content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def compact_axis_angle_from_matrix(R): """Compute compact axis-angle from rotation matrix. This operation is called logarithmic map. Note that there are two possible solutions for the rotation axis when the angle is 180 degrees (pi). We usually assume active rotations. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z). The angle is constrained to [0, pi]. """ a = axis_angle_from_matrix(R) return compact_axis_angle(a)
a7493a5ed1c622b9cbec6e9f0771e62f7f4712e2
3,656,600
def _generate_IPRange(Range): """ IP range to CIDR and IPNetwork type Args: Range: IP range Returns: an array with CIDRs """ if len(Range.rsplit('.')) == 7 and '-' in Range and '/' not in Range: if len(Range.rsplit('-')) == 2: start_ip, stop_ip = Range.rsplit('-') if isIP(start_ip) and isIP(stop_ip): return iprange_to_cidrs(start_ip, stop_ip) else: return [] else: return [] elif len(Range.rsplit('.')) == 4 and '-' not in Range and '/' in Range: return IPNetwork(Range) else: return []
d86f8db8e87313b12f35669ee25cc3f3d229c631
3,656,601
def is_dict_homogeneous(data): """Returns True for homogeneous, False for heterogeneous. An empty dict is homogeneous. ndarray behaves like collection for this purpose. """ if len(data) == 0: return True k0, v0 = next(iter(data.items())) ktype0 = type(k0) vtype0 = type(v0) if ktype0 in collection_types or ktype0 == np.ndarray or vtype0 in collection_types or vtype0 == np.ndarray: return False for k, v in data.items(): ktype = type(k) vtype = type(v) if (ktype != ktype0 or ktype in collection_types or ktype == np.ndarray) or \ (vtype != vtype0 or vtype in collection_types or vtype == np.ndarray): return False return True
921e66639cd6a8584e99e14852158594b1001ef9
3,656,602
from typing import Union from typing import Callable from re import T from typing import Generator from typing import Any def translate(item: Union[Callable[P, T], Request]) -> Union[Generator[Any, Any, None], Callable[P, T]]: """Override current language with one from language header or 'lang' parameter. Can be used as a context manager or a decorator. If a function is decorated, one of the parameters for the function must be a `rest_framework.Request` object. """ if not isinstance(item, Request): @wraps(item) def decorator(*args: P.args, **kwargs: P.kwargs) -> Any: request = None for arg in chain(args, kwargs.values()): if isinstance(arg, Request): request = arg break if request is None: raise ValueError("No Request-object in function parameters.") with override(get_language(request)): return item(*args, **kwargs) # type: ignore return decorator @contextmanager def context_manager(request: Request) -> Generator[Any, Any, None]: with override(get_language(request)): yield return context_manager(item)
5042cc77efb1477444f8f9611055fb3e183cf3d3
3,656,603
def get_all(isamAppliance, check_mode=False, force=False, ignore_error=False): """ Retrieving the current runtime template files directory contents """ return isamAppliance.invoke_get("Retrieving the current runtime template files directory contents", "/mga/template_files?recursive=yes", ignore_error=ignore_error)
9ff291b63471b57b110885c35939c8afe3d2f0d8
3,656,604
from sys import path def build_path(dirpath, outputfile): """ Build function """ #some checks if not path.exists(dirpath): print("Path does not exist!") return 1 if not path.isdir(dirpath): print("Path is not folder") return 1 #for now SQLite try: output = create_engine("sqlite:///{}".format(outputfile)) except: print("Cannot create output file") return 1 SQLABase.metadata.create_all(output) session = sessionmaker(bind=output)() def record_wrapper(filename): record = record_from_file(filename) session.add(record) session.commit() chdir(dirpath) recursiveListing(".", record_wrapper)
01492296925a259873e327d8eae938710fe78f20
3,656,605
import os def _fix_importname(mname): """ :param mname: """ mname = os.path.normpath(mname) mname = mname.replace(".", "") mname = mname.replace("-", "") mname = mname.replace("_", "") mname = mname.replace(os.path.sep, "") mname = mname.replace(os.path.pathsep, "") return mname
22f8ab56800a593502822a612c3f642e8cec22ea
3,656,606
def main(args, out, err): """ This wraps GURepair's real main function so that we can handle exceptions and trigger our own exit commands. This is the entry point that should be used if you want to use this file as a module rather than as a script. """ cleanUpHandler = BatchCaller(args.verbose, out) gr_instance = GPURepairInstance(args, out, err, cleanUpHandler) def handleTiming(exitCode): if gr_instance.time: print(gr_instance.getTiming(exitCode), file = out) def doCleanUp(timing, exitCode): if timing: # We must call this before cleaning up globals # because it depends on them cleanUpHandler.register(handleTiming, exitCode) # We should call this last. cleanUpHandler.call() try: returnCode = gr_instance.invoke() except Exception: # Something went very wrong doCleanUp(timing = False, exitCode = 0) # It doesn't matter what the exitCode is raise doCleanUp(timing = True, exitCode = returnCode) # Do this outside try block so we don't call twice! return returnCode
c506306a93804ab60c1a6805e9c53a0fd9dd7cfd
3,656,607
import requests import os import io def getSymbolData(symbol, sDate=(2000,1,1), adjust=False, verbose=True, dumpDest=None): """ get data from Yahoo finance and return pandas dataframe Parameters ----------- symbol : str Yahoo finanance symbol sDate : tuple , default (2000,1,1) start date (y,m,d) adjust : bool , default False use adjusted close values to correct OHLC. adj_close will be ommited verbose : bool , default True print output dumpDest : str, default None dump raw data for debugging Returns --------- DataFrame """ period1 = int(dt.datetime(*sDate).timestamp()) # convert to seconds since epoch period2 = int(dt.datetime.now().timestamp()) params = (symbol, period1, period2, _token['crumb']) url = "https://query1.finance.yahoo.com/v7/finance/download/{0}?period1={1}&period2={2}&interval=1d&events=history&crumb={3}".format(*params) data = requests.get(url, cookies={'B':_token['cookie']}) data.raise_for_status() # raise error in case of bad request if dumpDest is not None: fName = symbol+'_dump.csv' with open(os.path.join(dumpDest, fName),'w') as fid: fid.write(data.text) buf = io.StringIO(data.text) # create a buffer df = pd.read_csv(buf,index_col=0,parse_dates=True, na_values=['null']) # convert to pandas DataFrame # rename columns newNames = [c.lower().replace(' ','_') for c in df.columns] renames = dict(zip(df.columns,newNames)) df = df.rename(columns=renames) # remove duplicates df = df[~df.index.duplicated(keep='first')] if verbose: print(('Got %i days of data' % len(df))) if adjust: df = _adjust(df,removeOrig=True) return df
24e06e34e4f5a4705d59a2ffb32c767bbc25adcf
3,656,608
def generateLouvainCluster(edgeList): """ Louvain Clustering using igraph """ Gtmp = nx.Graph() Gtmp.add_weighted_edges_from(edgeList) W = nx.adjacency_matrix(Gtmp) W = W.todense() graph = Graph.Weighted_Adjacency( W.tolist(), mode=ADJ_UNDIRECTED, attr="weight", loops=False) # ignore the squiggly underline, not errors louvain_partition = graph.community_multilevel( weights=graph.es['weight'], return_levels=False) size = len(louvain_partition) hdict = {} count = 0 for i in range(size): tlist = louvain_partition[i] for j in range(len(tlist)): hdict[tlist[j]] = i count += 1 listResult = [] for i in range(count): listResult.append(hdict[i]) return listResult, size
c171474bdd81456cbbc488b0a8cb826f881419ec
3,656,609
def exprvars(name, *dims): """Return a multi-dimensional array of expression variables. The *name* argument is passed directly to the :func:`pyeda.boolalg.expr.exprvar` function, and may be either a ``str`` or tuple of ``str``. The variadic *dims* input is a sequence of dimension specs. A dimension spec is a two-tuple: (start index, stop index). If a dimension is given as a single ``int``, it will be converted to ``(0, stop)``. The dimension starts at index ``start``, and increments by one up to, but not including, ``stop``. This follows the Python slice convention. For example, to create a 4x4 array of expression variables:: >>> vs = exprvars('a', 4, 4) >>> vs farray([[a[0,0], a[0,1], a[0,2], a[0,3]], [a[1,0], a[1,1], a[1,2], a[1,3]], [a[2,0], a[2,1], a[2,2], a[2,3]], [a[3,0], a[3,1], a[3,2], a[3,3]]]) """ return _vars(Expression, name, *dims)
6b65872029de938d37c9e968f696587e2a03ff8c
3,656,610
def cell_segmenter(im, thresh='otsu', radius=20.0, image_mode='phase', area_bounds=(0,1e7), ecc_bounds=(0, 1)): """ This function segments a given image via thresholding and returns a labeled segmentation mask. Parameters ---------- im : 2d-array Image to be segmented. This may be of either float or integer data type. thresh : int, float, or 'otsu' Value used during thresholding operation. This can either be a value ('int' or 'float') or 'otsu', the threshold value will be determined automatically using Otsu's thresholding method. radius : float Radius for gaussian blur for background subtractino. Default value is 20. image_mode : 'phase' or 'fluorescence' Mode of microsocopy used to capture the image. If 'phase', objects with intensity values *lower* than the provided threshold will be selected. If 'fluorescence', values *greater* than the provided threshold will be selected. Default value is 'phase'. area_bounds : tuple of ints. Range of areas of acceptable objects. This should be probided in units of square pixels. eec_bounds : tuple of floats Range of eccentricity values of acceptable objects. These values should range between 0.0 and 1.0. Returns ------- im_labeled : 2d-array, int Labeled segmentation mask. """ # Apply a median filter to remove hot pixels med_selem = skimage.morphology.square(3) im_filt = skimage.filters.median(im, selem=med_selem) # Perform gaussian subtraction im_sub = bg_subtract(im_filt, radius) # Determine the thresholding method if thresh is 'otsu': thresh = skimage.filters.threshold_otsu(im_sub) # Determine the image mode and apply threshold if image_mode is 'phase': im_thresh = im_sub < thresh elif image_mode is 'fluorescence': im_thresh = im_sub > thresh else: raise ValueError("Image mode not recognized. Must be 'phase'" + "or 'fluorescence'.") # Label the objects im_label = skimage.measure.label(im_thresh) # Apply the area and eccentricity bounds im_filt = area_ecc_filter(im_label, area_bounds, ecc_bounds) # Remove objects touching the border im_border = skimage.segmentation.clear_border(im_filt, buffer_size=5) # Relabel the image im_border = im_border > 0 im_label = skimage.measure.label(im_border) return im_label
f9a8fa3c29cbb213ed67c3df93106a81f53ae985
3,656,611
from datetime import datetime def generate_report(start_date, end_date): """Generate the text report""" pgconn = get_dbconn('isuag', user='nobody') days = (end_date - start_date).days + 1 totalobs = days * 24 * 17 df = read_sql(""" SELECT station, count(*) from sm_hourly WHERE valid >= %s and valid < %s GROUP by station ORDER by station """, pgconn, params=(start_date, end_date + datetime.timedelta(days=1)), index_col='station') performance = min([100, df['count'].sum() / float(totalobs) * 100.]) return """ Iowa Environmental Mesonet Data Delivery Report =============================================== Dataset: ISU Soil Moisture Network Performance Period: %s thru %s Reported Performance: %.1f%% Reporting Platforms: %.0f Additional Details ================== Total Required Obs: %.0f (24 hourly obs x 17 platforms x %.0f days) Observations Delivered: %.0f Report Generated: %s .END """ % (start_date.strftime("%d %b %Y"), end_date.strftime("%d %b %Y"), performance, len(df.index), totalobs, days, df['count'].sum(), datetime.datetime.now().strftime("%d %B %Y %H:%M %p"))
f71b5ab58922b9018abc1868661f88c268de8f94
3,656,612
import pathlib def whole(eventfile,par_list,tbin_size,mode,ps_type,oversampling,xlims,vlines): """ Plot the entire power spectrum without any cuts to the data. eventfile - path to the event file. Will extract ObsID from this for the NICER files. par_list - A list of parameters we'd like to extract from the FITS file (e.g., from eventcl, PI_FAST, TIME, PI,) tbin_size - the size of the time bins (in seconds!) >> e.g., tbin_size = 2 means bin by 2s >> e.g., tbin_size = 0.05 means bin by 0.05s! mode - whether we want to show or save the plot. ps_type - obtain power spectrum through the periodogram method ('period') or the manual FFT way ('manual') or both ('both') oversampling - whether to perform oversampling. Array will consist of [True/False, oversampling factor] xlims - a list or array: first entry = True/False as to whether to impose an xlim; second and third entry correspond to the desired x-limits of the plot vlines - a list or array: first entry = True/False as to whether to draw a vertical line in the plot; second entry is the equation for the vertical line """ if type(eventfile) != str: raise TypeError("eventfile should be a string!") if 'TIME' not in par_list: raise ValueError("You should have 'TIME' in the parameter list!") if type(par_list) != list and type(par_list) != np.ndarray: raise TypeError("par_list should either be a list or an array!") if mode != 'show' and mode != 'save': raise ValueError("Mode should either be 'show' or 'save'!") if ps_type != 'period' and ps_type != 'manual' and ps_type != 'both': raise ValueError("ps_type should either be 'period' or 'show' or 'save'!") if type(oversampling) != list and type(oversampling) != np.ndarray: raise TypeError("oversampling should either be a list or an array!") if type(xlims) != list and type(xlims) != np.ndarray: raise TypeError("xlims should either be a list or an array!") if type(vlines) != list and type(vlines) != np.ndarray: raise TypeError("vlines should either be a list or an array!") parent_folder = str(pathlib.Path(eventfile).parent) data_dict = Lv0_fits2dict.fits2dict(eventfile,1,par_list) times = data_dict['TIME'] counts = np.ones(len(times)) shifted_t = times-times[0] t_bins = np.linspace(0,np.ceil(shifted_t[-1]),int(np.ceil(shifted_t[-1])*1/tbin_size+1)) summed_data, bin_edges, binnumber = stats.binned_statistic(shifted_t,counts,statistic='sum',bins=t_bins) #binning the time values in the data event_header = fits.open(eventfile)[1].header obj_name = event_header['OBJECT'] obsid = event_header['OBS_ID'] if ps_type == 'period': plt.figure() pdgm_f,pdgm_ps = Lv2_ps_method.pdgm(t_bins,summed_data,xlims,vlines,True,oversampling) plt.title('Power spectrum for ' + obj_name + ', ObsID: ' + str(obsid) + '\n Periodogram method' + '\n Includes whole time interval and energy range',fontsize=12) if mode == 'show': plt.show() elif mode == 'save': filename = 'ps_' + obsid + '_bin' + str(tbin_size) + 's_pdgm.pdf' plt.savefig(parent_folder+'/'+filename,dpi=900) plt.close() return pdgm_f, pdgm_ps if ps_type == 'manual': plt.figure() manual_f,manual_ps = Lv2_ps_method.manual(t_bins,summed_data,xlims,vlines,True,oversampling) plt.title('Power spectrum for ' + obj_name + ', ObsID ' + str(obsid) + '\n Manual FFT method' + '\n Includes whole time interval and energy range',fontsize=12) if mode == 'show': plt.show() elif mode == 'save': filename = 'ps_' + obsid + '_bin' + str(tbin_size) + 's_manual.pdf' plt.savefig(parent_folder+'/'+filename,dpi=900) plt.close() return manual_f, manual_ps if ps_type == 'both': pdgm_f,pdgm_ps = Lv2_ps_method.pdgm(t_bins,summed_data,xlims,vlines,False,oversampling) manual_f,manual_ps = Lv2_ps_method.manual(t_bins,summed_data,xlims,vlines,False,oversampling) fig, (ax1,ax2) = plt.subplots(2,1) fig.suptitle('Power spectra for ' + obj_name + ', ObsID ' + str(obsid) + '\n both periodogram and manual FFT method' + '\n Includes whole time interval and energy range' , fontsize=12) ax1.semilogy(pdgm_f,pdgm_ps,'b-')#/np.mean(pdgm_ps),'b-') #periodogram; arrays already truncated! ax1.set_xlabel('Hz',fontsize=12) ax1.set_ylabel('Normalized power spectrum',fontsize=10) ax2.semilogy(manual_f,manual_ps,'r-')#/np.mean(manual_ps),'r-') #manual FFT; arrays already truncated! ax2.set_xlabel('Hz',fontsize=12) ax2.set_ylabel('Normalized power spectrum',fontsize=10) if xlims[0] == True: ax1.set_xlim([xlims[1],xlims[2]]) ax2.set_xlim([xlims[1],xlims[2]]) if vlines[0] == True: ax1.axvline(x=vlines[1],color='k',alpha=0.5,lw=0.5) ax2.axvline(x=vlines[1],color='k',alpha=0.5,lw=0.5) ax2.axhline(y=2,color='k',alpha=0.3,lw=0.3) plt.subplots_adjust(hspace=0.2) if mode == 'show': plt.show() elif mode == 'save': filename = 'ps_' + obsid + '_bin' + str(tbin_size) + 's_both.pdf' plt.savefig(parent_folder+'/'+filename,dpi=900) plt.close() return pdgm_f, pdgm_ps, manual_f, manual_ps
77b51cc8774bdb1b670e2a6b56a9cd65213f70de
3,656,613
def handle_postback(): """Handles a postback.""" # we need to set an Access-Control-Allow-Origin for use with the test AJAX postback sender # in normal operations this is NOT needed response.set_header('Access-Control-Allow-Origin', '*') args = request.json loan_id = args['request_token'] merchant_loan_id = args.get('merchant_transaction_id') action = args['updates'].get('action') if action == 'refund': # process a refund amount = args['updates']['amount'] return handle_refund(loan_id, amount) loan_status = args['updates']['status'] return handle_status_update(loan_id, loan_status)
59683921b7a21f50c2905c47c33036fd75ce54f4
3,656,614
def get_bb_bev_from_obs(dict_obs, pixor_size=128): """Input dict_obs with (B,H,W,C), return (B,H,W,3)""" vh_clas = tf.squeeze(dict_obs['vh_clas'], axis=-1) # (B,H,W,1) # vh_clas = tf.gather(vh_clas, 0, axis=-1) # (B,H,W) vh_regr = dict_obs['vh_regr'] # (B,H,W,6) decoded_reg = decode_reg(vh_regr, pixor_size) # (B,H,W,8) lidar = dict_obs['lidar'] B = vh_regr.shape[0] images = [] for i in range(B): corners, _ = pixor_postprocess(vh_clas[i], decoded_reg[i]) # (N,4,2) image = get_bev(lidar, corners, pixor_size) # (H,W,3) images.append(image) images = tf.convert_to_tensor(images, dtype=np.uint8) # (B,H,W,3) return images
d286ec0c3132c2dcb931cb941fd247810c0ce1cf
3,656,615
def get_hard_edges(obj): """ :param str obj: :returns: all hard edges from the given mesh in a flat list :rtype: list of str """ return [obj + '.e[' + str(i) + ']' for i, edgeInfo in enumerate(cmds.polyInfo(obj + '.e[*]', ev=True)) if edgeInfo.endswith('Hard\n')]
67de22469a38e55e88d21f1853280138795a04cb
3,656,616
def make_system(l=70): """ Making and finalizing a kwant.builder object describing the system graph of a closed, one-dimensional wire with l number of sites. """ sys = kwant.Builder() lat = kwant.lattice.chain() sys[(lat(x) for x in range(l))] = onsite sys[lat.neighbors()] = hopping return sys.finalized()
fa3d25933fd086519569cbb24ff77bf3c86c1303
3,656,617
from typing import Type from pathlib import Path from typing import Dict def _gen_test_methods_for_rule( rule: Type[CstLintRule], fixture_dir: Path, rules_package: str ) -> TestCasePrecursor: """Aggregates all of the cases inside a single CstLintRule's VALID and INVALID attributes and maps them to altered names with a `test_` prefix so that 'unittest' can discover them later on and an index postfix so that individual tests can be selected from the command line. :param CstLintRule rule: :param Path fixture_dir: :param str rules_package: :returns: :rtype: TestCasePrecursor """ valid_tcs = {} invalid_tcs = {} requires_fixtures = False fixture_paths: Dict[str, Path] = {} fixture_subdir: Path = get_fixture_path(fixture_dir, rule.__module__, rules_package) if issubclass(rule, CstLintRule): if rule.requires_metadata_caches(): requires_fixtures = True if hasattr(rule, "VALID"): for idx, test_case in enumerate(getattr(rule, "VALID")): name = f"test_VALID_{idx}" valid_tcs[name] = test_case if requires_fixtures: fixture_paths[name] = fixture_subdir / f"{rule.__name__}_VALID_{idx}.json" if hasattr(rule, "INVALID"): for idx, test_case in enumerate(getattr(rule, "INVALID")): name = f"test_INVALID_{idx}" invalid_tcs[name] = test_case if requires_fixtures: fixture_paths[name] = fixture_subdir / f"{rule.__name__}_INVALID_{idx}.json" return TestCasePrecursor( rule=rule, test_methods={**valid_tcs, **invalid_tcs}, fixture_paths=fixture_paths, )
5a12d84bdcff039179ef9b9f1105e6beecccbf05
3,656,618
def evaluate_score_batch( predicted_classes=[], # list, len(num_classes), str(code) predicted_labels=[], # shape (num_examples, num_classes), T/F for each code predicted_probabilities=[], # shape (num_examples, num_classes), prob. [0-1] for each code raw_ground_truth_labels=[], # list(('dx1', 'dx2'), ('dx1', 'dx3'), ...) weights_file="evaluation-2020/weights.csv", normal_class="426783006", equivalent_classes=[ ["713427006", "59118001"], ["284470004", "63593006"], ["427172004", "17338001"], ], ): """This is a helper function for getting auroc, auprc, accuracy, f_measure, f_beta_measure, g_beta_measure, challenge_metric without needing the directories of labels and prediction outputs. It is useful for directly calculating the scores given the classes, predicted labels, and predicted probabilities. """ label_classes, labels = _load_labels( raw_ground_truth_labels, normal_class=normal_class, equivalent_classes_collection=equivalent_classes, ) output_classes, binary_outputs, scalar_outputs = _load_outputs( predicted_classes, predicted_labels, predicted_probabilities, normal_class=normal_class, equivalent_classes_collection=equivalent_classes, ) classes, labels, binary_outputs, scalar_outputs = organize_labels_outputs( label_classes, output_classes, labels, binary_outputs, scalar_outputs ) weights = load_weights(weights_file, classes) # Only consider classes that are scored with the Challenge metric. indices = np.any(weights, axis=0) # Find indices of classes in weight matrix. classes = [x for i, x in enumerate(classes) if indices[i]] labels = labels[:, indices] scalar_outputs = scalar_outputs[:, indices] binary_outputs = binary_outputs[:, indices] weights = weights[np.ix_(indices, indices)] auroc, auprc = compute_auc(labels, scalar_outputs) accuracy = compute_accuracy(labels, binary_outputs) f_measure = compute_f_measure(labels, binary_outputs) f_beta_measure, g_beta_measure = compute_beta_measures( labels, binary_outputs, beta=2 ) challenge_metric = compute_challenge_metric( weights, labels, binary_outputs, classes, normal_class ) return ( auroc, auprc, accuracy, f_measure, f_beta_measure, g_beta_measure, challenge_metric, )
314f94433704cc2986df9082a749caaf52738f08
3,656,619
def pair(data, color=None, tooltip=None, mark='point', width=150, height=150): """ Create pairwise scatter plots of all column combinations. In contrast to many other pairplot tools, this function creates a single scatter plot per column pair, and no distribution plots along the diagonal. Parameters ---------- data : DataFrame pandas DataFrame with input data. color : str Column in **data** used for the color encoding. tooltip: str Column in **data** used for the tooltip encoding. mark: str Shape of the points. Passed to Chart. One of "circle", "square", "tick", or "point". width: int or float Chart width. height: int or float Chart height. Returns ------- ConcatChart Concatenated Chart of pairwise column scatter plots. """ # TODO support categorical? col_dtype = 'number' # color = 'species:N' # must be passed with a type, enh: autoetect # tooltip = alt.Tooltip('species') cols = data.select_dtypes(col_dtype).columns # Setting a non-existing column with specified type passes through without effect # and eliminates the need to hvae a separate plotting section for colored bars below. if color is None: color = ':Q' if tooltip is None: tooltip = ':Q' # Infer color data type if not specified if color[-2:] in [':Q', ':T', ':N', ':O']: color_alt = alt.Color(color, title=None, legend=alt.Legend(orient='left', offset=width * -1.6)) # The selection fields parmeter does not work with the suffix legend_color = color.split(':')[0] else: color_alt = alt.Color(color, title=None, type=alt.utils.infer_vegalite_type(data[color])) legend_color = color # Set up interactions brush = alt.selection_interval() color = alt.condition(brush, color_alt, alt.value('lightgrey')) legend_click = alt.selection_multi(fields=[legend_color], bind='legend') opacity = alt.condition(legend_click, alt.value(0.8), alt.value(0.2)) hidden_axis = alt.Axis(domain=False, title='', labels=False, ticks=False) # Create corner of pair-wise scatters i = 0 exclude_zero = alt.Scale(zero=False) col_combos = list(combinations(cols, 2))[::-1] subplot_row = [] while i < len(cols) - 1: plot_column = [] for num, (y, x) in enumerate(col_combos[:i+1]): if num == 0 and i == len(cols) - 2: subplot = alt.Chart(data, mark=mark).encode( alt.X(x, scale=exclude_zero), alt.Y(y, scale=exclude_zero)) elif num == 0: subplot = ( alt.Chart(data, mark=mark).encode( alt.X(x, scale=exclude_zero, axis=hidden_axis), alt.Y(y, scale=exclude_zero))) elif i == len(cols) - 2: subplot = ( alt.Chart(data, mark=mark).encode( alt.X(x, scale=exclude_zero), alt.Y(y, scale=exclude_zero, axis=hidden_axis))) else: subplot = ( alt.Chart(data, mark=mark).encode( alt.X(x, scale=exclude_zero, axis=hidden_axis), alt.Y(y, scale=exclude_zero, axis=hidden_axis))) plot_column.append( subplot .encode(opacity=opacity, color=color, tooltip=tooltip) .properties(width=width, height=height)) subplot_row.append(alt.hconcat(*plot_column)) i += 1 col_combos = col_combos[i:] return ( alt.vconcat(*subplot_row) .add_selection(brush, legend_click))
ed712972e503795bbfaeac6844a225444d946018
3,656,620
import tqdm def gauss_kernel(model_cell, x, y, z, sigma=1): """ Convolute aligned pixels given coordinates `x`, `y` and values `z` with a gaussian kernel to form the final image. Parameters ---------- model_cell : :class:`~colicoords.cell.Cell` Model cell defining output shape. x : :class:`~numpy.ndarray` Array with combined x-coordinates of aligned pixels. y : :class:`~numpy.ndarray` Array with combined y-coordinates of aligned pixels. z : :class:`~numpy.ndarray` Array with pixel values of aligned pixels. sigma : :obj:`float` Sigma of the gaussian kernel. Returns ------- output : :class:`~numpy.ndarray` Output aligned image. """ output = np.empty(model_cell.data.shape) coords = np.array([x, y]) for index in tqdm(np.ndindex(model_cell.data.shape), desc='Gaussian kernel', total=np.product(model_cell.data.shape)): xi, yi = index xp, yp = model_cell.coords.x_coords[xi, yi], model_cell.coords.y_coords[xi, yi] dist = distance.cdist(np.array([[xp, yp]]), coords.T).squeeze() bools = dist < 5*sigma weights = gauss_2d(x[bools], y[bools], xp, yp, sigma=sigma) avg = np.average(z[bools], weights=weights) output[xi, yi] = avg return output
0ff61121fbf330e3e15862b82b0929ae3b8748f9
3,656,621
def get_configs_from_multiple_files(): """Reads training configuration from multiple config files. Reads the training config from the following files: model_config: Read from --model_config_path train_config: Read from --train_config_path input_config: Read from --input_config_path Returns: model_config: model_pb2.DetectionModel train_config: train_pb2.TrainConfig input_config: input_reader_pb2.InputReader """ train_config = train_pb2.TrainConfig() with tf.gfile.GFile(FLAGS.train_config_path, 'r') as f: text_format.Merge(f.read(), train_config) model_config = model_pb2.DetectionModel() with tf.gfile.GFile(FLAGS.model_config_path, 'r') as f: text_format.Merge(f.read(), model_config) input_config = input_reader_pb2.InputReader() with tf.gfile.GFile(FLAGS.input_config_path, 'r') as f: text_format.Merge(f.read(), input_config) return model_config, train_config, input_config
4f561235568667a6fe71d77c23769ea8878ebe20
3,656,622
def line_to_numbers(line: str) -> t.List[int]: """Split a spreadsneet line into a list of numbers. raises: ValueError """ return list(map(int, line.split()))
fce9af5e1c213fd91f0edf8d7fa5877f15374908
3,656,623
def bits_to_amps(bits): """helper function to convert raw data from usb device to amps""" return bits*BITS_TO_AMPS_SLOPE + BITS_TO_AMPS_Y_INTERCEPT
5653582987b6a7924c11f037badc1a61541c6ca2
3,656,624
import re def fields_to_dict(fields): """ FIXME: https://www.debuggex.com/r/24QPqzm5EsR0e2bt https://www.debuggex.com/r/0SjmBL55ySna0kFF https://www.debuggex.com/r/Vh9qvHkCV4ZquS14 """ result = {} if not fields or len(fields.strip()) == 0: return result # look_behind_keys = re.findall('{(\w*?),', fields) # look_behind_pattern_list = ['(?<!{' + k + ')' for k in look_behind_keys] # # FIXME: '(?<!{[^,]*),<look_forward_pattern>' will trigger "look-behind requires # # fixed-width pattern" # look_behind_pattern = ''.join(look_behind_pattern_list) # # FIXME: not support nested bracket: field{id,name,description{abc,def}} # look_forward_pattern = '(?![a-zA-Z0-9,\}:\[\]]*?})' # # sample pattern: '(?<!{id)(?<!{email),<look_forward_pattern>' # re_pattern = look_behind_pattern + ',' + look_forward_pattern splited_fields = [] word_block = '' bracket_counter = 0 field_len = len(fields) for index, word in enumerate(fields): if word == '{': bracket_counter = bracket_counter + 1 if word == '}': bracket_counter = bracket_counter - 1 # move to new word block if word == ',' and bracket_counter == 0: splited_fields.append(word_block) word_block = '' else: word_block += word # add remaining word_block if word_block != '' and index==field_len-1: splited_fields.append(word_block) for key in splited_fields: key = key.strip() value = {} if key.find('{') > -1: # get sub fields: field{<sub_fields>} and assign its value sub_field = re.findall('{(.*)}', key) value = fields_to_dict(sub_field[0]) # clean key key = re.sub('{(.*)}', '', key) if key.find('[') > -1: # get & set slide range: [a:b] value['__slice'] = re.findall('\[(.*)\]', key)[0] # clean key key = re.sub('\[(.*)\]', '', key) result[key] = value return result
2e7ebc2e9277ef693498d04c731f309e17fd4501
3,656,625
import os import glob def get_font_paths(fonts_dir): """ Load font path recursively from a folder :param fonts_dir: folder contains ttf、otf or ttc format font :return: path of all fonts """ print('Load fonts from %s' % os.path.abspath(fonts_dir)) fonts = glob.glob(fonts_dir + '/**/*', recursive=True) fonts = list(filter(lambda x: os.path.isfile(x), fonts)) print("Total fonts num: %d" % len(fonts)) if len(fonts) == 0: print("Not found fonts in fonts_dir") exit(-1) return fonts
bf6368f90023fd59d64d358e6dac919627feb9ab
3,656,626
def time_difference(t_early, t_later): """ Compute the time difference between t_early and t_later Parameters: t_early: np.datetime64, list or pandas series. t_later: np.datetime64, list or pandas series. """ if type(t_early) == list: t1 = np.array(t_early) elif type(t_early) == pd.Series: t1 = np.array(t_early.tolist()) else: t1 = np.array([t_early]) if type(t_later) == list: t2 = np.array(t_later) elif type(t_later) == pd.Series: t2 = np.array(t_later.tolist()) else: t2 = np.array([t_later]) timedelta2float = np.vectorize(lambda x: x / np.timedelta64(3600, 's')) t_diff = timedelta2float(t2 - t1) return t_diff
0d4e6bac3aed2e5a2848c4289dadc92120a4f7a1
3,656,627
def conv2d_block(input_tensor, n_filters, kernel_size=3, batchnorm=True): """ Convolutional block with two convolutions followed by batch normalisation (if True) and with ReLU activations. input_tensor: A tensor. Input tensor on which the convolutional block acts. n_filters: An integer. Number of filters in this block. kernel_size: An integer. Size of convolutional kernel. batchnorm: A bool. Perform batch normalisation after each convolution if True. :return: A tensor. The output of the operation. """ # first convolutional layer x = layers.Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer="he_normal", padding="same")(input_tensor) if batchnorm: x = layers.BatchNormalization()(x) x = layers.Activation("relu")(x) # second convolutional layer x = layers.Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer="he_normal", padding="same")(x) if batchnorm: x = layers.BatchNormalization()(x) x = layers.Activation("relu")(x) return x
8bb435ed1e091fff26d49290a8ca6d0c9c12ec67
3,656,628
def check_credentials(username): """ Function that check if a Credentials exists with that username and return true or false """ return Credentials.if_credential_exist(username)
8515bbc39afd003fc193cbb80c97f5f718657fa6
3,656,629
def rpc_category_to_super_category(category_id, num_classes): """Map category to super-category id Args: category_id: list of category ids, 1-based num_classes: 1, 17, 200 Returns: super-category id, 0-based """ cat_id = -1 assert num_classes in RPC_SUPPORT_CATEGORIES, \ 'Not support {} density categories'.format(num_classes) if num_classes == 17: cat_id = _categories[category_id] elif num_classes == 1: cat_id = 0 elif num_classes == 200: cat_id = category_id - 1 assert 199 >= cat_id >= 0 return cat_id
8056aea308f66a65a4135a6fc7f061873d990624
3,656,630
def setup_integration(): """Set up a test resource.""" print('Setting up a test integration for an API') return Integration(name='myapi', base_url='https://jsonplaceholder.typicode.com')
d2720db6ae520e21edc555ad0c899652c6584406
3,656,631
def secondsToHMS(intervalInSeconds): """converts time in seconds to a string representing time in hours, minutes, and seconds :param intervalInSeconds: a time measured in seconds :returns: time in HH:MM:SS format """ interval = [0, 0, intervalInSeconds] interval[0] = (interval[2] / 3600) - ((interval[2] % 3600) / 3600) interval[1] = ((interval[2] % 3600) / 60) - ((interval[2] % 3600) % 60) / 60 interval[2] = interval[2] % 60 intervalString = '{0:02.0f}:{1:02.0f}:{2:02.0f}'.format(interval[0], interval[1], interval[2]) return intervalString
b38d4b886eaabd1361c162b6b7f55e11493dfb60
3,656,632
import itertools def build_rdn(coords, r, **kwargs): """ Reconstruct edges between nodes by radial distance neighbors (rdn) method. An edge is drawn between each node and the nodes closer than a threshold distance (within a radius). Parameters ---------- coords : ndarray Coordinates of points where each column corresponds to an axis (x, y, ...) r : float, optional Radius in which nodes are connected. Examples -------- >>> coords = make_simple_coords() >>> pairs = build_rdn(coords, r=60) Returns ------- pairs : ndarray The (n_pairs x 2) matrix of neighbors indices. """ tree = BallTree(coords, **kwargs) ind = tree.query_radius(coords, r=r) # clean arrays of neighbors from self referencing neighbors # and aggregate at the same time source_nodes = [] target_nodes = [] for i, arr in enumerate(ind): neigh = arr[arr != i] source_nodes.append([i]*(neigh.size)) target_nodes.append(neigh) # flatten arrays of arrays source_nodes = np.fromiter(itertools.chain.from_iterable(source_nodes), int).reshape(-1,1) target_nodes = np.fromiter(itertools.chain.from_iterable(target_nodes), int).reshape(-1,1) # remove duplicate pairs pairs = np.hstack((source_nodes, target_nodes)) pairs = np.sort(pairs, axis=1) pairs = np.unique(pairs, axis=0) return pairs
83f2d68fbb854e2ef25e03f5d58d6c96c02c0127
3,656,633
def find_layer(model, type, order=0): """ Given a model, find the Nth layer of the specified type. :param model: the model that will be searched :param type: the lowercase type, as it is automatically saved by keras in the layer's name (e.g. conv2d, dense) :param order: 0 by default (the first matching layer will be returned) :return: The index of the matching layer or None if it was not found. """ num_found = 0 for layer in model.layers: if type + '_' in layer.get_config()['name']: if order == num_found: return layer num_found += 1 return None
6d4e08c181900774b9e5666a11df9767f68a10ca
3,656,634
def _interpretable(model): # type: (Union[str, h2o.model.ModelBase]) -> bool """ Returns True if model_id is easily interpretable. :param model: model or a string containing a model_id :returns: bool """ return _get_algorithm(model) in ["glm", "gam", "rulefit"]
4ae73e5b7ed98b61b56920985128212e3051c789
3,656,635
def apply_pb_correction(obs, pb_sensitivity_curve, cutoff_radius): """ Updates the primary beam response maps for cleaned images in an ObsInfo object. Args: obs (ObsInfo): Observation to generate maps for. pb_sensitivity_curve: Primary beam sensitivity as a function of radius in units of image pixels. (Should be 1.0 at the exact centre). cutoff_radius: Radius at which to mask the output image (avoids extremely high corrected values for noise fluctuations at large radii). Units: image pixels. """ assert isinstance(obs, ObsInfo) def update_pb_map_for_img(flux_map_path): pbmap = generate_primary_beam_response_map(flux_map_path, pb_sensitivity_curve, cutoff_radius) return pbmap def process_clean_maps(clean_maps): pbmap = update_pb_map_for_img(clean_maps.flux) img_path = clean_maps.image pb_img_path = img_path+'.pbcor' generate_pb_corrected_image(img_path, pb_img_path, pbmap) clean_maps.pbcor = pb_img_path if obs.maps_masked.ms.image: process_clean_maps(obs.maps_masked.ms) if obs.maps_open.ms.image: process_clean_maps(obs.maps_open.ms) if obs.maps_hybrid.ms.image: process_clean_maps(obs.maps_hybrid.ms)
02ee2913ce781f4a02e85910c69cfe5b534e62f4
3,656,636
def makeLoadParams(args): """ Create load parameters for start load request out of command line arguments. Args: args (dict): Parsed command line arguments. """ load_params = {'target': {}, 'format': {'date_time': {}, 'boolean': {}}, 'load_options': {}, 'advanced_options': {}} add_param(load_params['target'], 'database', args.target_database) add_param(load_params['target'], 'schema', args.target_schema) add_param(load_params['target'], 'table', args.target_table) if len(load_params['target']) == 0: del load_params['target'] add_param(load_params['format'], 'type', args.type) add_param(load_params['format'], 'field_separator', args.field_separator) add_param(load_params['format'], 'trailing_field_separator', args.trailing_field_separator, False) add_param(load_params['format'], 'enclosing_character', args.enclosing_character) add_param(load_params['format'], 'escape_character', args.escape_character) add_param(load_params['format'], 'null_value', args.null_value) add_param(load_params['format'], 'has_header_row', args.has_header_row, False) add_param(load_params['format'], 'flexible', args.flexible, False) add_param(load_params['format']['date_time'], 'converted_to_epoch', args.date_converted_to_epoch, False) add_param(load_params['format']['date_time'], 'date_format', args.date_format) add_param(load_params['format']['date_time'], 'time_format', args.time_format) add_param(load_params['format']['date_time'], 'date_time_format', args.date_time_format) add_param(load_params['format']['date_time'], 'second_fraction_start', args.second_fraction_start) add_param(load_params['format']['date_time'], 'skip_second_fraction', args.skip_second_fraction, False) if len(load_params['format']['date_time']) == 0: del load_params['format']['date_time'] add_param(load_params['format']['boolean'], 'use_bit_values', args.use_bit_boolean_values, False) add_param(load_params['format']['boolean'], 'true_format', args.true_format) add_param(load_params['format']['boolean'], 'false_format', args.false_format) if len(load_params['format']['boolean']) == 0: del load_params['format']['boolean'] if len(load_params['format']) == 0: del load_params['format'] add_param(load_params['load_options'], 'empty_target', args.empty_target, False) add_param(load_params['load_options'], 'max_ignored_rows', args.max_ignored_rows) if len(load_params['load_options']) == 0: del load_params['load_options'] add_param(load_params['advanced_options'], 'validate_only', args.validate_only, False) add_param(load_params['advanced_options'], 'file_target_dir', args.file_target_dir) if len(load_params['advanced_options']) == 0: del load_params['advanced_options'] print('Created load params: ', load_params) return load_params
f1c0e9297775305c36acbb950bfc05e785bde87c
3,656,637
from hash import HashTable def empty_hash(): """Initialize empty hash table.""" test_hash = HashTable() return test_hash
02700169c89427af4d2db123e110ec383d9332eb
3,656,638
def denoise_sim(image, std, denoiser): """Simulate denoising problem Args: image (torch.Tensor): image tensor with shape (C, H, W). std (float): standard deviation of additive Gaussian noise on the scale [0., 1.]. denoiser: a denoiser instance (as in algorithms.denoiser). The std argument for this denoiser is already specified if applicable. Returns: denoised_image (torch.Tensor): tensor of denoised image noisy_image (torch.Tensor): tensor of noisy image """ print('deploy.sim.denoise_sim: Simulating noisy image...') noisy_image = gutil.add_noise(image, std) print('deploy.sim.denoise_sim: Begin image denoising...') denoised_image = denoiser(noisy_image, std=std) return denoised_image, noisy_image
216944b26c3ca0e04b8b5801766321fe60ee7e02
3,656,639
def _find_weektime(datetime, time_type='min'): """ Finds the minutes/seconds aways from midnight between Sunday and Monday. Parameters ---------- datetime : datetime The date and time that needs to be converted. time_type : 'min' or 'sec' States whether the time difference should be specified in seconds or minutes. """ if time_type == 'sec': return datetime.weekday() * 24 * 60 * 60 + datetime.hour * 60 * 60 + datetime.minute * 60 + datetime.second elif time_type == 'min': return datetime.weekday() * 24 * 60 + datetime.hour * 60 + datetime.minute else: raise ValueError("Invalid time type specified.")
2ed28166d239dabdc9f8811812e472810b10c7d7
3,656,640
from typing import List from typing import Tuple def linear_to_image_array(pixels:List[List[int]], size:Tuple[int,int]) -> np.ndarray: """\ Converts a linear array ( shape=(width*height, channels) ) into an array usable by PIL ( shape=(height, width, channels) ).""" a = np.array(pixels, dtype=np.uint8) split = np.split(pixels, [i*size[0] for i in range(1,size[1])]) return np.array(split, dtype=np.uint8)
431170c71a3d6464be5dd5b9d248b2866ba3ac6a
3,656,641
def stop_processes(hosts, pattern, verbose=True, timeout=60): """Stop the processes on each hosts that match the pattern. Args: hosts (list): hosts on which to stop the processes pattern (str): regular expression used to find process names to stop verbose (bool, optional): display command output. Defaults to True. timeout (int, optional): command timeout in seconds. Defaults to 60 seconds. Returns: dict: a dictionary of return codes keys and accompanying NodeSet values indicating which hosts yielded the return code. Return code keys: 0 No processes matched the criteria / No processes killed. 1 One or more processes matched the criteria and a kill was attempted. """ result = {} log = getLogger() log.info("Killing any processes on %s that match: %s", hosts, pattern) if hosts is not None: commands = [ "rc=0", "if pgrep --list-full {}".format(pattern), "then rc=1", "sudo pkill {}".format(pattern), "if pgrep --list-full {}".format(pattern), "then sleep 5", "pkill --signal KILL {}".format(pattern), "fi", "fi", "exit $rc", ] result = pcmd(hosts, "; ".join(commands), verbose, timeout, None) return result
898a358b5e61952d72be15eecb10b00ce8bd2efd
3,656,642
def field_as_table_row(field): """Prints a newforms field as a table row. This function actually does very little, simply passing the supplied form field instance in a simple context used by the _field_as_table_row.html template (which is actually doing all of the work). See soc/templates/soc/templatetags/_field_as_table_row.html for the CSS styles used by this template tag. Usage: {% load forms_helpers %} ... <table> {% field_as_table_row form.fieldname %} ... </table> Args: field: a Django newforms field instance Returns: a simple context containing the supplied newforms field instance: { 'field': field } """ return {'field': field}
74d120e2a46ae8465832d98ddf02848b5b2cc936
3,656,643
def get_samples(select_samples: list, avail_samples: list) -> list: """Get while checking the validity of the requested samples :param select_samples: The selected samples :param avail_samples: The list of all available samples based on the range :return: The selected samples, verified """ # Sample number has to be positive if True in [_ < 0 for _ in select_samples]: raise ValueError( "Number of samples with -ns has to be strictly positive!") # Sample number has to be within the available sample elif False in [_ in avail_samples for _ in select_samples]: raise ValueError( "Some or all selected samples are not available in the design") return select_samples
e1c0c98697d2c504d315064cbdfbad379165d317
3,656,644
def createMemoLayer(type="", crs=4326, name="", fields={"id":"integer"}, index="no"): """ Créer une couche en mémoire en fonction des paramètres :param type (string): c'est le type de geometrie "point", "linestring", "polygon", "multipoint","multilinestring","multipolygon" :param crs (int): systeme de projection CRS :param fields (dict): {nom_champ : type_champ(longueur)} field=name : type(length,precision) types : "integer", "double", "string(length)" :param name (string): C'est le nom de la couche qui apparaitra dans la légende :param index (string): indique si on créer un indice spatial :return (QgsVectorLayer): on retourene un objet QgsVectorLayer """ # on créer l'uri et on ajoute tous les champs uri="%s?crs=epsg:%s"%(type,crs) for key, value in fields.items(): uri="%s&field=%s:%s"%(uri,key, value) uri="%s&index=%s"%(uri,index) # on créer l'objet QgsVectorLayer memLayer = QgsVectorLayer(uri, name, "memory") return memLayer
713823d9b59b7c4ccf7bdd938a720d385629e02f
3,656,645
import json def load_templates(package): """ Returns a dictionary {name: template} for the given instrument. Templates are defined as JSON objects, with stored in a file named "<instrument>.<name>.json". All templates for an instrument should be stored in a templates subdirectory, made into a package by inclusion of an empty __init__.py file. They can then be loaded using:: from dataflow import core as df from . import templates ... instrument = df.Instrument( ... templates=df.load_templates(templates), ) """ templates = {} for filename in resources.contents(package): if filename.endswith('.json'): name = filename.split('.')[-2] template = json.loads(resources.read_text(package, filename)) templates[name] = template return templates
6213eb6e8b7be0bb7057da49d02fe495d7db6660
3,656,646
def get_count_matrix(args): """首先获取数据库中全部文档的id,然后遍历id获取文档内容,再逐文档 进行分词,生成计数矩阵。""" global DOC2IDX with DocDB(args.db_path) as doc_db: doc_ids = doc_db.get_doc_ids() DOC2IDX = {doc_id: i for i, doc_id in enumerate(doc_ids)} row, col, data = [], [], [] _count = partial(count, args) for i in doc_ids: b_row, b_col, b_data = _count(i) row.extend(b_row) col.extend(b_col) data.extend(b_data) # 创建稀疏矩阵,这里用的是按行压缩的方法(Compressed Sparse Row, csr) # 关于什么是csr_matrix,参考: # https://www.pianshen.com/article/7967656077/ # https://zhuanlan.zhihu.com/p/342942385 count_matrix = sp.csr_matrix((data, (row, col)), shape=(args.hash_size, len(doc_ids))) count_matrix.sum_duplicates() return count_matrix, (DOC2IDX, doc_ids)
6279666c6dfdf66dba13edfe57e55525de15d894
3,656,647
def communication_round(model, clients, train_data, train_labels, train_people, val_data, val_labels, val_people, val_all_labels, local_epochs, weights_accountant, individual_validation, local_operation): """ One round of communication between a 'server' and the 'clients'. Each client 'downloads' a global model and trains a local model, updating its weights locally. When all clients have updated their weights, they are 'uploaded' to the server and averaged. :param model: Tensorflow Graph :param clients: numpy array, array of unique client IDs :param train_data: numpy array :param train_labels: numpy array :param train_people: numpy array :param val_data: numpy array :param val_labels: numpy array :param val_people: numpy array :param val_all_labels: numpy array :param local_epochs: int, local epochs to be trained :param weights_accountant: WeightsAccountant object :param individual_validation: bool, if true, validation history for every local epoch in a federated setting is stored (typically not necessary) :param local_operation: string, valid arguments are "global_averaging", "localized_learning", and "local_models" :return: Pandas DataFrame, training history """ # Split train and validation data into clients train_data, train_labels = dL.split_data_into_clients_dict(train_people, train_data, train_labels) if val_data is not None: val_data, val_labels, val_people, val_all_labels = \ dL.split_data_into_clients_dict(val_people, val_data, val_labels, val_people, val_all_labels) # Train each client history = {} for client in clients: Output.print_client_id(client) results = client_learning(model, client, local_epochs, train_data, train_labels, val_data, val_labels, val_people, val_all_labels, weights_accountant, individual_validation) # Append each client's results to the history dictionary for key, val in results.items(): history.setdefault(key, []).extend(val) # Pop general metrics from history as these are duplicated with client metrics, e.g. 'loss' == 'subject_43_loss' for metric in model.metrics_names: history.pop(metric, None) history.pop("val_" + metric, None) # If there is localization (e.g. the last layer of the model is not being averaged, indicated by less "shared # weights" compared to total "default weights"), then we adapt local models to the new shared layers if local_operation == 'localized_learning': # Average all updates marked as "global" weights_accountant.federated_averaging(layer_type='global') # Decrease the learning rate for local adaptation only K.set_value(model.optimizer.lr, K.get_value(model.optimizer.lr) / LR_FACTOR) # Freeze the global layers change_layer_status(model, 'global', 'freeze') # Reconnect the Convolutional layers for client in clients: Output.print_client_id(client) client_learning(model, client, local_epochs, train_data, train_labels, val_data, val_labels, val_people, val_all_labels, weights_accountant, individual_validation) # Unfreeze the global layers change_layer_status(model, 'global', 'unfreeze') # Increase the learning rate again K.set_value(model.optimizer.lr, K.get_value(model.optimizer.lr) * LR_FACTOR) elif local_operation == 'local_models': print("No federated averaging.") pass elif local_operation == 'global_averaging': weights_accountant.federated_averaging() else: raise ValueError('local_operation only accepts "global_averaging", "localized_learning", and "local_models"' ' as arguments. "{}" was given.'.format(local_operation)) return history
f8a8ef93845e09394cea6a2f6077a0ae2dfaed18
3,656,648
import collections def _find_stop_area_mode(query_result, ref): """ Finds the mode of references for each stop area. The query results must have 3 columns: primary key, foreign key reference and number of stop points within each area matching that reference, in that order. :param ref: Name of the reference column. :returns: Two lists; one to be to be used with `bulk_update_mappings` and the other strings for invalid areas. """ # Group by stop area and reference stop_areas = collections.defaultdict(dict) for row in query_result: stop_areas[row[0]][row[1]] = row[2] # Check each area and find mode matching reference update_areas = [] invalid_areas = {} for sa, count in stop_areas.items(): max_count = [k for k, v in count.items() if v == max(count.values())] if len(max_count) == 1: update_areas.append({"code": sa, ref: max_count[0]}) else: invalid_areas[sa] = max_count return update_areas, invalid_areas
e4677638b272e67d2ae21ee97f71f1f1700fd072
3,656,649
def get_all_funds_ranking(fund_type: str = 'all', start_date: str = '-1y', end_date: str = arrow.now(), sort: str = 'desc', subopts: str = '', available: str = 1): """Get all funds ranking from 'fund.eastmoney.com'. (基金排行) :param fund_type: (optional) fund type, default is `all`. value: ct场内 gp股票 hh混合 zq债券 zs指数 bb保本 qdii lof fof :param start_date: (optional) start date of the custom return, default is `-1y`. value: -nd -nw -nm -ny cyear or YYYY-MM-DD :param end_date: (optional) the end date of the results, default is `now`. :param sort: (optional) results order, default is `desc`. :param subopts: (optional) some suboptions. format is a list of options(`first,second`). Suboptions for bonds(有关债券的子选项): - first option is bonds type(债券类型). value: cz长债 dz短债 hz混债 dkz定开债 kzz可转债 - second option is leverage ratio(杠杆比例). value: 0-100 100-150 150-200 200+ Suboptions for stock index(有关指数的子选项): - first option is index type(标的). value: hs沪深 hy行业 dp大盘 zxp中小盘 gz股指 zz债指 - second option is stock index operation(运作方式). value: bd被动 zq增强 Suboptions for QDII fonds. - first option is fond type(基金类型). vaule: qqgp全球股票 ytgp亚太股票 dzh大中华区 xxsc新兴市场 jzgj金砖国家 cssc成熟市场 us美国股票 qqidx全球指数 etf hh股债混合 zq债券 sp商品 :param available: (optional) `1` can buy, `0` including both, default is `1`. :return: a list of the funds. :rtype: `pd.DataFrame`. """ dtype = fund_type == 'ct' and 'fb' or 'kf' begin = str2date(start_date).format('YYYY-MM-DD') end = arrow.get(end_date).format('YYYY-MM-DD') opt1, opt2 = _funds_ranking_subopts(fund_type, subopts) params = dict(op='ph',dt=dtype,ft=fund_type,rs='',gs=0,sc='zzf',st=sort,pi=1,pn=10000) # 场内基金 fund_type != 'ct' and params.update(dict(sd=begin,ed=end,qdii=opt1,tabSubtype=opt2,dx=available)) resp = sess.get(api.all_funds_rank, params=params) obj = js2obj(resp.text, 'rankData') # dataframe if fund_type == 'ct': # 场内基金 cols = 'code,name,1,date,nav,cnav,-1week,-1month,-3month,-6month,-1year,-2year,'\ '-3year,current_year,since_create,issue_date,,,,,,type' newcols = cols.replace('1','type,issue_date',1).split(',issue_date,,')[0] else: # 基金排行 cols = 'code,name,1,date,nav,cnav,percent,-1week,-1month,-3month,-6month,-1year,-2year,'\ '-3year,current_year,since_create,issue_date,,custom,2,,,,' newcols = cols.replace('1','issue_date',1).replace('issue_date,,','').split(',2')[0] df = pd.DataFrame([i.split(',')[:-1] for i in obj['datas']], columns=cols.split(',')).ffill(None)[newcols.split(',')] df['date'] = pd.to_datetime(df['date']) df['issue_date'] = pd.to_datetime(df['issue_date']) df[['nav','cnav']] = df[['nav','cnav']].applymap(lambda x:x and float(x) or None) colnum = fund_type == 'ct'\ and range(df.columns.get_loc('-1week'), len(df.columns))\ or range(df.columns.get_loc('percent'), len(df.columns)) df.iloc[:,colnum] = df.iloc[:,colnum].applymap(lambda x:x and float(x)/100 or None) return df
55dd84c8f8830d6c60411de858a9aec1f14a30be
3,656,650
from typing import List from typing import Any from re import T def _conform_list(li: List[Any]) -> List[T]: """ Ensures that every element in *li* can conform to one type :param li: list to conform :return: conformed list """ conform_type = li[0].__class__ for i in li: if isinstance(i, StrictType): conform_type = i.__class__ break base_type = ( conform_type.__base__ if conform_type.__base__ != object else None ) # do not let base_type be 'object' if not all(type(i) == conform_type or type(i) == base_type for i in li): raise Exception(f"{li} can not be conformed to the {conform_type}") return [i if isinstance(i, conform_type) else conform_type(i) for i in li]
29131a9f5979318e0fc50408b67938ffbd56fa5a
3,656,651
def _255_to_tanh(x): """ range [0, 255] to range [-1, 1] :param x: :return: """ return (x - 127.5) / 127.5
a60a67ee489093292fc58136a8f01387482fb162
3,656,652
import os import re import sys def read_content(filename): """Read content and metadata from file into a dictionary.""" # Read file content. text = fread(filename) # Read metadata and save it in a dictionary. date_slug = os.path.basename(filename).split('.')[0] match = re.search('^(?:(\\d\\d\\d\\d-\\d\\d-\\d\\d)-)?(.+)$', date_slug) content = { 'date': format_date(match.group(1) or '1970-01-01'), 'date_ymd': match.group(1) or '1970-01-01', 'date_rfc_2822': format_date(match.group(1) or '1970-01-01', date_format_override='%a, %d %b %Y %H:%M:%S +0000'), 'slug': match.group(2), } # Convert Markdown content to HTML. if filename.endswith(('.md', '.mkd', '.mkdn', '.mdown', '.markdown')): # Separate text and template variables variables, text = separate_content_and_variables(text) text = variables + "{% include 'md_header.html' %}" + \ commonmark.commonmark(text) + "{% include 'md_footer.html' %}" # Optional additional parsing if 'add_parser' in sys.modules: text = add_parser.parse(text, filename) # Update the dictionary with content text and summary text. content.update({ 'content': text, }) return content
5337830593959e0bf29b4d369789120a265badfc
3,656,653
import torch def train_one_epoch(train_loader, model, criterion, optimizer, epoch, opt, num_train_samples, no_acc_eval=False): """ model training :param train_loader: train dataset loader :param model: model :param criterion: loss criterion :param optimizer: :param epoch: current epoch :param num_train_samples: total number of samples in train_loader :param no_acc_eval (bool): accuray eval in model training :return: """ info = {} losses = AverageMeter('Loss ', ':6.4g') top1 = AverageMeter('Acc@1 ', ':6.2f') top5 = AverageMeter('Acc@5 ', ':6.2f') # switch to train mode model.train() lr_scheduler = global_utils.LearningRateScheduler(mode=opt.lr_mode, lr=opt.lr, num_training_instances=num_train_samples, target_lr=opt.target_lr, stop_epoch=opt.epochs, warmup_epoch=opt.warmup, stage_list=opt.lr_stage_list, stage_decay=opt.lr_stage_decay) lr_scheduler.update_lr(batch_size=epoch * num_train_samples) optimizer.zero_grad() batches_per_allreduce_count = 0 for i, (input_, target) in enumerate(train_loader): if not opt.independent_training: lr_scheduler.update_lr(batch_size=input_.shape[0] * opt.world_size) else: lr_scheduler.update_lr(batch_size=input_.shape[0]) current_lr = lr_scheduler.get_lr() for param_group in optimizer.param_groups: param_group['lr'] = current_lr * opt.batches_per_allreduce bool_label_smoothing = False bool_mixup = False if not opt.dist_mode == 'cpu': input_ = input_.cuda(opt.gpu, non_blocking=True) target = target.cuda(opt.gpu, non_blocking=True) transformed_target = target with torch.no_grad(): if hasattr(opt, 'label_smoothing') and opt.label_smoothing: bool_label_smoothing = True if hasattr(opt, 'mixup') and opt.mixup: bool_mixup = True if bool_label_smoothing and not bool_mixup: transformed_target = one_hot(target, num_classes=opt.num_classes, smoothing_eps=0.1) if not bool_label_smoothing and bool_mixup: transformed_target = one_hot(target, num_classes=opt.num_classes) input_, transformed_target = mixup(input_, transformed_target) if bool_label_smoothing and bool_mixup: transformed_target = one_hot(target, num_classes=opt.num_classes, smoothing_eps=0.1) input_, transformed_target = mixup(input_, transformed_target) # compute output output = model(input_) model_saved = model.module if hasattr(model, 'module') else model logit_loss = criterion(output, transformed_target) ts_feature_loss, ts_logit_loss = model_saved.compute_ts_distill_loss() loss = logit_loss + opt.teacher_feature_weight * ts_feature_loss + opt.teacher_logit_weight * ts_logit_loss # measure accuracy and record loss input_size = int(input_.size(0)) if not no_acc_eval: # pylint: disable=unbalanced-tuple-unpacking acc1, acc5 = accuracy(output.data, target, topk=(1, 5)) top1.update(float(acc1[0]), input_size) top5.update(float(acc5[0]), input_size) else: acc1 = [0] acc5 = [0] losses.update(float(loss), input_size) if opt.apex: if opt.dist_mode == 'horovod': if batches_per_allreduce_count >= opt.batches_per_allreduce: optimizer.zero_grad() batches_per_allreduce_count = 0 with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() batches_per_allreduce_count += 1 if opt.grad_clip is not None: torch.nn.utils.clip_grad_value_(model_saved.parameters(), opt.grad_clip) if batches_per_allreduce_count >= opt.batches_per_allreduce: optimizer.synchronize() with optimizer.skip_synchronize(): optimizer.step() else: # if batches_per_allreduce_count >= opt.batches_per_allreduce: optimizer.zero_grad() batches_per_allreduce_count = 0 with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() if opt.grad_clip is not None: torch.nn.utils.clip_grad_value_(model_saved.parameters(), opt.grad_clip) # if batches_per_allreduce_count >= opt.batches_per_allreduce: optimizer.step() else: if batches_per_allreduce_count >= opt.batches_per_allreduce: optimizer.zero_grad() batches_per_allreduce_count = 0 loss.backward() batches_per_allreduce_count += 1 if opt.grad_clip is not None: torch.nn.utils.clip_grad_value_(model_saved.parameters(), opt.grad_clip) if batches_per_allreduce_count >= opt.batches_per_allreduce: optimizer.step() if i % opt.print_freq == 0: print( f'<rank {opt.rank}> Train epoch={epoch}, i={i}, loss={float(loss):4g}, \ logit_loss={float(logit_loss):4g}, ts_feature_loss={float(ts_feature_loss):4g}, \ ts_logit_loss={float(ts_logit_loss):4g}, \ acc1={float(acc1[0]):4g}%, acc5={float(acc5[0]):4g}%, lr={current_lr:4g}') top1_acc_avg = top1.avg top5_acc_avg = top5.avg losses_acc_avg = losses.avg # if distributed, sync if opt.dist_mode == 'horovod' and (not opt.independent_training): sync_tensor = torch.tensor([top1.sum, top1.count, top5.sum, top5.count, losses.sum, losses.count], dtype=torch.float32) hvd.allreduce(sync_tensor, name='sync_tensor_topk_acc') top1_acc_avg = (sync_tensor[0] / sync_tensor[1]).item() top5_acc_avg = (sync_tensor[2] / sync_tensor[3]).item() losses_acc_avg = (sync_tensor[4] / sync_tensor[5]).item() elif opt.dist_mode == 'apex' and opt.distributed: sync_tensor = torch.tensor([top1.sum, top1.count, top5.sum, top5.count, losses.sum, losses.count], dtype=torch.float32).cuda() dist.all_reduce(sync_tensor, op=dist.ReduceOp.SUM) top1_acc_avg = (sync_tensor[0] / sync_tensor[1]).item() top5_acc_avg = (sync_tensor[2] / sync_tensor[3]).item() losses_acc_avg = (sync_tensor[4] / sync_tensor[5]).item() else: pass info['losses_acc'] = losses_acc_avg info['top1_acc'] = top1_acc_avg info['top5_acc'] = top5_acc_avg return info
5b5efd1292322090abcb795fc633638f478f0afa
3,656,654
import datetime def Write(Variable, f): """Function to Convert None Strings to Strings and Format to write to file with ,""" if isinstance(Variable, str) == False: if isinstance(Variable, datetime.datetime) == True: return f.write(f"{Variable.strftime('%Y-%m-%d')},") else: Variable = round(Variable, 2) return f.write(f"{str(Variable)},") elif isinstance(Variable, str) == True: return f.write(f"{(Variable)},")
9963c4117c7cc3f19d91331ed6c36e5733cffb56
3,656,655
def graphs_infos(): """ Build and return a JSON file containing some information on all the graphs. The json file is built with the following format: [ For each graph in the database : { 'graph_id': the id of the graph, 'name': the name of the graph, 'iso': the string 'true' or 'false' depending if the graph belongs to J or not } ] :return: a JSON file containing some information on all the graphs. """ return jsonify(gdb.get_graph_infos())
ab6fee49188ad422e1e3a5e2763510ae791a840b
3,656,656
def collect_compare(left, right): """ returns a tuple of four lists describing the file paths that have been (in order) added, removed, altered, or left the same """ return collect_compare_into(left, right, [], [], [], [])
2a29d7b896fb037a8784e7c82794d9b67eb2924a
3,656,657
def _get_smallest_vectors(supercell, primitive, symprec): """ shortest_vectors: Shortest vectors from an atom in primitive cell to an atom in supercell in the fractional coordinates. If an atom in supercell is on the border centered at an atom in primitive and there are multiple vectors that have the same distance and different directions, several shortest vectors are stored. The multiplicity is stored in another array, "multiplicity". [atom_super, atom_primitive, multiple-vectors, 3] multiplicity: Number of multiple shortest vectors (third index of "shortest_vectors") [atom_super, atom_primitive] """ p2s_map = primitive.get_primitive_to_supercell_map() size_super = supercell.get_number_of_atoms() size_prim = primitive.get_number_of_atoms() shortest_vectors = np.zeros((size_super, size_prim, 27, 3), dtype='double') multiplicity = np.zeros((size_super, size_prim), dtype='intc') reduced_bases = get_reduced_bases(supercell.get_cell(), symprec) reduced_bases_inv = np.linalg.inv(reduced_bases) primitive_lattice = primitive.get_cell() primitive_lattice_inv = np.linalg.inv(primitive_lattice) # matrix that converts fractional positions in the reduced bases into # fractional positions in the primitive lattice supercell_to_primitive_frac = reduced_bases.dot(primitive_lattice_inv) # all positions are reduced into the cell formed by the reduced bases supercell_fracs = np.dot(supercell.get_positions(), reduced_bases_inv) supercell_fracs -= np.rint(supercell_fracs) for s_index, s_pos in enumerate(supercell_fracs): # run in supercell for j, p_index in enumerate(p2s_map): # run in primitive p_pos = supercell_fracs[p_index] # find smallest vectors equivalent under the supercell lattice vectors = _get_equivalent_smallest_vectors_simple(s_pos - p_pos, reduced_bases, symprec) # return primitive-cell-fractional vectors rather than supercell-fractional vectors = [np.dot(v, supercell_to_primitive_frac) for v in vectors] multiplicity[s_index][j] = len(vectors) for k, elem in enumerate(vectors): shortest_vectors[s_index][j][k] = elem return shortest_vectors, multiplicity
352d4e7ba9552fa4fe5abdb9eb45c4555dff603d
3,656,658
def root(): """Root endpoint that only checks if the server is running.""" return 'Server is running...'
ea9ecd1c736e9379795f361462ed54f464a4008b
3,656,659
def clone_model(model, **new_values): """Clones the entity, adding or overriding constructor attributes. The cloned entity will have exactly the same property values as the original entity, except where overridden. By default, it will have no parent entity or key name, unless supplied. Args: model: datastore_services.Model. Model to clone. **new_values: dict(str: *). Keyword arguments to override when invoking the cloned entity's constructor. Returns: datastore_services.Model. A cloned, and possibly modified, copy of self. Subclasses of BaseModel will return a clone with the same type. """ # Reference implementation: https://stackoverflow.com/a/2712401/4859885. cls = model.__class__ model_id = new_values.pop('id', model.id) props = {k: v.__get__(model, cls) for k, v in cls._properties.items()} # pylint: disable=protected-access props.update(new_values) return cls(id=model_id, **props)
ed668632c8917ad685b86fb5c71146be7c9b3b96
3,656,660
def learn_laterals(frcs, bu_msg, perturb_factor, use_adjaceny_graph=False): """Given the sparse representation of each training example, learn perturbation laterals. See train_image for parameters and returns. """ if use_adjaceny_graph: graph = make_adjacency_graph(frcs, bu_msg) graph = adjust_edge_perturb_radii(frcs, graph, perturb_factor=perturb_factor) else: graph = nx.Graph() graph.add_nodes_from(range(frcs.shape[0])) graph = add_underconstraint_edges(frcs, graph, perturb_factor=perturb_factor) graph = adjust_edge_perturb_radii(frcs, graph, perturb_factor=perturb_factor) edge_factors = np.array( [(edge_source, edge_target, edge_attrs['perturb_radius']) for edge_source, edge_target, edge_attrs in graph.edges_iter(data=True)]) return graph, edge_factors
68333bca0fc3231470268ece6478b372767a6648
3,656,661
def get_info(ingest_ldd_src_dir): """Get LDD version and namespace id.""" # look in src directory for ingest LDD ingest_ldd = find_primary_ingest_ldd(ingest_ldd_src_dir) # get ingest ldd version tree = ETree.parse(ingest_ldd[0]) root = tree.getroot() ldd_version = root.findall(f'.//{{{PDS_NS}}}ldd_version_id')[0].text ns_id = root.findall(f'.//{{{PDS_NS}}}namespace_id')[0].text return ingest_ldd, ns_id, ldd_version
92c4d6f8f18c4204d2a8483584b6f1409d9ee243
3,656,662
def generate_tfidf(corpus_df, dictionary): """Generates TFIDF matrix for the given corpus. Parameters ---------- corpus_df : pd.DataFrame The corpus dataframe. dictionary : gensim.corpora.dictionary.Dictionary Dictionary defining the vocabulary of the TFIDF. Returns ------- X : np.ndarray TFIDF matrix with documents as rows and vocabulary as the columns. """ tfidf_model = TfidfModel( corpus_df.bag_of_words.apply(lambda x: dictionary.doc2bow(x))) model = tfidf_model[ corpus_df.bag_of_words.apply(lambda x: dictionary.doc2bow(x))] X = corpus2csc(model, len(dictionary)).T return X
6c5cd6b569010c69b446223a099cfd745d51ce6c
3,656,663
import os import logging import yaml def load_config_file(file_path, fallback_file_path): """Load YAML format configuration file :param file_path: The path to config file :type file_path: `str` :param fallback_file_path: The fallback path to config file :type fallback_file_path: `str` :return: config_map :rtype: dict """ file_path = file_path if os.path.isfile(file_path) else fallback_file_path logging.info("Loading %s..", file_path) if not os.path.isfile(file_path): # check if the config file exists abort_framework("Config file not found at: {}".format(file_path)) try: config_map = yaml.load(FileOperations.open(file_path, "r")) return config_map except yaml.YAMLError: abort_framework("Error parsing config file at: {}".format(file_path))
1c756b10892f1a6cffa78dd80852049061b7521d
3,656,664
from typing import Tuple from typing import Optional import torch def compute_mask_indices( shape: Tuple[int, int], padding_mask: Optional[torch.Tensor], mask_prob: float, mask_length: int, mask_type: str = "static", mask_other: float = 0.0, min_masks: int = 0, no_overlap: bool = False, min_space: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape Args: shape: the the shape for which to compute masks. should be of size 2 where first element is batch size and 2nd is timesteps padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by number of timesteps divided by length of mask span to mask approximately this percentage of all elements. however due to overlaps, the actual number will be smaller (unless no_overlap is True) mask_type: how to compute mask lengths static = fixed size uniform = sample from uniform distribution [mask_other, mask_length*2] normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element poisson = sample from possion distribution with lambda = mask length min_masks: minimum number of masked spans no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans """ bsz, all_sz = shape mask = np.full((bsz, all_sz), False) all_num_mask = int( # add a random number for probabilistic rounding mask_prob * all_sz / float(mask_length) + np.random.rand() ) all_num_mask = max(min_masks, all_num_mask) mask_idcs = [] for i in range(bsz): if padding_mask is not None: sz = all_sz - padding_mask[i].long().sum().item() num_mask = int( # add a random number for probabilistic rounding mask_prob * sz / float(mask_length) + np.random.rand() ) num_mask = max(min_masks, num_mask) else: sz = all_sz num_mask = all_num_mask if mask_type == "static": lengths = np.full(num_mask, mask_length) elif mask_type == "uniform": lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask) elif mask_type == "normal": lengths = np.random.normal(mask_length, mask_other, size=num_mask) lengths = [max(1, int(round(x))) for x in lengths] elif mask_type == "poisson": lengths = np.random.poisson(mask_length, size=num_mask) lengths = [int(round(x)) for x in lengths] else: raise Exception("unknown mask selection " + mask_type) if sum(lengths) == 0: lengths[0] = min(mask_length, sz - 1) if no_overlap: mask_idc = [] def arrange(s, e, length, keep_length): span_start = np.random.randint(s, e - length) mask_idc.extend(span_start + i for i in range(length)) new_parts = [] if span_start - s - min_space >= keep_length: new_parts.append((s, span_start - min_space + 1)) if e - span_start - keep_length - min_space > keep_length: new_parts.append((span_start + length + min_space, e)) return new_parts parts = [(0, sz)] min_length = min(lengths) for length in sorted(lengths, reverse=True): lens = np.fromiter( (e - s if e - s >= length + min_space else 0 for s, e in parts), np.int, ) l_sum = np.sum(lens) if l_sum == 0: break probs = lens / np.sum(lens) c = np.random.choice(len(parts), p=probs) s, e = parts.pop(c) parts.extend(arrange(s, e, length, min_length)) mask_idc = np.asarray(mask_idc) else: min_len = min(lengths) if sz - min_len <= num_mask: min_len = sz - num_mask - 1 mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) mask_idc = np.asarray( [ mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j]) ] ) mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) min_len = min([len(m) for m in mask_idcs]) for i, mask_idc in enumerate(mask_idcs): if len(mask_idc) > min_len: mask_idc = np.random.choice(mask_idc, min_len, replace=False) mask[i, mask_idc] = True return mask
8ecd84ca805112312d43bd8ba3f4c0aa3918800d
3,656,665
import matplotlib.pyplot as plt import numpy as np def _rankingmap_mpl(countrymasksnc, ranking, x, scenario=None, method='number', title='', label=''): """ countrymasksnc : nc.Dataset instance of countrymasks.nc ranking: Ranking instance method: "number" (default) or "value" """ if method not in ['number', 'value']: raise ValueError('method must be "number" or "value"') areas = ranking.areas ds = countrymasksnc lat, lon = ds['lat'][:], ds['lon'][:] ni, nj = lat.size, lon.size data = np.empty((ni, nj), dtype=int if method == 'number' else float) mask = np.ones((ni, nj), dtype=bool) # undefined areas for area in areas: if 'm_'+area not in ds.variables: print('! rankingmap::', area, 'not found in counrty masks') continue value = getattr(ranking, method)(area, x, scenario) if value == 'undefined': print('! rankingmap::value', area, 'undefined') continue m = ds['m_'+area][:] > 0 data[m] = value mask[m] = False fig, ax = plt.subplots(1,1) h = ax.imshow(np.ma.array(data, mask=mask), extent=[-180, 180, -90, 90], cmap=plt.cm.viridis_r if method == "number" else plt.cm.viridis, vmax=len(areas) if method=='number' else None) # default_title = getattr(ranking, 'plot_label_y','')+' :: ranking: '+method if ranking.plot_type == 'indicator_vs_temperature': details = 'warming level: {} {}'.format(x, ranking.plot_unit_x) else: details = 'period: {}, scenario: {}'.format(x, {'rcp26':'RCP 2.6', 'rcp45':'RCP 4.5', 'rcp60':'RCP 6', 'rcp85':'RCP 8.5'}.get(scenario, scenario)) default_title = getattr(ranking, 'plot_label_y','') + '\n' + details default_label = 'ranking number' if method == 'number' else ('ranking value ({})'.format(getattr(ranking, 'plot_unit_y'))) ax.set_title(title or default_title) plt.colorbar(h, ax=ax, orientation='horizontal', label=label or default_label) return fig
d0e7006d832408fcd77b8b0fe219a6e9faf478e5
3,656,666
from typing import Optional from typing import List from typing import Dict from typing import Any def fetch_data( property: Property, start_date: dt.date, *, end_date: Optional[dt.date] = None, dimensions: Optional[List[Dimension]] = None, ) -> List[Dict[str, Any]]: """Query Google Search Console API for data. Args: property (Property): Property to request data for. start_date (dt.date): Earliest day to request information for. end_date (Optional[dt.date]): Latest day to request information for. Default to ``None``. Will be set to ``start_date`` if ``None``. dimensions (Optional[List[Dimension]], optional): Dimensions to request from API. Defaults to ``None``. Will be set to ``["page", "device"]`` if ``None``. Returns: List[Dict[str, Any]]: Response from API. """ if end_date is None: end_date = start_date if dimensions is None: dimensions = ["page", "device"] results = [] start_row = 0 ROW_LIMIT = 25000 while True: request = { "startDate": start_date.isoformat(), "endDate": end_date.isoformat(), "dimensions": dimensions, "rowLimit": ROW_LIMIT, "startRow": start_row, "dataState": "all", } response = ( searchconsole_service.searchanalytics() .query(siteUrl=property.url, body=request) .execute() ) start_row += ROW_LIMIT result = response.get("rows", []) results.extend(result) if len(result) == 0: break return results
cb871f6e269005db9a338c4bf75949b8ba9ea04a
3,656,667
import os def fileOpenDlg(tryFilePath="", tryFileName="", prompt=_translate("Select file to open"), allowed=None): """A simple dialogue allowing read access to the file system. :parameters: tryFilePath: string default file path on which to open the dialog tryFileName: string default file name, as suggested file prompt: string (default "Select file to open") can be set to custom prompts allowed: string (available since v1.62.01) a string to specify file filters. e.g. "Text files (\\*.txt) ;; Image files (\\*.bmp \\*.gif)" See http://pyqt.sourceforge.net/Docs/PyQt4/qfiledialog.html #getOpenFileNames for further details If tryFilePath or tryFileName are empty or invalid then current path and empty names are used to start search. If user cancels, then None is returned. """ ensureQtApp() if allowed is None: allowed = ("All files (*.*);;" "PsychoPy Data (*.psydat);;" "txt (*.txt *.dlm *.csv);;" "pickled files (*.pickle *.pkl);;" "shelved files (*.shelf)") fdir = os.path.join(tryFilePath, tryFileName) filesToOpen = QtWidgets.QFileDialog.getOpenFileNames(parent=None, caption=prompt, directory=fdir, filter=allowed) if type(filesToOpen) == tuple: # some versions(?) of PyQt return (files, filter) filesToOpen = filesToOpen[0] filesToOpen = [str(fpath) for fpath in filesToOpen if os.path.exists(fpath)] if len(filesToOpen) == 0: return None return filesToOpen
932625c6779a5738c23ff340c448fb594d38c7ca
3,656,668
def inport(port_type, disconnected_value): """Marks this field as an inport""" assert port_type in port_types, \ "Got %r, expected one of %s" % (port_type, port_types) tag = "inport:%s:%s" % (port_type, disconnected_value) return tag
a9335d99b65a4944ef58f06b90f8978e7478ec13
3,656,669
def Align(samInHandle, fa, id, position, varId, refseq, altseq, mapq = 20): """ position is the left break point of the variants And the position should be 1-base for convenience. Because I use something like fa[id][position-1] to get bases from fa string """ if position < 1: raise ValueError('[ERROR] The reference position is not 1-base: %r' % position) if id not in fa: raise ValueError('#[ERROR] The reference did not contain %s' % id) rr,aa,com,diff = 0,0,0,0 for pileup in samInHandle.pileup(id, position-1, position): pos = pileup.pos + 1 # 0-base index to 1-base index if pos != position: continue for read in [al for al in pileup.pileups if al.alignment.mapq >= mapq]: refPos = read.alignment.pos - read.alignment.qstart # 0-base # Next if the position is 2bp near the end of the reads if position > refPos + read.alignment.rlen - 2: continue q = Ref2QryPos(read.alignment.pos, position, read.alignment.cigar) if q > read.alignment.rlen: raise ValueError('#[BUG] The query position(%r) is > read length(%r)' % (q, read.alignment.rlen)) if q == read.alignment.rlen: continue refSeq = fa[id][position:refPos+read.alignment.rlen] qrySeq = altseq + fa[id][position+len(refseq)-1:position+len(refseq)+read.alignment.rlen-q] # [Debug] # print '[POS]', id, pos, read.alignment.pos+1, '\n[QRY]', fa[id][refPos:position], qrySeq, read.alignment.qstart, q,'\n[TAR]',fa[id][refPos:position],refSeq,'\n[SEQ]', read.alignment.seq, read.alignment.cigar, read.alignment.cigarstring, read.alignment.is_secondary, '\n' zr, _ = SumMismatchQuality(read.alignment.seq[q:], read.alignment.qual[q:], refSeq) # Reference za, _ = SumMismatchQuality(read.alignment.seq[q:], read.alignment.qual[q:], qrySeq) # Alternate if zr == 0 and za == 0: com += 1 # Common perfect elif zr == 0 and za > 0: rr += 1 # Reference perfect elif zr > 0 and za == 0: aa += 1 # Alternate perfect else: diff += 1 # All im-perfect #read.alignment.tags += [('ZJ', varId)] + [('ZR', zr)] + [('ZA', za)] # Not output to save the store #samOutHandle.write(read.alignment) # Not output to save the store return rr,aa,com,diff
aa7238f421472e1be24ce290ddd5c3b6f5e2cba4
3,656,670
def _empty_aggregate(*args: npt.ArrayLike, **kwargs) -> npt.ArrayLike: """Return unchaged array.""" return args[0]
c7f6ebc345517b10a3b65c5ac0f0bf060cdf7634
3,656,671
def kfpartial(fun, *args, **kwargs): """ Allows to create partial functions with arbitrary arguments/keywords """ return partial(keywords_first(fun), *args, **kwargs)
7f7dbbdf484e36c2734e47b448f081812cb8a326
3,656,672
def power_state_update(system_id, state): """Report to the region about a node's power state. :param system_id: The system ID for the node. :param state: Typically "on", "off", or "error". """ client = getRegionClient() return client( UpdateNodePowerState, system_id=system_id, power_state=state)
b05730fe9e45b3ee81adb7e8047b0b87e3bf7556
3,656,673
from typing import Any def build_post307_request(*, json: Any = None, content: Any = None, **kwargs: Any) -> HttpRequest: """Post redirected with 307, resulting in a 200 after redirect. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this request builder into your code flow. :keyword json: Pass in a JSON-serializable object (usually a dictionary). See the template in our example to find the input shape. Simple boolean value true. :paramtype json: any :keyword content: Pass in binary content you want in the body of the request (typically bytes, a byte iterator, or stream input). Simple boolean value true. :paramtype content: any :return: Returns an :class:`~azure.core.rest.HttpRequest` that you will pass to the client's `send_request` method. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this response into your code flow. :rtype: ~azure.core.rest.HttpRequest Example: .. code-block:: python # JSON input template you can fill out and use as your body input. json = True # Optional. Default value is True. """ content_type = kwargs.pop("content_type", None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", "/http/redirect/307") # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="POST", url=url, headers=header_parameters, json=json, content=content, **kwargs)
2c26cfed95a33fe700b83d7e1fa4eb93ef312721
3,656,674
def rm_ssp_storage(ssp_wrap, lus, del_unused_images=True): """Remove some number of LogicalUnits from a SharedStoragePool. The changes are flushed back to the REST server. :param ssp_wrap: SSP EntryWrapper representing the SharedStoragePool to modify. :param lus: Iterable of LU ElementWrappers or LUEnt EntryWrappers representing the LogicalUnits to delete. :param del_unused_images: If True, and a removed Disk LU was the last one linked to its backing Image LU, the backing Image LU is also removed. :return: The (possibly) modified SSP wrapper. """ if _rm_lus(ssp_wrap.logical_units, lus, del_unused_images=del_unused_images): # Flush changes ssp_wrap = ssp_wrap.update() return ssp_wrap
0c61becd8f9e23ac269ef0546abb0857facd89de
3,656,675
def urp_detail_view(request, pk): """Renders the URP detail page """ urp = get_object_or_404(URP, pk=pk) ctx = { 'urp': urp, } # if user is logged in as a student, check if user has already applied if request.user.is_authenticated: if request.user.uapuser.is_student: ctx['applied'] = Application.objects.filter(applicant=request.user, urp=urp).exists() else: ctx['applied'] = True return render(request, 'post/urp_detail.html', context=ctx)
15e7e86cf2e47bccda52682bdf205e43d8a03f5f
3,656,676
import functools def squeeze_excite(input_name, squeeze_factor): """Returns a squeeze-excite block.""" ops = [] append = functools.partial(append_op, ops) append(op_name="se/pool0", op_type=OpType.AVG_POOL, input_kwargs={"window_shape": 0}, input_names=[input_name]) append(op_name="se/dense1", op_type=OpType.DENSE, op_kwargs={"features": f"S:-1%{squeeze_factor}"}) append(op_name="se/swish2", op_type=OpType.SWISH) append(op_name="se/dense3", op_type=OpType.DENSE, op_kwargs={"features": f"S:-1*{squeeze_factor}"}) append(op_name="se/sigmoid4", op_type=OpType.SIGMOID) append(op_name="se/mul5", op_type=OpType.MUL, input_names=[input_name, ops[-1].name]) return ops
907acc7f31db9ab4d70f976320fdd779b66b7160
3,656,677
def get_code_v2(fl = r'C:\Users\bogdan\code_seurat\WholeGenome_MERFISH\Coordinates_code_1000region.csv'): """ Given a .csv file with header this returns 2 dictionaries: tad_to_PR,PR_to_tad """ lst = [(ln[:-1].split(',')[0].replace('__','_'),['R'+R for R in ln[:-1].split(',')[3].split('--')]) for ln in open(fl,'r')][1:] tad_to_PR = dict(lst) PR_to_tad = {Rs_to_Rnm(Rs):nm for nm,Rs in lst} return tad_to_PR,PR_to_tad
f5a9e1bbd1f404819a700ee43cff826333ce736c
3,656,678
from funcs.modeling_funcs import modeling_settings, generate_observation_ensemble def run_source_lsq(vars, vs_list=vs_list): """ Script used to run_source and return the output file. The function is called by AdaptiveLejaPCE. """ print('Read Parameters') parameters = pd.read_csv('../data/Parameters-PCE.csv', index_col='Index') # Define objective functions # Use annual or monthly loads def timeseries_sum(df, temp_scale = 'annual'): """ Obtain the sum of timeseries of different temporal scale. temp_scale: str, default is 'Y', monthly using 'M' """ assert temp_scale in ['monthly', 'annual'], 'The temporal scale given is not supported.' if temp_scale == 'monthly': sum_126001A = df.resample('M').sum() else: month_126001A = df.resample('M').sum() sum_126001A = pd.DataFrame(index = np.arange(df.index[0].year, df.index[-1].year), columns=df.columns) for i in range(sum_126001A.shape[0]): sum_126001A.iloc[i, :] = month_126001A.iloc[i*12: (i+1)*12, :].sum() return sum_126001A # End timeseries_sum() # import observation if the output.txt requires the use of obs. date_range = pd.to_datetime(['2017/07/01', '2018/06/30']) observed_din = pd.read_csv(f'{file_settings()[1]}126001A.csv', index_col='Date') observed_din.index = pd.to_datetime(observed_din.index) observed_din = observed_din.loc[date_range[0]:date_range[1], :].filter(items=[observed_din.columns[0]]).apply(lambda x: 1000 * x) # loop over the vars and try to use parallel parameter_df = pd.DataFrame(index=np.arange(vars.shape[1]), columns=parameters.Name_short) for i in range(vars.shape[1]): parameter_df.iloc[i] = vars[:, i] # set the time period of the results retrieve_time = [pd.Timestamp('2017-07-01'), pd.Timestamp('2018-06-30')] # define the modeling period and the recording variables _, _, criteria, start_date, end_date = modeling_settings() din = generate_observation_ensemble(vs_list, criteria, start_date, end_date, parameter_df, retrieve_time) # obtain the sum at a given temporal scale # din_pbias = sp.objectivefunctions.pbias(observed_din[observed_din.columns[0]], din[column_names[0]]) din_126001A = timeseries_sum(din, temp_scale = 'annual') obs_din = timeseries_sum(observed_din, temp_scale = 'annual') din_126001A = pd.DataFrame(din_126001A,dtype='float') obs_din = pd.DataFrame(obs_din,dtype='float') resid = (obs_din - din_126001A).values lsq = np.sum(resid ** 2, axis=0) lsq = lsq.reshape(lsq.shape[0], 1) print(f'Finish {lsq.shape[0]} run') return lsq
e43679a0808108560714e32def9399ce45a6bd8e
3,656,679
def finnegans_wake_unicode_chars(): """Data fixture that returns a string of all unicode characters in Finnegan's Wake.""" return '¤·àáãéìóôþŒŠŸˆ–—‘’‚“”‡…‹'
78205c9181545544a61ef1eab6c2f51d212dac13
3,656,680
from pathlib import Path import posixpath import os def get_upload(upload_key: UploadPath = Path(..., description="上传文件块位置")): """ 获取文件上传目录 :param upload_key: :return: """ root_path = posixpath.abspath(UPLOAD_PATH_DICT[upload_key]) def func(folder): path = security.safe_join(root_path, folder) os.makedirs(path, exist_ok=True) return path return func
39d0d4055f2a9933b9578b74fb14d5fa637154f0
3,656,681
def kit(): # simpler version """Open communication with the dev-kit once for all tests.""" return usp.Devkit()
3001cbfeaf212e9a09e512c102eae6bffa263375
3,656,682
def givens_rotation(A): """Perform QR decomposition of matrix A using Givens rotation.""" (num_rows, num_cols) = np.shape(A) # Initialize orthogonal matrix Q and upper triangular matrix R. Q = np.identity(num_rows) R = np.copy(A) # Iterate over lower triangular matrix. (rows, cols) = np.tril_indices(num_rows, -1, num_cols) for (row, col) in zip(rows, cols): # Compute Givens rotation matrix and # zero-out lower triangular matrix entries. if R[row, col] != 0: (c, s) = _givens_rotation_matrix_entries(R[col, col], R[row, col]) G = np.identity(num_rows) G[[col, row], [col, row]] = c G[row, col] = s G[col, row] = -s R = np.dot(G, R) Q = np.dot(Q, G.T) return (Q, R)
207cadc90c7c4aab76c7422d314b5470ce17251a
3,656,683
from typing import Union from pathlib import Path from typing import Optional import json def lex_from_str( *, in_str: Union[str, Path], grammar: str = "standard", ir_file: Optional[Union[str, Path]] = None, ) -> JSONDict: """Run grammar of choice on input string. Parameters ---------- in_str : Union[str, Path] The string to be parsed. grammar : str Grammar to be used. Defaults to "standard". ir_file : Optional[Union[str, Path]] File to write intermediate representation to (JSON format). None by default, which means file is not written out. Returns ------- The contents of the input string as a dictionary. Raises ------ :exc:`ParselglossyError` """ try: lexer = dispatch_grammar(grammar) except KeyError: raise ParselglossyError(f"Grammar {grammar} not available.") ir = parse_string_to_dict(lexer, in_str) if ir_file is not None: ir_file = path_resolver(ir_file) with ir_file.open("w") as out: json.dump(ir, out, cls=ComplexEncoder, indent=4) return ir
5416bd56426012c56050a0dba2835385fa4177e5
3,656,684
def e() -> ProcessBuilder: """ Euler's number (e) :return: The numerical value of Euler's number. """ return process('e', )
f984b5de5a0b95109c9ec2fe5a2b30c880226b28
3,656,685
def get_or_create_anonymous_cart_from_token(token, cart_queryset=Cart.objects.all()): """Returns open anonymous cart with given token or creates new. :type cart_queryset: saleor.cart.models.CartQueryset :type token: string :rtype: Cart """ return cart_queryset.open().filter(token=token, user=None).get_or_create( defaults={'user': None})[0]
8ffb1f64b77c97b260502f1d4c689e3a4edc4f36
3,656,686
import os def outcar_parser(request): """A fixture that loads OUTCAR.""" try: name = request.param except AttributeError: # Test not parametrized name = 'OUTCAR' testdir = os.path.dirname(__file__) outcarfile = testdir + '/' + name outcar = Outcar(file_path=outcarfile) return outcar
5fe8b1ddb7f55e233104cec9a5be94624bc77ce9
3,656,687
from typing import Any def accept_data(x: Any) -> Any: """Accept any types of data and return it as convenient type. Args: x: Any type of data. Returns: Any: Accepted data. """ if isinstance(x, str): return x elif isinstance(x, list): return x elif isinstance(x, dict): return x elif isinstance(x, tuple): return x elif isinstance(x, set): return x elif isinstance(x, float): return x elif isinstance(x, int): return x elif isinstance(x, bool): return x elif isinstance(x, type(None)): return x else: return x
9862995eafb7015fc446466e2dbb7774be39f54b
3,656,688
def custom_model_template(model_type: str, target: str, result0: str, result1: str) -> str: """Template for feature behaviour reason generated from DICE Returns: str: behaviour """ if model_type == 'classifier': tipo = 'category' elif model_type == 'regressor': tipo = 'continuous' behaviour = get_behaviour(tipo = tipo, result0 = result0, result1 = result1) phrase = generic_type_template(tipo = tipo, name = target, behaviour = behaviour, result0 = result0, result1 = result1) result = color.BLUE + f" the output of the model {phrase}." + color.END return result
bbd43a462f6d9d65984dbd242c7fe8a5d2be5e39
3,656,689
def merge_dict_list(merged, x): """ merge x into merged recursively. x is either a dict or a list """ if type(x) is list: return merged + x for key in x.keys(): if key not in merged.keys(): merged[key] = x[key] elif x[key] is not None: merged[key] = merge_dict_list(merged[key], x[key]) return merged
00685be39a0b1447c81ecd8de777ebab38aa9bfe
3,656,690
def is_ref(variant, exclude_alleles=None): """Returns true if variant is a reference record. Variant protos can encode sites that aren't actually mutations in the sample. For example, the record ref='A', alt='.' indicates that there is no mutation present (i.e., alt is the missing value). Args: variant: nucleus.genomics.v1.Variant. exclude_alleles: list(str). The alleles in this list will be ignored. Returns: True if there are no actual alternate alleles. """ relevant_alts = _non_excluded_alts(variant.alternate_bases, exclude_alleles) return not relevant_alts
2c762bbf070f375b546f0902e3567ca5542cc774
3,656,691
def gomc_sim_completed_properly(job, control_filename_str): """General check to see if the gomc simulation was completed properly.""" job_run_properly_bool = False output_log_file = "out_{}.dat".format(control_filename_str) if job.isfile(output_log_file): # with open(f"workspace/{job.id}/{output_log_file}", "r") as fp: with open(f"{output_log_file}", "r") as fp: out_gomc = fp.readlines() for i, line in enumerate(out_gomc): if "Move" in line: split_move_line = line.split() if ( split_move_line[0] == "Move" and split_move_line[1] == "Type" and split_move_line[2] == "Mol." and split_move_line[3] == "Kind" ): job_run_properly_bool = True else: job_run_properly_bool = False return job_run_properly_bool
20635ba94b5176298216ad5807e6428a5fb957c2
3,656,692
from typing import Union from typing import Optional def rv_precision( wavelength: Union[Quantity, ndarray], flux: Union[Quantity, ndarray], mask: Optional[ndarray] = None, **kwargs, ) -> Quantity: """Calculate the theoretical RV precision achievable on a spectrum. Parameters ---------- wavelength: array-like or Quantity Wavelength of spectrum. flux: array-like or Quantity Flux of spectrum. mask: array-like, Quantity or None Masking function array to apply to the pixel weights. kwargs: Kwargs for sqrt_sum_wis Returns ------- RVrms: astropy.Quantity Radial velocity precision of spectra in m/s. """ return c / sqrt_sum_wis(wavelength, flux, mask=mask, **kwargs)
91d6a741d992bd915549becd371d29b6634b92ef
3,656,693
def changenonetoNone(s): """Convert str 'None' to Nonetype """ if s=='None': return None else: return s
9f6af1580d8b47d2a7852e433f7ba8bbd5c7044d
3,656,694
def quaternion_2_rotation_matrix(q): """ 四元数转化为旋转矩阵 :param q: :return: 旋转矩阵 """ rotation_matrix = np.array([[np.square(q[0]) + np.square(q[1]) - np.square(q[2]) - np.square(q[3]), 2 * (q[1] * q[2] - q[0] * q[3]), 2 * (q[1] * q[3] + q[0] * q[2])], [2 * (q[1] * q[2] + q[0] * q[3]), np.square(q[0]) - np.square(q[1]) + np.square(q[2]) - np.square(q[3]), 2 * (q[2] * q[3] - q[0] * q[1])], [2 * (q[1] * q[3] - q[0] * q[2]), 2 * (q[2] * q[3] + q[0] * q[1]), np.square(q[0]) - np.square(q[1]) - np.square(q[2]) + np.square(q[3])]], dtype=np.float32) return rotation_matrix
f2e420a1e0b6838fb2ce5f9288842e1ae39134c9
3,656,695
def sum(mat, axis, target=None): """ Sum the matrix along the given dimension, where 0 represents the leading dimension and 1 represents the non-leading dimension. If a target is not prvided, a new vector is created for storing the result. """ m = _eigenmat.get_leading_dimension(mat.p_mat) n = _eigenmat.get_nonleading_dimension(mat.p_mat) if axis == 0: # sum along leading dimension if not target: target = empty((1, n)) elif axis == 1: # sum along non-leading dimension if not target: target = empty((m, 1)) err_code = _eigenmat.sum_by_axis(mat.p_mat, target.p_mat, ct.c_int(axis)) if err_code: raise generate_exception(err_code) return target
426ba7b2673a52663e04d3c6f07fb2f4e001244b
3,656,696
from datetime import datetime def convert_created_time_to_datetime(datestring): """ Args: datestring (str): a string object either as a date or a unix timestamp Returns: a pandas datetime object """ if len(datestring) == 30: return pd.to_datetime(datestring) else: return pd.to_datetime(datetime.fromtimestamp(int(datestring[:10])))
2559d079b5b7174d192e3a5d9178701ae7080d3b
3,656,697
def identify_word_classes(tokens, word_classes): """ Match word classes to the token list :param list tokens: List of tokens :param dict word_classes: Dictionary of word lists to find and tag with the respective dictionary key :return: Matched word classes :rtype: list """ if word_classes is None: word_classes = [] classes = set() for key in word_classes: for token in tokens: if token.lower() in word_classes[key]: classes.add(key) return classes
ca7aa602d19ac196321af19c42a60df415c7d115
3,656,698
from typing import List from typing import Tuple def find_connecting_stops(routes) -> List[Tuple[Stop, List[Route]]]: """ Find all stops that connect more than one route. Return [Stop, [Route]] """ stops = {} for route in sorted(routes, key=Route.name): for stop in route.stops(): id_ = stop.id() if id_ not in stops: stops[id_] = (stop, []) last(stops[id_]).append(route) return list(filter(lambda p: length(last(p)) > 1, stops.values()))
599e9e5d3fc0a6d0de84a58f1549da9423f35af3
3,656,699