will lead to more or less peak matching, which could affect the results of the calculation significantly. """ if compare_file == 'data100.txt': return None # Whenever there is a match we will iterate this, so that we can compare #this at the end? number_of_matches = 0 # Initiate two lists to contain all the dx and dy values for each peak that # is matched by the code. dx_values = [] dy_values = [] # Loop through the original maxima list (supplied as an argument) # and also loop through the maxima from the file being compared. for og_idx,og_val in enumerate(og_maxima.T[0]): for idx,val in enumerate(new_maxima.T[0]): #this will loop dx from 0 to (until)/divisor in steps of 1/divisor for x in range(until+1): dx = x/divisor # For the current value of dx see if there is a matching # peak between the data100.txt file and the file being compared. # There is a match if the val from the compare_file is within the range # of the original peak x value +/- the dx value. if og_val - dx <= val <= og_val + dx: #if there is a match print some logging information to the console. print(f"Peak Match : index {og_idx} from data100.txt and {idx} from {compare_file}") print(f"values are {og_val} and {val} respectively") # iterate the number of peak matches between the two files being compared. number_of_matches+=1 # append the current dx value to our running list which will keep track # of the dx values for all the matched peaks dx_values.append(dx) # Get the absolute value of the difference in y values (dy) dy = abs(og_maxima.T[1][og_idx] - new_maxima.T[1][idx]) dy_values.append(dy) #breaks us out of the "for x in range" loop break # If the for loop (for x in range ...) isn't terminated by a break statement # I.E. we didn't get a match else: "move onto next peak in new_maxima" continue # If the for loop does get terminated by the break statement # I.E. we get a match """compare next peak in og_maxima, IE break the new_maxima loop and move onto next in the original maxima list""" break # Calculate the absolute value of the difference in number of peaks # between the two data files different_no_peaks = abs(len(new_maxima) - len(og_maxima)) return [dx_values, dy_values, number_of_matches, different_no_peaks]
86fe2ffd02785d41284b8edfef44d0dc0e097c90
3,655,569
import _datetime def parseDatetimetz(string, local=True): """Parse the given string using :func:`parse`. Return a :class:`datetime.datetime` instance. """ y, mo, d, h, m, s, tz = parse(string, local) s, micro = divmod(s, 1.0) micro = round(micro * 1000000) if tz: offset = _tzoffset(tz, None) / 60 _tzinfo = tzinfo(offset) else: _tzinfo = None return _datetime(y, mo, d, int(h), int(m), int(s), int(micro), _tzinfo)
ce95f42f568b50ffcdc0084dc659a1d5fd0233ff
3,655,570
def median_ratio_flux(spec, smask, ispec, iref, nsig=3., niter=5, **kwargs): """ Calculate the median ratio between two spectra Parameters ---------- spec smask: True = Good, False = Bad ispec iref nsig niter kwargs Returns ------- med_scale : float Median of reference spectrum to input spectrum """ # Setup fluxes, sigs, wave = unpack_spec(spec) # Mask okm = smask[iref,:] & smask[ispec,:] # Insist on positive values okf = (fluxes[iref,:] > 0.) & (fluxes[ispec,:] > 0) allok = okm & okf # Ratio med_flux = fluxes[iref,allok] / fluxes[ispec,allok] # Clip mn_scale, med_scale, std_scale = stats.sigma_clipped_stats(med_flux, sigma=nsig, maxiters=niter, **kwargs) # Return return med_scale
28872a548ce7569f17f155242aaf4377bf0c1b63
3,655,571
def get_tags_from_event(): """List of tags Arguments: event {dict} -- Lambda event payload Returns: list -- List of AWS tags for use in a CFT """ return [ { "Key": "OwnerContact", "Value": request_event['OwnerContact'] } ]
e7a0f7da62a4904dbfb716c57b6811053aff3497
3,655,572
from typing import List def _verify(symbol_table: SymbolTable, ontology: _hierarchy.Ontology) -> List[Error]: """Perform a battery of checks on the consistency of ``symbol_table``.""" errors = _verify_there_are_no_duplicate_symbol_names(symbol_table=symbol_table) if len(errors) > 0: return errors errors.extend( _verify_with_model_type_for_classes_with_at_least_one_concrete_descendant( symbol_table=symbol_table ) ) errors.extend( _verify_all_the_function_calls_in_the_contracts_are_valid( symbol_table=symbol_table ) ) errors.extend( _verify_all_non_optional_properties_are_initialized_in_the_constructor( symbol_table=symbol_table ) ) errors.extend( _verify_orders_of_constructors_arguments_and_properties_match( symbol_table=symbol_table ) ) errors.extend( _verify_all_argument_references_occur_in_valid_context( symbol_table=symbol_table ) ) errors.extend(_verify_constraints_and_constraintrefs(symbol_table=symbol_table)) errors.extend(_verify_description_rendering_with_smoke(symbol_table=symbol_table)) errors.extend(_verify_only_simple_type_patterns(symbol_table=symbol_table)) if len(errors) > 0: return errors _assert_interfaces_defined_correctly(symbol_table=symbol_table, ontology=ontology) _assert_all_class_inheritances_defined_an_interface(symbol_table=symbol_table) _assert_self_not_in_concrete_descendants(symbol_table=symbol_table) return errors
da9dd12f01107a0c0ea1a8b2df1aa2fb543391ab
3,655,573
def gsl_eigen_symmv_alloc(*args, **kwargs): """gsl_eigen_symmv_alloc(size_t n) -> gsl_eigen_symmv_workspace""" return _gslwrap.gsl_eigen_symmv_alloc(*args, **kwargs)
54384bfa9787b9a337ad3b9e2d9ea211769238d4
3,655,574
def add_poll_answers(owner, option): """ Add poll answer object. Matching user and option is considered same. :param owner: User object. :param option: Chosen poll option. :return: Poll answer object, Boolean (true, if created). """ ''' owner = models.ForeignKey(User, related_name='poll_answers', on_delete=models.CASCADE) answer = models.ForeignKey(PollOption, related_name='answers', on_delete=models.CASCADE) ''' created = False try: a = PollAnswer.objects.get(owner=owner, answer=option) except PollAnswer.DoesNotExist: a = PollAnswer(owner=owner, answer=option) a.save() return a, created
ac667fbfb47aeb7d2450a3d698b0b678c3bdfdbc
3,655,575
def calculate_rrfdi ( red_filename, nir_filename ): """ A function to calculate the Normalised Difference Vegetation Index from red and near infrarred reflectances. The reflectance data ought to be present on two different files, specified by the varaibles `red_filename` and `nir_filename`. The file format ought to be recognised by GDAL """ g_red = gdal.Open ( red_filename ) red = g_red.ReadAsArray() g_nir = gdal.Open ( nir_filename ) nir = g_nir.ReadAsArray() if ( g_red.RasterXSize != g_nir.RasterXSize ) or \ ( g_red.RasterYSize != g_nir.RasterYSize ): print "ERROR: Input datasets do't match!" print "\t Red data shape is %dx%d" % ( red.shape ) print "\t NIR data shape is %dx%d" % ( nir.shape ) sys.exit ( -1 ) passer = True rrfdi = np.where ( passer, (1.*red - 1.*nir ) / ( 1.*nir + 1.*red ), -999 ) return rrfdi*(-1)
3b8f4d7eadceb38b7f874bfe0a56827f7a8aab09
3,655,576
import sys def retry_on_failure(retries=NO_RETRIES): """Decorator which runs a test function and retries N times before actually failing. """ def logfun(exc): print("%r, retrying" % exc, file=sys.stderr) # NOQA return retry(exception=AssertionError, timeout=None, retries=retries, logfun=logfun)
cfd1427001036597e99cb27b3ce16b4edcfae8ba
3,655,577
import argparse def command_line(): """Generate an Argument Parser object to control the command line options """ parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("-w", "--webdir", dest="webdir", help="make page and plots in DIR", metavar="DIR", default=None) parser.add_argument("-s", "--samples", dest="samples", help="Posterior samples hdf5 file", nargs='+', default=None) parser.add_argument("--labels", dest="labels", help="labels used to distinguish runs", nargs='+', default=None) parser.add_argument("--prior", dest="prior", choices=["population", "default", "both"], default="both", help=("Prior to use when calculating source " "classification probabilities")) parser.add_argument("--plot", dest="plot", help="name of the plot you wish to make", default="bar", choices=["bar", "mass_1_mass_2"]) return parser
f1463f291cc99acc66cb1fb46d1be0a7ef60e9ca
3,655,578
import re def strip_price(header_list): """input a list of tag-type values and return list of strings with surrounding html characters removed""" match_obs = [] regex = '\$(((\d+).\d+)|(\d+))' string_list = []#['' for item in range(len(header_list))] for item in range(len(header_list)): match_obs.append(re.search(regex, str(header_list[item]))) for i in range(len(match_obs)): #print(match_obs[i]) string_list.append(match_obs[i].group(1)) #print(string_list) return string_list
7b3d90416e44f8aa61ababc0e7b68f82ae754413
3,655,579
import functools def module(input, output, version): """A decorator which turn a function into a module""" def decorator(f): class Wrapper(Module): def __init__(self): super().__init__(input, output, version) @property def name(self): """The module's name""" return f.__name__ def execute(self, *args, **kwargs): return f(*args, **kwargs) wrapper = Wrapper() return functools.wraps(f)(wrapper) return decorator
b7d5afcaa8fa52411024f84f979891d19ccf60c0
3,655,580
def compile_modules_to_ir( result: BuildResult, mapper: genops.Mapper, compiler_options: CompilerOptions, errors: Errors, ) -> ModuleIRs: """Compile a collection of modules into ModuleIRs. The modules to compile are specified as part of mapper's group_map. Returns the IR of the modules. """ deser_ctx = DeserMaps({}, {}) modules = {} # Process the graph by SCC in topological order, like we do in mypy.build for scc in sorted_components(result.graph): scc_states = [result.graph[id] for id in scc] trees = [st.tree for st in scc_states if st.id in mapper.group_map and st.tree] if not trees: continue fresh = all(id not in result.manager.rechecked_modules for id in scc) if fresh: load_scc_from_cache(trees, result, mapper, deser_ctx) else: scc_ir = compile_scc_to_ir(trees, result, mapper, compiler_options, errors) modules.update(scc_ir) return modules
e2ea8a87a1ed2450e4c8ed99c7ca8a3142568f45
3,655,581
def minutes_to_restarttime(minutes) : """ converts an int meaning Minutes after midnight into a restartTime string understood by the bos command """ if minutes == -1 : return "never" pod = "am" if minutes > 12*60 : pod = "pm" minutes -= 12*60 time = "%d:%02d %s" % (minutes / 60, minutes % 60, pod) return time
6d7807cebb7a474553dda8eadfd27e5ce7b2a657
3,655,582
import tqdm def ccm_test(x, y,emb_dim = "auto", l_0 = "auto", l_1 = "auto", tau=1, n=10,mean_num = 10,max_dim = 10): """ estimate x from y to judge x->y cause :param x: :param y: :param l_0: :param l_1: :param emb_dim: :param tau: :param n: :return: """ if emb_dim == "auto": emb_dim = decide_dim(x,y) if l_0 == "auto": l_0 = int(np.ceil((len(x) - emb_dim + 1) * 0.1)) if l_1 == "auto": l_1 = int(np.ceil((len(x) - emb_dim + 1) * 0.9)) ys = twin_surrogate(y, emb_dim,num=n) raw_rhos = [] rhos = [] max_length = len(ys[0]) for i in tqdm(range(n)): mean = 0 for j in range(mean_num): rho_0, _ = estimate_using_bootstrap(x, y, length=l_0, emb_dim=emb_dim, tau=tau) rho_1, _ = estimate_using_bootstrap(x, y, length=l_1, emb_dim=emb_dim, tau=tau) rho_s_0, _ = estimate_from_emb_random(x, ys[i], length=l_0, emb_dim=emb_dim, tau=tau, max_length = max_length) rho_s_1, _ = estimate_from_emb_random(x, ys[i], length=l_1, emb_dim=emb_dim, tau=tau, max_length = max_length) raw_rhos.append([rho_0, rho_1, rho_s_0, rho_s_1]) mean += rho_1 -rho_0 -(rho_s_1 - rho_s_0 ) rhos.append(mean/mean_num) rhos = np.array(rhos) p = 1 - (len(rhos[rhos>0]) / n) return { "p_value" :p, "rhos" :rhos, "raw_rhos":raw_rhos }
c03a05e62df36910ea05e361c9683b60befc1b9c
3,655,583
def make_indiv_spacing(subject, ave_subject, template_spacing, subjects_dir): """ Identifies the suiting grid space difference of a subject's volume source space to a template's volume source space, before a planned morphing takes place. Parameters: ----------- subject : str Subject ID. ave_subject : str Name or ID of the template brain, e.g., fsaverage. template_spacing : float Grid spacing used for the template brain. subjects_dir : str Path to the subjects directory. Returns: -------- trans : SourceEstimate The generated source time courses. """ fname_surf = op.join(subjects_dir, subject, 'bem', 'watershed', '%s_inner_skull_surface' % subject) fname_surf_temp = op.join(subjects_dir, ave_subject, 'bem', 'watershed', '%s_inner_skull_surface' % ave_subject) surf = mne.read_surface(fname_surf, return_dict=True, verbose='ERROR')[-1] surf_temp = mne.read_surface(fname_surf_temp, return_dict=True, verbose='ERROR')[-1] mins = np.min(surf['rr'], axis=0) maxs = np.max(surf['rr'], axis=0) mins_temp = np.min(surf_temp['rr'], axis=0) maxs_temp = np.max(surf_temp['rr'], axis=0) # Check which dimension (x,y,z) has greatest difference diff = (maxs - mins) diff_temp = (maxs_temp - mins_temp) # print additional information # for c, mi, ma, md in zip('xyz', mins, maxs, diff): # logger.info(' %s = %6.1f ... %6.1f mm --> Difference: %6.1f mm' # % (c, mi, ma, md)) # for c, mi, ma, md in zip('xyz', mins_temp, maxs_temp, diff_temp): # logger.info(' %s = %6.1f ... %6.1f mm --> Difference: %6.1f mm' # % (c, mi, ma, md)) prop = (diff / diff_temp).mean() indiv_spacing = (prop * template_spacing) print(" '%s' individual-spacing to '%s'[%.2f] is: %.4fmm" % ( subject, ave_subject, template_spacing, indiv_spacing)) return indiv_spacing
cbe5120093fdf78913c2386820d3388aca0724d1
3,655,584
def sqlpool_blob_auditing_policy_update( cmd, instance, state=None, storage_account=None, storage_endpoint=None, storage_account_access_key=None, storage_account_subscription_id=None, is_storage_secondary_key_in_use=None, retention_days=None, audit_actions_and_groups=None, is_azure_monitor_target_enabled=None): """ Updates a sql pool blob auditing policy. Custom update function to apply parameters to instance. """ _audit_policy_update(cmd, instance, state, storage_account, storage_endpoint, storage_account_access_key, storage_account_subscription_id, is_storage_secondary_key_in_use, retention_days, audit_actions_and_groups, is_azure_monitor_target_enabled) return instance
e99013545172eb03ad5dddeefdb0b36b7bb2edd7
3,655,585
from typing import Optional import os def from_system() -> Optional[Config]: """ Config-factory; producing a Config based on environment variables and when environment variables aren't set, fall back to the ``cij_root`` helper. """ conf = Config() # Setup configuration using environment variable definitions paths_from_evars = cij.paths_from_env( "CIJ", [f.upper() for f in CFG_FIELDS] ) missing = False for key, value in paths_from_evars.items(): if value is None: missing = True break setattr(conf, key.lower(), value) if not missing: return conf # Setup configuration using 'cij_root' with Popen(["cij_root"], stdout=PIPE) as proc: out, _ = proc.communicate() if proc.returncode: return None cij_root = out.decode("utf-8").strip() if not os.path.exists(cij_root): return None for field in CFG_FIELDS: setattr(conf, field, os.path.join(cij_root, field)) return conf
6fb093d33ab44851b8027642b26f0e116b17af56
3,655,586
def format_search_filter(model_fields): """ Creates an LDAP search filter for the given set of model fields. """ ldap_fields = convert_model_fields_to_ldap_fields(model_fields); ldap_fields["objectClass"] = settings.LDAP_AUTH_OBJECT_CLASS search_filters = import_func(settings.LDAP_AUTH_FORMAT_SEARCH_FILTERS)(ldap_fields) return "(&{})".format("".join(search_filters));
b6c5c17b566c583a07ef5e9f3ec61cb868f6f8ab
3,655,587
def multiprocess(func=None, pycsp_host='', pycsp_port=None): """ @multiprocess(pycsp_host='', pycsp_port=None) @multiprocess decorator for making a function into a CSP MultiProcess factory. Each generated CSP process is implemented as a single OS process. All objects and variables provided to multiprocesses through the parameter list must support pickling. Usage: >>> @multiprocess >>> def filter(dataIn, dataOut, tag, debug=False): >>> pass # perform filtering >>> >>> P = filter(A.reader(), B.writer(), "42", debug=True) or >>> @multiprocess(pycsp_host="localhost", pycsp_port=9998) >>> def filter(dataIn, dataOut, tag, debug=False): >>> pass # perform filtering >>> >>> P = filter(A.reader(), B.writer(), "42", debug=True) The CSP MultiProcess factory returned by the @multiprocess decorator: func(*args, **kwargs) """ if func: def _call(*args, **kwargs): return MultiProcess(func, *args, **kwargs) _call.__name__ = func.__name__ return _call else: def wrap_process(func): def _call(*args, **kwargs): kwargs['pycsp_host']= pycsp_host kwargs['pycsp_port']= pycsp_port return MultiProcess(func, *args, **kwargs) _call.__name__ = func.__name__ return _call return wrap_process
ec1d5c14a7eb60af0cd351c15c1ec0724e577fb0
3,655,588
def normalize_img(img): """ normalize image (caffe model definition compatible) input: opencv numpy array image (h, w, c) output: dnn input array (c, h, w) """ scale = 1.0 mean = [104,117,123] img = img.astype(np.float32) img = img * scale img -= mean img = np.transpose(img, (2, 0, 1)) return img
dac9ec8c942d70fb98f0b0989e9643f80dde5448
3,655,589
from typing import List from typing import Any def pages(lst: List[Any], n: int, title: str, *, fmt: str = "```%s```", sep: str = "\n") -> List[discord.Embed]: # noinspection GrazieInspection """ Paginates a list into embeds to use with :class:disputils.BotEmbedPaginator :param lst: the list to paginate :param n: the number of elements per page :param title: the title of the embed :param fmt: a % string used to format the resulting page :param sep: the string to join the list elements with :return: a list of embeds """ l: List[List[str]] = group_list([str(i) for i in lst], n) pgs = [sep.join(page) for page in l] return [ discord.Embed( title=f"{title} - {i + 1}/{len(pgs)}", description=fmt % pg ) for i, pg in enumerate(pgs) ]
f8d9471f2d254b63754128a2e2762520f858edbd
3,655,590
import re def Substitute_Percent(sentence): """ Substitutes percents with special token """ sentence = re.sub(r'''(?<![^\s"'[(])[+-]?[.,;]?(\d+[.,;']?)+%(?![^\s.,;!?'")\]])''', ' @percent@ ', sentence) return sentence
61bc6970af09703ef018bfcc9378393241ae21ed
3,655,591
def ready_df1(df): """ This function prepares the dataframe for EDA. """ df = remove_columns(df, columns=[ 'nitrogen_dioxide', 'nitrogen_dioxide_aqi', 'sulfur_dioxide', 'sulfur_dioxide_aqi', 'trioxygen', 'trioxygen_aqi', 'volatile', 'volatile_aqi', ]) df['fahrenheit'] = 9.0/5.0 * df['temperature'] + 32 df = df.drop(columns=['temperature']) df = df.rename(index=str, columns={'fahrenheit':'temperature'}) df['carbon_monoxide'] = df['carbon_monoxide'].fillna(0).astype(int) df['timestamp'] = pd.to_datetime(df['timestamp']) return df
3776c571d3eabb39ce27017ac1481e2bd469f68c
3,655,592
def _wrap(func, args, flip=True): """Return partial function with flipped args if flip=True :param function func: Any function :param args args: Function arguments :param bool flip: If true reverse order of arguments. :return: Returns function :rtype: function """ @wraps(func) def flippedfunc(*args): return func(*args[::-1]) return partial(flippedfunc if flip else func, args)
9ac5a814840f821260d46df64b60cd6d71185dbb
3,655,593
def compute_kkt_optimality(g, on_bound): """Compute the maximum violation of KKT conditions.""" g_kkt = g * on_bound free_set = on_bound == 0 g_kkt[free_set] = np.abs(g[free_set]) return np.max(g_kkt)
216cf110d64d1fd8ec89c0359ebaa9b4e4dcc773
3,655,594
def replace_cipd_revision(file_path, old_revision, new_revision): """Replaces cipd revision strings in file. Args: file_path: Path to file. old_revision: Old cipd revision to be replaced. new_revision: New cipd revision to use as replacement. Returns: Number of replaced occurrences. Raises: IOError: If no occurrences were found. """ with open(file_path) as f: contents = f.read() num = contents.count(old_revision) if not num: raise IOError('Did not find old CIPD revision {} in {}'.format( old_revision, file_path)) newcontents = contents.replace(old_revision, new_revision) with open(file_path, 'w') as f: f.write(newcontents) return num
f429e74f0dd7180ab4bf90d662f8042b958b81f8
3,655,595
def spectral_derivs_plot(spec_der, contrast=0.1, ax=None, freq_range=None, fft_step=None, fft_size=None): """ Plot the spectral derivatives of a song in a grey scale. spec_der - The spectral derivatives of the song (computed with `spectral_derivs`) or the song itself contrast - The contrast of the plot ax - The matplotlib axis where the plot must be drawn, if None, a new axis is created freq_range - The amount of frequency to plot, usefull only if `spec_der` is a song. Given to `spectral_derivs` ov_params - The Parameters to override, passed to `spectral_derivs` """ if spec_der.ndim == 1: spec_der = spectral_derivs(spec_der, freq_range, fft_step, fft_size) ax = sns.heatmap(spec_der.T, yticklabels=50, xticklabels=50, vmin=-contrast, vmax=contrast, ax=ax, cmap='Greys', cbar=False) ax.invert_yaxis() return ax
5b683d8c49e9bad2fd1fa029af6bc5660bc0e936
3,655,596
from operator import add from operator import sub def scale_center(pnt, fac, center): """scale point in relation to a center""" return add(scale(sub(pnt, center), fac), center)
f69ca54e25d5eb8008b8f08c40500f236005e093
3,655,597
def gopherize_feed(feed_url, timestamp=False, plug=True): """Return a gophermap string for the feed at feed_url.""" return gopherize_feed_object(feedparser.parse(feed_url), timestamp, plug)
aaf4d35044c873e7d0f1a43c4d001ebe5e30714b
3,655,598
def first_sunday_of_month(datetime: pendulum.DateTime) -> pendulum.DateTime: """Get the first Sunday of the month based on a given datetime. :param datetime: the datetime. :return: the first Sunday of the month. """ return datetime.start_of("month").first_of("month", day_of_week=7)
88c517d1d38785c0d8f9c0f79f3d34199dfceb1e
3,655,599