content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import torch def sampler(value, percentile): """Score based on sampling task model output distribution Args: value: The output of the task model percentile: the (sorted) index of the sample we use Returns: The percentile largest distance from the mean of the samples. """ softmaxed = nn.functional.softmax(value[0], dim=1) samples = torch.tensor( np.array( list( torch.utils.data.WeightedRandomSampler( softmaxed, 10000)))).float() mean_value = samples.mean(dim=1) dist_from_mean = torch.abs((( samples-mean_value.unsqueeze(1).repeat( 1, samples.shape[1]))+180)%360 - 180) sorted_val = torch.sort(dist_from_mean).values if percentile == 10000: percentile = percentile-1 return sorted_val[:, percentile]
905665d5219df7737adaf2c7fd435cef3f3c7f1d
3,656,800
def gists_by(username, number=-1, etag=None): """Iterate over gists created by the provided username. .. deprecated:: 1.2.0 Use :meth:`github3.github.GitHub.gists_by` instead. :param str username: (required), if provided, get the gists for this user instead of the authenticated user. :param int number: (optional), number of gists to return. Default: -1, return all of them :param str etag: (optional), ETag from a previous request to the same endpoint :returns: generator of :class:`Gist <github3.gists.Gist>` """ if username: return gh.gists_by(username, number, etag) return iter([])
b98f478dbac25c0334296da5055952a776af9d39
3,656,801
import pyspark def needs_spark(test_item): """ Use as a decorator before test classes or methods to only run them if Spark is usable. """ test_item = _mark_test('spark', test_item) try: # noinspection PyUnresolvedReferences except ImportError: return unittest.skip("Skipping test. Install PySpark to include this test.")(test_item) except: raise else: return test_item
f4d40b7119f753162ed5f6377ebef3b42d2bf549
3,656,802
from typing import Generator def get_school_years_from_db() -> Generator: """Get all school years from the database. :return: iterable with all availabe school years """ session: db.orm.session.Session = Session() return (e[0] for e in set(session.query(Holiday.school_year).all()))
48651fab2364e03a2d18224c7a798d8754cca911
3,656,803
def get_api(context=None): """ This function tries to detect if the app is running on a K8S cluster or locally and returns the corresponding API object to be used to query the API server. """ if app.config.get("MODE") == "KUBECONFIG": return client.CustomObjectsApi(config.new_client_from_config(context=context)) elif app.config.get("MODE") == "CLUSTER": return client.CustomObjectsApi()
89808a80c3ad4ae1260ffbb9611543b6e33298ee
3,656,804
def is_variant(title) -> bool: """ Check if an issue is variant cover. """ return "variant" in title.lower()
5e0bab3030c069d7726bbc8c9909f561ed139cb8
3,656,805
def _decode_common(hparams): """Common graph for decoding.""" features = get_input(hparams, FLAGS.data_files) decode_features = {} for key in features: if key.endswith("_refs"): continue decode_features[key] = features[key] _, _, _, references = seq2act_model.compute_logits( features, hparams, mode=tf.estimator.ModeKeys.EVAL) decode_utils.decode_n_step(seq2act_model.compute_logits, decode_features, references["areas"], hparams, n=20, beam_size=FLAGS.beam_size) decode_mask = generate_action_mask(decode_features) return decode_features, decode_mask, features
a9eac81d9fe5e0480c679e41a61699b9e281fdd5
3,656,806
from typing import Tuple def _lex_single_line_comment(header: str) -> Tuple[str, str]: """ >>> _lex_single_line_comment("a=10") ('', 'a=10') >>> _lex_single_line_comment("//comment\\nb=20") ('', 'b=20') """ if header[:2] != "//": return "", header line_end_pos = header.find("\n") return "", header[line_end_pos + 1 :]
4d562557db11c7279042e439a56cc7864fa259ef
3,656,807
from thelper.data.loaders import LoaderFactory as LoaderFactory import os import logging import sys import pprint import json def create_loaders(config, save_dir=None): """Prepares the task and data loaders for a model trainer based on a provided data configuration. This function will parse a configuration dictionary and extract all the information required to instantiate the requested dataset parsers. Then, combining the task metadata of all these parsers, it will evenly split the available samples into three sets (training, validation, test) to be handled by different data loaders. These will finally be returned along with the (global) task object. The configuration dictionary is expected to contain two fields: ``loaders``, which specifies all parameters required for establishing the dataset split, shuffling seeds, and batch size (these are listed and detailed below); and ``datasets``, which lists the dataset parser interfaces to instantiate as well as their parameters. For more information on the ``datasets`` field, refer to :func:`thelper.data.utils.create_parsers`. The parameters expected in the 'loaders' configuration field are the following: - ``<train_/valid_/test_>batch_size`` (mandatory): specifies the (mini)batch size to use in data loaders. If you get an 'out of memory' error at runtime, try reducing it. - ``<train_/valid_/test_>collate_fn`` (optional): specifies the collate function to use in data loaders. The default one is typically fine, but some datasets might require a custom function. - ``shuffle`` (optional, default=True): specifies whether the data loaders should shuffle their samples or not. - ``test_seed`` (optional): specifies the RNG seed to use when splitting test data. If no seed is specified, the RNG will be initialized with a device-specific or time-related seed. - ``valid_seed`` (optional): specifies the RNG seed to use when splitting validation data. If no seed is specified, the RNG will be initialized with a device-specific or time-related seed. - ``torch_seed`` (optional): specifies the RNG seed to use for torch-related stochastic operations (e.g. for data augmentation). If no seed is specified, the RNG will be initialized with a device-specific or time-related seed. - ``numpy_seed`` (optional): specifies the RNG seed to use for numpy-related stochastic operations (e.g. for data augmentation). If no seed is specified, the RNG will be initialized with a device-specific or time-related seed. - ``random_seed`` (optional): specifies the RNG seed to use for stochastic operations with python's 'random' package. If no seed is specified, the RNG will be initialized with a device-specific or time-related seed. - ``workers`` (optional, default=1): specifies the number of threads to use to preload batches in parallel; can be 0 (loading will be on main thread), or an integer >= 1. - ``pin_memory`` (optional, default=False): specifies whether the data loaders will copy tensors into CUDA-pinned memory before returning them. - ``drop_last`` (optional, default=False): specifies whether to drop the last incomplete batch or not if the dataset size is not a multiple of the batch size. - ``sampler`` (optional): specifies a type of sampler and its constructor parameters to be used in the data loaders. This can be used for example to help rebalance a dataset based on its class distribution. See :mod:`thelper.data.samplers` for more information. - ``augments`` (optional): provides a list of transformation operations used to augment all samples of a dataset. See :func:`thelper.transforms.utils.load_augments` for more info. - ``train_augments`` (optional): provides a list of transformation operations used to augment the training samples of a dataset. See :func:`thelper.transforms.utils.load_augments` for more info. - ``valid_augments`` (optional): provides a list of transformation operations used to augment the validation samples of a dataset. See :func:`thelper.transforms.utils.load_augments` for more info. - ``test_augments`` (optional): provides a list of transformation operations used to augment the test samples of a dataset. See :func:`thelper.transforms.utils.load_augments` for more info. - ``eval_augments`` (optional): provides a list of transformation operations used to augment the validation and test samples of a dataset. See :func:`thelper.transforms.utils.load_augments` for more info. - ``base_transforms`` (optional): provides a list of transformation operations to apply to all loaded samples. This list will be passed to the constructor of all instantiated dataset parsers. See :func:`thelper.transforms.utils.load_transforms` for more info. - ``train_split`` (optional): provides the proportion of samples of each dataset to hand off to the training data loader. These proportions are given in a dictionary format (``name: ratio``). - ``valid_split`` (optional): provides the proportion of samples of each dataset to hand off to the validation data loader. These proportions are given in a dictionary format (``name: ratio``). - ``test_split`` (optional): provides the proportion of samples of each dataset to hand off to the test data loader. These proportions are given in a dictionary format (``name: ratio``). - ``skip_verif`` (optional, default=True): specifies whether the dataset split should be verified if resuming a session by parsing the log files generated earlier. - ``skip_split_norm`` (optional, default=False): specifies whether the question about normalizing the split ratios should be skipped or not. - ``skip_class_balancing`` (optional, default=False): specifies whether the balancing of class labels should be skipped in case the task is classification-related. Example configuration file:: # ... "loaders": { "batch_size": 128, # batch size to use in data loaders "shuffle": true, # specifies that the data should be shuffled "workers": 4, # number of threads to pre-fetch data batches with "train_sampler": { # we can use a data sampler to rebalance classes (optional) # see e.g. 'thelper.data.samplers.WeightedSubsetRandomSampler' # ... }, "train_augments": { # training data augmentation operations # see 'thelper.transforms.utils.load_augments' # ... }, "eval_augments": { # evaluation (valid/test) data augmentation operations # see 'thelper.transforms.utils.load_augments' # ... }, "base_transforms": { # global sample transformation operations # see 'thelper.transforms.utils.load_transforms' # ... }, # optionally indicate how to resolve dataset loader task vs model task incompatibility if any # leave blank to get more details about each case during runtime if this situation happens "task_compat_mode": "old|new|compat", # finally, we define a 80%-10%-10% split for our data # (we could instead use one dataset for training and one for testing) "train_split": { "dataset_A": 0.8 "dataset_B": 0.8 }, "valid_split": { "dataset_A": 0.1 "dataset_B": 0.1 }, "test_split": { "dataset_A": 0.1 "dataset_B": 0.1 } # (note that the dataset names above are defined in the field below) }, "datasets": { "dataset_A": { # type of dataset interface to instantiate "type": "...", "params": { # ... } }, "dataset_B": { # type of dataset interface to instantiate "type": "...", "params": { # ... }, # if it does not derive from 'thelper.data.parsers.Dataset', a task is needed: "task": { # this type must derive from 'thelper.tasks.Task' "type": "...", "params": { # ... } } }, # ... }, # ... Args: config: a dictionary that provides all required data configuration information under two fields, namely 'datasets' and 'loaders'. save_dir: the path to the root directory where the session directory should be saved. Note that this is not the path to the session directory itself, but its parent, which may also contain other session directories. Returns: A 4-element tuple that contains: 1) the global task object to specialize models and trainers with; 2) the training data loader; 3) the validation data loader; and 4) the test data loader. .. seealso:: | :func:`thelper.data.utils.create_parsers` | :func:`thelper.transforms.utils.load_augments` | :func:`thelper.transforms.utils.load_transforms` """ logstamp = thelper.utils.get_log_stamp() repover = thelper.__version__ + ":" + thelper.utils.get_git_stamp() session_name = config["name"] if "name" in config else "session" data_logger_dir = None if save_dir is not None: thelper.utils.init_logger() # make sure all logging is initialized before attaching this part data_logger_dir = os.path.join(save_dir, "logs") os.makedirs(data_logger_dir, exist_ok=True) data_logger_path = os.path.join(data_logger_dir, "data.log") data_logger_format = logging.Formatter("[%(asctime)s - %(process)s] %(levelname)s : %(message)s") data_logger_fh = logging.FileHandler(data_logger_path) data_logger_fh.setLevel(logging.NOTSET) data_logger_fh.setFormatter(data_logger_format) thelper.data.logger.addHandler(data_logger_fh) thelper.data.logger.info(f"created data log for session '{session_name}'") logger.debug("loading data usage config") # todo: 'data_config' field is deprecated, might be removed later if "data_config" in config: logger.warning("using 'data_config' field in configuration dictionary is deprecated; switch it to 'loaders'") loaders_config = thelper.utils.get_key(["data_config", "loaders"], config) # noinspection PyProtectedMember loader_factory = LoaderFactory(loaders_config) datasets, task = create_parsers(config, loader_factory.get_base_transforms()) assert datasets and task is not None, "invalid dataset configuration (got empty list)" for dataset_name, dataset in datasets.items(): logger.info(f"parsed dataset: {str(dataset)}") logger.info(f"task info: {str(task)}") logger.debug("splitting datasets and creating loaders...") train_idxs, valid_idxs, test_idxs = loader_factory.get_split(datasets, task) if save_dir is not None: with open(os.path.join(data_logger_dir, "task.log"), "a+") as fd: fd.write(f"session: {session_name}-{logstamp}\n") fd.write(f"version: {repover}\n") fd.write(str(task) + "\n") for dataset_name, dataset in datasets.items(): dataset_log_file = os.path.join(data_logger_dir, dataset_name + ".log") if not loader_factory.skip_verif and os.path.isfile(dataset_log_file): logger.info(f"verifying sample list for dataset '{dataset_name}'...") log_content = thelper.utils.load_config(dataset_log_file, as_json=True, add_name_if_missing=False) assert isinstance(log_content, dict), "old split data logs no longer supported for verification" samples_old, samples_new = None, None if "samples" in log_content: assert isinstance(log_content["samples"], list), \ "unexpected dataset log content (bad 'samples' field, should be list)" samples_old = log_content["samples"] samples_new = dataset.samples if hasattr(dataset, "samples") and dataset.samples is not None \ and len(dataset.samples) == len(dataset) else [] if len(samples_old) != len(samples_new): query_msg = f"old sample list for dataset '{dataset_name}' mismatch with current list; proceed?" answer = thelper.utils.query_yes_no(query_msg, bypass="n") if not answer: logger.error("sample list mismatch with previous run; user aborted") sys.exit(1) break for set_name, idxs in zip(["train_idxs", "valid_idxs", "test_idxs"], [train_idxs[dataset_name], valid_idxs[dataset_name], test_idxs[dataset_name]]): # index values were paired in tuples earlier, 0=idx, 1=label --- we unpack in the miniloop below if not np.array_equal(np.sort(log_content[set_name]), np.sort([idx for idx, _ in idxs])): query_msg = f"Old indices list for dataset '{dataset_name}' mismatch with current indices" \ f"list ('{set_name}'); proceed anyway?" answer = thelper.utils.query_yes_no(query_msg, bypass="n") if not answer: logger.error("indices list mismatch with previous run; user aborted") sys.exit(1) break printer = pprint.PrettyPrinter(indent=2) log_sample_metadata = thelper.utils.get_key_def(["log_samples", "log_samples_metadata"], config, default=False) for dataset_name, dataset in datasets.items(): dataset_log_file = os.path.join(data_logger_dir, dataset_name + ".log") samples = dataset.samples if hasattr(dataset, "samples") and dataset.samples is not None \ and len(dataset.samples) == len(dataset) else [] log_content = { "metadata": { "session_name": session_name, "logstamp": logstamp, "version": repover, "dataset": str(dataset), }, # index values were paired in tuples earlier, 0=idx, 1=label "train_idxs": [int(idx) for idx, _ in train_idxs[dataset_name]], "valid_idxs": [int(idx) for idx, _ in valid_idxs[dataset_name]], "test_idxs": [int(idx) for idx, _ in test_idxs[dataset_name]] } if log_sample_metadata: log_content["samples"] = [printer.pformat(sample) for sample in samples] # now, always overwrite, as it can get too big otherwise with open(dataset_log_file, "w") as fd: json.dump(log_content, fd, indent=4, sort_keys=False) train_loader, valid_loader, test_loader = loader_factory.create_loaders(datasets, train_idxs, valid_idxs, test_idxs) return task, train_loader, valid_loader, test_loader
41a40951dc0f5848120cc88ac6abc34ea0367b04
3,656,808
def in_box(X, box): """Get a boolean array indicating whether points X are within a given box :param X: n_pts x n_dims array of points :param box: 2 x n_dims box specs (box[0, :] is the min point and box[1, :] is the max point) :return: n_pts boolean array r where r[idx] is True iff X[idx, :] is within the box >>> import numpy as np >>> X = np.arange(12).reshape((4, 3)) >>> print(X) [[ 0 1 2] [ 3 4 5] [ 6 7 8] [ 9 10 11]] >>> in_box(X, [[1, 2, 3], [6, 7, 8]]) array([False, True, True, False]) >>> in_box(X, box=[[2] * 3, [7] * 3]) array([False, True, False, False]) """ MINS_ROW_IDX = 0 MAXS_ROW_IDX = 1 X, box = map(np.array, (X, box)) n_rows_in_box_matrix, ndims = box.shape assert ( n_rows_in_box_matrix == 2 ), 'box must have 2 rows only: [0] the min point and [1] the max point of the box' assert ( X.shape[1] == ndims ), f"ndims of X should be aligned with box's ({ndims}): Was {X.shape[1]}" return np.all((box[MINS_ROW_IDX, :] <= X) & (X <= box[MAXS_ROW_IDX, :]), axis=1)
8ee516937b3a19a27fed81cfee0ca19356cb5249
3,656,809
def test_partial_field_square(): """Fields that do not extend over the whole wall""" field = np.zeros((40, 40)) field[:10, 0] = 1 fields = {kw_field_map: field} walls = "L" assert func(fields, "s", walls=walls) == 0.25 field[:20, 0] = 1 assert func(fields, "s", walls=walls) == 0.5 field[:30, 0] = 1 assert func(fields, "s", walls=walls) == 0.75 print("test_partial_field() passed") return True
94af1cf9e500ddddd16c9fea61eeb43874589b68
3,656,810
import sys from sys import path def get_countries(): """ The function to generate a dictionary containing ISO_3166-1 country codes to names. Returns: Dictionary: A dictionary with the country codes as the keys and the country names as the values. """ #Initialize the countries dictionary. countries = {} #Set the data directory based on if the script is a frozen executable. if sys.platform == 'win32' and getattr(sys, 'frozen', False): data_dir = path.dirname(sys.executable) else: data_dir = path.dirname(__file__) #Create the country codes file object. f = open(str(data_dir) + '/data/iso_3166-1_list_en.xml', 'r') #Read the file. data = f.read() #Check if there is data. if not data: return {} #Parse the data to get the DOM. dom = parseString(data) #Retrieve the country entries. entries = dom.getElementsByTagName('ISO_3166-1_Entry') #Iterate through the entries and add to the countries dictionary. for entry in entries: #Retrieve the country code and name from the DOM. code = entry.getElementsByTagName( 'ISO_3166-1_Alpha-2_Code_element')[0].firstChild.data name = entry.getElementsByTagName( 'ISO_3166-1_Country_name')[0].firstChild.data #Add to the countries dictionary. countries[code] = name.title() return countries
4491097e1b3f0a5cd4034b4745a7597688a952fd
3,656,811
def get_empty_faceid(current_groupid, uuid, embedding, img_style, number_people, img_objid, forecast_result): """ 当softmax无结果时(无模型/预测置信度低)调用遍历数据库识别 :param current_groupid: :param uuid: :param embedding: :param img_style: :param number_people: :param img_objid: :return: """ json_data = {'detected': True, 'recognized': False} face_id = img_objid + str(all_face_index).zfill(4) json_data['recognized'] = False json_data['face_id'] = face_id json_data['accuracy'] = 0 json_data['style'] = img_style forecast_result['face_id'] = face_id forecast_result['face_accuracy'] = 0 embedding_string = ','.join(str(x) for x in embedding) forecast_result['embedding_string'] = embedding_string return json_data, forecast_result
265250564de0ac160c5f0110293fc52693edaeda
3,656,812
def dz_and_top_to_phis( top_height: xr.DataArray, dz: xr.DataArray, dim: str = COORD_Z_CENTER ) -> xr.DataArray: """ Compute surface geopotential from model top height and layer thicknesses""" return _GRAVITY * (top_height + dz.sum(dim=dim))
14e19781cdac7a743d26db7d29317ea33ae94517
3,656,813
import scipy def altPDF(peaks,mu,sigma=None,exc=None,method="RFT"): """ altPDF: Returns probability density using a truncated normal distribution that we define as the distribution of local maxima in a GRF under the alternative hypothesis of activation parameters ---------- peaks: float or list of floats list of peak heigths mu: sigma: returns ------- fa: float or list probability density of the peaks heights under Ha """ #Returns probability density of the alternative peak distribution peaks = np.asarray(peaks) if method == "RFT": # assert type(sigma) is in [float, int] # assert sigma is not None ksi = (peaks-mu)/sigma alpha = (exc-mu)/sigma num = 1/sigma * scipy.stats.norm.pdf(ksi) den = 1. - scipy.stats.norm.cdf(alpha) fa = num/den elif method == "CS": fa = [peakdistribution.peakdens3D(y-mu,1) for y in peaks] return fa
0346d1efcad2a3f8e1548857c980fb6c92ea07f3
3,656,814
def implicit_quantile_network(num_actions, quantile_embedding_dim, network_type, state, num_quantiles): """The Implicit Quantile ConvNet. Args: num_actions: int, number of actions. quantile_embedding_dim: int, embedding dimension for the quantile input. network_type: namedtuple, collection of expected values to return. state: `tf.Tensor`, contains the agent's current state. num_quantiles: int, number of quantile inputs. Returns: net: _network_type object containing the tensors output by the network. """ model = atari_lib.ImplicitQuantileNetwork(num_actions, quantile_embedding_dim) net = model(state, num_quantiles) return network_type(quantile_values=net.quantile_values, quantiles=net.quantiles)
2782f94b2003dca0a8865298dab2dbb17ec4cb45
3,656,815
def get_waitlist(usercode): """ Запрос /api/waitlists/{usercode} - возвращает waitlist контент по usercode """ user_by_usercode = ( AppUsers.query.filter(AppUsers.usercode == usercode).one_or_none() ) if user_by_usercode is None: abort( 409, "Usercode {usercode} does not exists".format( usercode=usercode ), ) string_array_waitlist = user_by_usercode.waitlist # Запрос по id try: array_waitlist = [int(s) for s in string_array_waitlist.split(',')] except ValueError: abort( 404, "Waitlist empty or wrong format. Format of waitlist string should be - 1,2,3,4,5 etc", ) except AttributeError: abort( 404, "Waitlist empty or wrong format. Format of waitlist string should be - 1,2,3,4,5 etc", ) content = Content.query.filter(Content.content_id.in_(array_waitlist)).all() # Проверка на наличие id if content is not None: # Сериализация content_schema = ContentSchema(many=True) data = content_schema.dump(content).data return data # Ошибка, если нет else: abort( 404, "Empty show list with this IDs", )
0592d188020b967198c1cb052d1e4b3adbc1ed21
3,656,816
def not_empty(message=None) -> Filter_T: """ Validate any object to ensure it's not empty (is None or has no elements). """ def validate(value): if value is None: _raise_failure(message) if hasattr(value, '__len__') and value.__len__() == 0: _raise_failure(message) return value return validate
f1ee9b43936978dfbd81550b9931d0cc8800eef2
3,656,817
def temporal_affine_forward(x, W, b): """ Run a forward pass for temporal affine layer. The dimensions are consistent with RNN/LSTM forward passes. Arguments: x: input data with shape (N, T, D) W: weight matrix for input data with shape (D, M) b: bias with shape (M,) Outputs: out: output data with shape (N, T, M) cache: cache for back-prop """ N, T, D = x.shape M = b.shape[0] out = np.dot(x.reshape(N * T, D), W).reshape(N, T, M) + b cache = x, W, b, out return out, cache
2eca1c3ef36eb8bdbcaaad88c3b2f1234227e2d4
3,656,818
def uniform_regular_knot_vector(n, p, t0=0.0, t1=1.0): """ Create a p+1-regular uniform knot vector for a given number of control points Throws if n is too small """ # The minimum length of a p+1-regular knot vector # is 2*(p+1) if n < p+1: raise RuntimeError("Too small n for a uniform regular knot vector") # p+1 copies of t0 left and p+1 copies of t1 right # but one of each in linspace return [t0]*p + list(np.linspace(t0, t1, n+1-p)) + [t1]*p
e0e1bc9f2e2ea2e74d70c76d35479efebc42d2f7
3,656,819
def generateCM(labelValue, predictValue): """Generates the confusion matrix and rteturn it. Args: labelValue (np.ndarray): true values. predictValue (np.ndarray): predicted values. """ FPMtx = np.logical_and((labelValue <= 0), (predictValue > 0)) FPIndices = np.argwhere(FPMtx) FPNum = np.sum(FPMtx) FNMtx = np.logical_and((labelValue > 0), (predictValue <= 0)) FNIndices = np.argwhere(FNMtx) FNNum = np.sum(FNMtx) TPMtx = np.logical_and((labelValue > 0), (predictValue > 0)) TPIndices = np.argwhere(TPMtx) TPNum = np.sum(TPMtx) TNMtx = np.logical_and((labelValue <= 0), (predictValue <= 0)) TNIndices = np.argwhere(TNMtx) TNNum = np.sum(TNMtx) accuracy = (TPNum+TNNum) / (TPNum+TNNum+FPNum+FNNum) FPrate = FPNum / (FPNum+TNNum) FNrate = FNNum / (TPNum+FNNum) TNrate = TNNum / (FPNum+TNNum) TPrate = TPNum / (TPNum+FNNum) print( "TP: {:.0f}, FN: {:.0f}, FP: {:.0f}, TN: {:.0f}".format( TPNum, FNNum, FPNum, TNNum ) ) cm = np.array([[TPrate, FNrate], [FPrate, TNrate]]) return cm, accuracy, TPIndices, FNIndices, FPIndices, TNIndices
3ea5751bb9c9153edf4fdce12512319b75f80484
3,656,820
def get_cosine_similarity(word2vec: Word2Vec) -> np.ndarray: """Get the cosine similarity matrix from the embedding. Warning; might be very big! """ return cosine_similarity(word2vec.wv.vectors)
b9a976de8faef0cd85265c4afdb80dd8720128f5
3,656,821
def get_bot_id() -> str: """ Gets the app bot ID Returns: The app bot ID """ response = CLIENT.auth_test() return response.get('user_id')
6dcf2121fb11fb4af1615c9d739923e86299cc0a
3,656,822
import os def extract_rawfile_unique_values( file: str ) -> list: """Extract the unique raw file names from "R.FileName" (Spectronaut output), "Raw file" (MaxQuant output), "shortname" (AlphaPept output) or "Run" (DIA-NN output) column or from the "Spectral Count" column from the combined_peptide.tsv file without modifications for the FragPipe. Args: file (str): The name of a file. Raises: ValueError: if a column with the unique raw file names is not in the file. Returns: list: A sorted list of unique raw file names from the file. """ file_ext = os.path.splitext(file)[-1] if file_ext == '.csv': sep = ',' elif file_ext in ['.tsv', '.txt']: sep = '\t' with open(file) as filelines: i = 0 filename_col_index = None filename_data = [] for l in filelines: l = l.split(sep) # just do it for the first line if i == 0: for col in ['R.FileName', 'Raw file', 'Run', 'shortname']: if col in l: filename_col_index = l.index(col) break if not isinstance(filename_col_index, int): # to check the case with the FragPipe peptide.tsv file when we don't have the info about the experiment name if ("Assigned Modifications" in "".join(l)) and ("Protein ID" in "".join(l)) and ("Peptide" in "".join(l)): return [] # to check the case with the FragPipe combined_peptide.tsv file when the experiment name is included in the "Spectral Count" column elif ("Sequence" in "".join(l)) and ("Assigned Modifications" in "".join(l)) and ("Protein ID" in "".join(l)): return sorted(list(set([col.replace('_', '').replace(' Spectral Count', '') for col in l if 'Spectral Count' in col]))) else: raise ValueError('A column with the raw file names is not in the file.') else: filename_data.append(l[filename_col_index]) i += 1 unique_filenames = set(filename_data) sorted_unique_filenames = sorted(list(unique_filenames)) return sorted_unique_filenames
594744409537f977530e111826237161e6121d47
3,656,823
def _fetch_from_s3(bucket_name, path): """Fetch the contents of an S3 object Args: bucket_name (str): The S3 bucket name path (str): The path to the S3 object Returns: str: The content of the S3 object in string format """ s3 = boto3.resource('s3') bucket = s3.Bucket(bucket_name) obj = bucket.Object(path) data = obj.get()['Body'].read().decode('utf-8') return data
3e284b653c046a826b92e82bf60e7e12547280b2
3,656,824
def vrv_getatttype(schema, module, gp, aname, includes_dir = ""): """ returns the attribut type for element name, or string if not detectable.""" # Look up if there is an override for this type in the current module, and return it # Note that we do not honor pseudo-hungarian notation attype, hungarian = vrv_get_att_config_type(module, gp, aname) if attype: return (attype, hungarian) # No override, get it from the schema # First numbers el = schema.xpath("//tei:attDef[@ident=$name]/tei:datatype/rng:data/@type", name=aname, namespaces=TEI_NS) if el: if el[0] == "nonNegativeInteger" or el[0] == "positiveInteger": return ("int", "") elif el[0] == "decimal": return ("double", "") # The data types ref = schema.xpath("//tei:classSpec[@ident=$gp]//tei:attDef[@ident=$name]/tei:datatype/rng:ref/@name", gp=gp, name=aname, namespaces=TEI_NS) if ref: return (vrv_getformattedtype("{0}".format(ref[0])), "") # Finally from val lists vl = schema.xpath("//tei:classSpec[@ident=$gp]//tei:attDef[@ident=$name]/tei:valList[@type=\"closed\"]", gp=gp, name=aname, namespaces=TEI_NS) if vl: element = vl[0].xpath("./ancestor::tei:classSpec", namespaces=TEI_NS) attName = vl[0].xpath("./parent::tei:attDef/@ident", namespaces=TEI_NS) if element: return(vrv_getformattedvallist(element[0].get("ident"),attName[0]), "") #data_list = "{0}.{1}".format(element[0].get("ident"),attName[0]) #elif attName: # elName = vl[0].xpath("./ancestor::tei:elementSpec/@ident", namespaces=TEI_NS) # lg.debug("VALLIST {0} --- {1}".format(elName[0],attName[0])) # Otherwise as string return ("std::string", "")
88d014aedcc17a307e32daebd205f93e9c1e2e89
3,656,825
def inc_date(date_obj, num, date_fmt): """Increment the date by a certain number and return date object. as the specific string format. """ return (date_obj + timedelta(days=num)).strftime(date_fmt)
560d82b8e72614b8f9011ab97c10a7612d1c50b0
3,656,826
def recombine_edges(output_edges): """ Recombine a list of edges based on their rules. Recombines identical Xe isotopes. Remove isotopes. :param output_edges: :return: """ mol = Chem.MolFromSmiles(".".join(output_edges)) # Dictionary of atom's to bond together and delete if they come in pairs iso_dict = {} for atom in mol.GetAtoms(): if atom.GetAtomicNum() == 54: # Get the isotope iso = atom.GetIsotope() if iso in iso_dict: iso_dict[iso].append(get_info(atom)) else: iso_dict[iso] = [get_info(atom)] mw = Chem.RWMol(mol) # Add bonds first del_indices = [] for isotope in iso_dict: if len(iso_dict[isotope]) > 1: mw.AddBond( iso_dict[isotope][0][1], iso_dict[isotope][1][1], Chem.BondType.SINGLE ) del_indices.append(iso_dict[isotope][0][0]) del_indices.append(iso_dict[isotope][1][0]) # Now delete atoms del_count = 0 for atom_index in sorted(del_indices): mw.RemoveAtom(atom_index - del_count) del_count += 1 Chem.SanitizeMol(mw) return Chem.MolToSmiles(mw, isomericSmiles=True)
1bbce0bb315990f758aa47a0dae2dc34bff9fb2a
3,656,827
from typing import List import os def parse_comments(content: str) -> List[str]: """Parses comments in LDF files :param content: LDF file content as string :type content: str :returns: a list of all comments in the LDF file :rtype: List[str] """ comment = os.path.join(os.path.dirname(__file__), 'lark', 'comment.lark') parser = Lark(grammar=open(comment), parser='lalr') tree = parser.parse(content) return CommentCollector().transform(tree)
aed403e1888c0db73f86b172888b95e8320adabc
3,656,828
def excludevars(vdict, filters): """ Remove dictionary items by filter """ vdict_remove = dict() for filtr in filters: a = filtervars_sub(vdict, filtr) vdict_remove.update(a) vdict_filtered = vdict.copy() for key in vdict_remove.keys(): del vdict_filtered[key] return vdict_filtered
5050e946454c096a11c664d1a0910d2b2f7d985a
3,656,829
def __updateEntityAttributes(fc, fldList, dom, logFile): """For each attribute (field) in fldList, adds attribute definition and definition source, classifies as range domain, unrepresentable-value domain or enumerated-value domain, and for range domains, adds rangemin, rangemax, and units; for unrepresentable value domains, adds unrepresentable value statement; for enumerated value domains: 1) Finds all controlled-vocabulary fields in the table sent to it 2) Builds a set of unique terms in each field, ie, the domain 3) Matches each domain value to an entry in the glossary 4) Builds a dictionary of term:(definition, source) items 5) Takes the dictionary items and put them into the metadata document as Attribute_Domain_Values Field MapUnit in table DescriptionOfMapUnits is treated as a special case. """ cantfindTerm = [] cantfindValue = [] for fld in fldList: addMsgAndPrint( ' Field: '+ fld) # if is _ID field or if field definition is available, update definition if fld.find('_ID') > -1 or fld in attribDict: dom = __updateAttrDef(fld,dom) else: cantfindTerm.append(fld) #if this is an _ID field if fld.find('_ID') > -1: dom = __updateUdom(fld,dom,unrepresentableDomainDict['_ID']) #if this is another unrepresentable-domain field if fld in unrepresentableDomainDict: dom = __updateUdom(fld,dom,unrepresentableDomainDict[fld]) #if this is a defined range-domain field elif fld in rangeDomainDict: dom = __updateRdom(fld,dom) #if this is MapUnit in DMU elif fld == 'MapUnit' and fc == 'DescriptionOfMapUnits': dom = __updateUdom(fld,dom,unrepresentableDomainDict['default']) #if this is a defined Enumerated Value Domain field elif fld in enumeratedValueDomainFieldList: valList = [] #create a search cursor on the field rows = arcpy.SearchCursor(fc,'','', fld) row = next(rows) #collect all values/terms in that field while row: if not row.getValue(fld) is None: valList.append(row.getValue(fld)) row = next(rows) #uniquify the list by converting it to a set object valList = set(valList) #create an empty dictionary object to hold the matches between the unique terms #and their definitions (grabbed from the glossary) defs = {} #for each unique term, try to create a search cursor of just one record where the term #matchs a Term field value from the glossary if fld == 'MapUnit' and fc != 'DescriptionOfMapUnits': for t in valList: query = '"MapUnit" = \'' + t + '\'' rows = arcpy.SearchCursor(DMU, query) row = next(rows) #if the searchcursor contains a row if row: #create an entry in the dictionary of term:[definition, source] key:value pairs #this is how we will enumerate through the enumerated_domain section defs[t] = [] if row.FullName != None: defs[t].append(row.FullName.encode('utf_8')) defs[t].append('this report, table DescriptionOfMapUnits') else: addMsgAndPrint('MapUnit = '+t+', FullName not defined') defs[t].append(row.Name.encode('utf_8')) defs[t].append('this report, table DescriptionOfMapUnits') else: if not t in ('',' '): cantfindValue.append([fld,t]) elif fld == 'GeoMaterialConfidence' and fc == 'DescriptionOfMapUnits': if debug: addMsgAndPrint('DMU / GeoMaterialsConfidence') defs = GeoMatConfDict elif fld == 'GeoMaterial' and fc == 'DescriptionOfMapUnits': if debug: addMsgAndPrint('DMU / GeoMaterials!') for t in valList: query = '"GeoMaterial" = \'' + t + '\'' if debug: addMsgAndPrint('query='+query) rows = arcpy.SearchCursor(gmDict, query) row = next(rows) #if the searchcursor contains a row if row: if debug: addMsgAndPrint(row.GeoMaterial+' : '+row.Definition.encode('utf_8')) #create an entry in the dictionary of term:[definition, source] key:value pairs #this is how we will enumerate through the enumerated_domain section defs[t] = [] defs[t].append(row.Definition.encode('utf_8')) defs[t].append(' GeMS documentation') else: addMsgAndPrint('GeoMaterial = '+t+': not defined in GeoMaterialDict') cantfindValue.append([fld,t]) elif fld.find('SourceID') > -1: # is a source field for t in valList: query = '"DataSources_ID" = \'' + t + '\'' rows = arcpy.SearchCursor(dataSources, query) row = next(rows) #if the searchcursor contains a row if row: #create an entry in the dictionary of term:[definition, source] key:value pairs #this is how we will enumerate through the enumerated_domain section defs[t] = [] defs[t].append(row.Source.encode('utf_8')) defs[t].append('this report, table DataSources') else: cantfindValue.append([fld,t]) else: for t in valList: query = '"Term" = '+"'"+ t + "'" if debug: addMsgAndPrint('query='+query) rows = arcpy.SearchCursor(gloss, query) row = next(rows) #if the searchcursor contains a row if row: #create an entry in the dictionary of term:[definition, source] key:value pairs #this is how we will enumerate through the enumerated_domain section defs[t] = [] defs[t].append(row.Definition.encode('utf_8')) defs[t].append(__findInlineRef(row.DefinitionSourceID).encode('utf_8')) else: if fld != 'GeoMaterial' and fc != 'GeoMaterialDict': cantfindValue.append([fld,t]) dom = __updateEdom(fld, defs, dom) else: #presumed to be an unrepresentable domain dom = __updateUdom(fld,dom,unrepresentableDomainDict['default']) if len(cantfindValue) > 0: logFile.write('Missing enumerated-domain values\n') logFile.write(' ENTITY TERM VALUE\n') for term in cantfindValue: logFile.write(' '+fc+' '+term[0]+' **'+term[1]+'**\n') if len(cantfindTerm) > 0: logFile.write('Missing terms\n') logFile.write(' ENTITY TERM\n') for term in cantfindTerm: logFile.write(' '+fc + ' '+term+'\n') return dom
f304f31ea64dab2b186736af6a7177fee93afefe
3,656,830
def make_laplace_pyramid(x, levels): """ Make Laplacian Pyramid """ pyramid = [] current = x for i in range(levels): pyramid.append(laplacian(current)) current = tensor_resample( current, (max(current.shape[2] // 2, 1), max(current.shape[3] // 2, 1))) pyramid.append(current) return pyramid
88b8c94a8f5ca3fda3329c0ac8fa871693c1482f
3,656,831
def create_component(ctx: NVPContext): """Create an instance of the component""" return ToolsManager(ctx)
24cf48073bb16233046abdde966c28c570cf16c0
3,656,832
import os def _load_csv_key(symbol_key): """ 针对csv存储模式,通过symbol_key字符串找到对应的csv具体文件名称, 如从usTSLA->找到usTSLA_2014-7-26_2016_7_26这个具体csv文件路径 :param symbol_key: str对象,eg. usTSLA """ # noinspection PyProtectedMember csv_dir = ABuEnv.g_project_kl_df_data_example if ABuEnv._g_enable_example_env_ipython \ else ABuEnv.g_project_kl_df_data_csv if file_exist(csv_dir): for name in os.listdir(csv_dir): # 从csv缓存文件夹下进行模糊查询通过fnmatch匹配具体csv文件路径,eg. usTSLA->usTSLA_2014-7-26_2016_7_26 # if fnmatch(name, '{}*'.format(symbol_key)): """ 这里不能模糊匹配,否则会因为TSL匹配上TSLA导致删除原有的symbol 而且必须要加'_'做为symbol结束匹配标记 """ if name.startswith(symbol_key + '_'): # []只是为了配合外面针对不同store统一使用key[0] return [name] return None
ebfdb88713e5943863f75455aa9d276d8f780450
3,656,833
def get_routing_table() -> RouteCommandResult: """ Execute route command via subprocess. Blocks while waiting for output. Returns the routing table in the form of a list of routes. """ return list(subprocess_workflow.exec_and_parse_subprocesses( [RouteCommandParams()], _get_route_command_args_list, parse_route_output, ))[0]
817d8350e7a2af514e3b239ec5d7dbc278fb7649
3,656,834
import array def xor_arrays(arr1, arr2): """ Does a XOR on 2 arrays, very slow""" retarr = array('B') for i in range(len(arr1)): retarr.append(arr1[i] ^ arr2[i]) return retarr
5ff978aa1a48a537a40132a5213b907fb7b14b4b
3,656,835
def delete_category(): """Delete category specified by id from database""" category = Category.query.get(request.form['id']) db.session.delete(category) db.session.commit() return ''
47347299dd39c6afa9fd8d1cd10e1dc0906f6806
3,656,836
def gen_dd(acc, amt): """Generate a DD (low-level)""" read() dd_num = dd_no() while dd_num in dds.keys(): dd_num = dd_no() dd = { 'ac_no': acc, 'amount': amt } return dd_num, dd
251a36131dae66f4d24dc2ce45db27f81da39845
3,656,837
def coranking_matrix(high_data, low_data): """Generate a co-ranking matrix from two data frames of high and low dimensional data. :param high_data: DataFrame containing the higher dimensional data. :param low_data: DataFrame containing the lower dimensional data. :returns: the co-ranking matrix of the two data sets. """ n, m = high_data.shape high_distance = distance.squareform(distance.pdist(high_data)) low_distance = distance.squareform(distance.pdist(low_data)) high_ranking = high_distance.argsort(axis=1).argsort(axis=1) low_ranking = low_distance.argsort(axis=1).argsort(axis=1) Q, xedges, yedges = np.histogram2d(high_ranking.flatten(), low_ranking.flatten(), bins=n) Q = Q[1:, 1:] # remove rankings which correspond to themselves return Q
7cc77cd5ef70d7adef9020cab6f33a5dbf290557
3,656,838
def gaussian_dist_xmu1xmu2_product_x(mu1,Sigma1,mu2,Sigma2): """Compute distribution of N(x|mu1,Sigma1)N(x|mu2,Sigma2)""" InvSigmaHat = np.linalg.inv(Sigma1) + np.linalg.inv(Sigma2) SigmaHat = np.linalg.inv(InvSigmaHat) muHat = np.dot(SigmaHat,np.linalg.solve(Sigma1, mu1) + np.linalg.solve(Sigma2,mu2)) logC = gaussian_logprob(mu1,mu2,Sigma1 + Sigma2) return (logC,muHat,SigmaHat)
5eb50e98165bc77bc0754a93eef4f62b0665ea30
3,656,839
def default_marker_size(fmt): """ Find a default matplotlib marker size such that different marker types look roughly the same size. """ temp = fmt.replace('.-', '') if '.' in temp: ms = 10 elif 'D' in temp: ms = 7 elif set(temp).intersection('<>^vd'): ms = 9 else: ms = 8 return ms
feebe9bdda47a2e041636f15c9b9595e5cd6b2cc
3,656,840
def vote_smart_candidate_rating_filter(rating): """ Filter down the complete dict from Vote Smart to just the fields we use locally :param rating: :return: """ rating_filtered = { 'ratingId': rating.ratingId, 'rating': rating.rating, 'timeSpan': rating.timespan, # Seems to be typo with lower case "s" 'ratingName': rating.ratingName, 'ratingText': rating.ratingText, 'sigId': rating.sigId, } return rating_filtered
f4fec92e46f58444abb8dab56f28acc7e670aab0
3,656,841
def get_syntax(view): """ get_syntax(view : sublime.View) -> str >>> get_syntax(view) 'newLISP' >>> get_syntax(view) 'Lisp' Retuns current file syntax/language """ syntax = view.settings().get('syntax') syntax = syntax.split('/')[-1].replace('.tmLanguage', '') return syntax
a5be75f51de105af63ce53df7c3b7094537d28f3
3,656,842
def random_otp(): """ :return: OTP for Event :return type: string """ try: all_events = Events.query.all() # Here Error if no Event all_holded_events = HoldedEvents.query.all() used_otps = set() for otp_ in all_events: used_otps.add(str(otp_.otp)) for otp_ in all_holded_events: used_otps.add(str(otp_.otp)) total_otps = set() available_otps = set() for otp_ in range(0, 999999+1): otp = str(otp_) if len(otp)!=6: diff = 6-len(otp) otp = '0'*diff + otp total_otps.add(otp) available_otps = total_otps - used_otps if len(available_otps) == 1: return available_otps.pop() else: return 'Fail' except: return 'Fail'
e343addc9252de4ca9d69a344beea05254c9ebb0
3,656,843
def read_config(path): """Read the complete INI file and check its version number if OK, pass values to config-database """ return _read_config(path)
bbb95e5e02d54dd831082d556e19307109e1113d
3,656,844
def getPath(file): """Get the path of a source file. Use this to extract the path of a file/directory when the file could be specified either as a FileTarget, DirectoryTarget or string. @param file: The object representing the file. @type file: L{FileTarget}, L{DirectoryTarget} or C{basestring} """ assert not isinstance(file, AsyncResult) if isinstance(file, (FileTarget, DirectoryTarget)): return file.path elif isinstance(file, basestring): return file else: return None
b80e5f0ead8be98dd40bbd444bc8ae9201eb54ed
3,656,845
import torch def optical_flow_to_rgb(flows): """ Args: A tensor with a batch of flow fields of shape [b*num_src, 2, h, w] """ flows = flows.cpu().numpy() _, h, w = flows[0].shape rgbs = [] for i in range(len(flows)): mag, ang = cv2.cartToPolar(flows[i, 0, ...], flows[i, 1, ...]) hsv = np.zeros(shape=(h, w, 3), dtype="float32") # true_angle / 2, hue range [0, 180] hsv[..., 0] = (ang * 180 / np.pi) / 2 hsv[..., 1] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX) hsv[..., 2] = 255 rgb = cv2.cvtColor(hsv.astype("uint8"), cv2.COLOR_HSV2BGR) rgbs.append(rgb) rgbs = np.array(rgbs).transpose([0, 3, 1, 2]) return torch.tensor(rgbs)
d27074eab88f0f1181c5e1acae4839cbed984e17
3,656,846
from re import MULTILINE def get_motes_from_simulation(simfile, as_dictionary=True): """ This function retrieves motes data from a simulation file (.csc). :param simfile: path to the simulation file :param as_dictionary: flag to indicate that the output has to be formatted as a dictionary :return: the list of motes formatted as dictionaries with 'id', 'x', 'y' and 'motetype_identifier' keys if short is False or a dictionary with each mote id as the key and its tuple (x, y) as the value """ motes = [] with open(simfile) as f: content = f.read() iterables, fields = [], ['mote_id'] for it in ['id', 'x', 'y', 'motetype_identifier']: iterables.append(finditer(r'^\s*<{0}>(?P<{0}>.*)</{0}>\s*$'.format(it), content, MULTILINE)) for matches in zip(*iterables): mote = {} for m in matches: mote.update(m.groupdict()) motes.append(mote) if as_dictionary: motes = {int(m['id']): (float(m['x']), float(m['y'])) for m in motes} return motes
bbf09378a45cee9a96dca136bc7751ea9372eeac
3,656,847
def menu_bar(): """each mini-game has a menu bar that allows direct access to the main menu. This allows story mode to be bypassed after starting war, but the game state will not be saved""" pygame.draw.rect(SCREEN, TEAL, (0, 460, 640, 40)) menu_font = pygame.font.Font('freesansbold.ttf', 15) menu_txt = menu_font.render("Menu", True, BLACK, TEAL) menu_rect = menu_txt.get_rect() menu_rect.center = (60, 480) SCREEN.blit(menu_txt, menu_rect) instr_txt = menu_font.render("Instructions", True, BLACK, TEAL) instr_rect = instr_txt.get_rect() instr_rect.center = (150, 480) SCREEN.blit(instr_txt, instr_rect) return menu_rect, instr_rect
0b5b16db2f53c1cbb45236512597d954bb28e7da
3,656,848
def merge_sort(a, p, r): """ merge sort :param a: a array to sort, a[p:r+1] need to be sorted :param p: index of array, p < r, if p >= r , the length of a is 1, return :param r: index of array, p < r, if p >= r , the length of a is 1, return """ if p < r: q = int((p + r) / 2) # divider a = merge_sort(a, p, q) a = merge_sort(a, q + 1, r) # conquer merge(a, p, q, r) return a
07aab16ea75cb01f2f1fb3ae32f1b1ac31c76cfb
3,656,849
def get_flow_graph(limit, period): """ :type limit int :type period int :rtype: list[dict] """ rows = ElasticsearchQuery( es_host=ELASTICSEARCH_HOST, period=period, index_prefix='logstash-other' ).query_by_string( query='kubernetes.labels.job-name:* AND ' 'kubernetes.container_name: "portability-metric" AND ("SELECT" OR "UPDATE")', fields=[ 'log', 'kubernetes.labels.job-name' ], limit=limit ) entries = [] for row in rows: for entry in get_portability_metrics_query( row['log'], row['kubernetes']['labels']['job-name']): entries.append(entry) # print(entries) # process the logs def _map(item): return '{}'.join(item) def _reduce(items): # ('MetricArticleProvider.py', 'UPDATE', 'articledata') first = items[0] script = 'cron:{}'.format(first[0]) query_type = first[1] table_name = 'db:{}'.format(first[2]) return { 'source': table_name if query_type == 'SELECT' else script, 'edge': query_type, 'target': table_name if query_type != 'SELECT' else script, } return logs_map_and_reduce(entries, _map, _reduce)
f51bb6aa6132303e2cd5ed3090507435739c0452
3,656,850
import re import time def upload(server_ip, share, username, password, domain, remote_path, local_path, verbose=True): """ Get file and folder on the remote file server. server_ip (str): This value is the ip smb server's ip. share (str): This value is the share file name. username (str): This value is the login username required to connect to smb service. password (str): This value is the login password required to connect to smb service. domain (str): This value is the server domain name. remote_path (str): This value is the remote file path to uploaded. local_path (str): This value is the remote path where the file will uploaded. verbose (boolean): Print information about function progress. Returns: boolean: 0 if fuction runs correctly. If an error occured return 1. """ try: smb = connect_samba_server(server_ip, share, username, password, domain, verbose=True) smb.upload(local_path, remote_path) smb.close() regex = re.compile("((?:[^/]*/)*)(.*)") for file in get_remote_dir(server_ip, share, username, password, domain, "/", verbose=True): if regex.match(remote_path).group(2) in file: print(Fore.GREEN+" ===> [upload] {"+regex.match(local_path).group(2)+"} -- "+time.strftime("%H:%M:%S", time.localtime())+Style.RESET_ALL) return True print(Fore.RED+" ===> [upload] {"+regex.match(local_path).group(2)+"} failed! -- "+time.strftime("%H:%M:%S", time.localtime())+Style.RESET_ALL) return False except Exception as e: print(Fore.RED+" ===> [upload] failed during execution! -- "+time.strftime("%H:%M:%S", time.localtime())+Style.RESET_ALL) return False
552079181faa10b50c306b1ee9e02c190b9711a4
3,656,851
from typing import Union import platform def list_directory_command(api_client: CBCloudAPI, device_id: str, directory_path: str, limit: Union[int, str]): """ Get list of directory entries in the remote device :param api_client: The API client :param device_id: The device id :param directory_path: Directory to list. This parameter should end with the path separator :param limit: Limit the result entries count to be the given limit :return: CommandResult represent the API command result :rtype: ``CommandResults`` """ session = api_client.select(platform.Device, device_id).lr_session() items = [item for item in session.list_directory(directory_path) if item['filename'] not in IGNORED_FILES_IN_DIR] items, partial_res_msg = get_limited_results(original_results=items, limit=limit) directories_readable = [] context_entry_items = [] headers = ['name', 'type', 'date_modified', 'size'] for item in items: context_entry_items.append(item) directories_readable.append({ 'name': item['filename'], 'type': 'Directory' if item['attributes'] and 'DIRECTORY' in item['attributes'] else 'File', 'date_modified': item['last_write_time'], 'size': item['size'], }) context_entry = dict(content=context_entry_items, device_id=device_id, directory_path=directory_path) readable_output = tableToMarkdown(f'Directory of {directory_path}{partial_res_msg}', t=directories_readable, headers=headers, headerTransform=string_to_table_header, removeNull=True) return CommandResults( outputs_prefix='CarbonBlackDefenseLR.Directory', outputs_key_field=['device_id', 'directory_path'], outputs=context_entry, readable_output=readable_output, raw_response=items, )
228d4884d2fd4f69e8c7a44d737bfeca7b40f753
3,656,852
def _hparams(network, random_seed): """ Global registry of hyperparams. Each entry is a (default, random) tuple. New algorithms / networks / etc. should add entries here. """ hparams = {} def _hparam(name, default_val, random_val_fn): """Define a hyperparameter. random_val_fn takes a RandomState and returns a random hyperparameter value.""" random_state = np.random.RandomState( misc.seed_hash(random_seed, name) ) hparams[name] = (default_val, random_val_fn(random_state)) # Unconditional hparam definitions. _hparam('lr', 0.001, lambda r: 10**r.uniform(-5, -2)) # _hparam('weight_decay', 0, lambda r: 10**r.uniform(-6, -2)) _hparam('batch_size', 16, lambda r: int(r.choice([8,12,16]))) _hparam('epoch', 100, lambda r: int(r.choice([60,90,120,150]))) _hparam('transform_aug', False, lambda r: bool(r.choice([True,False]))) _hparam('lr_schedule', 1, lambda r: int(r.choice([0,1,2,3]))) if network == 'PoseResNet': _hparam('num_layers', 50, lambda r: int(r.choice([50]))) #[18,34,50,101,152] _hparam('pretrained', False, lambda r: bool(r.choice([False]))) #True, return hparams
34ea9ac295f3150b870e8d1c7ce0f1b867f75122
3,656,853
def bidding_search(request): """ """ query = '' form = BiddingSearchForm(shop=request.shop, data=request.GET) if form.is_valid(): query = form.get_query() results = form.search() else: results = form.all_results() pager = Paginator(results, PAGE_SEARCH) try: page = int(request.GET.get('page','1')) except: page = 1 try: products = pager.page(page) except (EmptyPage, InvalidPage): products = pager.page(pager.num_pages) paged = (pager.num_pages > 1) t = loader.get_template('bidding/blocks/search.html') c = RequestContext(request, {'form': form, 'products' : products, 'pages': pager.page_range, 'paged': paged }) block_search = (t.render(c)) getvars = "&q=%s" % form.cleaned_data.get("q") t = loader.get_template('paginator.html') filter_params = {'q': form.cleaned_data.get("q", '')} c = RequestContext(request, {'objects': products, 'getvars': getvars, 'filter_params': filter_params, 'pages': pager.page_range, 'paged': paged}) paginator = (t.render(c)) try: page = DynamicPageContent.objects.filter(shop=request.shop, page="search").get() description = striptags(page.meta_content) except DynamicPageContent.DoesNotExist: description = "No meta description found" return HttpResponse(my_render(request, {'results': block_search, 'paginator': paginator, 'page_title': 'Search', 'page_description': description }, 'search'))
cda6c4ebccec88c40ae714cd81392946165b184f
3,656,854
def clean_code(code, code_type): """ Returns the provided code string as a List of lines """ if code_type.startswith(BOOTSTRAP): if code_type.endswith(CLEAN): return code.split("\n") code = code.replace("\\", "\\\\") if code_type.startswith(PERMUTATION): if code_type.endswith(CLEAN): return code.split("\n") if code_type.startswith(FRAGMENT): if code_type.endswith(CLEAN): return bytes(code, encoding="ascii").decode('unicode_escape') code = code.replace("{", "{\\n").replace("}", "\\n}\\n").replace(";", ";\\n") code = retab(bytes(code, encoding="ascii").decode('unicode_escape')) return code.split("\n")
fff65103003a202a039fd4683da83735b0342a7a
3,656,855
def level(arr, l, ax=2, t=None, rounding=False): """ As level 1D but accepts general arrays and level is taken is some specified axis. """ return np.apply_along_axis(level1D, ax, arr, l, t, rounding)
80835140850dbf7883f9b4cb1f92543ee2253845
3,656,856
def updateStore(request, storeId): """ view for updating store """ if canViewThisStore(storeId, request.user.id): # get the corresponding store store = Store.objects.get(id=storeId) metadata = getFBEOnboardingDetails(store.id) if request.method == "POST": # Create a form instance and populate it with data from the request (binding): form = UpdateStoreForm(request.POST) # Check if the form is valid: if form.is_valid(): store.name = form.cleaned_data["business_name"] store.save() return redirect("viewStore", storeId) form = UpdateStoreForm(initial={"business_name": store.name}) breadcrumbs = [(store.name, "viewStore", store.id)] context = { "form": form, "store": store, "fb_metadata": metadata, "page_title": "Update Shop", "breadcrumbs": breadcrumbs, "button": "Update", } return render(request, "core/update.html", context) else: return render(request, "403.html")
8cb92e31f2dc59a28281c45d698a7d810b573587
3,656,857
def i(t, T, r, a, b, c): """Chicago design storm equation - intensity. Uses ia and ib functions. Args: t: time in minutes from storm eginning T: total storm duration in minutes r: time to peak ratio (peak time divided by total duration) a: IDF A parameter - can be calculated from getABC b: IDF B parameter - can be calculated from getABC c: IDF C parameter - can be calculated from getABC Returns: Returns intensity in mm/hr. """ if t < T*r: return ib(T*r - t, r, a, b, c) elif t > T*r: return ia(t - T*r, r, a, b, c) else: # Should be infinity, but this does the job return 1000
3d31d64502fc4590b1d83e0d3a32a5de9cae2a56
3,656,858
def get_primary_id_from_equivalent_ids(equivalent_ids, _type): """find primary id from equivalent id dict params ------ equivalent_ids: a dictionary containing all equivalent ids of a bio-entity _type: the type of the bio-entity """ if not equivalent_ids: return None id_rank = [('bts:' + _item) for _item in id_ranks.get(_type)] # loop through id_rank, if the id is found in equivalent ids, return it for _item in id_rank: if equivalent_ids.get(_item): return (_item[4:] + ':' + equivalent_ids[_item][0]) # if no id found, return a random one from equivalent ids for k, v in equivalent_ids.items(): if v: return (k[4:] + ':' + v[0])
489f9d431e553772f114f1e4a3a2577c831addda
3,656,859
def get_L_max_C(L_CS_x_t_i, L_CL_x_t_i): """1日当たりの冷房全熱負荷の年間最大値(MJ/d)(20c) Args: L_CS_x_t_i(ndarray): 日付dの時刻tにおける暖冷房区画iの冷房顕熱負荷 (MJ/h) L_CL_x_t_i(ndarray): 日付dの時刻tにおける暖冷房区画iの冷房潜熱負荷 (MJ/h) Returns: float: 1日当たりの冷房全熱負荷の年間最大値(MJ/d) """ # 暖冷房区画軸合算(暖冷房区画の次元をなくす) L_CS_x_t = np.sum(L_CS_x_t_i, axis=0) L_CL_x_t = np.sum(L_CL_x_t_i, axis=0) # L_CS_x_tとL_CL_x_tの要素同士を足す L_C_x_t = L_CS_x_t + L_CL_x_t # 1次元配列を2次元配列に形状変換する L_C_x_t = np.reshape(L_C_x_t, (365, 24)) # 時間軸合算 L_C_x = np.sum(L_C_x_t, axis=1) # 1日当たりの冷房全熱負荷の年間最大値(MJ/d)(20c) L_max_C = np.max(L_C_x) return L_max_C
2c5e769baacfec0d75e711b3493b07ab65796690
3,656,860
def complete_session(session: namedtuple, speeches: list) -> dict: """ This will result in loss of data bc content will be reduced to speeches. HTML_classes, speaker_flow, speaker_role etc. will not be given any longer since it's assumed that speakers are either members of parliament or ministers. Another important reduction is that speeches have been stripped of annotations like applause or calls. Updated keys in speeches: date protocol_no agenda_item - topic speaker party - if mop, will be ministry if minister speech - complete speech; no hall action, no interruptions Updated keys in session: date period index content - all speeches of a single session Speeches are given as a list of complete sentences. """ reduced_data = {} period = int(session.protocol_no.split('/')[0]) index = int(session.protocol_no.split('/')[-1]) reduced_data["date"] = session.date reduced_data["period"] = period reduced_data["index"] = index reduced_data["content"] = speeches return reduced_data
185e1518e48252fcdc222aeddf8f2ba30884c93e
3,656,861
import fileinput import re def replace_text_in_file(file_path, replace_this, for_that, case_insensitive=False, is_regex=False, keep_copy=False, number_of_subs=0): """ replace a string or regex (if is_regex is set) from a file given in file_path, with another string. This is a replacement for sed if needed. @param str file_path: path to the file to be changed @param str replace_this: string or regex to match and replace @param str for_that: string that will replace the match @param bool case_insensitive: flag to indicate if case is important @param bool is_regex: flag to indicate if replace_this is a regular expression or a plain string @param bool keep_copy: flag to keep copy of original file or not. The original file will be timestamped @param int number_of_subs: number of times to do the substitution. A zero means replace all @rtype: tuple """ if not is_regex: replace_this = re.escape(replace_this) new_file_path = duplicate_file_with_stamp(file_path) if keep_copy else file_path for current_line in fileinput.input(file_path, inplace=True): current_line, num_subs_made = re.subn(replace_this, for_that, current_line, flags=(re.IGNORECASE if case_insensitive else 0), count=number_of_subs) number_of_subs = 0 if not number_of_subs else (number_of_subs - num_subs_made) return file_path, new_file_path
12c978759fd5a31bacb396d3068ab762b442dd27
3,656,862
def load_annotations(ann_file): """Load the annotation according to ann_file into video_infos.""" video_infos = [] anno_database = mmcv.load(ann_file) for video_name in anno_database: video_info = anno_database[video_name] video_info['video_name'] = video_name video_infos.append(video_info) return video_infos
ac337917f313e5c695a5388c481e12787d7d78a0
3,656,863
import argparse def commandline(args): """ Settings for the commandline arguments. Returns the parsed arguments. """ parser = argparse.ArgumentParser(description='Checks the timestamps for files in a directory.') parser.add_argument("-p", "--path", required=True, help="Path to offline backup list file or directory") parser.add_argument("-w", "--warning", help="Threshold for warnings in days. Default: 2 Days") parser.add_argument("-c", "--critical", help="Threshold for criticals in days. Default: 5 Days") parser.add_argument("-f", "--format", help="Format of the date in the file. Default: Y-m-d") parser.add_argument("-r", "--regex", help="Regular Expression to extract date from file. Default: [0-9]{4}-[0-9]{2}-[0-9]{2}") parser.add_argument("-v", "--verbose", help="Increase output verbosity", action="store_true") parser.set_defaults(verbose=False, critical=5, warning=2) return parser.parse_args(args)
f3c1726e0dfde2bce6cd3e62a2300abbace7900e
3,656,864
from typing import List from typing import Dict def seq_hist(seq_lens: List[int]) -> Dict[int, int]: """Returns a dict of sequence_length/count key/val pairs. For each entry in the list of sequence lengths, tabulates the frequency of appearance in the list and returns the data as a dict. Useful for histogram operations on sequence length. """ seq_count = {} for slen in seq_lens: if slen in seq_count: seq_count[slen] += 1 else: seq_count[slen] = 1 return seq_count
5778b7566d1b64e8db0e2dce6bbf53e06cdb196d
3,656,865
import os def make_ms_url( syndicate_host, syndicate_port, no_tls, urlpath="" ): """ Make a URL to the MS. Return the URL. """ scheme = "https://" default_port = 80 if no_tls: default_port = 443 scheme = "http://" if syndicate_port != default_port: return scheme + os.path.join( syndicate_host.strip("/") + ":%s" % syndicate_port, urlpath ) else: return scheme + os.path.join( syndicate_host.strip("/"), urlpath )
4aec60c48285a8e8f8d58b18ea29928e338fa1bc
3,656,866
from typing import List def clifford_canonical_F( pauli_layer: List[int], gamma: np.ndarray, delta: np.ndarray ) -> Circuit: """ Returns a Hadamard free Clifford circuit using the canonical form of elements of the Borel group introduced in https://arxiv.org/abs/2003.09412. The canonical form has the structure O P CZ CX where O is a pauli operator, P is a layer of sqrt(Z) gates, CZ is a layer of CZ gates, and CX is a layer of CX gates. The inputs describe on which qubits the gates in these layers act. :param pauli_layer: Description of which Pauli gate should act on each qubits. This is an element of {0,1,2,3}^n with 0 -> I, 1->X, 2->Y, 3->Z. :type pauli_layer: List[int] :param gamma: Describes on which qubits CX acts. In particular the circuit contains CX_{i,j} if gamma[i][j]=1. The gates are ordered such the control qubit index increases with time. :type gamma: List[List[int]] :param delta: Describes on which qubits CZ acts. In particular the circuit contains CX_{i,j} if delta[i][j]=1. The gates are ordered such the control qubit index increases with time. The circuit include S_i if delta[i][i]=1. :type delta: List[List[int]] :return: A Hadamard free Clifford circuit. :rtype: Circuit """ circ = Circuit(len(pauli_layer)) # Add layer of CX gates for j in range(len(delta)): for i in range(j): if delta[i][j]: circ.CX(i, j, opgroup="Clifford 2") # Add layer of CZ gates for j in range(len(gamma)): for i in range(j): if gamma[i][j]: circ.CZ(i, j, opgroup="Clifford 2") # Add layer of S gates for i in range(len(gamma)): if gamma[i][i]: circ.S(i, opgroup="Clifford 1") # Add Pauli gate for i, gate in enumerate(pauli_layer): if gate == 0: circ.X(i, opgroup="Clifford 1") elif gate == 1: circ.Y(i, opgroup="Clifford 1") elif gate == 2: circ.Z(i, opgroup="Clifford 1") return circ
9818866b3196ccf9608f7ea8a17145bfa9ddb2d2
3,656,867
def calculate_second_moment_nondegenerate( mu1: float, mu2: float, sigma1: float, sigma2: float, a: float, alpha: float ) -> float: """The second (raw) moment of a random variable :math:`\\min(Y_1, Y_2)`. Args: mu1: mean of the first Gaussian random variable :math:`Y_1` mu2: mean of the second Gaussian random variable :math:`Y_2` sigma1: standard deviation of the first Gaussian random variable :math:`Y_1` sigma2: standard deviation of the second Gaussian random variable :math:`Y_2` a: value of a(X1, X2) alpha: value of alpha(X1, X2) Note: For a Gaussian variable, the relationship between the raw second moment, mean, and the standard deviation (which is calculated using the *central* moment) is .. math:: \\nu_2 = \\nu_1^2 + \\sigma^2 """ # The first, second and third term first = (mu1 ** 2 + sigma1 ** 2) * numeric.normal_cdf(alpha) secnd = (mu2 ** 2 + sigma2 ** 2) * numeric.normal_cdf(-alpha) third = (mu1 + mu2) * a * numeric.normal_pdf(alpha) return first + secnd - third
74869b0b461777ae9cce658829c2c90ff9a4adff
3,656,868
from re import X def q_make( x, y, z, angle): """q_make: make a quaternion given an axis and an angle (in radians) notes: - rotation is counter-clockwise when rotation axis vector is pointing at you - if angle or vector are 0, the identity quaternion is returned. double x, y, z : axis of rotation double angle : angle of rotation about axis in radians """ length=0 cosA=0 sinA=0 destQuat = [0.0,0.0,0.0,0.0] #/* normalize vector */ length = sqrt( x*x + y*y + z*z ) #/* if zero vector passed in, just return identity quaternion */ if ( length < Q_EPSILON ) : destQuat[X] = 0 destQuat[Y] = 0 destQuat[Z] = 0 destQuat[W] = 1 return x /= length y /= length z /= length cosA = cos(angle / 2.0) sinA = sin(angle / 2.0) destQuat[W] = cosA destQuat[X] = sinA * x destQuat[Y] = sinA * y destQuat[Z] = sinA * z return destQuat
bd95a3d6f89599297a089d75882aa319e474a1b7
3,656,869
def create_mssql_pymssql(username, password, host, port, database, **kwargs): # pragma: no cover """ create an engine connected to a mssql database using pymssql. """ return create_engine( _create_mssql_pymssql(username, password, host, port, database), **kwargs )
a4d644839879ae374ba091f1b9e79fd210c03e3e
3,656,870
def get_right_list_elements(result): """Some of the results are empty - therefore, the try-except. Others are lists with more than one element and only specific elements are relevant. Args: result (dict of lists): result of the xpath elements. Returns: dict of strs """ for key in ["title", "ort", "merkmale", "weitere_eigenschaften", "beschreibung"]: try: result[key] = result[key][0] except: pass for key in ["preis", "anzahl_raeume", "wohnflaeche", "grundstuecksflaeche"]: try: result[key] = result[key][1] except: pass return result
b81e80363f82dfe43878b3d8cb319f7129ebfc50
3,656,871
def gen_pixloc(frame_shape, xgap=0, ygap=0, ysize=1., gen=True): """ Generate an array of physical pixel coordinates Parameters ---------- frame : ndarray uniformly illuminated and normalized flat field frame xgap : int (optional) ygap : int (optional) ysize : float (optional) gen : bool, optional Only allows True right now Returns ------- locations : ndarray A 3D array containing the x center, y center, x width and y width of each pixel. The returned array has a shape: frame.shape + (4,) """ #dnum = settings.get_dnum(det) msgs.info("Deriving physical pixel locations on the detector") locations = np.zeros((frame_shape[0],frame_shape[1],4)) if gen: msgs.info("Pixel gap in the dispersion direction = {0:4.3f}".format(xgap)) msgs.info("Pixel size in the dispersion direction = {0:4.3f}".format(1.0)) xs = np.arange(frame_shape[0]*1.0)*xgap xt = 0.5 + np.arange(frame_shape[0]*1.0) + xs msgs.info("Pixel gap in the spatial direction = {0:4.3f}".format(ygap)) msgs.info("Pixel size in the spatial direction = {0:4.3f}".format(ysize)) ys = np.arange(frame_shape[1])*ygap*ysize yt = ysize*(0.5 + np.arange(frame_shape[1]*1.0)) + ys xloc, yloc = np.meshgrid(xt, yt) # xwid, ywid = np.meshgrid(xs,ys) msgs.info("Saving pixel locations") locations[:,:,0] = xloc.T locations[:,:,1] = yloc.T locations[:,:,2] = 1.0 locations[:,:,3] = ysize else: msgs.error("Have not yet included an algorithm to automatically generate pixel locations") return locations
e09bb42cc0b003f6cedf5eed79ee65293aab13e2
3,656,872
def select(df: pd.DataFrame, time_key, from_time='00-00-00 00', to_time='99-01-01 00'): """ :param df: :param time_key: :param from_time: :param to_time: :return: :rtype: pandas.DataFrame """ select_index = (df[time_key] >= from_time) & (df[time_key] < to_time) return df.loc[select_index, :].reset_index(drop=True)
e925c2543bfabf9091fae18d9dc47c01364e1df8
3,656,873
def load_apogee_distances(dr=None, unit='distance', cuts=True, extinction=True, keepdims=False): """ Load apogee distances (absolute magnitude from stellar model) :param dr: Apogee DR :type dr: int :param unit: which unit you want to get back - "absmag" for absolute magnitude - "fakemag" for fake magnitude - "distance" for distance in parsec :type unit: string :param cuts: Whether to cut bad data (negative parallax and percentage error more than 20%), or a float to set the threshold :type cuts: Union[boolean, float] :param extinction: Whether to take extinction into account, only affect when unit is NOT 'distance' :type extinction: bool :param keepdims: Whether to preserve indices the same as APOGEE allstar DR14, no effect when cuts=False, set to -9999 for bad indices when cuts=True keepdims=True :type keepdims: boolean :return: numpy array of ra, dec, array, err_array :rtype: ndarrays :History: | 2018-Jan-25 - Written - Henry Leung (University of Toronto) | 2021-Jan-29 - Updated - Henry Leung (University of Toronto) """ fullfilename = apogee_distances(dr=dr) with fits.open(fullfilename) as F: hdulist = F[1].data # Convert kpc to pc distance = hdulist['BPG_dist50'] * 1000 dist_err = (hdulist['BPG_dist84'] - hdulist['BPG_dist16']) * 1000 allstarfullpath = allstar(dr=dr) with fits.open(allstarfullpath) as F: k_mag = F[1].data['K'] if extinction: k_mag = extinction_correction(k_mag, F[1].data['AK_TARG']) ra = F[1].data['RA'] dec = F[1].data['DEC'] # Bad index refers to nan index bad_index = np.argwhere(np.isnan(distance)) if unit == 'distance': # removed astropy units because of -9999. is dimensionless, will have issues output = distance output_err = dist_err elif unit == 'absmag': absmag, absmag_err = mag_to_absmag(k_mag, 1 / distance * u.arcsec, (1 / distance) * (dist_err / distance)) output = absmag output_err = absmag_err elif unit == 'fakemag': # fakemag requires parallax (mas) fakemag, fakemag_err = mag_to_fakemag(k_mag, 1000 / distance * u.mas, (1000 / distance) * (dist_err / distance)) output = fakemag output_err = fakemag_err else: raise ValueError('Unknown unit') # Set the nan index to -9999. as they are bad and unknown. Not magic_number as this is an APOGEE dataset output[bad_index], output_err[bad_index] = -9999., -9999. if cuts is False: pass else: distance[bad_index], dist_err[bad_index] = -9999., -9999. good_idx = ((dist_err / distance < (0.2 if cuts is True else cuts)) & (distance != -9999.)) if not keepdims: ra = ra[good_idx] dec = dec[good_idx] output = output[good_idx] output_err = output_err[good_idx] else: output[(dist_err / distance > (0.2 if cuts is True else cuts))] = -9999. output_err[(dist_err / distance > (0.2 if cuts is True else cuts))] = -9999. return ra, dec, output, output_err
763d646c284cb056295ae57d7a7c9ced87964406
3,656,874
import json import logging def userstudy(config, data_train): """ Update the model based on feedback from user study. - [config]: hyperparameters for model fine-tuning - [data_train]: data pool to sample from """ def preprocess_data(doc, queries): """ Create a new field in [doc] called [antecedent_map] which processes the user-labeled [antecedents]. Add all labeled spans to [queries]. in queries). """ ante_map = {} for entry in doc['antecedents']: span = tuple(entry[0]) if entry[1] == -1: label = None elif entry[1] == 0: label = '0' else: label = [tuple(entry[1])] ante_map[span] = label doc['antecedent_map'] = ante_map del doc['antecedents'] # update queries to know what has been queried queries[doc['doc_key']] = list(ante_map.keys()) # return # spans labeled return len(ante_map) # preprocess antecedents and get queries data_fp = config['userstudy'] / 'train_data.jsonl' data = [] queries = defaultdict(list) num_queries = 0 with open(data_fp, 'r') as f: for line in f: doc = json.loads(line) # update doc and queries n = preprocess_data(doc, queries) num_queries += n data.append(doc) # finetune model on data src_path = config['src_path'] logging.info( f'Finetuning src model on {num_queries} queries from {len(data)} docs' ) scores_dev, model = finetune_on_queries(config, data, config['userstudy'], src_path) # test model results_fp = config['userstudy'] / 'results_test.json' scores_test = eval_scores(model, config, "test") output_results(results_fp, config, 1, scores_test)
d3240142b55b202833364a9583b9c7c7e237bea2
3,656,875
import re def clique_create(request): """ Creates a new grouping in the database (this integration must be stored in the db to be useful) Arguments: /group-create "groupname" "@user1 @user2" """ requesting_user_id = request.POST.get('user_id') args = re.findall(DOUBLE_QUOTE_ARG_REGEX, request.POST.get("text")) # Check to see if everything looks right if len(args) != 2: return make_clique_group_error("Error in arguments (Double quotes are required!). Usage:\n" "`/group-create \"groupName\" \"@user1 @user2\"") if CliqueGroup.objects.filter(name=args[0]).count() > 0: return make_clique_group_error("This group <{}> already exists!".format(args[0])) # Move on to creating the group raw_group_members = re.findall(SLACK_ID_REGEX, args[1]) group_users = [] for slack_id in raw_group_members: try: group_users.append(CliqueUser.objects.get(slack_id=slack_id)) except CliqueUser.DoesNotExist: # This is the first time that we've seen this user # we need to add them to the db new_user = CliqueUser(slack_id=slack_id) new_user.save() group_users.append(new_user) # Case where the owner is 1) new and 2) not in the group try: CliqueUser.objects.get(slack_id=requesting_user_id) except CliqueUser.DoesNotExist: # This is the first time that we've seen this user # we need to add them to the db CliqueUser(slack_id=requesting_user_id).save() new_group = CliqueGroup( creator=CliqueUser.objects.get(slack_id=requesting_user_id), name=args[0] ) new_group.save() for clique_user in group_users: new_group.members.add(clique_user) new_group.save() # Testing response string resp_string = 'Group <{0}> has been created with users:'.format(args[0]) resp_string += ' '.join(format_user(user.slack_id) for user in new_group.members.all()) return JsonResponse({"replace_original": True, "text": resp_string})
b990079ad0685b8c524dec65166da40f0e664ef7
3,656,876
import warnings def cg_atoms(atoms, units, sites, scale, scaleValue, siteMap, keepSingleAtoms, package): """ Get positions for atoms in the coarse-grained structure and the final bond description. Returns a dictionary of the lattice, fractional coordinates, and bonds. Also provides the option to scale the lattice. Args ---- atoms: pymatgen.core.Structure Pymatgen Structure object. units: list List of tuple(atomIndex, Image) for all atoms found in the building unit so far in the algorithm. sites: list Specifying atoms in each site-type. One list per site-type. I.e. for ZIF-8 (Zn(mIm)2) Zn is an A site, and the C, N, H (imidazolate ring) are B sites, so you would pass: scale: str Scaling method to be used. Currently supported: "min_xx": minimum bond length between any atoms. "min_ab": minimum bond length between building units. "avg_ab": average bond length between building units. scaleValue: float Length (Å) to scale the characteristic bond length (defined by "scale") to. siteMap: list A list of atoms to map each building unit to. Should be of the same length as the number of site-types. E.g. to map Zn(mIm)2 to a coarse-grained structure, siteMap = ["Si", "O"] would map all A sites (Zn) to Si, and all B sites (mIm) to O. If not set, will default to "Dummy Species" with labels DA, DB, DC, ... Note if creating an ASE Atoms object, real atoms must be used, and so siteMap *must* be set. keepSingleAtoms: bool If True, the chemical identity of the single atom building units will be preserved. E.g. for BIF-1-Li ( [LiB(im)]4 ) where Li and B are A sites, the final coarse-grained structure would keep the Li and B atoms, but add dummy species for the imidazolate units. package: str "pymatgen" or "ase". If set, will return the Structure/Atoms object of the specified package, respectively. As noted in siteMap, ASE requires that real elements are set for the Atoms object. """ # Extract unit cell. lattice = atoms.lattice.copy() # Extract labels, positions, and images for each building unit. l, p, _ = zip(*[(l,*u.frac_img) for l,u in units.items()]) # Extract bonds in format consistent with TopoCIF specification; i.e. # node1_label, node2_label, distance, sym_op1, x1, y1, z1, sym_op2, # x2, y2, z2, link_type, multiplicity. There will be a list of tuples, # one tuple per unit, and the length of each tuple will be the number of # bonds stored. b = [u.unit_bonds for u in units.values()] # Determine scaling type now, because can avoid calling next section # twice to calculate the bond distances if it is "min_xx" scaling. if scale is not None: scale = scale.lower() if scale == "min_xx": # Get all distances (ignoring self-distances along diagonal). d = lattice.get_all_distances(p,p) np.fill_diagonal(d, 1000) # Get scale factor and scale the lattice to the new volume. sf = ( scaleValue / np.amin(d) )**3 lattice = lattice.scale(lattice.volume * sf) elif scale in ["min_ab", "avg_ab"]: # Get the bond distances from the formatted bonds. _, d = format_bonds(lattice,l,p,b,return_lengths=True) # Get scale factor and scale the lattice to new volume. if scale == "min_ab": sf = ( scaleValue / np.amin(d) )**3 elif scale == "avg_ab": sf = ( scaleValue / np.mean(d) )**3 lattice = lattice.scale(lattice.volume * sf) else: warnings.warn(f"Scale method {scale} is not supported.") # Get the final TopoCIF-formatted bonds. b = format_bonds(lattice, l, p, b) # The atomMap must provide a one-to-one mapping for every site-type # in the structure. assert len(siteMap) == len(sites), "Povide a one-to-one " + \ f"mapping of dummy-sites to atomic symbols " + \ f"({len(sites)} != {len(siteMap)})" # Relabel each atom with a new symbol. l, symbols, b = relabel(units, siteMap, keepSingleAtoms, b) # Sort structure information into a dictionary. s_info = { "lattice": lattice, "symbols": symbols, "labels": l, "frac_coords": p, "bonds": b } # If package specified return either a Pymatgen Structure object, or an ASE # atoms object. s = py_structure(s_info["lattice"],s_info["symbols"],s_info["frac_coords"]) if package is not None and package.lower() == "ase": s = AseAtomsAdaptor.get_atoms(s) return s_info, s
5cd2a6b8b0ce886b92912eb3dd8b14f0ea14f602
3,656,877
def read_tickers(video, ocr = None, debug = False, **kwargs): """ Reads news stories from sliding tickers on video. Returns lists of dictionaries which contain: text: news story text start time: time when news story shows up end time: time when news story disappears Each list corresponds to one ticker. """ if debug: print('Language: ', video.language) if ocr is None: ocr = TesseractOCR(**kwargs) tickers, height, width = get_tickers_hw(video) kwargs['height'] = height kwargs['width'] = width ocr._preprocesses['height'] = height if debug: print('tickers') print(tickers) stories = [] for ticker in tickers: stories.append(read_ticker(video, ticker, ocr, **kwargs)) return stories
9fc853d6af98c67434fcb0d18d09f42a15b7318c
3,656,878
def compute_msa_weights(msa, threshold=.8): """ msa (Bio.Align.MultipleSeqAlignment): alignment for which sequence frequency based weights are to be computed threshold (float): sequence identity threshold for reweighting NOTE that columns where both sequences have a gap will not be taken into account when computing identity """ weights = np.zeros(len(msa)) seq_identities = np.zeros((len(msa), len(msa))) for i in range(len(msa)): for j in range(i+1, len(msa)): seq_identities[i, j] = _compute_sequence_identity(msa[i], msa[j]) seq_identities = seq_identities + np.diag(np.ones(len(msa))) ms = np.sum(seq_identities>threshold, 1) weights = 1./ms return weights
13663501f57eef204533795c2271276a99b4a403
3,656,879
def search_storefront(client, phrase): """Execute storefront search on client matching phrase.""" resp = client.get(reverse("search:search"), {"q": phrase}) return [prod for prod, _ in resp.context["results"].object_list]
0509c39cd9adb0b4c6d0849c8b068dcb3455b807
3,656,880
def is_repo_in_config(config, repo, rev, hook_id): """Get if a repository is defined in a pre-commit configuration. Parameters ---------- config : dict Pre-commit configuration dictionary. repo : str Repository to search. rev : str Repository tag revision. hook_id : Hook identifier. Returns ------- dict : Information about if the repository and the hook have been found. """ response = {"repo_found": False, "hook_found": False, "same_rev": False} for repo_ in config["repos"]: if repo_["repo"] == repo: response["repo_found"] = True response["hook_found"] = hook_id in [hook["id"] for hook in repo_["hooks"]] response["same_rev"] = repo_["rev"] == rev break return response
855315c50f4bfe53a4f9b7a5d392bb539e364617
3,656,881
def mat33_to_quat(mat): """ Convert matrix to quaternion. :param mat: 3x3 matrix :return: list, quaternion [x, y, z, w] """ wxyz = transforms3d.quaternions.mat2quat(mat) return [wxyz[1], wxyz[2], wxyz[3], wxyz[0]]
1dcedf919674895a1ed647314c328525e4068dfe
3,656,882
def reshape(x, new_shape): """ Reshapes a tensor without changing its data. Args: x (Tensor): A tensor to be reshaped. new_shape (Union[int, list(int), tuple(int)]): The new shape should be compatible with the original shape. If the tuple has only one element, the result will be a 1-D tensor of that length. One shape dimension can be :math:`-1`. In this case, the value is inferred from the length of the tensor and remaining dimensions. Returns: Reshaped Tensor. Has the same data type as the original tensor `x`. Raises: TypeError: If new_shape is not integer, list or tuple, or `x` is not tensor. ValueError: If new_shape is not compatible with the original shape. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore.numpy as np >>> x = np.asarray([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]) >>> output = np.reshape(x, (3, 2)) >>> print(output) [[-0.1 0.3] [ 3.6 0.4] [ 0.5 -3.2]] >>> output = np.reshape(x, (3, -1)) >>> print(output) [[-0.1 0.3] [ 3.6 0.4] [ 0.5 -3.2]] >>> output = np.reshape(x, (6, )) >>> print(output) [-0.1 0.3 3.6 0.4 0.5 -3.2] """ _check_input_tensor(x) return x.reshape(new_shape)
583ffc9e40c328586ec9d21b7a73cbc610eb5c29
3,656,883
def update_depth(depth_grid, elapsed_ts, depth_factor): """Just in time Update Depth for lake to pond Parameters ---------- depth_grid: np.array like (float) grid of current lake depths elapsed_ts: float number timesteps since start year depth_factor: float Returns ------- np.array updated depth grid """ new = np.zeros(depth_grid.shape) for row in range(depth_grid.shape[0]): for col in range(depth_grid.shape[0]): new[row,col] = \ depth_grid[row,col] + (np.sqrt(elapsed_ts) / depth_factor) return new
e3fe2498421697ce584b385544a7501f54c02b85
3,656,884
def get_submissions(config, event_name, state='new'): """ Retrieve a list of submissions and their associated files depending on their current status Parameters ---------- config : dict configuration event_name : str name of the RAMP event state : str, optional state of the requested submissions (default is 'new') Returns ------- List of tuples (int, List[str]) : (submission_id, [path to submission files on the db]) Raises ------ ValueError : when mandatory connexion parameters are missing from config UnknownStateError : when the requested state does not exist in the database """ if state not in STATES: raise UnknownStateError("Unrecognized state : '{}'".format(state)) # Create database url db_url = URL(**config) db = create_engine(db_url) # Create a configured "Session" class Session = sessionmaker(db) # Link the relational model to the database Model.metadata.create_all(db) # Connect to the dabase and perform action with db.connect() as conn: session = Session(bind=conn) submissions = select_submissions_by_state(session, event_name, state) if not submissions: return [] subids = [submission.id for submission in submissions] subfiles = [submission.files for submission in submissions] filenames = [[f.path for f in files] for files in subfiles] return list(zip(subids, filenames))
e724c44b00db489f27c42acf7b21ba06a4ce0def
3,656,885
def split_dataframe(df, size=10*1024*1024): """Splits huge dataframes(CSVs) into smaller segments of given size in bytes""" # size of each row row_size = df.memory_usage().sum() / len(df) # maximum number of rows in each segment row_limit = int(size // row_size) # number of segments seg_num = (len(df)+row_limit-1)//row_limit # split df into segments segments = [df.iloc[i*row_limit : (i+1)*row_limit] for i in range(seg_num)] return segments
46f34d388e6f596bfcf803b4569eb3015344bafb
3,656,886
from pathlib import Path from typing import Optional def convert_table_codes(input_filename: Path, output_filename: Path = None, column: str = 'countryCode', namespace: Optional[str] = None, fuzzy:int = 0) -> Path: """ Adds a 'regionCode' column to the given table containing iso-3 country codes. Parameters ---------- input_filename: Path output_filename: Path column: str, default 'countryCode namespace: {'iso2', 'iso3', 'm49'}; default None fuzzy: int; default 0 The score to use when fuzzy matching when above 0. If 0, the regular code search is used instead. Returns ------- path: Path Location of the output table. """ table = load_table(input_filename) if column not in table.columns: message = "'{}' is not a valid column. Expected one of {}".format(column, list(table.columns)) raise ValueError(message) old_values = table[column].values if fuzzy: new_values = [fuzzy_search(i,fuzzy) for i in old_values] else: new_values = [get_codes(i, namespace) for i in old_values] new_values = [(v['iso3'] if v else v) for v in new_values] table['regionCode'] = new_values if output_filename is None: output_filename = input_filename.with_suffix('.edited.tsv') elif output_filename.is_dir(): output_filename = output_filename / input_filename.name opath = save_table(table, output_filename) return opath
1bba37fda512cf13e99a08a0ab7ebfdf10a4e330
3,656,887
def allow_view(user): """Is the current user allowed to view the user account? Yes, if current user is admin, staff or self. """ if not flask.g.current_user: return False if flask.g.am_admin: return True if flask.g.am_staff: return True if flask.g.current_user['username'] == user['username']: return True return False
334e56796235e5bfab6f2220443c80fc5ff68a51
3,656,888
from datetime import datetime import time def httptimestamp(inhttpdate): """ Return timestamp from RFC1123 (HTTP/1.1). """ dat = datetime.datetime(*eut.parsedate(inhttpdate)[:5]) return int(time.mktime(dat.timetuple()))
acfcdbea1a9d331b7623478841c6cd1d45fd45bf
3,656,889
from datetime import datetime def calculate_duration(start_date, end_date=None): """ Calculate how many years and months have passed between start and end dates """ # If end date not defined, use current date if not end_date: end_date = datetime.date.today() years = end_date.year - start_date.year months = end_date.month - start_date.month if months < 0: years = years - 1 months = months + 12 return years, months
d41c52d4d0274ce3b829b33f07c9730a34ab4cbd
3,656,890
import os def GetSourceRoot(filename): """Try to determine the root of the package which contains |filename|. The current heuristic attempts to determine the root of the Chromium source tree by searching up the directory hierarchy until we find a directory containing src/.gn. """ # If filename is not absolute, then we are going to assume that it is # relative to the current directory. if not os.path.isabs(filename): filename = os.path.abspath(filename) if not os.path.exists(filename): raise NoSourceRootError('File not found: {}'.format(filename)) source_root = os.path.dirname(filename) while True: gnfile = os.path.join(source_root, 'src', '.gn') if os.path.exists(gnfile): return source_root new_package_root = os.path.dirname(source_root) if new_package_root == source_root: raise NoSourceRootError("Can't determine package root") source_root = new_package_root
cb1956998cef01138a74e3278df7c27651260f73
3,656,891
import typing def actives(apikey: str) -> typing.List[typing.Dict]: """ Query FMP /actives/ API :param apikey: Your API key. :return: A list of dictionaries. """ path = f"actives" query_vars = {"apikey": apikey} return __return_json_v3(path=path, query_vars=query_vars)
de4eecc6f3006158407efd51d67b6a5ac40d2cfd
3,656,892
def print_unicodeinfo(val: str, key: str) -> str: """ Prints the occurrence, unicode character or guideline rules and additional information :param args: arguments instance :param val: count of the occurrences of key :param key: key (glyph or guideline rules) :return: """ return f"{val:-{6}} {'{'}{repr(key) if controlcharacter_check(key) else key}{'}'}{addinfo(key)}"
194bb1d03613e9708f8deea8c233d02dacd3e3b6
3,656,893
def qx_to_npx(df): """ Return df with qx converted to npx. """ df = 1 - df out = df.cumprod().shift() for i in df.index: out.loc[i, i] = 1 return out
683a26f57dfb7ae1762df84f74186f0b88cb4688
3,656,894
def homepage(selenium, config): """Get homepage with selenium.""" selenium.get(config.BASE_URL) selenium.set_window_size(config.WINDOW_WIDTH, config.WINDOW_HEIGHT) custom_click_cookie_rollbar(selenium, config.MAX_WAIT_TIME) return selenium
39217a38ac09d41093070ed06803e36485f04e2b
3,656,895
import torch def _if_scalar_type_as(g, self, tensor): """ Convert self into the same type of tensor, as necessary. We only support implicit casting for scalars, so we never actually need to insert an ONNX cast operator here; just fix up the scalar. """ if isinstance(self, torch._C.Value): return self elif tensor.type().kind() == "TensorType" or tensor.type().kind() == "CompleteTensorType": ty = tensor.type().scalarType().lower() return getattr(self, ty)() else: return self
8e53bf67c8bbc78f142ffcb8027c0876eed951fe
3,656,896
def read_images_text(path): """ see: src/base/reconstruction.cc void Reconstruction::ReadImagesText(const std::string& path) void Reconstruction::WriteImagesText(const std::string& path) """ images = {} with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": elems = line.split() image_id = int(elems[0]) qvec = np.array(tuple(map(float, elems[1:5]))) tvec = np.array(tuple(map(float, elems[5:8]))) camera_id = int(elems[8]) image_name = elems[9] elems = fid.readline().split() xys = np.column_stack([tuple(map(float, elems[0::3])), tuple(map(float, elems[1::3]))]) point3D_ids = np.array(tuple(map(int, elems[2::3]))) images[image_id] = Image( id=image_id, qvec=qvec, tvec=tvec, camera_id=camera_id, name=image_name, xys=xys, point3D_ids=point3D_ids) return images
2aed7477e43bdcb73ad9eb866960b814278bbf0c
3,656,897
def emailIsValid(email): """Return true if email is valid otherwise false""" return EMAIL_RE.match(email) is not None
d9e28b68e31f1ab95c63aa80cd4a2a461cbac852
3,656,898
def calculate_line_number(text): """Calculate line numbers in the text""" return len([line for line in text.split("\n") if line.strip() != ""])
f35533945203ec2f47a89e7072ddd9b172f5554b
3,656,899