content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
from pathlib import Path
import os
import zipfile
def main(args):
"""Main entry point"""
args.archive = expand_path(args.archive)
args.files = expand_path(args.files)
def additions(search_path):
"""Generate a list of (lpath, arcname) for writing to zip-file"""
aname = Path(args.archive).stem
for root, _, files in os.walk(search_path):
for fname in files:
fpath = os.path.join(root, fname)
arcname = fpath.replace(
search_path,
"/".join([aname, 'subprojects'])
)
yield fpath, arcname
with zipfile.ZipFile(args.archive, 'a') as zfile:
listing = zfile.namelist()
for lpath, arcname in additions(args.files):
if arcname in listing:
print(f"skipping: {lpath} {arcname}")
continue
zfile.write(lpath, arcname)
return 0 | f4ba59a73a3c0491829df87dad79ece7a6fcdfbc | 3,657,200 |
import time
def execution_duration(fun):
"""
Calculates the duration the function 'fun' takes to execute.
execution_duration returns a wrapper function to which you pass your arguments.
Example: execution_duration(my_function)(my_first_param, my_second_param)
The result of the wrapper function will be a tuple, where the fist value is the
return value of your function and the second is the execution time in seconds expressed
as a float.
"""
def wrapper(*args, **kwargs):
t1 = time.time()
result = fun(*args, **kwargs)
exec_dur = time.time() - t1
return result, exec_dur
return wrapper | b824ce8e1448a65bd932ec8344b1976d2a86dd09 | 3,657,201 |
def return_origin_and_destination():
"""Return origin and destination from session's waypoints key."""
waypoints = session['waypoints']
if len(waypoints) <= 1:
return 'Please enter at least 2 destinations for your trip.'
else:
origin = session['waypoints'][0]
destination = session['waypoints'][-1]
data = {
"origin": origin,
"destination": destination
}
return jsonify(data) | db8764fc32fe1367f303fa44b9c5c0c113a8c9ee | 3,657,202 |
def attempt_move(piece):
"""
Attempts to make a move if the target coordinate is a legal move.
Returns:
True if the move is made, False otherwise
"""
x, y = pygame.mouse.get_pos()
x = x // 100
y = y // 100
if (piece is not None) and (x, y) in piece.legal_moves:
piece.move(the_board, x, y)
initialize_moves()
update_moves()
return True
return False | 36c2b7764f6bb13765cf2eed7270f90f1cb338d1 | 3,657,203 |
def give(user_id, text, group):
"""construct a message to be sent that mentions a user,
which is surprisingly complicated with GroupMe"""
nickname = group.members().filter(user_id=user_id).first.nickname
mention = attachments.Mentions([user_id], [[0, len(nickname)+1]]).as_dict()
message = '@{} {}'.format(nickname, text)
return (message, mention) | f9d36042b3ab5a2681fe065ac935321d8d398085 | 3,657,204 |
def integrate_audio_feat(features, audio_h5, mxm2msd):
"""
"""
# TODO: this part should be moved to MFCC feature extraction
# and stored in the feature file for better integrity
n_coeffs = 40
audio_feat_cols = (
['mean_mfcc{:d}'.format(i) for i in range(n_coeffs)] +
['var_mfcc{:d}'.format(i) for i in range(n_coeffs)] +
['mean_dmfcc{:d}'.format(i) for i in range(n_coeffs)] +
['var_dmfcc{:d}'.format(i) for i in range(n_coeffs)] +
['mean_ddmfcc{:d}'.format(i) for i in range(n_coeffs)] +
['var_ddmfcc{:d}'.format(i) for i in range(n_coeffs)]
)
with h5py.File(audio_h5, 'r') as hf:
tid2row = {tid:i for i, tid in enumerate(hf['tids'][:])}
feats = []
for mxmid in corpus.ids:
tid = mxm2msd[mxmid]
if tid in tid2row:
feats.append(hf['feature'][tid2row[tid]][None])
else:
feats.append(np.zeros((1, len(audio_feat_cols))))
audio_feat = np.concatenate(feats, axis=0)
# idx = [tid2row[mxm2msd[mxmid]] for mxmid in corpus.ids]
# audio_feat = hf['feature'][idx]
features['audio'] = TextFeature(
'mfcc', corpus.ids, audio_feat, audio_feat_cols
)
return features | f346cf69a0a4b1aef0fc7dc7b7b603e02952ae6b | 3,657,205 |
def make_annotation_loader_factory():
"""Generate a factory function for constructing annotation loaders.
Invoke the returned factory function by passing the name of the annotation
loader class you want to construct, followed by the parameters for the
constructor as named arguments
(e.g., factory('FourCornersCSV', annotations_file=...))
"""
return AnnotationLoaderLoader().loader.make_object_factory() | 70e6d9834a903a614a41510b6d97b62c3d1d5b3f | 3,657,206 |
def test_arma():
"""arma, check that rho is correct (appendix 10.A )and reproduce figure 10.2"""
a,b, rho = arma_estimate(marple_data, 20, 20, 40)
psd = arma2psd(A=a,B=b, rho=rho, NFFT=None)
psd = arma2psd(A=a,B=b, rho=rho)
try:
psd = arma2psd(A=None, B=None, rho=rho)
assert False
except:
assert True
return psd | b1db09017fe060746ae1b503315bfaa6f3a44a58 | 3,657,207 |
from typing import Union
def chunks_lists_to_tuples(level: Union[list, int, float]) -> Union[tuple, int, float]:
"""Convert a recursive list of lists of ints into a tuple of tuples of ints. This is
a helper function needed because MongoDB automatically converts tuples to lists, but
the dask constructor wants the chunks defined strictly as tuples.
e.g.
- input: ``[[1, 2], [3, 4]]``
- output: ``((1, 2), (3, 4))``
.. note::
float data type is supported to allow for NaN-sized dask chunks
"""
if isinstance(level, list):
return tuple(chunks_lists_to_tuples(i) for i in level)
if isinstance(level, (int, float)):
return level
raise TypeError(level) | 49cc7923211d50fdf6a386016af12b80a2f821df | 3,657,208 |
def oid_pattern_specificity(pattern):
# type: (str) -> Tuple[int, Tuple[int, ...]]
"""Return a measure of the specificity of an OID pattern.
Suitable for use as a key function when sorting OID patterns.
"""
wildcard_key = -1 # Must be less than all digits, so that e.G. '1.*' is less specific than '1.n' for n = 0...9.
parts = tuple(wildcard_key if digit == '*' else int(digit) for digit in pattern.lstrip('.').split('.'))
return (
len(parts), # Shorter OIDs are less specific than longer OIDs, regardless of their contents.
parts, # For same-length OIDs, compare their contents (integer parts).
) | 7d1b4304791076fca42add7a8b9aeb31f85359f9 | 3,657,209 |
def extract_entities(text, json_={}):
"""
Extract entities from a given text using metamap and
generate a json, preserving infro regarding the sentence
of each entity that was found. For the time being, we preserve
both concepts and the entities related to them
Input:
- text: str,
a piece of text or sentence
- json_: dic,
sometimes the json to be returned is given to us to be enriched
Defaults to an empty json_
Output:
- json_: dic,
json with fields text, sents, concepts and entities
containg the final results
"""
json_['text'] = text
# Tokenize the text
sents = sent_tokenize(text)
json_['sents'] = [{'sent_id': i, 'sent_text': sent} for i, sent in enumerate(sents)]
json_['concepts'], _ = mmap_extract(text)
json_['entities'] = {}
for i, sent in enumerate(json_['sents']):
ents = metamap_ents(sent)
json_['entities'][sent['sent_id']] = ents
return json_ | 15f8b88e430c451a517f11b661aa1c57a93288fe | 3,657,210 |
def gaul_as_df(gaul_path):
"""
Load the Gaussian list output by PyBDSF as a pd.DataFrame
Args:
gaul_path (`str`): Path to Gaussian list (.gaul file)
"""
gaul_df = pd.read_csv(
gaul_path, skiprows=6, names=GAUL_COLUMNS, delim_whitespace=True,
)
return gaul_df | 806f8c386344c5380109705b053b89a82db62e66 | 3,657,211 |
def normalize_matrix(mat, dim=3, p=2):
"""Normalize matrix.
Args:
mat: matrix
dim: dimension
p: p value for norm
Returns: normalized matrix
"""
mat_divided = F.normalize(mat, p=p, dim=dim)
return mat_divided | 35ac155a51818d2b93fc12a0c91ce35c0dfd9fe2 | 3,657,212 |
from typing import List
import math
def species_to_parameters(species_ids: List[str],
sbml_model: 'libsbml.Model') -> List[str]:
"""
Turn a SBML species into parameters and replace species references
inside the model instance.
:param species_ids:
List of SBML species ID to convert to parameters with the same ID as
the replaced species.
:param sbml_model:
SBML model to modify
:return:
List of IDs of species which have been converted to parameters
"""
transformables = []
for species_id in species_ids:
species = sbml_model.getSpecies(species_id)
if species.getHasOnlySubstanceUnits():
logger.warning(
f"Ignoring {species.getId()} which has only substance units."
" Conversion not yet implemented.")
continue
if math.isnan(species.getInitialConcentration()):
logger.warning(
f"Ignoring {species.getId()} which has no initial "
"concentration. Amount conversion not yet implemented.")
continue
transformables.append(species_id)
# Must not remove species while iterating over getListOfSpecies()
for species_id in transformables:
species = sbml_model.removeSpecies(species_id)
par = sbml_model.createParameter()
par.setId(species.getId())
par.setName(species.getName())
par.setConstant(True)
par.setValue(species.getInitialConcentration())
par.setUnits(species.getUnits())
# Remove from reactants and products
for reaction in sbml_model.getListOfReactions():
for species_id in transformables:
# loop, since removeX only removes one instance
while reaction.removeReactant(species_id):
# remove from reactants
pass
while reaction.removeProduct(species_id):
# remove from products
pass
while reaction.removeModifier(species_id):
# remove from modifiers
pass
return transformables | a7cb9df992bad98584124320bc485aa978495050 | 3,657,213 |
import warnings
def gaussian_filter_cv(array: np.ndarray, sigma) -> np.ndarray:
"""
Apply a Gaussian filter to a raster that may contain NaNs, using OpenCV's implementation.
Arguments are for now hard-coded to be identical to scipy.
N.B: kernel_size is set automatically based on sigma
:param array: the input array to be filtered.
:param sigma: the sigma of the Gaussian kernel
:returns: the filtered array (same shape as input)
"""
# Check that array dimension is 2, or can be squeezed to 2D
orig_shape = array.shape
if len(orig_shape) == 2:
pass
elif len(orig_shape) == 3:
if orig_shape[0] == 1:
array = array.squeeze()
else:
raise NotImplementedError("Case of array of dimension 3 not implemented")
else:
raise ValueError(
f"Invalid array shape given: {orig_shape}. Expected 2D or 3D array"
)
# In case array does not contain NaNs, use OpenCV's gaussian filter directly
# With kernel size (0, 0), i.e. set to default, and borderType=BORDER_REFLECT, the output is equivalent to scipy
if np.count_nonzero(np.isnan(array)) == 0:
gauss = cv.GaussianBlur(array, (0, 0), sigmaX=sigma, borderType=cv.BORDER_REFLECT)
# If array contain NaNs, need a more sophisticated approach
# Inspired by https://stackoverflow.com/a/36307291
else:
# Run filter on a copy with NaNs set to 0
array_no_nan = array.copy()
array_no_nan[np.isnan(array)] = 0
gauss_no_nan = cv.GaussianBlur(array_no_nan, (0, 0), sigmaX=sigma, borderType=cv.BORDER_REFLECT)
del array_no_nan
# Mask of NaN values
nan_mask = 0 * array.copy() + 1
nan_mask[np.isnan(array)] = 0
gauss_mask = cv.GaussianBlur(nan_mask, (0, 0), sigmaX=sigma, borderType=cv.BORDER_REFLECT)
del nan_mask
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="invalid value encountered")
gauss = gauss_no_nan / gauss_mask
return gauss.reshape(orig_shape) | f39223111ff6624756491b37c32b7162ae8f3e5c | 3,657,214 |
import inspect
import functools
def refresh_cache(f):
"""Decorator to update the instance_info_cache
Requires context and instance as function args
"""
argspec = inspect.getargspec(f)
@functools.wraps(f)
def wrapper(self, context, *args, **kwargs):
res = f(self, context, *args, **kwargs)
try:
# get the instance from arguments (or raise ValueError)
instance = kwargs.get('instance')
if not instance:
instance = args[argspec.args.index('instance') - 2]
except ValueError:
msg = _('instance is a required argument to use @refresh_cache')
raise Exception(msg)
update_instance_cache_with_nw_info(self, context, instance,
nw_info=res)
# return the original function's return value
return res
return wrapper | 6ca9449f1ae222052f89da9a8baa611b42b47fe4 | 3,657,215 |
import time
import os
import logging
def get_timestamped_export_dir(export_dir_base):
"""Builds a path to a new subdirectory within the base directory.
Each export is written into a new subdirectory named using the
current time. This guarantees monotonically increasing version
numbers even across multiple runs of the pipeline.
The timestamp used is the number of seconds since epoch UTC.
Args:
export_dir_base: A string containing a directory to write the exported
graph and checkpoints.
Returns:
The full path of the new subdirectory (which is not actually created yet).
Raises:
RuntimeError: if repeated attempts fail to obtain a unique timestamped
directory name.
"""
attempts = 0
while attempts < MAX_DIRECTORY_CREATION_ATTEMPTS:
export_timestamp = int(time.time())
export_dir = os.path.join(
compat.as_bytes(export_dir_base),
compat.as_bytes(str(export_timestamp)))
if not gfile.Exists(export_dir):
# Collisions are still possible (though extremely unlikely): this
# directory is not actually created yet, but it will be almost
# instantly on return from this function.
return export_dir
time.sleep(1)
attempts += 1
logging.warn(
'Export directory {} already exists; retrying (attempt {}/{})'.format(
export_dir, attempts, MAX_DIRECTORY_CREATION_ATTEMPTS))
raise RuntimeError('Failed to obtain a unique export directory name after '
'{} attempts.'.format(MAX_DIRECTORY_CREATION_ATTEMPTS)) | f4848f97f6176aa990a8a40de42b92e2e74d46a3 | 3,657,216 |
import sys
def calculate_density(temp, pressure):
"""Returns density in g/cm^3
"""
if (temp < 161.40):
raise ValueError("Solid phase!")
if (temp < 289.7):
VaporP_bar = pow(10, 4.0519 - 667.16 / temp)
else:
VaporP_bar = sys.float_info.max
if (pressure < VaporP_bar):
raise ValueError("Gas phase!")
density = 2.9970938084691329e2 * np.exp(-8.2598864714323525e-2 * temp) - \
1.8801286589442915e6 * np.exp(
-((temp - 4.0820251276172212e2) / 2.7863170223154846e1)**2) - \
5.4964506351743057e3 * np.exp(
-((temp - 6.3688597345042672e2) / 1.1225818853661815e2)**2) + \
8.3450538370682614e2 * np.exp(
-((temp + 4.8840568924597342e1) / 7.3804147172071107e3)**2) \
- 8.3086310405942265e2
return density | e5222e4f552a9f4b82ea13be874985406e4a3b2f | 3,657,217 |
def cross_validation(df, K, hyperparameters):
"""
Perform cross validation on a dataset.
:param df: pandas.DataFrame
:param K: int
:param hyperparameters: dict
"""
train_indices = list(df.sample(frac=1).index)
k_folds = np.array_split(train_indices, K)
if K == 1:
K = 2
rmse_list = []
for i in range(len(k_folds)):
training_folds = [fold for j, fold in enumerate(k_folds) if j != i]
training_indices = np.concatenate(training_folds)
x_train, y_train = df.iloc[training_indices, 1:], df.iloc[training_indices, :1]
x_validation, y_validation = df.iloc[k_folds[i], 1:], df.iloc[k_folds[i], :1]
dtrain = xgb.DMatrix(data=x_train, label=y_train)
dvalidation = xgb.DMatrix(data=x_validation, label=y_validation)
model = xgb.train(
params=hyperparameters,
dtrain=dtrain,
evals=[(dtrain, "train"), (dvalidation, "validation")],
)
eval_results = model.eval(dvalidation)
rmse_list.append(float(eval_results.split("eval-rmse:")[1]))
return rmse_list, model | 72cdf91efa029eb8c029eb84d596057d13a7c515 | 3,657,218 |
from typing import List
from typing import Dict
def solve_cities(cities: List, gdps: List, sick: List, total_capacity: int,
value_r=0, weight_r=0, num_reads=1, verbose=False) -> Dict:
"""
Solves problem: "Which cities should I should I shut down in order to stay
within healthcare resources constraints while maximizing overall GDP"
parameters:
cities - list of city names
gdps - corresponding list of GDP per city
sick - corresponding number of sick people per city
total_capacity - max capacity for sick people summed over all cities
num_reads - number of samples to take
verbose - whether to print out best result
returns:
(dict) - list of dictionaries with individual results and selected attributes
sorted in order of least energy first
"""
if sum(sick) < total_capacity:
print("Warning in solve_cities: Total number of sick people is less "
+ "than total capacity. There's no knapsack problem to solve!")
bqm = knapsack_bqm(cities, gdps, sick, total_capacity,
value_r=value_r, weight_r=weight_r)
sampler = LeapHybridSampler()
samplesets = [sampler.sample(bqm) for _ in range(num_reads)]
df = pd.DataFrame({'city': cities, 'gdp': gdps, 'sick': sick})
df = df.set_index('city')
solution_set = []
for sampleset in samplesets:
open_cities = []
closed_cities = []
for k, v in sampleset.first.sample.items():
if k in cities:
if v == 1:
open_cities.append(k)
else:
closed_cities.append(k)
solution_set.append({
'open_cities': open_cities,
'closed_cities': closed_cities,
'energy': sampleset.first.energy,
'salvaged_gdp': sum(df.loc[open_cities]['gdp']) + sum(df.loc[closed_cities]['gdp']) * value_r,
'used_capacity': int(round(sum(df.loc[open_cities]['sick'])))
})
# do sorting from lowest to highest energy
if num_reads > 1:
energies = [solution['energy'] for solution in solution_set]
solution_set = [x for _, x in sorted(zip(energies, solution_set))]
if verbose:
print('BEST SOLUTION')
print('Open cities')
print(solution_set[0]['open_cities'])
print('\n')
print('Closed cities')
print(solution_set[0]['closed_cities'])
print('\n')
total_gdp = sum(df['gdp'])
salvaged_gdp = solution_set[0]['salvaged_gdp']
print(
f'Salvaged GDP: {salvaged_gdp} ({(100*salvaged_gdp/total_gdp):.1f}%)')
used_capacity = solution_set[0]['used_capacity']
print(
f'Used up hospital capacity: {used_capacity:d} of {total_capacity} ({(100*used_capacity/total_capacity):.1f}%)')
return solution_set | 52bef06069ee6975fbc5dea50cbb44349c96b9db | 3,657,219 |
def catalog():
"""Render the mapping catalog page."""
if request.args.get(EQUIVALENT_TO):
mappings = current_app.manager.get_mappings_by_type(EQUIVALENT_TO)
message = Markup("<h4>You are now visualizing the catalog of equivalent mappings</h4>")
flash(message)
elif request.args.get(IS_PART_OF):
mappings = current_app.manager.get_mappings_by_type(IS_PART_OF)
message = Markup("<h4>You are now visualizing the catalog of hierarchical mappings</h4>")
flash(message)
else:
mappings = current_app.manager.get_all_mappings()
return render_template(
'curation/catalog.html',
STYLED_NAMES=STYLED_NAMES,
mappings=mappings,
all='all'
) | b28904fff79b978225eda1bb3ed4f6e04c817737 | 3,657,220 |
import logging
def detect_counterexample(algorithm, test_epsilon, default_kwargs={},
event_search_space=None, databases=None,
event_iterations=100000, detect_iterations=500000, cores=0,
loglevel=logging.INFO):
"""
:param algorithm: The algorithm to test for.
:param test_epsilon: The privacy budget to test for, can either be a number or a tuple/list.
:param default_kwargs: The default arguments the algorithm needs except the first Queries argument.
:param event_search_space: The search space for event selector to reduce search time, optional.
:param databases: The databases to run for detection, optional.
:param event_iterations: The iterations for event selector to run, default is 100000.
:param detect_iterations: The iterations for detector to run, default is 500000.
:param cores: The cores to utilize, 0 means auto-detection.
:param loglevel: The loglevel for logging package.
:return: [(epsilon, p, d1, d2, kwargs, event)] The epsilon-p pairs along with databases/arguments/selected event.
"""
logging.basicConfig(level=loglevel)
logger.info('Starting to find counter example on algorithm {} with test epsilon {}\n'
.format(algorithm.__name__, test_epsilon))
logger.info('\nExtra arguments:\n'
'default_kwargs: {}\n'
'event_search_space: {}\n'
'databases: {}\n'
'cores:{}\n'.format(default_kwargs, event_search_space, databases, cores))
if databases is not None:
d1, d2 = databases
kwargs = generate_arguments(algorithm, d1, d2, default_kwargs=default_kwargs)
input_list = ((d1, d2, kwargs),)
else:
input_list = generate_databases(algorithm, 5, default_kwargs=default_kwargs)
result = []
test_epsilon = (test_epsilon, ) if isinstance(test_epsilon, (int, float)) else test_epsilon
pool = None
if cores == 0:
pool = mp.Pool(mp.cpu_count())
elif cores != 1:
pool = mp.Pool(cores)
try:
for i, epsilon in enumerate(test_epsilon):
d1, d2, kwargs, event = select_event(algorithm, input_list, epsilon, event_iterations,
search_space=event_search_space, process_pool=pool)
# fix the database and arguments if selected for performance
input_list = ((d1, d2, kwargs),) if len(input_list) > 1 else input_list
p1, _ = hypothesis_test(algorithm, d1, d2, kwargs, event, epsilon, detect_iterations, process_pool=pool)
result.append((epsilon, p1, d1, d2, kwargs, event))
print('Epsilon: {} | p-value: {:5.3f} | Event: {} | {:5.1f}%'
.format(epsilon, p1, event, float(i + 1) / len(test_epsilon) * 100))
logger.debug('D1: {} | D2: {} | kwargs: {}'.format(d1, d2, kwargs))
finally:
if pool is not None:
pool.close()
else:
pass
return result | 4a4fecd74743895abd9bc1c6ab617736758d5c64 | 3,657,221 |
def apply_inverse_rot_to_vec(rot, vec):
"""Multiply the inverse of a rotation matrix by a vector."""
# Inverse rotation is just transpose
return [rot[0][0] * vec[0] + rot[1][0] * vec[1] + rot[2][0] * vec[2],
rot[0][1] * vec[0] + rot[1][1] * vec[1] + rot[2][1] * vec[2],
rot[0][2] * vec[0] + rot[1][2] * vec[1] + rot[2][2] * vec[2]] | 1108ac6caa30b3562a2af1bcc83e1c1a1bfd8d4d | 3,657,222 |
def gsl_blas_dsdot(*args, **kwargs):
"""gsl_blas_dsdot(gsl_vector_float const * X, gsl_vector_float const * Y) -> int"""
return _gslwrap.gsl_blas_dsdot(*args, **kwargs) | 6b8f45a773fca936913b2653df9ab8c96f1e974a | 3,657,223 |
def cost(weights):
"""Cost function which tends to zero when A |x> tends to |b>."""
p_global_ground = global_ground(weights)
p_ancilla_ground = ancilla_ground(weights)
p_cond = p_global_ground / p_ancilla_ground
return 1 - p_cond | 3b33292c63b42d110efe0d7cbe4dae85f095472f | 3,657,224 |
import time
def runOptimization(
cfg,
optimize_cfg,
n_iter=20,
split_runs=1,
model_runs=1,
filename="optimize_result",
):
"""Optimize the model parameter using hyperopt.
The model parameters are optimized using
the evaluations on validation dataset.
Args:
cfg(dict): configuration data
optimize_cfg(dict): configuration for optimization
n_iter(int): the number of iterations for sequential optimization
split_runs(int): the number of runs
for different dataset-split random seeds.
model_runs(int): the number of runs
for different model-initialization random seeds.
filename(string): a file-name for logging
"""
def objective(space):
print(space)
newcfg = {**cfg}
for k in space.keys():
if k in newcfg and type(newcfg[k]) == dict:
newcfg[k] = {**space[k]}
else:
newcfg[k] = space[k]
print(newcfg, cfg)
result = runEvaluation(
newcfg, split_runs=split_runs, model_runs=model_runs
)
opt_result = {
"loss": result["val_rmse"][0],
"loss_variance": result["val_rmse"][1] ** 2,
"true_loss": result["test_rmse"][0],
"true_loss_variance": result["test_rmse"][1] ** 2,
"status": STATUS_OK,
"eval_time": time.time(),
"data": result,
"space": space,
}
return opt_result
trials = Trials()
best = fmin(
objective,
optimize_cfg,
algo=tpe.suggest,
max_evals=n_iter,
trials=trials,
)
valid_trial = [t for t in trials if t["result"]["status"] == STATUS_OK]
losses_argmin = np.argmin(
[float(trial["result"]["loss"]) for trial in valid_trial]
)
print([float(trial["result"]["loss"]) for trial in valid_trial])
best_trial = valid_trial[losses_argmin]
best_result = best_trial["result"]["data"]
print(best, best_trial["result"]["space"], space_eval(optimize_cfg, best))
ret = {
"best": best,
"n_iter": n_iter,
"split_runs": split_runs,
"model_runs": model_runs,
"result": best_result,
"optimize_confg": optimize_cfg,
"config": cfg,
}
ret_str = ConfigEncoder.dumps(ret)
with open(f"{filename}.json", "w") as fp:
fp.write(ret_str)
print(ret)
return ret | ef2e2c85f5b0b8f6889da49ed1e964d432bb1886 | 3,657,225 |
def _capabilities_for_entity(config, entity):
"""Return an _EntityCapabilities appropriate for given entity.
raises _UnknownEntityDomainError if the given domain is unsupported.
"""
if entity.domain not in _CAPABILITIES_FOR_DOMAIN:
raise _UnknownEntityDomainError()
return _CAPABILITIES_FOR_DOMAIN[entity.domain](config, entity) | 5fe541778ede415020377a0c989fa47ad2ae4d05 | 3,657,226 |
import os
import click
def check_missing_files(client):
"""Find missing files listed in datasets."""
missing = defaultdict(list)
for path, dataset in client.datasets.items():
for file in dataset.files:
filepath = (path.parent / file)
if not filepath.exists():
missing[str(
path.parent.relative_to(client.renku_datasets_path)
)].append(
os.path.normpath(str(filepath.relative_to(client.path)))
)
if not missing:
return True
click.secho(
WARNING + 'There are missing files in datasets.'
# '\n (use "renku dataset clean <name>" to clean them)'
)
for dataset, files in missing.items():
click.secho(
'\n\t' + click.style(dataset, fg='yellow') + ':\n\t ' +
'\n\t '.join(click.style(path, fg='red') for path in files)
)
return False | f3a167e72871ef05baa217a7d10dfe4be113da21 | 3,657,227 |
def apply_torsion(nodes, suffix=""):
""" Torsion energy in nodes. """
if (
"phases%s" % suffix in nodes.data
and "periodicity%s" % suffix in nodes.data
):
return {
"u%s"
% suffix: esp.mm.torsion.periodic_torsion(
x=nodes.data["x"],
k=nodes.data["k%s" % suffix],
phases=nodes.data["phases%s" % suffix],
periodicity=nodes.data["periodicity%s" % suffix],
)
}
else:
return {
"u%s"
% suffix: esp.mm.torsion.periodic_torsion(
x=nodes.data["x"], k=nodes.data["k%s" % suffix],
)
} | 37310291ddb769587d9d14a8dedcda3b528a78f3 | 3,657,228 |
import decimal
def parse_summary_table(doc):
"""
Parse the etree doc for summarytable, returns::
[{'channel': unicode,
'impressions': int,
'clicks': int,
'ctr': decimal.Decimal,
'ecpm': decimal.Decimal,
'earnings': decimal.Decimal}]
"""
for t in doc.findall('.//table'):
if t.attrib.get('id') == 'summarytable':
break
else:
raise ValueError("summary table not found")
res = []
FIELDS = ['channel', 'requests', 'responses', 'impressions',
'clicks', 'ctr', 'ecpm', 'earnings']
for row in t.findall('.//tr'):
celltext = []
for c in row.findall('td'):
tail = ''
# adsense inserts an empty span if a row has a period in it, so
# get the children and find the tail element to append to the text
if c.find('a') and c.find('a').getchildren():
tail = c.find('a').getchildren()[0].tail or ''
celltext.append('%s%s' % ((c.text or c.findtext('a') or '').strip(), tail.strip()))
if len(celltext) != 8:
continue
try:
value_cols = map(parse_decimal, celltext[1:])
except decimal.InvalidOperation:
continue
res.append(dict(zip(FIELDS, [celltext[0]] + value_cols)))
return res | 7d188478dc5539b4c8020af09cb052140def63c9 | 3,657,229 |
import math
def tileset_info(hitile_path):
"""
Get the tileset info for a hitile file.
Parameters
----------
hitile_path: string
The path to the hitile file
Returns
-------
tileset_info: {'min_pos': [],
'max_pos': [],
'tile_size': 1024,
'max_zoom': 7
}
"""
hdf_file = h5py.File(hitile_path, "r")
d = hdf_file["meta"]
if "min-pos" in d.attrs:
min_pos = d.attrs["min-pos"]
else:
min_pos = 0
if "max-pos" in d.attrs:
max_pos = d.attrs["max-pos"]
else:
max_pos = d.attrs["max-length"]
return {
"max_pos": [int(max_pos)],
"min_pos": [int(min_pos)],
"max_width": 2 ** math.ceil(math.log(max_pos - min_pos) / math.log(2)),
"max_zoom": int(d.attrs["max-zoom"]),
"tile_size": int(d.attrs["tile-size"]),
} | 3ea467898e15ac6aca21c219398aa1249b795e55 | 3,657,230 |
def delete_user():
""" Deletes the current user's account. """
DB.session.delete(current_user)
DB.session.commit()
flash("Account deleted", 'success')
return redirect('/login') | bc22d6287738c676cec3c780a9fb01513ddd5530 | 3,657,231 |
def setup_code_gen(no_of_accessories):
""" Generate setup code
"""
try:
invalid_setup_codes = ['00000000','11111111','22222222','33333333','44444444','55555555',\
'66666666','77777777','88888888','99999999','12345678','87654321']
setup_code_created = []
for _ in range(no_of_accessories):
setup_code = ''
# random generate setup_code
for _ in range(8):
random_num = str(random.randint(0,9))
setup_code += random_num
# generate again till valid
while setup_code in invalid_setup_codes:
setup_code = ''
for _ in range(8):
random_num = str(randint(0,9))
setup_code += random_num
# Check if the setup code has valid format
if (len(setup_code) != 8) or (not setup_code.isdigit()):
print "\nSetup code generated should be 8 numbers without any '-' in between. Eg. 11122333 \n"
raise SystemExit(1)
# Add the hyphen (-) in the PIN for salt-verifier generation. So, 11122333 will become 111-22-333
setup_code = setup_code[:3] + '-' + setup_code[3:5] + '-' + setup_code[5:]
setup_code_created.append(setup_code)
return setup_code_created
except StandardError as std_err:
print std_err
except:
raise | 253272cc27de1ead05d12f2e1798d91a3c4571dd | 3,657,232 |
def letter_difference(letter_1: str, letter_2: str) -> int:
"""
Return the difference in value between letter_1 and letter_2
"""
assert len(letter_1) == 1
assert len(letter_2) == 1
diff = letter_to_value[letter_2] - letter_to_value[letter_1]
if diff > 13:
diff -= 27
return diff | 66d88efff92acebef06275d244d560ca5071e974 | 3,657,233 |
import requests
def refresh_access_token(request):
"""Updates `accessToken` in request cookies (not in browser cookies) using `refreshToken`. """
try:
refresh_token = request.COOKIES['refreshToken']
url = urljoin(settings.TIT_API_HOST, '/api/auth/token/refresh/')
response = requests.post(url, {'refresh': refresh_token})
result = response.json()
request.COOKIES['accessToken'] = result['access']
return True
except (KeyError, requests.HTTPError, ):
"""Refresh token doesn't exist in cookies or response from TIT API
returned error status code.
"""
return False | 378f4129fa9cc6af8cc961560e3e4063fcd0495b | 3,657,234 |
def ngrams(string, n=3, punctuation=PUNCTUATION, **kwargs):
""" Returns a list of n-grams (tuples of n successive words) from the given string.
Punctuation marks are stripped from words.
"""
s = string
s = s.replace(".", " .")
s = s.replace("?", " ?")
s = s.replace("!", " !")
s = [w.strip(punctuation) for w in s.split()]
s = [w.strip() for w in s if w.strip()]
return [tuple(s[i:i + n]) for i in range(len(s) - n + 1)] | 1e0e99f01c8aa46f4c44cca02d9bdb2b1c52d4c5 | 3,657,235 |
def binstringToBitList(binstring):
"""Converts a string of '0's and '1's to a list of 0's and 1's"""
bitList = []
for bit in binstring:
bitList.append(int(bit))
return bitList | d8ff10651d9fc2d02aba3b4a57a0a768032783b7 | 3,657,236 |
def file_revisions(request, repo_id):
"""List file revisions in file version history page.
"""
repo = get_repo(repo_id)
if not repo:
raise Http404
# perm check
if check_folder_permission(request, repo_id, '/') is None:
raise Http404
return render_file_revisions(request, repo_id) | c9ec0e1c159a4efdd8f4c3287cb9d8339ba9a9d2 | 3,657,237 |
def textctrl_info_t_get_tabsize(*args):
"""
textctrl_info_t_get_tabsize(self) -> unsigned int
"""
return _ida_kernwin.textctrl_info_t_get_tabsize(*args) | 7aff89906aebacb3664a73d26f52dd4317031790 | 3,657,238 |
def node_is_hidden(node_name):
"""
Returns whether or not given node is hidden
:param node_name: str
:return: bool
"""
if python.is_string(node_name):
return not maya.cmds.getAttr('{}.visibility'.format(node_name))
return not maya.cmds.getAttr('{}.visibility'.format(node.get_name(node_name))) | 0927d2424b64b9b81b52ced335823963d7ec9fe2 | 3,657,239 |
import torch
def generate_patch_grid_from_normalized_LAF(img: torch.Tensor, LAF: torch.Tensor, PS: int = 32) -> torch.Tensor:
"""Helper function for affine grid generation.
Args:
img: image tensor of shape :math:`(B, CH, H, W)`.
LAF: laf with shape :math:`(B, N, 2, 3)`.
PS: patch size to be extracted.
Returns:
grid
"""
raise_error_if_laf_is_not_valid(LAF)
B, N, _, _ = LAF.size()
num, ch, h, w = img.size()
# norm, then renorm is needed for allowing detection on one resolution
# and extraction at arbitrary other
LAF_renorm = denormalize_laf(LAF, img)
grid = F.affine_grid(LAF_renorm.view(B * N, 2, 3), [B * N, ch, PS, PS], align_corners=False) # type: ignore
grid[..., :, 0] = 2.0 * grid[..., :, 0].clone() / float(w) - 1.0
grid[..., :, 1] = 2.0 * grid[..., :, 1].clone() / float(h) - 1.0
return grid | 288572e4ff8577a8bd664732c79408b71ec58c0d | 3,657,240 |
from typing import Union
from typing import Tuple
def _resolve_condition_operands(
left_operand: Union[str, pipeline_channel.PipelineChannel],
right_operand: Union[str, pipeline_channel.PipelineChannel],
) -> Tuple[str, str]:
"""Resolves values and PipelineChannels for condition operands.
Args:
left_operand: The left operand of a condition expression.
right_operand: The right operand of a condition expression.
Returns:
A tuple of the resolved operands values:
(left_operand_value, right_operand_value).
"""
# Pre-scan the operand to get the type of constant value if there's any.
# The value_type can be used to backfill missing PipelineChannel.channel_type.
value_type = None
for value_or_reference in [left_operand, right_operand]:
if isinstance(value_or_reference, pipeline_channel.PipelineChannel):
parameter_type = type_utils.get_parameter_type(
value_or_reference.channel_type)
if parameter_type in [
pipeline_spec_pb2.ParameterType.STRUCT,
pipeline_spec_pb2.ParameterType.LIST,
pipeline_spec_pb2.ParameterType
.PARAMETER_TYPE_ENUM_UNSPECIFIED,
]:
input_name = _additional_input_name_for_pipeline_channel(
value_or_reference)
raise ValueError('Conditional requires scalar parameter values'
' for comparison. Found input "{}" of type {}'
' in pipeline definition instead.'.format(
input_name,
value_or_reference.channel_type))
parameter_types = set()
for value_or_reference in [left_operand, right_operand]:
if isinstance(value_or_reference, pipeline_channel.PipelineChannel):
parameter_type = type_utils.get_parameter_type(
value_or_reference.channel_type)
else:
parameter_type = type_utils.get_parameter_type(
type(value_or_reference).__name__)
parameter_types.add(parameter_type)
if len(parameter_types) == 2:
# Two different types being compared. The only possible types are
# String, Boolean, Double and Integer. We'll promote the other type
# using the following precedence:
# String > Boolean > Double > Integer
if pipeline_spec_pb2.ParameterType.STRING in parameter_types:
canonical_parameter_type = pipeline_spec_pb2.ParameterType.STRING
elif pipeline_spec_pb2.ParameterType.BOOLEAN in parameter_types:
canonical_parameter_type = pipeline_spec_pb2.ParameterType.BOOLEAN
else:
# Must be a double and int, promote to double.
assert pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE in parameter_types, \
'Types: {} [{} {}]'.format(
parameter_types, left_operand, right_operand)
assert pipeline_spec_pb2.ParameterType.NUMBER_INTEGER in parameter_types, \
'Types: {} [{} {}]'.format(
parameter_types, left_operand, right_operand)
canonical_parameter_type = pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE
elif len(parameter_types) == 1: # Both operands are the same type.
canonical_parameter_type = parameter_types.pop()
else:
# Probably shouldn't happen.
raise ValueError('Unable to determine operand types for'
' "{}" and "{}"'.format(left_operand, right_operand))
operand_values = []
for value_or_reference in [left_operand, right_operand]:
if isinstance(value_or_reference, pipeline_channel.PipelineChannel):
input_name = _additional_input_name_for_pipeline_channel(
value_or_reference)
operand_value = "inputs.parameter_values['{input_name}']".format(
input_name=input_name)
parameter_type = type_utils.get_parameter_type(
value_or_reference.channel_type)
if parameter_type == pipeline_spec_pb2.ParameterType.NUMBER_INTEGER:
operand_value = 'int({})'.format(operand_value)
elif isinstance(value_or_reference, str):
operand_value = "'{}'".format(value_or_reference)
parameter_type = pipeline_spec_pb2.ParameterType.STRING
elif isinstance(value_or_reference, bool):
# Booleans need to be compared as 'true' or 'false' in CEL.
operand_value = str(value_or_reference).lower()
parameter_type = pipeline_spec_pb2.ParameterType.BOOLEAN
elif isinstance(value_or_reference, int):
operand_value = str(value_or_reference)
parameter_type = pipeline_spec_pb2.ParameterType.NUMBER_INTEGER
else:
assert isinstance(value_or_reference, float), value_or_reference
operand_value = str(value_or_reference)
parameter_type = pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE
if parameter_type != canonical_parameter_type:
# Type-cast to so CEL does not complain.
if canonical_parameter_type == pipeline_spec_pb2.ParameterType.STRING:
assert parameter_type in [
pipeline_spec_pb2.ParameterType.BOOLEAN,
pipeline_spec_pb2.ParameterType.NUMBER_INTEGER,
pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE,
]
operand_value = "'{}'".format(operand_value)
elif canonical_parameter_type == pipeline_spec_pb2.ParameterType.BOOLEAN:
assert parameter_type in [
pipeline_spec_pb2.ParameterType.NUMBER_INTEGER,
pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE,
]
operand_value = 'true' if int(operand_value) == 0 else 'false'
else:
assert canonical_parameter_type == pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE
assert parameter_type == pipeline_spec_pb2.ParameterType.NUMBER_INTEGER
operand_value = 'double({})'.format(operand_value)
operand_values.append(operand_value)
return tuple(operand_values) | fde07e14af8f9ae610cfcd64e6a3f2219f0ee8e9 | 3,657,241 |
import json
import os
import random
import base64
import zlib
def format_record(test_record):
"""Create a properly formatted Kinesis, S3, or SNS record.
Supports a dictionary or string based data record. Reads in
event templates from the test/integration/templates folder.
Args:
test_record: Test record metadata dict with the following structure:
data - string or dict of the raw data
description - a string describing the test that is being performed
trigger - bool of if the record should produce an alert
source - which stream/s3 bucket originated the data
service - which aws service originated the data
compress (optional) - if the payload needs to be gzip compressed or not
Returns:
dict in the format of the specific service
"""
service = test_record['service']
source = test_record['source']
compress = test_record.get('compress')
data_type = type(test_record['data'])
if data_type == dict:
data = json.dumps(test_record['data'])
elif data_type in (unicode, str):
data = test_record['data']
else:
LOGGER_CLI.info('Invalid data type: %s', type(test_record['data']))
return
# Get the template file for this particular service
template_path = os.path.join(DIR_TEMPLATES, '{}.json'.format(service))
with open(template_path, 'r') as service_template:
try:
template = json.load(service_template)
except ValueError as err:
LOGGER_CLI.error('Error loading %s.json: %s', service, err)
return
if service == 's3':
# Set the S3 object key to a random value for testing
test_record['key'] = ('{:032X}'.format(random.randrange(16**32)))
template['s3']['object']['key'] = test_record['key']
template['s3']['object']['size'] = len(data)
template['s3']['bucket']['arn'] = 'arn:aws:s3:::{}'.format(source)
template['s3']['bucket']['name'] = source
# Create the mocked s3 object in the designated bucket with the random key
put_mocked_s3_object(source, test_record['key'], data)
elif service == 'kinesis':
if compress:
kinesis_data = base64.b64encode(zlib.compress(data))
else:
kinesis_data = base64.b64encode(data)
template['kinesis']['data'] = kinesis_data
template['eventSourceARN'] = 'arn:aws:kinesis:us-east-1:111222333:stream/{}'.format(source)
elif service == 'sns':
template['Sns']['Message'] = data
template['EventSubscriptionArn'] = 'arn:aws:sns:us-east-1:111222333:{}'.format(source)
else:
LOGGER_CLI.info('Invalid service %s', service)
return template | 719d398353c50ec2fdb48db933b0322027f744c1 | 3,657,242 |
def int_to_bitstr(int_value: int) -> str:
"""
A function which returns its bit representation as a string.
Arguments:
int_value (int) - The int value we want to get the bit representation for.
Return:
str - The string representation of the bits required to form the int.
"""
return bin(int_value)[2:] | cafbf151ce0404081a0a8e1327d85e61ea7ddc52 | 3,657,243 |
def target_reached(effect):
"""target amount has been reached (100% or more)"""
if not effect.instance.target:
return False
return effect.instance.amount_raised >= effect.instance.target | 0101cd9c3c51a1e03ba7cfd8844c3821a156e2fe | 3,657,244 |
def resid_mask(ints, wfs_map=read_map(wfs_file), act_map=read_map(act_file), num_aps=236):
"""
Returns the locations of the valid actuators in the actuator array
resids: Nx349 residual wavefront array (microns)
ints: Nx304 intensity array (any units)
N: Number of timestamps
"""
# Check inputs
N = ints.shape[0] # Num timestamps
# Aggregate intensities over all timestamps
med_ints = np.median(ints, axis=0)
# Fill WFS map with aggregated intensities
int_map = wfs_map.copy()
int_map[np.where(int_map==1)] = med_ints
# Find lenslets with greatest intensity
idxs = np.flip(np.argsort(int_map, axis=None))[:num_aps] # flat idxs of sort
idxs = np.unravel_index(idxs, wfs_map.shape) # 2D idxs of sort
# Mask for good sub-ap values
good_aps = np.zeros(wfs_map.shape, dtype=int)
good_aps[idxs] = 1
good_aps = good_aps * wfs_map # Just in case
# Mask for good actuator values
good_acts = np.pad(good_aps, ((1,1),(1,1)))
good_acts = (good_acts[1:,1:] | good_acts[1:,:-1]
| good_acts[:-1,:-1] | good_acts[:-1,1:]) * act_map
return good_acts | 98c818db8d2d5040c5a20857693f3f3116ab8e13 | 3,657,245 |
import requests
def session():
"""Sets up a HTTP session with a retry policy."""
s = requests.Session()
retries = Retry(total=5, backoff_factor=0.5)
s.mount("http://", HTTPAdapter(max_retries=retries))
return s | d5cb89f04017718983834a0b4008972f393f56ae | 3,657,246 |
def fit(df, methodtype='hc', scoretype='bic', black_list=None, white_list=None, bw_list_method='enforce', max_indegree=None, epsilon=1e-4, max_iter=1e6, verbose=3):
"""Structure learning fit model.
Description
-----------
Search strategies for structure learning
The search space of DAGs is super-exponential in the number of variables and the above scoring functions allow for local maxima.
To learn model structure (a DAG) from a data set, there are three broad techniques:
1. Score-based structure learning (BIC/BDeu/K2 score; exhaustive search, hill climb/tabu search)
a. exhaustivesearch
b. hillclimbsearch
2. Constraint-based structure learning (PC)
a. chi-square test
3. Hybrid structure learning (The combination of both techniques) (MMHC)
Score-based Structure Learning
This approach construes model selection as an optimization task. It has two building blocks:
A scoring function sD:->R that maps models to a numerical score, based on how well they fit to a given data set D.
A search strategy to traverse the search space of possible models M and select a model with optimal score.
Commonly used scoring functions to measure the fit between model and data are Bayesian Dirichlet scores such as BDeu or K2
and the Bayesian Information Criterion (BIC, also called MDL).
As before, BDeu is dependent on an equivalent sample size.
Parameters
----------
df : pd.DataFrame()
Input dataframe.
methodtype : str, (default : 'hc')
String Search strategy for structure_learning.
'hc' or 'hillclimbsearch' (default)
'ex' or 'exhaustivesearch'
'cs' or 'constraintsearch'
scoretype : str, (default : 'bic')
Scoring function for the search spaces.
'bic', 'k2', 'bdeu'
black_list : List or None, (default : None)
If a list of edges is provided as black_list, they are excluded from the search and the resulting model will not contain any of those edges. The default is None.
Works only in case of methodtype='hc'. See also paramter: `bw_list_method`
white_list : List or None, (default : None)
If a list of edges is provided as white_list, the search is limited to those edges. The resulting model will then only contain edges that are in white_list. The default is None.
Works only in case of methodtype='hc'/ See also paramter: `bw_list_method`
bw_list_method : str, (default : 'enforce')
'enforce' : A list of edges can optionally be passed as `black_list` or `white_list` to exclude those edges or to limit the search. This option is limited to only methodtype='hc'
'filter' : Filter the dataframe based on `black_list` or `white_list`. Filtering can be done for every methodtype/scoretype.
max_indegree : int, (default : None)
If provided and unequal None, the procedure only searches among models where all nodes have at most max_indegree parents. (only in case of methodtype='hc')
epsilon: float (default: 1e-4)
Defines the exit condition. If the improvement in score is less than `epsilon`, the learned model is returned. (only in case of methodtype='hc')
max_iter: int (default: 1e6)
The maximum number of iterations allowed. Returns the learned model when the number of iterations is greater than `max_iter`. (only in case of methodtype='hc')
verbose : int, (default : 3)
Print progress to screen.
0: NONE
1: ERROR
2: WARNING
3: INFO (default)
4: DEBUG
5: TRACE
Returns
-------
dict with model.
Examples
--------
>>> import bnlearn as bn
>>>
>>> # Load asia DAG
>>> model = bn.import_DAG('asia')
>>>
>>> # plot ground truth
>>> G = bn.plot(model)
>>>
>>> # Sampling
>>> df = bn.sampling(model, n=10000)
>>>
>>> # Structure learning of sampled dataset
>>> model_sl = bn.structure_learning.fit(df, methodtype='hc', scoretype='bic')
>>>
>>> # Plot based on structure learning of sampled data
>>> bn.plot(model_sl, pos=G['pos'])
>>>
>>> # Compare networks and make plot
>>> bn.compare_networks(model, model_sl, pos=G['pos'])
"""
assert isinstance(pd.DataFrame(), type(df)), 'df must be of type pd.DataFrame()'
assert (scoretype=='bic') | (scoretype=='k2') | (scoretype=='bdeu'), 'scoretype must be string: "bic", "k2" or "bdeu"'
assert (methodtype=='hc') | (methodtype=='ex')| (methodtype=='cs') | (methodtype=='exhaustivesearch')| (methodtype=='hillclimbsearch')| (methodtype=='constraintsearch'), 'Methodtype string is invalid' # noqa
if isinstance(white_list, str): white_list = [white_list]
if isinstance(black_list, str): black_list = [black_list]
if (white_list is not None) and len(white_list)==0: white_list = None
if (black_list is not None) and len(black_list)==0: black_list = None
if (bw_list_method is None) : bw_list_method='enforce'
config = {}
config['verbose'] = verbose
config['method'] = methodtype
config['scoring'] = scoretype
config['black_list'] = black_list
config['white_list'] = white_list
config['bw_list_method'] = bw_list_method
config['max_indegree'] = max_indegree
config['epsilon'] = epsilon
config['max_iter'] = max_iter
# Show warnings
# PGMPY_VER = version.parse(pgmpy.__version__)>version.parse("0.1.9") # Can be be removed if pgmpy >v0.1.9
# if (not PGMPY_VER) and ((black_list is not None) or (white_list is not None)):
# if config['verbose']>=2: print('[bnlearn] >Warning: black_list and white_list only works for pgmpy > v0.1.9') # Can be be removed if pgmpy >v0.1.9
if df.shape[1]>10 and df.shape[1]<15:
if config['verbose']>=2: print('[bnlearn] >Warning: Computing DAG with %d nodes can take a very long time!' %(df.shape[1]))
if (black_list is not None) and methodtype!='hc':
if config['verbose']>=2: print('[bnlearn] >Warning: blacklist only works in case of methodtype="hc"')
if (white_list is not None) and methodtype!='hc':
if config['verbose']>=2: print('[bnlearn] >Warning: white_list only works in case of methodtype="hc"')
if (max_indegree is not None) and methodtype!='hc':
if config['verbose']>=2: print('[bnlearn] >Warning: max_indegree only works in case of methodtype="hc"')
if config['verbose']>=3: print('[bnlearn] >Computing best DAG using [%s]' %(config['method']))
# Make sure columns are of type string
df.columns = df.columns.astype(str)
# Filter on white_list and black_list
df = _white_black_list(df, white_list, black_list, bw_list_method=config['bw_list_method'], verbose=verbose)
# ExhaustiveSearch can be used to compute the score for every DAG and returns the best-scoring one:
if config['method']=='ex' or config['method']=='exhaustivesearch':
"""The first property makes exhaustive search intractable for all but very small networks,
the second prohibits efficient local optimization algorithms to always find the optimal structure.
Thus, identifiying the ideal structure is often not tractable.
Despite these bad news, heuristic search strategies often yields good results
If only few nodes are involved (read: less than 5)."""
if (df.shape[1]>15) and (config['verbose']>=3):
print('[bnlearn] >Warning: Structure learning with more then 15 nodes is computationally not feasable with exhaustivesearch. Use hillclimbsearch or constraintsearch instead!!') # noqa
out = _exhaustivesearch(df, scoretype=config['scoring'], verbose=config['verbose'])
# HillClimbSearch
if config['method']=='hc' or config['method']=='hillclimbsearch':
out = _hillclimbsearch(df,
scoretype=config['scoring'],
black_list=config['black_list'],
white_list=config['white_list'],
max_indegree=config['max_indegree'],
bw_list_method=config['bw_list_method'],
epsilon=config['epsilon'],
max_iter=config['max_iter'],
verbose=config['verbose'],
)
# Constraint-based Structure Learning
if config['method']=='cs' or config['method']=='constraintsearch':
"""Constraint-based Structure Learning
A different, but quite straightforward approach to build a DAG from data is this:
Identify independencies in the data set using hypothesis tests
Construct DAG (pattern) according to identified independencies (Conditional) Independence Tests
Independencies in the data can be identified using chi2 conditional independence tests."""
out = _constraintsearch(df, verbose=config['verbose'])
# Setup simmilarity matrix
adjmat = _dag2adjmat(out['model'])
# adjmat = pd.DataFrame(data=False, index=out['model'].nodes(), columns=out['model'].nodes()).astype('Bool')
# # Fill adjmat with edges
# edges = out['model'].edges()
# for edge in edges:
# adjmat.loc[edge[0],edge[1]]=True
# adjmat.index.name = 'source'
# adjmat.columns.name = 'target'
# Store
out['adjmat'] = adjmat
out['config'] = config
# return
return(out) | 865dd11638a8e9444818678b3e8d83f90647ce9b | 3,657,247 |
def handle_index():
"""
Kezeli az index oldalat, elokesziti es visszakulti a html-t a kliensnek.
:return:
"""
return render_template("index.html") | eaaa2c3028983c1e5ed29a45fe6ff3db0a8a7482 | 3,657,248 |
def get_polynomial_coefficients(degree=5):
"""
Return a list with coefficient names,
[1 x y x^2 xy y^2 x^3 ...]
"""
names = ["1"]
for exp in range(1, degree + 1): # 0, ..., degree
for x_exp in range(exp, -1, -1):
y_exp = exp - x_exp
if x_exp == 0:
x_str = ""
elif x_exp == 1:
x_str = r"$x$"
else:
x_str = rf"$x^{x_exp}$"
if y_exp == 0:
y_str = ""
elif y_exp == 1:
y_str = r"$y$"
else:
y_str = rf"$y^{y_exp}$"
names.append(x_str + y_str)
return names | 9369841215045e925a3453b83be9dc49c9be7b92 | 3,657,249 |
from typing import Dict
import pickle
def _get_configured_credentials() -> Dict[str, bytes]:
"""
Get the encryupted credentials stored in disk
"""
path = get_credentials_path()
credentials: Dict[str, bytes]
with open(path, "rb") as file_handle:
credentials = pickle.load(file_handle)
if len(credentials) == 0:
raise ConfigurationError(
"You have not setup your credentials yet. "
"Please do so by using 'omigami credentials-helper' CLI functionality and try again."
)
if not all(key in ["k", "u", "p"] for key in credentials.keys()):
raise ConfigurationError(
"Something seems wrong with your credentials. "
"Please, run 'omigami credentials-helper --unset' to remove them and then set them again."
)
return credentials | 824aeb18f4e5bed609008c6594d86666502b2339 | 3,657,250 |
def open(request: HttpRequest, *args, **kwargs) -> HttpResponse:
"""
Create a temporary project from a single source.
This view allows for all users, including anonymous users, to create a
temporary project which they can later save as a permanent project
if they wish. It aims to be a quick way to start a project and preview
publishing of a file.
TODO: See https://github.com/stencila/hub/pull/552 for more todos
"""
if request.method == "GET":
# TODO: If a GET request attempt to get source from end of URL or a query parameter
return render(request, "projects/open.html")
if request.method == "POST":
viewset = ProjectsViewSet.init("create", request, args, kwargs)
serializer = viewset.get_serializer(data=dict(temporary=True, public=True))
serializer.is_valid(raise_exception=True)
project = serializer.create(serializer.validated_data)
url = request.POST.get("url")
if url:
Source.from_address(url, project=project, path="main")
file = request.FILES.get("file")
if file:
UploadSource.objects.create(project=project, path=file.name, file=file)
# TODO: Make the source the project's main file. How to do before pulling it?
# TODO: Create a newer simpler job preview page, that is visible to
# anon users and redirect to that instead of to the project overview page
# job = source.pull()
return redir("ui-projects-retrieve", "temp", project.name)
raise Http404 | f9c98eb829ec8d46b889c04308c4ea59fc2c4eb6 | 3,657,251 |
def kabsch_rotate(P, Q):
"""
Rotate matrix P unto matrix Q using Kabsch algorithm
"""
U = kabsch(P, Q)
# Rotate P
P = np.dot(P, U)
return P | 2be9c94901b27205ec4720b16ab6e81f34b1c6d6 | 3,657,252 |
def matrix(
odoo=ODOO_VERSIONS, pg=PG_VERSIONS, odoo_skip=frozenset(), pg_skip=frozenset()
):
"""All possible combinations.
We compute the variable matrix here instead of in ``.travis.yml`` because
this generates faster builds, given the scripts found in ``hooks``
directory are already multi-version-build aware.
"""
return map(
dict,
product(
product(("ODOO_MINOR",), ODOO_VERSIONS & odoo - odoo_skip),
product(("DB_VERSION",), PG_VERSIONS & pg - pg_skip),
),
) | 034e791d2e10e9f691df3e6c458722549c59a89a | 3,657,253 |
import copy
def iterate_pagerank(corpus, damping_factor):
"""
Return PageRank values for each page by iteratively updating
PageRank values until convergence.
Return a dictionary where keys are page names, and values are
their estimated PageRank value (a value between 0 and 1). All
PageRank values should sum to 1.
"""
# Initialize a dict with {"page": 1/n} for all pages in corpus
new_dist = dict([(page, 1 / len(corpus)) for page in corpus])
finished = False
while not finished:
# Make copy before changing
prev_dist = copy.deepcopy(new_dist)
for page in corpus:
# Run the iterative algorithm on each page
new_dist[page] = iter_algorithm(damping_factor, len(corpus), page, corpus, new_dist)
# If any page has a difference over .001 from the previous run, the while loop will continue
for pg in new_dist:
finished = True
if abs(prev_dist[pg] - new_dist[pg]) > 0.001:
finished = False
break
return new_dist | bc51bd946d8fc617222303ffe30507695ee5ae33 | 3,657,254 |
def user_enabled(inst, opt):
"""
Check whether the option is enabled.
:param inst: instance from content object init
:param url: Option to be checked
:return: True if enabled, False if disabled or non present
"""
return opt in inst.settings and inst.settings[opt] | 3b2a5a1534ff779178eb4bd6b839b66c0b07864f | 3,657,255 |
async def get_buttons_data(client: Client, message: Message):
"""
Get callback_data and urls of all the inline buttons of the message you replied to.
"""
reply_message = message.reply_to_message
if reply_message and reply_message.reply_markup:
if reply_message.reply_markup.inline_keyboard:
row_lines = []
for i, row in enumerate(reply_message.reply_markup.inline_keyboard):
row_buttons = []
for button in row:
if button.callback_data:
data = button.callback_data
elif button.url:
data = button.url
else:
continue
row_buttons.append(f"<i>{quote_html(button.text)}:</i> <code>{quote_html(data)}</code>")
buttons = "\n".join(row_buttons)
row_lines.append(f"<b>Row {i + 1}:</b>\n{buttons}")
if row_lines:
clean_time = 20
await message.edit_text("\n\n".join(row_lines))
else:
clean_time = 4
await message.edit_text("There is no any callback_data or url button inside this keyboard.")
return await clean_up(client, message.chat.id, message.message_id, clear_after=clean_time)
await message.edit_text("Reply to a message containing an inline keyboard to extract callback_data and urls.")
await clean_up(client, message.chat.id, message.message_id, clear_after=4) | 6567455d95781515fc6236bf867a042ba550736f | 3,657,256 |
def update_document(
*, db_session: Session = Depends(get_db), document_id: PrimaryKey, document_in: DocumentUpdate
):
"""Update a document."""
document = get(db_session=db_session, document_id=document_id)
if not document:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=[{"msg": "The document with this id does not exist."}],
)
document = update(db_session=db_session, document=document, document_in=document_in)
return document | 15dc23aeb10950da19a6732c43d7675447f6a45c | 3,657,257 |
def from_jabsorb(request, seems_raw=False):
"""
Transforms a jabsorb request into a more Python data model (converts maps
and lists)
:param request: Data coming from Jabsorb
:param seems_raw: Set it to True if the given data seems to already have
been parsed (no Java class hint). If True, the lists will
be kept as lists instead of being converted to tuples.
:return: A Python representation of the given data
"""
if isinstance(request, (tuple, set, frozenset)):
# Special case : JSON arrays (Python lists)
return type(request)(from_jabsorb(element) for element in request)
elif isinstance(request, list):
# Check if we were a list or a tuple
if seems_raw:
return list(from_jabsorb(element) for element in request)
else:
return tuple(from_jabsorb(element) for element in request)
elif isinstance(request, dict):
# Dictionary
java_class = request.get(JAVA_CLASS)
json_class = request.get(JSON_CLASS)
seems_raw = not java_class and not json_class
if java_class:
# Java Map ?
if JAVA_MAPS_PATTERN.match(java_class) is not None:
return HashableDict((from_jabsorb(key), from_jabsorb(value))
for key, value in request["map"].items())
# Java List ?
elif JAVA_LISTS_PATTERN.match(java_class) is not None:
return HashableList(from_jabsorb(element)
for element in request["list"])
# Java Set ?
elif JAVA_SETS_PATTERN.match(java_class) is not None:
return HashableSet(from_jabsorb(element)
for element in request["set"])
# Any other case
result = AttributeMap((from_jabsorb(key),
from_jabsorb(value, seems_raw))
for key, value in request.items())
# Keep JSON class information as is
if json_class:
result[JSON_CLASS] = json_class
return result
elif not _is_builtin(request):
# Bean
for attr in dir(request):
# Only convert public fields
if not attr[0] == '_':
# Field conversion
setattr(request, attr, from_jabsorb(getattr(request, attr)))
return request
else:
# Any other case
return request | 78e8eefc0b234a5b6cd09cebff76e5cb716b54c2 | 3,657,258 |
def write_board_to_svg_file(board, file_name, hex_edge=50, hex_offset=0,
board_padding=None, pointy_top=True, trim_board=True, style=None):
"""
Writes given board to a svg file of given name.
:param board: 2 dimensional list of fields, each represented as a number
:param file_name name of the output file
:param hex_edge: length of hexagon's side (in pixels)
:param hex_offset: distance between side of one hexagon and its neighbour (in pixels)
:param board_padding padding of the board (in pixels)
:param pointy_top: specifies if hexagons should be pointy topped or flat topped
:param trim_board: if True, fields with a value 0 will be removed during transformation
:param style css style (as string)
"""
if board_padding is None:
board_padding = hex_edge
styles = ['.board { fill: white } .hex-field { fill: white; stroke: black } .hex-field-0 { fill: black }']
if style is not None:
styles.append(style)
hexagons = transform_board_into_hexagons(board, hex_edge, hex_offset, pointy_top, trim_board)
min_x, min_y, max_x, max_y = calculate_bounding_box(hexagons)
offset = (board_padding - min_x, board_padding - min_y)
hexagons = move_hexagons_by_offset(hexagons, offset)
board_size = (2 * board_padding + max_x - min_x, 2 * board_padding + max_y - min_y)
svg_image = create_svg_image(styles, board_size, hexagons)
svg_image.saveas(file_name)
return svg_image | 4cbf895a4a91e0434e31fdad459c3354927c5e2b | 3,657,259 |
def ensure_conf(app):
"""
Ensure for the given app the the redbeat_conf
attribute is set to an instance of the RedBeatConfig
class.
"""
name = 'redbeat_conf'
app = app_or_default(app)
try:
config = getattr(app, name)
except AttributeError:
config = RedBeatConfig(app)
setattr(app, name, config)
return config | 673680aafbc4d76b1ae7f7740e53fd7f54740acf | 3,657,260 |
def check_if_process_present(string_to_find):
"""Checks if process runs on machine
Parameters:
string_to_find (string): process we want to find
Returns:
found (bool): True if found process running
"""
output = check_output(["ps", "-ax"], universal_newlines=True)
if string_to_find in output:
return True
else:
return False | 3a153e2160000ec1c9d4c0c28d1631179f9e88c3 | 3,657,261 |
def consulta_dicionario(nivel):
"""
Entrada: Parâmetro do nível selecionado (fácil, médio, difícil)
Tarefa: Determinar qual dicionário a ser consultado
Saída: Parâmetros do dicionário (texto, lacunas, gabarito)
"""
nivel_dicionario = nivel
if nivel_dicionario == 'facil':
texto = dicionario_nivel_facil['texto']
lacunas = dicionario_nivel_facil['lacunas']
gabarito = dicionario_nivel_facil['gabarito']
elif nivel_dicionario == 'medio':
texto = dicionario_nivel_medio['texto']
lacunas = dicionario_nivel_medio['lacunas']
gabarito = dicionario_nivel_medio['gabarito']
elif nivel_dicionario == 'dificil':
texto = dicionario_nivel_dificil['texto']
lacunas = dicionario_nivel_dificil['lacunas']
gabarito = dicionario_nivel_dificil['gabarito']
return texto, lacunas, gabarito | 1453298f791cca010f75abad9d0d37a28c1c8ae5 | 3,657,262 |
from typing import List
def stats_check(
main_table: Table,
compare_table: Table,
checks: List[OutlierCheck] = [],
max_rows_returned: int = 100,
):
"""
:param main_table: main table
:type main_table: table object
:param compare_table: table to be compared
:type compare_table: table object
:param checks: check class object, which represent boolean expression
:type checks: Check
:param max_rows_returned: number of row returned if the check fails.
:type max_rows_returned: int
"""
return AgnosticStatsCheck(
main_table=main_table,
compare_table=compare_table,
checks=checks,
max_rows_returned=max_rows_returned,
) | 39f0c0b2bad74a7878453a3fe11def36f1971a5f | 3,657,263 |
async def get_collectible_name(collectible_id: int, db: AsyncSession = Depends(get_db_session)):
"""Gets the collectible name"""
result = await destiny_items.get_collectible(db=db, collectible_id=collectible_id)
return NameModel(name=result.name) if result else NameModel(name=None) | 18fd3856d5145a004cf20343b5e8782a13a35845 | 3,657,264 |
def prime_factors(n):
"""
Return a list of prime factors of n
:param n: int
:return: list
"""
# check if 2 is the largest prime
all_factors = set()
t = n
while t % 2 == 0:
t /= 2
all_factors.add(2)
# check the divisors greater than 2
d = 3
while d < n ** 0.5:
while not t % d:
t /= d
all_factors.add(d)
d += 2
return all_factors | 09aad44a7b04492c225447eaa15590fa630a43cd | 3,657,265 |
def calculate_central_age(Ns, Ni, zeta, seZeta, rhod, Nd, sigma=0.15):
"""Function to calculate central age."""
Ns = np.array(Ns)
Ni = np.array(Ni)
# We just replace 0 counts with a low value, the age will be rounded to
# 2 decimals. That should take care of the zero count issue.
Ns = np.where(Ns == 0, 1e-10, Ns) # Do this to account for 0 track counts
Ni = np.where(Ni == 0, 1e-10, Ni) # Do this to account for 0 track counts
# Calculate mj
LAMBDA = 1.55125e-4
G = 0.5
m = Ns + Ni
p = Ns / m
theta = np.sum(Ns) / np.sum(m)
for i in range(0, 30):
w = m / (theta * (1 - theta) + (m - 1) * theta**2 * (1 - theta)**2 * sigma**2)
sigma = sigma * np.sqrt(np.sum(w**2 * (p - theta)**2) / np.sum(w))
theta = np.sum(w * p) / np.sum(w)
t = (1.0 / LAMBDA) * np.log( 1.0 + G * LAMBDA * zeta * rhod * (theta) / (1.0 - theta))
se = np.sqrt(1 / (theta**2 * (1.0 - theta)**2 * np.sum(w)) + 1.0 / Nd + (seZeta / zeta)**2) * t
return {"Central": np.round(t, 2), "se": np.round(se, 2), "sigma": np.round(sigma, 2)} | 29b360ce1df7cfa376a86b989fb7899137d110cc | 3,657,266 |
import requests
def _get_cross_reference_token(auth_cookie: str) -> str:
"""Gets a new cross reference token affiliated with the Roblox auth cookie.
:param auth_cookie: Your Roblox authentication cookie.
:return: A fresh cross reference token.
"""
session: requests.Session = _get_session(auth_cookie)
response: requests.Response = session.post("https://auth.roblox.com/v2/logout")
try:
token = response.headers["x-csrf-token"]
except KeyError:
raise Exception("Please specify a valid auth cookie")
return token | 63041ddeb31ccdc0a72a721d000968588580e816 | 3,657,267 |
def erase_not_displayed(client):
"""Erase all non-displayed models from memory.
Args:
client (obj): creopyson Client.
Returns:
None
"""
return client._creoson_post("file", "erase_not_displayed") | c3981fcce00b5d5440fcbdbe8781e9e6229a8fa7 | 3,657,268 |
def reset_position_for_friends_image_details_from_voter(voter, twitter_profile_image_url_https,
facebook_profile_image_url_https):
"""
Reset all position image urls in PositionForFriends from we vote image details
:param voter:
:param twitter_profile_image_url_https:
:param facebook_profile_image_url_https:
:return:
"""
position_list_manager = PositionListManager()
position_manager = PositionManager()
stance_we_are_looking_for = ANY_STANCE
friends_vs_public = FRIENDS_ONLY
speaker_image_url_https = None
reset_all_position_image_urls_results = []
if positive_value_exists(twitter_profile_image_url_https):
speaker_image_url_https = twitter_profile_image_url_https
elif positive_value_exists(facebook_profile_image_url_https):
speaker_image_url_https = facebook_profile_image_url_https
positions_for_voter_results = position_list_manager.retrieve_all_positions_for_voter(
voter.id, voter.we_vote_id, stance_we_are_looking_for, friends_vs_public)
if positions_for_voter_results['position_list_found']:
friends_position_list = positions_for_voter_results['position_list']
for position_object in friends_position_list:
reset_position_image_urls_results = position_manager.reset_position_image_details(
position_object, speaker_image_url_https=speaker_image_url_https)
reset_all_position_image_urls_results.append(reset_position_image_urls_results)
results = {
'success': True,
'reset_all_position_results': reset_all_position_image_urls_results
}
return results | e2483bf781029a7481dead0a168775b1a9223978 | 3,657,269 |
def get_analysis(panda_data):
"""
Get Analysis of CSV Data
:param panda_data: Panda dataframes
:return: panda data frames
"""
# Create Object for Analysis0
sentiment_object = SentimentConfig.sentiment_object
ner_object = SentimentConfig.ner_object
# Get list of sentences
list = panda_data['text'].to_list()
sentiment_result = np.array([sentiment_object.get_sentiment(i) for i in list])
panda_data["Positive Score"] = sentiment_result[:, 2]
panda_data["Negative Score"] = sentiment_result[:, 0]
panda_data["Neutral Score"] = sentiment_result[:, 1]
panda_data["Sentiment Result"] = sentiment_result[:, 3]
# NER Data Analysis Added
ner_result = np.array([ner_object.get_ner(i) for i in list])
panda_data["Entity Result"] = ner_result
# Adjective Analysis Added
adjective_result = np.array([ner_object.get_adjectives(i) for i in list])
panda_data["Adjective Result"] = adjective_result
return panda_data | 014bc1543f67dfe561bce62d9b5e5f974b28db2a | 3,657,270 |
def create_coordinate_string_dict():
"""31パターンのヒモ。"""
w = 120
h = 120
return {
47: (0, 0),
57: (1*-w, 0),
58: (2*-w, 0),
16: (4*-w, 0),
35: (5*-w, 0),
36: (6*-w, 0),
38: (0, 1*-h),
13: (1*-w, 1*-h),
14: (2*-w, 1*-h),
15: (3*-w, 1*-h),
25: (4*-w, 1*-h),
17: (5*-w, 1*-h),
27: (6*-w, 1*-h),
37: (7*-w, 1*-h),
1357: (0, 2*-h),
1571: (1*-w, 2*-h),
7135: (2*-w, 2*-h),
3583: (4*-w, 2*-h),
274: (5*-w, 2*-h),
1361: (6*-w, 2*-h),
1371: (0, 3*-h),
15037: (1*-w, 3*-h),
3573: (2*-w, 3*-h),
416: (4*-w, 3*-h),
258: (6*-w, 3*-h),
1753: (0, 4*-h),
1351: (1*-w, 4*-h),
3175: (2*-w, 4*-h),
2572: (4*-w, 4*-h),
638: (5*-w, 4*-h),
1471: (6*-w, 4*-h),
} | 4abc2b246345569780db2dc9f6ef71c56ae86528 | 3,657,271 |
def all_but_ast(check):
"""Only passes AST to check."""
def _check_wrapper(contents, ast, **kwargs):
"""Wrap check and passes the AST to it."""
del contents
del kwargs
return check(ast)
return _check_wrapper | 71f3e3b8649a3a9885ded7eec248894cca8083c4 | 3,657,272 |
import readline
def get_history_items():
"""
Get all history item
"""
return [
readline.get_history_item(i)
for i in xrange(1, readline.get_current_history_length() + 1)
] | b3600ca6581c11a46c2ea92d82b9d5aefcded49b | 3,657,273 |
from typing import List
from pathlib import Path
from typing import Tuple
def generate_nucmer_commands(
filenames: List[Path],
outdir: Path = Path("."),
nucmer_exe: Path = pyani_config.NUCMER_DEFAULT,
filter_exe: Path = pyani_config.FILTER_DEFAULT,
maxmatch: bool = False,
) -> Tuple[List, List]:
"""Return list of NUCmer command-lines for ANIm.
:param filenames: a list of paths to input FASTA files
:param outdir: path to output directory
:param nucmer_exe: location of the nucmer binary
:param maxmatch: Boolean flag indicating to use NUCmer's -maxmatch option
The first element returned is a list of NUCmer commands, and the
second a corresponding list of delta_filter_wrapper.py commands.
The NUCmer commands should each be run before the corresponding
delta-filter command.
TODO: This return value needs to be reworked as a collection.
Loop over all FASTA files generating NUCmer command lines for each
pairwise comparison.
"""
nucmer_cmdlines, delta_filter_cmdlines = [], []
filenames = sorted(filenames) # enforce ordering of filenames
for idx, fname1 in enumerate(filenames[:-1]):
for fname2 in filenames[idx + 1 :]:
ncmd, dcmd = construct_nucmer_cmdline(
fname1, fname2, outdir, nucmer_exe, filter_exe, maxmatch
)
nucmer_cmdlines.append(ncmd)
delta_filter_cmdlines.append(dcmd)
return (nucmer_cmdlines, delta_filter_cmdlines) | 28923f86762d73fcdd0a4f9681da09b6ab8368cb | 3,657,274 |
def normalize(*args):
"""Scale a sequence of occurrences into probabilities that sum up to 1."""
total = sum(args)
return [arg / total for arg in args] | 49b0f998fe58b2c85da5a993e542d91bb5dd5382 | 3,657,275 |
import os
def get_CZI_zstack(filename,frame,channel,filepath=None,img_info=None):
"""
Obtains a single z-stack from a 3D imaging time-series for a specified time and channel.
Parameters
----------
filename : str
Name of the file from which to retrieve the z-stack.
frame : int
The temporal slice of the image series from which to retrieve the z-stack.
channel : int
The channel from which to retrieve the z-stack.
filepath : str, optional
Path to the file.
img_info : tuple of ints, optional
5-tuple containing lengths of the `X`, `Y`, `Z` (spatial), `T` (temporal) dimensions
of the image series, and the number of channels, `num_channels`.
E.g. (sizeX,sizeY,sizeZ,sizeT,num_channels). See output of get_CZI_metadata().
Pass these pre-computed values for increased speed in batch processing.
Returns
-------
zstack : numpy.ndarray, or None
Z-stack of the image series specified by the desired `frame`; contains 3 spatial
dimensions. If loading is unsuccessful, `None` is returned.
"""
# prepare file name, check that file exists
if not (filepath is None):
czi_image = os.path.join(filepath,filename)
else:
czi_image = filename
if not os.path.exists(czi_image):
return None
# retrieve image dimensions, and number of channels
if img_info is None:
(sizeX,sizeY,sizeZ,sizeT,num_channels), _ = get_CZI_metadata(filename,filepath=filepath)
else:
assert len(img_info) == 5
(sizeX,sizeY,sizeZ,sizeT,num_channels) = img_info
# make sure frame and channel are in bounds
assert frame < sizeT
assert channel < num_channels
#initialize array and load z-stack
zstack = np.zeros((sizeZ, sizeY,sizeX))
with bioformats.ImageReader(czi_image) as reader:
for z in range(sizeZ):
zstack[z,:,:] = reader.read(t=frame,z=z,c=channel)
return zstack | dbbfaf7f9cc50c99cd025236dff2480be2ac6017 | 3,657,276 |
import requests
def _make_request(
resource: str,
from_currency_code: str,
to_currency_code: str,
timestamp: int,
access_token: str,
exchange_code: str,
num_records: int,
api_version: str
) -> requests.Response:
"""
API documentation for cryptocompare can be found at https://min-api.cryptocompare.com/documentation
"""
base_url = f"https://min-api.cryptocompare.com/data/{api_version}/{resource}"
params = {
"fsym": from_currency_code,
"tsym": to_currency_code,
"e": exchange_code,
"limit": num_records,
"toTs": timestamp,
"api_key": access_token
}
return requests.get(base_url, params=params) | 4da7c3cab42b742b106fafb4c1585e6ecb250121 | 3,657,277 |
def dependencies_order_of_build(target_contract, dependencies_map):
""" Return an ordered list of contracts that is sufficient to sucessfully
deploys the target contract.
Note:
This function assumes that the `dependencies_map` is an acyclic graph.
"""
if len(dependencies_map) == 0:
return [target_contract]
if target_contract not in dependencies_map:
raise ValueError('no dependencies defined for {}'.format(target_contract))
order = [target_contract]
todo = list(dependencies_map[target_contract])
while len(todo):
target_contract = todo.pop(0)
target_pos = len(order)
for dependency in dependencies_map[target_contract]:
# we need to add the current contract before all it's depedencies
if dependency in order:
target_pos = order.index(dependency)
else:
todo.append(dependency)
order.insert(target_pos, target_contract)
order.reverse()
return order | e5a67247aad8b37c29e274eac80f28414f59427f | 3,657,278 |
def projective_error_function(params, args):
"""
:param params:
:param args:
:return:
"""
# fx fy cx cy k0 k1
project_params = params[0:5]
f, cx, cy, k0, k1 = project_params
K = eye(3, 3)
K[0,0] = f
K[1,1] = f
K[0, 2] = k0
K[1, 2] = k1
model, image = args
tp = params[5:]
_, R, t = transform(tp, model)
Rt = np.c_[R, t.transpose()]
# Reconstruct camera matrix
P = K @ Rt
# Project
X = np.zeros((4, len(model[0])))
X[0:3] = model
X[3] = 1
PX = P @ X
image_star = PX[0:2] / PX[2]
dataShape = image.shape
nData = dataShape[0] * dataShape[1]
imagevec = image.reshape(1, nData)[0]
image_star_vec = image_star.reshape(1, nData)[0]
return imagevec - image_star_vec | 5b1fe8265478a379d91178474e392797798c9c0f | 3,657,279 |
import warnings
def _transform_masks(y, transform, data_format=None, **kwargs):
"""Based on the transform key, apply a transform function to the masks.
Refer to :mod:`deepcell.utils.transform_utils` for more information about
available transforms. Caution for unknown transform keys.
Args:
y (numpy.array): Labels of ``ndim`` 4 or 5
transform (str): Name of the transform, one of
``{"deepcell", "disc", "watershed", None}``.
data_format (str): A string, one of ``channels_last`` (default)
or ``channels_first``. The ordering of the dimensions in the
inputs. ``channels_last`` corresponds to inputs with shape
``(batch, height, width, channels)`` while ``channels_first``
corresponds to inputs with shape
``(batch, channels, height, width)``.
kwargs (dict): Optional transform keyword arguments.
Returns:
numpy.array: the output of the given transform function on ``y``.
Raises:
ValueError: Rank of ``y`` is not 4 or 5.
ValueError: Channel dimension of ``y`` is not 1.
ValueError: ``transform`` is invalid value.
"""
valid_transforms = {
'deepcell', # deprecated for "pixelwise"
'pixelwise',
'disc',
'watershed', # deprecated for "outer-distance"
'watershed-cont', # deprecated for "outer-distance"
'inner-distance',
'outer-distance',
'centroid', # deprecated for "inner-distance"
'fgbg'
}
if data_format is None:
data_format = K.image_data_format()
if y.ndim not in {4, 5}:
raise ValueError('`labels` data must be of ndim 4 or 5. Got', y.ndim)
channel_axis = 1 if data_format == 'channels_first' else -1
if y.shape[channel_axis] != 1:
raise ValueError('Expected channel axis to be 1 dimension. Got',
y.shape[1 if data_format == 'channels_first' else -1])
if isinstance(transform, str):
transform = transform.lower()
if transform not in valid_transforms and transform is not None:
raise ValueError('`{}` is not a valid transform'.format(transform))
if transform in {'pixelwise', 'deepcell'}:
if transform == 'deepcell':
warnings.warn('The `{}` transform is deprecated. Please use the '
'`pixelwise` transform instead.'.format(transform),
DeprecationWarning)
dilation_radius = kwargs.pop('dilation_radius', None)
separate_edge_classes = kwargs.pop('separate_edge_classes', False)
edge_class_shape = 4 if separate_edge_classes else 3
if data_format == 'channels_first':
shape = tuple([y.shape[0]] + [edge_class_shape] + list(y.shape[2:]))
else:
shape = tuple(list(y.shape[0:-1]) + [edge_class_shape])
# using uint8 since should only be 4 unique values.
y_transform = np.zeros(shape, dtype=np.uint8)
for batch in range(y_transform.shape[0]):
if data_format == 'channels_first':
mask = y[batch, 0, ...]
else:
mask = y[batch, ..., 0]
y_transform[batch] = transform_utils.pixelwise_transform(
mask, dilation_radius, data_format=data_format,
separate_edge_classes=separate_edge_classes)
elif transform in {'outer-distance', 'watershed', 'watershed-cont'}:
if transform in {'watershed', 'watershed-cont'}:
warnings.warn('The `{}` transform is deprecated. Please use the '
'`outer-distance` transform instead.'.format(transform),
DeprecationWarning)
by_frame = kwargs.pop('by_frame', True)
bins = kwargs.pop('distance_bins', None)
distance_kwargs = {
'bins': bins,
'erosion_width': kwargs.pop('erosion_width', 0),
}
# If using 3d transform, pass in scale arg
if y.ndim == 5 and not by_frame:
distance_kwargs['sampling'] = kwargs.pop('sampling', [0.5, 0.217, 0.217])
if data_format == 'channels_first':
shape = tuple([y.shape[0]] + list(y.shape[2:]))
else:
shape = y.shape[0:-1]
y_transform = np.zeros(shape, dtype=K.floatx())
if y.ndim == 5:
if by_frame:
_distance_transform = transform_utils.outer_distance_transform_movie
else:
_distance_transform = transform_utils.outer_distance_transform_3d
else:
_distance_transform = transform_utils.outer_distance_transform_2d
for batch in range(y_transform.shape[0]):
if data_format == 'channels_first':
mask = y[batch, 0, ...]
else:
mask = y[batch, ..., 0]
y_transform[batch] = _distance_transform(mask, **distance_kwargs)
y_transform = np.expand_dims(y_transform, axis=-1)
if bins is not None:
# convert to one hot notation
# uint8's max value of255 seems like a generous limit for binning.
y_transform = to_categorical(y_transform, num_classes=bins, dtype=np.uint8)
if data_format == 'channels_first':
y_transform = np.rollaxis(y_transform, y.ndim - 1, 1)
elif transform in {'inner-distance', 'centroid'}:
if transform == 'centroid':
warnings.warn('The `{}` transform is deprecated. Please use the '
'`inner-distance` transform instead.'.format(transform),
DeprecationWarning)
by_frame = kwargs.pop('by_frame', True)
bins = kwargs.pop('distance_bins', None)
distance_kwargs = {
'bins': bins,
'erosion_width': kwargs.pop('erosion_width', 0),
'alpha': kwargs.pop('alpha', 0.1),
'beta': kwargs.pop('beta', 1)
}
# If using 3d transform, pass in scale arg
if y.ndim == 5 and not by_frame:
distance_kwargs['sampling'] = kwargs.pop('sampling', [0.5, 0.217, 0.217])
if data_format == 'channels_first':
shape = tuple([y.shape[0]] + list(y.shape[2:]))
else:
shape = y.shape[0:-1]
y_transform = np.zeros(shape, dtype=K.floatx())
if y.ndim == 5:
if by_frame:
_distance_transform = transform_utils.inner_distance_transform_movie
else:
_distance_transform = transform_utils.inner_distance_transform_3d
else:
_distance_transform = transform_utils.inner_distance_transform_2d
for batch in range(y_transform.shape[0]):
if data_format == 'channels_first':
mask = y[batch, 0, ...]
else:
mask = y[batch, ..., 0]
y_transform[batch] = _distance_transform(mask, **distance_kwargs)
y_transform = np.expand_dims(y_transform, axis=-1)
if distance_kwargs['bins'] is not None:
# convert to one hot notation
# uint8's max value of255 seems like a generous limit for binning.
y_transform = to_categorical(y_transform, num_classes=bins, dtype=np.uint8)
if data_format == 'channels_first':
y_transform = np.rollaxis(y_transform, y.ndim - 1, 1)
elif transform == 'disc' or transform is None:
dtype = K.floatx() if transform == 'disc' else np.int32
y_transform = to_categorical(y.squeeze(channel_axis), dtype=dtype)
if data_format == 'channels_first':
y_transform = np.rollaxis(y_transform, y.ndim - 1, 1)
elif transform == 'fgbg':
y_transform = np.where(y > 1, 1, y)
# convert to one hot notation
if data_format == 'channels_first':
y_transform = np.rollaxis(y_transform, 1, y.ndim)
# using uint8 since should only be 2 unique values.
y_transform = to_categorical(y_transform, dtype=np.uint8)
if data_format == 'channels_first':
y_transform = np.rollaxis(y_transform, y.ndim - 1, 1)
return y_transform | 278615037d78b35cacb641eca89918010cf9b2fd | 3,657,280 |
import os
def root_dir():
""" Returns root director for this project """
return os.path.dirname(os.path.realpath(__file__ + '/..')) | c9346df7838dd0a528613a7069c55d910373fe86 | 3,657,281 |
import os
import json
def query_subgraph(seeds, genes_top, output_path): # pylint: disable=too-many-locals
"""
This function queries the data, writes the resulting subgraph and returns a
dictionary containing the number of nodes and edges.
seeds: list
genes_top: dict whose keys are genes and values are their ranks
"""
genes_list = list(genes_top.keys())
genes = set(seeds + genes_list)
seeds_set = frozenset(seeds)
# Produce the induced subgraph of genes in all networks.
nodes_raw, edges_raw = query_sqlite(genes)
# Only keep the nodes of interest.
nodes = [node for node in nodes_raw if normalized_node_id(node["_id"]) in genes]
edges = [
edge
for edge in edges_raw
if (
normalized_node_id(edge["_from"]) in genes
and normalized_node_id(edge["_to"]) in genes
)
]
def node_is_seed(node_id):
return normalized_node_id(node_id) in seeds_set
# graph data
cytoscape_nodes = [
dict(
data=cytoscape_node(
node,
genes_top.get(normalized_node_id(node["_id"])),
seed=node_is_seed(node["_id"]),
)
)
for node in nodes
]
cytoscape_edges = [dict(data=cytoscape_edge(edge)) for edge in edges]
cytoscape_data = dict(
nodes=cytoscape_nodes,
edges=cytoscape_edges,
)
cytoscape_path = os.path.join(output_path, "graph.json")
with open(cytoscape_path, "w") as cytoscape_json:
cytoscape_json.write(json.dumps(cytoscape_data))
# graph metadata
return dict(
nodes=len(nodes),
edges=len(edges),
) | eace2fb32ec6488e3ad096f9570e3eefe97d042a | 3,657,282 |
def get_cur_version():
"""
Get current apk version string
"""
pkg_name = cur_activity.getPackageName()
return str(
cur_activity.getPackageManager().getPackageInfo(
pkg_name, 0).versionName) | 015d3368238edc10344c633d9cc491c79569f5f6 | 3,657,283 |
def checkpointload(checkpointfile):
"""Loads an hyperoptimizer checkpoint from file
Returns a list of tuples (params, loss) referring to previous hyperoptimization trials
"""
try:
with open(checkpointfile, "rb") as f:
return pkl.load(f)
except (FileNotFoundError, EOFError):
return [] | 906df00fcb209c979fd57c49a426f4c752b45753 | 3,657,284 |
from time import time
from array import array
import hmac
import base64
import os
def encrypt_password(password, key):
"""
Encrypts the password using the given key.
Args:
password (str): password to be encrypted
key (str): key to be used to encrypt the password
"""
h_hash = get_sha_hash
uhash = h_hash(','.join(str(x) for x in
[repr(time()), repr(os.getpid()),
repr(len(password)),
password, key]))[:16]
k_enc, k_auth = h_hash('enc' + key + uhash), h_hash('auth' + key + uhash)
pwd_len = len(password)
password_stream = array('L', password + '0000'[pwd_len & 3:])
x_key = expand_key(k_enc, pwd_len + 4)
for i_cnt in range(len(password_stream)):
password_stream[i_cnt] = password_stream[i_cnt] ^ x_key[i_cnt]
cipher_t = uhash + password_stream.tostring()[:pwd_len]
auth = hmac.new(cipher_t, k_auth).digest()
encrypt_str = cipher_t + auth[:8]
encoded_str = base64.encodestring(encrypt_str)
encrypted_password = encoded_str.rstrip('\n')
return encrypted_password | c267cfbd59f1859f999602f19c85af8eba47421b | 3,657,285 |
import os
def prepare_test_data(datapath):
""" Wrapper function to load the test dataset """
print("Loading and encoding the test dataset")
depth_test = np.array(pd.read_csv(os.path.join(datapath,'test_depth.txt'),sep="\t", header = None))
depth_test = depth_test.reshape(depth_test.shape[0],depth_test.shape[1], 1)
exp_test = np.array(pd.read_csv(os.path.join(datapath,'test_expression.txt'),sep="\t", header = None))
exp_test = exp_test.reshape(exp_test.shape[0], exp_test.shape[1],1)
time_test = np.array(pd.read_csv(os.path.join(datapath,'test_ref.txt'),sep="\t", header = None))
time_test = time_test.reshape(time_test.shape[0], time_test.shape[1], 1)
foldchange_test = np.array(pd.read_csv(os.path.join(datapath,'test_foldchange.txt'),sep="\t", header = None))
foldchange_test = foldchange_test.reshape(foldchange_test.shape[0], foldchange_test.shape[1], 1)
weight_test = time_test*foldchange_test
seq_test, y_test = load_sequence_data(datapath, 'test_sequences.csv')
test_bed= pr.read_bed(os.path.join(datapath,"test_tiles.bed"),
as_df=True)
print('Test labels shape:', y_test.shape)
print('Test features shape:', depth_test.shape, seq_test.shape, exp_test.shape, weight_test.shape)
return depth_test, exp_test, weight_test, seq_test, y_test, test_bed | e34eb64d2297b5cd8194af292abfb022722d0885 | 3,657,286 |
def get_case_color_marker(case):
"""Get color and marker based on case."""
black_o = ("#000000", "o")
teal_D = ("#469990", "D")
orange_s = ("#de9f16", "s")
purple_v = ("#802f99", "v")
bs = case["batch_size"]
sub = case["subsampling"]
mc = case["mc_samples"]
if sub is None and mc == 0: # only bs
mapping = {2: purple_v, 8: orange_s, 32: teal_D, 128: black_o}
try:
return mapping[bs]
except KeyError:
warn(f"Could not map bs={bs} to color-marker-pair. Returning (black, o)")
return black_o
if sub is not None and mc == 0: # only bs & sub
return teal_D
if sub is None and mc != 0: # only bs & mc
return orange_s
if sub is not None and mc != 0: # bs, sub & mc
return purple_v | 4a42fc784b9034e3996753bc6da18fbfebc66b16 | 3,657,287 |
def clean_integer_score(x):
"""Converts x from potentially a float or string into a clean integer, and replace NA and NP values with one string character"""
try:
x = str(int(float(x)))
except Exception as exc:
if isinstance(x, basestring):
pass
else:
raise
x = x.lower().strip()
return 'A' if x == 'na (not assesible)' else 'P' if x == 'np (not performed)' else x | 9ff2c911653421d51738bdb1bf8f381d3aa59820 | 3,657,288 |
def do_stuff2():
"""This is not right."""
(first, second) = 1, 2, 3
return first + second | dbb6f503e73cc0365dfa20fca54bebb174fcdadd | 3,657,289 |
def rule_block_distributor(rule_param, src_cortical_area, dst_cortical_area, src_neuron_id, z_offset):
"""
This rule helps to take a set of unique inputs from one cortical area and develop synaptic projections that can
lead to a comprehensive set of unique connections that covers all the combinations of the input values.
Note: This function is designed for the corner case of the destination cortical area being 1 dimensional in z
direction
"""
# todo: generalize this function so it takes the direction of the source and destination cortical areas as input
candidate_list = list()
block_list = blocks.z_block_refs(cortical_area=dst_cortical_area, x_ref=0, y_ref=0)
source_x_depth = runtime_data.genome['blueprint'][src_cortical_area]['neuron_params']['block_boundaries'][0]
for offset in range(source_x_depth):
for block_ref in block_list:
if blocks.block_ref_2_id(block_ref)[2] // (2 ** offset) % 2 == 0:
for neuron in blocks.neurons_in_the_block(cortical_area=dst_cortical_area, block_ref=block_ref):
candidate_list.append(neuron)
return candidate_list | b9201bfce68dc22b47bd20fc687b20f78ef1a08e | 3,657,290 |
def get_extra(item_container):
""" liefert die erste passende image_url """
if item_container.item.extra != '':
return get_extra_data(item_container)
item_container = item_container.get_parent()
while item_container.item.app.name == 'dmsEduFolder':
if item_container.item.extra != '':
return get_extra_data(item_container)
item_container = item_container.get_parent()
if item_container.item.app.name != 'dmsEduFolder':
return None | c9ac2ad65d05d13deaad8a6031f2f9ee8ab8aee4 | 3,657,291 |
import torch
def pt_accuracy(output, target, topk=(1,)):
"""Compute the accuracy over the k top predictions for the specified values of k."""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res | 5c0ddcd57163987b00e09a6677ddc41928810874 | 3,657,292 |
from typing import Counter
def compute_phasing_counts(variant_to_read_names_dict):
"""
Parameters
----------
variants_to_read_names : dict
Dictionary mapping varcode.Variant to set of read names
Returns
-------
Dictionary from variant to Counter(Variant)
"""
read_names_to_variants = defaultdict(set)
for variant, read_names in variant_to_read_names_dict.items():
for read_name in read_names:
read_names_to_variants[read_name].add(variant)
# now count up how many reads are shared between pairs of variants
phasing_counts = defaultdict(Counter)
for variant, read_names in variant_to_read_names_dict.items():
for read_name in read_names:
for other_variant in read_names_to_variants[read_name]:
if variant != other_variant:
phasing_counts[variant][other_variant] += 1
return phasing_counts | ba13a6d6c76e018cb1072e9fba635aad5593437b | 3,657,293 |
def _inputs_and_vae(hparams):
"""Constructs a VAE."""
obs_encoder = codec.MLPObsEncoder(hparams)
obs_decoder = codec.MLPObsDecoder(
hparams,
codec.BernoulliDecoder(squeeze_input=True),
param_size=1)
inputs = context_mod.EncodeObserved(obs_encoder)
vae = vae_mod.make(hparams, obs_encoder, obs_decoder)
return inputs, vae | 0e6af8a7d17312f99435426907a0dca062981225 | 3,657,294 |
def read_grid_hdf5(filepath, name):
"""Read a grid from HDF5 file.
Parameters
----------
filepath : string or pathlib.Path object
Path of the HDF5 file.
name : string
Name of the grid.
Returns
-------
x : numpy.ndarray
The x-coordinates along a gridline in the x-direction.
y : numpy.ndarray
The y-coordinates along a gridline in the y-direction.
z : numpy.ndarray
The z-coordinates along a gridline in the z-direction.
"""
f = h5py.File(str(filepath), 'r')
dim = len(f[name])
x, y, z = f[name]['x'][:], f[name]['y'][:], None
if dim == 3:
z = f[name]['z'][:]
f.close()
if z is None or len(z) == 1:
return x, y
return x, y, z | f9ad79da36cfa24028562cdaeefba8ca9b48e572 | 3,657,295 |
def string_to_version(verstring):
"""
Return a tuple of (epoch, version, release) from a version string
This function replaces rpmUtils.miscutils.stringToVersion, see
https://bugzilla.redhat.com/1364504
"""
# is there an epoch?
components = verstring.split(':')
if len(components) > 1:
epoch = components[0]
else:
epoch = 0
remaining = components[:2][0].split('-')
version = remaining[0]
release = remaining[1]
return (epoch, version, release) | 4dca34ce0f30e66eff6dad784cd684fb39b665ee | 3,657,296 |
import xml
def cff2provn(filename):
"""Parse cml xml file and return a prov bundle object"""
#filename = "/Users/fariba/Desktop/UCI/freesurfer/scripts/meta-MC-SCA-023_tp1.cml"
tree = xml.dom.minidom.parse(filename)
collections = tree.documentElement
g = prov.ProvBundle()
g.add_namespace(xsd)
g.add_namespace(dcterms)
g.add_namespace(cml)
url_entity = g.entity(cml[get_id()])
url_entity.add_extra_attributes({prov.PROV['type']: nidm['nidm:ConnectomeFileFormat'],
prov.PROV['location']: prov.Literal(filename, prov.XSD['String'])})
cml_collection = g.collection(cml[get_id()])
cml_collection.add_extra_attributes(
{prov.PROV['type']: cml['connectome'],
prov.PROV['label']: filename})
g.wasDerivedFrom(cml_collection, url_entity)
# get species, subject_name, and subject_timepoint
species = tree.getElementsByTagName('cml:species')[0].toxml()
species = species.replace('<cml:species>', '').replace('</cml:species>', '')
tp = ''
sub = ''
tags = collections.getElementsByTagName("cml:tag")
for t in tags:
if t.attributes['key'].value == 'subject_name':
sub = t.toxml()
if t.attributes['key'].value == 'subject_timepoint':
tp = t.toxml()
sub = sub.replace('<cml:tag key="subject_name">', '').replace('</cml:tag>', '')
tp = tp.replace('<cml:tag key="subject_timepoint">', '').replace('</cml:tag>', '')
#print species + " " + sub + " " + tp
cml_meta = g.entity(cml[get_id()])
cml_meta.add_extra_attributes(
{prov.PROV['type']: cml['connectome-meta'], cml['species']: species, cml['timepoint']: tp,
cml['subject_name']: sub})
g.hadMember(cml_collection, cml_meta)
volumes = collections.getElementsByTagName("cml:connectome-volume")
c = 0
for v in volumes:
c = c + 1
#print v.getAttribute("src") + " " + v.getAttribute("dtype") + " " + v.getAttribute("name") + " " + v.getAttribute("fileformat")
#print v.attributes['fileformat'].value
dtype = v.getAttribute('dtype')
src = v.getAttribute('src')
name = v.getAttribute('name')
fileformat = v.getAttribute('fileformat')
cml_volume = g.entity(cml[get_id()])
cml_volume.add_extra_attributes(
{prov.PROV['type']: cml['connectome-volume'], cml['dtype']: dtype, cml['src']: src, cml['name']: name,
cml['fileformat']: fileformat})
g.hadMember(cml_collection, cml_volume)
tracks = collections.getElementsByTagName("cml:connectome-track")
c = 0
for t in tracks:
c = c + 1
#print t.getAttribute("src") + " " + t.getAttribute("dtype") + " " + t.getAttribute("name") + " " + t.getAttribute("fileformat")
dtype = t.getAttribute('dtype')
src = t.getAttribute('src')
name = t.getAttribute('name')
fileformat = t.getAttribute('fileformat')
cml_track = g.entity(cml[get_id()])
cml_track.add_extra_attributes(
{prov.PROV['type']: cml['connectome-track'], cml['dtype']: dtype, cml['src']: src, cml['name']: name,
cml['fileformat']: fileformat})
g.hadMember(cml_collection, cml_track)
networks = collections.getElementsByTagName("cml:connectome-network")
c = 0
for n in networks:
c = c + 1
#print n.getAttribute("src") + " " + n.getAttribute("dtype") + " " + n.getAttribute("name") + " " + n.getAttribute("fileformat")
dtype = n.getAttribute('dtype')
src = n.getAttribute('src')
name = n.getAttribute('name')
fileformat = n.getAttribute('fileformat')
cml_network = g.entity(cml[get_id()])
cml_network.add_extra_attributes(
{prov.PROV['type']: cml['connectome-network'], cml['dtype']: dtype, cml['src']: src, cml['name']: name,
cml['fileformat']: fileformat})
g.hadMember(cml_collection, cml_network)
surfaces = collections.getElementsByTagName("cml:connectome-surface")
c = 0
for s in surfaces:
c = c + 1
#print s.getAttribute("src") + " " + s.getAttribute("dtype") + " " + s.getAttribute("name") + " " + s.getAttribute("fileformat")
dtype = s.getAttribute('dtype')
src = s.getAttribute('src')
name = s.getAttribute('name')
fileformat = s.getAttribute('fileformat')
cml_surface = g.entity(cml[get_id()])
cml_surface.add_extra_attributes(
{prov.PROV['type']: cml['connectome-surface'], cml['dtype']: dtype, cml['src']: src, cml['name']: name,
cml['fileformat']: fileformat})
g.hadMember(cml_collection, cml_surface)
data = collections.getElementsByTagName("cml:connectome-data")
c = 0
for d in data:
c = c + 1
#print d.getAttribute("src") + " " + d.getAttribute("dtype") + " " + d.getAttribute("name") + " " + d.getAttribute("fileformat")
dtype = d.getAttribute('dtype')
src = d.getAttribute('src')
name = d.getAttribute('name')
cml_data = g.entity(cml[get_id()])
cml_data.add_extra_attributes(
{prov.PROV['type']: cml['connectome-data'], cml['dtype']: dtype, cml['src']: src, cml['name']: name,
cml['fileformat']: fileformat})
g.hadMember(cml_collection, cml_data)
return g | c8e44bd627173a17d45eadcc5ab73062c4e27ff6 | 3,657,297 |
def optional(idx, *args):
"""A converter for functions having optional arguments.
The index to the last non-optional parameter is specified and a list of types for optional arguments follows.
"""
return lambda ctx, typespecs: _optional_imp(ctx, typespecs[idx], args) | e5491588090beaf4730f18c1b54193104a8f62be | 3,657,298 |
def calc_plot_ROC(y1, y2):
"""
Take two distributions and plot the ROC curve if you used the difference
in those distributions as a binary classifier.
:param y1:
:param y2:
:return:
"""
y_score = np.concatenate([y1, y2])
y_true = np.concatenate([np.zeros(len(y1)), np.ones(len(y2))])
return plot_ROC(y_true, y_score) | 428aa54ebe92ff1df6df4ebcae800a0b692f09d5 | 3,657,299 |
Subsets and Splits