content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def freeze_loop(src, start, end, loopStart, loopEnd=None): """ Freezes a range of frames form start to end using the frames comprended between loopStart and loopEnd. If no end frames are provided for the range or the loop, start frames will be used instead. """ core = vs.get_core() if loopEnd is None: loopEnd = loopStart if start < 0 or start > src.num_frames - 1: raise ValueError('start frame out of bounds: {}.'.format(start)) if loopStart < 0 or loopStart > src.num_frames - 1: raise ValueError('loop start frame out of bounds: {}.'.format(loopStart)) if end < start or end > src.num_frames - 1: raise ValueError('end frame out of bounds: {}.'.format(end)) if loopEnd < loopStart or loopEnd > src.num_frames - 1: raise ValueError('loop end out of bounds: {}.'.format(loopEnd)) loop = core.std.Loop(src[loopStart:loopEnd + 1], 0) span = end - start + 1 if start != 0: final = src[:start] + loop[:span] else: final = loop[:span] if end < src.num_frames - 1: final = final + src[end + 1:] if src.num_frames != final.num_frames: raise ValueError( 'input / output framecount missmatch (got: {}; expected: {}).'.format( final.num_frames, src.num_frames)) return final
67284a264ada601dbd01c30c1bf32f48ad9eb9d8
3,656,700
def timevalue(cflo, prate, base_date=0, utility=None): """ Computes the equivalent net value of a generic cashflow at time `base_date` using the periodic interest rate `prate`. If `base_date` is 0, `timevalue` computes the net present value of the cashflow. If `base_date` is the index of the last element of `cflo`, this function computes the equivalent future value. Args: cflo (pandas.Series, list of pandas.Series): Generic cashflow. prate (pandas.Series): Periodic interest rate. base_date (int, tuple): Time. utility (function): Utility function. Returns: Float or list of floats. **Examples.** >>> cflo = cashflow([-732.54] + [100]*8, start='2000Q1', freq='Q') >>> prate = interest_rate([2]*9, start='2000Q1', freq='Q') >>> timevalue(cflo, prate) # doctest: +ELLIPSIS 0.00... >>> prate = interest_rate([12]*5, start='2000Q1', freq='Q') >>> cflo = cashflow([-200]+[100]*4, start='2000Q1', freq='Q') >>> timevalue(cflo, prate) # doctest: +ELLIPSIS 103.73... >>> timevalue(cflo, prate, 4) # doctest: +ELLIPSIS 163.22... >>> prate = interest_rate([12]*5, start='2000Q1', freq='Q') >>> cflo = cashflow([-200] + [100]*4, start='2000Q1', freq='Q') >>> timevalue(cflo=cflo, prate=prate) # doctest: +ELLIPSIS 103.73... >>> timevalue(cflo=[cflo, cflo], prate=prate) # doctest: +ELLIPSIS 0 103.734935 1 103.734935 dtype: float64 """ if isinstance(cflo, pd.Series): cflo = [cflo] if not isinstance(prate, pd.Series): raise TypeError("`prate` must be a pandas.Series") verify_period_range(cflo + [prate]) retval = pd.Series([0] * len(cflo), dtype=np.float64) factor = to_discount_factor(prate=prate, base_date=base_date) for index, xcflo in enumerate(cflo): netval = 0 for time, _ in enumerate(xcflo): netval += xcflo[time] * factor[time] retval[index] = netval if len(retval) == 1: return retval[0] return retval
704f6988d1995a8602314df08d1dcfbed549f1ed
3,656,701
def munge(examples, multiplier, prob, loc_var, data_t, seed=0): """ Generates a dataset from the original one :param examples: Training examples :type examples: 2d numpy array :param multiplier: size multiplier :type multiplier: int k :param prob: probability of swapping values :type prob: flt (0 to 1) :param loc_var: local variance parameter :type loc_var: flt :param data_t: Identifies whether or not the attribute is continuous or nominal :type data_t: Numpy array of strs """ np.random.seed(seed) new_dataset = None continuous = [True if x == FeatureType.CONTINUOUS else False for x in data_t] nominal = np.logical_not(continuous) data_c = examples[:, continuous].astype(float) # Scales data linearly from 0 to 1 norm_data_c = normalize(data_c - np.min(data_c, axis=0), axis=0, norm='max') data_n = examples[:, nominal] indicies = nn(norm_data_c, data_n) for i in range(multiplier): T_prime = np.copy(examples) # Runs through all the examples in the dataset for j in range(examples.shape[0]): index = indicies[j, 1] if indicies[j, 0] == j else indicies[j, 0] pt1 = T_prime[j, :] pt2 = T_prime[index, :] # Runs through all features for an example and its nn for k in range(len(data_t)): # Swaps the two fields with probability prob if np.random.ranf() < prob: if data_t[k] == FeatureType.CONTINUOUS: std = abs(float(pt1[k]) - float(pt2[k])) / loc_var temp = float(pt1[k]) pt1[k] = np.random.normal(float(pt2[k]), std) pt2[k] = np.random.normal(temp, std) else: temp = pt1[k] pt1[k] = pt2[k] pt2[k] = temp # Combines the dataset to the final one if new_dataset is None: new_dataset = np.copy(T_prime) else: new_dataset = np.vstack((new_dataset, T_prime)) return new_dataset
339d5cafedb8abd6094cde81004c5056a3830d26
3,656,702
def is_interested_source_code_file(afile): """ If a file is the source code file that we are interested. """ tokens = afile.split(".") if len(tokens) > 1 and tokens[-1] in ("c", "cpp", "pl", "tmpl", "py", "s", "S"): # we care about C/C++/perl/template/python/assembly source code files return True return False
9bd77dc3b530262cc2bf8a32c0d050ea30077030
3,656,703
import json import time import logging def handle_survey_answers(): """ Receives form data adds submission to database. Args: data (str): From the POST request arguments. Should in JSON form and have all the quiz response information. Raises: AssertionError: When the quiz type is not valid. Returns: str: The ID of the quiz entry in the database. """ # Load the JSON as dictionary. entry = json.loads(request.form['data']) # Add the current timestamp to the data. timestamp = time.time() entry['timestamp_secs'] = timestamp entry_string = json.dumps(entry, indent=4, sort_keys=True) logging.debug(entry_string) db = get_db() # Use the form type to access differnt collections. form_type = entry['form_type'] responses_col = None # Differentiate between men and women quiz. if form_type == 'men': responses_col = db.responses_men elif form_type == 'women': responses_col = db.responses_women else: logging.warning("Form Type is not 'men' or 'women': {}".format( form_type)) raise AssertionError("Form Type is not 'men' or 'women': {}".format( form_type)) # Update responses counter. responses_col.find_one_and_update( {'_id': 'responses'}, {'$inc': {'count': 1}}, upsert=True) # Insert the response information. response_id = responses_col.insert_one(entry).inserted_id resp = {"id": str(response_id)} return jsonify(resp)
2abd696e009d95b58671369cdfb9f1449a991474
3,656,704
def recursively_extract(node, exfun, maxdepth=2): """ Transform a html ul/ol tree into a python list tree. Converts a html node containing ordered and unordered lists and list items into an object of lists with tree-like structure. Leaves are retrieved by applying `exfun` function to the html nodes not containing any ul/ol list. Args: node: BeautifulSoup HTML node to traverse exfun: function to apply to every string node found maxdepth: maximal depth of lists to go in the node Returns: A tree-like python object composed of lists. Examples: >>> node_content = \ ''' <ol> <li>Hase</li> <li>Nase<ol><li>Eins</li><li>Zwei</li></ol></li> </ol>''' >>> node = BeautifulSoup(node_content, "lxml") >>> recursively_extract(node, lambda x: x) [<li>Hase</li>, [<li>Eins</li>, <li>Zwei</li>]] >>> recursively_extract(node, lambda x: x.get_text()) ['Hase', ['Eins', 'Zwei']] """ if node.name in ['ol', 'ul']: lilist = node else: lilist = node.ol or node.ul if lilist and maxdepth: # apply 'recursively_extract' to every 'li' node found under this node return [recursively_extract(li, exfun, maxdepth=(maxdepth - 1)) for li in lilist.find_all('li', recursive=False)] # if this node doesn't contain 'ol' or 'ul' node, return the transformed # leaf (using the 'exfun' function) return exfun(node)
cc5732a786579172dda31958ad2bd468a4feef81
3,656,705
import math def group_v2_deconv_decoder(latent_tensor, output_shape, hy_ncut=1, group_feats_size=gin.REQUIRED, lie_alg_init_scale=gin.REQUIRED, lie_alg_init_type=gin.REQUIRED, n_act_points=gin.REQUIRED, is_training=True): """Convolutional decoder used in beta-VAE paper for the chairs data. Based on row 3 of Table 1 on page 13 of "beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework" (https://openreview.net/forum?id=Sy2fzU9gl) Here we add an extra linear mapping for group features extraction. Args: latent_tensor: Input tensor of shape (batch_size,) to connect decoder to. output_shape: Shape of the data. group_feats_size: The dimension of group features. is_training: Whether or not the graph is built for training (UNUSED). Returns: Output tensor of shape (batch_size, 64, 64, num_channels) with the [0,1] pixel intensities. group_feats: Group features. """ # del is_training lie_alg_basis_ls = [] latent_dim = latent_tensor.get_shape().as_list()[-1] latents_in_cut_ls = split_latents(latent_tensor, hy_ncut=hy_ncut) # [x0, x1] mat_dim = int(math.sqrt(group_feats_size)) for i in range(latent_dim): init = tf.initializers.random_normal(0, lie_alg_init_scale) lie_alg_tmp = tf.get_variable('lie_alg_' + str(i), shape=[1, mat_dim, mat_dim], initializer=init) if lie_alg_init_type == 'oth': lie_alg_tmp = tf.matrix_band_part(lie_alg_tmp, 0, -1) lie_alg_tmp = lie_alg_tmp - tf.transpose(lie_alg_tmp, perm=[0, 2, 1]) lie_alg_basis_ls.append(lie_alg_tmp) lie_alg_basis = tf.concat(lie_alg_basis_ls, axis=0)[tf.newaxis, ...] # [1, lat_dim, mat_dim, mat_dim] lie_alg = 0 lie_group = tf.eye(mat_dim, dtype=lie_alg_basis_ls[0].dtype)[tf.newaxis, ...] for i, lie_alg_basis_i in enumerate(lie_alg_basis_ls): lie_alg_tmp = lie_alg_basis_i * latent_tensor[:, i][..., tf.newaxis, tf.newaxis] lie_alg = lie_alg + lie_alg_tmp lie_group_tmp = tf.linalg.expm( lie_alg_tmp) # [b, mat_dim, mat_dim] lie_group = tf.matmul(lie_group_tmp, lie_group) # if not is_training: # lie_alg_mul = latent_tensor[ # ..., tf.newaxis, tf. # newaxis] * lie_alg_basis # [b, lat_dim, mat_dim, mat_dim] # lie_alg = tf.reduce_sum(lie_alg_mul, axis=1) # [b, mat_dim, mat_dim] # lie_group = tf.linalg.expm(lie_alg) # [b, mat_dim, mat_dim] # else: # lie_group = tf.eye( # mat_dim, # dtype=latents_in_cut_ls[0].dtype)[tf.newaxis, ...] # lie_alg = 0 # for latents_in_cut_i in latents_in_cut_ls: # lie_alg_mul_tmp = latents_in_cut_i[ # ..., tf.newaxis, tf.newaxis] * lie_alg_basis # [b, lat_dim, mat_dim, mat_dim] # lie_alg_tmp = tf.reduce_sum( # lie_alg_mul_tmp, # axis=1) # [b, mat_dim, mat_dim] # lie_alg = lie_alg + lie_alg_tmp # lie_group_tmp = tf.linalg.expm( # lie_alg_tmp) # [b, mat_dim, mat_dim] # lie_group = tf.matmul(lie_group, # lie_group_tmp) transed_act_points_tensor = tf.reshape(lie_group, [-1, mat_dim * mat_dim]) # lie_alg_mul = latent_tensor[ # ..., tf.newaxis, tf. # newaxis] * lie_alg_basis # [b, lat_dim, mat_dim, mat_dim] # lie_alg = tf.reduce_sum(lie_alg_mul, axis=1) # [b, mat_dim, mat_dim] # lie_group = tf.linalg.expm(lie_alg) # [b, mat_dim, mat_dim] # act_init = tf.initializers.random_normal(0, 0.01) # act_points = tf.get_variable('act_points', # shape=[1, mat_dim, n_act_points], # initializer=act_init) # transed_act_points = tf.matmul(lie_group, act_points) # transed_act_points_tensor = tf.reshape(transed_act_points, # [-1, mat_dim * n_act_points]) d1 = tf.layers.dense(transed_act_points_tensor, 256, activation=tf.nn.relu) d2 = tf.layers.dense(d1, 1024, activation=tf.nn.relu) d2_reshaped = tf.reshape(d2, shape=[-1, 4, 4, 64]) d3 = tf.layers.conv2d_transpose( inputs=d2_reshaped, filters=64, kernel_size=4, strides=2, activation=tf.nn.relu, padding="same", ) d4 = tf.layers.conv2d_transpose( inputs=d3, filters=32, kernel_size=4, strides=2, activation=tf.nn.relu, padding="same", ) d5 = tf.layers.conv2d_transpose( inputs=d4, filters=32, kernel_size=4, strides=2, activation=tf.nn.relu, padding="same", ) d6 = tf.layers.conv2d_transpose( inputs=d5, filters=output_shape[2], kernel_size=4, strides=2, padding="same", ) return tf.reshape(d6, [-1] + output_shape), lie_group, lie_alg_basis
c098852a7d3e85be944494de74810e021d7fd106
3,656,706
import os import colorsys def cptfile2dict(filepath): """ Extracts a color dictionary and list for a colormap object from a .cpt file Parameters ---------- filepath: str filepath of a .cpt file including file extension Returns ------- colormap name, list containing all colors, dictionary containing all colors """ if not os.path.exists(filepath): raise ImportError("file ", filepath, "not found") file = open(filepath) name = os.path.splitext(os.path.basename(filepath))[0] lines = file.readlines() file.close() x = [] r = [] g = [] b = [] color_model = "RGB" for l in lines: ls = l.split() if l.strip(): if l[0] == "#": if ls[-1] == "HSV": color_model = "HSV" continue if ls[0] == "B" or ls[0] == "F" or ls[0] == "N": pass else: x.append(float(ls[0])) r.append(float(ls[1])) g.append(float(ls[2])) b.append(float(ls[3])) xtemp = float(ls[4]) rtemp = float(ls[5]) gtemp = float(ls[6]) btemp = float(ls[7]) else: continue x.append(xtemp) r.append(rtemp) g.append(gtemp) b.append(btemp) x = np.array(x, dtype=np.float64) r = np.array(r, dtype=np.float64) g = np.array(g, dtype=np.float64) b = np.array(b, dtype=np.float64) if color_model == "HSV": for i in range(r.shape[0]): rr, gg, bb = colorsys.hsv_to_rgb(r[i] / 360., g[i], b[i]) r[i] = rr g[i] = gg b[i] = bb if color_model == "RGB": r = r/255 g = g/255 b = b/255 x_norm = (x - x[0])/(x[-1] - x[0]) col_list = [(r[i], g[i], b[i]) for i in range(len(r))] red = [] green = [] blue = [] for i in range(len(x)): red.append([x_norm[i], r[i], r[i]]) green.append([x_norm[i], g[i], g[i]]) blue.append([x_norm[i], b[i], b[i]]) color_dict = {"red": red, "green": green, "blue": blue} return name, col_list, color_dict
8743c2a092b7749aaecbc3a5f6f815e74dd489df
3,656,707
def UncertaintyLossNet(): """Creates Uncertainty weighted loss model https://arxiv.org/abs/1705.07115 """ l1 = layers.Input(shape=()) l2 = layers.Input(shape=()) loss = UncertaintyWeightedLoss()([l1, l2]) model = Model(inputs=[l1, l2], outputs=loss) return model
5a6553edc321a6e307848e261692541cedea4ebb
3,656,708
from typing import Iterable import logging from pathlib import Path def inject_signals( frame_files: Iterable[str], channels: [str], ifos: [str], prior_file: str, n_samples: int, outdir: str, fmin: float = 20, waveform_duration: float = 8, snr_range: Iterable[float] = [25, 50], ): """Injects simulated BBH signals into a frame, or set of corresponding frames from different interferometers. Frames should have the same start/stop time and the same sample rate Args: frame_files: list of paths to frames to be injected channels: channel names of the strain data in each frame ifos: list of interferometers corresponding to frames, e.g., H1, L1 prior_file: prior file for bilby to sample from n_samples: number of signal to inject outdir: output directory to which injected frames will be written fmin: Minimum frequency for highpass filter waveform_duration: length of injected waveforms snr_range: desired signal SNR range Returns: Paths to the injected frames and the parameter file """ strains = [ TimeSeries.read(frame, ch) for frame, ch in zip(frame_files, channels) ] logging.info("Read strain from frame files") span = set([strain.span for strain in strains]) if len(span) != 1: raise ValueError( "Frame files {} and {} have different durations".format( *frame_files ) ) frame_start, frame_stop = next(iter(span)) frame_duration = frame_stop - frame_start sample_rate = set([int(strain.sample_rate.value) for strain in strains]) if len(sample_rate) != 1: raise ValueError( "Frame files {} and {} have different sample rates".format( *frame_files ) ) sample_rate = next(iter(sample_rate)) fftlength = int(max(2, np.ceil(2048 / sample_rate))) # set the non-overlapping times of the signals in the frames randomly # leaves buffer at either end of the series so edge effects aren't an issue signal_times = sorted( np.random.choice( np.arange( waveform_duration, frame_duration - waveform_duration, waveform_duration, ), size=n_samples, replace=False, ) ) # log and print out some simulation parameters logging.info("Simulation parameters") logging.info("Number of samples : {}".format(n_samples)) logging.info("Sample rate [Hz] : {}".format(sample_rate)) logging.info("High pass filter [Hz] : {}".format(fmin)) logging.info("Prior file : {}".format(prior_file)) # define a Bilby waveform generator waveform_generator = bilby.gw.WaveformGenerator( duration=waveform_duration, sampling_frequency=sample_rate, frequency_domain_source_model=lal_binary_black_hole, parameter_conversion=convert_to_lal_binary_black_hole_parameters, waveform_arguments={ "waveform_approximant": "IMRPhenomPv2", "reference_frequency": 50, "minimum_frequency": 20, }, ) # sample GW parameters from prior distribution priors = bilby.gw.prior.BBHPriorDict(prior_file) sample_params = priors.sample(n_samples) sample_params["geocent_time"] = signal_times signals_list = [] snr_list = [] for strain, channel, ifo in zip(strains, channels, ifos): # calculate the PSD strain_psd = strain.psd(fftlength) # generate GW waveforms raw_signals = generate_gw( sample_params, waveform_generator=waveform_generator, ) signals, snr = project_raw_gw( raw_signals, sample_params, waveform_generator, ifo, get_snr=True, noise_psd=strain_psd, ) signals_list.append(signals) snr_list.append(snr) old_snr = np.sqrt(np.sum(np.square(snr_list), axis=0)) new_snr = np.random.uniform(snr_range[0], snr_range[1], len(snr_list[0])) signals_list = [ signals * (new_snr / old_snr)[:, None] for signals in signals_list ] sample_params["luminosity_distance"] = ( sample_params["luminosity_distance"] * old_snr / new_snr ) snr_list = [snr * new_snr / old_snr for snr in snr_list] outdir = Path(outdir) frame_out_paths = [outdir / f.name for f in map(Path, frame_files)] for strain, signals, frame_path in zip( strains, signals_list, frame_out_paths ): for i in range(n_samples): idx1 = int( (signal_times[i] - waveform_duration / 2.0) * sample_rate ) idx2 = idx1 + waveform_duration * sample_rate strain[idx1:idx2] += signals[i] strain.write(frame_path) # Write params and similar to output file param_file = outdir / f"param_file_{frame_start}-{frame_stop}.h5" with h5py.File(param_file, "w") as f: # write signals attributes, snr, and signal parameters params_gr = f.create_group("signal_params") for k, v in sample_params.items(): params_gr.create_dataset(k, data=v) # Save signal times as actual GPS times f.create_dataset("GPS-start", data=signal_times + frame_start) for i, ifo in enumerate(ifos): ifo_gr = f.create_group(ifo) ifo_gr.create_dataset("signal", data=signals_list[i]) ifo_gr.create_dataset("snr", data=snr_list[i]) # write frame attributes f.attrs.update( { "size": n_samples, "frame_start": frame_start, "frame_stop": frame_stop, "sample_rate": sample_rate, "psd_fftlength": fftlength, } ) # Update signal attributes f.attrs["waveform_duration"] = waveform_duration f.attrs["flag"] = "GW" return frame_out_paths, param_file
204aca5dee78e885191907890fc064503ff61f57
3,656,709
async def lyric(id: int, endpoint: NeteaseEndpoint = Depends(requestClient)): """ ## Name: `lyric` > 歌词 --- ### Required: - ***int*** **`id`** - Description: 单曲ID """ return await endpoint.lyric(id=id)
331c0bced7bbd2523426522286a85f3cc6a3a29f
3,656,710
def get_body(m): """extract the plain text body. return the body""" if m.is_multipart(): body = m.get_body(preferencelist=('plain',)).get_payload(decode=True) else: body = m.get_payload(decode=True) if isinstance(body, bytes): return body.decode() else: return body
7980c1471a0a09c793cb8124066a97caac21ae0d
3,656,711
import os def get_image(img_path, ch=3, scale=None, tile_size=None, interpolate=cv2.INTER_AREA): """ Loads image data into standard Numpy array Reads image and reverses channel order. Loads image as 8 bit (regardless of original depth) Parameters ------ img_path: str Image file path. ch: int Number of input channels (default = 3). scale: float Scaling factor. tile_size: int Tile dimension (square). interpolate: int Interpolation method (OpenCV). Returns ------ numpy array Image array; formats: grayscale: [HW]; colour: [HWC]. w: int Image width (px). h: int Image height (px). w_resized: int Image width resized (px). h_resized: int Image height resized (px). """ assert ch == 3 or ch == 1, 'Invalid number of input channels:\t{}.'.format(ch) assert os.path.exists(img_path), 'Image path {} does not exist.'.format(img_path) if not tile_size: tile_size = defaults.tile_size # verify image channel number img = cv2.imread(img_path, cv2.IMREAD_COLOR) if is_grayscale(img) and ch == 3: print('\nInput image is grayscale but process expects colour (RGB).\n\tApplication stopped.') exit(1) elif not is_grayscale(img) and ch == 1: if input("\nInput image is in colour (RGB) but process expects grayscale. " "Apply grayscale filter? (Enter \'Y\' or \'y\' for Yes): ") in ['Y', 'y']: grayscale(img) # load image data if ch == 3: img = cv2.imread(img_path, cv2.IMREAD_COLOR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) else: img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) # get dimensions height, width = img.shape[:2] height_resized = height width_resized = width # apply scaling if scale: min_dim = min(height, width) # adjust scale to minimum size (tile dimensions) if min_dim < tile_size: scale = tile_size / min_dim dim = (int(scale * width), int(scale * height)) img = cv2.resize(img, dim, interpolation=interpolate) height_resized, width_resized = img.shape[:2] return img, width, height, width_resized, height_resized
2d34bb64762c2c478eed71caab02d4b39dfc28ce
3,656,712
def density(mass, volume): """ Calculate density. """ return mass / volume * 1
53b1f76ba66695a9cd72be9186bcc374ee11f53b
3,656,713
import sys def _is_global(obj, name=None): """Determine if obj can be pickled as attribute of a file-backed module""" if name is None: name = getattr(obj, '__qualname__', None) if name is None: name = getattr(obj, '__name__', None) module_name = _whichmodule(obj, name) if module_name is None: # In this case, obj.__module__ is None AND obj was not found in any # imported module. obj is thus treated as dynamic. return False if module_name == "__main__": return False module = sys.modules.get(module_name, None) if module is None: # The main reason why obj's module would not be imported is that this # module has been dynamically created, using for example # types.ModuleType. The other possibility is that module was removed # from sys.modules after obj was created/imported. But this case is not # supported, as the standard pickle does not support it either. return False # module has been added to sys.modules, but it can still be dynamic. if _is_dynamic(module): return False try: obj2, parent = _getattribute(module, name) except AttributeError: # obj was not found inside the module it points to return False return obj2 is obj
b0846e156c1d9201e75d6e38d37bdb49b8ee9bfd
3,656,714
from typing import Union from typing import Callable import torch def get_augmenter(augmenter_type: str, image_size: ImageSizeType, dataset_mean: DatasetStatType, dataset_std: DatasetStatType, padding: PaddingInputType = 1. / 8., pad_if_needed: bool = False, subset_size: int = 2) -> Union[Module, Callable]: """ Args: augmenter_type: augmenter type image_size: (height, width) image size dataset_mean: dataset mean value in CHW dataset_std: dataset standard deviation in CHW padding: percent of image size to pad on each border of the image. If a sequence of length 4 is provided, it is used to pad left, top, right, bottom borders respectively. If a sequence of length 2 is provided, it is used to pad left/right, top/bottom borders, respectively. pad_if_needed: bool flag for RandomCrop "pad_if_needed" option subset_size: number of augmentations used in subset Returns: nn.Module for Kornia augmentation or Callable for torchvision transform """ if not isinstance(padding, tuple): assert isinstance(padding, float) padding = (padding, padding, padding, padding) assert len(padding) == 2 or len(padding) == 4 if len(padding) == 2: # padding of length 2 is used to pad left/right, top/bottom borders, respectively # padding of length 4 is used to pad left, top, right, bottom borders respectively padding = (padding[0], padding[1], padding[0], padding[1]) # image_size is of shape (h,w); padding values is [left, top, right, bottom] borders padding = ( int(image_size[1] * padding[0]), int(image_size[0] * padding[1]), int(image_size[1] * padding[2]), int(image_size[0] * padding[3]) ) augmenter_type = augmenter_type.strip().lower() if augmenter_type == "simple": return nn.Sequential( K.RandomCrop(size=image_size, padding=padding, pad_if_needed=pad_if_needed, padding_mode='reflect'), K.RandomHorizontalFlip(p=0.5), K.Normalize(mean=torch.tensor(dataset_mean, dtype=torch.float32), std=torch.tensor(dataset_std, dtype=torch.float32)), ) elif augmenter_type == "fixed": return nn.Sequential( K.RandomHorizontalFlip(p=0.5), # K.RandomVerticalFlip(p=0.2), K.RandomResizedCrop(size=image_size, scale=(0.8, 1.0), ratio=(1., 1.)), RandomAugmentation( p=0.5, augmentation=F.GaussianBlur2d( kernel_size=(3, 3), sigma=(1.5, 1.5), border_type='constant' ) ), K.ColorJitter(contrast=(0.75, 1.5)), # additive Gaussian noise K.RandomErasing(p=0.1), # Multiply K.RandomAffine( degrees=(-25., 25.), translate=(0.2, 0.2), scale=(0.8, 1.2), shear=(-8., 8.) ), K.Normalize(mean=torch.tensor(dataset_mean, dtype=torch.float32), std=torch.tensor(dataset_std, dtype=torch.float32)), ) elif augmenter_type in ["validation", "test"]: return nn.Sequential( K.Normalize(mean=torch.tensor(dataset_mean, dtype=torch.float32), std=torch.tensor(dataset_std, dtype=torch.float32)), ) elif augmenter_type == "randaugment": return nn.Sequential( K.RandomCrop(size=image_size, padding=padding, pad_if_needed=pad_if_needed, padding_mode='reflect'), K.RandomHorizontalFlip(p=0.5), RandAugmentNS(n=subset_size, m=10), K.Normalize(mean=torch.tensor(dataset_mean, dtype=torch.float32), std=torch.tensor(dataset_std, dtype=torch.float32)), ) else: raise NotImplementedError(f"\"{augmenter_type}\" is not a supported augmenter type")
7b065d9bd7c9bc2cf3c0aa2fdf105c714df24705
3,656,715
def query(limit=None, username=None, ids=None, user=None): """# Retrieve Workspaces Receive a generator of Workspace objects previously created in the Stark Bank API. If no filters are passed and the user is an Organization, all of the Organization Workspaces will be retrieved. ## Parameters (optional): - limit [integer, default None]: maximum number of objects to be retrieved. Unlimited if None. ex: 35 - username [string, default None]: query by the simplified name that defines the workspace URL. This name is always unique across all Stark Bank Workspaces. Ex: "starkbankworkspace" - ids [list of strings, default None]: list of ids to filter retrieved objects. ex: ["5656565656565656", "4545454545454545"] - user [Organization/Project object, default None]: Organization or Project object. Not necessary if starkbank.user was set before function call ## Return: - generator of Workspace objects with updated attributes """ return rest.get_stream(resource=_resource, limit=limit, username=username, ids=ids, user=user)
bc22336c7c76d549144e43b6d6c46793b1feedf9
3,656,716
def _add_output_tensor_nodes(net, preprocess_tensors, output_collection_name='inferece_op'): """ Adds output nodes for all preprocess_tensors. :param preprocess_tensors: a dictionary containing the all predictions; :param output_collection_name: Name of collection to add output tensors to. :return: A tensor dict containing the added output tensor nodes. """ outputs = {} outputs['roi_scores'] = tf.identity(net.all_rois_scores, name='rois_scores') outputs['rois'] = tf.identity(net.all_rois, name='rois') for output_key in outputs.keys(): tf.add_to_collection(output_collection_name, outputs[output_key]) return outputs
cdbb2b69a795bcc74925cce138e9d73bc4737276
3,656,717
def f_prob(times, lats, lons, members): """Probabilistic forecast containing also a member dimension.""" data = np.random.rand(len(members), len(times), len(lats), len(lons)) return xr.DataArray( data, coords=[members, times, lats, lons], dims=["member", "time", "lat", "lon"], attrs={"source": "test"}, )
43fe73abb5667b0d29f36a4ee73e8d8ec1943ad0
3,656,718
def dunning_total_by_corpus(m_corpus, f_corpus): """ Goes through two corpora, e.g. corpus of male authors and corpus of female authors runs dunning_individual on all words that are in BOTH corpora returns sorted dictionary of words and their dunning scores shows top 10 and lowest 10 words :param m_corpus: Corpus object :param f_corpus: Corpus object :return: list of tuples (common word, (dunning value, m_corpus_count, f_corpus_count)) >>> from gender_analysis.analysis.dunning import dunning_total_by_corpus >>> from gender_analysis.corpus import Corpus >>> from gender_analysis.common import TEST_DATA_PATH >>> path = TEST_DATA_PATH / 'sample_novels' / 'texts' >>> csv_path = TEST_DATA_PATH / 'sample_novels' / 'sample_novels.csv' >>> c = Corpus(path, csv_path=csv_path) >>> m_corpus = c.filter_by_gender('male') >>> f_corpus = c.filter_by_gender('female') >>> result = dunning_total_by_corpus(m_corpus, f_corpus) >>> print(result[0]) ('she', (-12374.391057010947, 29382, 45907)) """ wordcounter_male = m_corpus.get_wordcount_counter() wordcounter_female = f_corpus.get_wordcount_counter() totalmale_words = 0 totalfemale_words = 0 for male_word in wordcounter_male: totalmale_words += wordcounter_male[male_word] for female_word in wordcounter_female: totalfemale_words += wordcounter_female[female_word] dunning_result = {} for word in wordcounter_male: wordcount_male = wordcounter_male[word] if word in wordcounter_female: wordcount_female = wordcounter_female[word] dunning_word = dunn_individual_word(totalmale_words, totalfemale_words, wordcount_male, wordcount_female) dunning_result[word] = (dunning_word, wordcount_male, wordcount_female) dunning_result = sorted(dunning_result.items(), key=itemgetter(1)) return dunning_result
324b0bb5e5f83451ca47cefed908cdd6dbc47c33
3,656,719
import os import warnings def get_apikey() -> str: """ Read and return the value of the environment variable ``LS_API_KEY``. :return: The string value of the environment variable or an empty string if no such variable could be found. """ api_key = os.environ.get("LS_API_KEY") if api_key is None: warnings.warn("No token found in environment variable LS_API_KEY.") return api_key or ""
b88a6c0ac8e11add97abd1d7415126f75f50696d
3,656,720
import uuid import os def test_pdf(): """ 测试pdf报表输出 :return: """ res = ResMsg() report_path = current_app.config.get("REPORT_PATH", "./report") file_name = "{}.pdf".format(uuid.uuid4().hex) path = os.path.join(report_path, file_name) path = pdf_write(path) path = path.lstrip(".") res.update(data=path) return res.data
f5bba395c5899d34bbd422d403970f320d8e4843
3,656,721
import inspect def vprint(*args, apply=print, **kwargs): """ Prints the variable name, its type and value. :: vprint(5 + 5, sum([1,2])) > 5 + 5 (<class 'int'>): 10 sum([1,2]) (<class 'int'>): 3 """ def printarg(_name, _val) -> str: _string = f'{_name}: {igit_debug.formatting.pformat(_val, types=True)}' apply(_string) return _string strings = [] if args: currframe = inspect.currentframe() outer = inspect.getouterframes(currframe) frameinfo = outer[1] ctx = frameinfo.code_context[0].strip() argnames = ctx[ctx.find('(') + 1:-1].split(', ') if len(argnames) != len(args) + len(kwargs): print(f"Too complex statement, try breaking it down to variables or eliminating whitespace", # f'len(argnames): {len(argnames)}', f'len(args): {len(args)}', f'len(kwargs): {len(kwargs)}', # vprint(ctx, argnames, args, kwargs) ) # return for i, val in enumerate(args): try: name = argnames[i].strip() except IndexError: continue # TODO: break? strings.append(printarg(name, val)) for name, val in kwargs.items(): strings.append(printarg(name, val)) # return strings
759320b427ee26bded41a86e46ec6ce72cbfcf7a
3,656,722
from typing import Optional from typing import Callable def get_int(prompt: Optional[str] = None, min_value: Optional[int] = None, max_value: Optional[int] = None, condition: Optional[Callable[[int], bool]] = None, default: Optional[int] = None) -> int: """Gets an int from the command line. :param prompt: Input prompt. :param min_value: Minimum value of the parsed int. :param max_value: Maximum value of the parsed int. :param condition: Condition the int must match. :param default: Default value used if no characters are typed. :return: Input int. """ input_int = None input_str = None while input_int is None: try: input_str = input(_prompt_from_message(prompt, default=default)).strip() if default is not None and len(input_str) == 0: input_str = default input_int = int(input_str) if (min_value is not None and input_int < min_value) or \ (max_value is not None and input_int > max_value) or \ (condition is not None and not condition(input_int)): input_int = None raise ValueError() except ValueError: _print_invalid_value(input_str) return input_int
c6ea07b495330c74bd36523cf12dd3e208926ea5
3,656,723
def make_stream_callback(observer, raw, frame_size, start, stop): """ Builds a callback function for stream plying. The observer is an object which implements methods 'observer.set_playing_region(b,e)' and 'observer.set_playing_end(e)'. raw is the wave data in a str object. frame_size is the number of bytes times number of channels per frame. start and stop indicate which slice of raw would be played. """ start_ref = [ start ] def callback(in_data, frame_count, time_info, status): start = start_ref[0] last = min(stop, start + frame_count*frame_size) data = raw[start:last] start_ref[0] = last if last == stop: observer.set_playing_end(last) else: observer.set_playing_region(start, last) return (data, pyaudio.paContinue) return callback
c29f7998f848c51af57e42c92a62f80c7a0c2e70
3,656,724
import torch def predictCNN(segments, artifacts, device:torch.device = torch.device("cpu")): """ Perform model predictions on unseen data :param segments: list of segments (paragraphs) :param artifacts: run artifacts to evaluate :param device: torch device :return category predictions """ # Retrieve artifacts params = artifacts["params"] label_encoder = artifacts["label_encoder"] tokenizer = artifacts["tokenizer"] model = artifacts["model"] # Prepare dataset into model readable format preprocessed_segments = [preprocess.cleanText(segment, lower=params.lower, stem=params.stem) for segment in segments] X = np.array(tokenizer.texts_to_sequences(preprocessed_segments), dtype="object") y_blank = np.zeros((len(X), len(label_encoder))) dataset = CNNDataset(X=X, y=y_blank, max_filter_size=int(params.max_filter_size)) dataloader = dataset.create_dataloader(batch_size=int(params.batch_size)) # Get model predictions trainer = Trainer(model=model, device=device) _, y_prob = trainer.predict_step(dataloader) y_pred = [np.where(prob >= float(params.threshold), 1, 0) for prob in y_prob] categories = label_encoder.decode(y_pred) predictions = [{"input_text": segments[i], "preprocessed_text": preprocessed_segments[i], "predicted_tags": categories[i]} for i in range(len(categories))] return predictions
27ebdccaecd675104c670c1839daf634c142c640
3,656,725
import re def transform_url(url): """Normalizes url to '[email protected]:{username}/{repo}' and also returns username and repository's name.""" username, repo = re.search(r'[/:](?P<username>[A-Za-z0-9-]+)/(?P<repo>[^/]*)', url).groups() if url.startswith('git@'): return url, username, repo return '[email protected]:{username}/{repo}'.format(**locals()), username, repo
8d6e7d903d7c68d2f4fb3927bd7a02128cc09caf
3,656,726
from typing import Optional def prettyprint(data: dict, command: str, modifier: Optional[str] = '') -> str: """ Prettyprint the JSON data we get back from the API """ output = '' # A few commands need a little special treatment if command == 'job': command = 'jobs' if 'data' in data and 'jobs' in data['data']: output = prettyprint_jobs(data, command) elif 'data' in data and 'files' in data['data']: output = prettyprint_firmware(data, command) elif 'job_id' in data: output = prettyprint_job(data, command) elif 'data' in data and 'groups' in data['data']: output = prettyprint_groups(data, 'groups') elif 'data' in data and 'version' in data['data']: output = prettyprint_version(data, 'version') elif 'data' in data and command == 'device': output = prettyprint_device(data) elif 'data' in data and command in data['data']: output = prettyprint_command(data, command) elif 'status' in data and data['status'] == 'error': output = prettyprint_error(data) else: output = prettyprint_other(data) if modifier != '': output = prettyprint_modifier(output, modifier) return output
727a59b22b2624fec56e685cc3b84f065bbfeffd
3,656,727
def kmor(X: np.array, k: int, y: float = 3, nc0: float = 0.1, max_iteration: int = 100, gamma: float = 10 ** -6): """K-means clustering with outlier removal Parameters ---------- X Your data. k Number of clusters. y Parameter for outlier detection. Increase this to make outlier removal subtle. nc0 Maximum percentage of your data that can be assigned to outlier cluster. max_iteration Maximum number of iterations. gamma Used to check the convergence. Returns ------- numpy.array Numpy array that contains the assigned cluster of each data point (0 to k, the cluster k is the outlier cluster) """ n = X.shape[0] n0 = int(nc0 * X.shape[0]) Z = X[np.random.choice(n, k)] def calculate_dd(U, Z): return np.linalg.norm(X - Z[U], axis=1) ** 2 def calculate_D(outliers, dd): factor = y / (n - outliers.size) return factor * np.sum(np.delete(dd, outliers)) def calculate_U(X): def closest(p): return np.argmin(np.linalg.norm(Z - p, axis=1)) return np.apply_along_axis(closest, 1, X) outliers = np.array([]) U = calculate_U(X) s = 0 p = 0 while True: # Update U (Theorem 1) dd = calculate_dd(U, Z) D = calculate_D(outliers, dd) dd2 = dd[dd > D] outliers = np.arange(n)[dd > D][dd2.argsort()[::-1]] outliers = outliers[:n0] U = calculate_U(X) # Update Z (Theorem 3) is_outlier = np.isin(U, outliers) def mean_group(i): x = X[np.logical_and(U == i, ~is_outlier)] # Empty group if x.size == 0: x = X[np.random.choice(n, 1)] return x.mean(axis=0) Z = np.array([mean_group(i) for i in range(k)]) # Update P dd = calculate_dd(U, Z) D = calculate_D(outliers, dd) if outliers.size == 0: p1 = np.sum(dd) else: p1 = np.sum(dd[~outliers]) + D * outliers.size # Exit condition s += 1 if abs(p1 - p) < gamma or s > max_iteration: break p = p1 print("s:", s, "p:", p) U[outliers] = k return U
5ffa55d45d615586971b1ec502981f1a7ab27cbe
3,656,728
import tempfile from shutil import copyfile import importlib import os def compile_pipeline(pipeline_source: str, pipeline_name: str) -> str: """Read in the generated python script and compile it to a KFP package.""" # create a tmp folder tmp_dir = tempfile.mkdtemp() # copy generated script to temp dir copyfile(pipeline_source, tmp_dir + '/' + "pipeline_code.py") path = tmp_dir + '/' + 'pipeline_code.py' spec = importlib.util.spec_from_file_location(tmp_dir.split('/')[-1], path) foo = importlib.util.module_from_spec(spec) spec.loader.exec_module(foo) # path to generated pipeline package pipeline_package = os.path.join(os.path.dirname(pipeline_source), pipeline_name + '.pipeline.yaml') Compiler().compile(foo.auto_generated_pipeline, pipeline_package) return pipeline_package
e17c7c8aea9ba8d1ec46c3ecde0a3d2cad92ff45
3,656,729
def turnout_div(turnout_main, servo, gpo_provider): """Create a turnout set to the diverging route""" turnout_main.set_route(True) # Check that the route was set to the diverging route assert(servo.get_angle() == ANGLE_DIV) assert(gpo_provider.is_enabled()) return turnout_main
542a747cc7f4cdc78b7ad046b0c4ce4a0a3cd33d
3,656,730
def num_jewels(J: str, S: str) -> int: """ Time complexity: O(n + m) Space complexity: O(n) """ jewels = set(J) return sum(stone in jewels for stone in S)
f1a9632a791e3ef94699b566da61e27d9dc46b07
3,656,731
import socket def internet(host="8.8.8.8", port=53, timeout=3): """ Host: 8.8.8.8 (google-public-dns-a.google.com) OpenPort: 53/tcp Service: domain (DNS/TCP) """ try: socket.setdefaulttimeout(timeout) socket.socket(socket.AF_INET, socket.SOCK_STREAM).connect((host, port)) logger.info('Internet is there!!') return True except Exception as ex: logger.warning('Internet is gone!!') return False
773f490baec40bf548ed2f13d1d1094c78b33366
3,656,732
import logging def map_family_situation(code): """Maps French family situation""" status = FamilySituation mapping = { "M": status.MARRIED.value, "C": status.SINGLE.value, "V": status.WIDOWED.value, "D": status.DIVORCED.value, "O": status.PACSED.value, } if code in mapping.keys(): return mapping[code] else: logging.warning("In {}, args {} not recognised".format("family_situation", code)) return code
ae5ac0c9ffadb31d25825e65fcb81d6ea9b0115f
3,656,733
def transform(x, channels, img_shape, kernel_size=7, threshold=1e-4): """ ---------- X : WRITEME data with axis [b, 0, 1, c] """ for i in channels: assert isinstance(i, int) assert i >= 0 and i <= x.shape[3] x[:, :, :, i] = lecun_lcn(x[:, :, :, i], img_shape, kernel_size, threshold) return x
c66725795585ea26dc9622ce42133a4a2f1445a8
3,656,734
import functools def delete_files(files=[]): """This decorator deletes files before and after a function. This is very useful for installation procedures. """ def my_decorator(func): @functools.wraps(func) def function_that_runs_func(self, *args, **kwargs): # Inside the decorator # Delete the files - prob don't exist yet delete_paths(files) # Run the function stuff = func(self, *args, **kwargs) # Delete the files if they do exist delete_paths(files) return stuff return function_that_runs_func return my_decorator
09652e9dd527b6ae43cf47deb2eaf460de51552e
3,656,735
import os def get_town_table(screenshot_dir): """Generate python code for town table Its format is table[town_name] = (nearby town1, nearby town2...nearby town5) The length of tuple may be different depends on town. Arguments: screenshot_dir (str): Directory which have town_name directory and label. Return: python code style string (str) """ result = "TOWNS_TABLE = {}\n" for di in sorted(os.listdir(screenshot_dir)): dir_path = screenshot_dir + "/" + di if not os.path.isdir(dir_path): continue for f in os.listdir(dir_path): if f.lower().endswith(".txt"): result += "TOWNS_TABLE[(" lines = open(dir_path + "/" + f).read().splitlines() for i in range(3, len(lines), 3): result += "'%s', " % lines[i] result = result[:-2] + ")]\\" result += "\n= '%s'\n" % di break return result
b6e1c9591cc0531fe9a28b7ce5fec5e5cc231849
3,656,736
def add_note(front, back, tag, model, deck, note_id=None): """ Add note with `front` and `back` to `deck` using `model`. If `deck` doesn't exist, it is created. If `model` doesn't exist, nothing is done. If `note_id` is passed, it is used as the note_id """ model = mw.col.models.byName(model) if model: mw.col.decks.current()['mid'] = model['id'] else: return None # Creates or reuses deck with name passed using `deck` did = mw.col.decks.id(deck) deck = mw.col.decks.get(did) note = mw.col.newNote() note.model()['did'] = did note.fields[0] = front note.fields[1] = back if note_id: note.id = note_id note.addTag(tag) mw.col.addNote(note) mw.col.save() return note.id
e45528705dbd658dcb708259043f4a4b590e884b
3,656,737
def indices_to_one_hot(data, nb_classes): #separate: embedding """Convert an iterable of indices to one-hot encoded labels.""" targets = np.array(data).reshape(-1) return np.eye(nb_classes)[targets]
36fdf0dbad51ae6d64c1a6bf783f083013686e40
3,656,738
from rdkit.Chem import rdMolTransforms def translateToceroZcoord(moleculeRDkit): """ Translate the molecule to put the first atom in the origin of the coordinates Parameters ---------- moleculeRDkit : RDkit molecule An RDkit molecule Returns ------- List List with the shift value applied to X, Y, Z """ conf = moleculeRDkit.GetConformer() # avoid first atom overlap with dummy 3 if abs(conf.GetAtomPosition(0).x-1.0)<1e-3 and abs(conf.GetAtomPosition(0).y-1.0)<1e-3 and abs(conf.GetAtomPosition(0).z-0.0)<1e-3: shiftX = conf.GetAtomPosition(0).x - 1.0 shiftY = conf.GetAtomPosition(0).y - 1.0 shiftZ = conf.GetAtomPosition(0).z translationMatrix = np.array( [[1, 0, 0, -shiftX], [0, 1, 0, -shiftY], [0, 0, 1, -shiftZ], [0, 0, 0, 1]], dtype=np.double) rdMolTransforms.TransformConformer(conf, translationMatrix) else: shiftX = 0.0 shiftY = 0.0 shiftZ = 0.0 return [shiftX, shiftY, shiftZ]
cbe17cf023791517c01b0e52c11dde65532ab6d0
3,656,739
def standardize(mri): """ Standardize mean and standard deviation of each channel and z_dimension slice to mean 0 and standard deviation 1. Note: setting the type of the input mri to np.float16 beforehand causes issues, set it afterwards. Args: mri (np.array): input mri, shape (dim_x, dim_y, dim_z, num_channels) Returns: standardized_mri (np.array): standardized version of input mri """ standardized_mri = np.zeros(mri.shape) # Iterate over channels for c in range(mri.shape[3]): # Iterate over the `z` depth dimension for z in range(mri.shape[2]): # Get a slice of the mri at channel c and z-th dimension mri_slice = mri[:, :, z, c] # Subtract the mean from mri_slice centered = mri_slice - np.mean(mri_slice) # Divide by the standard deviation (only if it is different from zero) if np.std(centered) != 0: centered_scaled = centered / np.std(centered) # Update the slice of standardized mri with the centered and scaled mri standardized_mri[:, :, z, c] = centered_scaled return standardized_mri
9c0847d1618023d83cdec48a1c43aae6efc1116f
3,656,740
def current_floquet_kets(eigensystem, time): """ Get the Floquet basis kets at a given time. These are the |psi_j(t)> = exp(-i energy[j] t) |phi_j(t)>, using the notation in Marcel's thesis, equation (1.13). """ weights = np.exp(time * eigensystem.abstract_ket_coefficients) weights = weights.reshape((1, -1, 1)) return np.sum(weights * eigensystem.k_eigenvectors, axis=1)
60fdb845fc026bf3a109f05945b251a224b12092
3,656,741
def summary(): """ DB summary stats """ cur = get_cur() res = [] try: cur.execute('select count(study_id) as num_studies from study') res = cur.fetchone() except: dbh.rollback() finally: cur.close() if res: return Summary(num_studies=res['num_studies']) else: return []
e0159452df1909626d523896f1c2735fb4fc3e75
3,656,742
import time def get_clockwork_conformations(molobj, torsions, resolution, atoms=None, debug=False, timings=False): """ Get all conformation for specific cost cost defined from torsions and resolution """ n_torsions = len(torsions) if atoms is None: atoms, xyz = cheminfo.molobj_to_xyz(molobj, atom_type="int") del xyz combinations = clockwork.generate_clockwork_combinations(resolution, n_torsions) # Collect energies and coordinates end_energies = [] end_coordinates = [] end_representations = [] first = True for resolutions in combinations: time_start = time.time() # Get all conformations c_energies, c_coordinates, c_states = get_conformations(molobj, torsions, resolutions) N = len(c_energies) # Filter unconverged success = np.argwhere(c_states == 0) success = success.flatten() c_energies = c_energies[success] c_coordinates = c_coordinates[success] N2 = len(c_energies) # Calculate representations c_representations = [sim.get_representation(atoms, coordinates) for coordinates in c_coordinates] c_representations = np.asarray(c_representations) # Clean all new conformers for energies and similarity idxs = clean_representations(atoms, c_energies, c_representations) c_energies = c_energies[idxs] c_coordinates = c_coordinates[idxs] c_representations = c_representations[idxs] if first: first = False end_energies += list(c_energies) end_coordinates += list(c_coordinates) end_representations += list(c_representations) continue # Asymmetrically add new conformers idxs = merge.merge_asymmetric(atoms, c_energies, end_energies, c_representations, end_representations) # Add new unique conformation to return collection for i, idx in enumerate(idxs): # if conformation already exists, continue if len(idx) > 0: continue # Add new unique conformation to collection end_energies.append(c_energies[i]) end_coordinates.append(c_coordinates[i]) end_representations.append(c_representations[i]) time_end = time.time() if timings: timing = time_end - time_start print("res time {:8.2f} cnf/sec - {:8.2f} tot sec".format(N/timing, timing)) continue return end_energies, end_coordinates
2d501adc974af4acf4dc5dd49879a9a8c72d2b22
3,656,743
def rotate_affine(img, rot=None): """Rewrite the affine of a spatial image.""" if rot is None: return img img = nb.as_closest_canonical(img) affine = np.eye(4) affine[:3] = rot @ img.affine[:3] return img.__class__(img.dataobj, affine, img.header)
4a06c286dcfc0832558c74f2cbce54d6e8d7a2d4
3,656,744
import math def validate_ttl(options): """ Check with Vault if the ttl is valid. :param options: Lemur option dictionary :return: 1. Boolean if the ttl is valid or not. 2. the ttl in hours. """ if 'validity_end' in options and 'validity_start' in options: ttl = math.floor(abs(options['validity_end'] - options['validity_start']).total_seconds() / 3600) elif 'validity_years' in options: ttl = options['validity_years'] * 365 * 24 else: ttl = 0 headers = {'X-Vault-Token': vault_auth.get_token()} url = '{}/roles/{}'.format(current_app.config.get('VAULT_PKI_URL'), options['authority'].name) res, resp = vault_read_request(url, headers) if res: max_ttl = resp.json()['data']['max_ttl'] text_file = open("max_ttl.txt", "wt") n = text_file.write(str(max_ttl)) text_file.close() if int(max_ttl) < ttl: current_app.logger.info('Certificate TTL is above max ttl - ' + max_ttl) return True, ttl else: return True, ttl else: current_app.logger.info('Vault: Failed to get Vault max TTL') raise Exception('Vault: ' + resp)
83d7d323ae4b3db28f41879f630982d24515fcb1
3,656,745
from typing import Any def vgg16(pretrained:bool=False,progress:bool=True,**kwargs:Any) ->VGG: """ Args: pretrained(bool):是否加载预训练参数 progress(bool):是否显示下载数据的进度条 Return: 返回VGG模型 """ return _vgg("vgg16","D",False,pretrained,progress,**kwargs)
82d64394a705caa9e0a0c1e661078c9ea299fa05
3,656,746
def cy_gate(N=None, control=0, target=1): """Controlled Y gate. Returns ------- result : :class:`qutip.Qobj` Quantum object for operator describing the rotation. """ if (control == 1 and target == 0) and N is None: N = 2 if N is not None: return gate_expand_2toN(cy_gate(), N, control, target) return Qobj([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, -1j], [0, 0, 1j, 0]], dims=[[2, 2], [2, 2]])
8927557d0afe096218acf1ac0283c5ec073e3f98
3,656,747
def sqf(f, *gens, **args): """ Compute square-free factorization of ``f``. **Examples** >>> from sympy import sqf >>> from sympy.abc import x >>> sqf(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16) 2*(1 + x)**2*(2 + x)**3 """ return _generic_factor(f, gens, args, method='sqf')
5f0267b7c314269e64c32951824346542e3e3452
3,656,748
def update_options_dpd2(dpd1_val): """ Updates the contents of the second dropdown menu based of the value of the first dropdown. :param dpd1_val: str, first dropdown value :return: list of dictionaries, labels and values """ all_options = [ strings.CITY_GDANSK, strings.CITY_GDYNIA, strings.CITY_KALINGRAD, strings.CITY_KLAIPEDA, strings.CITY_STPETERBURG, ] all_options.remove(dpd1_val) options = [{"label": opt, "value": opt} for opt in all_options] return options
4a2d0494f04e3026b133f61a70757046f011b5f1
3,656,749
import csv def compute_min_paths_from_monitors(csv_file_path, delimiter='\t', origin_as=PEERING_ORIGIN): """ Inputs: csv_file_path, delimiter : csv file containing entries with the following format: |collector|monitor|as_path, and the delimiter used origin_as: the ASN you want to use as the terminal one for the as_path length computation Output: A dictionary that contains for each monitor found in the given csv file, the minimum length path and its length. """ monitor_routes = {} # contains the minimum length found for each route monitor # key:monitor(string), value: (minimum as_path length(integer), # the minimum length as_path(list of positive integers)) with open(csv_file_path) as csv_file: csv_reader = csv.reader(csv_file, delimiter=delimiter) row_count = 0 for row in csv_reader: row_count += 1 monitor = row[1] # AS-path prep removing prepending and bgp poisoning as_path_list = AS_path().make_list(row[2]) # as_path(string) -> as_path (list of positive integers) as_path_rem_prepend = AS_path().remove_prependings(as_path_list) as_path_cleared = AS_path().remove_loops(as_path_rem_prepend) as_path_length = AS_path().count_length(as_path_cleared, origin_as) if monitor in monitor_routes.keys(): if monitor_routes[monitor][0] > as_path_length: monitor_routes[monitor] = (as_path_length, as_path_cleared) else: monitor_routes[monitor] = (as_path_length, as_path_cleared) return monitor_routes
6f0c1e26062213ea14af80a803c6e6ebd25c6543
3,656,750
def _blanking_rule_ftld_or3a(rule): """ See _blanking_rule_ftld_or2a for rules """ if rule == 'Blank if Question 1 FTDIDIAG = 0 (No)': return lambda packet: packet['FTDIDIAG'] == 0 elif rule == 'Blank if Question 3 FTDFDGPE = 0 (No)': return lambda packet: packet['FTDFDGPE'] == 0 elif rule == 'Blank if Question 3a FTDFDGFh = 0 (No) or 9 (Unknown)': return lambda packet: packet['FTDFDGFh'] in (0, 9) elif rule == 'Blank if Question 3a11, FTDFDGOA, ne 1 (Yes)': return lambda packet: packet['FTDFDGOA'] != 1 else: return lambda packet: False
cc0a925c7ad6ad72c4041d369f9a820c0a6a6b96
3,656,751
def _fix_nested_array(func_ir): """Look for assignment like: a[..] = b, where both a and b are numpy arrays, and try to eliminate array b by expanding a with an extra dimension. """ """ cfg = compute_cfg_from_blocks(func_ir.blocks) all_loops = list(cfg.loops().values()) def find_nest_level(label): level = 0 for loop in all_loops: if label in loop.body: level += 1 """ def find_array_def(arr): """Find numpy array definition such as arr = numba.unsafe.ndarray.empty_inferred(...). If it is arr = b[...], find array definition of b recursively. """ arr_def = func_ir.get_definition(arr) _make_debug_print("find_array_def")(arr, arr_def) if isinstance(arr_def, ir.Expr): if guard(_find_unsafe_empty_inferred, func_ir, arr_def): return arr_def elif arr_def.op == 'getitem': return find_array_def(arr_def.value) raise GuardException def fix_array_assign(stmt): """For assignment like lhs[idx] = rhs, where both lhs and rhs are arrays, do the following: 1. find the definition of rhs, which has to be a call to numba.unsafe.ndarray.empty_inferred 2. find the source array creation for lhs, insert an extra dimension of size of b. 3. replace the definition of rhs = numba.unsafe.ndarray.empty_inferred(...) with rhs = lhs[idx] """ require(isinstance(stmt, ir.SetItem)) require(isinstance(stmt.value, ir.Var)) debug_print = _make_debug_print("fix_array_assign") debug_print("found SetItem: ", stmt) lhs = stmt.target # Find the source array creation of lhs lhs_def = find_array_def(lhs) debug_print("found lhs_def: ", lhs_def) rhs_def = get_definition(func_ir, stmt.value) debug_print("found rhs_def: ", rhs_def) require(isinstance(rhs_def, ir.Expr)) if rhs_def.op == 'cast': rhs_def = get_definition(func_ir, rhs_def.value) require(isinstance(rhs_def, ir.Expr)) require(_find_unsafe_empty_inferred(func_ir, rhs_def)) # Find the array dimension of rhs dim_def = get_definition(func_ir, rhs_def.args[0]) require(isinstance(dim_def, ir.Expr) and dim_def.op == 'build_tuple') debug_print("dim_def = ", dim_def) extra_dims = [ get_definition(func_ir, x, lhs_only=True) for x in dim_def.items ] debug_print("extra_dims = ", extra_dims) # Expand size tuple when creating lhs_def with extra_dims size_tuple_def = get_definition(func_ir, lhs_def.args[0]) require(isinstance(size_tuple_def, ir.Expr) and size_tuple_def.op == 'build_tuple') debug_print("size_tuple_def = ", size_tuple_def) size_tuple_def.items += extra_dims # In-place modify rhs_def to be getitem rhs_def.op = 'getitem' rhs_def.value = get_definition(func_ir, lhs, lhs_only=True) rhs_def.index = stmt.index del rhs_def._kws['func'] del rhs_def._kws['args'] del rhs_def._kws['vararg'] del rhs_def._kws['kws'] # success return True for label in find_topo_order(func_ir.blocks): block = func_ir.blocks[label] for stmt in block.body: if guard(fix_array_assign, stmt): block.body.remove(stmt)
e60c1ad0259f26f2e50fb36c9d239a8bb900686f
3,656,752
def compute_angular_differences(matrix, orientation1, orientation2, cutoff): """ Compute angular difference between two orientation ndarrays :param matrix: domain matrix :type matrix: np.ndarray :param orientation1: orientation as (x, y, z, 3) :type orientation1: np.ndarray :param orientation2: orientation as (x, y, z, 3) :type orientation2: np.ndarray :param cutoff: to binarize domain :type cutoff: (int, int) :return: angle_errors in degrees, mean, std :rtype: (np.ndarray, float, float) """ if not isinstance(matrix, np.ndarray) or not isinstance(orientation1, np.ndarray) or not isinstance(orientation2, np.ndarray): raise Exception("Inputs must be ndarrays.") if not isinstance(cutoff, tuple) or not len(cutoff) == 2: raise Exception("Cutoff must be a tuple(int, int).") if not (orientation1.ndim == 4 and orientation2.ndim == 4 and matrix.ndim == 3 and orientation1.shape[3] == 3 and orientation1.shape == orientation2.shape and orientation1.shape[0] == matrix.shape[0] and orientation1.shape[1] == matrix.shape[1] and orientation1.shape[2] == matrix.shape[2]): raise Exception("Incorrect dimensions in input ndarrays.") mask = np.logical_and(matrix >= cutoff[0], matrix <= cutoff[1]) unit_vectors_1 = orientation1[mask] unit_vectors_2 = orientation2[mask] radians_diff = np.einsum('ij,ij->i', unit_vectors_1, unit_vectors_2) diff = np.zeros((unit_vectors_1.shape[0], 2), dtype=float) diff[:, 0] = np.degrees(np.arccos(np.clip(radians_diff, -1, 1))) diff[:, 1] = 180 - diff[:, 0] diff = np.min(diff, axis=1) angle_diff = np.zeros_like(matrix, dtype=float) angle_diff[mask] = diff return angle_diff, diff.mean(), diff.std()
3ec860c484057de91eb306079328faff87a9b0e4
3,656,753
def await(*args): """Runs all the tasks specified in args, and finally returns args unwrapped. """ return _await(args)
1065986a6ac067222bf5c6ff47a395ab4d0c890e
3,656,754
def convert_action_move_exists(action, board, player_turn): """ Converts action index to chess.Move object. Assume the action key exists in map_action_uci :param action: :param board: :param player_turn: :return: """ move = chess.Move.from_uci(map_action_uci[action]) if player_turn == chess.BLACK: move = chess.Move(from_square=chess.square_mirror(move.from_square), to_square=chess.square_mirror(move.to_square), promotion=move.promotion) if move.promotion == chess.QUEEN: move.promotion = None rank = move.to_square//8 try: if move.promotion is None and board.piece_at(move.from_square).piece_type == chess.PAWN and \ (rank == 7 or rank == 0): move.promotion = chess.QUEEN except AttributeError as err: print(board, move, action, player_turn) raise AttributeError(err) return move
f4c508a99967d65b6f2f07159fe3003730b220a2
3,656,755
import os import re def find_phase_files(input_filePath, run_number=1): """ Returns a list of the phase space files, sorted by z position (filemname , z_approx) """ path, infile = os.path.split(input_filePath) prefix = infile.split('.')[0] # Astra uses inputfile to name output phase_import_file = '' phase_files = []; run_extension = astra_run_extension(run_number) for file in os.listdir(path): if re.match(prefix + '.\d\d\d\d.'+run_extension, file): # Get z position z = float(file.replace(prefix+ '.', '').replace('.'+run_extension,'')) phase_file=os.path.join(path, file) phase_files.append((phase_file, z)) # Sort by z return sorted(phase_files, key=lambda x: x[1])
16f2ec29468e82f27f87de5a8323fc70effe3af7
3,656,756
import pwd import win32api def _get_system_username(): """Return the current system user.""" if not win32: return pwd.getpwuid(getuid())[0] else: return win32api.GetUserName()
4dfdc93630d2c3940c7087fc2125f81f0e385d9f
3,656,757
import glob def _get_vmedia_device(): """Finds the device filename of the virtual media device using sysfs. :returns: a string containing the filename of the virtual media device """ sysfs_device_models = glob.glob("/sys/class/block/*/device/model") vmedia_device_model = "virtual media" for model_file in sysfs_device_models: try: with open(model_file) as model_file_fobj: if vmedia_device_model in model_file_fobj.read().lower(): vmedia_device = model_file.split('/')[4] return vmedia_device except Exception: pass
e8f8e83b7bf0c73d10d8893a5b4b49670edba7ac
3,656,758
def convert_to_posixpath(file_path): """Converts a Windows style filepath to posixpath format. If the operating system is not Windows, this function does nothing. Args: file_path: str. The path to be converted. Returns: str. Returns a posixpath version of the file path. """ if not is_windows_os(): return file_path return file_path.replace('\\', '/')
9a8e6559b7916ba7547f87ce3bba6b50362c7ded
3,656,759
def generateCards(numberOfSymb): """ Generates a list of cards which are themselves a list of symbols needed on each card to respect the rules of Dobble. This algorithm was taken from the french Wikipedia page of "Dobble". https://fr.wikipedia.org/wiki/Dobble :param numberOfSymb: Number of symbols needed on each card. :type numberOfSymb: int :returns: List of cards which are list of symbols on it. :rtype: List[List[int]] """ nbSymByCard = numberOfSymb nbCards = (nbSymByCard**2) - nbSymByCard + 1 cards = [] n = nbSymByCard - 1 t = [] t.append([[(i+1)+(j*n) for i in range(n)] for j in range(n)]) for ti in range(n-1): t.append([[t[0][((ti+1)*i) % n][(j+i) % n] for i in range(n)] for j in range(n)]) t.append([[t[0][i][j] for i in range(n)] for j in range(n)]) for i in range(n): t[0][i].append(nbCards - n) t[n][i].append(nbCards - n + 1) for ti in range(n-1): t[ti+1][i].append(nbCards - n + 1 + ti + 1) t.append([[(i+(nbCards-n)) for i in range(nbSymByCard)]]) for ti in t: cards = cards + ti return cards
8f51c1f339d62b6fd88cb8d0fae692053bffc084
3,656,760
import os def get_metadata(tmpdirname): """ Get metadata from kmp.json if it exists. If it does not exist then will return get_and_convert_infdata Args: inputfile (str): path to kmp file tmpdirname(str): temp directory to extract kmp Returns: list[5]: info, system, options, keyboards, files see kmpmetadata.parsemetadata for details """ kmpjson = os.path.join(tmpdirname, "kmp.json") if os.path.isfile(kmpjson): return parsemetadata(kmpjson, False) else: return get_and_convert_infdata(tmpdirname)
7096b2a67fddaa1774fe0e552af7d9d790c66d15
3,656,761
def match_facilities(facility_datasets, authoritative_dataset, manual_matches_df=None, max_distance=150, nearest_n=10, meters_crs='epsg:5070', reducer_fn=None): """Matches facilities. The dataset represented by the authoritative_dataset key in the facilities_dfs dict will considered authoritative - all other facilities in the remaining datasets will be dropped if they are not matched, and the point location of the authoritative dataset will be used. Args: facility_datasets (Dict[str, Dict]): A dictionary keyed by the dataset ID with values being a dictionary containing keys 'df' containing the dataframe of facility data and 'columns' containing a FacilityColumns object. authoritative_dataset: The dataset that contains the facilities all other datasets will match to. manual_matches_df: Dataframe containing manually matched facilities. Should contain columns for each of the ID columns of the datasets with matching IDs in each row. max_distance (int, optional): The maximum distance (in meters) that two matches can be apart. Defaults to 150 meters. nearest_n (int, optional): The number of neighbors to consider as potential options. Defaults to 10. meters_crs: The EPSG code for the projection to use for meters distance computations. Defaults to EPSG:5070 (NAD83 / Conus Albers) for the U.S. reducer_fn: Function to reduce potentially matched facilities. Defaults to reduce_matched_facility_records. See that function's signature for required parameters. Pass in alternate implementations to implement other matching approaches. Result: (FacilityMatchResult): The result of the match. Note: The resulting dataframes will convert the id columns of any dataset into a str type. """ MATCH_ID_SEP = '_-_' if reducer_fn is None: reducer_fn = reduce_matched_facility_records def get_id_column(dataset_key): return facility_datasets[dataset_key]['columns'].facility_id def get_matched_set(subcomponent): """Method for collecting the data for the reducer_fn based on a connected subcomponent. Returns the records of the matched set and a dictionary that records the distances between the facilities. """ records = [] distances = {} manual_matches = set([]) for n in s: ds, facility_id = deconstruct_match_id(n) df = facility_datasets[ds]['df'] id_column = facility_datasets[ds]['columns'].facility_id record = df[df[id_column].astype(str) == facility_id].to_dict(orient='record')[0] record['dataset'] = ds record['match_id'] = n records.append(record) for u, v in G.edges(n): edge_data = G.get_edge_data(u, v) distances[(u, v)] = edge_data['weight'] if ds == authoritative_dataset and edge_data.get('manual_override', False): connected_ds, _ = deconstruct_match_id(v) manual_matches.add((u, connected_ds, v)) return records, distances, manual_matches def construct_match_id(dataset_key, facility_id): id_column = get_id_column(dataset_key) return '{}{}{}'.format( dataset_key, MATCH_ID_SEP, facility_id ) def deconstruct_match_id(match_id): return match_id.split(MATCH_ID_SEP) assert authoritative_dataset in facility_datasets # check that dataset ID columns are unique dataset_id_columns = [ get_id_column(dataset_key) for dataset_key in facility_datasets ] if len(set(dataset_id_columns)) != len(dataset_id_columns): raise Exception('Dataset ID column names must be unique.') # Setup a distinct order of datasets dataset_order = [authoritative_dataset] + sorted([x for x in facility_datasets if x != authoritative_dataset]) # Set of match_ids ids = [] # Set of (x,y) points aligned with ids, in meters_crs pts = [] # Mapping from match_id -> point ids_to_pts = {} # Construct a reprojected geodataframe per dataset, and # record the match ids and points for usage in the KNN # computation below. for dataset_key in dataset_order: df = facility_datasets[dataset_key]['df'] meters_df = df.to_crs(meters_crs) id_column = get_id_column(dataset_key) meters_df['match_id'] = '{}{}'.format(dataset_key, MATCH_ID_SEP) + \ meters_df[id_column].astype(str) facility_datasets[dataset_key]['meters_df'] = meters_df for _, row in meters_df.iterrows(): match_id = row['match_id'] pt = (row['geometry'].x, row['geometry'].y) ids_to_pts[match_id] = pt ids.append(match_id) pts.append(pt) # Compute the K Nearest Neighbors for all points in the dataset. kd_tree = libpysal.cg.KDTree(np.array(pts)) nearest_neighbors = libpysal.weights.KNN(kd_tree, k=nearest_n, ids=ids).neighbors # For every match, make an edge in a graph. Don't add an edge between # points that are further than the max distance. The weight of the edge # is the distance between them in meters. G = nx.Graph() for match_id in nearest_neighbors: source_pt = ids_to_pts[match_id] G.add_node(match_id) for neighbor_id in nearest_neighbors[match_id]: neighbor_pt = ids_to_pts[neighbor_id] dist = euclidean(source_pt, neighbor_pt) if dist <= max_distance and not G.has_edge(match_id, neighbor_id): G.add_edge(match_id, neighbor_id, weight=dist) # Create edges for manual matches and mark them as such. if manual_matches_df is not None: auth_id_column = facility_datasets[authoritative_dataset]['columns'].facility_id for _, row in manual_matches_df.iterrows(): # Get the authoritative dataset ID (required for each row) auth_id = construct_match_id(authoritative_dataset, row[auth_id_column]) source_pt = ids_to_pts[auth_id] for dataset_key in facility_datasets: if dataset_key != authoritative_dataset: id_column = facility_datasets[dataset_key]['columns'].facility_id if id_column in row: if row[id_column]: neighbor_id = construct_match_id(dataset_key, row[id_column]) neighbor_pt = ids_to_pts[neighbor_id] dist = euclidean(source_pt, neighbor_pt) G.add_edge(auth_id, neighbor_id, weight=dist, manual_override=True) # Set up a dict to be turned into the matches dataframe, # and a dict that tracks what non-authoritative datasets # have been matched. matches = {} matched_ids = {} for dataset_key in dataset_order: matches[get_id_column(dataset_key)] = [] if dataset_key != authoritative_dataset: matched_ids[dataset_key] = set([]) dataset_columns = dict([(k, facility_datasets[k]['columns']) for k in facility_datasets]) # Iterate over connected components, which gives us the subgraphs that are # matched, and pass this into the reduce_matches method to # reduce down each match to a single matched set. for s in nx.connected_components(G): # Ignore components that don't have a point from the authoritative dataset. if authoritative_dataset in [deconstruct_match_id(m)[0] for m in s]: records, distances, manual_matches = get_matched_set(s) if len(records) == 1: reduced_components = [[records[0]['match_id']]] else: authoritative_records = [r for r in records if r['dataset'] == authoritative_dataset] records_to_match = [r for r in records if r['dataset'] != authoritative_dataset] reduced_components = reducer_fn(authoritative_records, records_to_match, distances, manual_matches, dataset_columns) for match_set in reduced_components: # Ensure that the set has a facility from the authoritative datatset assert authoritative_dataset in [deconstruct_match_id(match_id)[0] for match_id in match_set] ds_ids = {} for m in match_set: dataset_key, facility_id = deconstruct_match_id(m) ds_ids[dataset_key] = facility_id if dataset_key != authoritative_dataset: matched_ids[dataset_key].add(facility_id) for dataset_key in dataset_order: col = get_id_column(dataset_key) if not dataset_key in ds_ids: matches[col].append(None) else: matches[col].append(ds_ids[dataset_key]) # Construct the FacilityMatchResult and return matches_df = pd.DataFrame.from_dict(matches) unmatched_per_dataset = {} for dataset_key in matched_ids: ids = set(facility_datasets[dataset_key]['df'][get_id_column(dataset_key)].astype(str).values) unmatched_per_dataset[dataset_key] = ids - matched_ids[dataset_key] # Merge the dataframes, using the geometry from the authoritative dataset and # prefixing all but the ID columns by the dataset ID. merged_df = matches_df for dataset_key in dataset_order: df = facility_datasets[dataset_key]['df'] id_column = get_id_column(dataset_key) if dataset_key != authoritative_dataset: df_prefixed = df.copy().add_prefix('{}_'.format(dataset_key)) df_prefixed = df_prefixed.rename(columns={'{}_{}'.format(dataset_key, id_column): id_column}) df_prefixed = df_prefixed.drop(columns=['{}_geometry'.format(dataset_key)]) else: df_prefixed = df.copy() df_prefixed[id_column] = df_prefixed[id_column].astype(str) merged_df = merged_df.merge(df_prefixed, on=id_column, how='left') merged_df = gpd.GeoDataFrame(merged_df, crs='epsg:4326') \ .sort_values([facility_datasets[dataset_key]['columns'].facility_id for dataset_key in dataset_order]) return FacilityMatchResult(merged_df, matches_df, unmatched_per_dataset)
97f169ccda8cf0b26bfa423936d8b663e6237d22
3,656,762
def has_field_warning(meta, field_id): """Warn if dataset has existing field with same id.""" if meta.has_field(field_id): print( "WARN: Field '%s' is already present in dataset, not overwriting." % field_id ) print("WARN: Use '--replace' flag to overwrite existing field.") return 1 return 0
1cc5016f8ffcce698bcb53dcf6f307b760d7df55
3,656,763
def volume(surface): """Compute volume of a closed triangulated surface mesh.""" properties = vtk.vtkMassProperties() properties.SetInput(surface) properties.Update() return properties.GetVolume()
1969e3c6245cd76c50cdea19be41165ff16f73fc
3,656,764
def simulate(): """ Simulate one thing """ doors = getRandomDoorArray() pickedDoor = chooseDoor() goatDoor, switchDoor = openGoatDoor(pickedDoor, doors) return doors[pickedDoor], doors[switchDoor]
607fc6d0bdb5d24dc68c371c81e9e7028a54631f
3,656,765
def fc_layer(x): """Basic Fully Connected (FC) layer with an activation function.""" return x
f26865e13065187363746b8bfe7d95ac221bf236
3,656,766
from typing import Dict import collections def get_slot_counts(cls: type) -> Dict[str, int]: """ Collects all of the given class's ``__slots__``, returning a dict of the form ``{slot_name: count}``. :param cls: The class whose slots to collect :return: A :class:`collections.Counter` counting the number of occurrences of each slot """ slot_names = (name for name, _ in iter_slots(cls)) return collections.Counter(slot_names)
7cb7c41c1d4f40aab1acd473f5e1238e4aefad44
3,656,767
def rot6d_to_axisAngle(x): """"Convert 6d rotation representation to axis angle Input: (B,6) Batch of 6-D rotation representations Output: (B,3) Batch of corresponding axis angle """ rotMat = rot6d_to_rotmat(x) return rotationMatrix_to_axisAngle(rotMat)
17b24e0bb7521baa56df034c4e59658d4320c4cf
3,656,768
import six def within_tolerance(x, y, tolerance): """ Check that |x-y| <= tolerance with appropriate norm. Args: x: number or array (np array_like) y: number or array (np array_like) tolerance: Number or PercentageString NOTE: Calculates x - y; may raise an error for incompatible shapes. Usage ===== The tolerance can be a number: >>> within_tolerance(10, 9.01, 1) True >>> within_tolerance(10, 9.01, 0.5) False If tolerance is a percentage, it is a percent of (the norm of) x: >>> within_tolerance(10, 9.01, '10%') True >>> within_tolerance(9.01, 10, '10%') False Works for vectors and matrices: >>> A = np.array([[1,2],[-3,1]]) >>> B = np.array([[1.1, 2], [-2.8, 1]]) >>> diff = round(np.linalg.norm(A-B), 6) >>> diff 0.223607 >>> within_tolerance(A, B, 0.25) True """ # When used within graders, tolerance has already been # validated as a Number or PercentageString if isinstance(tolerance, six.text_type): tolerance = np.linalg.norm(x) * percentage_as_number(tolerance) difference = x - y return np.linalg.norm(difference) <= tolerance
918b14e33aeca426e24151d7a1eda2d340423b4d
3,656,769
def hermeint(c, m=1, k=[], lbnd=0, scl=1, axis=0): """ Integrate a Hermite_e series. Returns the Hermite_e series coefficients `c` integrated `m` times from `lbnd` along `axis`. At each iteration the resulting series is **multiplied** by `scl` and an integration constant, `k`, is added. The scaling factor is for use in a linear change of variable. ("Buyer beware": note that, depending on what one is doing, one may want `scl` to be the reciprocal of what one might expect; for more information, see the Notes section below.) The argument `c` is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series ``H_0 + 2*H_1 + 3*H_2`` while [[1,2],[1,2]] represents ``1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) + 2*H_1(x)*H_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``. Parameters ---------- c : array_like Array of Hermite_e series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. m : int, optional Order of integration, must be positive. (Default: 1) k : {[], list, scalar}, optional Integration constant(s). The value of the first integral at ``lbnd`` is the first value in the list, the value of the second integral at ``lbnd`` is the second value, etc. If ``k == []`` (the default), all constants are set to zero. If ``m == 1``, a single scalar can be given instead of a list. lbnd : scalar, optional The lower bound of the integral. (Default: 0) scl : scalar, optional Following each integration the result is *multiplied* by `scl` before the integration constant is added. (Default: 1) axis : int, optional Axis over which the integral is taken. (Default: 0). .. versionadded:: 1.7.0 Returns ------- S : ndarray Hermite_e series coefficients of the integral. Raises ------ ValueError If ``m < 0``, ``len(k) > m``, ``np.isscalar(lbnd) == False``, or ``np.isscalar(scl) == False``. See Also -------- hermeder Notes ----- Note that the result of each integration is *multiplied* by `scl`. Why is this important to note? Say one is making a linear change of variable :math:`u = ax + b` in an integral relative to `x`. Then .. math::`dx = du/a`, so one will need to set `scl` equal to :math:`1/a` - perhaps not what one would have first thought. Also note that, in general, the result of integrating a C-series needs to be "reprojected" onto the C-series basis set. Thus, typically, the result of this function is "unintuitive," albeit correct; see Examples section below. Examples -------- >>> from numpy.polynomial.hermite_e import hermeint >>> hermeint([1, 2, 3]) # integrate once, value 0 at 0. array([ 1., 1., 1., 1.]) >>> hermeint([1, 2, 3], m=2) # integrate twice, value & deriv 0 at 0 array([-0.25 , 1. , 0.5 , 0.33333333, 0.25 ]) >>> hermeint([1, 2, 3], k=1) # integrate once, value 1 at 0. array([ 2., 1., 1., 1.]) >>> hermeint([1, 2, 3], lbnd=-1) # integrate once, value 0 at -1 array([-1., 1., 1., 1.]) >>> hermeint([1, 2, 3], m=2, k=[1, 2], lbnd=-1) array([ 1.83333333, 0. , 0.5 , 0.33333333, 0.25 ]) """ c = np.array(c, ndmin=1, copy=1) if c.dtype.char in '?bBhHiIlLqQpP': c = c.astype(np.double) if not np.iterable(k): k = [k] cnt, iaxis = [int(t) for t in [m, axis]] if cnt != m: raise ValueError("The order of integration must be integer") if cnt < 0: raise ValueError("The order of integration must be non-negative") if len(k) > cnt: raise ValueError("Too many integration constants") if iaxis != axis: raise ValueError("The axis must be integer") if not -c.ndim <= iaxis < c.ndim: raise ValueError("The axis is out of range") if iaxis < 0: iaxis += c.ndim if cnt == 0: return c c = np.rollaxis(c, iaxis) k = list(k) + [0]*(cnt - len(k)) for i in range(cnt): n = len(c) c *= scl if n == 1 and np.all(c[0] == 0): c[0] += k[i] else: tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype) tmp[0] = c[0]*0 tmp[1] = c[0] for j in range(1, n): tmp[j + 1] = c[j]/(j + 1) tmp[0] += k[i] - hermeval(lbnd, tmp) c = tmp c = np.rollaxis(c, 0, iaxis + 1) return c
af1f024f4b6d60793fb3aa6ca2bcbe517c4b178f
3,656,770
def model_netradiation(minTair = 0.7, maxTair = 7.2, albedoCoefficient = 0.23, stefanBoltzman = 4.903e-09, elevation = 0.0, solarRadiation = 3.0, vaporPressure = 6.1, extraSolarRadiation = 11.7): """ - Description: * Title: NetRadiation Model * Author: Pierre Martre * Reference: Modelling energy balance in the wheat crop model SiriusQuality2: Evapotranspiration and canopy and soil temperature calculations * Institution: INRA Montpellier * Abstract: It is calculated at the surface of the canopy and is givenby the difference between incoming and outgoing radiation of both short and long wavelength radiation - inputs: * name: minTair ** min : -30 ** default : 0.7 ** max : 45 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** variablecategory : auxiliary ** datatype : DOUBLE ** inputtype : variable ** unit : °C ** description : minimum air temperature * name: maxTair ** min : -30 ** default : 7.2 ** max : 45 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** variablecategory : auxiliary ** datatype : DOUBLE ** inputtype : variable ** unit : °C ** description : maximum air Temperature * name: albedoCoefficient ** parametercategory : constant ** min : 0 ** datatype : DOUBLE ** max : 1 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** default : 0.23 ** inputtype : parameter ** unit : ** description : albedo Coefficient * name: stefanBoltzman ** parametercategory : constant ** min : 0 ** datatype : DOUBLE ** max : 1 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** default : 4.903E-09 ** inputtype : parameter ** unit : ** description : stefan Boltzman constant * name: elevation ** parametercategory : constant ** min : -500 ** datatype : DOUBLE ** max : 10000 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** default : 0 ** inputtype : parameter ** unit : m ** description : elevation * name: solarRadiation ** min : 0 ** default : 3 ** max : 1000 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** variablecategory : auxiliary ** datatype : DOUBLE ** inputtype : variable ** unit : MJ m-2 d-1 ** description : solar Radiation * name: vaporPressure ** min : 0 ** default : 6.1 ** max : 1000 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** variablecategory : auxiliary ** datatype : DOUBLE ** inputtype : variable ** unit : hPa ** description : vapor Pressure * name: extraSolarRadiation ** min : 0 ** default : 11.7 ** max : 1000 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** variablecategory : auxiliary ** datatype : DOUBLE ** inputtype : variable ** unit : MJ m2 d-1 ** description : extra Solar Radiation - outputs: * name: netRadiation ** min : 0 ** variablecategory : auxiliary ** max : 5000 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** datatype : DOUBLE ** unit : MJ m-2 d-1 ** description : net radiation * name: netOutGoingLongWaveRadiation ** min : 0 ** variablecategory : auxiliary ** max : 5000 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** datatype : DOUBLE ** unit : g m-2 d-1 ** description : net OutGoing Long Wave Radiation """ Nsr = (1.0 - albedoCoefficient) * solarRadiation clearSkySolarRadiation = (0.75 + (2 * pow(10.0, -5) * elevation)) * extraSolarRadiation averageT = (pow(maxTair + 273.16, 4) + pow(minTair + 273.16, 4)) / 2.0 surfaceEmissivity = 0.34 - (0.14 * sqrt(vaporPressure / 10.0)) cloudCoverFactor = 1.35 * (solarRadiation / clearSkySolarRadiation) - 0.35 Nolr = stefanBoltzman * averageT * surfaceEmissivity * cloudCoverFactor netRadiation = Nsr - Nolr netOutGoingLongWaveRadiation = Nolr return (netRadiation, netOutGoingLongWaveRadiation)
369fffe5eef94148baa8526421adbbac7c3477fd
3,656,771
def get_tagset(sentences, with_prefix): """ Returns the set of entity types appearing in the list of sentences. If with_prefix is True, it returns both the B- and I- versions for each entity found. If False, it merges them (i.e., removes the prefix and only returns the entity type). """ iobs = [iob for sent in sentences for (x,iob) in sent] tagset = set(iobs) if not with_prefix: tagset = set([t[2:] for t in list(tagset) if t != 'O']) return tagset
c0b00f7c5546bfc7fe10b2d4b35998b5dedeba21
3,656,772
def pdb_to_psi4(starting_geom, mol_name, method, basis_set, charge=0, multiplicity=1, symmetry='C1', geom_opt=True, sp_energy=False, fixed_dih=None, mem=None, constrain='dihedral', dynamic_level=3, consecutive_backsteps=None, geom_maxiter=250, xyz_traj=True): """ :param pdb: str path to pdb file :param method: list of str QM method (see psi4 website for options) If length 2, first one will be used for geom opt and second for spe. :param basis_set: str specification of basis set :param symmetry: str symmetry of molecule. Default is None. :param geom_opt: bool if True, will generate input file for geometry optimization :param sp_energy: bool if True, will run a single point energy calculation (if geom_opt also true, SPE calculation will occur after geom opt :param fixed_dih: str string of dihedral that should be fixed at specified angle. Format: "4 7 10 14 90.00" default: None - will not fix dihedral Beware: ------ Because of a bug in psi4, dihedral angle can't be exactly 0 (same would apply for 180) so use 0.001 instead constrain: string. Either 'dihedral' or 'cartesian' The kind of constrain to use :param mem: int memory allocation for calculation :param outfile: str if specified, will save file there :return: psi4 input string. If outfile, save file to specified path """ input_string = "" if mem is not None: input_string += "\nmemory {}\n".format(mem) input_string += "\nmolecule {}".format(mol_name) input_string += " {\n" input_string += " symmetry {}\n".format(symmetry) input_string += " {} {} \n".format(charge, multiplicity) input_string += starting_geom input_string += " units Angstrom\n" input_string += "}\n" if fixed_dih is not None: if constrain == 'dihedral': input_string += '\ndih_string = "{}"'.format(fixed_dih) # ToDo add string because that's the only thing that seems to work input_string += '\nset optking { fixed_dihedral = $dih_string\n' elif constrain == 'cartesian': input_string += '\n frozen_string = """ \n {} xyz \n {} xyz \n {} xyz \n {} xyz \n"""'.format(fixed_dih[0], fixed_dih[2], fixed_dih[4], fixed_dih[6]) input_string += '\nset optking { opt_coordinates = cartesian\n frozen_cartesian = $frozen_string\n' else: raise NameError('Only dihedral or cartesian constraints are valid') if dynamic_level: input_string += ' dynamic_level = {}\n'.format(dynamic_level) if consecutive_backsteps: input_string += ' consecutive_backsteps = {}\n'.format(consecutive_backsteps) if geom_maxiter: input_string += ' geom_maxiter = {}\n'.format(geom_maxiter) if xyz_traj: input_string += ' print_trajectory_xyz_file = True ' input_string += '}\n' if geom_opt: input_string += "\noptimize('{}/{}')\n".format(method[0], basis_set[0]) if sp_energy: input_string += "\nenergy('{}/{}')\n".format(method[-1], basis_set[-1]) return input_string
ec9fffe05463f159cd47ce2c809f42d5b4289db4
3,656,773
def normpath(s: str) -> str: """Normalize path. Just for compatibility with normal python3.""" return s
30c528b11f75f52275b753c789e2e3d5bf71641c
3,656,774
def threshold_num_spikes( sorting, threshold, threshold_sign, sampling_frequency=None, **kwargs ): """ Computes and thresholds the num spikes in the sorted dataset with the given sign and value. Parameters ---------- sorting: SortingExtractor The sorting result to be evaluated threshold: int or float The threshold for the given metric threshold_sign: str If 'less', will threshold any metric less than the given threshold If 'less_or_equal', will threshold any metric less than or equal to the given threshold If 'greater', will threshold any metric greater than the given threshold If 'greater_or_equal', will threshold any metric greater than or equal to the given threshold sampling_frequency: float The sampling frequency of the result. If None, will check to see if sampling frequency is in sorting extractor **kwargs: keyword arguments Keyword arguments among the following: save_property_or_features: bool If True, the metric is saved as sorting property verbose: bool If True, will be verbose in metric computation Returns ---------- threshold sorting extractor """ params_dict = update_all_param_dicts_with_kwargs(kwargs) md = MetricData(sorting=sorting, sampling_frequency=sampling_frequency, recording=None, apply_filter=False, duration_in_frames=None, freq_min=300.0, freq_max=6000.0, unit_ids=None, verbose=params_dict['verbose'], raise_if_empty=False) ns = NumSpikes(metric_data=md) threshold_sorting = ns.threshold_metric(threshold, threshold_sign, **kwargs) return threshold_sorting
37974060e23f8dbde2d3dd1246b0583ed16d4a87
3,656,775
def mad(stack, axis=0, scale=1.4826): """Median absolute deviation, default is scaled such that +/-MAD covers 50% (between 1/4 and 3/4) of the standard normal cumulative distribution """ stack_abs = np.abs(stack) med = np.nanmedian(stack_abs, axis=axis) return scale * np.nanmedian(np.abs(stack_abs - med), axis=axis)
c9425b8006476b11cc559a025597c5b620294b50
3,656,776
import logging import time from typing import Any import sys def set_up_logging( *, log_filename: str = "log", verbosity: int = 0, use_date_logging: bool = False, ) ->logging.Logger: """Set up proper logging.""" # log everything verbosely LOG.setLevel(logging.DEBUG) logging.Formatter.converter = time.gmtime handler: Any if use_date_logging: handler = TimedRotatingFileHandler( filename=log_filename, when="D", utc=True, ) else: handler = RotatingFileHandler( filename=log_filename, maxBytes=1024000000, backupCount=10, ) formatter = logging.Formatter( fmt="%(asctime)s.%(msecs)03dZ - %(levelname)s - %(module)s - %(message)s", datefmt="%Y-%m-%dT%H:%M:%S", ) handler.setFormatter(formatter) handler.setLevel(logging.DEBUG) LOG.addHandler(handler) # Provide a stdout handler logging at INFO. stream_handler = logging.StreamHandler(sys.stdout) simple_form = logging.Formatter(fmt="%(message)s") stream_handler.setFormatter(simple_form) if verbosity > 0: stream_handler.setLevel(logging.DEBUG) else: stream_handler.setLevel(logging.INFO) LOG.addHandler(stream_handler) return LOG
07c7b2623c02d52f8a6468654fa5e3519bf43be9
3,656,777
def _get_window(append, size=(1000, 600)): """ Return a handle to a plot window to use for this plot. If append is False, create a new plot window, otherwise return a handle to the given window, or the last created window. Args: append (Union[bool, PlotWindow]): If true, return the last created plot window, if PlotWindow, return that window, otherwise a new window will be created. size (Tuple[int, int]): The size in px of the new plot window. If append is not false, this parameter has no effect. """ # Set up a plotting window if append is None or append is False: win = PlotWindow() win.win_title = 'ID: ' win.resize(*size) elif isinstance(append, PlotWindow): # Append to the given window win = append elif isinstance(append, bool): # Append to the last trace if true win = PlotWindow.getWindows()[-1] else: raise ValueError("Unknown argument to append. Either give a plot window" " or true to append to the last plot") return win
45ff89055db2caa442f55c80042820194554bed8
3,656,778
def _proxies_dict(proxy): """Makes a proxy dict appropriate to pass to requests.""" if not proxy: return None return {'http': proxy, 'https': proxy}
ce51015dc652c494dc89bb11e21f18803ba34c85
3,656,779
def _get_schedule_times(name, date): """ Fetch all `from_time` from [Healthcare Schedule Time Slot] :param name: [Practitioner Schedule] :param date: [datetime.date] :return: """ mapped_day = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] time_slots = frappe.get_all( 'Healthcare Schedule Time Slot', filters={'parent': name, 'day': mapped_day[date.weekday()]}, fields=['from_time'] ) return list(map(lambda x: x.get('from_time'), time_slots))
64de318f8bbe827e40566799172590f0e448a3d5
3,656,780
def delete(client, data, force=False): """ """ param = {'logical-router-port-id': get_id(client, data)} if force: param['force'] = True request = client.__getattr__(MODULE).DeleteLogicalRouterPort(**param) response, _ = request.result() return response
e573b962273f4ffc0ea4b0d5693329013fca4a6b
3,656,781
import warnings def z_standardization( spark, idf, list_of_cols="all", drop_cols=[], pre_existing_model=False, model_path="NA", output_mode="replace", print_impact=False, ): """ Standardization is commonly used in data pre-processing process. z_standardization standardizes the selected attributes of an input dataframe by normalizing each attribute to have standard deviation of 1 and mean of 0. For each attribute, the standard deviation (s) and mean (u) are calculated and a sample x will be standardized into ( x-u)/s. If the standard deviation of an attribute is 0, it will be excluded in standardization and a warning will be shown. None values will be kept as None in the output dataframe. Parameters ---------- spark Spark Session idf Input Dataframe list_of_cols List of numerical columns to transform e.g., ["col1","col2"]. Alternatively, columns can be specified in a string format, where different column names are separated by pipe delimiter “|” e.g., "col1|col2". "all" can be passed to include all numerical columns for analysis. This is super useful instead of specifying all column names manually. Please note that this argument is used in conjunction with drop_cols i.e. a column mentioned in drop_cols argument is not considered for analysis even if it is mentioned in list_of_cols. (Default value = "all") drop_cols List of columns to be dropped e.g., ["col1","col2"]. Alternatively, columns can be specified in a string format, where different column names are separated by pipe delimiter “|” e.g., "col1|col2". It is most useful when coupled with the “all” value of list_of_cols, when we need to consider all columns except a few handful of them. (Default value = []) pre_existing_model Boolean argument – True or False. True if model files (Mean/stddev for each feature) exists already, False Otherwise (Default value = False) model_path If pre_existing_model is True, this argument is path for referring the pre-saved model. If pre_existing_model is False, this argument can be used for saving the model. Default "NA" means there is neither pre-existing model nor there is a need to save one. output_mode "replace", "append". “replace” option replaces original columns with transformed column. “append” option append transformed column to the input dataset with a postfix "_scaled" e.g. column X is appended as X_scaled. (Default value = "replace") print_impact True, False (Default value = False) This argument is to print out the before and after descriptive statistics of rescaled columns. Returns ------- DataFrame Rescaled Dataframe """ num_cols = attributeType_segregation(idf)[0] if list_of_cols == "all": list_of_cols = num_cols if isinstance(list_of_cols, str): list_of_cols = [x.strip() for x in list_of_cols.split("|")] if isinstance(drop_cols, str): drop_cols = [x.strip() for x in drop_cols.split("|")] list_of_cols = list(set([e for e in list_of_cols if e not in drop_cols])) if any(x not in num_cols for x in list_of_cols): raise TypeError("Invalid input for Column(s)") if len(list_of_cols) == 0: warnings.warn( "No Standardization Performed - No numerical column(s) to transform" ) return idf if output_mode not in ("replace", "append"): raise TypeError("Invalid input for output_mode") parameters = [] excluded_cols = [] if pre_existing_model: df_model = spark.read.parquet(model_path + "/z_standardization") for i in list_of_cols: mapped_value = ( df_model.where(F.col("feature") == i) .select("parameters") .rdd.flatMap(lambda x: x) .collect()[0] ) parameters.append(mapped_value) else: for i in list_of_cols: mean, stddev = idf.select(F.mean(i), F.stddev(i)).first() parameters.append( [float(mean) if mean else None, float(stddev) if stddev else None] ) if stddev: if round(stddev, 5) == 0.0: excluded_cols.append(i) else: excluded_cols.append(i) if len(excluded_cols) > 0: warnings.warn( "The following column(s) are excluded from standardization because the standard deviation is zero:" + str(excluded_cols) ) odf = idf for index, i in enumerate(list_of_cols): if i not in excluded_cols: modify_col = (i + "_scaled") if (output_mode == "append") else i odf = odf.withColumn( modify_col, (F.col(i) - parameters[index][0]) / parameters[index][1] ) if (not pre_existing_model) & (model_path != "NA"): df_model = spark.createDataFrame( zip(list_of_cols, parameters), schema=["feature", "parameters"] ) df_model.coalesce(1).write.parquet( model_path + "/z_standardization", mode="overwrite" ) if print_impact: if output_mode == "replace": output_cols = list_of_cols else: output_cols = [ (i + "_scaled") for i in list_of_cols if i not in excluded_cols ] print("Before: ") idf.select(list_of_cols).describe().show(5, False) print("After: ") odf.select(output_cols).describe().show(5, False) return odf
962a7aa5721cc7d672c858d573af3c1d021e74d7
3,656,782
def event_stats(wit_df, wit_im, wit_area, pkey='SYSID'): """ Compute inundation event stats with given wit wetness, events defined by (start_time, end_time) and polygon areas input: wit_df: wetness computed from wit data wit_im: inundation event wit_area: polygon areas indexed by the key output: dataframe of event stats """ grouped_im = wit_im[['start_time', 'end_time']].groupby(pkey) return wit_df.groupby(pkey).apply(get_im_stats, im_time=grouped_im, wit_area=wit_area).droplevel(0)
f1bcef7604e15fc9b5a845ed45b976e22655d469
3,656,783
def upvote_book(book_id): """ Allows a user to upvote a book. The upvotes field on the book document is updated, as well as the booksUpvoted array on the user document and the upvotedBy array on the book document. """ user_to_update = mongo.db.users.find_one({"username": session["user"]}) username = user_to_update.get("username") mongo.db.books.update_one({"_id": ObjectId(book_id)}, { '$inc': {'upvotes': +1}}) mongo.db.books.update_one({"_id": ObjectId(book_id)}, { '$push': {'upvotedBy': username}}) mongo.db.users.update_one( user_to_update, {'$push': {'booksUpvoted': ObjectId(book_id)}}) flash("Book has been upvoted!") return redirect(url_for("get_book", book_id=book_id))
6a27c46e9540b871f4123c166d9cecaebc016c6b
3,656,784
import numpy def bottlegrowth_split_mig(params, ns): """ params = (nuB, nuF, m, T, Ts) ns = [n1, n2] Instantanous size change followed by exponential growth then split with migration. nuB: Ratio of population size after instantanous change to ancient population size nuF: Ratio of contempoary to ancient population size m: Migration rate between the two populations (2*Na*m). T: Time in the past at which instantaneous change happened and growth began (in units of 2*Na generations) Ts: Time in the past at which the two populations split. n1, n2: Sample sizes of resulting Spectrum. """ nuB, nuF, m, T, Ts = params nu_func = lambda t: [nuB * numpy.exp(numpy.log(nuF/nuB) * t / T)] sts = moments.LinearSystem_1D.steady_state_1D(ns[0] + ns[1]) fs = moments.Spectrum(sts) fs.integrate(nu_func, T - Ts, dt_fac=0.01) # we split the population fs = moments.Manips.split_1D_to_2D(fs, ns[0], ns[1]) nu0 = nu_func(T - Ts)[0] nu_func = lambda t: 2 * [nu0 * numpy.exp(numpy.log(nuF/nu0) * t / Ts)] fs.integrate(nu_func, Ts, m = numpy.array([[0, m], [m, 0]])) return fs
dd191a7246d6575b784e61d8e1def17c0f143a7d
3,656,785
def arch_to_macho(arch): """Converts an arch string into a macho arch tuple.""" try: arch = rustcall(lib.symbolic_arch_to_macho, encode_str(arch)) return (arch.cputype, arch.cpusubtype) except ignore_arch_exc: pass
2ffc1be349fc8438bc5b49bab1d9c79e8cbebdd3
3,656,786
def limit_ops_skeleton(**kwargs): """This function provides a skeleton for limit ops calculations""" group_phase = kwargs['group_phase'] tail = kwargs['tail'] loading_phase = kwargs['loading_phase'] final_phase = kwargs['final_phase'] grouped_df = limit_ops_general_groups( **group_phase ) grouped_df = grouped_df.tail(tail) loaded_table = load_and_rename(**loading_phase) final_phase['first_df'] = grouped_df final_phase['second_df'] = loaded_table final_values = limit_ops_formatter(**final_phase) return final_values
fb2dd1da8f2229794705376e15076477160bce35
3,656,787
def xy2traceset(xpos, ypos, **kwargs): """Convert from x,y positions to a trace set. Parameters ---------- xpos, ypos : array-like X,Y positions corresponding as [nx,Ntrace] arrays. invvar : array-like, optional Inverse variances for fitting. func : :class:`str`, optional Function type for fitting; defaults to 'legendre'. ncoeff : :class:`int`, optional Number of coefficients to fit. Defaults to 3. xmin, xmax : :class:`float`, optional Explicitly set minimum and maximum values, instead of computing them from `xpos`. maxiter : :class:`int`, optional Maximum number of rejection iterations; set to 0 for no rejection; default to 10. inmask : array-like, optional Mask set to 1 for good points and 0 for rejected points; same dimensions as `xpos`, `ypos`. Points rejected by `inmask` are always rejected from the fits (the rejection is "sticky"), and will also be marked as rejected in the outmask attribute. ia, inputans, inputfunc : array-like, optional These arguments will be passed to :func:`func_fit`. xjumplo : :class:`float`, optional x position locating start of an x discontinuity xjumphi : :class:`float`, optional x position locating end of that x discontinuity xjumpval : :class:`float`, optional magnitude of the discontinuity "jump" between those bounds (previous 3 keywords motivated by BOSS 2-phase readout) Returns ------- :class:`TraceSet` A :class:`TraceSet` object. """ return TraceSet(xpos, ypos, **kwargs)
7f4146600678cdb3699b239bf49a5d6062ef2a2e
3,656,788
import inspect def Fn(name, f, n_out=1): # pylint: disable=invalid-name """Returns a layer with no weights that applies the function `f`. `f` can take and return any number of arguments, and takes only positional arguments -- no default or keyword arguments. It often uses JAX-numpy (`jnp`). The following, for example, would create a layer that takes two inputs and returns two outputs -- element-wise sums and maxima: `Fn('SumAndMax', lambda x0, x1: (x0 + x1, jnp.maximum(x0, x1)), n_out=2)` The layer's number of inputs (`n_in`) is automatically set to number of positional arguments in `f`, but you must explicitly set the number of outputs (`n_out`) whenever it's not the default value 1. Args: name: Class-like name for the resulting layer; for use in debugging. f: Pure function from input tensors to output tensors, where each input tensor is a separate positional arg, e.g., `f(x0, x1) --> x0 + x1`. Output tensors must be packaged as specified in the `Layer` class docstring. n_out: Number of outputs promised by the layer; default value 1. Returns: Layer executing the function `f`. """ argspec = inspect.getfullargspec(f) if argspec.defaults is not None: raise ValueError('Function has default arguments (not allowed).') if argspec.varkw is not None: raise ValueError('Function has keyword arguments (not allowed).') if argspec.varargs is not None: raise ValueError('Function has variable args (not allowed).') def _forward(xs): # pylint: disable=invalid-name if not isinstance(xs, (tuple, list)): xs = (xs,) return f(*xs) n_in = len(argspec.args) name = name or 'Fn' return PureLayer(_forward, n_in=n_in, n_out=n_out, name=name)
356753d0a10ee8294d4072f559657b8a032974eb
3,656,789
import slate3k as slate import logging def leer_pdf_slate(ubicacion_archivo, password=None): """ Utiliza la librería slate3k para cargar un archivo PDF y extraer el texto de sus páginas. :param ubicacion_archivo: (str). Ubicación del archivo PDF que se desea leer. :param password: (str). Valor por defecto: None. Parámetro opcional para leer archivos \ PDF que están protegidos por contraseña. :return: (list). Lista de strings, que contienen el texto extraído de cada página del PDF. """ # Para no mostrar warnings de slate logging.getLogger('pdfminer').setLevel(logging.ERROR) # Abrir el archivo y extraer el texto de las páginas with open(ubicacion_archivo, 'rb') as f: if password is not None: paginas = slate.PDF(f, password) else: paginas = slate.PDF(f) # Retornar el texto extraído return paginas
3e52c463238f1ecec30d34661eb8f53a6cf031a7
3,656,790
def gen_run_entry_str(query_id, doc_id, rank, score, run_id): """A simple function to generate one run entry. :param query_id: query id :param doc_id: document id :param rank: entry rank :param score: entry score :param run_id: run id """ return f'{query_id} Q0 {doc_id} {rank} {score} {run_id}'
657c59fea34e4aed2159337360c973dc99b53082
3,656,791
from pathlib import Path def remove_template(args, output_file_name): """ remove the arg to use template; called when you make the template :param args: :param output_file_name: :return: """ template_name = '' dir_name = '' template_found = False for i in args: if i.startswith('--template'): # print_fun('FOUND') args.remove(i) # i ='--template=/s/telos/common/sjm-doc-template.tex' # eq_loc = i.find("=") + 1 # dir_end = len(i) - i[::-1].find('/') - 1 # dir_name = i[eq_loc:dir_end] # template_name = i[dir_end + 1:-4] # template_found = True # new p = Path(i.split('=')[1]) dir_name = str(p.parent) template_name = str(p.name) template_found = True # print_fun(template_name) break if not template_found: raise ValueError('\n\n\nERROR: making template, need cla: --template=/template name... command line option!\n' f'Args are {args}\nAborting.\n\n') return args, trash = adjust_output_file(args, dir_name, output_file_name) return args, template_name
652fa0112dd0b5287e1f98c5e70f84cacaa979c1
3,656,792
def replaceext(filepath, new_ext, *considered_exts): """replace extension of filepath with new_ext filepath: a file path new_ext: extension the returned filepath should have (e.g ".ext") considered_exts: Each is a case insensitive extension that should be considered a single extension and replaced accordingly. e.g. if you pass .tar.gz, file.tar.gz becomes file.new_ext instead of file.tar.new_ext returns: filepath with its extension replaced """ root = splitext(filepath, *considered_exts)[0] return root + new_ext
4e1abee01270921d01de1e75614612dcec8485d7
3,656,793
def textarea(name, content="", id=NotGiven, **attrs): """Create a text input area. """ attrs["name"] = name _set_id_attr(attrs, id, name) return HTML.tag("textarea", content, **attrs)
da85bdeb2d819eaa2e8109036087700afd270a21
3,656,794
import os def get_score_checkpoint(loss_score): """Retrieves the path to a checkpoint file.""" name = "{}{:4f}.pyth".format(_SCORE_NAME_PREFIX, loss_score) return os.path.join(get_checkpoint_dir(), name)
65e147968c738a0b893e5fc25bebbdb0d75c52de
3,656,795
def StretchContrast(pixlist, minmin=0, maxmax=0xff): """ Stretch the current image row to the maximum dynamic range with minmin mapped to black(0x00) and maxmax mapped to white(0xff) and all other pixel values stretched accordingly.""" if minmin < 0: minmin = 0 # pixel minimum is 0 if maxmax > 0xff: maxmax = 0xff # pixel maximum is 255 if maxmax < minmin: maxmax = minmin # range sanity min, max = maxmax, minmin for pix in pixlist: if pix < min and pix >= minmin: min = pix if pix > max and pix <= maxmax: max = pix if min > max: min = max if min == max: f = 1.0 else: f = 255.0 / (max - min) n = 0 newpixlist= [] for pix in pixlist: if pix < minmin: pix = minmin if pix > maxmax: pix = maxmax pix = int((pix - min) * f) newpixlist.append (pix) return newpixlist
5f511b4a8bd053d503618767fee06597f1688619
3,656,796
def detection(array, psf, bkg_sigma=1, mode='lpeaks', matched_filter=False, mask=True, snr_thresh=5, plot=True, debug=False, full_output=False, verbose=True, save_plot=None, plot_title=None, angscale=False, pxscale=0.01): """ Finds blobs in a 2d array. The algorithm is designed for automatically finding planets in post-processed high contrast final frames. Blob can be defined as a region of an image in which some properties are constant or vary within a prescribed range of values. See <Notes> below to read about the algorithm details. Parameters ---------- array : array_like, 2d Input frame. psf : array_like Input psf, normalized with ``vip_hci.phot.normalize_psf``. bkg_sigma : float, optional The number standard deviations above the clipped median for setting the background level. mode : {'lpeaks','log','dog'}, optional Sets with algorithm to use. Each algorithm yields different results. matched_filter : bool, optional Whether to correlate with the psf of not. mask : bool, optional Whether to mask the central region (circular aperture of 2*fwhm radius). snr_thresh : float, optional SNR threshold for deciding whether the blob is a detection or not. plot : bool, optional If True plots the frame showing the detected blobs on top. debug : bool, optional Whether to print and plot additional/intermediate results. full_output : bool, optional Whether to output just the coordinates of blobs that fulfill the SNR constraint or a table with all the blobs and the peak pixels and SNR. verbose : bool, optional Whether to print to stdout information about found blobs. save_plot: string If provided, the plot is saved to the path. plot_title : str, optional Title of the plot. angscale: bool, optional If True the plot axes are converted to angular scale. pxscale : float, optional Pixel scale in arcseconds/px. Default 0.01 for Keck/NIRC2. Returns ------- yy, xx : array_like Two vectors with the y and x coordinates of the centers of the sources (potential planets). If full_output is True then a table with all the candidates that passed the 2d Gaussian fit constrains and their S/N is returned. Notes ----- The FWHM of the PSF is measured directly on the provided array. If the parameter matched_filter is True then the PSF is used to run a matched filter (correlation) which is equivalent to a convolution filter. Filtering the image will smooth the noise and maximize detectability of objects with a shape similar to the kernel. The background level or threshold is found with sigma clipped statistics (5 sigma over the median) on the image/correlated image. Then 5 different strategies can be used to detect the blobs (potential planets): Local maxima + 2d Gaussian fit. The local peaks above the background on the (correlated) frame are detected. A maximum filter is used for finding local maxima. This operation dilates the original image and merges neighboring local maxima closer than the size of the dilation. Locations where the original image is equal to the dilated image are returned as local maxima. The minimum separation between the peaks is 1*FWHM. A 2d Gaussian fit is done on each of the maxima constraining the position on the subimage and the sigma of the fit. Finally the blobs are filtered based on its SNR. Laplacian of Gaussian + 2d Gaussian fit. It computes the Laplacian of Gaussian images with successively increasing standard deviation and stacks them up in a cube. Blobs are local maximas in this cube. LOG assumes that the blobs are again assumed to be bright on dark. A 2d Gaussian fit is done on each of the candidates constraining the position on the subimage and the sigma of the fit. Finally the blobs are filtered based on its SNR. Difference of Gaussians. This is a faster approximation of LoG approach. In this case the image is blurred with increasing standard deviations and the difference between two successively blurred images are stacked up in a cube. DOG assumes that the blobs are again assumed to be bright on dark. A 2d Gaussian fit is done on each of the candidates constraining the position on the subimage and the sigma of the fit. Finally the blobs are filtered based on its SNR. """ def check_blobs(array_padded, coords_temp, fwhm, debug): y_temp = coords_temp[:,0] x_temp = coords_temp[:,1] coords = [] # Fitting a 2d gaussian to each local maxima position for y, x in zip(y_temp, x_temp): subsi = 2 * int(np.ceil(fwhm)) if subsi %2 == 0: subsi += 1 subim, suby, subx = get_square(array_padded, subsi, y+pad, x+pad, position=True, force=True) cy, cx = frame_center(subim) gauss = models.Gaussian2D(amplitude=subim.max(), x_mean=cx, y_mean=cy, theta=0, x_stddev=fwhm*gaussian_fwhm_to_sigma, y_stddev=fwhm*gaussian_fwhm_to_sigma) sy, sx = np.indices(subim.shape) fitter = fitting.LevMarLSQFitter() fit = fitter(gauss, sx, sy, subim) # checking that the amplitude is positive > 0 # checking whether the x and y centroids of the 2d gaussian fit # coincide with the center of the subimage (within 2px error) # checking whether the mean of the fwhm in y and x of the fit # are close to the FWHM_PSF with a margin of 3px fwhm_y = fit.y_stddev.value*gaussian_sigma_to_fwhm fwhm_x = fit.x_stddev.value*gaussian_sigma_to_fwhm mean_fwhm_fit = np.mean([np.abs(fwhm_x), np.abs(fwhm_y)]) if fit.amplitude.value > 0 \ and np.allclose(fit.y_mean.value, cy, atol=2) \ and np.allclose(fit.x_mean.value, cx, atol=2) \ and np.allclose(mean_fwhm_fit, fwhm, atol=3): coords.append((suby + fit.y_mean.value, subx + fit.x_mean.value)) if debug: print('Coordinates (Y,X): {:.3f},{:.3f}'.format(y, x)) print('fit peak = {:.3f}'.format(fit.amplitude.value)) msg = 'fwhm_y in px = {:.3f}, fwhm_x in px = {:.3f}' print(msg.format(fwhm_y, fwhm_x)) print('mean fit fwhm = {:.3f}'.format(mean_fwhm_fit)) pp_subplots(subim, colorb=True, axis=False, dpi=60) return coords def print_coords(coords): print('Blobs found:', len(coords)) print(' ycen xcen') print('------ ------') for i in range(len(coords[:, 0])): print('{:.3f} \t {:.3f}'.format(coords[i,0], coords[i,1])) def print_abort(): if verbose: print(sep) print('No potential sources found') print(sep) # -------------------------------------------------------------------------- if array.ndim != 2: raise TypeError('Input array is not a frame or 2d array') if psf.ndim != 2 and psf.shape[0] < array.shape[0]: raise TypeError('Input psf is not a 2d array or has wrong size') # Getting the FWHM from the PSF array cenpsf = frame_center(psf) outdf = fit_2dgaussian(psf, cent=(cenpsf), debug=debug, full_output=True) fwhm_x, fwhm_y = outdf['fwhm_x'], outdf['fwhm_y'] fwhm = np.mean([fwhm_x, fwhm_y]) if verbose: print('FWHM = {:.2f} pxs\n'.format(fwhm)) if debug: print('FWHM_y', fwhm_y) print('FWHM_x', fwhm_x) # Masking the center, 2*lambda/D is the expected IWA if mask: array = mask_circle(array, radius=fwhm) # Matched filter if matched_filter: frame_det = correlate(array, psf) else: frame_det = array # Estimation of background level _, median, stddev = sigma_clipped_stats(frame_det, sigma=5, iters=None) bkg_level = median + (stddev * bkg_sigma) if debug: print('Sigma clipped median = {:.3f}'.format(median)) print('Sigma clipped stddev = {:.3f}'.format(stddev)) print('Background threshold = {:.3f}'.format(bkg_level)) print() if mode == 'lpeaks' or mode == 'log' or mode == 'dog': # Padding the image with zeros to avoid errors at the edges pad = 10 array_padded = np.lib.pad(array, pad, 'constant', constant_values=0) if debug and plot and matched_filter: print('Input frame after matched filtering:') pp_subplots(frame_det, rows=2, colorb=True) if mode == 'lpeaks': # Finding local peaks (can be done in the correlated frame) coords_temp = peak_local_max(frame_det, threshold_abs=bkg_level, min_distance=int(np.ceil(fwhm)), num_peaks=20) coords = check_blobs(array_padded, coords_temp, fwhm, debug) coords = np.array(coords) if verbose and coords.shape[0] > 0: print_coords(coords) elif mode == 'log': sigma = fwhm*gaussian_fwhm_to_sigma coords = feature.blob_log(frame_det.astype('float'), threshold=bkg_level, min_sigma=sigma-.5, max_sigma=sigma+.5) if len(coords) == 0: print_abort() return 0, 0 coords = coords[:,:2] coords = check_blobs(array_padded, coords, fwhm, debug) coords = np.array(coords) if coords.shape[0] > 0 and verbose: print_coords(coords) elif mode == 'dog': sigma = fwhm*gaussian_fwhm_to_sigma coords = feature.blob_dog(frame_det.astype('float'), threshold=bkg_level, min_sigma=sigma-.5, max_sigma=sigma+.5) if len(coords) == 0: print_abort() return 0, 0 coords = coords[:, :2] coords = check_blobs(array_padded, coords, fwhm, debug) coords = np.array(coords) if coords.shape[0] > 0 and verbose: print_coords(coords) else: msg = 'Wrong mode. Available modes: lpeaks, log, dog.' raise TypeError(msg) if coords.shape[0] == 0: print_abort() return 0, 0 yy = coords[:, 0] xx = coords[:, 1] yy_final = [] xx_final = [] yy_out = [] xx_out = [] snr_list = [] xx -= pad yy -= pad # Checking S/N for potential sources for i in range(yy.shape[0]): y = yy[i] x = xx[i] if verbose: print(sep) print('X,Y = ({:.1f},{:.1f})'.format(x,y)) snr = snr_ss(array, (x,y), fwhm, False, verbose=False) snr_list.append(snr) if snr >= snr_thresh: if verbose: _ = frame_quick_report(array, fwhm, (x,y), verbose=verbose) yy_final.append(y) xx_final.append(x) else: yy_out.append(y) xx_out.append(x) if verbose: print('S/N constraint NOT fulfilled (S/N = {:.3f})'.format(snr)) if debug: _ = frame_quick_report(array, fwhm, (x,y), verbose=verbose) if debug or full_output: table = Table([yy.tolist(), xx.tolist(), snr_list], names=('y', 'x', 'px_snr')) table.sort('px_snr') yy_final = np.array(yy_final) xx_final = np.array(xx_final) yy_out = np.array(yy_out) xx_out = np.array(xx_out) if plot: coords = list(zip(xx_out.tolist() + xx_final.tolist(), yy_out.tolist() + yy_final.tolist())) circlealpha = [0.3] * len(xx_out) circlealpha += [1] * len(xx_final) pp_subplots(array, circle=coords, circlealpha=circlealpha, circlelabel=True, circlerad=fwhm, save=save_plot, dpi=120, angscale=angscale, pxscale=pxscale, title=plot_title) if debug: print(table) if full_output: return table else: return yy_final, xx_final
13b9024538b9edff362b409328ebd6cdbbf5fd5b
3,656,797
def get_database_uri(application): """ Returns database URI. Prefer SQLALCHEMY_DATABASE_URI over components.""" if application.config.get('SQLALCHEMY_DATABASE_URI'): return application.config['SQLALCHEMY_DATABASE_URI'] return '{driver}://{username}:{password}@{host}:{port}/{name}'\ .format(driver=application.config['EQ_SERVER_SIDE_STORAGE_DATABASE_DRIVER'], username=application.eq['secret_store'].get_secret_by_name('EQ_SERVER_SIDE_STORAGE_DATABASE_USERNAME'), password=application.eq['secret_store'].get_secret_by_name('EQ_SERVER_SIDE_STORAGE_DATABASE_PASSWORD'), host=application.config['EQ_SERVER_SIDE_STORAGE_DATABASE_HOST'], port=application.config['EQ_SERVER_SIDE_STORAGE_DATABASE_PORT'], name=application.config['EQ_SERVER_SIDE_STORAGE_DATABASE_NAME'])
6b04a9518798aa3392cdf41667e5edf1fdaa5125
3,656,798
from typing import OrderedDict def get_s_vol_single_sma(c: CZSC, di: int = 1, t_seq=(5, 10, 20, 60)) -> OrderedDict: """获取倒数第i根K线的成交量单均线信号""" freq: Freq = c.freq s = OrderedDict() k1 = str(freq.value) k2 = f"倒{di}K成交量" for t in t_seq: x1 = Signal(k1=k1, k2=k2, k3=f"SMA{t}多空", v1="其他", v2='其他', v3='其他') x2 = Signal(k1=k1, k2=k2, k3=f"SMA{t}方向", v1="其他", v2='其他', v3='其他') s[x1.key] = x1.value s[x2.key] = x2.value min_k_nums = max(t_seq) + 10 if len(c.bars_raw) < min_k_nums: return s if di == 1: vol = np.array([x.vol for x in c.bars_raw[-min_k_nums:]], dtype=np.float) else: vol = np.array([x.vol for x in c.bars_raw[-min_k_nums-di+1:-di+1]], dtype=np.float) for t in t_seq: sma = SMA(vol[-t-10:], timeperiod=t) if vol[-1] >= sma[-1]: v1 = Signal(k1=k1, k2=k2, k3=f"SMA{t}多空", v1="多头") else: v1 = Signal(k1=k1, k2=k2, k3=f"SMA{t}多空", v1="空头") s[v1.key] = v1.value if sma[-1] >= sma[-2]: v2 = Signal(k1=k1, k2=k2, k3=f"SMA{t}方向", v1="向上") else: v2 = Signal(k1=k1, k2=k2, k3=f"SMA{t}方向", v1="向下") s[v2.key] = v2.value return s
d4453ec1e52ee2c19448855e0011b6ac31d5755b
3,656,799