content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import chardet import os def get_folder_status(dirname, with_message=False): """获取目录状态 Args: dirname(str): 目录路径 with_message(bool): 是否需要返回状态文件内的信息 """ status = None closest_time = 0 message = '' for status_type in [ DatasetStatus, TaskStatus, PredictStatus, PruneStatus, DownloadStatus, PretrainedModelStatus ]: for s in status_type: if osp.exists(osp.join(dirname, s.name)): modify_time = os.stat(osp.join(dirname, s.name)).st_mtime if modify_time > closest_time: closest_time = modify_time status = getattr(status_type, s.name) if with_message: encoding = 'utf-8' try: f = open( osp.join(dirname, s.name), 'r', encoding=encoding) message = f.read() f.close() except: try: f = open(filename, 'rb') data = f.read() f.close() encoding = chardet.detect(data).get('encoding') f = open( osp.join(dirname, s.name), 'r', encoding=encoding) message = f.read() f.close() except: pass if with_message: return status, message return status
f07ea80cc517c9653b675484c5ab645ea5f22198
3,657,100
def handle_session_event(event: EventData) -> core_pb2.SessionEvent: """ Handle session event when there is a session event :param event: event data :return: session event """ event_time = event.time if event_time is not None: event_time = float(event_time) return core_pb2.SessionEvent( node_id=event.node, event=event.event_type.value, name=event.name, data=event.data, time=event_time, )
ddaa78a889c23326f52595d4a7fb71c1813eb971
3,657,101
import sys import os import json import re def job_builder(meta, valid_meta, workflow, job_dir, out_dir, coprocess=None, other_args="", writeimg=False): """Build a list of image processing jobs. Args: meta: Dictionary of processed image metadata. valid_meta: Dictionary of valid metadata keys. workflow: PlantCV image processing workflow script file. job_dir: Intermediate file output directory. out_dir: Output images directory. coprocess: Coprocess the specified imgtype with the imgtype specified in meta_filters. other_args: String of additional arguments to be passed to the workflow script. writeimg: Boolean that specifies whether output images should be created or not. Returns: jobs: List of image processing commands. :param meta: dict :param valid_meta: dict :param workflow: str :param job_dir: str :param out_dir: str :param coprocess: str :param other_args: str :param writeimg: bool :return job_stack: list """ # Overall job stack. List of list of jobs jobs = [] # Get the list of images # images = list(meta.keys()) images = [] for img in list(meta.keys()): # # If a date range was requested, check whether the image is within range # if args.dates: # # Convert image datetime to unix time # timestamp = dt_parser(meta[img]['timestamp']) # time_delta = timestamp - datetime.datetime(1970, 1, 1) # unix_time = (time_delta.days * 24 * 3600) + time_delta.seconds # if unix_time < args.start_date or unix_time > args.end_date: # continue if coprocess is not None: if meta[img]['imgtype'] != coprocess: images.append(img) else: images.append(img) print("Job list will include " + str(len(images)) + " images" + '\n', file=sys.stderr) # For each image for img in images: # Create JSON templates for each image img_meta = {"metadata": deepcopy(valid_meta), "observations": {}} coimg_meta = {"metadata": deepcopy(valid_meta), "observations": {}} # If there is an image co-processed with the image if (coprocess is not None) and ('coimg' in meta[img]): # Create an output file to store the co-image processing results and populate with metadata coimg = meta[meta[img]['coimg']] coout = open(os.path.join(".", job_dir, meta[img]["coimg"] + ".txt"), 'w') # Store metadata in JSON coimg_meta["metadata"]["image"] = { "label": "image file", "datatype": "<class 'str'>", "value": os.path.join(coimg['path'], meta[img]['coimg']) } # Valid metadata for m in list(valid_meta.keys()): coimg_meta["metadata"][m]["value"] = coimg[m] json.dump(coimg_meta, coout) coout.close() # Create an output file to store the image processing results and populate with metadata outfile = open(os.path.join(".", job_dir, img + ".txt"), 'w') # Store metadata in JSON img_meta["metadata"]["image"] = { "label": "image file", "datatype": "<class 'str'>", "value": os.path.join(meta[img]['path'], img) } # Valid metadata for m in list(valid_meta.keys()): img_meta["metadata"][m]["value"] = meta[img][m] json.dump(img_meta, outfile) outfile.close() # Build job job_parts = ["python", workflow, "--image", os.path.join(meta[img]['path'], img), "--outdir", out_dir, "--result", os.path.join(job_dir, img) + ".txt"] # Add job to list if coprocess is not None and ('coimg' in meta[img]): job_parts = job_parts + ["--coresult", os.path.join(job_dir, meta[img]['coimg']) + ".txt"] if writeimg: job_parts.append("--writeimg") if other_args: other_args_copy = re.sub("'", "", other_args) other_args_copy = other_args_copy.split(" ") job_parts = job_parts + other_args_copy jobs.append(job_parts) return jobs
e64cb50f1ecd01217fc5308e5de0d99dd384e67e
3,657,102
def bump_patch(version): """Raise the patch part of the version :param: version string :return: the raised version string :rtype: str """ verinfo = parse(version) return format_version(verinfo['major'], verinfo['minor'], verinfo['patch'] + 1)
350e53788b0851138eb0d0248250bebd7e357e10
3,657,103
def _extract_bike_location(bike, lon_abbrev='lon'): """ Standardize the bike location data from GBFS. Some have extra fields, and some are missing fields. Arguments: bike (dict[str, str]): A GBFS bike object as it appears in free_bike_status.json lon_abbrev (str): The abbreviation used for `longitude` Returns: dict[str, str]: A normalized GBFS bike object """ output = {key: bike.get(key) for key in ['bike_id', 'lat', 'is_reserved', 'is_disabled']} output['lon'] = bike.get(lon_abbrev) return output
a20929a85c993a59b82b552fcfee81b1f818648d
3,657,104
def clean_word(word): """Return word in lowercase stripped of whitespace""" return word.strip().lower()
ce57fa95ec111ee18c8a00c2076c686bc0abfe5c
3,657,105
def get_batch_size(tracks): """ If tracks is a track-major list of possibly None tracks, get the batch size """ return get_shape(tracks)[0]
677f26a0f42d4e745d77ff6abc1867ce857ea208
3,657,106
def find_edges_from_wires(body: TopoDS_Shape) -> set[TopoDS_Edge]: """Return set of edges from Wires.""" edge_set = set() for wire in TopologyExplorer(body, ignore_orientation=False).wires(): for edge in WireExplorer(wire).ordered_edges(): edge_set.add(edge) return edge_set
89d8d848d98c32e925f955da623a3e1018245f75
3,657,107
import geopandas as gpd import contextily as ctx import seaborn as sns import cartopy.crs as ccrs def plot_israel_map(gis_path=gis_path, rc=rc, ticklabelsize=12, ax=None): """general nice map for israel, need that to plot stations, and temperature field on top of it""" sns.set_style("ticks", rc=rc) isr_with_yosh = gpd.read_file(gis_path / 'Israel_and_Yosh.shp') isr_with_yosh.crs = {'init': 'epsg:4326'} # isr_with_yosh = isr_with_yosh.to_crs(epsg=3857) crs_epsg = ccrs.epsg('3857') # crs_epsg = ccrs.epsg('2039') if ax is None: # fig, ax = plt.subplots(subplot_kw={'projection': crs_epsg}, # figsize=(6, 15)) bounds = isr_with_yosh.geometry.total_bounds extent = [bounds[0], bounds[2], bounds[1], bounds[3]] # ax.set_extent([bounds[0], bounds[2], bounds[1], bounds[3]], crs=crs_epsg) # ax.add_geometries(isr_with_yosh.geometry, crs=crs_epsg) ax = isr_with_yosh.plot(alpha=0.0, figsize=(6, 15)) else: isr_with_yosh.plot(alpha=0.0, ax=ax) ctx.add_basemap( ax, source=ctx.providers.Stamen.TerrainBackground, crs='epsg:4326') ax.xaxis.set_major_locator(ticker.MaxNLocator(2)) ax.yaxis.set_major_locator(ticker.MaxNLocator(5)) ax.yaxis.set_major_formatter(lat_formatter) ax.xaxis.set_major_formatter(lon_formatter) ax.tick_params(top=True, bottom=True, left=True, right=True, direction='out', labelsize=ticklabelsize) # scale_bar(ax, ccrs.Mercator(), 50, bounds=bounds) return ax
09c801bf48756e9c118222747ce49dcd8187df90
3,657,108
def getSentB(text2: str, offsetB: int, nextPoint: int, sentLength: int): """ alignSentences auxiliar function to get the sentences of the original text. """ posB = text2[offsetB+sentLength:].find('.') sentLength += posB+1 sentB = text2[offsetB:offsetB+sentLength] nextPoint = offsetB + sentLength return sentB, nextPoint, sentLength
54914a3c1d85464c0e5a4267538a73693e3df238
3,657,109
def get_mapping_fcost_local(interface, bus_def): """ coarse cost function to cheaply estimate local (subset of ports) interface match to bus_def """ cost = _get_mapping_fcost_base(interface, bus_def, penalize_umap=False) name_cost = _get_name_fcost2(interface, bus_def) cost.nc = name_cost return cost
c945e89174fea0c131f35ad4688c5539a55c3eda
3,657,110
import base64 def base64_image(image: bytes, mime_type: str) -> str: """Encode the image for an URL using base64 Args: image: the image mime_type: the mime type Returns: A string starting with "data:{mime_type};base64," """ base64_data = base64.b64encode(image) image_data = quote(base64_data) return f"data:{mime_type};base64,{image_data}"
3079c73137959fea1d16ceb64251870500ae30a5
3,657,111
import math import six import numpy def multi_box_head(inputs, image, base_size, num_classes, aspect_ratios, min_ratio=None, max_ratio=None, min_sizes=None, max_sizes=None, steps=None, step_w=None, step_h=None, offset=0.5, variance=[0.1, 0.1, 0.2, 0.2], flip=True, clip=False, kernel_size=1, pad=0, stride=1, name=None, min_max_aspect_ratios_order=False): """ Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm. The details of this algorithm, please refer the section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector <https://arxiv.org/abs/1512.02325>`_ . Args: inputs(list|tuple): The list of input Variables, the format of all Variables is NCHW. image(Variable): The input image data of PriorBoxOp, the layout is NCHW. base_size(int): the base_size is used to get min_size and max_size according to min_ratio and max_ratio. num_classes(int): The number of classes. aspect_ratios(list|tuple): the aspect ratios of generated prior boxes. The length of input and aspect_ratios must be equal. min_ratio(int): the min ratio of generated prior boxes. max_ratio(int): the max ratio of generated prior boxes. min_sizes(list|tuple|None): If `len(inputs) <=2`, min_sizes must be set up, and the length of min_sizes should equal to the length of inputs. Default: None. max_sizes(list|tuple|None): If `len(inputs) <=2`, max_sizes must be set up, and the length of min_sizes should equal to the length of inputs. Default: None. steps(list|tuple): If step_w and step_h are the same, step_w and step_h can be replaced by steps. step_w(list|tuple): Prior boxes step across width. If step_w[i] == 0.0, the prior boxes step across width of the inputs[i] will be automatically calculated. Default: None. step_h(list|tuple): Prior boxes step across height, If step_h[i] == 0.0, the prior boxes step across height of the inputs[i] will be automatically calculated. Default: None. offset(float): Prior boxes center offset. Default: 0.5 variance(list|tuple): the variances to be encoded in prior boxes. Default:[0.1, 0.1, 0.2, 0.2]. flip(bool): Whether to flip aspect ratios. Default:False. clip(bool): Whether to clip out-of-boundary boxes. Default: False. kernel_size(int): The kernel size of conv2d. Default: 1. pad(int|list|tuple): The padding of conv2d. Default:0. stride(int|list|tuple): The stride of conv2d. Default:1, name(str): Name of the prior box layer. Default: None. min_max_aspect_ratios_order(bool): If set True, the output prior box is in order of [min, max, aspect_ratios], which is consistent with Caffe. Please note, this order affects the weights order of convolution layer followed by and does not affect the fininal detection results. Default: False. Returns: tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances) mbox_loc: The predicted boxes' location of the inputs. The layout is [N, H*W*Priors, 4]. where Priors is the number of predicted boxes each position of each input. mbox_conf: The predicted boxes' confidence of the inputs. The layout is [N, H*W*Priors, C]. where Priors is the number of predicted boxes each position of each input and C is the number of Classes. boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4]. num_priors is the total box count of each position of inputs. variances: the expanded variances of PriorBox. The layout is [num_priors, 4]. num_priors is the total box count of each position of inputs Examples: .. code-block:: python mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head( inputs=[conv1, conv2, conv3, conv4, conv5, conv5], image=images, num_classes=21, min_ratio=20, max_ratio=90, aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]], base_size=300, offset=0.5, flip=True, clip=True) """ def _reshape_with_axis_(input, axis=1): out = nn.flatten(x=input, axis=axis) return out def _is_list_or_tuple_(data): return (isinstance(data, list) or isinstance(data, tuple)) def _is_list_or_tuple_and_equal(data, length, err_info): if not (_is_list_or_tuple_(data) and len(data) == length): raise ValueError(err_info) if not _is_list_or_tuple_(inputs): raise ValueError('inputs should be a list or tuple.') num_layer = len(inputs) if num_layer <= 2: assert min_sizes is not None and max_sizes is not None assert len(min_sizes) == num_layer and len(max_sizes) == num_layer elif min_sizes is None and max_sizes is None: min_sizes = [] max_sizes = [] step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2))) for ratio in six.moves.range(min_ratio, max_ratio + 1, step): min_sizes.append(base_size * ratio / 100.) max_sizes.append(base_size * (ratio + step) / 100.) min_sizes = [base_size * .10] + min_sizes max_sizes = [base_size * .20] + max_sizes if aspect_ratios: _is_list_or_tuple_and_equal( aspect_ratios, num_layer, 'aspect_ratios should be list or tuple, and the length of inputs ' 'and aspect_ratios should be the same.') if step_h: _is_list_or_tuple_and_equal( step_h, num_layer, 'step_h should be list or tuple, and the length of inputs and ' 'step_h should be the same.') if step_w: _is_list_or_tuple_and_equal( step_w, num_layer, 'step_w should be list or tuple, and the length of inputs and ' 'step_w should be the same.') if steps: _is_list_or_tuple_and_equal( steps, num_layer, 'steps should be list or tuple, and the length of inputs and ' 'step_w should be the same.') step_w = steps step_h = steps mbox_locs = [] mbox_confs = [] box_results = [] var_results = [] for i, input in enumerate(inputs): min_size = min_sizes[i] max_size = max_sizes[i] if not _is_list_or_tuple_(min_size): min_size = [min_size] if not _is_list_or_tuple_(max_size): max_size = [max_size] aspect_ratio = [] if aspect_ratios is not None: aspect_ratio = aspect_ratios[i] if not _is_list_or_tuple_(aspect_ratio): aspect_ratio = [aspect_ratio] step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0] box, var = prior_box(input, image, min_size, max_size, aspect_ratio, variance, flip, clip, step, offset, None, min_max_aspect_ratios_order) box_results.append(box) var_results.append(var) num_boxes = box.shape[2] # get loc num_loc_output = num_boxes * 4 mbox_loc = nn.conv2d( input=input, num_filters=num_loc_output, filter_size=kernel_size, padding=pad, stride=stride) mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1]) compile_shape = [ mbox_loc.shape[0], cpt.floor_division( mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3], 4), 4 ] run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32")) mbox_loc_flatten = nn.reshape( mbox_loc, shape=compile_shape, actual_shape=run_shape) mbox_locs.append(mbox_loc_flatten) # get conf num_conf_output = num_boxes * num_classes conf_loc = nn.conv2d( input=input, num_filters=num_conf_output, filter_size=kernel_size, padding=pad, stride=stride) conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1]) new_shape = [0, -1, num_classes] compile_shape = [ conf_loc.shape[0], cpt.floor_division(conf_loc.shape[1] * conf_loc.shape[2] * conf_loc.shape[3], num_classes), num_classes ] run_shape = tensor.assign( numpy.array([0, -1, num_classes]).astype("int32")) conf_loc_flatten = nn.reshape( conf_loc, shape=compile_shape, actual_shape=run_shape) mbox_confs.append(conf_loc_flatten) if len(box_results) == 1: box = box_results[0] var = var_results[0] mbox_locs_concat = mbox_locs[0] mbox_confs_concat = mbox_confs[0] else: reshaped_boxes = [] reshaped_vars = [] for i in range(len(box_results)): reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3)) reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3)) box = tensor.concat(reshaped_boxes) var = tensor.concat(reshaped_vars) mbox_locs_concat = tensor.concat(mbox_locs, axis=1) mbox_confs_concat = tensor.concat(mbox_confs, axis=1) box.stop_gradient = True var.stop_gradient = True return mbox_locs_concat, mbox_confs_concat, box, var
e3fabec0dd64fec9caea929e0bf4c04848d22df6
3,657,112
from operator import invert import numpy def expandMask(img, shrink = False, step = 1): """Grow or shrink a mask by a pixel.""" if shrink: img = invert(img) img = jitterSum(img.data, step) > 0 img = Image(data = img.astype(numpy.uint8)*255) if shrink: img = invert(img) return img
4853a0c42856cc34a5b9b58533d335c0ac858345
3,657,113
def isHeader(line): """ tests to see if 'line' is in the event file header """ if containsAny(line, 'EVF Filename:', 'Generation Time:', 'Start_time:', 'End_time:', 'events in list)', '#', 'Include:', 'Init_value:'): return True elif len(line) < 3: return True else: return False
548d0273b174c16e7ab874fe8a94d4ec7e87703b
3,657,114
import requests def redirect_page(source_url, destination_url): """returns False is current page is not 200""" def _check_redirect(full_url): print('Getting ' + full_url) response = requests.get(full_url, allow_redirects=False) if response.status_code == 200: print("Was 200") return True elif response.status_code == 404: print("Was 404") return False elif response.status_code == 301: print("Was 301") return False else: raise Exception("UNEXPECTED STATUS CODE {} FOR {}".format( response.status_code, full_url)) return True full_source_url = 'https://www.gov.uk' + source_url full_destination_url = 'https://www.gov.uk' + destination_url return _check_redirect(full_source_url) and _check_redirect( full_destination_url)
8caa9db41948f44cc015ca51f179ff318eb22ada
3,657,115
def semantic_analysis(program, print_results=True): """ TODO :param program: TODO :param print_results: TODO :return: TODO """ semanter = make_semantic_analyser() program_ir = semanter.transform(program) if print_results: print_readable_ast(program_ir) return program_ir
5921e93c8d60a367a13e8154cffaf9e630a7f4ba
3,657,116
def WrapWithQuotes(text, quote='"'): """ Wrap the supplied text with quotes Args: text: Input text to wrap quote: Quote character to use for wrapping (default = "") Returns: Supplied text wrapped in quote char """ if not text.startswith(quote): text = quote + text if not text.endswith(quote): text = text + quote return text
f4f7b83d60e3ea928e3502b9d19ca4c8d52914b9
3,657,117
import os def get_fastsync_bin(venv_dir, tap_type, target_type): """ Get the absolute path of a fastsync executable """ source = tap_type.replace('tap-', '') target = target_type.replace('target-', '') fastsync_name = f'{source}-to-{target}' return os.path.join(venv_dir, 'pipelinewise', 'bin', fastsync_name)
113835e7620bd378d87cdd162b842e1f7c3a86dc
3,657,118
def login_aws_via_idp(session, username, password, entity_id): """ Get a SAML assertion and set of AWS roles which can be assumed with the SAML assertion. """ logger.info("Looking up your IdP") idp_url, idp_form = get_idp_login_form( session, username, password, entity_id) logger.info("Logging in to %s", idp_url) idp_response = session.post(idp_url, data=idp_form) idp_response.raise_for_status() logger.info("Parsing response and presenting assertion to CILogon") cilogon_url, payload = parse_idp_login_response(idp_response.text) scimma_saml_proxy_response = session.post(cilogon_url, data=payload) scimma_saml_proxy_response.raise_for_status() logger.info("Login complete, extracting credentials") assertion = parse_scimma_sample_response(scimma_saml_proxy_response.text) roles = parse_scimma_aws_assertion(assertion) return assertion, roles
586250b66771275b5282ae0e22d40298550164e2
3,657,119
def fit_linreg(x, y, intercept=True): """Simple linear regression: y = kx + b. Arguments --------- x: :class:`~numpy.ndarray` A vector of independent variables. y: :class:`~numpy.ndarray` A vector of dependent variables. intercept: bool If using steady state assumption for fitting, then: True -- the linear regression is performed with an unfixed intercept; False -- the linear regresssion is performed with a fixed zero intercept. Returns ------- k: float The estimated slope. b: float The estimated intercept. """ mask = np.logical_and(~np.isnan(x), ~np.isnan(y)) xx = x[mask] yy = y[mask] ym = np.mean(yy) xm = np.mean(xx) if intercept: cov = np.mean(xx * yy) - xm * ym var_x = np.mean(xx * xx) - xm * xm k = cov / var_x b = ym - k * xm else: k = np.mean(yy) / np.mean(xx) b = 0 return k, b
18248eb0ece96dfda5fbc2d94a591f98570feddd
3,657,120
import torch def entropy(x, input_as_probabilities): """ Helper function to compute the entropy over the batch input: batch w/ shape [b, num_classes] output: entropy value [is ideally -log(num_classes)] """ if input_as_probabilities: x_ = torch.clamp(x, min = 1e-8) b = x_ * torch.log(x_) else: b = F.softmax(x, dim = 1) * F.log_softmax(x, dim = 1) if len(b.size()) == 2: # Sample-wise entropy return -b.sum(dim = 1).mean() elif len(b.size()) == 1: # Distribution-wise entropy return - b.sum() else: raise ValueError('Input tensor is %d-Dimensional' %(len(b.size())))
9cf9f5ecd59ffe068bbf8f25da62ac3c5c2eedb6
3,657,121
from typing import Callable def find_function_in_object(o: object, function_name: str) -> Callable: """Finds a callable object matching given function name in given object. Args: o: Any object. function_name: Name of attribute within o. Returns: Callable object with name <function_name> in object <o>. Raises: LookupError: if <function_Name> is not a callable object in <o>. """ try: function_handle = getattr(o, function_name) if not hasattr(function_handle, "__call__"): raise LookupError( f"Resolved object {function_name} in object {o} is not a function." ) else: return function_handle except AttributeError: raise LookupError(f"Cannot find function {function_name} in object {o}.")
c3b6ad12f42d005f643bc8a657f728613bd0e93c
3,657,122
async def refresh(db: AsyncSession, schema: RefreshToken): """ Refresh token :param db: DB :type db: AsyncSession :param schema: Refresh token :type schema: RefreshToken :return: Access token :rtype: dict :raise HTTPException 400: User not found """ username = verify_refresh_token(schema.refresh_token) if not await user_crud.exists(db, username=username): raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail='User not found') user = await user_crud.get(db, username=username) return create_token(user.id, username)
f20cde1c44ef515c18318c45af9df4bb360c85e6
3,657,123
def gumbel_softmax(logits, temperature, hard=False): """Sample from the Gumbel-Softmax distribution and optionally discretize. Args: logits: [batch_size, n_class] unnormalized log-probs temperature: non-negative scalar hard: if True, take argmax, but differentiate w.r.t. soft sample y Returns: [batch_size, n_class] sample from the Gumbel-Softmax distribution. If hard=True, then the returned sample will be one-hot, otherwise it will be a probabilitiy distribution that sums to 1 across classes """ y = gumbel_softmax_sample(logits, temperature) if hard: y_hard = tf.cast(tf.equal(y, tf.reduce_max(y, 1, keep_dims=True)), y.dtype) y = tf.stop_gradient(y_hard - y) + y return y
7612ef322acf77f8c2fdf1963b6d15934f84b416
3,657,124
import copy def dqn_learn(t, agent, env, env_state, history, args): """Learning loop for DeepQAgent""" step_type, reward, discount, state = env_state state = copy.deepcopy(state) # Act action = agent.act_explore(state) step_type, reward, discount, successor = env.step(action) # Learn if args.cheat: # TODO: fix this, since _get_hidden_reward seems to be episodic reward = env._get_hidden_reward() loss = agent.learn(state, action, reward, successor) history['writer'].add_scalar('Train/loss', loss, t) # Modify exploration eps = agent.update_epsilon() history['writer'].add_scalar('Train/epsilon', eps, t) # Sync target and policy networks if t % args.sync_every == args.sync_every - 1: agent.sync_target_Q() return (step_type, reward, discount, successor), history
1ff3333ef9f2492866a1b32540c5440d3683d600
3,657,125
def build_custom_Theta( data, data_description=[], add_constant_term=True, ): """ builds a matrix Theta(U) from a predefined set of terms This is used when we subsample and take all the derivatives point by point or if there is an extra input to put in. input: data: column 0 is U derivatives_description: description of candidate terms in Theta P: max power of polynomial function of U to be included in Theta returns: Theta = Theta(U,Q) descr = description of what all the columns in Theta are """ if len(data) > 0: n, m = data.shape # Add first column of Theta as ones. Theta = np.array([], dtype=np.complex64).reshape((n, 0)) descr = [] # Add "u"-part into Theta if len(data_description) > 0: Theta = np.hstack([Theta, data]) descr += data_description return Theta, descr
451c306124e94d5f04d436c98ede6af232a6458e
3,657,126
import pathlib from typing import Optional import importlib def load(plugin: pathlib.Path) -> Optional[ModuleType]: """Load a specific cemu plugin Args: plugin (pathlib.Path): the path of the plugin to load Returns: Optional[ModuleType]: the loaded plugin module on success, None if there's no plugin, or it is invalid """ try: if plugin.is_file(): mod = importlib.import_module(f"cemu.plugins.{plugin.stem}") elif plugin.is_dir(): mod = importlib.import_module(f"cemu.plugins.{plugin.name}") else: raise ImportError("invalid format") except ImportError as ie: error(f"Failed to import '{plugin}' - reason: {str(ie)}") return None if not hasattr(mod, "register"): error(f"Plugin '{plugin.stem}' has no `register` method") return None return mod
eac265743ba9a58842cf7e97a1b961234ea3b17b
3,657,127
from datetime import datetime import logging import os def get_standard_logger(name, log_dir=None): """Function to return an instance of type logger.""" if log_dir is None: log_dir = '/Users/teaton/dev/fantasyAM/logs' time_stamp = datetime.now().strftime('%Y%m%d_%H%M%S') logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(name) logger.setLevel(logging.INFO) # Create a file handler os.makedirs(log_dir, exist_ok=True) handler = logging.FileHandler(os.path.join(log_dir, f'{name}_{time_stamp}.log')) handler.setLevel(logging.INFO) # Create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger logger.addHandler(handler) return logger
1e0c4d6ea3ee74d7f5c88f2861369fd3a37f7750
3,657,128
import traceback def getDatabaseConnection(databaseString): """Attempt connection to the database""" sqlsession = None try: sqlengine = sqlalchemy.create_engine(databaseString) SQLSession = sessionmaker(bind=sqlengine) sqlsession = SQLSession() print("Connection to " + databaseString + " successfull") except Exception as e: print(traceback.format_exc()) print("Error in connection to the database") return sqlsession
8199838e24c6828977d5fe6a7f2af20f755f25f6
3,657,129
def prepare_multiple_configs(conf): """ This function uses workload_1 as a base, and then duplicates its configuration for all other workloads 2,3... while leaving properties already defined in subsequent workloads (2,3..) unchanged. """ keys_starting_with_workload = [] for k, _ in conf.iteritems(): if k.startswith("workload"): keys_starting_with_workload.append(k) for k in keys_starting_with_workload: if k != "workload_1": merge_dicts(dst_dic=conf[k], src_dic=conf["workload_1"], overwrite=False) return conf, keys_starting_with_workload
760adf50bbca9dd160375ed8d506a33618d39a94
3,657,130
def undo_coefficient_scaling(clf = None, coefficients = None, intercept = 0.0, scaler = None): """ given coefficients and data for scaled data, returns coefficients and intercept for unnormalized data w = w_scaled / sigma b = b_scaled - (w_scaled / sigma).dot(mu) = b_scaled - w.dot(mu) :param sklearn linear classifier :param coefficients: vector of coefficients :param intercept: scalar for the intercept function :param scaler: sklearn.Scaler or :return: coefficients and intercept for unnormalized data """ if coefficients is None: assert clf is not None assert intercept == 0.0 assert hasattr(clf, 'coef_') coefficients = clf.coef_ intercept = clf.intercept_ if hasattr(clf, 'intercept_') else 0.0 if scaler is None: w = np.array(coefficients) b = float(intercept) else: isinstance(scaler, StandardScaler) x_shift = np.array(scaler.mean_) x_scale = np.sqrt(scaler.var_) w = coefficients / x_scale b = intercept - np.dot(w, x_shift) w = np.array(w).flatten() b = float(b) return w, b
cee60338386bdc87cb50e4b54af43517135fba46
3,657,131
import copy def reduce(snail_nr): """Returns a fully reduced version of the given snail number.""" new_snail_nr = copy.deepcopy(snail_nr) # print("Start:") # print(snail_nr) while True: # print("\nNew reduction phase...") if explode_in_place(new_snail_nr): # print("Exploded:", new_snail_nr) continue # else: # print("No explode.") if split_in_place(new_snail_nr): # print("Split:", new_snail_nr) continue # else: # print("No split.") break # print(new_snail_nr) return new_snail_nr
1facd7a7bbc73794ff2519ef0894ec9536c18690
3,657,132
def load_image_embedding_model(input_repr, content_type, embedding_size): """ Returns a model with the given characteristics. Loads the model if the model has not been loaded yet. Parameters ---------- input_repr : "linear", "mel128", or "mel256" Spectrogram representation used for audio model. content_type : "music" or "env" Type of content used to train embedding. embedding_size : 8192 or 512 Embedding dimensionality. Returns ------- model : tf.keras.Model Model object. """ model_path = get_image_embedding_model_path(input_repr, content_type) return load_image_embedding_model_from_path(model_path, embedding_size)
f78d458e2cd000206d3fcc35c166ede43e84e8fd
3,657,133
def prepare_alm(alm=None, ainfo=None, lmax=None, pre=(), dtype=np.float64): """Set up alm and ainfo based on which ones of them are available.""" if alm is None: if ainfo is None: if lmax is None: raise ValueError("prepare_alm needs either alm, ainfo or lmax to be specified") ainfo = sharp.alm_info(lmax) alm = np.zeros(pre+(ainfo.nelem,), dtype=np.result_type(dtype,0j)) else: ainfo = sharp.alm_info(nalm=alm.shape[-1]) return alm, ainfo
21406a6b3df7e63eeb05998c8940e525021b62ce
3,657,134
from typing import Any def increment_occurance_dict(d: dict, k: Any) -> None: """ Increment occurance dict, updates in-place so nothing is returned. """ try: d[k] += 1 except KeyError: d[k] = 1 return None
725b437494f4c647848c54a3d13b4e974fa7f0e8
3,657,135
import sys import os import pathlib def package_versions(modules=None, builtins=False, standard_lib=None): """Retrieve package version information. When builtins or standard_lib are None, they will be included only if a version was found in the package. @param modules: Modules to inspect @type modules: list of strings @param builtins: Include builtins @type builtins: Boolean, or None for automatic selection @param standard_lib: Include standard library packages @type standard_lib: Boolean, or None for automatic selection """ if not modules: modules = sys.modules.keys() std_lib_dir = get_python_lib(standard_lib=True) root_packages = {key.split('.')[0] for key in modules} builtin_packages = {name.split('.')[0] for name in root_packages if name in sys.builtin_module_names or '_' + name in sys.builtin_module_names} # Improve performance by removing builtins from the list if possible. if builtins is False: root_packages = list(root_packages - builtin_packages) std_lib_packages = [] paths = {} data = {} for name in root_packages: try: package = import_module(name) except ImportError as e: data[name] = {'name': name, 'err': e} continue info = {'package': package, 'name': name} if name in builtin_packages: info['type'] = 'builtins' if '__file__' in package.__dict__: # Determine if this file part is of the standard library. if os.path.normcase(package.__file__).startswith( os.path.normcase(std_lib_dir)): std_lib_packages.append(name) if standard_lib is False: continue info['type'] = 'standard libary' # Strip '__init__.py' from the filename. path = package.__file__ if '__init__.py' in path: path = path[0:path.index('__init__.py')] if PY2: path = path.decode(sys.getfilesystemencoding()) info['path'] = path assert path not in paths, 'Path of the package is in defined paths' paths[path] = name if '__version__' in package.__dict__: info['ver'] = package.__version__ elif name.startswith('unicodedata'): info['ver'] = package.unidata_version # If builtins or standard_lib is None, # only include package if a version was found. if (builtins is None and name in builtin_packages) or \ (standard_lib is None and name in std_lib_packages): if 'ver' in info: data[name] = info else: # Remove the entry from paths, so it isn't processed below del paths[info['path']] else: data[name] = info # Remove any pywikibot sub-modules which were loaded as a package. # e.g. 'wikipedia_family.py' is loaded as 'wikipedia' _program_dir = _get_program_dir() if isinstance(pathlib, Exception): dir_parts = _program_dir.split(os.sep) else: dir_parts = pathlib.Path(_program_dir).parts length = len(dir_parts) for path, name in paths.items(): if isinstance(pathlib, Exception): lib_parts = os.path.normpath(path).split(os.sep) else: lib_parts = pathlib.Path(path).parts if dir_parts != lib_parts[:length]: continue if lib_parts[length] != '.tox': del data[name] return data
3962c29740c8b7ee9214a3d343a5774973344563
3,657,136
import scipy def closest_line(query_lines, metric='cosine'): """Compute the distance to, and parameters for, the closest line to each line in query_lines. Args: - query_lines: Array of lines to compute closest matches for, shape (n_lines, width, height, 1) - metric: String to pass to scipy.spatial.distance.cdist to choose which distance metric to use Returns: - min_dist, starts, ends: Arrays of shape (n_lines,) denoting the distance to the nearest ``true'' line and the start and end points. """ h, w = query_lines.shape[1:-1] # Construct 10000 lines with these dimensions angles = np.linspace(0, 2*np.pi - 2*np.pi/10000, 10000) all_lines = np.array( [(data.draw_line(angle, h, w)) for angle in angles]) # Produce vectorized versions of both for use with scipy.spatial flat_query = query_lines.reshape(query_lines.shape[0], -1) flat_all = all_lines.reshape(all_lines.shape[0], -1) # Compute pairwise distance matrix of query lines with all valid lines distances = scipy.spatial.distance.cdist(flat_query, flat_all, metric) min_dist_idx = np.argmin(distances, axis=-1) min_dist = distances[np.arange(distances.shape[0]), min_dist_idx] angles = np.array([angles[n] for n in min_dist_idx]) return min_dist, angles
187cb6f8266ddf7bd0347fb233fb02a7ea4cbad3
3,657,137
def deref_vtk(obj): """Dereferences the VTK object from the object if possible.""" if isinstance(obj, TVTKBase): return obj._vtk_obj else: return obj
1ba46f83a389983df3c35f011c94836f12fdd905
3,657,138
def order_assignee_factory(team): """ Creates a :class:`datahub.omis.order.models.OrderAssignee` instance related to ``team`` """ adviser = Advisor.objects.create( first_name='John', last_name='Doe', email=f'{uuid4()}@example.com', ) order_assignee = OrderAssignee.objects.create( order=Order.objects.create( company=Company.objects.create(), contact=Contact.objects.create(primary=True), primary_market=Country.objects.create(), ), adviser=adviser, created_by=adviser) order_assignee.team = team order_assignee.save() return order_assignee
fe39d16a105ff01be63614e76dcf001b5ca4171f
3,657,139
def is_bool(space, w_obj): """ Finds out whether a variable is a boolean""" return space.wrap(w_obj.tp == space.tp_bool)
39b62ec08ebbdd4d7505e558ad4901ca67afc12d
3,657,140
from typing import Tuple from typing import Dict from typing import List from typing import Callable from typing import Any def _compile_for_uhfqa( device: zhinst.Device, cached_schedule: schedule_helpers.CachedSchedule, settings_builder: zi_settings.ZISettingsBuilder, ) -> Tuple[zi_settings.ZISettingsBuilder, ZIAcquisitionConfig]: """ Initialize programming the UHFQA ZI Instrument. Creates a sequence program and converts schedule pulses to waveforms for the UHFQA. Parameters ---------- device : cached_schedule : settings_builder : Returns ------- : """ instrument_info = zhinst.InstrumentInfo( clock_rate=device.clock_rate, resolution=8, granularity=WAVEFORM_GRANULARITY[device.device_type], ) channels = device.channels channels = list(filter(lambda c: c.mode == enums.SignalModeType.REAL, channels)) awg_index = 0 channel = channels[awg_index] logger.debug(f"[{device.name}-awg{awg_index}] {str(device)}") mixer_corrections = ( channel.mixer_corrections if not channel.mixer_corrections is None else common.MixerCorrections() ) settings_builder.with_defaults( [ ("awgs/0/single", 1), ("qas/0/rotations/*", (1 + 1j)), ("qas/0/integration/sources/*", 0), ] ).with_sigouts(0, (1, 1)).with_awg_time( 0, device.clock_select ).with_qas_integration_weights_real( range(NUM_UHFQA_READOUT_CHANNELS), np.zeros(MAX_QAS_INTEGRATION_LENGTH) ).with_qas_integration_weights_imag( range(NUM_UHFQA_READOUT_CHANNELS), np.zeros(MAX_QAS_INTEGRATION_LENGTH) ).with_sigout_offset( 0, mixer_corrections.dc_offset_I ).with_sigout_offset( 1, mixer_corrections.dc_offset_Q ) logger.debug(f"[{device.name}-awg{awg_index}] channel={str(channel)}") instructions = get_execution_table( cached_schedule, instrument_info, channel, ) # Generate a dictionary of uuid(s) and zhinst.Wave instructions wave_instructions_dict: Dict[int, zhinst.Wave] = dict( (i.uuid, i) for i in instructions if isinstance(i, zhinst.Wave) ) # Create a list of all pulse_id(s). pulse_ids: List[int] = wave_instructions_dict.keys() # Generate map containing waveform the location of a pulse_id. waveform_table: Dict[int, int] = zi_helpers.get_waveform_table( pulse_ids, cached_schedule.pulseid_pulseinfo_dict ) # Create a dictionary of uuid(s) and numerical waveforms. waveforms_dict: Dict[int, np.ndarray] = dict( (uuid, wf_instr.waveform) for uuid, wf_instr in wave_instructions_dict.items() ) # Create a dictionary of uuid(s) and zhinst.Measure instructions n_acquisitions = sum(isinstance(x, zhinst.Measure) for x in instructions) measure_instructions_dict: Dict[int, zhinst.Measure] = dict( (i.uuid, i) for i in instructions if isinstance(i, zhinst.Measure) ) # Generate and apply sequencer program seqc = _assemble_uhfqa_sequence( cached_schedule=cached_schedule, device=device, instrument_info=instrument_info, output=device.channel_0, waveform_table=waveform_table, instructions=instructions, ) logger.debug(seqc) settings_builder.with_compiler_sourcestring(awg_index, seqc) # Apply waveforms to AWG _add_wave_nodes(device, awg_index, waveforms_dict, waveform_table, settings_builder) # Get a list of all acquisition protocol channels acq_channel_resolvers_map: Dict[int, Callable[..., Any]] = dict() # the unique acquisitions are acquisitions unique_acquisition_hashes = [] for acq_uuid, acq_info in cached_schedule.acqid_acqinfo_dict.items(): # the acquisition index is not required for configuring the integration weights. # we use a hash to identify which acquisitions are identical in this context. acq_hash = make_hash(acq_info.copy().pop("acq_index")) if acq_hash in unique_acquisition_hashes: continue unique_acquisition_hashes.append(acq_hash) acq_protocol: str = acq_info["protocol"] acq_duration: float = acq_info["duration"] acq_channel: int = acq_info["acq_channel"] integration_length = round(acq_duration * instrument_info.clock_rate) logger.debug( f"[{device.name}] acq_info={acq_info} " + f" acq_duration={acq_duration} integration_length={integration_length}" ) settings_builder.with_qas_integration_mode( zhinst.QasIntegrationMode.NORMAL ).with_qas_integration_length(integration_length).with_qas_result_enable( False ).with_qas_monitor_enable( False ).with_qas_delay( 0 ) if acq_protocol == "trace": # Disable Weighted integration because we'd like to see # the raw signal. settings_builder.with_qas_monitor_enable(True).with_qas_monitor_averages( cached_schedule.schedule.repetitions ).with_qas_monitor_length( integration_length ).with_qas_integration_weights_real( range(NUM_UHFQA_READOUT_CHANNELS), np.ones(MAX_QAS_INTEGRATION_LENGTH) ).with_qas_integration_weights_imag( range(NUM_UHFQA_READOUT_CHANNELS), np.ones(MAX_QAS_INTEGRATION_LENGTH) ) monitor_nodes = ( "qas/0/monitor/inputs/0/wave", "qas/0/monitor/inputs/1/wave", ) acq_channel_resolvers_map[acq_channel] = partial( resolvers.monitor_acquisition_resolver, monitor_nodes=monitor_nodes ) else: measure_instruction: zhinst.Measure = measure_instructions_dict[acq_uuid] # Combine a reset and setting acq weights # by slicing the length of the waveform I and Q values. # This overwrites 0..length with new values. # The waveform is slightly larger then the integration_length # because of the waveform granularity. This is irrelevant # due to the waveform being appended with zeros. Therefore # avoiding an extra slice of waveform[0:integration_length] weights_i = np.zeros(MAX_QAS_INTEGRATION_LENGTH) weights_q = np.zeros(MAX_QAS_INTEGRATION_LENGTH) weights_i[ 0 : len(measure_instruction.weights_i) ] = measure_instruction.weights_i weights_q[ 0 : len(measure_instruction.weights_q) ] = measure_instruction.weights_q settings_builder.with_qas_result_mode( zhinst.QasResultMode.CYCLIC ).with_qas_result_source( zhinst.QasResultSource.INTEGRATION ).with_qas_result_length( n_acquisitions ).with_qas_result_enable( True ).with_qas_result_averages( cached_schedule.schedule.repetitions ) # set the integration weights, note that we need to set 4 weights in order # to use a complex valued weight function in the right way. # Z = (w0*sI + w1*sQ) + 1j ( w1*sI - w0 * sQ) settings_builder.with_qas_integration_weights_real( 2 * acq_channel, list(weights_i) ).with_qas_integration_weights_imag( 2 * acq_channel, list(weights_q) ).with_qas_integration_weights_real( 2 * acq_channel + 1, list(weights_q) ).with_qas_integration_weights_imag( 2 * acq_channel + 1, list(-1 * weights_i) ) # Create partial function for delayed execution acq_channel_resolvers_map[acq_channel] = partial( resolvers.result_acquisition_resolver, result_nodes=[ f"qas/0/result/data/{2*acq_channel}/wave", f"qas/0/result/data/{2*acq_channel+1}/wave", ], ) settings_builder.with_qas_result_reset(0).with_qas_result_reset(1) settings_builder.with_qas_monitor_reset(0).with_qas_monitor_reset(1) return settings_builder, ZIAcquisitionConfig( n_acquisitions, acq_channel_resolvers_map )
ba01201bac5bb40101009145e7cf4a0fca5684aa
3,657,141
import os import yaml import logging def read_config(): """Parses config and returns config values :returns: config as dict """ dirname = os.path.dirname(__file__) config_path = os.path.join(dirname, 'config.yaml') try: stream = open(config_path, "r") except FileNotFoundError: return None try: config = yaml.safe_load(stream) except yaml.YAMLError as exception: logging.error("YAML error while parsing config.yaml:\n%s", exception) exit() # Remove / on the end of url if "url" in config: config["url"] = config["url"].rstrip("/") return config
d8584727983880591675fcb99dbcc4b9a3a75626
3,657,142
def air_density(t_f, elevation): """Eq 20, page 25""" return (1.293 - 1.525e-4 * elevation + 6.379e-9 * elevation ** 2) / ( 1 + 0.00367 * t_f )
d5677c755fc52e1ae8cc5293d4ed5c9a4debb71d
3,657,143
def _strip_after_new_lines(s): """Removes leading and trailing whitespaces in all but first line.""" lines = s.splitlines() if len(lines) > 1: lines = [lines[0]] + [l.lstrip() for l in lines[1:]] return '\n'.join(lines)
247cee0f34ab1e742069e05c8c00095cd24d80bc
3,657,144
def make_connection(request): """ Create a StreamSplitRoutine from a MockConnection and a container, return topics 'A' and 'B' as well as the routine """ def generate(*, max_items_send: int): return MockConnection(max_items_send=max_items_send) yield generate
a0a4adbdf6fb7487d27f9e81c8f4bb5af49fae58
3,657,145
import copy def my_browse(*args, **kwargs): """ Creates and starts an ObjectBrowser with modified summary column. """ attribute_columns = copy.deepcopy(DEFAULT_ATTR_COLS) summary_column = [col for col in attribute_columns if col.name == 'summary'][0] summary_column.data_fn = my_summary return browse(*args, attribute_columns = attribute_columns, **kwargs)
3f5e681112bf5dd7a56a3259e188a1c5773f2cf5
3,657,146
import psutil def cpu_min_frequency(): """ Returns the processor minimum frequency, in Mhz (> int) """ return psutil.cpu_freq().min
de4312ccd95e46d6d157bdb1a08d48fe5924942f
3,657,147
def log_error(message: str) -> str: """error log""" return message
dbd86c39bc504dbac8d308e124c73310df21f372
3,657,148
from datetime import datetime from operator import or_ from operator import and_ def exclude_preservation_pending(q): """ Transform query to exclude MuseumObject entries which are pending preservation """ now = datetime.datetime.now(datetime.timezone.utc) preservation_boundary = now - PRESERVATION_DELAY update_boundary = now - UPDATE_DELAY return ( q.outerjoin( MuseumPackage, MuseumPackage.id == MuseumObject.latest_package_id ) .filter( # If any of the four conditions is true, the object will not # be preserved and are thus included in this query: or_( # 1. Is metadata information still incomplete? MuseumObject.metadata_hash == None, MuseumObject.attachment_metadata_hash == None, # 2. Is the object frozen? MuseumObject.frozen, # 3. The object hasn't been preserved, but it has been less # than a month passed since the creation of the object? and_( MuseumObject.latest_package_id == None, coalesce( MuseumObject.created_date, datetime.datetime.min ) > preservation_boundary ), # 4. Has the object entered preservation before, but... and_( MuseumObject.latest_package_id != None, # ...the package wasn't cancelled, and either... MuseumPackage.cancelled == False, or_( # ...modification date hasn't changed? coalesce( MuseumPackage.object_modified_date, datetime.datetime.min ) == coalesce( MuseumObject.modified_date, datetime.datetime.min ), # ...modification date has changed, but it's been # less than a month? coalesce( MuseumPackage.object_modified_date, datetime.datetime.min ) > update_boundary, # ...metadata hashes haven't changed, indicating no # change has happened? and_( MuseumPackage.metadata_hash == MuseumObject.metadata_hash, MuseumPackage.attachment_metadata_hash == MuseumObject.attachment_metadata_hash ) ) ) ) ) )
a43eefeaaac16ac872ae02bd522873966e5f21e2
3,657,149
from datetime import datetime def naturalday(value, format=None): """ For date values that are tomorrow, today or yesterday compared to present day returns representing string. Otherwise, returns a string formatted according to settings.DATE_FORMAT. """ value = localtime(value) try: tzinfo = getattr(value, 'tzinfo', None) value = date(value.year, value.month, value.day) except AttributeError: # Passed value wasn't a date object. return value except ValueError: # Date arguments out of range. return value today = datetime.now(tzinfo).date() delta = value - today if delta.days > 7: return date_format(value, format) elif delta.days > 2: if value.weekday() == 0: return _('Next Monday') elif value.weekday() == 1: return _('Next Tuesday') elif value.weekday() == 2: return _('Next Wednesday') elif value.weekday() == 3: return _('Next Thursday') elif value.weekday() == 4: return _('Next Friday') elif value.weekday() == 5: return _('Next Saturday') else: return _('Next Sunday') elif delta.days == 2: return _('After tomorrow') elif delta.days == 1: return _('Tomorrow') elif delta.days == 0: return _('Today') elif delta.days == -1: return _('Yesterday') elif delta.days == -2: return _('Before yesterday') elif delta.days > -7: if value.weekday() == 0: return _('Last Monday') elif value.weekday() == 1: return _('Last Tuesday') elif value.weekday() == 2: return _('Last Wednesday') elif value.weekday() == 3: return _('Last Thursday') elif value.weekday() == 4: return _('Last Friday') elif value.weekday() == 5: return _('Last Saturday') else: return _('Last Sunday') else: return date_format(value, format)
fbc1fe32f5735f57c989488989aabd427a59c160
3,657,150
import tensorflow as tf from torch.utils.data import DataLoader def test_adaptors(adaptor: str, shuffle_buffer_size: int): """ Test if framework-specific generator adpators yield batches. """ idx = np.arange(0, 10) def map_fn(x_, obs_): """ Note: Need to convert to numpy in output because torch does not accept dask. """ return (np.asarray(x_[:, :2]),), kwargs = {"idx": {"Mus musculus": idx}, "obs_keys": [], "randomized_batch_access": False, "retrieval_batch_size": 2, "map_fn": map_fn} cart = _get_cart(store_format="dao", feature_space="single", **kwargs) if adaptor == "python": kwargs = {} elif adaptor == "tensorflow": kwargs = {"output_signature": ( tf.TensorSpec(shape=(2,), dtype=tf.float32), )} elif adaptor in ["torch", "torch-loader", "torch-iter-loader", "torch-iter"]: kwargs = {} else: assert False it = cart.adaptor(generator_type=adaptor, shuffle_buffer=shuffle_buffer_size, **kwargs) if adaptor == "tensorflow": it = iter(it.range(2)) if adaptor in ["torch", "torch-iter"]: it = list(DataLoader(it)) it = iter(it) if adaptor in ["torch-loader", "torch-iter-loader"]: it = iter(list(it)) _ = next(it)
088bd70f50b63a07f7392f1712de0d6aab9515a2
3,657,151
def qg8_graph_write(filename: str, graph: qg8_graph): """ Wrapper function which prepares a collection of chunks (graph) and writes it to a file """ if not isinstance(graph, qg8_graph): raise TypeError("Second argument is not a qg8_graph") try: qg8f = qg8_file_open(filename, QG8_MODE_WRITE) except: raise IOError("Could not open file in write mode") success = 1 for chunk in graph.chunks: success *= qg8_file_write_chunk(qg8f, chunk) qg8_file_flush(qg8f) qg8_file_close(qg8f) return success
a26891c86df5541cb1ffa3d3eb463bea5472d3d7
3,657,152
def valid_post_author(user, post): """This function checks whether the post was created by the user""" if str(user.key().id()) == str(post.user.key().id()): return True
94ca2f23aa66f79be997080c61fc2f265e868e5f
3,657,153
import json import time import collections from datetime import datetime def listing(request, **kwargs): """view for processing and applying listings""" context = { 'view': 'listing', 'all_channels': CHANNELS, 'all_towns': TOWNS, 'method': request.method, 'actions': ['listing_parse', 'listing_apply'], } if request.method == 'GET': context['action'] = 'show_listingModal' return render(request, 'dvbboxes.html', context) elif request.method == 'POST': if 'listing/apply' in request.path: form = forms.ApplyListingForm(request.POST) if form.is_valid(): context['action'] = 'listing_apply' parsed_data = json.loads(form.cleaned_data['parsed_data']) service_id = form.cleaned_data['service_id'] towns = form.cleaned_data['towns'] if not towns: towns = TOWNS towns.sort() # apply listing to servers in towns days = [data['day'] for data in parsed_data] days = sorted( days, key=lambda x: time.mktime(time.strptime(x, '%d%m%Y')) ) response = dvbboxes.Listing.apply( parsed_data, service_id, towns ) # reorganize response by days result = collections.OrderedDict() for day in days: result[day] = collections.OrderedDict() bar = True for town, data in response.items(): for day, infos in data.items(): for server, statuses in infos.items(): foo = all(statuses.values()) result[day][server] = foo bar = bar and foo context['result'] = result return render(request, 'dvbboxes.html', context) else: context['errors'] = form.errors return render(request, 'dvbboxes.html', context) else: form = forms.UploadListingForm(request.POST, request.FILES) if form.is_valid(): filepath = handle_uploaded_file(request.FILES['filename']) listing = dvbboxes.Listing(filepath) # get listing object days = sorted( listing.days, key=lambda x: datetime.strptime(x, '%d%m%Y') ) # sort days in the listing if len(days) > 31: context['errors'] = ("Cannot process " "more than 31 days") return render(request, 'dvbboxes.html', context) context['action'] = 'listing_parse' missing_files = [ i for i, j in listing.filenames.items() if not j ] # detect missing files in the listing result = collections.OrderedDict() # prepare final result for day in days: result[day] = [] parsed_listing = listing.parse() json_result = [] for data in parsed_listing: infos = collections.OrderedDict() data = json.loads(data) json_result.append(data) day = data['day'] starts = [i for i in data if i != 'day'] starts = sorted( starts, key=lambda x: float(x.split('_')[1])) absent_files = 0 for start in starts: t, i = start.split('_') start_litteral = datetime.fromtimestamp( float(t)).strftime('%H:%M:%S') stop_litteral = datetime.fromtimestamp( float(t)+data[start]['duration']).strftime( '%d-%m-%Y %H:%M:%S') absent = not data[start]['duration'] if absent: absent_files += 1 filename = data[start]['filename'] infos[i] = [ start_litteral, filename, absent ] # we now define if the parsing is fine limit = datetime.strptime(day, '%d%m%Y') + timedelta(1) length_ok = ( datetime.fromtimestamp( float(t)+data[start]['duration']) >= limit ) if not absent_files and length_ok: success = 0 # green elif absent_files and length_ok: success = 1 # lightblue elif not absent_files and not length_ok: success = 2 # orange else: success = 3 # red result[day] = [infos, success, stop_litteral] context['days'] = days context['missing_files'] = missing_files context['result'] = result context['json_result'] = json.dumps(json_result) return render(request, 'dvbboxes.html', context) else: context['errors'] = form.errors return render(request, 'dvbboxes.html', context)
c4938dc4db4526ca93558305ea702660956e77fa
3,657,154
def get_rise_or_fall(U, V, Im, demo=0): """ Get increase or decrease of intensity in flow direction: This finds us the front and the wake regions of each wave. """ rr, cc = np.shape(Im) ax_x, ax_y = np.linspace(1, cc, cc), np.linspace(1, rr, rr) XX, YY = np.meshgrid(ax_x, ax_y) Velo_mag = np.hypot(U, V) nU = U / Velo_mag nV = V / Velo_mag lookahead = 3 # indices of nearby pixels, small span XX_next = np.round(XX + lookahead * nU) YY_next = np.round(YY + lookahead * nV) # interpolate Im_next = map_coordinates( Im, [YY_next.ravel(), XX_next.ravel()], order=3, mode="constant" ).reshape(Im.shape) # wavesign = np.sign(Im_nxt-Im) wavesign = Im_next < Im # test interrupt -demo=3:shelved, 2:activate): if demo == 2: plt.close("all") plt.figure() plt.imshow(wavesign) plt.title("front and wakes areas") plt.xlabel("x (pixels)") plt.ylabel("y (pixels)") plt.show() breakpoint() # click-to-code help return wavesign
a2d86bd986f576054ccd2686af7d9da4ffd3a1f0
3,657,155
import functools def has_vanity_name(func): """Decorator checking whether a command has been provided a vanity_name value""" @functools.wraps(func) async def wrapper(*args, **kwargs): vanity_name = args[1] if vanity_name is None: ctx = args[0] await ctx.send("Please provide a Steam vanity URL or steamid") return return await func(*args, **kwargs) return wrapper
5da3cc410822f0e112a2be1b3cdfc66fb4d79b0c
3,657,156
from typing import List import logging def get_data_providers( data_providers_configs: List[dict], data_providers_input: List[str] ) -> List[data.DataProvider]: """ Determines which data provider and in which order should be used. :param data_providers_configs: A list of data provider configurations :param data_providers_input: A list of data provider names :return: a list of data providers in order. """ logger = logging.getLogger(__name__) data_providers = [] for data_provider_config in data_providers_configs: data_provider_config["class"] = DATA_PROVIDER_MAP[data_provider_config["type"]]( **data_provider_config["parameters"] ) data_providers.append(data_provider_config) selected_data_providers = [] for data_provider_name in data_providers_input: found = False for data_provider_config in data_providers: if data_provider_config["name"] == data_provider_name: selected_data_providers.append(data_provider_config["class"]) found = True break if not found: logger.warning( "The following data provider could not be found: {}".format( data_provider_name ) ) if len(selected_data_providers) == 0: raise ValueError( "None of the selected data providers are available. The following data providers are valid " "options: " + ", ".join( data_provider["name"] for data_provider in data_providers_configs ) ) return selected_data_providers
076659d2bf619808f5cb0ac124839e569af0c74a
3,657,157
def _PredatorForFracas(config=None): """A helper to pass in the standard pipeline class.""" return PredatorForFracas(MOCK_GET_REPOSITORY, config or {})
c7e1e3c771a8b8afa921a291198adc084f75d186
3,657,158
def py_SurfStatSmooth(Y, surf, FWHM): """Smooths surface data by repeatedly averaging over edges. Parameters ---------- Y : numpy array of shape (n,v) or (n,v,k) surface data, v=#vertices, n=#observations, k=#variates. surf : a dictionary with key 'tri' or 'lat', or a BSPolyData object. surf['tri'] = numpy array of shape (t,3), triangle indices, or surf['lat'] = numpy array of shape (nx,ny,nz), 1=in, 0=out, (nx,ny,nz) = size(volume). FWHM : approximate FWHM of Gaussian smoothing filter, in mesh units. Returns ------- Y : numpy array of shape (n,v) or (n,v,k), smoothed data. """ niter = int(np.ceil(pow(FWHM,2) / (2*np.log(2)))) if isinstance(Y, np.ndarray): Y = np.array(Y, dtype='float') if np.ndim(Y) == 2: n, v = np.shape(Y) k = 1 isnum = True elif np.ndim(Y) == 3: n, v, k = np.shape(Y) isnum = True edg = py_SurfStatEdg(surf) + 1 agg_1 = aggregate(edg[:,0], 2, size=(v+1)) agg_2 = aggregate(edg[:,1], 2, size=(v+1)) Y1 = (agg_1 + agg_2)[1:] if n>1: print(' %i x %i surfaces to smooth, %% remaining: 100 '%(n, k)) n10 = np.floor(n/10) for i in range(0, n): if n10 != 0 and np.remainder(i+1, n10) == 0: print('%s ' % str(int(100-(i+1)/n10*10)), end = '') for j in range(0, k): if isnum: if np.ndim(Y) == 2: Ys = Y[i,:] elif np.ndim(Y) == 3: Ys = Y[i,:,j] for itera in range(1, niter+1): Yedg = Ys[edg[:,0]-1] + Ys[edg[:,1]-1]; agg_tmp1 = aggregate(edg[:,0], Yedg, size=(v+1))[1:] agg_tmp2 = aggregate(edg[:,1], Yedg, size=(v+1))[1:] Ys = (agg_tmp1 + agg_tmp2) / Y1 if np.ndim(Y) == 2: Y[i,:] = Ys elif np.ndim(Y) == 3: Y[i,:,j] = Ys if n>1: print('Done') return Y
6b537e33174459cee6364dbd145181c66156830d
3,657,159
from typing import Tuple def arm_name_to_sort_key(arm_name: str) -> Tuple[str, int, int]: """Parses arm name into tuple suitable for reverse sorting by key Example: arm_names = ["0_0", "1_10", "1_2", "10_0", "control"] sorted(arm_names, key=arm_name_to_sort_key, reverse=True) ["control", "0_0", "1_2", "1_10", "10_0"] """ try: trial_index, arm_index = arm_name.split("_") return ("", -int(trial_index), -int(arm_index)) except (ValueError, IndexError): return (arm_name, 0, 0)
c29958bb541a9754e7b4defc6ad953030a364d2f
3,657,160
from typing import Optional from typing import Mapping from typing import Any def run_query_row(cur: Cursor, sql: str, params: Optional[Mapping[str, Any]] = None, **kwargs: Any ) -> Optional[skytools.dbdict]: """ Helper function if everything you need is just paramertisized execute to fetch one row only. If not found none is returned """ params = params or kwargs rows = run_query(cur, sql, params) if len(rows) == 0: return None return rows[0]
0ba46ba0666d0cbefeda5b3fe62ac5ed883a190f
3,657,161
def vortex_indicator(high_arr, low_arr, close_arr, n): """Calculate the Vortex Indicator for given data. Vortex Indicator described here: http://www.vortexindicator.com/VFX_VORTEX.PDF :param high_arr: high price of the bar, expect series from cudf :param low_arr: low price of the bar, expect series from cudf :param close_arr: close price of the bar, expect series from cudf :param n: time steps to do EWM average :return: Vortex Indicator in cudf.Series """ TR = true_range(high_arr.data.to_gpu_array(), low_arr.data.to_gpu_array(), close_arr.data.to_gpu_array()) VM = lowhigh_diff(high_arr.data.to_gpu_array(), low_arr.data.to_gpu_array()) VI = division(Rolling(n, VM).sum(), Rolling(n, TR).sum()) return cudf.Series(VI)
8b34ca26f7cc52361eb95ff1ad17c010fd270759
3,657,162
from typing import Dict def getServiceById(serviceId: str, **kwargs) -> Dict: """Retrieve service by its identifier. Args: serviceId: Identifier of service to be retrieved. Returns: Service object. """ db_collection_service = ( current_app.config['FOCA'].db.dbs['serviceStore'] .collections['services'].client ) obj = db_collection_service.find_one({"id": serviceId}) if not obj: raise NotFound del obj["_id"] return obj
fc568b337495873263f9a7ea85d46ac4bcd55819
3,657,163
from typing import Dict from typing import Any def replace_module_prefix( state_dict: Dict[str, Any], prefix: str, replace_with: str = "", ignore_prefix: str = "" ): """ Remove prefixes in a state_dict needed when loading models that are not VISSL trained models. Specify the prefix in the keys that should be removed. Added by DLM contributors: ignore_prefix is used to ignore certain keys in the state dict """ state_dict = { (key.replace(prefix, replace_with, 1) if key.startswith(prefix) else key): val for (key, val) in state_dict.items() if ((not key.startswith(ignore_prefix)) or ignore_prefix == "") } return state_dict
b8499c818053e7798e9549fbe546bab7d5fbfa84
3,657,164
import os import glob def create_csv(parent_dir, tsv_folder, export_csv = True): """ The function reads all .tsv files, combine them into a csv file, and export .csv file into parent directory Args: parent_dir (string) : The working directory you are working with tsv_folder (string) : The name of the folder that you have stored .tsv files (Attention: It should be in your parent_dir) export_csv (Boolean, Optional) : Set to False if you don't want to store the .csv file in your parent_dir. Default set to True Returns: The .csv file of all combined .tsv files """ if parent_dir[-1] != '/': parent_dir += '/' os.chdir(parent_dir + tsv_folder) extension = 'tsv' all_filenames = [i for i in glob.glob('*.{}'.format(extension))] combined_csv = pd.concat([pd.read_csv(f, delimiter = '\t') for f in all_filenames ]) combined_csv.reset_index(inplace=True, drop= True) print("The csv file has generated! With " + str(len(combined_csv)) + " number of entries.") if export_csv: os.chdir(parent_dir) combined_csv.to_csv( "files/combined_csv.csv", index=False, encoding='utf-8-sig') print("The csv file has been exported to " + parent_dir) return combined_csv else: return combined_csv
a5efd653bbb23dc5b0135b03961521019e183c85
3,657,165
def crop(img, left, top, right, bottom): """ Crop rectangle from image. Inputs: img - The image to crop. left - The leftmost index to crop the image. top - The topmost index. right - The rightmost index. bottom - The bottommost index. Outputs: img - The cropped image. """ return img[left:right, top:bottom]
1507a55bba07dc656f51f873d2328b69f70682c9
3,657,166
import os def cl_file_with_height(tmp_path): """Create netcdf file for ``cl`` with hybrid height coordinate.""" nc_path = os.path.join(tmp_path, 'cl_hybrid_height.nc') dataset = Dataset(nc_path, mode='w') create_hybrid_height_file(dataset, 'cl') dataset.close() return nc_path
ff66c7adb505135a115d7b2ded2b80e2fea942ee
3,657,167
import ipaddress def get_hosts(network): """get_hosts() will return all the hosts within a provided network, range""" network = ipaddress.IPv4Network(network, strict=False) hosts_obj = network.hosts() hosts = [] for i in hosts_obj: hosts.append(str(i)) return hosts
097fa3abbf1cda1c3c0ddc0c2fec4a06d1d44fa9
3,657,168
def select_organization(cursor): """organization情報取得(全取得) Args: cursor (mysql.connector.cursor): カーソル Returns: dict: select結果 """ # select実行 cursor.execute('SELECT * FROM organization ORDER BY organization_id') rows = cursor.fetchall() return rows
6e5c1a2f90d41223ba09fe3278353370515c0430
3,657,169
def _GetInstDisk(index, cb): """Build function for calling another function with an instance Disk. @type index: int @param index: Disk index @type cb: callable @param cb: Callback """ def fn(ctx, inst): """Call helper function with instance Disk. @type ctx: L{InstanceQueryData} @type inst: L{objects.Instance} @param inst: Instance object """ try: nic = inst.disks[index] except IndexError: return _FS_UNAVAIL return cb(ctx, index, nic) return fn
4dc83bb5c7ac3556750f9e3a70f77c9325893fb4
3,657,170
def Jphii_cal(L, W, q, xi_local): """タスク写像のヤコビ行列""" return np.array([[1, 0, -sin(q[2, 0]) * xi_local[0, 0] - cos(q[2, 0]) * xi_local[1, 0]], [0, 1, cos(q[2, 0]) * xi_local[0, 0] - sin(q[2, 0]) * xi_local[1, 0]]], dtype = np.float32) #return np.array([[1, 0, -xi_local[1, 0]], # [0, 1, xi_local[0, 0]]], dtype = np.float32)
300a3724829d8ce2df15801b6ae02e78e8e2e6b7
3,657,171
def model_evalution(test_data): """ function to test the loss and accuracy on validation data """ for X_test, y_test in val_data: y_pred = model(X_test, training=False) val_acc_metrics.update_state(y_test, y_pred) accuracy = val_acc_metrics.result() return float(accuracy)
d581013f50560082f8f6854f201cfd791be6e876
3,657,172
import inspect import numpy def make_python_script_from_list(list_optical_elements1,script_file=""): """ program to build automatically a python script to run shadow3 the system is read from a list of instances of Shadow.Source and Shadow.OE :argument list of optical_elements A python list with intances of Shadow.Source and Shadow.OE objects :param script_file: a string with the name of the output file (default="", no output file) :return: template with the script """ #make sure that the list does not contain lists haslist = sum([isinstance(i,list) for i in list_optical_elements1]) list_optical_elements = list_optical_elements1 if haslist: while(haslist > 0): newlist = [] for i in list_optical_elements: if isinstance(i,list): newlist.extend(i) else: newlist.append(i) list_optical_elements = newlist haslist = sum([isinstance(i,list) for i in list_optical_elements]) #make sure that the list does not contain compoundOE (developed) hascomp = sum([isinstance(i,(Shadow.CompoundOE,Shadow.ShadowLibExtensions.CompoundOE)) for i in list_optical_elements]) if hascomp: newlist = [] for i in list_optical_elements: if isinstance(i,(Shadow.CompoundOE,Shadow.ShadowLibExtensions.CompoundOE)): newlist.extend(i.list) else: newlist.append(i) list_optical_elements = newlist template = """# # Python script to run shadow3. Created automatically with ShadowTools.make_python_script_from_list(). # import Shadow import numpy # write (1) or not (0) SHADOW files start.xx end.xx star.xx iwrite = 0 # # initialize shadow3 source (oe0) and beam # beam = Shadow.Beam() """ n_elements = len(list_optical_elements) for i,element in enumerate(list_optical_elements): if isinstance(element,Shadow.Source): template += "oe0 = Shadow.Source()\n" elif isinstance(element,Shadow.OE): template += "oe%d = Shadow.OE()\n"%(i) elif isinstance(element,Shadow.IdealLensOE): template += "oe%d = Shadow.IdealLensOE()\n"%(i) else: raise Exception("Error: Element not known") template += "\n#\n# Define variables. See meaning of variables in: \n" \ "# https://raw.githubusercontent.com/srio/shadow3/master/docs/source.nml \n" \ "# https://raw.githubusercontent.com/srio/shadow3/master/docs/oe.nml\n#\n" for ioe,oe1B in enumerate(list_optical_elements): template += "\n" if isinstance(oe1B,Shadow.Source): oe1 = Shadow.Source() elif isinstance(element,Shadow.OE): oe1 = Shadow.OE() elif isinstance(element,Shadow.IdealLensOE): oe1 = Shadow.IdealLensOE() else: raise Exception("Error: Element not known") if isinstance(oe1B,Shadow.IdealLensOE): template += "oe"+str(ioe)+".T_SOURCE = "+str(oe1B.T_SOURCE).strip()+"\n" template += "oe"+str(ioe)+".T_IMAGE = "+str(oe1B.T_IMAGE).strip()+"\n" template += "oe"+str(ioe)+".focal_x = "+str(oe1B.focal_x).strip()+"\n" template += "oe"+str(ioe)+".focal_z = "+str(oe1B.focal_z).strip()+"\n" else: memB = inspect.getmembers(oe1B) mem = inspect.getmembers(oe1) for i,var in enumerate(memB): ivar = mem[i] ivarB = memB[i] if ivar[0].isupper(): if isinstance(ivar[1],numpy.ndarray): # print(" are ALL different ? ", (ivar[1] != ivarB[1]).all()) # print(" are the same ? ", (ivar[1] == ivarB[1]).all()) # print(" there is at least ONE diff ? ", not((ivar[1] == ivarB[1]).all())) if not( (ivar[1] == ivarB[1]).all()) : line = "oe"+str(ioe)+"."+ivar[0]+" = numpy.array("+str(ivarB[1].tolist())+ ")\n" template += line # if (ivar[1] != ivarB[1]).all(): # line = "oe"+str(ioe)+"."+ivar[0]+" = "+str(ivarB[1])+"\n" # if ("SPECIFIED" in line): # pass # else: # template += line else: if ivar[1] != ivarB[1]: if isinstance(ivar[1],(str,bytes)): line = "oe"+str(ioe)+"."+ivar[0]+" = "+str(ivarB[1]).strip()+"\n" #line = re.sub('\s{2,}', ' ',line) if "SPECIFIED" in line: pass else: template += line else: line = "oe"+str(ioe)+"."+ivar[0]+" = "+str(ivarB[1])+"\n" template += line template += """\n\n #Run SHADOW to create the source if iwrite: oe0.write("start.00") beam.genSource(oe0) if iwrite: oe0.write("end.00") beam.write("begin.dat") """ template_oeA = """\n # #run optical element {0} # print(" Running optical element: %d"%({0})) if iwrite: oe{0}.write("start.{1}") """ template_oeB = """\n if iwrite: oe{0}.write("end.{1}") beam.write("star.{1}") """ for i in range(1,n_elements): template += template_oeA.format(i,"%02d"%(i)) if isinstance(list_optical_elements[i],Shadow.OE): template += "\nbeam.traceOE(oe%d,%d)"%(i,i) elif isinstance(list_optical_elements[i],Shadow.IdealLensOE): template += "\nbeam.traceIdealLensOE(oe%d,%d)"%(i,i) template += template_oeB.format(i,"%02d"%(i)) # # display results (using ShadowTools, matplotlib needed) # template += """\n Shadow.ShadowTools.plotxy(beam,1,3,nbins=101,nolost=1,title="Real space") # Shadow.ShadowTools.plotxy(beam,1,4,nbins=101,nolost=1,title="Phase space X") # Shadow.ShadowTools.plotxy(beam,3,6,nbins=101,nolost=1,title="Phase space Z") """ if script_file != "": open(script_file, "wt").write(template) print("File written to disk: %s"%(script_file)) return template
85eb57955badaa4a2748be8ca6f2bf0f370b422d
3,657,173
def flax_tag(arr): """Wraps a value in a flax module, to inspect intermediate values.""" return arr
be2fbef6117c859b7fc9dd7274815df4e70df17e
3,657,174
def toEpoch( dateTimeObject = None ): """ Get seconds since epoch """ if dateTimeObject == None: dateTimeObject = dateTime() return nativetime.mktime( dateTimeObject.timetuple() )
f679f75e9d416c471491b0b933505fc6bbb6eb7d
3,657,175
import requests import json def sendNotification(token, title, message, extraData=None, channelID=None): """ send Notification to Devices :param token: :param title: :param message: :return: """ url = 'https://exp.host/--/api/v2/push/send' headers = { "Content-Type": "application/json" } data = { "to": token, "title": title, "body": message } # Verify we have Additional data to append if extraData is not None: data["data"] = extraData # Android Only! Verify if we have a channel ID and append it if channelID is not None: data["channelId"] = channelID res = requests.post(url, data=json.dumps(data), headers=headers) return res.status_code
1038dfd3872221a0d447b7708d58d95e931c59e5
3,657,176
def make_phsfct_kernel(size_px, dpx, g_fac): """ Make a kernel for phase function convolution :param size_px: :param dpx: [deg/px] :param g_fac: :return: ph_ker [deg] """ ke = np.mgrid[:size_px, :size_px] half = (size_px - 1) / 2 ke[0] -= half ke[1] -= half dist = np.sqrt(ke[0] * ke[0] + ke[1] * ke[1]) dist_deg = dist * dpx ph_ker = phasefunc(g_fac, dist_deg) # Fill radially with phase function # ph_ker = ph_ker/np.sum(ph_ker) ph_ker = ph_ker / (2. * np.pi) return ph_ker
0f214d19f7418385f3db9155e8cabb06779fdf83
3,657,177
def sample_pts_ellipsoid_surface(mu, Q, NB_pts, random=True): """ Uniformly samples points on the surface of an ellipsoid, specified as (xi-mu)^T Q^{-1} (xi-mu) == 1 arguments: mu - mean [dim] Q - Q [dim x dim] NB_pts - nb of points random - True: Uniform sampling. False: Uniform deterministic grid output: ell_pts - points on the boundary of the ellipse [xdim x NB_pts] """ dim = mu.shape[0] if dim != Q.shape[0] or dim != Q.shape[1]: raise ValueError("mu (%d) and Q (%d,%d) must be the same size" %(mu.shape[0], Q.shape[0], Q.shape[1])) if (Q == np.zeros((dim,dim))).all(): return np.zeros((dim,NB_pts)) if random == False and dim > 2: raise ValueError("sample_pts_ellipsoid_surface: non random sampling not implemented") mut = np.array([mu]) pts = sample_pts_unit_sphere(dim, NB_pts, random=random).T E = np.linalg.cholesky(Q) ell_pts = (mut + pts @ E.T).T return ell_pts
89fa8383d32b74e8c92a52792fe2de4d35816acc
3,657,178
def load_mzml_path(): """Return the path to the mzML toy file. Parameters ---------- None Returns ------- path_data : str The path to the mzML data. Examples -------- >>> from specio.datasets import load_mzml_path >>> load_mzml_path() # doctest: +ELLIPSIS '...spectra.mzml' """ module_path = dirname(__file__) return join(module_path, 'data', 'spectra.mzml')
b0548589a209b14ef336a28eeca74782f3550186
3,657,179
def _czce_df_read(url, skip_rows, encoding='utf-8', header=0): """ 郑州商品交易所的网页数据 :param header: :type header: :param url: 网站 string :param skip_rows: 去掉前几行 int :param encoding: utf-8 or gbk or gb2312 :return: pd.DataFrame """ headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36", "Host": "www.czce.com.cn", "Cookie": "XquW6dFMPxV380S=CAaD3sMkdXv3fUoaJlICIEv0MVegGq5EoMyBcxkOjCgSjmpuovYFuTLtYFcxTZGw; XquW6dFMPxV380T=5QTTjUlA6f6WiDO7fMGmqNxHBWz.hKIc8lb_tc1o4nHrJM4nsXCAI9VHaKyV_jkHh4cIVvD25kGQAh.MvLL1SHRA20HCG9mVVHPhAzktNdPK3evjm0NYbTg2Gu_XGGtPhecxLvdFQ0.JlAxy_z0C15_KdO8kOI18i4K0rFERNPxjXq5qG1Gs.QiOm976wODY.pe8XCQtAsuLYJ.N4DpTgNfHJp04jhMl0SntHhr.jhh3dFjMXBx.JEHngXBzY6gQAhER7uSKAeSktruxFeuKlebse.vrPghHqWvJm4WPTEvDQ8q", } r = requests_link(url, encoding, headers=headers) data = pd.read_html(r.text, match='.+', flavor=None, header=header, index_col=0, skiprows=skip_rows, attrs=None, parse_dates=False, thousands=', ', encoding="gbk", decimal='.', converters=None, na_values=None, keep_default_na=True) return data
1491e312f1548141294d20b6ebe2fb4517cd3e07
3,657,180
import random def select(weights): """ select a node with probability proportional to its "weight" """ r = random.random() * sum(weights) s = 0.0 for k,w in enumerate(weights): s += w if r <= s: return k raise RuntimeError("select WTF from %s" % weights)
fed92de65cfae6f3532754215f5b88a564365ac7
3,657,181
def kexo(spacecraft_id, sensor_id, band_id): """Sun exo-atmospheric irridiance [W/m2/sr] This is used for processing surface reflectance. Spacecraft_id: Landsat7 Sensor_id: ETM+ band_id: band1, band2, band3, band4, band5, band7, band8 Spacecraft_id: Terra Sensor_id: Aster band_id: band1, band2, band3, band4, band5, band7, band8, band9 kexo(spacecraft_id, sensor_id, band_id) """ if(spacecraft_id == "Landsat7"): if (sensor_id == "ETM+"): if(band_id == "band1"): kexo = 1969.0 if(band_id == "band2"): kexo = 1840.0 if(band_id == "band3"): kexo = 1551.0 if(band_id == "band4"): kexo = 1044.0 if(band_id == "band5"): kexo = 225.7 if(band_id == "band7"): kexo = 82.07 if(band_id == "band8"): kexo = 1385.64 # Self calculated value... else: kexo = 0.0 if(spacecraft_id == "Terra"): if (sensor_id == "Aster"): if(band_id == "band1"): kexo = 1828.0 if(band_id == "band2"): kexo = 1559.0 if(band_id == "band3"): kexo = 1045.0 if(band_id == "band4"): kexo = 226.73 if(band_id == "band5"): kexo = 86.50 if(band_id == "band7"): kexo = 74.72 if(band_id == "band8"): kexo = 66.41 if(band_id == "band9"): kexo = 59.83 else: kexo = 0.0 else: kexo = 0.0 else: kexo = 0.0 return kexo
0e11a1b0b6ea8a43bef954273ed3a32a1d39c842
3,657,182
def gen_profile_id(profile_id): """ Generates the Elasticsearch document id for a profile Args: profile_id (str): The username of a Profile object Returns: str: The Elasticsearch document id for this object """ return "u_{}".format(profile_id)
003586fe87d2936d9054aaa35963ae0241a5e594
3,657,183
import pathlib import os import sys import re def check_config(): """ Check required fields are present in config. """ sections = [{'name': 'assembly', 'keys': ['accession', 'prefix', 'alias', 'span'], 'defaults': {'accession': 'draft', 'alias': '==prefix'}}, {'name': 'busco', 'keys': ['lineage_dir', 'lineages'], 'defaults': {'lineage_dir': 'busco_lineages', 'lineages': []}}, {'name': 'reads', 'keys': ['paired', 'single'], 'defaults': {'paired': [], 'single': []}}, {'name': 'settings', 'keys': ['blast_chunk', 'blast_max_chunks', 'blast_overlap', 'blobtools2_path', 'chunk', 'taxonomy', 'tmp'], 'defaults': {'blast_chunk': 100000, 'blast_max_chunks': 10, 'blast_overlap': 500, 'chunk': 1000000, 'tmp': '/tmp'}}, {'name': 'similarity', 'keys': ['databases', 'taxrule'], 'defaults': {'taxrule': 'eachdistorder'}}, {'name': 'taxon', 'keys': ['name', 'taxid'], 'defaults': {}}] similarity_defaults = {'evalue': 1e-25, 'mask_ids': [], 'max_target_seqs': 10, 'root': 1} container_defaults = { 'busco': {'lineage_dir': '/blobtoolkit/databases/busco'}, 'settings': {'blobtools2_path': '/blobtoolkit/blobtools2', 'blobtools_viewer_path': '/blobtoolkit/viewer', 'taxonomy': '/blobtoolkit/databases/ncbi_taxdump'}, 'similarity': { 'databases': [ {'local': '/blobtoolkit/databases/ncbi_db', 'name': 'nt'}, {'local': '/blobtoolkit/databases/uniprot_db', 'name': 'reference_proteomes'} ] } } if pathlib.Path('/blobtoolkit/databases/ncbi_db').exists(): # set some container specific defaults for section, defaults in container_defaults.items(): if section not in config: config[section] = {} for key, value in defaults.items(): if key not in config[section]: config[section].update({key: value}) container_version = os.environ.get('CONTAINER_VERSION') if container_version: config.update({'container': {}}) config['container'].update({'version': container_version}) optional = ['busco', 'reads'] for section in sections: if section['name'] not in config: if section['name'] in optional: print("INFO: optional section '%s' is not present in config file" % section['name'], file=sys.stderr) config[section['name']] = {} else: raise ConfigurationError("ERROR: config file must contain a '%s' section with keys '%s'" % (section['name'], ', '.join(section['keys']))) for key in section['keys']: if key not in config[section['name']]: if key in section['defaults']: value = section['defaults'][key] if isinstance(value, str) and value.startswith('=='): value = config[section['name']][value.replace('==', '')] print("INFO: using default value for '%s.%s'" % (section['name'], key), file=sys.stderr) print(value, file=sys.stderr) config[section['name']][key] = value else: raise ConfigurationError("ERROR: config file section '%s' must contain '%s'" % (section['name'], key)) # fill in additional database info if 'defaults' not in config['similarity'] or not config['similarity']['defaults']: config['similarity']['defaults'] = {} for key, value in similarity_defaults.items(): if key not in config['similarity']['defaults']: config['similarity']['defaults'].update({key: value}) for db in config['similarity']['databases']: if 'name' not in db or 'local' not in db: quit("ERROR: 'name' and 'local' must be specified for all databases") if db['name'] == 'nt' or db['name'] == 'nt_v5': db.update({'source': 'ncbi', 'tool': 'blast', 'type': 'nucl'}) elif db['name'] == 'reference_proteomes': db.update({'source': 'uniprot', 'tool': 'diamond', 'type': 'prot'}) else: print("INFO: only 'nt' and 'reference_proteomes' databases are supported, ignoring '%s'" % db['name'], file=sys.stderr) if not re.match(r'^\w+$', config['assembly']['prefix']): raise ConfigurationError("ERROR: assembly prefix '%s' contains non-word characters. Please use only letters, numbers and underscores." % config['assembly']['prefix']) for readset in config['reads']['single'] + config['reads']['paired']: if not re.match(r'^[a-zA-Z0-9]+$', readset[0]): raise ConfigurationError("ERROR: read file basename '%s' contains non-word characters. Please use only letters and numbers." % readset[0]) if '--use-singularity' in sys.argv: return True return False
2fa8d8768144a9c84fe20394ac572b63349a28cd
3,657,184
async def get_self_info(credential: Credential): """ 获取自己的信息 Args: credential (Credential): Credential """ api = API["info"]["my_info"] credential.raise_for_no_sessdata() return await request("GET", api["url"], credential=credential)
74cc7f5e43c555de45c382db27cd314bb2b5794e
3,657,185
import os def app(request): """Testable flask application""" _app.config.from_mapping( TESTING=True, SECRET_KEY=os.environ.get('SECRET_KEY'), SQLALCHEMY_DATABASE_URI=os.getenv('TEST_DATABASE_URL'), SQLALCHEMY_TRACK_MODIFICATIONS=False, WTF_CSRF_ENABLED=False ) ctx = _app.app_context() ctx.push() def teardown(): """Cleans up and closes out test session.""" ctx.pop() request.addfinalizer(teardown) return _app
5c6837abda4cf3e58e1df63f67742e9b6bafcd48
3,657,186
def mpl_event_handler(event_type: MplEvent): """Marks the decorated method as given matplotlib event handler .. note:: This decorator should be used only for methods of classes that inherited from :class:`MplEventDispatcher` class. This decorator can be used for reassignment event handlers in a dispatcher class. Examples -------- .. code-block:: python from mpl_events import MplEventDispatcher, mpl_event_handler, mpl class MyEventDispatcher(MplEventDispatcher): @mpl_event_handler(MplEvent.KEY_PRESS) def on_my_key_press(self, event: mpl.KeyPress): pass """ class HandlerDescriptor: """Adds handler method name to event handlers mapping """ def __init__(self, handler): self.handler = handler def __get__(self, obj, cls=None): return self.handler.__get__(obj, cls) def __set_name__(self, owner, name): if 'mpl_event_handlers' not in owner.__dict__: owner.mpl_event_handlers = getattr(owner, 'mpl_event_handlers', {}).copy() owner.mpl_event_handlers[event_type] = name return HandlerDescriptor
7cec2aad7f50daf832657bc01ac710159d1161a0
3,657,187
def get_date_pairs(in_dates, step): """ 入场点出场点数据 :param in_dates: 所有入场日期 :param step: 步长 :return: """ DatePair = namedtuple('DatePair', ['in_date', 'out_date']) date_pairs = [] for in_date in in_dates: out_date = date_utility.date_cal(in_date, step) date_pairs.append(DatePair(in_date, out_date)) return date_pairs
a2da0f3a48296de6c9f70b0e7535c8a2dd8e3d0b
3,657,188
import random def new_jitters(jitter): """ update jitter vector every 100 frames by setting ~half of noise vector units to lower sensitivity """ jitters=np.zeros(128) for j in range(128): if random.uniform(0,1)<0.5: jitters[j]=1 else: jitters[j]=1-jitter return jitters
cab660f8b8c6cfb21e745479cae95e964dc412b9
3,657,189
import logging import os import subprocess import re def reduce_jscs(file_line_mapping, **extra): """ Runs JSHCS on the project with the default configured rules. The output is reduced to only contain entries from the Git change set. :param file_line_mapping: Mapping of files with changed lines (obtained `get_git_line_sets()`). :param extra: Optional keyword arguments: `norules`: If true, omit verbose output of violated rule identifier (default: `False` to include rules). :return: A tuple containing the formatted string suitable for output and an integer containing the number of failed rules. """ norules = extra['norules'] if 'norules' in extra else False # Get the JSCS output. logging.info('Obtaining JSCS output ...') os.chdir(PROJECT_PATH) rules = config.JSHINT_RULES if not norules else '' command = config.JSCS_COMMAND.format(binary=config.JSCS_BIN, rules=rules) output = None try: output = subprocess.check_output(command.split()) except subprocess.CalledProcessError as ex: # JSCS found something, so it has returned an error code. # But we still want the output in the same fashion. output = ex.output output = output.decode('utf8').split('\n\n') # Go through output and collect only relevant lines to the result. result = ['\nJSCS output:\n============'] lines_expression = re.compile(r'^ +(\d+) |.*(?:\n|\r\n?)-', re.MULTILINE) file_expression = re.compile(r'^[^\b].* (?:\./)?(.+) :$', re.MULTILINE) for item in output: # Do the processing for every block here. line_no_candidates = lines_expression.findall(item, re.MULTILINE) # Check if we've got a relevant block. if line_no_candidates and '' in line_no_candidates: line_no = int(line_no_candidates[line_no_candidates.index('') - 1]) file_name = file_expression.findall(item)[0] file_name = tuple(re.split(PATH_SPLITTER, file_name)) # Check if the line is part of our selection list. if line_no in file_line_mapping[file_name]: result.append(item) # Add the number of errors and return in a nicely formatted way. error_count = len(result) - 1 result.append('\n{} code style errors found.'.format(error_count)) return '\n\n'.join(result), error_count
2b4014a44fbb1db1671f436a81f41a72b15188cf
3,657,190
def add_manuscript_urls_to_ci_params(ci_params): """ Return and edit in-place the ci_params dictionary to include 'manuscript_url'. This function assumes Travis CI is used to deploy to GitHub Pages, while AppVeyor is used for storing manuscript artifacts for pull request builds. """ if not ci_params: return ci_params assert isinstance(ci_params, dict) provider = ci_params.get('provider') if provider == 'travis': ci_params['manuscript_url'] = ( "https://{repo_owner}.github.io/{repo_name}/v/{commit}/" .format(**ci_params) ) if provider == 'appveyor': ci_params['manuscript_url'] = f"{ci_params['build_url']}/artifacts" return ci_params
7d45c4fe8060d387d0238788e4b7566e09abc499
3,657,191
def count_sites(vcfpath): """Extract number of sites in VCF from its tabix index.""" cmd = ["bcftools","index","--nrecords", vcfpath] so, se, code = slurp_command(cmd) return int(so)
4f340827bbfc279e3b2601bd84ef68669ce1d829
3,657,192
import torch from typing import Callable def model_contrast_score(overlays: torch.Tensor, masks: torch.Tensor, object_labels: torch.Tensor, scene_labels: torch.Tensor, object_model: Callable, scene_model: Callable, object_method: Callable, scene_method: Callable, device: str): """ Model contrast score: Difference of importance of object pixels for model trained on object labels (should be important) and model trained on scene labels (should not be important) """ overlays = overlays.to(device) object_labels = object_labels.to(device) scene_labels = scene_labels.to(device) masks = masks.squeeze().to(device) # We check if both the object model and the scene model make the correct classification with torch.no_grad(): y_pred_obj = torch.argmax(object_model(overlays), dim=1) y_pred_scene = torch.argmax(scene_model(overlays), dim=1) correctly_classified = ((y_pred_obj == object_labels) & (y_pred_scene == scene_labels)) object_model_attrs = object_method(overlays, object_labels) scene_model_attrs = scene_method(overlays, scene_labels) mask_sizes = torch.sum(masks.flatten(1), dim=1) diffs = (object_model_attrs - scene_model_attrs) / mask_sizes return diffs.cpu(), correctly_classified.cpu()
b44b0a958a79a1ad7a84de15817cdbc32160c13b
3,657,193
from typing import Optional def get_network_insights_access_scope_analysis(network_insights_access_scope_analysis_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetNetworkInsightsAccessScopeAnalysisResult: """ Resource schema for AWS::EC2::NetworkInsightsAccessScopeAnalysis """ __args__ = dict() __args__['networkInsightsAccessScopeAnalysisId'] = network_insights_access_scope_analysis_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws-native:ec2:getNetworkInsightsAccessScopeAnalysis', __args__, opts=opts, typ=GetNetworkInsightsAccessScopeAnalysisResult).value return AwaitableGetNetworkInsightsAccessScopeAnalysisResult( analyzed_eni_count=__ret__.analyzed_eni_count, end_date=__ret__.end_date, findings_found=__ret__.findings_found, network_insights_access_scope_analysis_arn=__ret__.network_insights_access_scope_analysis_arn, network_insights_access_scope_analysis_id=__ret__.network_insights_access_scope_analysis_id, start_date=__ret__.start_date, status=__ret__.status, status_message=__ret__.status_message, tags=__ret__.tags)
cbd65230cf553b438f4a78ad34f6faa9eafb119f
3,657,194
import torch import logging import os def learnable_eval( cfg: OmegaConf, classifier, encoder: ContrastiveModel, training_data_loader: DataLoader, val_data_loader: DataLoader, top_k: int, ) -> tuple: """ :param cfg: Hydra's config instance. :param classifier: Instance of classifier with learnable parameters. :param encoder: feature extractor trained on self-supervised method. :param training_data_loader: Training data loader for a downstream task. :param val_data_loader: Validation data loader for a downstream task. :param top_k: The number of top-k for evaluation. :return: tuple of train acc, train top-k acc, train loss, val acc, val top-k acc, and val loss. """ local_rank = cfg["distributed"]["local_rank"] epochs = cfg["experiment"]["epochs"] normalized = cfg["experiment"]["normalize"] cross_entropy_loss = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD( params=classifier.parameters(), lr=cfg["optimizer"]["lr"], momentum=cfg["optimizer"]["momentum"], nesterov=True, weight_decay=cfg["optimizer"]["decay"] ) cos_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs, eta_min=0.) train_accuracies = [] train_top_k_accuracies = [] val_accuracies = [] val_top_k_accuracies = [] train_losses = [] val_losses = [] num_train = len(training_data_loader.dataset) num_val = len(val_data_loader.dataset) highest_val_acc = 0. encoder.eval() for epoch in range(1, epochs + 1): classifier.train() training_data_loader.sampler.set_epoch(epoch) # to shuffle dataset for x, y in training_data_loader: optimizer.zero_grad() with torch.no_grad(): rep = encoder(x.to(local_rank)) if normalized: rep = torch.nn.functional.normalize(rep, p=2, dim=1) # t is not used outputs = classifier(rep) loss = cross_entropy_loss(outputs, y.to(local_rank)) loss.backward() optimizer.step() cos_lr_scheduler.step() # train and val metrics train_acc, train_top_k_acc, train_loss = calculate_accuracies_loss( classifier, encoder, training_data_loader, local_rank, top_k=top_k, normalized=normalized ) torch.distributed.barrier() torch.distributed.reduce(train_acc, dst=0) torch.distributed.reduce(train_top_k_acc, dst=0) torch.distributed.reduce(train_loss, dst=0) val_acc, val_top_k_acc, val_loss = calculate_accuracies_loss( classifier, encoder, val_data_loader, local_rank, top_k=top_k, normalized=normalized ) torch.distributed.barrier() torch.distributed.reduce(val_acc, dst=0) torch.distributed.reduce(val_top_k_acc, dst=0) torch.distributed.reduce(val_loss, dst=0) if local_rank == 0: # NOTE: since drop=True, num_train is not approximate value train_losses.append(train_loss.item() / num_train) train_acc = train_acc.item() / num_train train_accuracies.append(train_acc) train_top_k_accuracies.append(train_top_k_acc.item() / num_train) val_losses.append(val_loss.item() / num_val) val_acc = val_acc.item() / num_val val_accuracies.append(val_acc) val_top_k_accuracies.append(val_top_k_acc.item() / num_val) current_lr = optimizer.param_groups[0]["lr"] current_progress = epoch / epochs logging.info(f"Epoch:{epoch}/{epochs} progress:{current_progress:.2f}, train acc.:{train_acc * 100.:.1f} " f"val acc.:{val_acc * 100.:.1f} lr:{current_lr:.4f}") if highest_val_acc < val_acc and local_rank == 0: # save best linear classifier on validation dataset highest_val_acc = val_acc # delete old checkpoint file if "save_fname" in locals(): if os.path.exists(save_fname): os.remove(save_fname) save_fname = "epoch_{}-{}".format(epoch, cfg["experiment"]["output_model_name"]) torch.save(classifier.state_dict(), save_fname) return train_accuracies, train_top_k_accuracies, train_losses, val_accuracies, val_top_k_accuracies, val_losses
612639e490830d67cb333ba48954df8eddc83079
3,657,195
def wavenumber(src, rec, depth, res, freq, wavenumber, ab=11, aniso=None, epermH=None, epermV=None, mpermH=None, mpermV=None, verb=2): """Return the electromagnetic wavenumber-domain field. Calculate the electromagnetic wavenumber-domain field due to infinitesimal small electric or magnetic dipole source(s), measured by infinitesimal small electric or magnetic dipole receiver(s); sources and receivers are directed along the principal directions x, y, or z, and all sources are at the same depth, as well as all receivers are at the same depth. See Also -------- dipole : Electromagnetic field due to an electromagnetic source (dipoles). bipole : Electromagnetic field due to an electromagnetic source (bipoles). fem : Electromagnetic frequency-domain response. tem : Electromagnetic time-domain response. Parameters ---------- src, rec : list of floats or arrays Source and receiver coordinates (m): [x, y, z]. The x- and y-coordinates can be arrays, z is a single value. The x- and y-coordinates must have the same dimension. The x- and y-coordinates only matter for the angle-dependent factor. Sources or receivers placed on a layer interface are considered in the upper layer. depth : list Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity). res : array_like Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1. freq : array_like Frequencies f (Hz), used to calculate etaH/V and zetaH/V. wavenumber : array Wavenumbers lambda (1/m) ab : int, optional Source-receiver configuration, defaults to 11. +---------------+-------+------+------+------+------+------+------+ | | electric source | magnetic source | +===============+=======+======+======+======+======+======+======+ | | **x**| **y**| **z**| **x**| **y**| **z**| +---------------+-------+------+------+------+------+------+------+ | | **x** | 11 | 12 | 13 | 14 | 15 | 16 | + **electric** +-------+------+------+------+------+------+------+ | | **y** | 21 | 22 | 23 | 24 | 25 | 26 | + **receiver** +-------+------+------+------+------+------+------+ | | **z** | 31 | 32 | 33 | 34 | 35 | 36 | +---------------+-------+------+------+------+------+------+------+ | | **x** | 41 | 42 | 43 | 44 | 45 | 46 | + **magnetic** +-------+------+------+------+------+------+------+ | | **y** | 51 | 52 | 53 | 54 | 55 | 56 | + **receiver** +-------+------+------+------+------+------+------+ | | **z** | 61 | 62 | 63 | 64 | 65 | 66 | +---------------+-------+------+------+------+------+------+------+ aniso : array_like, optional Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to ones. epermH, epermV : array_like, optional Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-); #epermH = #epermV = #res. Default is ones. mpermH, mpermV : array_like, optional Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-); #mpermH = #mpermV = #res. Default is ones. verb : {0, 1, 2, 3, 4}, optional Level of verbosity, default is 2: - 0: Print nothing. - 1: Print warnings. - 2: Print additional runtime and kernel calls - 3: Print additional start/stop, condensed parameter information. - 4: Print additional full parameter information Returns ------- PJ0, PJ1 : array Wavenumber-domain EM responses: - PJ0: Wavenumber-domain solution for the kernel with a Bessel function of the first kind of order zero. - PJ1: Wavenumber-domain solution for the kernel with a Bessel function of the first kind of order one. Examples -------- >>> import numpy as np >>> from empymod.model import wavenumber >>> src = [0, 0, 100] >>> rec = [5000, 0, 200] >>> depth = [0, 300, 1000, 1050] >>> res = [1e20, .3, 1, 50, 1] >>> freq = 1 >>> wavenrs = np.logspace(-3.7, -3.6, 10) >>> PJ0, PJ1 = wavenumber(src, rec, depth, res, freq, wavenrs, verb=0) >>> print(PJ0) [ -1.02638329e-08 +4.91531529e-09j -1.05289724e-08 +5.04222413e-09j -1.08009148e-08 +5.17238608e-09j -1.10798310e-08 +5.30588284e-09j -1.13658957e-08 +5.44279805e-09j -1.16592877e-08 +5.58321732e-09j -1.19601897e-08 +5.72722830e-09j -1.22687889e-08 +5.87492067e-09j -1.25852765e-08 +6.02638626e-09j -1.29098481e-08 +6.18171904e-09j] >>> print(PJ1) [ 1.79483705e-10 -6.59235332e-10j 1.88672497e-10 -6.93749344e-10j 1.98325814e-10 -7.30068377e-10j 2.08466693e-10 -7.68286748e-10j 2.19119282e-10 -8.08503709e-10j 2.30308887e-10 -8.50823701e-10j 2.42062030e-10 -8.95356636e-10j 2.54406501e-10 -9.42218177e-10j 2.67371420e-10 -9.91530051e-10j 2.80987292e-10 -1.04342036e-09j] """ # === 1. LET'S START ============ t0 = printstartfinish(verb) # === 2. CHECK INPUT ============ # Check layer parameters (isfullspace not required) modl = check_model(depth, res, aniso, epermH, epermV, mpermH, mpermV, False, verb) depth, res, aniso, epermH, epermV, mpermH, mpermV, _ = modl # Check frequency => get etaH, etaV, zetaH, and zetaV f = check_frequency(freq, res, aniso, epermH, epermV, mpermH, mpermV, verb) freq, etaH, etaV, zetaH, zetaV = f # Check src-rec configuration # => Get flags if src or rec or both are magnetic (msrc, mrec) ab_calc, msrc, mrec = check_ab(ab, verb) # Check src and rec src, nsrc = check_dipole(src, 'src', verb) rec, nrec = check_dipole(rec, 'rec', verb) # Get angle-dependent factor off, angle = get_off_ang(src, rec, nsrc, nrec, verb) factAng = kernel.angle_factor(angle, ab, msrc, mrec) # Get layer number in which src and rec reside (lsrc/lrec) lsrc, zsrc = get_layer_nr(src, depth) lrec, zrec = get_layer_nr(rec, depth) # === 3. EM-FIELD CALCULATION ============ # If <ab> = 36 (or 63), field is zero # In `bipole` and in `dipole`, this is taken care of in `fem`. Here we # have to take care of it separately if ab_calc in [36, ]: PJ0 = np.zeros((freq.size, off.size, wavenumber.size), dtype=complex) PJ1 = PJ0.copy() else: # Regular calculation # Calculate wavenumber response PJ0, PJ1, PJ0b = kernel.wavenumber(zsrc, zrec, lsrc, lrec, depth, etaH, etaV, zetaH, zetaV, np.atleast_2d(wavenumber), ab_calc, False, msrc, mrec, False) # Collect output PJ1 = factAng[:, np.newaxis]*PJ1 if ab in [11, 12, 21, 22, 14, 24, 15, 25]: # Because of J2 # J2(kr) = 2/(kr)*J1(kr) - J0(kr) PJ1 /= off[:, None] PJ0 = PJ0 + factAng[:, np.newaxis]*PJ0b # === 4. FINISHED ============ printstartfinish(verb, t0, 1) return np.squeeze(PJ0), np.squeeze(PJ1)
c108f3343936a62b0d49a3807d2d25b4f3fc1eda
3,657,196
def gumbel_softmax(logits, temperature, dtype=tf.float32, seed=0): """Gumbel Softmax Layer.""" log_alpha = tf.nn.log_softmax(logits) eps = 1e-7 gumbel = -tf.log(-tf.log( tf.random_uniform( tf.shape(logits), minval=0, maxval=1 - eps, dtype=dtype, seed=seed) + eps)) prob = tf.nn.softmax((log_alpha + gumbel) / temperature) return prob
3889105f39e6f81c35e1a3ca94685b6e6d7e3f37
3,657,197
def divide(num1, num2=1): """ 除法 :param num1: int :param num2: int :return: float """ # 增加判断操作,抛出自定义异常 if num2 == 0: raise InvalidOpreation() val = num1 / num2 return val
6bcc9631ebba74a15f16f8da0a9dc7f76e372725
3,657,198
def convert2int(image): """ Transfrom from float tensor ([-1.,1.]) to int image ([-1024,6500]) """ return tf.image.convert_image_dtype((image + 1) * 2036 - 1000, tf.float32)
1697e6bb6911e936e9ff4bbb0ab37ddfc8115340
3,657,199